人教版七年级数学第一章有理数易错题整理
人教版七年级上册数学 第一章 有理数 全章易错疑难集训
人教版七年级上册数学第一章 有理数 全章易错疑难集训一.易错题1 对正数、负数和“0”的认识错误1. 有理数-a 是 ( )A.负数B.正数C.0D.正数或负数或02. 下列说法错误的是 ( )A.0是最小的自然数B. 某地海拔0米表示某地没有高度C. 0既不是正数,也不是负数D.0 ℃是零上温度和零下温度的分界线2 在条件|a|=a 下,误认为a 的值一定是正数3. 若|a-1|=a-1,则a 的取值范围是 ( )A.a ≥1B.a ≤1C. a>1D. a<13 对有理数的有关概念理解不透4. 在数-3,0,5,-312,3.1,12,2 020,π中,整数有( ) A.2个B.3个C.4个D.5个 5. 在-227,π3,0.62,0这四个数中,正有理数有 ( )A.4个B.3个C.2个D.1个4 混淆绝对值符号与括号6. 下列式子中成立的是 ( )A.-|-6|>5B.-8<-(-8)C.-|-7|=7D.|-8.5|<87. 下列化简错误的是 ( )A.-(-5)=5B.-|-45|=45C.-(-3.2)=3.2D.+(+7)=75 对乘方的意义理解不清8. 计算:(-23)2÷12-(-232)+(-2)2= .9. 计算:(-2)4+(-24)×14= . 6 弄错运算顺序或运算律10. 计算(-78)÷(134−78−712).下面是乐乐同学的解答过程:(-78)÷(134−78−712)=(-78)÷134-(-78)÷78-(-78)÷712=-12+1+32=2.老师看后,说他的解答错误,你知道错在哪里吗?请你把正确的解题过程写出来.11. 计算:-8÷23×32.下面是东东同学的解答过程:-8÷23×32=-8÷1=-8.你认为东东同学的解答是否正确?若不正确,请指出错在哪里,并给出正确的解题过程;若正确,请写出计算过程中每步的依据.二.疑难题1 有理数的大小比较1. 若-1<x<0,则x,1|x |,-x 的大小关系是( ) A.x>1|x |>-x B.1|x |>x>-x C.1|x |>-x>x D.-x>1|x |>x2 数轴上的点与有理数的关系2. 下列说法正确的是 ( )A.数轴上的每一个点都表示一个整数B.数轴上的每一个点都表示一个分数C.数轴上的每一个点都表示一个有理数D.每一个有理数都可以用数轴上的点表示3 绝对值问题中数形结合思想的应用3. 点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离AB=|a-b|,所以|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.(1) 若|x-3|=|x+1|,则x= .(2) 若|x-3|=5,则x= ;4 有理数的混合运算与绝对值的综合运用4. 若a,b,c为有理数,且a|a|+b|b|+c|c|=-1,求abc|abc|的值.5 含字母的乘方运算问题5. -a n与(-a)n是否相等(n为正整数)?6 数轴与有理数加减运算的综合6. 已知a,b是有理数,|a+b|=-(a+b),|a-b|=a-b,若将a,b在数轴上表示出来,则下图可能正确的是 ( )7 有计数单位的近似数的精确度7. 近似数2.89万精确到哪一位?。
人教版七年级数学第一章《有理数》易错题训练 (4)含答案解析
第一章《有理数》易错题训练 (4)一、选择题(本大题共14小题,共42.0分)1.有理数a,b在数轴上的位置如图所示,则下列各式成立的是()A. b−a>0B. −b>0C. a>−bD. −ab<02.一个数的相反数是−2020,则这个数是()A. 2020B. −2020C. 12020D. −120203.下列说法正确的是()A. 互为相反数的两个数一定不相等B. 绝对值等于它相反数的数是负数C. 一个有理数不是整数就是分数D. π3是分数4.下列各组数中,互为相反数的是()A. −(+3)与+(−3)B. −(−4)与|−4|C. −32与(−3)2D. −23与(−2)35.若两个数的和为正数,则这两个数()A. 至少有一个为正数B. 只有一个是正数C. 有一个必为零D. 都是正数6.