整式的乘除计算题专项练习(完整资料).doc
整式的乘除测试题练习8套(含答案)
整式的乘除练习题(8套)含答案整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅ 2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ 3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x31)y x 2x 31(x n 1n n 2nn --=--+D 、当n 为正整数时,n 4n 22a )a (=- 4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(-- 6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( ) A 、0 B 、-7 C 、-9 D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。
整式的乘除整章练习题(完整)
整式的乘除整章练习题(完整)- 1 -第13章 整式的乘除第1课时 幂的运算(一)1.计算:(1)791010⨯=_________; (2)34111222⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭_____________.2.计算:(1)23x x = ___________; (2)74m m =______________.3.计算:(1)()43aa -=________; (2)()()42x x x ---= ____________.4.计算:()()()234m n n m n m ---=____________.5.计算:(1)322d d d d +=__________; (2)5462m m m m m -=__________.6.(1)若710maa a =,则m=_________; (2)若8m m a a a =,则m=_________.7.一长方体的长、宽、高分别是710cm 、610cm 、310cm ,则它的体积是_________3cm . 8.下列运算正确的是 ( )A .339x x x = B . 336x x x = C . 3332x x x = D .3262x x x =9.下列计算正确的是 ( )A .()()235a a a --=- B .()()()264a a a --=-C .()()374aa a --=- D .4312a a a -=-10.下列各式计算结果为7x 的是 ( )A . ()()25x x -- B .()25x x --C .()()43x x -- D . 34x x +11.已知2,5abx x ==,则a bx+等于 ( )A .7B .10C .20D .50 12.已知311aa a χχ+=,则χ的值为 ( )A .2B .3C .4D .5- 1 -13.计算.(1) ()()2322x y y x --; (2) 131n n yy y y -++;(3);()()334433x x x x x x x ++-- (4)52342n n x x x x x x --14.一台电子计算机每秒可作1010次计算,它工作3510⨯秒可作多少次运算?15.已知12km 的土地上,一年内从太阳得到的能量相当于燃烧1.3810⨯kg 煤所产生的能量,那么我国6210km ⨯的土地上,一年内从太阳得到的能量相当于燃烧多少千克煤?16.我们约定1010ab a b ⊗=⨯,如25231010⊗==.(1)试求123⊗和48⊗的值; (2)想一想:()a b c ⊗⊗是否与()a b c ⊗⊗的值相等?验证你的结论.第13章 整式的乘除- 1 -第2课时 幂的运算(二)1.计算:(1)()320.3⎡⎤-=⎣⎦_________; (2) ()7102=_________.2.计算:(1)()43a =__________; (2) ()2x m =________.3.计算:(1)()43χ-=___________; (2)()35a -=__________.4.计算:(1)()54a b ⎡⎤-=⎣⎦___________; (2)()32m n --=⎡⎤⎣⎦________________. 5.计算:(1)()()2334m m --=________; (2)()()3221m m bb +=____________.6.下列计算正确的是 ( ) A .()257a a = B .()3327a a = C .()236a a = D .()2121n n a a ++=7.下列各式中错误的是 ( )A . ()()2510nnx y x y ⎡⎤-=-⎣⎦B .()()nm mn a b a b ⎡⎤+=+⎣⎦C .()()236a b a b ⎡⎤-=-⎣⎦ D .()()3131m m x y x y --⎡⎤-=-⎣⎦8.计算()()8424x x 的结果为 ( )A .18x B .24x C .28x D .32x 9.计算1001000mn 的结果为 ( )A .100000m n+ B .2310m n+ C .100m D .1000mn10.若5544332,3,4a b c ===,则a 、b 、c 的大小关系是 ( )A .b>c>aB .a >b >cC .c >a >bD .a <b<c 11.计算. (1)()532y y y ; (2)()()3122n n n x x x -;(3)()()3511m m b b +-; (4)()()235a b b a ⎡⎤--⎣⎦;- 1 -(5)()()()332x y x y x y ⎡⎤---⎣⎦; (6)()()2122nn x xx +-.12.已知正方体的棱长为()23a b cm +,试分别求出这个正方体的表面积和体积.13.(1)已知182482mm m =,求m 的值;(2)已知22ma =,求()32m a 的值.14.求1007和2003的末位数字.15.求满足()()23320nnn n ----=的正整数n 的值.第13章 整式的乘除- 1 -第3课时 幂的运算(三)1.计算:(1)()32x =_________; (2)()23mx y =____________.2.计算:(1)212ab ⎛⎫-= ⎪⎝⎭__________; (2)()322xy -=__________.3.计算:(1)()32310-⨯=__________; (2)()34410-⨯=______________.4.计算:(1)()()223222a a a +=____________;(2)()()()428236x y x y +-=_______.5.已知2,3nnx y ==,则()nxy =____________.6.计算:(1)200820083553⎛⎫⎛⎫-= ⎪⎪⎝⎭⎝⎭______________. (2)741497⎛⎫-⨯= ⎪⎝⎭____________.7.下列计算正确的是 ( ) A .()326ab ab = B .()22236xy x y = C .()22424a a -=- D .()2323mm m a b a b =8.下列计算正确的个数为 ( )(1)()224ab ab = (2)()333412ab a b = (3)()428216x x -=- (4)()2234524m n m n =A .0个B .1个C .2个D .3个 9.若()3915m n x y x y =,则m 、n 的值为 ( )A .m=9,n=5B .m=3,n=5C .m=5,n=3D .m=6,n=1210.计算: 6640.753⎛⎫⨯- ⎪⎝⎭的结果为 ( ) A .0 B .1 C .-5 D .16411.计算: (1)()4233xy z -; (2)()()25332a b ⎡⎤-⎢⎥⎣⎦;- 1 -(3)()()4225243a a a a a +--; (4)()()()2323337235x x x x x -+12.先化简再求值.()3233212ab ab ⎛⎫-+- ⎪⎝⎭,其中1,44a b ==.13.若25nx =,求()()223234nn x x -的值.14.太阳可以近似地看作是球体,如果用V 、r 分别代表球的体积和半径,那么343V r π=. 太阳的半径约为6×610千米,它的体积大约是多少立方千米?15.你能确定510256625⨯的位数吗?请大胆试一试.第13章 整式的乘除- 1 -第5课时 整式的乘法(一)1.计算:(1)232xy x y -=___________;(2)24342535x y x y z ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭__________. 2.计算:(1)221323ab abcabc =_____________; (2)2352231343a bc c abc ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭_____________. 3.计算. (1)()()()35210310510⨯⨯⨯=________________,(2)()()()345310410510⨯⨯⨯=________________.4.计算.(1)()2122xyz xy ⎛⎫-= ⎪⎝⎭__________;(2)()221322m mn mn ⎛⎫--= ⎪⎝⎭__________.5.卫星脱离地球进入太阳系的速度是1.12⨯410米/秒,则3.6310⨯秒卫星行走________米.6.计算()24334x y x y ⎛⎫-⎪⎝⎭的结果为 ( ) A .6253x y B .84x y - C .624x y - D .62x y 7.下列计算正确的是 ( )A .23639x xy x y = B .()()22323ab ab a b-=-C .()()2233mn m n m n-=- D .()232339xy xy x y --=8.若()()()6571051021010na ⨯⨯⨯=⨯,则a 、n 的值分别为 ( )A .7,11a n ==B .a = 5,n = 12- 1 -C .a =7,n =13D .a =2,n =13 9.计算()()()232341.210510210-⨯⨯⨯⨯⨯的结果为 ( )A .205.7610⨯ B .195.7610⨯ C .202.8810⨯ D .192.8810⨯ 10.计算. (1)()2332310.534x y x y z xyz ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭; (2)()()()2330.30.27ay bx a by11.计算.(1)()()22233ab a b a b ab +-;(2) ()()()23222222x y xy xy xy --+.12.先化简再求值. ()()()()222335364a b b ab ab ab a -+----,其中a =12,b=0.5.- 1 -13.光的速度大约是3510⨯千米/秒,从太阳系以外距离地球最近的一颗恒星(比邻星)发出的光,需要4年时间才能到达地球,一年以3710⨯秒计算,求这颗恒星与地球的距离.14.已知1292nm n a b a b +-的积与435a b 是同类项,求m 、n 的值.15.已知435,477m n ==. 求代数式()()()()321322m n m n m n m n ⎡⎤-+--+-⎡⎤⎣⎦⎢⎥⎣⎦的值.第6课时 整式的乘法(二)1.计算:(1) a (2a 2一3a +1)=________;(2)(42x 一3x+6)12x =____________.2.计算:(1)3a b(2a 2b--a b+1) =_____________;(2)(34a b 2+3a b 一23b )(12a b)=_____________. 3.计算:(1)(一22x )(2x -12x 一1) =____________;(2) 322213342x y x y x ⎛⎫+-⎪⎝⎭(一12xy) =______________.4.计算:(1)3x(5x -2)一5x(1+3x)=____________; (2)32x (1--2x)+2x(32x -x+1)=___________.5.若A 表示一个单项式,B 表示一个三项式,则AB 是__________项式.6.下列各式中,计算正确的是 ( )A .(a -3b+1)(一6a )=一6a 2+18a b+6aB .()232191313x y xy x y ⎛⎫--+=+ ⎪⎝⎭C .6mn(2m+3n -1) =12m 2n+18mn 2-6mnD .一a b(a2一a -b) =-a 3b -a2b--a b 27.计算(62x -4xy+3y 2)·213x y ⎛⎫-⎪⎝⎭的结果为 ( ) A .一2x4y+43x 2y 2+x 2y 3 B .一2x 4y -43x 2y 2-x 2y 3C .一2x 4y+43x 3y 2一x 2y 3D .一2x 4y 一43x 3y 2+x 2y 38.计算a2(a +1) -a (a2-2a -1)的结果为 ( )A .一a 2一a B .2a 2+a +1 C .3a2+a D .3a2-a9.一个长方体的长、宽、高分别是2x 一3、3x 和x ,则它的体积等于 ( ) A .22x —32x B .6x -3 C .62x -9x D .62x -92x10.计算.(1)(2x 3一32x +4x -1)(一3x); (2)()22213632xy y x xy ⎛⎫-+-- ⎪⎝⎭.11.计算. (1)2a 2-a (2a -5b)-b(5a -b);(2)22249312324ab a b ab b ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭.12.先化简,再求值.(1)m 2(m+3)+2m(m 2—3)一3m(m 2+m -1),其中m 52=;(2)4a b(a 2b -a b 2+a 6)一2a b 2(2a2—3a b+2a ),其中a =3,b=2.13.(1)解方程:x(x2+3)+ 2x(2x-3)--3x(2x-x-1)=12;(2)解不等式:2x(x一1)一3(2x+5x一6)>l+4x(1一14 x).14.