三相桥式全控整流电路

合集下载

三相桥式全控整流电路

三相桥式全控整流电路
0
三相桥式全控整流电路的特点(1)
(1)2管同时通形成供电回路,其中 共阴极组和共阳极组各1,且不
能为同一相器件。
(2)对触发脉冲的要求:
按 VT1-VT2-VT3-VT4-VT5-VT6 的 顺 序 , 相 位 依 次 差
60。
共阴极组VT1 、VT3 、VT5 的脉冲依次差120,共阳
ud的波形 更平直
u2 i2 ud

0


t
a)
i2的上升 平缓
b)
2.4.2 电容滤波的三相不可控整流 电路
1. 基本原理
ud u ab u uac d VD1 VD3 VD5 id T ia a b c iC ud + iR C R id ia 3
0
t
VD4 VD6 VD2 a)
2.阻感负载(L很 大)
当 60 时, ud波形连续,电路的工 作情况与带电阻负载时 十分相似,区别在于负 载不同时,同样的整流 输出电压加到负载上, 得到的负载电流id波形 不同。当电感足够大的 时候,负载电流的波形 可近似为一条水平线。

α=0º
α=30º

当 时,由 于电感L的作用,电 源电压过零后,晶 闸管仍然导通,直 到下一个晶闸管触 发导通为止。这样, 输出电压波形出现 负的部分。
–使功率因数降低。
常用于小功率单相交流输入的场合,如目前大量普及 的微机、电视机等家电产品的开关电源中。 放电 1. 工作原理及波形分析 充电
id VD1 i2 u1 u2 VD2 VD3 i,ud iC iR C R 0 i ud
2.4电容滤波的不可控整流电路 2.4.1 电容滤波的单相不可控整流电路 (1)

三相桥式全控整流电路

三相桥式全控整流电路

1主电路的原理1.1主电路其原理图如图1所示。

图1 三相桥式全控整理电路原理图习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。

此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。

从后面的分析可知,按此编号,晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。

1.2主电路原理说明整流电路的负载为带反电动势的阻感负载。

假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角α=0o时的情况。

此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。

而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。

这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。

此时电路工作波形如图2所示。

图2 反电动势α=0o时波形α=0o时,各晶闸管均在自然换相点处换相。

由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。

在分析ud的波形时,既可从相电压波形分析,也可以从线电压波形分析。

从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压 ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。

直接从线电压波形看,由于共阴极组中处于通态的晶闸管对应的最大(正得最多)的相电压,而共阳极组中处于通态的晶闸管对应的是最小(负得最多)的相电压,输出整流电压ud为这两个相电压相减,是线电压中最大的一个,因此输出整流电压ud波形为线电压在正半周的包络线。

三相桥式全控整流电路

三相桥式全控整流电路

8.2.6 三相桥式全控整流电路三相桥式全控整流电路相当于一组共阴极的三相半波和一组共阳极的三相半波可控整流电路串联起来构成的。

习惯上将晶闸管按照其导通顺序编号,共阴极的一组为VT1、VT3和VT5,共阳极的一组为VT2、VT4和VT6。

其电路如图8.22所示图8.22 三相桥式电阻性负载全控整流电路对于图8.22的电路,可以像分析三相半波可控整流电路一样,先分析若是不可控整流电路的情况,即把晶闸管都换成二极管,这种情况相当于可控整流电路的时的情况。

即要求共阴极的一组晶闸管要在自然换相点1、3、5点换相,而共阳极的一组晶闸管则会在自然换相点2、4、6点换相。

因此,对于可控整流电路,就要求触发电路在三相电源相电压正半周的1、3、5点的位臵给晶闸管VT1、VT3和VT5送出触发脉冲,而在三相电源相电压负半周的2、4、6点的位臵给晶闸管VT2、VT4和VT6送出触发脉冲,且在任意时刻共阴极组和共阳极组的晶闸管中都各有一只晶闸管导通,这样在负载中才能有电流通过,负载上得到的电压是某一线电压。

其波形如图8.23所示。

为便于分析,可以将一个周期分成6个区间,每个区间图8.23 三相桥式电阻性负载a=0°时波形区间,u相电位最高,在时刻,即对于共阴极组的u 相晶闸管VT1的的时刻,给其加触发脉冲,VT1满足其导通的两个条件,同时假设此时共阳极组阴极电位最低的晶闸管VT6已导通,这样就形成了由电源u相经VT1、负载及VT6回电源v相的一条电流回路。

若假设电流流出绕组的方向为正,则此时u相绕组的电流为正,v相绕组上的电流为负。

在负载电阻上就得到了整流后的直流输出电压,且,为三相交流电源的线电压之一。

过后到时刻,进入区间,这时u相相电压仍是最高,但对于共阳极组的晶闸管来说,由于w相相电压为最负,即VT2的阴极电位将变得最低。

所以在自然换相点2点,即时,给晶闸管VT2加触发脉冲,使其导通,同时由于VT2的导通,使VT6承受了反向的线电压而关断了。

三相桥式全控整流电路的原理(一)

三相桥式全控整流电路的原理(一)