在1:50000000的地图上量得两地间的距离是1.3cm,这两地间的实际距离(单位:m)用科学记数法表示是()A. 6.5×108B. 1.3×108C. 6.5×105D. 1.3×1057.下面一组数+7,−3.1,+15,−317,0.33,+5.8,其中非负分数共有()A. 3个B. 4个C. 5个D. 6个8.已知a、b互为相反数,则下列结论:①a、b在数轴上对应的点关于原点对称;②a+b=0;③|a|=|b|;④ab≤0.一定正确的有()个.A. 1B. 2C. 3D. 49.下列各组量中,互为相反意义的量是()A. 上升与减少B. 增产10吨与减产−10吨C. 篮球比赛胜5场与负3场D. 向东走3米与向南走3米10.下列叙述正确的个数是()①−5是5的相反数;②最小的负有理数是−1;③绝对值小于3的有理数有5个;④数轴上每一个点都对应一个有理数.A. 1个B. 2个C. 3个D. 4个 11. 在−2,0,3.14,102,π3,−|−13| ,100%中,非负整数的个数是( )A. 2个B. 3个C. 4个D. 5个12. 如图所示,点A 、B 、C 在数轴上的位置如图所示,O 为原点,C 表示的数为m ,BC =3,AO =3OB ,则A 表示的数为A. 3m −9B. 9−3mC. 2m −6D. m −3 13. 计算(−12)2012+(−12)2013的结果是 ( ) A. (1+12)2013 B. −(12)2013 C. −(12)2012 D. (12)201314. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为1.5亿千米,将1.5亿千米用科学计数法表示为( )A. 15×107千米B. 1.5×1011米C. 1.5×107千米D. 1.5×1012米二、填空题(本大题共9小题,共27.0分)15. 一个数的倒数就是它本身,这个数是_____________.16. 平方得1625的数是________ ;17. 计算:(+1)+(−2)+(+3)+(−4)+⋯⋯+(−2018)+(+2019)=_______.18. 用“>”“<”或“=”填空:−56___________−67.19. 立方等于它本身的数是______;平方等于它本身的数是_____。
人教版初中数学七年级上册第一章《有理数》易错题训练(含答案)
第一章《有理数》单元测试题题号一二三总分得分第Ⅰ卷(选择题)一.选择题(共10小题)1.2017年,是鄂州市全面建设社会主义现代化国际航空大都市的开局之年,全年全市完成地区生产总值905.92亿元,将“905.92”用科学记数法表示为()A.9.0592×1010B.90.592×1010C.9.0592×1011D.9.0592×109 2.计算(﹣3)×|﹣2|的结果等于()A.6 B.5 C.﹣6 D.﹣53.下列说法正确的是()A.有最小的正数B.有最小的自然数C.有最大的有理数D.无最大的负整数4.如果m是有理数,下列命题正确的是()①|m|是正数;②|m|是非负数;③|m|≥m;④m的倒数是.A.①和②B.②和④C.②和③D.②、③和④5.若a是有理数,则下列各式一定成立的有()(1)(﹣a)2=a2;(2)(﹣a)2=﹣a2;(3)(﹣a)3=a3;(4)|﹣a3|=a3.A.1个B.2个C.3个D.4个6.如果|a+b|=|a|+|b|,那么()A.a,b同号B.a,b为一切有理数C.a,b异号D.a,b同号或a,b中至少有一个为07.如图,数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD.若A,D两点所表示的数分别是﹣5和6,则线段BD的中点所表示的数是()A.6 B. 5 C.3 D.28.的所有可能的值有()A.1个B.2个C.3个D.4个9.如果a+b+c=0,且|a|>|b|>|c|.则下列说法中可能成立的是()A.b为正数,c为负数 B.c为正数,b为负数C.c为正数,a为负数 D.c为负数,a为负数10.计算3+5+7+9+…+195+197+199的值是()A.9699 B.9999 C.9899 D.9799第Ⅱ卷(非选择题)二.填空题(共5小题)11.最小的自然数是.12.数轴上距离表示﹣2的点有5个单位的点表示的数是.13.设a,b,c为不为零的实数,那么,则x的值为.14.定义a☆b=a2﹣b2,则(﹣3)☆5☆(﹣1)= .15.