若n为自然数,则n(2n+1)-2n(n-3)的值是7的倍数吗?试说明理由.15.若(3x+2y) 2+2x+3y+5=0.化简(一122x y)(xy2+42x y-6x3)+2xy(x3y-2x4)+xy2,并求它的值.第7课时整式的乘法(三)1.计算:(1)(y—12)(y+13)=___________;(2)(x+20)(x+10) =__________.2.计算:(1)(2x一5)(x+4)=___________;(2)(2y—1)(2y+3) =__________.3.计算:(1)(x+3y)(3x-4y)=__________;(2)(2a一b)(3a+b) =___________.4.计算:(1)(22x+3y2)(22x-5y2)=__________;(2)52x一(2x-1)(3x+ 1) =__________.5.计算:(1)(3m+2n)(3m-2n-1) =____________;(2)(2x+3)( 2x一5x-1) =___________.6.下列计算中,错误的是( ) A.(x+1)(x+4) =2x+5x+4 B.(m一2)(m+3) =m2+m一6C.(y+4)(y一5) =y2+9y一20 D.(x一3)(x一6) =2x一9x+187.计算结果为2m2-7mn+6n2的是( )A.(2m—n)(m 6n) B.(2m-3n)(m-2n)C.(2m一3n)(m+2n) D.(2m+3n)(m+2n)8.计算t2一(t+1)(t-5)的结果为( )A.4t-5 B.一4t一5 C.一4t+5 D.4t+59.若(x-2)(x+3) =2x+px+q,贝p、q的值是( ) A.p=5,q=6 B.p=l,q=-6 C.p=1,q=6 D.p=5,q=一6 10.计算.(1)(12x+3)(22x一4x+1);(2)(3x3一2x+1))2-x)(3)3(x一2)(x+1)一2(x一5)(x-3);(4)x(2x一4)一(x+3)( 2x一3x+2) .11.先化简,再求值.(1)3(x+5)(x一3)-5(x一2)(x+3),其中32x=:(2)(3x-2)(x-3)一2(x+6)(x-5)+3(2x-7x+13),其中132x=.12.计算下图中阴影部分的面积.13.把一个长方形的长增加2 cm,宽减少l cm,它的面积不变;把它的长减少3 cm,宽增加4 cm,面积也不变,求这个长方形原来的面积.14.已知:如图,现有a ×a 、b×b 的正方形纸片和a ×b 的矩形纸片各若干块,试选用这些纸片(每种纸片至少用一次)在下面的虚线方框中拼成一个矩形(每两个纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使拼出的矩形面积为2a 2+5a b+2b 2,并标出此矩形的长和宽.15.你能求(x 一1)(99x +98x +97x +…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形人手,分别计算下列各式的值. (1)(x -1)(x+1) =_____________; (2)(x —1)( 2x +x+1) =_____________; (3)(x -1)(3x + 2x +x+1) =____________; …由此我们可以得到:(x 一1)( 99x +98x +97x +…+x+1) =___________, 请你利用上面的结论,完成下列两题的计算: (4)992+982+972+…+2+1; (5)()()()504948222-+-+-+…+(一2)+1.第8课时 乘法公式(一)1.计算:(1)(1--2y)(1+2y)=___________; (2)(2x+3)(3—2x)=____________. 2.计算:(1)(一2y 一3x)(3x 一2y)=__________; (2)(一2y 2-3x)(3x 一2y 2)=_________. 3.计算:(1)( a2b —c 3)(a2b+c 3)=_________; (2)(-3a b+c)(3a b+c)=___________.4.计算:(1)(2x+1)(2x 一1)(4x 2+1)=__________; (2)2111242x x x ⎛⎫⎛⎫⎛⎫-++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭=_______________. 5.计算:(1)(x+5) 2一(x 一5) 2=_____________; (2)(m+t)(m 一t)一(3m+2t)(3m--2t)=____________. 6.利用平方差公式计算.(1)1.02 ×0.98=___________; (2)12151433⨯=______________. 7.下列运算中,正确的是 ( ) A .(a 一2b)( a -2b)= a2-4b 2B .(-a +2b)( a 一2b)= -a2一2b 2C .(a +2b)( a 一2b)= -a2-2b 2D .(一a 一2b)(一a +2b)= a 2-4b 28.在下列各式中,运算结果为36y 2+49x 2的是 ( ) A .(一6y+7x)(一6y 一7x) B .(一6y+7x)(6y 一7x) C .(7x 一4y)(7x+9y) D .(一6y 一7x)(6y 一7x)9.在①(一3x -y)(3x+y);②(一3x —y)(3x -y);③(一3x+y)(3x 一y);④(一3x+y) (3x+y)这四个式子中,能利用平方差公式计算的是 ( ) A .①② B .②③ C .③④ D .②④10.利用平方差公式计算(x 一1)(x+1)(x 2+1),正确的结果是 ( ) A .x 4-1 B .x 4+1 C .(x 一1) 4D .(x+1)411.利用平方差公式计算.(1)59.8×60.2; (2)99×101×10 001. 12.计算.(1)x 2(x -2y)(x+2y)一(x 2+y)(x 2-y); (2)( a +1)( a 一1)( a 2+1)( a4+1)(8a +1).13.先化简,再求值.(1)2(3a +1)(1--3a )+(a -2)(2+a ),其中a =2;(2)(2x -y )(y+2x)一(2y+x)(2y -),其中x=1,y=2.14.利用平方差公式计算.(1)1002一992+982-972+962-952+…+22一12;(2)222111111234⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭…22111199100⎛⎫⎛⎫--⎪⎪⎝⎭⎝⎭.15.计算图中阴影部分的面积,其中R=7.22 cm ,r=1.39 cm .(π取3.14,结果保留整塑)16.已知962-1可以被在60至70之间的两个整数整除,求这两个整数.13.3 乘法公式(1)一、基础训练1.下列运算中,正确的是()A.(a+3)(a-3)=a2-3 B.(3b+2)(3b-2)=3b2-4 C.(3m-2n)(-2n-3m)=4n2-9m2 D.(x+2)(x-3)=x2-6 2.在下列多项式的乘法中,可以用平方差公式计算的是()A.(x+1)(1+x)B.(12a+b)(b-12a)C.(-a+b)(a-b)D.(x2-y)(x+y2)3.对于任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是( )A.3 B.6 C.10 D.94.若(x-5)2=x2+kx+25,则k=()A.5 B.-5 C.10 D.-105.9.8×10.2=________; 6.a2+b2=(a+b)2+______=(a-b)2+________.7.(x-y+z)(x+y+z)=________; 8.(a+b+c)2=_______.9.(12x+3)2-(12x-3)2=________.10.(1)(2a-3b)(2a+3b);(2)(-p2+q)(-p2-q);(3)(x-2y)2;(4)(-2x-12y)2.11.(1)(2a-b)(2a+b)(4a2+b2);(2)(x+y-z)(x-y+z)-(x+y+z)(x-y-z).12.有一块边长为m的正方形空地,想在中间位置修一条“十”字型小路, 小路的宽为n,试求剩余的空地面积;用两种方法表示出来,比较这两种表示方法, 验证了什么公式?二、能力训练13.如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为()A.4 B.2 C.-2 D.±214.已知a+1a=3,则a2+21a,则a+的值是()A.1 B.7 C.9 D.1115.若a-b=2,a-c=1,则(2a-b-c)2+(c-a)2的值为()A.10 B.9 C.2 D.116.│5x-2y│·│2y-5x│的结果是( )A.25x2-4y2B.25x2-20xy+4y2C.25x2+20xy+4y2D.-25x2+20xy-4y2 17.若a2+2a=1,则(a+1)2=_________.三、综合训练18.(1)已知a+b=3,ab=2,求a2+b2;(2)若已知a+b=10,a2+b2=4,ab的值呢?19.解不等式(3x-4)2>(-4+3x)(3x+4).20.观察下列各式的规律.12+(1×2)2+22=(1×2+1)2;22+(2×3)2+32=(2×3+1)2;32+(3×4)2+42=(3×4+1)2;…(1)写出第2007行的式子;(2)写出第n行的式子,并说明你的结论是正确的.13.3 乘法公式(2)1.计算:(1)(2x2+13)(2x2-13);(2)(3a+b)(b-3a);(3)(-2x-3y)(2x-3y).2.判断下列各式能否用平方差公式计算,若能,请把结果计算出来.(1)(2x-13y)(-13x-2y); (2)(-2m+3n)(2n+3m);(3)(-3m+2)(3m-2); (4)(13a-b)(-b-13a).3.判断:(1)(b-4a)2=b2-16a2.()(2)(12a+b)2=14a2+ab+b2.()(3)(4m-n)2=16m2-4mn+n2.()(4)(-a-b)2=a2-2a b+b2.()4.计算:(1)(2a-3)2;(2)(-2a-13)2.5.运用乘法公式计算:(1)1997×2003;(2)10.32;(3)(9923)2;(4)1523×1613.6.如图,老张家有一块L形菜地,要把L形菜地按图那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是a米,下底都是b米,高都是(b-a)米,请你算一下,这块菜地面积共有多少?当a=10,b=30时,面积是多少?7.计算(a+b-c)2.8.计算(a+4b-3c)2.9.计算(3x+y-2)2.10.计算(x+y+z)(x-y-z).11.计算(a+4b-3c)(a-4b-3c).12.计算(3x+y-2)(3x-y+2).13.已知:a+b=9,a2+b2=21,求ab.14.已知a+1a=10,求a2+21a的值.15.若已知a-1a=3,且a>1a,求a2+21a的值.13.5 因式分解(1)一、基础训练1.若多项式-6ab+18abx+24aby的一个因式是-6ab,那么其余的因式是( ) A.-1-3x+4y B.1+3x -4y C.-1-3x-4y D.1-3x-4y 2.多项式-6ab 2+18a 2b 2-12a 3b 2c 的公因式是( ) A .-6ab 2c B .-ab 2 C .-6ab 2 D .-6a 3b 2c 3.下列用提公因式法分解因式正确的是( )A .12abc -9a 2b 2=3abc (4-3ab )B .3x 2y-3xy+6y=3y (x 2-x +2y )C .-a 2+a b-ac=-a(a -b+c)D .x 2y+5xy-y=y (x 2+5x ) 4.下列等式从左到右的变形是因式分解的是( )A .-6a 3b 2=2a 2b·(-3ab 2)B .9a 2-4b 2=(3a+2b)(3a -2b)C .ma-mb+c=m(a -b)+cD .(a+b )2=a 2+2ab+b 2 5.下列各式从左到右的变形错误的是( ) A .(y -x )2=(x-y )2 B .-a-b=-(a+b) C .(m-n )3=-(n-m )3 D .-m+n=-(m+n)6.若多项式x 2-5x+m 可分解为(x -3)(x -2),则m 的值为( ) A.-14 B.-6 C.6 D.47.(1)分解因式:x 3-4x=_______;(2)因式分解:ax 2y+axy 2=________. 8.因式分解:(1)3x 2-6xy+x ; (2)-25x +x 3;(3)9x 2(a-b )+4y 2(b -a); (4)(x -2)(x -4)+1. 二、能力训练9.计算54×99+45×99+99=________.10.若a 与b 都是有理数,且满足a 2+b 2+5=4a-2b ,则(a+b )2006=_______. 11.若x 2-x+k 是一个多项式的平方,则k 的值为( )A.14 B.-14 C.12 D.-1212.若m 2+2mn+2n 2-6n+9=0,求2mn的值.13.利用整式的乘法容易知道(m+n)(a+b)=ma+mb+na+nb,现在的问题是:如何将多项式ma+mb+na+nb因式分解呢?用你发现的规律将m3-m2n+mn2-n3因式分解.14.由一个边长为a的小正方形和两个长为a,宽为b的小矩形拼成如图的矩形ABCD,则整个图形可表达出一些有关多项式分解因式的等式,请你写出其中任意三个等式.15.说明817-299-913能被15整除.13.5 因式分解(2)1.3a4b2与-12a3b5的公因式是_________.2.把下列多项式进行因式分解(1)9x2-6xy+3x; (2)-10x2y-5xy2+15xy;(3)a(m-n)-b(n-m).3.因式分解:(1)16-125m2;(2)(a+b)2-1;(3)a2-6a+9;(4)12x2+2xy+2y2.4.下列由左边到右边的变形,属于因式分解的是()A.(x+2)(x-2)=x2-4 B.x2-2x+1=x(x-2)+1C.a2-b2=(a+b)(a-b)D.ma+mb+na+nb=m(a+b)+n(a+b)5.因式分解:(1)3mx2+6mxy+3my2;(2)x4-18x2y2+81y4;(3)a4-16;(4)4m2-3n(4m-3n).6.因式分解:(1)(x+y)2-14(x+y)+49; (2)x(x-y)-y(y-x);(3)4m2-3n(4m-3n).7.