数学建模入门基本知识

合集下载

数学建模知识点

数学建模知识点

数学建模知识点
以下是 7 条关于数学建模知识点:
1. 什么是函数呀?就像汽车的速度和行驶距离的关系,你给它一个速度,它就能通过时间算出跑了多远,这就是函数在发挥作用。

比如咱们做成本和利润的分析,不就是找出那个能告诉我们怎么赚钱的函数嘛!
2. 线性规划可太重要啦!想象一下,你要安排很多事情,怎么才能让资源利用最大化呢?就像搭积木,得找个最稳最好的方式去摆。

比如说要安排生产任务,怎么分配人力和时间,才能达到最高效率呢!
3. 概率这东西很神奇哦!就好比抽奖,你永远不知道下一次会不会中,但可以算出大概的可能性。

像是判断明天会不会下雨的概率,难道不有趣吗?
4. 统计可真是个好帮手!它就像个细心的记录员,把各种数据整理得清清楚楚。

就像统计一个班级里同学们的成绩分布,这样不就能看出大家的学习情况啦?
5. 模型检验呀,那可不能马虎!这就像你买了个新东西,得试试它好不好用。

比如我们建了个预测销量的模型,得看看预测得准不准呀!
6. 微分方程也很有意思哟!就像研究事物变化的规律。

比如传染病的传播,通过微分方程就可以模拟它怎么扩散的。

哇,是不是很神奇?
7. 建模的思路那得清晰呀!不能乱了阵脚。

就像你要去一个陌生地方,得先规划好路线。

比如碰到一个实际问题,得想清楚从哪里开始,怎么一步一步解决,这就是好的思路的重要性!
我的观点结论是:数学建模知识点丰富有趣又实用,学会了能解决好多实际问题呢!。

零基础学会数学建模

零基础学会数学建模

数学建模知识‎——之新手上路一、数学模型的定‎义现在数学模型‎还没有一个统‎一的准确的定‎义,因为站在不同‎的角度可以有‎不同的定义。

不过我们可以‎给出如下定义‎:“数学模型是关‎于部分现实世‎界和为一种特‎殊目的而作的‎一个抽象的、简化的结构。

”具体来说,数学模型就是‎为了某种目的‎,用字母、数学及其它数‎学符号建立起‎来的等式或不‎等式以及图表‎、图像、框图等描述客‎观事物的特征‎及其内在联系‎的数学结构表‎达式。

一般来说数学‎建模过程可用‎如下框图来表‎明:数学是在实际‎应用的需求中‎产生的,要解决实际问‎题就必需建立‎数学模型,从此意义上讲‎数学建模和数‎学一样有古老‎历史。

例如,欧几里德几何‎就是一个古老‎的数学模型,牛顿万有引力‎定律也是数学‎建模的一个光‎辉典范。

今天,数学以空前的‎广度和深度向‎其它科学技术‎领域渗透,过去很少应用‎数学的领域现‎在迅速走向定‎量化,数量化,需建立大量的‎数学模型。

特别是新技术‎、新工艺蓬勃兴‎起,计算机的普及‎和广泛应用,数学在许多高‎新技术上起着‎十分关键的作‎用。

因此数学建模‎被时代赋予更‎为重要的意义‎。

二、建立数学模型‎的方法和步骤‎1. 模型准备要了解问题的‎实际背景,明确建模目的‎,搜集必需的各‎种信息,尽量弄清对象‎的特征。

2. 模型假设根据对象的特‎征和建模目的‎,对问题进行必‎要的、合理的简化,用精确的语言‎作出假设,是建模至关重‎要的一步。

如果对问题的‎所有因素一概‎考虑,无疑是一种有‎勇气但方法欠‎佳的行为,所以高超的建‎模者能充分发‎挥想象力、洞察力和判断‎力,善于辨别主次‎,而且为了使处‎理方法简单,应尽量使问题‎线性化、均匀化。

3. 模型构成根据所作的假‎设分析对象的‎因果关系,利用对象的内‎在规律和适当‎的数学工具,构造各个量间‎的等式关系或‎其它数学结构‎。

这时,我们便会进入‎一个广阔的应‎用数学天地,这里在高数、概率老人的膝‎下,有许多可爱的‎孩子们,他们是图论、排队论、线性规划、对策论等许多‎许多,真是泱泱大国‎,别有洞天。