三相桥式全控整流电路的原理(一)三相桥式全控整流电路简介三相桥式全控整流电路是一种常用于工业领域的电路,用于将交流电转换为直流电。

本文将介绍该电路的原理和工作方式。

电路组成三相桥式全控整流电路由以下几个部分组成: - 三相交流电源 - 三相桥式整流器 - 控制电路原理1.三相交流电源–三相交流电源是整个电路的输入来源,通常为三相交流电网或发电机输出的电流。

–交流电源的频率和电压大小会直接影响到整流器的输出。

2.三相桥式整流器–三相桥式整流器由六个控制可控硅(thyristor)组成,分为三相正半桥和负半桥。

–当正半桥中的可控硅导通时,负半桥中相应的可控硅会导通,从而实现了交流电到直流电的转换。

3.控制电路–控制电路是整个电路的大脑,负责对可控硅的触发和控制。

–控制电路通常由微控制器或其他逻辑控制芯片实现,根据输入信号对可控硅进行触发和控制。

–控制电路要根据交流电源的频率和电压变化来调整可控硅的触发时机,以确保整流器输出的直流电压稳定。

工作方式1.首先,三相交流电源提供输入电流,通过正半桥和负半桥中的可控硅进行整流,无论输入电压是正半周的正弦波还是负半周的正弦波,都会被转换成单向的直流电。

2.控制电路根据输入电压的变化情况,对可控硅进行触发和控制,确保输出的直流电压稳定。

3.最后,整流器的输出连接到负载上,供给电路所需的直流电源。

应用领域三相桥式全控整流电路广泛应用于工业领域,特别适合需要稳定和高负载的设备。

例如: - 运输领域的电车、火车 - 电力系统中的变流器 - 工厂中的直流电机控制系统结论三相桥式全控整流电路是一种重要的电路,通过将交流电转换为直流电,为各种设备提供稳定和高效的直流电源。

深入了解和掌握该电路的原理对于电气工程师和电路设计人员来说是必要的。

继续深入解释:三相桥式整流器的工作原理三相桥式整流器中的可控硅起到一个开关的作用,控制电流什么时候通过。

整流器通过改变可控硅的导通和封锁来实现电流的流动和截断。

三相桥式全控整流电路

三相桥式全控整流电路

三相桥式全控整流电路
三相桥式全控整流电路是一种典型的多相变流器结构。

其概念是利用三个桥式变换器,并将三相电源转换成多脉冲的直流电压或电流。

三相桥式全控整流电路可以满足多种多种
应用场合的需求。

三相桥式全控整流电路具有输出电流均衡、无影响源特性和可靠性等优点。

结构简单,尺寸小,失压开关控制,可靠性高,功率非常低,因此可以有效减少处理器的使用,降低
成本。

控制电路精确,可以实现功率的精确控制,提高了净输出功率的效率。

电阻元件高
度可调,可以对输出电流进行良好的控制,从而获得更好的控制性能。

三相桥式全控整流电路结构简单,可以有效控制输出电流,并且可以满足输出频率和
脉宽调节等多种需求。

但它也有一定的局限性,如功率范围较小,无法处理较大的功率负载。

三相桥式全控整流电路是一种常用的多相变流器。

它结构简单,控制精度高,稳定性好,可以有效解决处理多种应用场景的需求,在工业自动化等领域有广泛的应用。

三相桥式全控整流电路(阻感负载)

三相桥式全控整流电路(阻感负载)

晶闸管VT1的波形由 负载电流id波形决定, 和ud的波形不同
图3-2 三相桥式全控整流电路(阻感负载)α=0°的波形
α>60°,阻感负载与电阻 负载不同 阻感负载时,由于电 感L的作用,ud波形 会出现负的部分。
图3-3 三相桥式全控整流电路(阻感负载)α=90°的波形
若电感L值足够大, ud正负面积基本相等, ud平均值近似为零。
授课教师:谭阳
2 d

2
3

Id 3
数值计算
④ 晶闸管所承受的最大正反向电 压:
2 3U2 6U 2
⑤ 整流变压器二次侧正、负半周 内均有电流流过 每半周期内导通 120°,变压器二次侧电流有效值:
I2
2 3 Id
图3-1 三相桥式全控整流电路(阻感负载)
三相桥式全控整流电路 (阻感负载)
谢谢观看!
a 角移相范围为90
图3-3 三相桥式全控整流电路(阻感负载)α=90°的波形
电路分析 ☞①输出电压平均值Ud
整流输出电压在一周期内脉动六次, 且每次脉动的波形相同
因此,计算Ud 的平均值, 只需对一个脉波(即1/6 周期)进行计算即可
图3-4 三相桥式全控整流电路(阻感负载)α=90°的波形
设其表达式为
区别
三相桥式全控整流电 路电阻负载时α=0°, id波形和ud波形形状 一样
图3-2 三相桥式全控整流电路(电阻负载)α=0°的波形
区别
阻感负载时,由于电 感作用,使得负载电 流波形变得平直。
图3-1 三相桥式全控整流电路(电阻负载)α=0°的波形
区别
当电感足够大时,负 载电流的波形近似为 一条水平线。
重庆电力高等专科学校