用另一种方法解案例1中第(2)题.8.分解因式:(1)4a2-b2+6a-3b;(2)x2-y2-z2-2yz.9.已知:a-b=3,b+c=-5,求代数式a c-bc+a2-ab的值.第12课时因式分解1.(1)多项式8x3y2一18xy2z的公因式是_____________;(2)多项式2x2y+6xy-10y的公因式是_____________.2.(1)多项式4x3-12x2-18x的公因式是2x,则另一个因式是______________;(2)多项式-7a b-14a bx+49a by的公因式是-7a b,则另一个因式是_____________.3.分解因式.(1) a(2x-y)一b(y一2x)=_____________:(2)3((a一b)2一4(b一a)=_____________.4.分解因式.(1)5x(a+b一c) -l0y(a+b一c)=_____________;(2)5m2(a一b)一l0m(a-b)2=_____________.5.分解因式.(1)x4-x2=____________________:(2)b2 (a一4)+(4一a)=_________________.6.分解因式.(1)一12x2+xy一12y2=_________________;(2)2m3一28m2n2+98mn4=__________________.7.下列等式从左到右的变形属于因式分解的是( ) A.(x+1)(x-1)=x2一1 B.(2x)2一y2=(2x+y)(2x—y)C.a x+a y—a=a(x+y)一a D.5a2y-10a y+20y=5y(a2—2a)+20y8.把多项式9a2b2-18a b2+45a2b分解因式时,公因式是( )A.9a2b B.45a2b2 C .9a b D.18a b29.下列各式中,分解因式正确的是( ) A.6(x一2)+x(2一x)=(x一2)(6+x) B.x3+2x2+x=x(x2+2x)C.a(a一b) 2+a b(a一b)= a2(a-b) D.3x2+6x=3x(x+6) 10.下列各式中,分解结果为2a(x-3) 2的是( )A .2a x 2-6x+9B .2a x 2-18a C .2a x 2+12a x+18a D .2a x 2—12a x+18a11.下列多项式①10a m 一15a ;②4xm 2一9x ;③4a m 2一12a m+9a ;④一4m 2—9中,含有因式2m -3的有 ( ) A .1个 B .2个 C .3个 D .4个 12.分解因式.(1)16a 2b -25bc 2; (2)( a -b)4一(b -a )2:(3)()()2293x y x y --+; (4)()()()322x y x y x y -+--13.分解因式(1)-a 2-4a b -4b 2; (2)4a2x 2-8a2x ;(3)3a (b 2+9)2-108a b 2; (4)9a b 2(x -y)+6a 2b(x -y) -a 3(y -x) .14.(1)已知m+n=3,mn=23,求m 3n 一m 2n 2+mn 3的值;(2)已知a (a 一1)一(a 2-b)=3,求a b 一12(a 2+b 2)的值.15.试说明四个连续自然数的积加上1是一个完全平方数.16.有两个孩子的年龄分别为x 、y ,且满足x 2+xy=99,你能求出这两个孩子的年龄吗?因式分解姓名1.下列因式分解中,正确的是()(A) 1- 14x2=14(x + 2) (x- 2) (B)4x –2 x2– 2 = - 2(x- 1)2(C) ( x- y )3–(y- x) = (x – y) (x – y + 1) ( x –y – 1)(D) x2–y2– x + y = ( x + y) (x – y – 1)2.下列各等式(1) a2- b2 = (a + b) (a–b ),(2) x2–3x +2 = x(x–3) + 2(3 )1x2–y2=1( x + y) (x – y ),(4 )x2 +1x2=-( x -1x)2从左到是因式分解的个数为()(A) 1 个 (B) 2 个 (C) 3 个 (D) 4个3.若x2+mx+25 是一个完全平方式,则m的值是()(A)20 (B) 10 (C) ± 20 (D) ±104.若x2+mx+n能分解成( x+2 ) (x – 5),则m= ,n= ; 5.若二次三项式2x2+x+5m在实数范围内能因式分解,则m= ; 6.若x2+kx-6有一个因式是(x-2),则k的值是 ;7.把下列因式因式分解:(1)a3-a2-2a (2)4m2-9n2-4m+1(3)3a2+bc-3ac-ab (4)9-x2+2xy-y28.在实数范围内因式分解:(1)2x2-3x-1 (2)-2x2+5xy+2y29.分解下列因式:(1).10a(x-y)2-5b(y-x) (2).a n+1-4a n+4a n-1 (3).x3(2x-y)-2x+y (4).x(6x-1)-1(5).2ax-10ay+5by+6x (6).1-a2-ab-14b2*(7) 3X2-7X+2 (8).(x2+x)(x2+x-3)+2 (9).x5y-9xy5 (10).-4x2+3xy+2y2(11).4a-a5 (12).2x2-4x+1(13).4y2+4y-510.多项式x2-y2, x2-2xy+y2, x3-y3的公因式是。
整式的乘除专项训练
整式的乘除专项练习一.同底数幂的乘法:公式:nm n m a a a += 1.下面的盘算对不合错误?(1)523632=⨯; (2)633a a a =+; (3)n n n y y y 22=⨯; (4)22m m m =⋅; (5)422)()(a a a =-⋅-; (6)1243a a a =⋅; 2.填空=⋅53x x ; =⋅⋅32a a a ; =⋅2x x n ;⋅2x =6x ;34a a a ⋅⋅ = =--⋅43)()(a a ;=--⋅24)()(m m ; =--⋅32)()(q q n ; ;___________11=⋅-+n n x x =⋅⋅+⋅4353x x x x x _____;_________21=⋅-⋅+y y y y n n ;=-⋅-32)()(a a ;=-⋅23b b ;=-⋅3)(a a;=⋅-32)(x x ;()()()352a a a -⋅-⋅-- =_;()=-⋅-⋅-62)()(a a a ;=-⋅-)()(32a a p ____________;=⨯⨯32333;=⨯461010;=⋅100010m ;()()()53222--- =;=-⨯-62)31()31(;=--⋅67)5()5(;=-⋅2433;=-⨯-)2(86________;;__________10210365=⨯⨯⨯=⨯10000105;=-⋅-43)()(a b a b ;=---+-333)()()(n n y x y x y x _____________; =--43)()(x y y x ____________;=---)()(5y x x y ____________;=++32)()(x y y x3.拓展晋升(1)若6322=⋅m ,则m 等于___________. (2)已知2111145(01),(0,)m n n m n x x x x x y y y y -+--=≠≠=≠≠且且且y 1,求2mn 的值.(3)已知.,3222的值求n m n m +=⋅(4)已知912224=⨯⨯+a a,且28a b +=,求ba 的值.(5)当23,x a x b ==,则7x 等于_________________.(6)若a m =10,b n =10,那么=+n m 10______. (7)已知.,12,3的值求y y x x a a a ==+ (8)已知y x y x +==求,24,84的值. (9)盘算.)2()2(101100-+- 二.幂的乘方:公式:mn n m a a =)(1.填空=24)(a __________; =10)(m a _________;__________)(124=-m x ; =⋅532)(a a ______;77)(m = ___________; 3)(m b - = ___________;535)(m m = ___________; 3223)()(y y = ___________;=-22254223)()()()(x x x x _________;=-77)(x __________;=-23)(x __________;=-32)(a __________;=-⋅3224)()(a a __________; 323)()(a a -⋅-=________________;=⋅--3422)()(x x _______________;____________________)()(1231=⋅-++m m a a ;=63)10(__________;42)2(-=___________;32)3(-=___________;22)2(-=___________22)2(-=___________ ; =-⋅-⋅+-522256)()()(8)2(y x x y x _________;=+m y x ])[(2_________;=-⋅-523)(])[(y x y x ____________;2.拓展晋升(1)若3=n x , 则n x 3=________;若,23=m x 则=m x 9___________; (2)假如1-=n x ,则=33)(n x ________;若32=n x ,则=43)(n x _________; (3)已知,2,332==m n y x 求代数式m n y x 962-的值. (4)盘算).42)(24(n n ⋅⋅(5)若2139273m m ⨯⨯=,则m 的值为___________;若,3)9(122=n 则n 的值为_____;若1228-=x x ,则x 的值为____________;若,512525521=⨯⨯x x 则x 的值为_______;(6)若2,7x y a a ==,则2x y a +=________; (7)已知a m=5,an=3,求n m a 32+的值.(8)若0352=-+y x ,求y x 324⨯的值.(9)比较2100与375的大小.(10)试比较3333444455555,4,3三个数的大小. 三.积的乘方:公式:m m m b a ab =)(1.填空:=2)2(x ___________;3)(ab =_________;2)3(a =__________;22)(ab =__________;24)2(a =_________;3)2(x -=__________;32)2(b a -=_______; ______)3(242=-y x ;=-332)21(b a ___________;=-332)32(y x ________;=-223)2(z y x ___________;21223()(2)mn aa a +-=_______;=n ab )(____________;=33)(n n b a __________; 32)(b a n =___________;=⋅-232])3[(n mn ______________;=⋅⋅++-323223)3()2(a a a a a ______________;=-----32236)]2([)3()(x x x __________;=⋅+-⋅-7233323)5()3()(2x x x x x ______;=⨯-33)102(_______;=⨯23)103(____________;2.拓展晋升(1)若a 2n =3,则(2a 3n )2=_______;若232,3n n x y ==,则6()n xy =_______.(2)已知n 是正整数,且32nx =,求3223(3)(2)n n x x +-的值.(3)若15938)2(b a b a n m m =+,则m =________,n =____________;已知351515()x a b =-,则x =_______;6927a b -=()3.(4)盘算m m m )81(42⨯⨯.(5)已知3322336x x x ++-⋅=,求x 的值.(6)若877,8a b ==,用含,a b 的式子暗示5656(7)若53,45n n ==,则20n 的值是_______. (8)201620160.1258⨯=_____________;2013201220142() 1.5(1)3⨯⨯-=___________; =⨯10110010)101(_____________;=⨯-20162015)25()52(_____________;(23)100×(112)100×(14)2013×42014=____________.(9)若23a =,45b =,230c =,试用b a ,暗示出c .四、整式的乘法(一)单项式乘单项式1.盘算2(3)x -·32x 33a ·44a 54m ·23m 4y ·2(2)xy -(3)x -·2xy 24a ·23a 2(5)a b -·(3)a -34b c ·12abc2(3)x y -·21()3xy 433a b ·232(4)a b c -3m n x +-·4m n x -24ab ·21()8a c -323331()(2)73a b a b c -2(4)x y -·22()x y -·31()2y 1()2xyz -·2223x y ·33()5yz -23(5)a b 2(3)a -23(3)x y ·(4)x -3(2)a -·2(3)a -5m -·42(10)m -2x ·232()y xy -(5)ax -·22(3)x y 22232)3(2)(b a b a b a -⋅+-54x y ·232()x y z -4()3ab -·2(3)ab -33(3)a bc -·22(2)ab -22(2)x y -·1()2xyz -·3335x z 331()2ab -·1()4ab -·222(8)a b -26m n -·3()x y -·2()y x -26a b ·3()x y -·213ab ·2()y x -2.拓展晋升 (1)992213y x y x y xn n m m =⋅⋅++-,则43m n -=___________.(2)若1221253()()m n n m aba b a b ++-=,则n m +的值为.