数学建模基础知识

数学建模基础知识

数学建模基础知识引言:数学建模是一门以数学为工具、以实际问题为研究对象、以模型为核心的学科。

它通过将实际问题抽象为数学模型,并利用数学方法对模型进行分析和求解,从而得到问题的解决方案。

在数学建模中,有一些基础知识是必不可少的,本文将介绍数学建模的基础知识,包括概率与统计、线性代数、微积分和优化算法。

一、概率与统计概率与统计是数学建模的基础。

概率论用于描述随机现象的规律性,统计学则用于从观测数据中推断总体的特征。

在数学建模中,需要根据实际问题的特点选择合适的概率模型,并利用统计方法对模型进行参数估计。

1.1 概率模型概率模型是概率论的基础,在数学建模中常用的概率模型包括离散型随机变量模型和连续型随机变量模型。

离散型随机变量模型适用于描述离散型随机事件,如投硬币的结果、掷骰子的点数等;连续型随机变量模型适用于描述连续型随机事件,如身高、体重等。

在选择概率模型时,需要根据实际问题的特点进行合理选择。

1.2 统计方法统计方法用于从观测数据中推断总体的特征。

在数学建模中,经常需要根据样本数据对总体参数进行估计。

常用的统计方法包括点估计和区间估计。

点估计用于估计总体参数的具体值,如均值、方差等;区间估计则用于给出总体参数的估计范围。

另外,假设检验和方差分析也是数学建模中常用的统计方法。

二、线性代数线性代数是数学建模的重要工具之一。

它研究线性方程组的解法、向量空间与线性变换等概念。

在线性方程组的求解过程中,常用的方法包括高斯消元法、矩阵的逆和特征值分解等。

线性代数还广泛应用于图论、网络分析等领域。

2.1 线性方程组线性方程组是线性代数的基础,它可以用矩阵和向量的形式来表示。

求解线性方程组的常用方法有高斯消元法、矩阵的逆矩阵和克拉默法则等。

高斯消元法通过矩阵的初等行变换将线性方程组转化为简化行阶梯形式,从而求得方程组的解。

2.2 向量空间与线性变换向量空间是线性代数的核心概念,它由若干个向量组成,并满足一定的运算规则。

数学建模常用知识点总结

数学建模常用知识点总结

数学建模常用知识点总结1.1 矩阵及其运算矩阵是一个矩形的数组,由行和列组成。

可以进行加法、减法和数乘运算。

1.2 矩阵的转置对矩阵进行转置就是把矩阵的行和列互换得到的新矩阵。

1.3 矩阵乘法矩阵A和矩阵B相乘得到矩阵C,要求A的列数等于B的行数,C的行数是A的行数,列数是B的列数。

1.4 矩阵的逆只有方阵才有逆矩阵,对于矩阵A,如果存在矩阵B,使得AB=BA=I,那么B就是A的逆矩阵。

1.5 行列式行列式是一个标量,是一个方阵所表示的几何体积的无向量。

1.6 特征值和特征向量对于矩阵A,如果存在标量λ和非零向量x,使得Ax=λx,那么λ就是A的特征值,x就是对应的特征向量。

1.7 线性相关和线性无关对于一组向量,如果存在一组不全为零的系数,使得它们的线性组合等于零向量,那么这组向量就是线性相关的。

1.8 空间与子空间空间是向量的集合,子空间是一个向量空间的子集,并且本身也是一个向量空间。

1.9 线性变换对于向量空间V和W,如果满足T(v+u)=T(v)+T(u)和T(kv)=kT(v),那么T就是一个线性变换。

1.10 最小二乘法对于一个线性方程组,如果方程个数大于未知数个数,可以使用最小二乘法来求得最优解。

1.11 奇异值分解矩阵分解的方法之一,将一个任意的矩阵分解为三个矩阵的乘积。

1.12 特征分解对于一个对称矩阵,可以将其分解为特征向量和特征值的乘积。

1.13 线性代数在建模中的应用在数学建模中,线性代数是非常重要的基础知识,它可以用来表示和分析问题中的数据,解决矩阵方程组、优化问题、回归分析等。

二、微积分2.1 极限和连续性极限是指一个函数在某一点上的局部性质,连续性则是函数在某一点上的全局性质。

2.2 导数和微分对于一个函数y=f(x),它的导数可以表示为f’(x),其微分可以表示为dy=f’(x)dx。

2.3 泰勒级数泰勒级数是一种用多项式逼近函数的方法,在建模中可以用来进行函数的近似计算。

数学建模基础

数学建模基础

数学建模基础
数学建模是指利用数学方法和技巧对实际问题进行抽象和
描述,并通过建立数学模型来研究问题的方法。

数学建模
基础主要包括以下几个方面:
1. 数学知识:数学建模需要掌握一定的数学知识,包括数
学分析、线性代数、概率论与数理统计、微分方程等。


些数学知识可以帮助建模者理清问题的结构和逻辑关系,
从而构建合理的数学模型。

2. 数据分析能力:数学建模过程中需要处理和分析大量的
实际数据,包括收集数据、整理数据、统计分析数据等。

因此,建模者需要具备一定的数据分析能力,如数据挖掘、统计分析等。

3. 系统思维能力:数学建模需要从整体上把握问题的本质
和复杂性,涉及到系统思维能力。

建模者需要能够将问题
拆解成多个子问题,并对它们进行分类、分析和优化,最
终求解整个问题。

4. 编程能力:在数学建模中,常常需要使用计算机编程来实现数学模型的求解。

因此,建模者需要具备一定的编程能力,如使用MATLAB、Python等编程语言进行算法实现和数据处理。

5. 创新能力:数学建模是解决实际问题的方法,需要建模者拥有一定的创新能力。

建模者需要能够运用已有的数学理论和方法,创造性地将其应用于实际问题,并提出新的解决方案。

综上所述,数学建模基础包括数学知识、数据分析能力、系统思维能力、编程能力和创新能力等方面。

这些基础能力是进行有效数学建模的必备条件。

数学建模入门知识

数学建模入门知识

2008 数码相机定位
2009
制动器试验台的 控制方法分析
眼科病床的合理 安排
2010年上海世博 会影响力的定量 评估 交巡警服务平台 的设置与调度
卫星和飞船的跟 踪测控
输油管的布置 企业退休职工养 老金制度的改革
储油罐的变位识 2010 别与罐容表标定 2011 城市表层土壤重 金属污染分析
2012 葡萄酒的评价
1.4 数学建模的意义
•在一般工程技术领域数学建模仍然大有用武之地; •在高新技术领域数学建模几乎是必不可少的工具; •进入一些数学的新领域,为数学建模开辟了新处女地: 诸如经济、生态、人口、地质等领域。
Chap2 数模竞赛简介
01 数模竞赛的来源 05 数模竞赛的概况 02 数模竞赛的流程 06 数模竞赛的赛题 数模竞赛的知识储备 03 数模竞赛与优研 07 (西电) 04 数模竞赛类别 08 数模竞赛的素质要求