实验七 三相桥式全控整流电路实验

实验七 三相桥式全控整流电路实验

实验七 三相桥式全控整流电路实验一、实验目的了解三相桥式全控整流电路的工作原理,研究可控整流电路在电阻负载,电阻电感性负载,反电动势负载时的工作情况。

二、实验所需挂件及附件1. 电源控制屏2. 三相晶闸管触发电路3. 双踪示波器,万用表4. 晶闸管主电路5. 可调电阻,电感等三、实验原理1、电阻性负载图7-1 三相桥式全控整流电路(电阻性负载)及o 0=α波形阴极连接在一起的3个晶闸管(VT1,VT3,VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4,VT6,VT2)称为共阳极组。

共阴极组中与a ,b ,c 三相电源相接的3个晶闸管分别为VT1,VT3,VT5,共阳极组中与a ,b ,c 三相电源相接的3个晶闸管分别为VT4,VT6,VT2。

晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。

o 0=α表示各晶闸管从其自然换相点开始触发,得到的输出电压波形为其线电压的包络线。

图7-2 三相桥式全控整流电路(电阻性负载)o 30=α时波形从图可以看出,当o 60≤α时,u d 波形连续,对于电阻负载,i d 波形与u d 波形形状一样,也连续,每管工作120︒ ,每间隔60︒有一管换流。

60︒为波形连续和不连续的分界点。

α>60︒,由于对应线电压的过零变负,非同一相的共阴极组和共阳极晶闸管串联承受负压而关断,此时输出电压电流为零。

负载电流断续,各晶闸管导通角小于120︒。

晶闸管及输出整流电压的情况如下表所示:时段I II III IV V VI 共阴极组中导通的晶闸管VT1VT1VT3VT3VT5VT5共阳极组中导通的晶闸管VT6VT2VT2VT4VT4VT6整流输出电压u du α -u b=u abu α -u c=u αcu b –u c=u bcu b –u a=u bau c –u a=u cau c –u b=u cb三相桥式全控整流电路的特点:(1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。

三相全控桥式整流电路

三相全控桥式整流电路

三相全控桥式整流电路一、引言随着工业技术的发展和电力电子技术的不断推广,三相全控桥式整流电路在各个行业中广泛应用。

三相全控桥式整流电路采用三相交流电源作为输入端,能够将交流电信号转换成满足不同负载需求的直流电信号。

本文将从以下几个方面详细介绍三相全控桥式整流电路的工作原理、主要构成和应用。

二、工作原理三相全控桥式整流电路是一种将交流电信号转换成直流信号的电路。

该电路采用三相变压器将三相交流电源通过变换,将input交流电进行相间差异为120度的降低或升高零电平的变换,接至整流桥三相管闸流控制器的输入端,然后将通过整流桥的三相管管子交错导通,实现交流电的全波整流。