(3)若单项式423a bxy --与33a b x y +是同类项,则它们的积为.(4)若,4,3==nny x 求nn y x 2)2(2⋅的值.(5)卫星绕地球的运转速度为s m /109.73⨯,求卫星绕地球运转s 5102⨯的运行旅程.(二)单项式乘多项式(2)a -31(1)4a -2323()(21)2x x x -+-22(2)3ab ab -·12ab224(35)m m n mn -+2(3)(22)ab a b ab --+224(2)39a a --·(9)a -25(1)xy x y +-212(3)2x y xy y -+213a b -·22(639)a ab b -+先化简,再求值:22(3)(2)1x x x x x -+-+,个中3x =.解方程12)52()1(2=---x x x x 解方程36)5(9)8(5)27(2--=-+-x x x x x x(三)多项式乘多项式先化简,再求值:)4)(56()32)(13(22----+-x x x x x ,个中2-=x .(四)平方差公式 (五)完整平方公式 (六)拓展分解 1.盘算化简类(1)要使)8()(423x x ax x -⋅-+的运算成果中不含6x项,则a 的值为_____________.(2)已知)12)(1(2+++ax x x 的成果中2x项的系数为-2,则a 的值为_____________.(3)6)2)(3(2+-=++kx x x x 则k 的值为_________;若(x +m )(x -3)=x 2-nx -12,则m .n 的值分离为_________________.(4)设n 为天然数,试解释)1(2)12(--+n n n n 的值必定为3的倍数. (5)假如三角形的一边长为,22n m +该边上的高为,42n m 那么这个三角形的面积为?(6)在长为)23(+a ,宽为)32(+a 的长方形铁片上,挖去长为边长为)1(-a 的小正方形,求残剩部分的面积?(7)若)4)(3(-+=a a M ,N =(a +2)(2a -5))52)(2(-+a a ,个中a 为有理数,则M 与N 的大小关系为?(8)已知63)1)(1(=-+++b a b a ,求2ba +的值. (9)试解释:两个持续奇数的积加上1,必定是一个偶数的平方.(10)盘算128644221)211()211)(211)(211)(211(+++++- . 2.求值类(1)已知33-=-y x ,则y x 35+-的值是_________________. (2)若221m m -=,则2242007m m -+的值是____________;若2320a a --=,则2526a a +-=_______________.(3)已知2514x x -=,求()()()212111x x x ---++的值为______________.(4)已知:32a b +=,1ab =,化简(2)(2)a b --的成果是. (5)若a ﹣b =1,则代数式a 2﹣b 2﹣2b 的值为.(6)若20x y +=,则代数式3342()x xy x y y +++的值为___________________.(7)已知2(1)()5a a a b ---=,求222a b ab +-的值. 3.乘法公式变形应用 (1)填空:x 2+10x +=(x +)2.(2)若x 2-kxy +9y 2是一个完整平方法,则k 值为_____________;(3)假如226x x k ++正好是一个整式的平方,那么常数k 的值为____________.(4)在多项式241x +中,添加一个单项式,使其成为一个完整平方法.则添加的单项式是_____________.(写出所有可能情形)(5)若x 2-y 2=100,x +y = -25,则x -y 的值是__________;若x -y =2,x 2-y 2=6,则x +y =________.(6)一个长方形的面积是92-x 平方米,其长为)3(+x 米,用含有x 的整式暗示它的宽为__________.(7)已知a +b =3,a ﹣b =5,则代数式a 2﹣b 2的值是;已知m +n =3,m ﹣n =2,则m 2﹣n 2=;若|x +y -5|+(x -y -3)2=0,则x 2-y 2的成果是________.(8)已知a 2-b 2=8,a +b =4,求a .b 的值.(9)若(9+x 2)(x +3)·M =81-x 4,则M =____________. (10)已知2222263()()x y xy x y x y +==+-和,,求的值. (11)已知a 2+b 2=25,且ab =12,则a +b 的值是. (12)己知实若m +n =2,mn =1,则m 2+n 2=;已知a-b =3,ab =2,则22b a +的值为_______________; 若2154a b ab +==,,则22a b +=_________. (13)已知6,5-==-ab b a 求下列各式的值.22a b +;22a ab b -+;b a +;(14)已知:20,10==+ab b a ,求下列式子的值:①22b a +; ②2)(b a -(15)数a .b 知足a +b =5,ab =3,则a ﹣b =.(16)若=+==-b a ab b a 则,1,4______________. (17)设(3m +2n )2=(3m -2n )2+P ,则P 的值是___________.(18)已知49)(,1)(22=-=+y x y x ,则=+22y x ;xy =.(19)x2+y 2=(x +y )2-__________=(x -y )2+________.(20)已知a >b ,假如a1+b1=23,ab =2,那么a ﹣b 的值为.(21)若14a a -=,则221a a +=____________. (22)已知x -x 1=5,求(x +x1)2的值.(23)若a 2+b 2+4a -6b +13=0,试求a b 的值.(24)若2226100m n m n ++-+=,求m n +的值. (25)已知ABC ∆三边长a .b .c 知足2220a b c ab bc ac ++---=,试断定ABC ∆的外形.(26)已知ABC ∆三边长a .b .c 知足222()0a c b b a c ++--=,试断定ABC∆的外形.4.找纪律(1)不雅察1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52……①依据以上纪律,猜测1+3+5+7+…+(2n -1)=__________.②用文字说话论述你所发明的纪律:__________. (2)不雅察下列各式: (x -1)(x +1)=x 2-1 (x -1)(x 2+x +1)=x 3-1(x -1)(x 3+x 2+x +1)=x 4-1 依据前面各式的纪律可得 (x -1)(x n+xn -1+…+x +1)=_____.(3)不雅察① (a ﹣b )(a +b )=;(a﹣b)(a2+ab+b2)=;(a﹣b)(a3+a2b+ab2+b3)=.②猜测:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=(个中n为正整数,且n≥2).③应用②猜测的结论盘算:29﹣28+27﹣…+23﹣22+2.(4)请看杨辉三角(1),并不雅察下列等式(2):依据前面各式的纪律,则(a+b)6=.(5) 不雅察下列各式:1×3=22-1,3×5=42-1,5×7=62-1,……请你把发明的纪律用含n(n为正整数)的等式暗示为_________.(6)浏览材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式双方同时乘以2得: 2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你模仿此法盘算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(个中n为正整数).5.面积(1)如图是四张全等的矩形纸片拼成的图形,请应用图中空白部分面积的不合暗示办法,写出一个关于a .b 的恒等式.(2)应用图形中面积的等量关系可以得到某些数学公式.例如,依据图甲,我们可以得到两数和的平方公式:(a+b )2=a 2+2ab+b 2.你依据图乙能得到的数学公式是如何的?写出得到公式的进程.(3)如图1是一个长为2m,宽为2n(m>n)的长方形,用铰剪沿图中虚线(对称轴)剪开,把它分成四块外形和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中央空的部分的面积是?(4)一个大正方形和四个全等的小正方形按图①.②两种方法摆放,则图②的大正方形中未被小正方形笼罩部分的面积是(用a .b的代数式暗示).(5)已知:如图,现有a a ⨯.b b ⨯的正方形纸片和a b ⨯的矩形纸片各若干块,试选用这些纸片(每种纸片至罕用一次)鄙人面的虚线方框中拼成一个矩形(每两个纸片之间既不重叠,也无闲暇,拼出的图中必须保存拼图的陈迹),使拼出的矩形面积为22252a ab b ++并标出此矩形的长和宽. (6)如图,由一个边长为a 长方形拼成大长方形,则全部图形中可暗示一些多项式分化因式的等式,请你写出个中随意率性三个等式.ab b(7)有足够多的长方形和正方形的卡片,如下图.假如拔取1号.2号.3号卡片分离为1张.2张.3张,可拼成一个长方形(不重叠无裂缝).请画出这个长方形的草图,并应用拼图前后面积之间的关系解释这个长方形的代数意义.小明想用相似的办法解释多项式乘法223?2273a b a ba ab b ,那么需用2号卡片若干张,3号卡片若干张.五、整式的除法)()()(46x x x -÷-÷-112-+÷m m a a (m 是正整数)[]3512)(x x x ⋅-÷ 2.单项式除以单项式2222234)2(c b a c b a ÷-=________.________])[()(239226=⋅÷÷÷a a a a a⎪⎭⎫ ⎝⎛-÷2333238ax x a ()2323342112⎪⎭⎫ ⎝⎛÷-y x y x ()()3533263b a c b a -÷; 3.多项式除以单项式先化简,再求值32244)8(a b a b ab a b ab ,个中2 1.a b , 先化简,再求值:()()22232a b ab b b a b --÷-+,个中a =1,b =-1. 假如22++-y y x =0,求22[()234]x y y x yx y x y y 的值. 222312(24)x y x y x y y x y y 已知,求代数式[++]的值.(1)710=x ,2110=y ,则y x -10=.(2)已知35m n x x ,,则232____________.m n m n x x ,(3)已知8m x =,5n x =,求n m x 32-的值.(4)若9=m x ,6=n x ,4=k x ,求k n m x 22+-的值.(5)若132=-x x ,求200957623+-+x x x 的值.。
整式的乘除、因式分解练习题(最终版)
整式乘除与因式分解专项练习知识网络归纳m n m+n m n mn n n n 22222a a =a (a )=a (m,n a,b )(ab)=a b ××:m(a +b)=ma +mb ×(m +n)(a +b)=ma +mb +na +nb :(a+b)(a -b)=a -b (a b)=a 2ab +b ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭⎧⎪⎪⎨⎧⎪−−−→⎨±±⎪⎩特殊的幂的运算法则为正整数,可为一个单项式或一个式项式单项式单项式单项式多项式多项式多项式:平方差公式 乘法公式完全平方公式:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩ 22222:a -b =(a +b)(a -b):a 2ab +b =(a b)⎧⎪⎧⎪⎪⎨⎪±±⎨⎪⎩⎪⎪⎪⎩因式分解的意义提公因式法平方差公式运用公式法因式分解的方法完全平方公式十字相乘法拆添项与分组分解法因式分解第一步:观察公因式,如果存在,提出来第二步:观察公式,如果符合公式条件,按公式进行分解第三步:观察首尾项与中间项系数是否满足十字相乘条件,因式分解的步骤 按十字相乘法则分解第四步:如果⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩上述方法均无法解决,尝试进行对某几项进 行拆分或分组,然后再重复上述操作。
一、整式综合计算:1、幂运算:(1)(-3a 2b 3c)3= (2)=-332)21(yz x (3)[-(-a 2b)3·a]3= (4)=⋅+122)()(n n b a ab(5))7(28324y x y x -÷= (6)()()()()32232228a ba ab --⋅--=(7)2321223x x ⎛⎫- ⎪⎝⎭=(8)()()32325223393a abb ab a b ⎡⎤-⋅---⎢⎥⎣⎦= (9)()33323538310ab c a b a b -⋅⋅-= (10)82005×0.1252006= (11)若43=na,则=n a 6 (12)已知4x =2x+3,则x=(13)如果3,2==yxa a ,则y x a 23+= yx a -2=整式的乘法(14)若3m ·3n=1,则m +n =_________ _____(15)已知x +4y -3=0,则yx 162⋅= (16)已知2124192n n ++=,求n 的值。
八年级数学整式的乘除计算题专项练习80题
24、 25、
26、 27、
28、 29、
30、 31、
32、 33、
34、 35、
36、 37、解方程
38、已知 , ,求 的值
39、已知 , ,求 40、已知 ,求 的值
41、 42、
43、 44、
45、 46、
47、 48、
49、 50、
51、 52、
53、 54、
55、 56、
10、 11、1232-124×122(利用乘法公式计算)
12、 13、(2x2y)3·(-7xy2)÷(14x4y3)
14、化简求值:当 , 时,求 的值
15、先化简,再求值 ,其中
16、先化简再求值: ,其中
17、先化简再求值: ,其中
18、化简求值 ,其中
19、先化简再求值: ,其中
20、已知 , ,求
57、 58、
59、已知 , ,求 的值. 60、已知 ,求 的值.