3.2 数学建模的论文撰写
0. 摘要
• • • • a. 模型的数学归类(在数学上属于什么类型) b. 建模的思想(思路) c. 算法思想(求解思路) d. 建模特点(模型优点,建模思想或方法,算法特点,结果 检验,灵敏度分析,模型检验…….) • e. 主要结果(数值结果,结论)(回答题目所问的全部“问题”) 表述:准确、简明、条理清晰、合乎语法;符合打印文章 格式; 校对:务必认真。
刊登于次年“数学的实践与认识” 第1期
3.获得高水平学科竞赛奖的学生 满足以下条件之一即可: (1)ACM/ICPC国际大学生程序设计竞赛亚 洲区分站赛银奖及以上获得者; (2)全国大学生电子设计竞赛省级一等奖及 以上获得者; (3)全国大学生电子设计竞赛嵌入式系统专 题邀请赛、信息安全专题邀请赛和模拟电子 系统专题邀请赛国家二等奖及以上获得者; (4)全国大学生工程训练综合能力竞赛国家 二等奖及以上获得者; (5)美国大学生数学建模竞赛一等奖及以上 获得者;全国大学生数学建模竞赛国家一等 奖获奖学生;全国大学生数学建模竞赛国家 二等奖获奖学生且同时获得美国大学生数学 建模竞赛国际二等奖以上奖项1项;全国大学 生数学竞赛全国最高奖项获奖学生; (6)全国大学生“挑战杯”科技作品竞赛一 等奖前三名,二等奖前二名;全国大学生 “挑战杯”创业大赛一、二等奖第一名获奖 学生。

数学建模入门基本知识

数学建模入门基本知识

数学建模入门基本知识数学建模知识——之新手上路一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。

不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。

”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其在联系的数学结构表达式。

一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。

例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典。

今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。

特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。

因此数学建模被时代赋予更为重要的意义。

二、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。

如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

3. 模型构成根据所作的假设分析对象的因果关系,利用对象的在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。