若a、b、c、d为有理数,现规定一种新的运算为: =ad﹣bc,则= .三.解答题(共6小题)16.计算:(1)(2)﹣5×(﹣3)2﹣1÷(﹣0.5)(3)(4).17.把下列各数填在相应的大括号里.+9,﹣1,+3,,0,,﹣15,,1.7.正数集合:{ };负数集合:{ };整数集合:{ };自然数集合:{ };分数集合:{ };负分数集合:{ }.18.(1)已知|x|=5,y=3,求x+y的值;(2)已知|a|=2,|b|=3,求a+b的值.19.一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如:数轴上表示4和1的两点之间的距离是|4﹣1|=3;表示﹣3和2两点之间的距离是|﹣3﹣2|=5.根据以上材料,结合数轴与绝对值的知识回答下列问题:(1)如果表示数a和﹣2的两点之间的距离是3,那么a= ;(2)若数轴上表示数的点位于﹣4与2之间,那么|a+4|+|a﹣2|的值是;当a取时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是.(3)依照上述方法,|a+6|+|a﹣2|+|a﹣4|+|a+4|的最小值是.20.如图,检测10个排球,其中超过标准重量的克数记为正数,不足的克数记为负数,国际排联规定:一个排球的标准重量为260~280克,若设被检测的排球的一个排球的标准重量为265克.(1)这10个排球中最接近标准重量的这个排球重克.(2)这10个排球中,最轻的是克.(3)求这10个排球的总重量是多少克?21.1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+…n(n+1)=?观察下面三个特殊的等式1×2=(1×2×3﹣0×1×2)2×3=(2×3×4﹣1×2×3)3×4=(3×4×5﹣2×3×4)将这三个等式的两边相加,可以得到1×2+2×3+3×4=3×4×5=20读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:①1×2+2×3+3×4+…10×11=②1×2+2×3+3×4+…n(n+1)=(2)探究并计算:1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=(3)请利用(2)的探究结果,直接写出下式的计算结果:1×2×3+2×3×4+3×4×5+…+10×11×12=参考答案一.选择题1.A2.C3.B4.C5.A6.D7.D8.C9.C10.B二.填空题11.0.12.3或﹣7.13.±3,±1.14.25515.2三.解答题16.解:(1)原式=﹣1.5+4.25+2.75﹣5.5=(﹣1.5﹣5.5)+(4.25+2.75)=﹣7+7=0,(2)原式=﹣5×9+1×2=﹣45+2=﹣43,(3)原式=﹣1﹣9+20=﹣10+20=10,(4)原式=﹣1×(﹣4+8)﹣5=﹣4﹣5=﹣9.17.解:正数集合:{,+9,+3,,1.7…,};负数集合:{,﹣1,﹣2,﹣,﹣15…,};整数集合:{,+9,﹣1,+3,0,﹣15…,};自然数集合:{,9,3,0,…,};分数集合:{,﹣,﹣3,,1.7…,};负分数集合:{,﹣2,﹣3…,}.18.解:(1)因为|x|=5,所以x=5或﹣5,且y=3,当x=5时,x+y=5+3=8,当x=﹣5时,x+y=﹣5+3=﹣2;(2)因为|a|=2,|b|=3,所以a=2或﹣2,b=3或﹣3,当a=2,b=3时,a+b=2+3=5,当a=2,b=﹣3时,a+b=2﹣3=﹣1,当a=﹣2,b=3时,a+b=﹣2+3=1,当a=﹣2,b=﹣3时,a+b=﹣2﹣3=﹣5.19.解:(1)∵=3,∴a+2=3,或a+2=﹣3,∴a=﹣5或a=1,故答案为:﹣5或1;(2)①∵﹣4<a<2,∴|a+4|+|a﹣2|=a+4+2﹣a=6,②∵|a+5|+|a﹣1|+|a﹣4|的值最小,∴﹣5<a<4,|a﹣1|=0,∴a=1,|a+5|+|a﹣1|+|a﹣4|的最小值等于9,故答案为:6,1,9;(3)∵|a+6|+|a﹣2|+|a﹣4|+|a+4|的最小值,∴﹣4≤a≤2,∵|a+6|+|a﹣2|+|a﹣4|+|a+4|的最小值=16,故答案为:16.20.