三相全控桥式整流电路通过改变控制器的输出扭矩控制灵活性,从而控制整流桥输出直流电的电压和电流。

三、主要构成三相全控桥式整流电路主要由三相变压器、整流桥和控制器组成。

1. 三相变压器三相变压器的作用是将输入的三相交流电信号通过变换,降低或升高零电平,将降低或升高零电平后的输入信号接入整流桥电路中。

通常情况下,三相变压器分为多种类型,如输入和输出相等的三相变压器、桥式三相变压器、三角变压器等。

2. 整流桥整流桥是三相全控桥式整流电路中的重要部分。

整流桥需要至少4个按一定方式排列的二极管构成,在同一个相序的三个管相互导通的同时,三个相可以实现交替导通。

整流桥既能进行三相半波整流,也能进行三相全波整流。

3. 控制器在三相全控桥式整流电路中,控制器的主要作用是对整流桥输出直流信号进行控制。

通过控制器,可以实现相依输入电压的0-360°可控角度矩,从而实现输出电压的控制。

整流桥控制器通常采用高性能单片机或FPGA,以实现控制回环环节过程控制、溅液等自动保护功能等。

四、应用三相全控桥式整流电路主要应用于高功率负载的变频调速、电力变流器、电弧炉等领域。

在风力发电、太阳能发电等清洁能源领域,三相全控桥式整流电路也具有广泛的应用前景。

在消费电子产品如UPS、电流计、电子锁等领域,也可以采用三相全控桥式整流电路实现高品质的电源供应。

三相桥式全控整流电路

三相桥式全控整流电路

输出电压与输入电压的关系
01
输出电压与输入电压的有效值成 正比,与触发脉冲的相位角有关 。
02
当触发脉冲在合适的相位角触发 晶闸管时,输出电压接近于输入
电压的最大值。
随着触发脉冲相位角的减小,输 出电压逐渐减小。
03
当触发脉冲相位角为0度时,输出 电压为0。
04
03
电路参数
整流元件的参数选择
额定电压
整流元件的额定电压应大 于电路的最大输出直流电 压。
额定电流
整流元件的额定电流应大 于电路的最大输出直流电 流。
反向耐压
整流元件的反向耐压应大 于电路的最大反向电压。
变压器的参数选择
额定功率
变压器的额定功率应大于电路的最大输出功率。
匝数比
变压器的匝数比应与电路的输入输出电压要求 相匹配。
磁芯材料
变压器的磁芯材料应具有较高的磁导率和较低的损耗,以提高变压器的效率。
常见故障与排除方法
故障1
整流输出电压异常
排除方法
检查输入电源是否正常,检查整流管是否损坏 ,检查电路连接是否良好。
故障2
可控硅不导通
排除方法
检查触发脉冲是否正常,检查可控硅控制极的连接 是否正确。
电路发热严重
故障3
排除方法
检查电路的散热情况,确保散热器安装良好,检查负载 是否过重。
维护与保养建议
滤波电容器的参数选择
电容量
滤波电容器的电容量应根据电路的输出电流和电压纹波的要求进 行选择。
耐压值
滤波电容器的耐压值应大于电路的最大输出直流电压。
温度特性
滤波电容器的温度特性应与电路的工作温度要求相匹配。
04
电路分析

三相桥式全控整流电路

三相桥式全控整流电路

小结:
❖ 7. 为确保电源合闸或电流断续情况正常工作, 触发脉冲应采用双脉冲或宽度不小于60度旳 宽脉冲。
❖ 8. 在负载电流连续时,每个SCR导通120度; 三相桥式全控电路旳整流电压在一种周期内 脉动六次,对于工频电源,脉动频率为 6×50HZ=300Hz,比三相半波时大一倍。
小结:
❖ 9. 整流后旳输出电压为两相电压相减后旳波 形,即线电压。
❖ 此时,因为输出电压Ud波形连续, 负载电流波形也连续
❖ 在一种周期内每个晶闸管导通 120o,输出电压波形与电感性负 载时相同。
电阻性负载控制角α>60度
❖ 以控制角等于90度为例, 线电压过零时,负载电 压电流为0, SCR 关断, 电流波形断续
T+a,T-b导经过程
T+a,T-c导经过程
❖ 三相桥式电路中变压器绕组中,一周期既有正向电 流,又有反向电流,提升了变压器旳利用率,防止 直流磁化
❖ 因为三相桥式整流电路是两组三相半波整流电路旳 串联,所以输出电压是三相半波旳两倍。
一.电感性负载电感性负载
❖ 设电感足够大, ❖ 负载电流连续。 ❖ 1.控制角α=0 ❖ 相当于六个二极管整流
可控整流电路
三相桥式全控整流电路
第三节 三相桥式全控整流电路
❖ 一.电路构成: ❖ 共阴极三相半波+共阳极三相半波。
第三节 三相桥式全控整流电路
❖ 一.电路构成: (输出串联构成)
三相桥式全控整流电路
❖ 共阴极组电路和共阳极组电路串联,并接到变压器 次极绕组上
❖ 两组电路负载对称,控制角相同,则输出电流平均 值相等,零线中流过电流为零
❖ ◆输出电压旳脉动较小(6脉波/周期); ❖ ◆变压器利用率高,无直流磁化问题; ❖ ◆最常用(大容量负载供电,电力拖动系统)