这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。

不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。

数学建模入门

数学建模入门

数学建模入门数学建模是运用数学方法和技巧解决实际问题的过程,是一种既有理论又有实践的学科。

随着科技的不断发展,数学建模在工业、农业、医学、金融等各领域都发挥着重要作用。

本文将介绍数学建模的基本步骤和常用方法,帮助读者初步了解数学建模的入门知识。

一、数学建模的基本步骤1. 定义问题:数学建模的第一步是明确问题的定义,包括问题的背景、目标和限制条件。

只有准确定义问题,才能制定合理的建模方法。

2. 收集信息:在开始建模之前,需要收集相关的信息和数据。

这些信息可以从文献、实验、观测等渠道获取,有助于对问题的深入理解和分析。

3. 建立模型:建立模型是数学建模的核心步骤。

根据问题的特点和要求,选择合适的数学模型和方法,建立起描述问题的数学表达式。

4. 模型求解:利用数学工具和计算机软件,对所建立的模型进行求解。

通过数值计算、优化算法等方法,得到问题的解析结果或近似解。

5. 模型验证:对模型的结果进行验证和评估,检查模型的准确性和可行性。

如果模型与实际情况有出入,需要对模型进行修正和完善。

6. 结果分析:分析模型的结果,得出对问题的解释和结论。

根据结果进行决策,提出相应的对策和建议。

二、数学建模的常用方法1. 数理统计:数理统计是数学建模中常用的方法之一,用于分析和处理统计数据,探索数据的规律和趋势。

包括概率分布、假设检验、回归分析等技术。

2. 最优化方法:最优化方法用于求解最大化或最小化问题,寻找最优解。

常见的最优化算法包括线性规划、整数规划、动态规划等。

3. 微分方程模型:微分方程模型用于描述动态系统的行为和演化过程。

通过建立微分方程模型,可以预测系统的未来发展趋势。

4. 离散事件模型:离散事件模型用于描述存在离散事件和状态转换的系统。

通过离散事件模拟,可以模拟系统的运行过程,探索不同策略对系统性能的影响。

5. 图论与网络模型:图论与网络模型用于描述事物之间的关系和连接方式。

通过图论和网络模型,可以分析复杂系统的结构和性质。

数学建模方法知识点总结

数学建模方法知识点总结

数学建模方法知识点总结一、问题分析和建模1.问题分析数学建模的第一步是对实际问题进行分析和理解。

这包括确定问题的背景和范围,理解问题的关键要素,分析问题的复杂程度和不确定性,并确定问题的数学建模的可行性和必要性。

在问题分析阶段,需要充分调研、分析和理解现实世界中的问题,并准确把握问题的本质和特点,为建模和求解奠定基础。

2.建模的基本步骤建模的基本步骤包括确定问题的数学模型的类型,选择合适的数学模型,建立数学模型,进行模型的分析和求解,验证模型的有效性和适用性。

在建模的过程中,需要充分考虑问题的实际背景和要求,选择合适的数学工具和方法,保证模型的准确性和实用性。

3.模型假设在建立数学模型时,需要明确模型的假设,包括输入变量和输出变量,模型的非线性程度,问题的约束条件等。

模型假设的准确性和合理性对于模型的可靠性和有效性至关重要。

二、数学建模的数学方法1.微积分微积分是数学建模中最基本和最常用的工具之一,包括导数、积分、微分方程等。

在建立数学模型和求解问题时,常常涉及到对函数的求导和积分,微分方程的建立和求解等。

2.线性代数线性代数是数学建模中重要的数学工具,包括矩阵和向量的理论和方法,线性方程组的求解,特征值和特征向量的计算等。

在建模和求解问题时,常常需要用到线性代数的知识和方法。

3.概率论与统计学概率论和统计学是数学建模中涉及到的另一个重要领域,包括概率分布,随机变量,样本统计量,假设检验等。

在建立数学模型和分析问题时,需要考虑问题的不确定性和随机性,因此概率论和统计学的知识和方法非常重要。

4.优化方法优化方法是数学建模中用于求解最优化问题的重要工具,包括线性规划、非线性规划、整数规划等。

在建模和求解问题时,常常需要考虑优化问题,选择合适的优化方法进行求解。

5.离散数学与图论离散数学和图论是数学建模中用于处理离散结构和关系的重要工具,包括图的表示和遍历,图的匹配和覆盖,图的着色和路径等。

在建模和求解问题时,常常需要用到离散数学和图论的知识和方法。

数学建模知识点总结

数学建模知识点总结

数学建模知识点总结一、数学建模的基本概念数学建模是指利用数学方法和技术对实际问题进行数学化描述和求解的过程。

数学建模的核心是将实际问题抽象化为数学模型,并通过数学方法对模型进行求解,从而得出对实际问题的合理解释和解决方案。

二、数学建模的基本步骤1. 问题的分析与建模:对实际问题进行深入分析,明确问题的目标和约束条件,然后将问题转化为数学模型的形式。

数学模型可以是代数方程、差分方程、微分方程、优化问题等。

2. 模型的求解:根据具体问题的特点,选择合适的数学方法和技术对模型进行求解。

常见的数学方法包括数值计算、概率统计、优化算法等。

3. 模型的验证与评估:对求解得到的数学模型进行验证,检验模型的有效性和可行性。

可以通过实际数据的拟合度、模型的稳定性等方面来评估模型的质量。

4. 结果的解释与应用:将数学模型的求解结果进行解释和分析,得出对实际问题的合理解释和解决方案。

根据实际需求,可以对模型进行调整和优化,进一步提高模型的准确性和实用性。

三、常见的数学建模方法和技术1. 线性规划:线性规划是一种优化方法,用于解决目标函数线性、约束条件线性的优化问题。

通过线性规划可以求解最大化或最小化目标函数的最优解,广泛应用于生产调度、资源分配等领域。

2. 非线性规划:非线性规划是一种优化方法,用于解决目标函数非线性、约束条件非线性的优化问题。

非线性规划相比线性规划更加复杂,但可以处理更为实际的问题,如经济增长模型、能源消耗模型等。

3. 微分方程模型:微分方程模型是一种描述系统演化过程的数学模型,广泛应用于物理、生物、经济等领域。

通过求解微分方程模型,可以揭示系统的动力学行为和稳定性特征。

4. 差分方程模型:差分方程模型是一种递推关系式,描述系统在离散时间点上的变化规律。

差分方程模型常用于描述离散事件系统、人口增长模型等。

5. 概率统计模型:概率统计模型是一种利用概率统计方法对随机事件进行建模和分析的方法。

通过概率统计模型,可以对实际问题的不确定性进行量化和分析,如风险评估、市场预测等。

大学数学建模知识点总结

大学数学建模知识点总结

大学数学建模知识点总结一、概率论基础知识1. 集合论基础知识集合的概念、集合的运算、集合的性质、集合的表示方法等。

2. 随机变量及其分布随机变量的概念、随机变量的分布、离散型随机变量、连续型随机变量等。

3. 数理统计基础知识抽样、统计量、分布函数、统计分布函数、极限定理等。

二、线性代数知识1. 行列式及其性质行列式的概念、行列式的性质、行列式的运算规则等。

2. 矩阵及其运算矩阵的概念、矩阵的运算、矩阵的性质、矩阵的逆、矩阵的转置等。

3. 矩阵方程组矩阵方程组的概念、矩阵方程组的求解、矩阵方程组的解的存在性和唯一性等。

三、微积分知识1. 极限函数极限的定义、函数极限的性质、无穷小量、无穷大量、极限的性质等。

2. 导数导数的概念、导数的求法、导数的性质、高阶导数、隐函数的导数等。

3. 微分方程微分方程的概念、微分方程的解、微分方程的分类、微分方程的求解方法等。

四、数理逻辑知识1. 命题与命题的联结词命题的概念、命题的分类、联结词的概念、联结词的分类、逻辑联结词的性质等。

2. 推理与证明推理的概念、推理的方法、证明的方法、证明的逻辑、直接证明、间接证明、数学归纳法等。

五、数学建模方法1. 模型建立模型的概念、模型的分类、模型的建立方法、模型的验证等。

2. 模型求解模型求解的方法、模型求解的工具、模型求解的步骤等。

3. 模型分析模型分析的方法、模型分析的工具、模型分析的步骤等。

六、优化理论1. 最优化问题最优化问题的概念、最优化问题的分类、最优化问题的求解方法、最优化问题的应用等。

2. 线性规划线性规划的概念、线性规划的模型、线性规划的求解方法、线性规划的应用等。