解:(1)265﹣0.6=264.4(可克);(2)﹣3.5<﹣2.5<﹣0.6<0.7<1.5<2.5<2.6,265﹣3.5=261.5 (g);故答案为:264.4,261.5;(3)(5﹣2.5+0.7+1.5+2﹣3.5﹣0.6+2.6+2.5+0.7)+265×10=2658.4(克),答:这10个排球的总重量是2658.4克.21.解:(1)直接写出下列各式的计算结果:①1×2+2×3+3×4+…10×11=440,②1×2+2×3+3×4+…n(n+1)=n(n+1)(n+2),(2)探究并计算:1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3)(3)请利用(2)的探究结果,直接写出下式的计算结果:1×2×3+2×3×4+3×4×5+…+10×11×12=4290.故答案为:440, n(n+1)(n+2),n(n+1)(n+2)(n+3),4290.。
人教版初中七年级数学上册《有理数》易错题汇总
人教版初中七年级数学上册《有理数》易错题易错点1 (对“0”的认识错误)1.给出下列说法:①0可以表示没有,也可以表示具体的意义;②0是最小的正整数;③0是最小的有理数;④0既是负数又是正数;⑤0是最小的自然数.其中正确说法的序号是________.易错点2 (误认为带负号的数一定是负数)2.有理数﹣a是()A.负数B.正数C.0D.正数或负数或0 易错点3 (对π的认识错误)3.在数﹣2,0.3,+6,π,﹣0.3,15中,有理数的个数是()A.6B.5C.4D.34.化简|π﹣3.14|的结果是()A.0B.π﹣3.14C.3.14-πD.以上都不对易错点4 (对相反数的几何意义理解不透)5.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是()A.点A与点DB.点A与点CC.点B与点DD.点B与点C易错点五(在条件|a|=﹣a下,误认为a的值一定是负数)6.已知|a|=﹣a,则a的值是()A.正数B.负数C.非正数D.非负数易错点6 (混淆绝对值符号或括号)7.下列式子中成立的是()A.﹣|﹣6|>5B.﹣8<﹣(﹣8)C.﹣|﹣7|=7D.|﹣8.5|<8疑难点1(数轴上的点与有理数的关系)1.下列说法正确的是( )A.数轴上的每一个点都表示一个整数B.数_上的每一个点都表示一个分数C.数轴上的每一个点都表示一个有理数D.每一个有理数都可以用数轴上的点表示疑难点2(有理数的大小比较)2.若﹣1<x <0,则x ,1丨x 丨,﹣x 的大小关系是( ) A.x >1丨x 丨>﹣x B 1丨x 丨>x >﹣x C.1丨x 丨>﹣x >xD.﹣x >1丨x 丨>x 疑难点3(绝对值问题中数形结合思想的应用)3.我们知道,点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点之间的距离AB=|a -b|,所以|x ﹣3|的几何意义是数轴上表示有理数3的点与表示有理数x 的点之间的距离.(1)若|x ﹣3|=5,则x=______;(2)若|x ﹣3|=|x+1|,则x=______.参考答案1.①⑤2.D【解析】解决本题的关键是知道a可以是正数、负数或0,则﹣a是负数、正数或0.故选D.易错分析当有理数是用一个字母表示时,要对这个字母分三种情况讨论求解,否则容易造成漏解.3.B【解析】解决本题的关键是知道π不是3.14,有理数.在﹣2,0.3,﹢6,π,﹣0.3,15中,除了π不是有理数外,其余各数都是有理数,所以共有5个有理数.故选B.易错分析小学数学解题经常用到π,因此受到习惯思维的影响而认为π就是有理数:实际上π是圆周率,不是整数,也不能化为分数,因此π不是有理数.4.B【解析】解决本题的关键是知道π不是3.14,π是一个比3.14大的数,因此π﹣3.14是一个正数,所以|π﹣3.14|=π﹣3.14.故选B.易错分析小学数学解题用到π时,一般把π看成3.14去计算,这样就习惯了遇到π就以为是3.14,实际上π是3.1415926535…,是一个大于3.14的数,这一点在解题中要注意.5.A【解析】由点A,B,C,D到原点的距离分别为2,1,0.5,2,知点A,D 到原点的距离相等,且在原点的两侧,所以点A与点D互为相反数.故选A.