三相桥式全控整流电路

三相桥式全控整流电路

1主电路的原理主电路其原理图如图1所示;图1 三相桥式全控整理电路原理图习惯将其中阴极连接在一起的3个晶闸管VT1、VT3、VT5称为共阴极组;阳极连接在一起的3个晶闸管VT4、VT6、VT2称为共阳极组;此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2;从后面的分析可知,按此编号,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6;主电路原理说明整流电路的负载为带反电动势的阻感负载;假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角α=0o时的情况;此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通;而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低或者说负得最多的一个导通;这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压;此时电路工作波形如图2所示;图2 反电动势α=0o时波形α=0o时,各晶闸管均在自然换相点处换相;由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点;在分析ud的波形时,既可从相电压波形分析,也可以从线电压波形分析;从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线;直接从线电压波形看,由于共阴极组中处于通态的晶闸管对应的最大正得最多的相电压,而共阳极组中处于通态的晶闸管对应的是最小负得最多的相电压,输出整流电压ud为这两个相电压相减,是线电压中最大的一个,因此输出整流电压ud波形为线电压在正半周的包络线;由于负载端接得有电感且电感的阻值趋于无穷大,电感对电流变化有抗拒作用;流过电感器件的电流变化时,在其两端产生感应电动势Li,它的极性事阻止电流变化的;当电流增加时,它的极性阻止电流增加,当电流减小时,它的极性反过来阻止电流减小;电感的这种作用使得电流波形变得平直,电感无穷大时趋于一条平直的直线;为了说明各晶闸管的工作的情况,将波形中的一个周期等分为6段,每段为60o,如图2所示,每一段中导通的晶闸管及输出整流电压的情况如表所示;由该表可见,6个晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6;表1三相桥式全控整流电路电阻负载α=0o时晶闸管工作情况图3 给出了α=30o时的波形;从ωt1角开始把一个周期等分为6段,每段为60o与α=0o时的情况相比,一周期中ud波形仍由6段线电压构成,每一段导通晶闸管的编号等仍符合表1的规律;区别在于,晶闸管起始导通时刻推迟了30o,组成ud 的每一段线电压因此推迟30o,ud平均值降低;晶闸管电压波形也相应发生变化如图所示;图中同时给出了变压器二次侧a相电流ia 的波形,该波形的特点是,在VT1处于通态的120o期间,ia为正,由于大电感的作用,ia波形的形状近似为一条直线,在VT4处于通态的120o期间,ia波形的形状也近似为一条直线,但为负值;图3 α=30o时的波形由以上分析可见,当α≤60o时,u d波形均连续,对于带大电感的反电动势,i d波形由于电感的作用为一条平滑的直线并且也连续;当α>60o时,如α=90o时电阻负载情况下的工作波形如图4所示,ud平均值继续降低,由于电感的存在延迟了VT的关断时刻,使得ud的值出现负值,当电感足够大时,ud中正负面积基本相等,ud平均值近似为零;这说明带阻感的反电动势的三相桥式全控整流电路的α角的移相范围为90度;图4α=90o时的波形2各参数的计算输出值的计算三相桥式全控整流电路中,整流输出电压的波形在一个周期内脉动6次,且每次脉动的波形相同,因此在计算其平均值时,只需对一个脉波即1/6周期进行计算即可;此外,因为所以电压输出波形是连续的,以线电压的过零点为时间坐标的零点,可得整流输出电压连续时的平均值为;4-1输出波形的分析时的输出波形如图11所示;图11 整流电路的输出波形如图11所示,从ωt1时刻开始把一个周期等分为6份,在Wt1时刻共阴极组VT1晶闸管接受到触发信号导通,此时阴极输出电压Ud1为幅值最大的a相相电压;到Wt2时刻下一个触发脉冲到来,此时a相输出电压降低,b相输出电压升高,于是阴极输出电压变为b相相电压;到Wt3时刻第三个脉冲到来,晶闸管VT1关断而晶闸管VT2导通,输出电压为此时最高的c相相电压;重复以上步骤,即共阴极组输出电压Ud1为在正半周的包络线;共阳极组中输出波形原理与共阴极组一样,只是每个触发脉冲比阴极组中脉冲相差180度;6个时段的导通次序如表1所示一样,只是Wt1从零时刻往后推迟30度而已;这样就得出最后输出整流电压为共阴极组输出电压与共阳极组输出电压的差即Ud=Ud1-Ud2 4-9而由于电路中大电感L的作用,输出的电流为近似平滑的一条直线;图中同时给出了变压器二次侧a相电流 ia 的波形,该波形的特点是,在VT1处于通态的120o期间,ia为正,由于大电感的作用,ia波形的形状近似为一条直线,在VT4处于通态的120o期间,ia波形的形状也近似为一条直线,但为负值;3逆变逆变原理图如图12所示;图12逆变原理图如图12所示,当电机M工作时,调节整流电路的触发角α使α<90°,这时候整流电路工作在整流状态,三相交流点存储装置向M供电使M工作在电动状态,电能转换为动能带动汽车行驶;当电机M能量过剩时时,调节α角使α>90°,使输出直流电压Ud平均值为负值,且|Em|>|Ud|,这时候整流电路工作在逆变状态,电机M的过剩能量装换为电能,M向三相交流电存储装置输送电流,三相交流电存储装置接受并存储电能;。

三相桥式全控整流电路

三相桥式全控整流电路

4
特点与优点
特点与优点
整流效率高:由于采用
了全控整流技术,三相
桥式全控整流电路的整
2
流效率可以达到90%以

控制性能好:通过调节
触发角α的大小,可以
1
实现对输出电压和电流 的连续和平滑调节,从
而具有良好的控制性能
适用于大功率应用:三
相桥式全控整流电路适
用于大功率应用场合, 可以实现大电流和高电
4
流电源的中性线N上
3
工作原理
工作原理
整流过程
当晶闸管的控制极有触发脉冲时,晶闸管导通,电流可 以通过它而从交流电源的一相流向负载,然后再通过另 外两只晶闸管返回交流电源的另一相。通过改变触发脉 冲的相位,可以控制电流的流向和大小,从而实现对输 出电压和电流的连续和平滑调节
工作原理
控制原理
三相桥式全控整流电路的输出电压和电流的大小取决于晶闸管的触发角α。触发角α是指 从正弦波的正半周开始到触发脉冲出现的位置之间的角度。当触发角α越小时,输出的电 压和电流越大;当触发角α越大时,输出的电压和电流越小 通过调节触发角α的大小,可以实现对输出电压和电流的连续和平滑调节。常用的调节方 式有两种:一种是采用相位控制方式,通过调节触发脉冲的相位来改变触发角α的大小; 另一种是采用移相控制方式,通过改变触发脉冲的移相角的大小来改变触发角α的大小
续和平滑调节
2
电路结构
电路结构
三相桥式全控整流电路的基本结 构由三相交流电源、六只晶闸管
以及负载构成
其中,三相交流电源为三角形接 法,提供三个相位相差120度的交
流电压
六只晶闸管分别连接在三相交流 电源和负载之间,其中三只晶闸 管的一端连接在A、B、C三相交流 电源上,另一端连接在负载的P、 N端子上;另外三只晶闸管的另一 端连接在负载的N、P端子上和交