七、统计推断1. 参数估计参数估计的概念、参数估计的方法、参数估计的性质、参数估计的应用等。

2. 假设检验假设检验的概念、假设检验的原理、假设检验的方法、假设检验的应用等。

八、时间序列分析1. 时间序列的概念时间序列的定义、时间序列的分类、时间序列的性质、时间序列的应用等。

数学建模知识点总结

数学建模知识点总结

数学建模知识点总结本文对数学建模的知识点进行总结,旨在帮助读者快速了解数学建模的核心概念和方法。

一、数学建模的基础知识1. 数学建模的定义:数学建模是通过数学方法解决实际问题的过程,包括问题的分析、建立数学模型、求解模型、结果的分析和验证等步骤。

2. 常用的数学模型:常见的数学模型包括线性模型、非线性模型、离散模型、连续模型等,不同类型的模型适用于不同的问题。

3. 数学建模的步骤:数学建模一般包括问题的形式化、模型的建立、模型的求解、模型的验证和结果的分析等步骤,每个步骤都需要仔细思考和合理选择方法。

二、数学建模的常用方法1. 数理统计方法:数理统计是数学建模中常用的方法之一,通过对问题数据的统计分析来获得问题的特征和规律,从而建立数学模型。

2. 最优化方法:最优化是数学建模中求解优化问题的常用方法,通过选择合适的优化目标函数和约束条件,求解出问题的最优解。

3. 微分方程方法:微分方程是数学建模中描述变化和关系的常用工具,通过建立微分方程模型,可以有效地描述问题的动态变化情况。

4. 图论方法:图论是数学建模中研究图结构和图算法的重要分支,通过构建问题的图模型,可以利用图论的方法解决相关问题。

5. 随机过程方法:随机过程是数学建模中研究随机事件发生的规律和模式的数学工具,通过建立随机过程模型,可以对问题进行概率分析和预测。

三、数学建模的案例应用1. 交通流量预测:通过建立交通流量模型,预测不同时间段和不同路段的交通流量,以便制定合理的交通管理策略。

2. 股票价格预测:通过建立股票价格模型,预测未来股票价格的变动趋势,为投资者提供参考和决策依据。

3. 环境污染控制:通过建立环境污染模型,分析污染源和传播规律,提出合理的环境保护措施和污染治理方案。

4. 生产优化调度:通过建立生产优化模型,分析生产过程中的瓶颈和制约因素,优化生产调度方案,提高生产效率。

5. 疾病传播模拟:通过建立疾病传播模型,分析疾病传播的潜在风险和影响因素,制定合理的防控措施。

初中数学建模知识点

初中数学建模知识点

初中数学建模知识点1.变量和函数:了解变量和函数的概念,学会用变量和函数来描述和分析问题,从而构建数学模型。

2.图形与数据的表示与分析:学习使用图表和数据来表示和分析问题。

常见的图表包括折线图、柱状图、饼图等,用于展示数据的分布、变化和比较。

3.数据统计与概率:学习如何收集和整理数据,了解常用的统计方法,如平均数、中位数、众数等。

概率是指根据已知信息,对事件发生的可能性进行估计和计算。

4.几何与图形:学习几何图形的性质、分类和测量方法,如直角三角形、平行四边形、圆等,以及面积、周长、体积等概念。

同时,还需要学习如何将几何图形应用到实际问题中,如计算房屋的面积、建筑物的体积等。

5.代数方程与不等式:学习解一元一次方程、一元二次方程和简单的不等式,掌握解方程和不等式的方法和技巧。

同时,还需要学习如何将实际问题转化为代数方程或不等式,并解决它们。

6.线性关系与函数:学习线性函数和一些常见的非线性函数,如二次函数、指数函数和对数函数等。

掌握函数的特性、图像和性质,学会将实际问题转化为函数的描述和应用。

7.最优化问题:学习如何寻找最优解,如最大值、最小值等。

学习使用函数模型和约束条件来描述最优化问题,并运用数学方法求解这些问题。

8.抽象建模与推理:学习如何抽象具体问题,建立抽象模型,并运用推理方法解决问题。

学习逻辑推理、思维导图等工具,将繁杂的问题简化,分解,找到解决问题的思路和方法。

9.数学工具的应用:学习如何使用数学工具解决实际问题,如计算器、电脑软件、数学仿真等。

同时,还需要学习正确使用数学工具,合理选择工具,并对结果进行合理的解读和分析。

10.数学建模的思维方法:学习数学建模的思维方法和策略,如拆解问题、归纳和演绎法等。

培养分析问题、提炼问题、解决问题的能力,还要培养创新思维,培养独立思考和解决问题的能力。

以上是初中数学建模的一些重要知识点,通过学习和掌握这些知识点,能够更好地应用数学知识解决实际问题,提高数学建模的能力。

数学建模基础知识

数学建模基础知识

数学建模基础知识一、数学基础数学建模是使用数学语言描述实际问题并建立模型的过程。

因此,掌握一定的数学基础知识是进行数学建模的关键。

这包括高等数学、线性代数、概率论与数理统计等学科的基础知识。

1. 高数学是数学建模的基础,主要包括极限、微积分、级数、微分方程等知识。

这些知识在模型构建和数值计算中有着广泛的应用。

2. 线性代数是研究线性方程组的科学,它提供了解决多变量问题的基本工具。

在模型构建和数据处理中,线性代数可以帮助我们理解和操作空间向量、矩阵等重要概念。

3. 概率论与数理统计是研究随机现象的数学科学。

在数据处理和问题解决中,概率论与数理统计的知识可以帮助我们理解和分析不确定性,从而更好地解决问题。

二、模型构建模型构建是数学建模的核心,它包括以下步骤:1. 问题分析:对实际问题进行深入分析,明确问题的主要矛盾和次要矛盾,找到问题的核心。

2. 模型假设:根据问题分析的结果,提出合理的假设,为模型构建提供基础。

3. 模型建立:根据假设,使用数学语言描述实际问题,建立数学模型。

4. 模型验证:将建立的模型用于实际问题,进行数据分析和预测,验证模型的准确性和可靠性。

三、数值计算数值计算是数学建模中不可或缺的一部分,它包括以下步骤:1. 算法设计:根据问题的特点,设计合适的算法,以实现模型的数值计算。

2. 编程实现:使用适当的编程语言实现算法,进行数值计算。

常用的编程语言包括Python、C++、Java等。

3. 结果分析:对计算结果进行分析和解释,为问题解决提供依据。

四、数据处理数据处理是数学建模中非常重要的一环,它包括以下步骤:1. 数据收集:根据实际问题的需要,收集相关的数据。

这可能包括历史数据、调查数据、实验数据等。

2. 数据清洗:对收集到的数据进行清洗和处理,去除无效和错误的数据,确保数据的准确性和完整性。

3. 数据转换:将清洗后的数据进行转换,使其更符合建模需要。

这可能包括数据的缩放、标准化、归一化等操作。

数学建模知识大全

数学建模知识大全

问题—给定一批数据点(输入变量与输出变量的数据),需确定满足特定要求的曲线或曲面
插值问题—要求所求曲线(面)通过所给所有数据点
数据拟合—不要求曲线(面)通过所有数据点,而是要求它反映对象整体的变化趋势
数据拟合
一元函数拟合
·多项式拟合
·非线性函数拟合
多元函数拟合(回归分析)
MATLAB实现
函数的确定
插值方法
一维插值的定义—已知n个节点,求任意点处的函数值。
分段线性插值
多项式插值
样条插值
y=interp1(x0,y0,x,'method')
二维插值—节点为网格节点
z=interp2(x0,y0,z0,x,y,'method')
·逐步回归分析
逐步回归分析—从一个自变量开始,视自变量作用的显著程度,从大到地依次逐个引入回归方程
当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉
引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步
对于每一步都要进行值检验,以确保每次引入新的显著性变量前回归方程中只包含对作用显著的变量
图的匹配问题
人员分派问题:n个工作人员去做件n份工作,每人适合做其中一件或几件,问能否每人都有一份适合的工作?如果不能,最多几人可以有适合的工作?(匈牙利算法)
遍历性问题
中国邮递员问题—邮递员发送邮件时,要从邮局出发,经过他投递范围内的每条街道至少一次,然后返回邮局,但邮递员希望选择一条行程最短的路线
时间序列建模的基本步骤
1 数据的预处理:数据的剔取及提取趋势项
2 取n=1,拟合ARMA(2n,2n-1)(即ARMA(2,1))模型