技巧点拨判断数轴上两个点所表示的数是否互为相反数,就是要看它是否满足两个条件:一是点在原点的两侧,二是点到原点的距离相等.6.C【解析】当a<0时,|a|=﹣a;当a=0时,|a|=a=﹣a.因此a的值是非正数.故选C.易错分析本题容易出现漏掉a=0的情况,从而错选B.7.B【解析】选项A,﹣|﹣6|=﹣6<5,所以A错误;选项B,﹣(﹣8)=8,﹣8<8,所以B正确;选项C,﹣|7|=﹣7 7,所以C错误;选项D,|﹣8.5|=8.5>8,所以D错误.故选B.易错分析本题的易错之处是对绝对值的意义理解不透,化简时由于受到负号的干扰导致出错.求一个数的绝对值通常有两种方法,分别为代数方法和几何方法,其中代数方法就是直接依据:绝对值的代数定义,即“一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0”;几何方法就是通过数轴,直接根据绝对值的几何定义(数轴上表示数a的点与原点的距离),结合图形,求出长度,即可得到答案.过疑难1.D【解析】选项A,虽然每一个整数都可以用数轴上的点表示,但反过来,数轴上的每一个点不都表示整数,如﹣32所以A错误;选项B,虽然每一个分数都可以用数轴上的点表示,但反过来,数轴上的每一个点不都表示分数,如1,所以B错误;选项C,虽然每一个有理数都可以用数轴上的点表示,但反过来,数轴上的每一个点不都表示有理数,如数轴上还有表示π的点,而π不是有理数,所以C错误.故选D.2.C【解析】因为﹣1<x<0,所以取x=﹣12,则1丨x丨=2,﹣x=12.因为2>12>﹣12,所以1丨x丨>﹣x>x.故选C.名师点睛本题的疑难点是比较大小的不是具体的数,不知道从哪入手解题.作为选择题可用特殊值代入法,可而化题目,降低难度.3.(1)﹣2或8;(2)1【解析】(1)|x﹣3|=5的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离为5,所以x=﹣2或8;(2)|x﹣3|=|x+1|的几何意义是数轴表示有理数3的点与表示有理数x的点之间的距离等于表示有理数﹣1的点与表示有理数x的点之间的距离,所以x=1.。
人教版七年级数学上册 第1章 有理数 拔高题及易错题精选(Word版附答案)
人教版七年级数学上册第1章有理数拔高题及易错题精选(Word版附答案)已知a,b是有理数,且a>b,则下列数中最小的是().A。
a-b B。
b-a C。
ab D。
-a-b5.已知数轴上点A表示的数为-2,点B表示的数为3,则下列各式中正确的是().A。
AB=5 B。
AB=-1 C。
AB=1 D。
AB=-56.若a,b是相反数,则a-b的值为().A。
a+b B。
a-b C。
-a-b D。
-a+b7.已知a,b是有理数,且a>b,则下列数中最大的是().A。
a+b B。
b-a C。
ab D。
-a-b8.已知数轴上点A表示的数为-2,点B表示的数为3,则点C表示的数为().A。
-5 B。
5 C。
-1 D。
19.数轴上点A表示的数为-3,点B表示的数为2,则下列各式中正确的是().A。
AB=5 B。
AB=-1 C。
AB=1 D。
AB=-510.已知a,b是有理数,且a>b,则下列数中最小的是().A。
a+b B。
b-a C。
ab D。
-a-b1.在数轴上,点A表示的数为a,点B表示的数为b,则a,b,-a,-b的大小关系为b<-a<-b<a。
2.若a,b互为相反数,则下面结论中不一定正确的是ab=-a2.3.若│a│=│b│,则a、b的关系是a=b或a=-b。
4.已知数轴上两点A、B到原点的距离是2和7,则A,B 两点间的距离是5.5.若a<0,则下列各式不正确的是a3=-(-a3)。
6.-52表示2个-5的积。
7.-42+(-4)2的值是0.8.已知a为有理数时,a2+1/a2+1=1或-1.9.设n是自然数,则(-1)n+(-1)n+1=0.10.已知|x|=5,|y|=3,且x>y,则x+y的值为8.11.我国西部地区面积约为640万平方公里,640万用科学记数法表示为6.4×107.12.京九铁路的全长用四舍五入法得到近似数为2.5×106m,则它精确到百万位。
人教版七年级数学试题:第一章 有理数章节知识易错点 汇总