61、 62、
63、 64、
65、 66、
67、 68、
69、 (简便计算) 70、
71、 72、
73、 74、
75、 76、
二、问答:
7、我们每个人应该怎样保护身边的环境?
答:①我们每个人要做到不乱扔果皮,不随地吐痰,爱护花草树木,搞好环境卫生,保护好身边的环境。②力争做一个环保小卫士,向身边的人宣传和倡议环保。
整式的乘除计算题专项练习80题
1、4(aห้องสมุดไป่ตู้b)+2(a+b)-5(a+b) 2、(3mn+1)(3mn-1)-8m2n2
3、[(xy-2)(xy+2)-2x2y2+4]÷(xy)
整式的乘除测试题(3套)及答案
北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
初中数学整式的乘除法练习题(附答案)
初中数学整式的乘除法练习题一、单选题1.下列运算正确的是( )A.236a a a ⋅=B.22423a a a +=C.236(2)2a a -=- D.422()a a a ÷-= 2.计算结果为256x x --的是( )A .()(61)x x -+B .()(23)x x -+C .()(61)x x +-D .()(23)x x +-3.已知222610x y x y +--=-,那么20182x y 的值为( ) A.19 B.9 C.1 D.24.下列各式从左到右的变形中,是因式分解的为( )A.()a x y ax ay +=+B.()24444x x x x -+=-+C.()2105521x x x x -=-D.()()24416x x x +-=-5.若2()(3)x a x x x n +-=+-,则( )A.4,12a n =-=B.4,12a n =-=-C.4,12a n ==-D.4,12a n ==6.计算2201820192017-⨯的结果是( )A.-1B. 0C.1D. 4 0347.计算101100205⨯⋅的结果正确的是( )A. 1B. 2C. 0.5D. 108.下列计算正确的是( )A.22(3)(3)9x y x y x y -+=-B.2(9)(9)9x x x -+=-C.22()()x y x y x y --+=-D.2211()24x x -=-9.如果单项式23212a x y --和32713a b x y +--的和仍为单项式,那么他们的乘积为( ) A. 6423x y - B. 3216x y - C. 6416x y - D. 6416x y 二、解答题 10.先化简,再求值:22(2)(2)(2)8a b a b a b b -+--+,其中12,2a b =-=. 11.甲、乙两人共同计算一道整式乘法:(2)(3)x a x b ++,由于甲抄错了第一个多项式中a 的符号,得到的结果为261110x x +-;由于乙漏抄了第二个多项式中x 的系数,得到的结果为22910x x -+.请你计算出,a b 的值,并写出这道整式乘法的正确结果.12.某同学化简(2)()()a a b a b a b +-+-出现了错误,解答过程如下:原式()2222a ab a b =+--(第一步)2222a ab a b =+--(第二步)22.ab b =-(第三步) (1)该同学解答过程从第_____________步开始出错,错误原因是____________;(2)写出此题正确的解答过程.13.先阅读下列因式分解的过程,再回答所提出的问题:21(1)(1)x x x x x +++++23(1)[1(1)](1)(1(1).)x x x x x x x =++++=++=+ (1)上述分解因式的方法是________,共应用__________了次;(2)若分解220181(1)(1)(1)x x x x x x x ++++++++,则需应用上述方法________次,结果是___________;(3)分解因式:21(1)(1)(1)n x x x x x x x ++++++++(n 为正整数). 14.已知ABC 的三边长,,a b c 满足20a bc ab ac --+=.求证:ABC 是等腰三角形.三、计算题15.用简便方法计算:(1)298;(2)99101⨯.16.已知440,235m n m n +=-=,求()()2223m n m n +--的值.17.化简求值:2222111[()()](2)222x y x y x y ++--,其中3,4x y =-=.18.计算:()322322433431242x y xy x y x y ⎛⎫⎛⎫-⋅--⋅ ⎪ ⎪⎝⎭⎝⎭. 四、填空题19.若长方形的面积是2327a ab a ++,宽为a ,则它的长为 .20.若22116a b -=-,14a b +=-,则a b -的值为 . 21.如果(221)(221)63a b a b +++-=,那么a b +的值为 .22.已知248(1)16x n x n +++是一个关于x 的完全平方式,则常数n 的值为 . 参考答案1.答案:D解析: A 选项,原式5a =,所以A 选项错误;B 选项,原式23a =,所以B 选项错误;C 选项,原式68a =-,所以C 选项错误;D 选项,原式422a a a =÷=,所以D 选项正确.故选D.2.答案:A解析:3.答案:B解析:222610x y x y +--=-,()()22130x y ∴-+-=,1,3x y ∴==,2018220182139x y =⨯=.4.答案:C解析:A 选项是整式乘法,错误;B 选项中右边的结果不是积的形式,错误;C 选项是因式分解,正确;D 选项中右边不是积的形式,错误.故选C.5.答案:D解析:2()(3)33x a x x x ax a +-=-+-22(3)3x a x a x x n =+--=+-,则31,3a a n -=-=-,解得4,12a n ==.故选D.6.答案:C解析:2201820192017-⨯22018(20181)(20181)=-+-()222018201811=--=.7.答案:B解析:原式10010010022052(205)2=⨯⨯⋅=⨯⨯⋅=. 8.答案:A解析: A 选项,原式229x y =-,正确;B 选项,原式281x =-,错误:C 选项,原式222x xy y =-+-,错误;D 选项,原式214x x =-+,错误.故选A. 9.答案:C解析:单项式23212a x y --和32713a b x y +--的和仍为单项式,∴ 2327=2a b a b -=⎧⎨+-⎩解得3=3a b =⎧⎨⎩故单项式23212a x y --和32713a b x y +--的乘积6416x y -. 10.答案:解:原式2222244484a b a ab b b ab =--+-+=,当12,2a b =-=时,原式4=-. 解析:11.答案:∵甲得到的算式: ()()()222362361110x a x b x b a x ab x x -+=+--=+-对应的系数相等, 2311b a -=,10ab =, 乙得到的算式: ()()()222222910x a x b x b a x ab x x ++=+++=-+对应的系数相等, 29b a +=-,10ab =,∴231129b a b a -=+=-⎧⎨⎩解得: 52a b =-⎧⎨=-⎩.∴正确的式子: ()()2253261910x x x x --=-+.解析:12.答案:(1)二;去括号时没有变号(2)(2)()()a a b a b a b +-+-()2222222222.a ab a b a ab a b ab b =+--=+-+=+解析:13.答案:(1)提公因式法;2(2)2018;2019(1)x +(3)21(1)(1)(1)n x x x x x x x ++++++++212221(1)1(1)(1)(1)(1)1(1)(1)(1)(.1)n n n x x x x x x x x x x x x x x x x x --+⎡⎤=+++++++++⎣⎦⎡⎤=+++++++++⎣⎦=+解析:14.答案:因为20a bc ab ac --+=,所以20a ab bc ac --+=,所以()2()0,()()0a ab ac bc a a b c a b -+-=-+-=,则()()0a b a c -+=,因为0a c +≠,所以0a b -=,所以a b =,所以ABC 是等腰三角形.解析:15.答案:解:(1)原式222(1002)10024009604=-=+-=(2)原式2(1001)(1001)10011000019999=-⨯+=-=-=解析:16.答案:()()2223m n m n +-- ()()2323m n m n m n m n =++-+-+()()432m n n m =+-()()423m n m n =-+-.当440,235m n m n +=-=时,原式405200=-⨯=-.解析:17.答案:原式222211(2)(2)22x y x y =+-44144x y =-. 把3,4x y =-=代入得,原式260=.解析:18.答案:解:原式962486342714644x y x y x y x y =-⋅-⋅ 11101110271164x y x y =-- 11103116x y =-. 解析:19.答案:327a b ++解析:由题意可知长方形的长为2(3)27327ab a a a b a ++÷=++.故答案为327a b ++.20.答案:14解析:221()()16a b a b a b -=+-=-,14a b +=-,14a b ∴-=.21.答案:4±解析:(221)(221)63a b a b +++-=,22(22)163a b ∴+-=,2(22)64a b ∴+=,则228a b +=±.两边同时除以2,得4a b +=±.22.答案:1解析:()248116x n x n +++是一个关于x 的完全平方式11n n ∴+=±=。
整式的乘除测试题(3套)及答案
第一章整式的乘除单元测试卷(一)一、精心选一选(每小题3分,共21分)43 31•多项式xy 2x y 9xy 8的次数是A. 3B. 4C. 5D. 62•下列计算正确的是 ()A. 2x 26x 412x 84 mB . y3mmyy C .x y 2 x 22 , 2y D. 4a 2a33.计算a ba b 的结果是()A. b 2 a 2B.2 ,2a bC. a 22ab b 2D.a 2 2ab b 224. 3a 5a1与 2a 2 3a 4的和为()A. 5a 22a 3 2小B. a 8a3 C.2a3a 52小D. a 8a55.下列结果正确的是()21 A.-1 B. 9 50C.53.7 01D. 2 31398m^n26.右 a b8 6a b,那么m 22n 的值是()A. 10B. 52C. 20D. 327•要使式子9x 225y 2成为一个完全平方式,则需加上( )二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)班级 ____ 姓名 ______ 学号 ________ 得分 ________A. 15xyB. 15xyC. 30xyD. 30xy1•在代数式3xy 2 ,个,多项式有一2m ,6a个。
2a 3 , 12 , 4x yz1 2xy 2 , 中,单项式有 5 3ab2•单项式 5x 2y 4z 的系数是,次数是 。
,413•多项式3ab ab 有项,它们分别是。
54•⑴ x 2 x 5。
34⑵y 3。
23⑶2a b。
⑷x 5y24。
93⑸a a。
⑹ 10 5 2 40z 1 2 635.⑴ mnmn。
⑵x 5 x 5。
3 5⑶(2a b )25 。
⑷ 12x 3小 2y3xy 。
/、m32m6•⑴ aa a。
⑵ 22a 8a242…。
20062 220051 ⑶ x y x y x y。
⑷3。
3三、精心做一做(每题5分,共15分)1. 4x 2 y 5xy 7x5x 2 y 4xy x2 2 32. 2a 23a 2 2a 1 4a 32 ^343.2x y 6x y 8xy 2xy1. X 1 2x 1 x 22. 2x 3y 5 2x 3y 5四、计算题(每题6分,共12分)1五、化简再求值:XX 2y x 12 2x,其中X -,y 25。