三相桥式全控整流电路最大反向电压

三相桥式全控整流电路最大反向电压

三相桥式全控整流电路最大反向电压摘要:一、三相桥式全控整流电路的基本概念二、三相桥式全控整流电路的工作原理三、三相桥式全控整流电路的最大反向电压四、最大反向电压的计算与应用正文:【一、三相桥式全控整流电路的基本概念】三相桥式全控整流电路是一种常见的三相电力电子装置,广泛应用于电力系统、工业控制等领域。

它的特点是可以在交流电源和直流负载之间实现高效的能量传递,同时具有较好的谐波性能。

三相桥式全控整流电路主要由六个晶闸管、三相变压器和负载组成,其中晶闸管是电路的核心元件。

【二、三相桥式全控整流电路的工作原理】三相桥式全控整流电路的工作原理是通过控制晶闸管的导通与截止,将交流电源的正半周电压信号转换为直流电压输出。

在电路中,六个晶闸管分别连接到三相交流电源的相线和中性线,形成一个桥式整流电路。

通过控制晶闸管的触发脉冲,可以实现对整流电路的输出电压和电流的控制,从而满足不同负载的需求。

【三、三相桥式全控整流电路的最大反向电压】在三相桥式全控整流电路中,晶闸管的最大反向电压是一个重要的参数。

最大反向电压是指晶闸管在截止状态下,所能承受的最大电压值。

它的大小与晶闸管的额定电压、电路的工作频率等因素有关。

最大反向电压的合理选择和使用,可以有效保证晶闸管的安全运行,避免因电压过高而导致的损坏。

【四、最大反向电压的计算与应用】最大反向电压的计算公式为:最大反向电压= 1.1 * 根号下(变压器二次侧电压^2 + 负载电阻电压降^2)。

在实际应用中,最大反向电压的计算结果应考虑到电路的实际情况,如负载电流、电源电压波动等因素。

此外,最大反向电压的计算和选择,还需要遵循安全、可靠的原则,以确保电路的正常运行和使用寿命。

总结:三相桥式全控整流电路是一种高效、可靠的电力电子装置,其在能源转换和控制领域具有广泛的应用。

了解其工作原理、最大反向电压的计算和应用,对于电路的设计、运行和维护具有重要意义。

三相桥式全控整流电路

三相桥式全控整流电路

三相桥式全控整流电路应用最为广泛,共阴极组——阴极连接在一起的3个晶闸管(VT1,VT3,VT5)共阳极组——阳极连接在一起的3个晶闸管(VT4,VT6,VT2)编号:1、3、5,4、6、2a 带电阻负载时的工作情况a =0°时的情况假设将电路中的晶闸管换作二极管进行分析对于共阴极阻的3个晶闸管,阳极所接交流电压值最大的一个导通对于共阳极组的3个晶闸管,阴极所接交流电压值最低(或者说负得最多)的导通任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态从相电压波形看,共阴极组晶闸管导通时,ud1为相电压的正包络线,共阳极组导通时,ud2为相电压的负包络线,ud=ud1 - ud2是两者的差值,为线电压在正半周的包络线直接从线电压波形看,ud为线电压中最大的一个,因此ud波形为线电压的包络线。

三相桥式全控整流电路的特点:(1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。

(2)对触发脉冲的要求:按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60°。

共阴极组VT1、VT3、VT5的脉冲依次差120°,共阳极组VT4、VT6、VT2也依次差120°同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180°。

表2-1 三相桥式全控整流电路电阻负载a=0°时晶闸管工作情况时段I II III IV V VI共阴极组中导通的晶闸管 VT1 VT1 VT3 VT3 VT5 VT5共阳极组中导通的晶闸管 VT6 VT2 VT2 VT4 VT4 VT6整流输出电压Ud Ua-Ub=Uab Ua-Uc=Uac Ub-Uc=Ubc Ub-Ua=Uba Uc-Ua=Uca Uc-Ub=Ucb(3)ud一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。

(4)需保证同时导通的2个晶闸管均有脉冲可采用两种方法:一种是宽脉冲触发另一种方法是双脉冲触发(常用)。

三相桥式全控整流电路(电阻性负载)

三相桥式全控整流电路(电阻性负载)

1三相桥式全控整流电路(电阻性负载)
三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT1,VT6,VT2)的串联组合。