数学建模入门篇

数学建模入门篇

数学建模入门篇(新手必看)一、什么是数学建模1、什么是数学模型数学模型是针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻画出来的某种系统的纯关系结构。

从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。

(MBA智库)2、数学建模数学建模课看作是把问题定义转化为数学模型的过程。

简单的来说,对于我们学过的所有数学知识,要去解决生活中遇到的各种各样的问题,就需要我们建立相关的模型,使用数学这个工具来解决各种实际的问题,这就是建模的核心。

3、数学建模的思想对于数学建模的思想可以分为下列方法:(知乎张浩驰)对于数学建模的思想知乎上有各种解释,下面一篇解释的非常好,大家感兴趣的可以去知乎浏览什么是数学建模(讲的比较好)?二、数学建模比赛数学建模的相关比赛有很多,不同的比赛的影响力不同,在各个高校的认可度也不一样。

下面列举一些影响力和认可度较大的比赛。

1、"高教社杯"全国大学生数学建模竞赛参赛对象:本科生参赛时间:每年9月份(2020年为9月10日-9月13日)竞赛简介:“高教社杯”是目前影响力以及认可度最高的数学建模比赛,俗称“国赛”。

2020年共有来自全国及美国、英国、马来西亚的1470所院校/校区、45680队(本科41826队、专科3854队)、13万多人报名参赛。

在一些高校中对于国赛的认可度较高,国家级奖更是有极高的含金量。

竞赛官网:"高教社杯"全国大学生数学建模竞赛2、美国大学生数学建模竞赛参赛对象:本科生参赛时间:每年2月份左右竞赛简介:美国大学生数学建模竞赛(MCM/ICM)由美国数学及其应用联合会主办,是唯一的国际性数学建模竞赛,也是世界范围内最具影响力的数学建模竞赛。

赛题内容涉及经济、管理、环境、资源、生态、医学、安全、等众多领域。

竞赛官网:[美国大学生数学建模竞赛]添加链接描述(https:///undergraduate/contests/mcm/login.php)3、中国研究生数学建模竞赛(华为杯)参赛对象:研究生参赛时间:每年9月份左右竞赛简介:该赛事起源于2003年东南大学发起并成功主办的“南京及周边地区高校研究生数学建模竞赛”,2013年被纳入教育部学位中心“全国研究生创新实践系列活动”。

数学建模知识点总结

数学建模知识点总结

数学建模知识点总结一、数学建模概述1.1 数学建模的概念数学建模是利用数学方法和技术解决实际问题的过程,是将实际问题抽象成数学模型,再通过数学分析和计算来解决问题的一种方法。

数学建模可以应用于工程、科学、经济、环境等各个领域,对于解决复杂的实际问题具有重要的作用。

1.2 数学建模的基本步骤数学建模的基本步骤包括问题分析、建立数学模型、求解模型、模型验证和应用。

在处理实际问题时,首先要对问题进行充分的分析,然后建立相应的数学模型,再通过数学方法来求解模型,最后对模型进行验证和应用。

1.3 数学建模的应用范围数学建模的应用范围非常广泛,可以涉及到自然科学、社会科学、工程技术等各个领域。

例如,在工程领域可以用数学建模来设计飞机、汽车、桥梁等结构的强度和稳定性;在环境科学领域可以用数学建模来研究气候变化、环境污染等问题;在生物医学领域可以用数学建模来研究人体的生理过程。

1.4 数学建模的意义数学建模可以帮助人们更好地理解实际问题,设计出更优秀的工程产品,提高生产效率,优化资源配置,解决环境污染等问题,对于推动科技进步和社会发展具有重要的意义。