整式的乘除测试题练习四套(含答案)
整式的乘除测试题练习一、精心选一选(每小题3分,共30分) 1下面的计算正确的是()2、在X n 1 ( ) X m n 中,括号内应填的代数式是()D (a 2b)(11b 2a) (a 2b)(3a b) 5(2b a)2 5、下列各式中,运算结果为 1 2xy 2 x 2y 4的是()B 、( 1 xy 2)2C ( 1 x 2y 2)2D6、已知x 2 3x 5的值为3,则代数式3x 2 9x 1的值为()、一7 C 、一 9 D 、3、8 C 、一 2 D 、8 或一2相当于建一个自来水厂, 据不完全统计,全市至少有6 105个水龙头,2 105个抽水马桶漏水。
如果一个关不紧的水龙头一个月漏掉 a 立方米水,一个抽水马桶一个月漏掉 b 立方米水,那么一个月造成的水流失量至少是()立方米A 6a+2bB 、6a 2b 105C 、(6a 2b ) 105D 、8(a b ) 105A a 4 a 3a 12B 、(a b)2 a 2b 2C 、( x 2y)( x 2y) x 2 4y 2 D 、a 3 a 7 a 5A X m n 1、x m 2、x m 1x m n 2A (x n 2x n11)( 12 xy) 2x n 21yC n /1 n x (-x 2x y)1 x 2n2x n 1334、 下列运算中, 正确的是 ( )A 2 2ac(5b 23c) 10b 2 c6ac 2B 、 (ax n y 1xy B 、(x n )n 1 x 2n 1 2 x n y D 当n 为正整数时,(a 2)2na 4n2 3 2b)2(a b 1) (a b)3(b a)2y(a b c) a b cA ( 1 xy 2)27、当 m=()时,x 22(m 3)x 25是完全平方式8、某城市一年漏掉的水,3、下列算式中,不正确的是 () C (b c a)(x y 1) x(b c a)10、如图1,正六边形 ABCDEF 勺边长为a ,分别以C 、F 为圆心,a 为半径画弧,一种细胞膜的厚度是 0.0000000008m ,用科学记数法表示为 15、计算:(3)410 10= ______________16、 已知 a 2b 5,贝y ab(a 3b 2a) _____________ ; 17、 若不论 x 为何值,(ax b)(x 2) x 24,则 a b = __________118、 若 0.001x 1 , ( 3)y 丄,则 x y __________________ ;271 1 119、 若(x -) 1无意义,则x 1= ___________________ ;220、 已知 a+b=3, ab=1,则 a 2 ab b 2 ________________ ; 三、用心想一想(共60分) 21、 (20分)计算:3 24 25 0 1 3(1) (;)2(;)(;2)0 ( -)34 3 3 3⑵ 15a m 1x n 2y 4 ( 3a m x n 1y ) ⑶(6x 2n4x 2n y 2n 8x n y 2n 1) 2xy n⑷(3x 2y 3)2 ( 2x 3y 2)3( 2x 5y 5)222、 (7 分)已知 x 2 y 2 4x y 410,求 y x 3xy 的值; 423、 (7分)有一块直径为2a+b 的圆形木板,挖去直径分别为2a 和b 的两个圆,问剩下的木板面积是多少?则图中的阴影部分的面积是 (-a 2 B 61 a2 3a 211、12、 13、 耐心填一填(每小题3分, 计算: m 2 m 3 m 5 共30分) 化简:(15x 2y 10xy 2) (5xy)= 已知(a 2b)2 (a 2b)2 A ,则 A=14、24、(8分)(1)观察两个算式:(a b c)2与a2 b2 c2 2ab 2bc 2ca,这两个算式是否相等?为什么?(2)根据上面的结论,你能写出下面两个算式的结果吗? ①(a 2b 1)2②(x y 3)225、(9分)某工厂2003年产品销售额为 a 万元,2004年、2005年平均每年的销售额增长 m%每年成本均为该年销售额的65%税额和其他费用合计为该年销售额的15%⑵ 若a=100万,m=10,则该工厂2005年的年利润为多少万元?26、(9分)x 5时,ax 2003 bx 2001 cx 1999 6的值为—2,求当x5时,这个代数式的值。
八年级上册数学整式的乘除计算专项训练题
整式的乘除计算专项训练题一.解答题(共47小题)1.化简(5x)2•x7﹣(3x3)3+2(x3)2+x32.计算:m4•m5+m10÷m﹣(m3)3.3.化简:3x•x5+(﹣2x3)2﹣x12÷x6.4.计算:m7•m5+(﹣m3)4﹣(﹣2m4)3.5.计算:[a3•a5+(3a4)2]÷a2.6.计算:(12x3﹣18x2+6x)÷(﹣6x).7.计算:8.化简:4m(m﹣n)+(5m﹣n)(m+n).9.计算:(x+1)(x﹣2)+(x2﹣3x)÷x.10.计算:(a+3)(a﹣2)﹣a(a﹣1).11.计算:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷(3xy).12.已知2a=4,2b=6,2c=12,(1)求证:a+b﹣c=1;(2)求22a+b﹣c的值.13.计算:(2m2n)2+(﹣mn)(﹣m3n).14.计算:(﹣2x2)(4xy3﹣y2)+(2xy)3.15.计算:(1)(﹣2x)3(2x3﹣x﹣1)﹣2x(2x3+4x2);(2)(x+3)(x﹣7)﹣x(x﹣1).16.计算:(7x2y3﹣8x3y2z)÷8x2y217.计算:x3•x﹣3x5÷x+(﹣2x2)218.计算:(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2.19.计算:5x2•x4﹣(﹣2x3)2+x8÷x220.计算:(1)(2)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)21.计算:x2•x4•x6+(x3)2+[(﹣x)4]3.22.计算:3x3y3•(﹣x2y2)+(﹣x2y)3•9xy2.23.计算:[2(a﹣b)3]2+[(a﹣b)2]3﹣[﹣(a﹣b)2]24.计算:(a+2)(a﹣3)﹣(a﹣1)(a﹣4).25.计算:26.计算:﹣3a3•a3﹣(﹣3a2)+[﹣3a•(﹣a)2]2.27.计算:10a•(﹣ab)﹣4a2•(﹣b)+8ab•(﹣a).28.计算:(x﹣2)(x+1)﹣2(x﹣3)(x+2).29.计算:(x﹣5)(x+6)+(x﹣3)(x+10)30.计算:31.计算:2x(﹣x2+3x﹣4)﹣3x2(x+1)32.计算:x(x+3)﹣(x+1)(x﹣3)+(2x+1)(x﹣1).33.解不等式:(x﹣5)(6x+7)<(2x+1)(3x﹣1)﹣2.34.计算:(2x3•x5)2+(﹣x)2•(﹣x2)3•(x2)435.计算:(﹣a)3•(﹣2a2)﹣a2•(﹣3a)2•(﹣a).36.解不等式:2x(3x﹣5)﹣(2x﹣3)(3x+4)≤3(x+4).37.计算:6x(x2+2)﹣x(3x﹣2)(2x﹣3).38.解不等式:2x﹣(x﹣5)(x+1)>x(1﹣x)+3.39.计算:()().40.计算:(x3﹣x2﹣2)(x3+x2﹣2)41.计算:(3y+2)(y﹣4)﹣(y﹣2)(y﹣3)42.先化简,再求值:(x﹣2y)2﹣x(x+3y)﹣4y2,其中x=﹣4,y=.43.若一多项式除以2x2﹣3,得到的商式为x+4,余式为3x+2,求此多项式.44.已知:(x2+px+2)(x﹣1)的结果中不含x的二次项,求p2020的值.45.在(x2+ax+b)(2x3﹣3x﹣1)的积中,x3的系数为﹣5,x2的系数为﹣6,求a,b.46.已知x2﹣x﹣3=0,求(x2+3x﹣7)(x3+2x2﹣2x﹣5)﹣16x的值.47.试说明:代数式(2x+2)(3x+5)﹣2x(3x+6)﹣4(x﹣2)的值与x的取值无关.参考答案与试题解析1.化简(5x)2•x7﹣(3x3)3+2(x3)2+x3【解答】解:(5x)2•x7﹣(3x3)3+2(x3)2+x3=25x2•x7﹣27x9+2x6+x3=25x9﹣27x9+2x6+x3=﹣2x9+2x6+x3.【点评】此题考查了单项式乘单项式以及幂的乘方与积的乘方,熟练掌握运算法则是解题的关键.2.计算:m4•m5+m10÷m﹣(m3)3.【解答】解:原式=m9+m9﹣m9=m9.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方,熟记幂的运算法则是解答本题的关键.3.化简:3x•x5+(﹣2x3)2﹣x12÷x6.【解答】解:原式=3x6+4x6﹣x6=6x6【点评】考查了幂的运算性质及整式的乘法,牢记有关法则是解答本题的关键,难度不大.4.计算:m7•m5+(﹣m3)4﹣(﹣2m4)3.【解答】解:原式=m2+m12﹣(﹣8m12)=m12+m12+8m12=10m12.【点评】本题主要考查了同底数幂的乘法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.5.计算:[a3•a5+(3a4)2]÷a2.【解答】解:原式=(a8+9a8)÷a2=10a8÷a2=10a6.【点评】此题考查了整式的除法,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.6.计算:(12x3﹣18x2+6x)÷(﹣6x).【解答】解:(12x3﹣18x2+6x)÷(﹣6x)=﹣2x2+3x﹣1.【点评】考查了整式的除法,多项式除以单项式实质就是转化为单项式除以单项式.多项式除以单项式的结果仍是一个多项式.7.计算:【解答】解:原式=(x4+x3﹣x2)÷()=•+•﹣x2•=x2+2x﹣4【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.8.化简:4m(m﹣n)+(5m﹣n)(m+n).【解答】解:原式=4m2﹣4mn+5m2+5mn﹣mn﹣n2=9m2﹣n2.【点评】本题考查了整式的乘法,掌握单项式乘多项式、多项式乘多项式法则是解决本题的关键.9.计算:(x+1)(x﹣2)+(x2﹣3x)÷x.【解答】解:原式=x2﹣2x+x﹣2+x﹣3=x2﹣5.【点评】此题主要考查了整式的除法以及多项式乘多项式,正确掌握相关运算法则是解题关键.10.计算:(a+3)(a﹣2)﹣a(a﹣1).【解答】解:原式=a2+a﹣6﹣a2+a=2a﹣6.【点评】此题主要考查了多项式乘多项式以及单项式乘多项式,正确掌握相关运算法则是解题关键.11.计算:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷(3xy).【解答】解:原式=(x3y2﹣x2y﹣x2y+x3y2)÷(3xy)=(2x3y2﹣2x2y)÷3xy=.【点评】此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.12.已知2a=4,2b=6,2c=12,(1)求证:a+b﹣c=1;(2)求22a+b﹣c的值.【解答】(1)证明:∵2a=4,2b=6,2c=12,∴2a×2b÷2=4×6÷2=12=2c,∴a+b﹣1=c,即a+b﹣c=1;(2)解:∵2a=4,2b=6,2c=12,∴22a+b﹣c=(2a)2×2b÷2c=16×6÷12=8.【点评】此题主要考查了同底数幂的乘除运算,正确将原式变形是解题关键.13.计算:(2m2n)2+(﹣mn)(﹣m3n).【解答】解:原式==(4+)m4n2=.【点评】本题考查了单项式乘以单项式,积的乘方,合并同类项法则等知识点,能灵活运用法则进行计算是解此题的关键.14.计算:(﹣2x2)(4xy3﹣y2)+(2xy)3.【解答】解:原式=﹣8x3y3+2x2y2+8x3y3=2x2y2.【点评】此题主要考查了积的乘方运算以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.15.