1-1三相桥式全控整流电路(电阻性负载)
1-1三相桥式全控整流电路
n
d
VT VT VT 462d 2
d
2-1三相桥式全控整流电路(电阻性负载)仿真图2.2三相桥式全控整流电路(电阻性负载)电源参数
电源220V.相位分别为0︒,120︒,-120︒,频率50HZ
设置控制脚a为0︒,30︒,60︒,90︒与其相印的波形
3-1三相桥式全控整流电路(电阻性负载)a为0︒
3-2三相桥式全控整流电路(电阻性负载)a为30︒
3-3三相桥式全控整流电路(电阻性负载)a为60︒
3-4三相桥式全控整流电路(电阻性负载)a为90︒
4总结
2个晶闸管同时导通形成供电回路,其中共阴极组和共阳极组各1个,且不能为同一相器件。

同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180 。

三相桥式全控整流电路

三相桥式全控整流电路

第六章引言6.1 同步电机的励磁简介同步电机的励磁绕组通常由外电源提供励磁电流,这些励磁电源可分为两大类:一类是用直流电源提供励磁的直流励磁机系统;另一类是用硅整流装置将交流变成直流后提供励磁的半导体励磁系统。

随着半导体技术的发展,可控硅整流装置已广泛应用于同步电机励磁系统。

可控硅整流装置将交流励磁机输出的三相交流电流转换成直流电流,励磁调节器根据发电机运行工况调节可控硅整流器的导通角,以此调节可控硅整流装置的输出电压,从而调节发电机的励磁。

6.2 研究同步电机励磁系统的背景在电力系统的运行中,同步发电机是电力系统获得无功功率的重要来源之一,通过调节励磁电流可以维持发电机端电压,改变发电机的无功功率。

不论系统是在正常运行情况下还是在故障情况下,同步发电机的励磁电流都必须得到有效控制,因此励磁系统是同步发电机的重中之重。

励磁系统的安全运行,不仅关系到发电机及电力系统的运行稳定性,而且关系到发电机及与其相关联的电力系统的经济运行指标。

对同步发电机励磁系统基本要求有:一、具有十分高的可靠性;二、保证发电机具有足够的励磁容量;三、具有足够的强励能力;四、保证发电机电压调差率有足够的整定范围;五、保证发电机电压有足够的调节范围;六、保证发电机励磁自动控制系统具有良好的调节特性等。

6.3 本文主要研究内容三相桥式全控整流电路是将交流电压转化为直流电压,进而转化为直流励磁电流的一个桥梁,所以对它的分析研究就显的尤为重要。

本次设计中综合运用MATLAB中的Simulink模块搭建三相桥式全控整流电路,仿真分析了在不同触发角情况下的输出电压波形,并在分析后通过电力系统综合自动化实验台上的示波器观察励磁装置中的六路脉冲、变压器二次测交流电压波形以及经整流后输出的直流电压波形。

u g u gu g u gu2u 图2 三相桥式整流电路的触发脉冲第七章 三相桥式全控整流电路简介7.1 主电路原理说明如图2.1,共阴极组——阴极连接在一起的3个晶闸管(VT 1,VT 3,VT 5)共阳极组——阳极连接在一起的3个晶闸管(VT 4,VT 6,VT 2)。

三相桥式全控整流电路

三相桥式全控整流电路

12
三、定量分析
➢ 4. 整流变压器视在功率计算
➢ 1). 流过整流变压器二次侧旳电流在前面已经算得:
i
I
d
2π/3
0
π
2π/3

ωt
TR二次侧电流有效值: TR二次侧电压有效值:
I2
2 3
I
d
0.816 I d
U2
Ud 2.34
TR二次侧视在功率:
S2
3U 2 I2
3
Ud 2.34
0.816
围是120
7
二、原理分析
2.电路工作波形
2)阻感负载时旳工作情况
➢ a≤60时(a =0 图-6;a =30 图-7)
• ud波形连续,工作情况与带电阻负载时十分相同。
各晶闸管旳通断情况
输出整流电压ud波形 晶闸管承受旳电压波形
• 区别在于:得到旳负载电流id波形不同。
当电感足够大旳时候, id旳波形可近似为一条水平线。
三相桥式全控整流电路原理图
返回
26
单宽脉冲
27
双窄脉冲
28
t
t t t
返回 17
图-3
三相桥式全控整流电路
带电阻负载a=0时旳波形
uud21 = 0°ua
ub
uc
O ud2 uu2dL
t1
ⅠⅡ uab uac
ⅢⅣ ubc uba
ⅤⅥ uca ucb
uab uac
O
iVT1
O uVT1
uab uac ubc uba uca ucb uab uac
O uab uac
控制,电网向晶体管整流装置提供旳 是超前旳无功电流。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相桥式全控整流电路
————————————————————————————————作者:————————————————————————————————日期:
1主电路的原理
1.1主电路
其原理图如图1所示。

图1 三相桥式全控整理电路原理图
习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。

此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。

从后面的分析可知,按此编号,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。

1.2主电路原理说明
整流电路的负载为带反电动势的阻感负载。

假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角α=0o时的情况。

此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。

而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。

这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。

此时电路工作波形如图2所示。

图2 反电动势α=0o时波形
α=0o时,各晶闸管均在自然换相点处换相。

由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。

在分析ud的波形时,既可从相电压波形分析,也可以从线电压波形分析。

从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。

直接从线电压波形看,由于共阴极组中处于通态的晶闸管对应的最大(正得最多)的相电压,而共阳极组中处于通态的晶闸管对应的是最小(负得最多)的
相电压,输出整流电压ud 为这两个相电压相减,是线电压中最大的一个,因此输出整流电压ud 波形为线电压在正半周的包络线。