二、数学建模的数学基础2.1 微积分微积分是数学建模的基础。

微积分是研究变化的数学分支,包括导数、积分、微分方程等概念。

在数学建模中,微积分可以用来描述变化率、优化函数、求解微分方程等问题。

2.2 线性代数线性代数是数学建模的另一个基础。

线性代数是研究向量、矩阵、线性方程组等概念的数学分支,可以用来描述多维空间的几何关系、解决大规模线性方程组等问题。

2.3 概率论与统计学概率论与统计学是数学建模的重要工具。

概率论研究随机事件的概率分布、随机过程等概念,统计学研究数据的收集、处理、分析等方法。

在数学建模中,概率论和统计学可以用来描述随机现象、分析数据、评估模型等问题。

3.1 最优化方法最优化方法是数学建模常用的方法之一。

最优化方法是研究如何找到使目标函数取得最大(小)值的变量取值。

数学建模知识点

数学建模知识点

数学建模知识点数学建模是指利用数学方法和技术对实际问题进行描述、分析和求解的过程。

在现实生活中,我们面临的问题往往是复杂的,数学建模的目的就是通过数学模型对这些问题进行抽象和分析,并找到合适的解决方法。

而要进行有效的数学建模,我们需要掌握一些基本的数学知识点。

本文将介绍数学建模中常用的几个重要知识点。

一、线性规划线性规划是数学建模中最常用的方法之一。

它的基本思想是在一组线性约束条件下,寻找一个线性目标函数的最优值。

线性规划可以用来解决资源分配、生产计划、运输问题等。

在线性规划中,我们需要掌握线性代数的相关知识,例如矩阵运算、向量空间等。

二、微积分微积分是数学建模中另一个重要的工具。

微积分主要包括导数、积分和微分方程等内容。

在数学建模中,常常需要对实际问题进行建模和分析,利用微积分的方法来求解最优值、极值点等。

同时,微积分还可以用来描述和分析变化率、速度、加速度等概念,对于模拟实际问题的变化过程有着重要的作用。

三、概率论与统计学概率论与统计学是数学建模中的另一个重要分支。

概率论研究的是随机事件的性质和规律,统计学则利用样本数据对总体进行推断和决策。

在数学建模中,概率论和统计学常常用于描述和分析实际问题的不确定性和随机性。

例如,通过概率模型可以对风险进行评估,通过统计方法可以对实验数据进行处理和分析。

四、图论图论是研究图和网络的一门学科,也是数学建模中常用的工具之一。

在数学建模中,我们经常需要用图来表示问题中的对象和关系,通过图论可以分析和求解一些与图相关的问题。

例如,利用图论可以解决路径规划、网络流量优化等实际问题。

五、数值计算方法数值计算方法是数学建模中的一种重要工具,用于对无法解析求解的问题进行数值逼近。

数值计算方法主要包括数值微分、数值积分、差分法和数值优化等。

在数学建模中,我们通常需要使用计算机进行模拟和求解,数值计算方法能够帮助我们高效地进行数值计算和近似求解。

总结:数学建模作为一种综合运用数学知识解决实际问题的方法,包括线性规划、微积分、概率论与统计学、图论和数值计算方法等重要的知识点。

数学建模基础入门

数学建模基础入门

数学建模基础入门数学建模是一门应用数学领域的学科,它将数学方法和技巧应用于解决实际问题。

在现代科学和工程中,数学建模起着至关重要的作用。

本文将为您介绍数学建模的基本概念和入门知识。

一、引言数学建模是一种基于数学模型来描述和解决实际问题的过程。

它结合了数学理论和实际问题,通过建立合适的数学模型来分析和预测实际系统的行为。

数学建模的目标是通过理论分析和计算求解,得出对实际问题的认识和解决方案。

二、数学建模的基本步骤数学建模的过程可以分为以下几个基本步骤:1. 审题与问题分析:首先需要仔细审题,理解问题的背景和要求。

在问题分析阶段,需要明确问题的目标、所涉及的因素以及问题的约束条件。

2. 建立数学模型:在问题分析的基础上,需要选择合适的数学方法和技巧建立数学模型。

数学模型是对实际问题的抽象和描述,它可以是代数方程、微分方程、概率模型等形式。

3. 模型求解:根据建立的数学模型,采用适当的数值计算方法或者符号计算方法,对模型进行求解。

这一步骤需要运用数学知识和计算工具,得出模型的解析解或近似解。

4. 模型验证与分析:在获得数学模型的解之后,需要对解的合理性进行验证。

通过与实际数据的对比或者数值模拟的方法,验证模型的准确性和可靠性。

同时,对模型的敏感性分析和稳定性分析也是重要的一步。

5. 结果的解释与应用:根据模型求解得到的结果,进行结果的解释和分析。

将模型的结果与实际问题联系起来,给出合理的解释和应用建议。

在实际问题中,模型的结果通常会有多种解释和应用方式,需要综合考虑各种因素来得出最优解决方案。

三、常用的数学方法和技巧数学建模涉及的数学方法和技巧非常丰富,下面列举一些常用的方法和技巧:1. 最优化方法:最优化方法用于求解最大值或最小值问题,常见的最优化方法包括线性规划、整数规划、非线性规划等。

2. 概率统计方法:概率统计方法用于处理不确定性和随机性问题,包括概率分布、假设检验、回归分析等。

3. 微分方程方法:微分方程方法用于研究变化和动态系统,可以用来描述物理、化学、生物等领域的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模知识之新手上路一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。

不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。

”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其在联系的数学结构表达式。

一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。

例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典。

今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。

特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。

因此数学建模被时代赋予更为重要的意义。

二、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。

如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

3. 模型构成根据所作的假设分析对象的因果关系,利用对象的在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。

这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。

不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。

4. 模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。

一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

5. 模型分析对模型解答进行数学上的分析。

“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。

还要记住,不论那种情况都需进行误差分析,数据稳定性分析。

例题:一个笼子里装有鸡和兔若干只,已知它们共有8个头和22只脚,问该笼子中有多少只鸡和多少只兔?解:设笼中有鸡x只,有兔y只,由已知条件有x+y=82x+4y=22求解如上二元方程后,得解x=5,y=3,即该笼子中有鸡5只,有兔3只。

将此结果代入原题进行验证可知所求结果正确。

根据例题可以得出如下的数学建模步骤:1)根据问题的背景和建模的目的做出假设(本题隐含假设鸡兔是正常的,畸形的鸡兔除外)2)用字母表示要求的未知量3 )根据已知的常识列出数学式子或图形(本题中常识为鸡兔都有一个头且鸡有2只脚,兔有4只脚)4)求出数学式子的解答5)验证所得结果的正确性这就是数学建模的一般步骤三、数模竞赛出题的指导思想传统的数学竞赛一般偏重理论知识,它要考查的容单一,数据简单明确,不允许用计算器完成。

对此而言,数模竞赛题是一个“课题”,大部分都源于生产实际或者科学研究的过程中,它是一个综合性的问题,数据庞大,需要用计算机来完成。

其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的),呈报的成果是一篇论文。

由此可见“数模竞赛”偏重于应用,它是以数学知识为引导计算机运用能力及文章的写作能力为辅的综合能力的竞赛。

四、竞赛中的常见题型赛题题型结构形式有三个基本组成部分:1. 实际问题背景涉及面宽一一有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。

一般都有一个比较确切的现实问题。

2 .若干假设条件有如下几种情况:1 )只有过程、规则等定性假设,无具体定量数据;2)给出若干实测或统计数据;3 )给出若干参数或图形;4 )蕴涵着某些机动、可发挥的补充假设条件,或参赛者可以根据自己收集或模拟产生数据。