计算:(1)(﹣2x)3(2x3﹣x﹣1)﹣2x(2x3+4x2);(2)(x+3)(x﹣7)﹣x(x﹣1).【解答】解:(1)原式==﹣16x6+4x4+8x3﹣4x4﹣8x3=﹣16x6;(2)原式=x2﹣7x+3x﹣21﹣x2+x=﹣3x﹣21.【点评】本题重在考查整式的乘法.在整式的乘法运算中,需特别注意多项式乘多项式(或单项式)的前面有负号(或者负数)的情况,这是此类运算题的易错点,另外熟练掌握整式的乘法的运算顺序是解决此题的关键.16.计算:(7x2y3﹣8x3y2z)÷8x2y2【解答】解:原式=y﹣xz;【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.17.计算:x3•x﹣3x5÷x+(﹣2x2)2【解答】解:原式=x4﹣3x5÷x+4x4=x4﹣3x4+4x4=2x4.【点评】此题主要考查了整式的除法,关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.18.计算:(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2.【解答】解:(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2=4y6﹣64y6﹣4y2•(9y4)=4y6﹣64y6﹣36y6=﹣96y6.【点评】考查了积的乘方,单项式乘单项式,合并同类项,关键是熟练掌握计算法则正确进行计算.19.计算:5x2•x4﹣(﹣2x3)2+x8÷x2【解答】解:原式=5x6﹣4x6+x6=2x6【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.计算:(1)(2)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)【解答】解:(1)==﹣4x5y3+9x4y2﹣2x2y;(2)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)=2x2+x﹣2x﹣1﹣2(x2+2x﹣5x﹣10)=2x2﹣x﹣1﹣2x2+6x+20=5x+19.【点评】本题考查了单项式乘以多项式,多项式乘以多项式.解题的关键是掌握单项式乘以多项式,多项式乘以多项式的法则.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.21.计算:x2•x4•x6+(x3)2+[(﹣x)4]3.【解答】解:原式=x12+x6+x12=2x12+x6.【点评】本题主要考查了积的乘方,熟记幂的运算法则是解答本题的关键.(ab)n=a n b n,a m•a n=a m+n.22.计算:3x3y3•(﹣x2y2)+(﹣x2y)3•9xy2.【解答】解:原式=3x3y3•(﹣x2y2)+(﹣x6y3)•9xy2=﹣2x5y5﹣x7y5.【点评】此题考查了整式的加法,幂的乘方与积的乘方,以及单项式乘单项式,熟练掌握运算法则是解本题的关键.23.计算:[2(a﹣b)3]2+[(a﹣b)2]3﹣[﹣(a﹣b)2]【解答】解:原式=4(a﹣b)6+(a﹣b)6+(a﹣b)2=5(a﹣b)6+(a﹣b)2.【点评】考查幂的乘方和积的乘方,掌握法则是关键,确定底数是前提.24.计算:(a+2)(a﹣3)﹣(a﹣1)(a﹣4).【解答】解:(a+2)(a﹣3)﹣(a﹣1)(a﹣4)=a2﹣a﹣6﹣(a2﹣5a+4)=a2﹣a﹣6﹣a2+5a﹣4=4a﹣10.【点评】考查了多项式乘多项式,运用法则时应注意两点:①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.25.计算:【解答】解:原式=9x2y2﹣4x2y3+3x2y2=12x2y2﹣4x2y3.【点评】考查积的乘方、单项式乘以多项式、合并同类项等知识,掌握计算法则是正确计算的前提.26.计算:﹣3a3•a3﹣(﹣3a2)+[﹣3a•(﹣a)2]2.【解答】解:原式=﹣3a6+3a2+9a6=6a6+3a2,【点评】考查积的乘方、幂的乘方、以及整式加减,掌握计算法则是正确解答的前提.27.计算:10a•(﹣ab)﹣4a2•(﹣b)+8ab•(﹣a).【解答】解:原式=﹣6a2b+2a2b﹣6a2b=﹣10a2b.【点评】考查了单项式乘单项式,运算性质:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.28.计算:(x﹣2)(x+1)﹣2(x﹣3)(x+2).【解答】解:原式=x2+x﹣2x﹣2﹣2x2﹣4x+6x+12=﹣x2+x+10.【点评】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.29.计算:(x﹣5)(x+6)+(x﹣3)(x+10)【解答】解:原式=x2+6x﹣5x﹣30+x2+10x﹣3x﹣30=2x2+8x﹣60.【点评】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.30.计算:【解答】解:(﹣x2y﹣xy2)•(﹣xy)2=(﹣x2y﹣xy2)•x2y2=﹣x4y3﹣x3y4.【点评】此题考查了单项式乘多项式以及幂的乘方与积的乘方,熟练掌握运算法则是解题的关键.31.计算:2x(﹣x2+3x﹣4)﹣3x2(x+1)【解答】解:原式=﹣2x3+6x2﹣8x﹣x3﹣3x2=﹣x3+3x2﹣8x.【点评】考查了单项式乘多项式,单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.32.计算:x(x+3)﹣(x+1)(x﹣3)+(2x+1)(x﹣1).【解答】解:x(x+3)﹣(x+1)(x﹣3)+(2x+1)(x﹣1)=x2+3x﹣(x2﹣2x﹣3)+(2x2﹣x﹣1)=x2+3x﹣x2+2x+3+2x2﹣x﹣1=2x2+4x+2.【点评】本题主要考查了整式的运算,掌握单项式乘多项式以及多项式乘多项式的法则是解决问题的关键.33.解不等式:(x﹣5)(6x+7)<(2x+1)(3x﹣1)﹣2.【解答】解:不等式整理得:6x2+7x﹣30x﹣35<6x2﹣2x+3x﹣1﹣2,移项合并得:﹣24x<32,解得:x>﹣.【点评】此题考查了多项式乘多项式,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.34.计算:(2x3•x5)2+(﹣x)2•(﹣x2)3•(x2)4【解答】解:原式=4x16﹣x2•x6•x8=4x16﹣x16=3x16.【点评】此题主要考查了合并同类项以及积的乘方运算,正确掌握相关运算法则是解题关键.35.计算:(﹣a)3•(﹣2a2)﹣a2•(﹣3a)2•(﹣a).【解答】解:原式=﹣a3•(﹣2a2)﹣a2•9a2•(﹣a)=2a5+9a5=11a5.【点评】此题主要考查了积的乘方运算以及单项式乘以单项式运算,正确掌握相关运算法则是解题关键.36.解不等式:2x(3x﹣5)﹣(2x﹣3)(3x+4)≤3(x+4).【解答】解:2x(3x﹣5)﹣(2x﹣3)(3x+4)≤3(x+4)6x2﹣10x﹣(6x2﹣x﹣12)≤3x+12﹣9x+12≤3x+12﹣12x≤0,解得:x≥0.【点评】此题主要考查了多项式乘以多项式运算,正确掌握相关运算法则是解题关键.37.计算:6x(x2+2)﹣x(3x﹣2)(2x﹣3).【解答】解:原式=6x3+12x﹣(3x2﹣2x)(2x﹣3)=6x3+12x﹣(6x3﹣9x2﹣4x2+6x)=6x3+12x﹣6x3+9x2+4x2﹣6x=13x2+6x.【点评】此题主要考查了多项式乘以多项式运算,正确掌握相关运算法则是解题关键.38.解不等式:2x﹣(x﹣5)(x+1)>x(1﹣x)+3.【解答】解:2x﹣(x2﹣4x﹣5)>x﹣x2+3,2x﹣x2+4x+5>x﹣x2+3,2x+4x﹣x>3﹣5,5x>﹣2,所以x>﹣.【点评】本题考查了多项式乘以多项式:多项式与多项式相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.也考查了解一元一次不等式.39.计算:()().【解答】解:原式=[(x﹣1)﹣y][(x﹣1)+y]=(x﹣1)2﹣(y)2=x2+1﹣x﹣y2.【点评】此题主要考查了多项式乘以多项式运算,正确掌握相关运算法则是解题关键.40.计算:(x3﹣x2﹣2)(x3+x2﹣2)【解答】解:原式=[(x3﹣2)﹣x2][(x3﹣2)+x2]=(x3﹣2)2﹣(x2)2=x6﹣4x3+4﹣x4.【点评】本题考查了多项式乘以多项式法则、乘法公式.本题添括号后利用公式可使计算简便.41.计算:(3y+2)(y﹣4)﹣(y﹣2)(y﹣3)【解答】解:原式=3y2+2y﹣12y﹣8﹣(y2﹣5y+6)=3y2﹣10y﹣8﹣y2+5y﹣6=2y2﹣5y﹣14【点评】本题考查了多项式乘以多项式法则.多项式乘以多项式的项数,未合并前,等于它们项数的积.注意:漏乘和括号问题.42.先化简,再求值:(x﹣2y)2﹣x(x+3y)﹣4y2,其中x=﹣4,y=.【解答】解:原式=x2﹣4xy+4y2﹣x2﹣3xy﹣4y2=﹣7xy,当x=﹣4,y=时,原式=﹣7×(﹣4)×=14.【点评】本题考查的是单项式乘多项式,掌握完全平方公式、单项式乘多项式的法则是解题的关键.43.若一多项式除以2x2﹣3,得到的商式为x+4,余式为3x+2,求此多项式.【分析】根据被除数=除数×商+余数,计算即可得到结果.【解答】解:根据题意得:(2x2﹣3)(x+4)+3x+2=2x3+8x2﹣10.【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.44.已知:(x2+px+2)(x﹣1)的结果中不含x的二次项,求p2020的值.【解答】解:(x2+px+2)(x﹣1)=x3﹣x2+px2﹣px+2x﹣2=x3+(﹣1+p)x2+(﹣p+2)x﹣2,∵结果中不含x的二次项,∴﹣1+p=0,解得:p=1,∴p2020=12020=1.【点评】本题考查了多项式乘以多项式和解一元一次方程,能根据多项式乘以多项式法则进行计算是解此题的关键.45.在(x2+ax+b)(2x3﹣3x﹣1)的积中,x3的系数为﹣5,x2的系数为﹣6,求a,b.【解答】解:(x2+ax+b)(2x3﹣3x﹣1)=2x5﹣3x3﹣x2+2ax4﹣3ax2﹣ax+2bx3﹣3bx﹣b=2x5﹣(1+3a)x2+2ax4+(2b﹣3)x3﹣(a﹣3b)x﹣b,由题意得,2b﹣3=﹣5,1+3a=6,解得,a =,b=﹣1.【点评】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.46.已知x2﹣x﹣3=0,求(x2+3x﹣7)(x3+2x2﹣2x﹣5)﹣16x的值.【解答】解:∵x2﹣x﹣3=0,∴x2=x+3,x2﹣x=3,∵x2+3x﹣7=x2﹣x+4x﹣7=3+4x﹣7=4x﹣4,x3+2x2﹣2x﹣5=x3﹣x2+3x2﹣3x+x﹣5=x(x2﹣x)+3(x2﹣x)+x﹣5=3x+9+x﹣5=4x+4∴(x2+3x﹣7)(x3+2x2﹣2x﹣5)﹣16x=(4x﹣4)(4x+4)﹣16x=16x2﹣16x﹣16=16(x2﹣x)﹣16∵x2﹣x=3,∴原式=16×3﹣16=32.【点评】本题考查了多项式乘以多项式法则和整体代入的思想.变形已知整体代入两个多项式因式,是解决本题的关键.47.试说明:代数式(2x+2)(3x+5)﹣2x(3x+6)﹣4(x﹣2)的值与x的取值无关.【解答】解:∵(2x+2)(3x+5)﹣2x(3x+6)﹣4(x﹣2)=6x2+10x+6x+10﹣6x2﹣12x﹣4x+8=18,∴代数式的值与x的取值无关.【点评】此题考查了多项式乘以多项式及单项式乘以多项式,熟练掌握运算法则是解本题的关键.第11页(共11页)。
整式乘除计算题专练.doc