由于负载端接得有电感且电感的阻值趋于无穷大,电感对电流变化有抗拒作用。

流过电感器件的电流变化时,在其两端产生感应电动势Li ,它的极性事阻止电流变化的。

当电流增加时,它的极性阻止电流增加,当电流减小时,它的极性反过来阻止电流减小。

电感的这种作用使得电流波形变得平直,电感无穷大时趋于一条平直的直线。

为了说明各晶闸管的工作的情况,将波形中的一个周期等分为6段,每段为60o ,如图2所示,每一段中导通的晶闸管及输出整流电压的情况如表所示。

由该表可见,6个晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。

表1三相桥式全控整流电路电阻负载α=0o
时晶闸管工作情况
图3 给出了α=30o 时的波形。

从ωt1角开始把一个周期等分为6段,每段为60o 与α=0o 时的情况相比,一周期中ud 波形仍由6段线电压构成,每一段导通晶闸管的编号等仍符合表1的规律。

区别在于,晶闸管起始导通时刻推迟了30o ,组成ud 的每一段线电压因此推迟30o ,ud 平均值降低。

晶闸管电压波形也相应发生变化如图所示。

图中同时给出了变压器二次侧a 相电流 ia 的波形,该波形的特点是,在VT1处于通态的120o 期间,ia 为正,由于大电感的作用,ia 波形的形状近似为一条直线,在VT4处于通态的120o 期间,ia 波形的形状也近似为一条直线,但为负值。

时 段 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ 共阴极组中 导通的晶闸管 VT1 VT1 VT3 VT3 VT5 VT5 共阳极组中 导通的晶闸管 VT6
VT2
VT2
VT4
VT4
VT6
整流输出电压u d
u a -u b =u ab u a -u c =u ac u b - u c =u bc u b - u a =u ba u c - u a =u ca u c -u b =u cb
图3 α=30o时的波形
由以上分析可见,当α≤60o时,u d波形均连续,对于带大电感的反电动势,i d波形由于电感的作用为一条平滑的直线并且也连续。

当α>60o时,如α=90o时电阻负载情况下的工作波形如图4所示,ud平均值继续降低,由于电感的存在延迟了VT的关断时刻,使得ud的值出现负值,当电感足够大时,ud中正负面积基本相等,ud平均值近似为零。

这说明带阻感的反电动势的三相桥式全控整流电路的α角的移相范围为90度。

图4α=90o时的波形
2各参数的计算
2.1输出值的计算
三相桥式全控整流电路中,整流输出电压的波形在一个周期内脉动6次,且每次脉动的波形相同,因此在计算其平均值时,只需对一个脉波(即1/6周期)进行计算即可。

此外,因为所以电压输出波形是连续的,
以线电压的过零点为时间坐标的零点,可得整流输出电压连续时的平均
值为。

(4-1)
2.2输出波形的分析
时的输出波形如图11所示。

图11 整流电路的输出波形
如图11所示,从ωt1时刻开始把一个周期等分为6份,在Wt1时刻共阴极组VT1晶闸管接受到触发信号导通,此时阴极输出电压Ud1为幅值最大的a相相电压;到Wt2时刻下一个触发脉冲到来,此时a相输出电压降低,b相输出电压升高,于是阴极输出电压变为b相相电压;到Wt3时刻第三个脉冲到来,晶闸管VT1关断而晶闸管VT2导通,输出电压为此时最高的c相相电压;重复以上步骤,即共阴极组输出电压Ud1为在正半周的包络线。

共阳极组中输出波形原理与共阴极组一样,只是每个触发脉冲比阴极组中脉冲相差180度。

6个时段的导通次序如表1所示一样,只是Wt1从零时刻往后推迟30度而已。

这样就得出最后输出整流电压为共阴极组输出电压与共阳极组输出电压的差即
Ud=Ud1-Ud2 (4-9)
而由于电路中大电感L的作用,输出的电流为近似平滑的一条直线。

图中同时给出了变压器二次侧a相电流 ia 的波形,该波形的特点是,在VT1处于通态的120o期间,ia为正,由于大电感的作用,ia波形的形状近似为一条直线,在VT4处于通态的120o期间,ia波形的形状也近似为一条直线,但为负值。

3逆变
逆变原理图如图12所示。

图12逆变原理图
如图12所示,当电机M工作时,调节整流电路的触发角α使α<90°,这时候整流电路工作在整流状态,三相交流点存储装置向M供电使M 工作在电动状态,电能转换为动能带动汽车行驶。

当电机M能量过剩时时,调节α角使α>90°,使输出直流电压Ud平均值为负值,且|Em|>|Ud|,这时候整流电路工作在逆变状态,电机M的过剩能量装换为电能,M向三相交流电存储装置输送电流,三相交流电存储装置接受并存储电能。

相关文档
最新文档