3 .要求回答的问题往往有几个问题,而且一般不是唯一答案。

一般包含以下两部分:1)比较确定性的答案(基本答案);2)更细致或更高层次的讨论结果(往往是讨论最优方案的提法和结果)。

五、提交一篇论文,基本容和格式是什么?提交一篇论文,基本容和格式大致分三大部分:1. 标题、摘要部分题目--- 写出较确切的题目(不能只写A题、B题)。

摘要一一200-300字,包括模型的主要特点、建模方法和主要结果。

容较多时最好有个目录。

2. 中心部分1 )问题提出,问题分析。

2)模型建立:①补充假设条件,明确概念,引进参数;②模型形式(可有多个形式的模型);③模型求解;④模型性质;3)计算方法设计和计算机实现。

4)结果分析与检验。

5)模型的优缺点,改进方向,推广新思想。

6)■—也有特定格式。

3. 附录部分计算程序,框图。

各种求解演算过程,计算中间结果。

各种图形、表格。

(论文有其严格的格式,这里只是一点挂一漏万的表述,详细的容留有下期,敬请观看)六、参加数学建模竞赛是不是需要学习很多知识?没有必要很系统的学很多数学知识,这是时间和精力不允许的。

很多优秀的论文,其高明之处并不是用了多少数学知识,而是思维比较全面、贴合实际、能解决问题或是有所创新。

有时候,在论文中可能碰见一些没有学过的知识,怎么办?现学现用,在优秀论文中用过的数学知识就是最有可能在数学建模竞赛中用到的,你当然有必要去翻一翻。

具体说来,大概有以下这三个方面:第一方面:数学知识的应用能力归结起来大体上有以下几类:1 )概率与数理统计2)统筹与线轴规划3)微分方程;相关的数学基础知识包括1、线性规划6、最优化理论2、非线性规划7、管理运筹学3、离散数学 &差分方程4、概率统计9、层次分析5、常微分方程还有与计算机知识交叉的知识:计算机模拟。

上述的容有些同学完全没有学过,也有些同学只学过一点概率与数理统计,微分方程的知识怎么办呢?一个词“自学”,记得数模评卷的负责教师曾经说过“能用最简单浅易的数学方法解决了别人用高深理论才能解决的答卷是更优秀的答卷”。

第二方面:计算机的运用能力一般来说凡参加过数模竞赛的同学都能熟练地应用字处理软件“Word ”,掌握电子表格“ Excel”的使用;“Mathematica ”软件的使用,最好还具备语言能力。

这些知识大部分都是学生自己利用课余时间学习的。

第三方面:论文的写作能力前面已经说过考卷的全文是论文式的,文章的书写有比较严格的格式。

要清楚地表达自己的想法并不容易,有时一个问题没说清楚就又说另一个问题了。

评卷的教师们有一个共识,一篇文章用10来分钟阅读仍然没有引起兴趣的话,这一遍文章就很有可能被打入冷宫了。

七、如何从建模例题中学习解题方法在看例题的时候,要看例题是如何作的,即是如何切入,如何选择合理假设,如何分析建立的模型等。

数学建模方法常见有:一、机理分析法从基本物理定律以及系统的结构数据来推导出模型。

1•比例分析法--建立变量之间函数关系的最基本最常用的方法。

2•代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。

3. 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。

4. 常微分方程--解决两个变量之间的变化规律,关键是建立”瞬时变化率”的表达式。

5. 偏微分方程--解决因变量与两个以上自变量之间的变化规律。

二、数据分析法从大量的观测数据利用统计方法建立数学模型1. 回归分析法--用于对函数f (x)的一组观测值(xi,fi )i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。

2. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。

三、仿真和其他方法1•计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。

①离散系统仿真--有一组状态变量。

② 连续系统仿真--有解析表达式或系统结构图。

2. 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。

八、小组中应该如何分工?传统的标准答案是一一数学,编程,写作。

其实分工不用那么明确,但有个前提是大家关系很好。

不然的话,很容易产生矛盾。

分工太明确了,会让人产生依赖思想,不愿去动脑子。

理想的分工是这样的:数学建模竞赛小组中的每一个人,都能胜任其它人的工作,就算小组只剩下她(他)一个人,也照样能够搞定数学建模竞赛。

在竞赛中的分工,只是为了提高工作的效率,做出更好的结果。

具体的建议如下:一定要有一个人脑子比较活,善于思考问题,这个人勉强归于数学方面吧;一定要有一个人会编程序,能够实现一些算法。

另外需要有一个论文写的比较好,不过写不好也没关系,多看一看别人的优秀论文,多用几次Ofice就成了。

数学建模是一种科研工作,需要研究、讨论的团队思维模式。

要分析、争论、相互启发、集思广义。

每个同学都要积极参与,积极思维。

若三人之间配合不好,会降低效率,导致整个建模学习的失败。

数学建模知识----- 之论文写作一、写好数模答卷的重要性1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。

2. 答卷是竞赛活动的成绩结晶的书面形式。

3. 写好答卷的训练,是科技写作的一种基本训练。

二、答卷的基本容,需要重视的问题1 •评阅原则假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。

2 .答卷的文章结构1)摘要。

2)问题的叙述,问题的分析,背景的分析等。

3)模型的假设,符号说明(表)。

4)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。

5)模型的求解计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。

6 )结果表示、分析与检验,误差分析,模型检验。

7 )模型评价,特点,优缺点,改进方法,推广。

8)参考文献。

9)附录、计算框图、详细图表。

3. 要重视的问题1)摘要。

包括:a. 模型的数学归类(在数学上属于什么类型);b. 建模的思想(思路);c. 算法思想(求解思路);d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……);e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。

▲注意表述:准确、简明、条理清晰、合乎语法、字体工整漂亮;打印最好,但要求符合文章格式。

相关文档
最新文档