第1页、共5页一.计算题19、已知4a b += ,2211a b +=,求2()a b - 20、已知3a x =,2b x =,求2a bx +21、32()()m m m ⋅-⋅- 22、33(6)⎡⎤-⎣⎦ 23、3342(210)(410)-⨯⋅⨯24、844x x x -÷÷ 25、222()()a b a ab -÷⨯-26、22322()()xy x y x y ⋅-÷- 27、(23)(32)x y z x y -+-⋅-28、2222()(2)a b ab +-- 29、20062005(8)(0.125)-⋅-30、2(2)x y -+ 31、22()(22)(22)a b a b a b -++32、22(1)4(1)x x x --+ 33、3214(1)6()(2)3xy x xy x x y ⎡⎤---⋅-⎢⎥⎣⎦34、2111()234x y z -+ 35、4322(642)(2)a a a a --÷-36、3223(46)2x y x y xy xy +-÷ 37、解方程222(2)26x x x x -+--=38、已知4m x =,3n x =,求23mn x x +的值39、已知221x xy += ,228y xy +=,求2()x y + 40、已知327ax =,求4a x 的值41、23()()()a b a b a b +⋅--⋅+ 42、23()()a b b a ⎡⎤-⋅-⎣⎦43、22()ab -- 44、62()()a b b a -÷-第2页、共5页45、221(4)(2)2⋅- 46、1122(0.25)2-⋅47、23323(2)8()()x y x y -+-⋅- 48、24()mmx x x ⎡⎤-⋅÷⎣⎦49、3466()m m m -+⨯ 50、(67)(34)a b b a -+51、2()()a b a b -⋅+ 52、22(34)9()m n m +--53、(234)()x y z x y z --+- 54、()()p q m p q m +--+-55、2(342)a b c -+ 56、22(32)(23)a b b a --+57、22(2)(24)x y x xy y +-+ 58、22(23)(469)a b a ab b -++59、已知3a m =,4b m =,求32a bm -的值. 60、已知15a a +=,求441a a+的值.61、5232(2)(2)⋅-⋅- 62、3232(2)⋅-63、223(3)(2)xy x z -⋅ 64、6223a a a a ⋅÷⋅65、5617(5)()736-⋅ 66、5533112(0.5)2⋅-÷67、35427()()m m ⎡⎤-⋅-⎣⎦ 68、342()()(2)xy xy xy ⋅-⋅-69、2199(简便计算) 70、()()a b a b --+71、(23)(32)x y x y -+ 72、2222(49)8(3)m n mn -+-一、填空题1、102×105=________;2、a4·a6=____________;3、x·x3·x11=___________;4、-y·y7·y8=_______________;5、(-1) 2003=___________;6、(102)3=_______________;7、t·t11=_____________;8、(-s)2·(-s)5=______________;9、(xy)2·(xy)3=__________;10、(a+b)2·(a+b)6=____________;11、a6·a2=____________;12、x6·x·x7=________________;13、t2·(t3)2=________________;14、8x6-2(x2)3=_______________;15、(x·x2·x3)4=____________;16、[(y2)2]4=___________________;17、a8+(a2)4=_________________;18、[(n2)3·(n4)2]2=____________;19、―(―ab)3=_______________;20、(2x2)3=___________________;21、x2·(xy)3=_______________;22、x3· (xy)3=_________________;23、x6y4+(x3y2)2=____________;24、(-6a2)·3a=________________;25、(-7x5yz2)·(-4xz4)=___________;26、(-5a3y)·(-3ayc)=__________;27、(-a)2·5a3b =____________;28、(2a)2·(-3a2)=____________;29、(-3x)(2xy-6) =____________;30、x(x2-x)+2x2(x-1)=_______;31、(-2a3)·(2a2b-4ab2)=__________;32、(3x)2( x3― x2―2)=______;33、(x-1)(x+1)-x2=_____________;34、(2x-y)(2x+y)=____________;35、(3x+5y)(3x-2y) = _____________;36、(x+11)(x-20)=_____________;37、(x-5)(2x+3)=_______________;38、(a-1)(a+1)=________________;39、(m-2)(m+2)=_____________;40、(2n-3)(2n+3)=_____________;41、99×101=[(_____)]-[(_____)]×[(_____)+(_____)] =( )2-( )2=_________;42、2003×1997=[(____)+(_____)]×[(_____)-(____)]=( )2-( )2=______;43、(a-bc)(a+bc)=_____________;44、198×202=______________;45、(m-30)(m+30)=____________;46、(t-0.5) (t+0.5 )=_____________;47、(2x-9)(2x+9)=______________;48、(x-y)(x+ y)=____________;49、(2x-3t)(2x+3t)=___________;50、(3x-7)(3x+7)=___________;51、(-2m+n)(n+2m)=____________;52、(-5p-3)(5p-3)=___________;53、(x2-y)(x2+y)=______________;54、(y+12)2=_____________;55、(2a+3)3=_____________;56、(3x-4)2=____________;57、(3a-2b)2=____________;58、(4x+5y)2=___________;59、(ab-4c)2=____________;60、(3a-1)2=____________;61、(2x+5y)2=____________;62、(ab-12)2=__________;63、(-a2+b2)=___________;64、2a-4b=______________;65、ax-ay=________________;66、y2-3y=______________;67、5y2+10y=_______________;68、36x2-12x+1=(________)2;69、x2+22x+121=(__________)270、如果x2-mx+16=(x-4)2,那么m=___________.71、x3-10x2+25x=x(____________)2.第3页、共5页二、选择题72、计算-a3·(-a)4的结果是()A、a7B、-a12C、-a7D、a1273、下列运算中正确的是()A、2m2n-2n2m=0B、3x2+5x3=8x5C、(-y)2·(-y)5=-y7D、(-x)2·x3=-x574、下列运算中,错误的是()A、x2+x2=2x2B、x2·x2=2x2C、(a2)4=(a4)2D、(x6)5=x3075、下列运算中,正确的是()A、(x4)4=x8B、x·(x2)3=x7C、(x·x2)3=x6D、(x10)10=x2076、计算(-3a4b2)3的结果是()A、-9a12b6B、-27a7b5C、9a12b6D、-27a12b677、计算5a·5b的结果是()A、25abB、5abC、5a+bD、25a+b78、下列计算中正确的是()A、x3·x3=2x3B、x10+x10=2x10C、(xy2)3=xy6D、(x3)2=x979、下列计算中错误的是()A、x(x-1)=x2-xB、(-x)(2-x)=-2x+x2C、(-x)2(x-3)= -x3+3x2D、m(m2-n2)=m3-mn280、给出下列四个算式:⑴a(a2-1)=a3-1;⑵x2+x2=2x2⑶-x(x-3)=-x2+3x⑷x2-x(x-1)=x,其中正确的有()A、1个B、2个C、3个D、4个81、下列计算正确的是()A、(x+y)(x+y)=x2+y2B、(x+1)(x-1)=x2-1C、(x+2)(x-3)=x2+x-6D、(x-1)(x+6)=x2-682、下列计算中正确的是()A、(-a+b)(b-a)=b2-a2B、(2x-3y)(2x+3y)=2x2-3y2C、(-m-n)(m-n)=-m2+n2D、(a+b)(a-2b)=a2-2b283、下列计算中正确的是()A、(-3x2y)2=9x4y2B、(x3-2y)(x3+2y)=x9-4y2C、(4-2x)(4+2x)=16-4x2D、(a2+b2)(a2-b2)=a4-b484、下列从左到右的变形属于因式分解的是()A、(x+y)(x-y)=x2-y2B、2x-4y=2(x-2y)C、x2-x+1=x(x-1)+1D、(a-b)(a+b)= -(b-a)(b+a) 三、计算题85、(-3ab)2·(-2ab2);86、x(x-y)+x(y-x);87、(x+2)(x+3);88、(x-2)(x+3);89、(x+2)(x-3);90、(x-2)(x-3);91、(3a-4b)(2a-5b) 92、(x+2y)(x-2y) 93、(5x-4y)(2x-3y) 94、(3x+4y)(3x-4y) 95、(2a-3b)(3a+2b) 96、(2m+5m)(6n-3m) 97、(3x-y)(3x-y) 98、(6x-y)(6x+y) 99、(2x+y)(-2x-y) 100、(x-5)(x+5);101、(3y-10)(3y+10);102、(8-5b)( +5b);103、(xy3)xy 104、(x-5)(x+5);105、(3y-10)(3y+10);106、(a-5b)(a +5b);107、(xy-3)(xy+3);108、(a-bc)(a+bc);第4页、共5页109、(a+2b)(2b-a);110、(3x-y)(y+3x);111、4x2-(2x-9)(2x+9);112、(-7m+1)(-7m-1);113、(-x-5)(-x+5);114、(x2-2)(x2+2);115、(ab-3)(ab+3);116、(4y-3x)(3x+4y);117、(x+1)(x-1)-x2;118、(3y-1)(3y+1)-(2y+2)(2y-2);119、( a-b)( a+ b);120、(-3m2+1)(-3m2-1);121、(-2x-11y)(2x-11y);122、(4+2x)(2-x) 123、-a2+b2;124、(5x-2y)2+20xy125、(a-2b)(a+2b)-(a-2b)2;126、2x2y-3y2;127、a(x+y)-2(x+y);128、(x+y)2-3(y+x);129、x(x-y)-a(y-x);130、(a+b)-a(a+b);131、x(a-b)-5(a-b);132、(x-y)2-(x-y);133、3(2x+y)2+2(2x+y);134、18x2y-24xy2;135、-3a3b2+12b3a2;136、n2-3n+1 ;137、(x-5)(x+5);138、(3y-10)(3y+10);139、(a2-5b)( +5b);140、(xy3)(xy+3);38、16m2+25-40m;142、3a2-6ab+3ab2;2x2y-3b2=________;143、2x2y-3y2144、(2x-y)2-2(2x-y)+1;145、(2m-3n)(2n-5m);第5页、共5页。