第一章有理数章节知识易错点易错点忽视0既不是正数也不是负数1.下列各数:0,+5,-312,+3.1,-24,2 018,-2π,其中负数有(B)A.2个B.3个C.4个D.5个易错点对有理数的相关定义理解不透彻2.下列说法正确的是(B)A.整数可分为正整数和负整数B.分数可分为正分数和负分数C.0不属于整数也不属于分数D.一个数不是正数就是负数易错点忽视到原点距离相等的点有两个3.到原点的距离是2 018个单位长度的点表示的数是(C) A.2 018 B.-2 018C.±2 018 D.2 019易错点对相反数的概念理解不清4.-a的相反数是a;-a的相反数是-5,则a=-5.易错点忽视绝对值等于一个正数的数有两个5.如果|x|=|-5|,那么x等于(C)A.5 B.-5C.5或-5 D.以上都不对易错点考虑不周全而致错5.绝对值大于2且不大于5的整数有±3、±4,±5.易错点对异号两数相加的法则理解不透彻6.计算:(-3.16)+2.08.解:原式=-(3.16-2.08)=-1.08.易错点将有理数范围内的减法与小学学过的减法混淆7.计算:(1)-4-2=-4+(-2)=-6 ; (2)-1-1=(-1)+(-1)=-2; (3)(-2)-(-3)=(-2)+(+3)=1. 易错点 运用运算律时出现符号错误 8.计算:(-112)+(-571320)-(-112)+42720.解:原式=-112-571320+112+42720=-112+112-571320+42720=0-15310=-15310.易错点 几个有理数相乘时忽视符号法则而致错 9.计算:(-3)×56×(-95)×(-14).解:原式=-(3×56×95×14)=-98.易错点 利用乘法对加法的分配律计算时,易漏乘或弄错符号 10.计算:-48×(12-3-58+56-112).解:原式=-48×12-3×(-48)-58×(-48)+56×(-48)-112×(-48)=-24+144+30-40+4 =114.易错点 不按运算顺序运算而出错 11.计算:-1÷13×(-3).解:原式=-1×3×(-3)=9.易错点 对底数的概念理解不透彻 12.(杭州中考)计算:-22=(B)A .-2B .-4C .2D .4易错点 当底数是分数或负数时,往往会忽略括号而导致错误13.计算:(1+12)×(-23)2÷13+(-1)3.解:原式=32×49×3+(-1)=2+(-1)=1.易错点 忽视科学记数法不改变数性14.-270 000用科学记数法表示为-2.7×105. 易错点 取近似数时忽视小数点的位置 15.205 001精确到万位的近似数是(D)A .20B .21C .2.0×105D .2.1×105附综合训练题:1.将下列各数按要求分别填入相应的集合中.-9.3,6,+314,-713,0,-100,-2.25,0.01,+65,-27,3100,0.2·1·.(1)正整数集合:{6,+65,…};(2)负整数集合:{-100,…};(3)正分数集合:{+314,0.01,3100,0.2·1·,…};(4)负分数集合:{-9.3,-713,-2.25,-27,…};(5)整数集合:{6,0,-100,+65,…}.2.某公司去年1~3月平均每月盈利2万元,4~6月平均每月亏损1.6万元,7~10月平均每月亏损1.5万元,11~12月平均每月盈利3.6万元.(设盈利为正,亏损为负) (1)该公司去年一年是盈利还是亏损?(2)该公司去年平均每月盈利(或亏损)多少万元?解:(1)3×2+3×(-1.6)+4×(-1.5)+2×3.6=2.4(万元). 答:该公司去年一年盈利2.4万元. (2)2.4÷12=0.2(万元).答:该公司去年平均每月盈利0.2万元.3.2018年国庆,全国从1日到7日放假七天,各地景区游人如织.其中广州白云山风景区,在9月30日的游客人数为0.9万人,接下来的七天中,每天的游客人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).5.2万人;(2)七天假期里,游客人数最多的是10月2日,达到5.78万人;游客人数最少的是10月7日,达到0.65万人;(3)请问白云山风景区在这八天内一共接待了多少游客?(结果精确到万位)解:0.9+4+5.78+5.2+4.4+3.4+1.8+0.65=26.13≈26(万).答:白云山风景区在这八天内一共接待了约26万游客.。
人教版七年级数学第一章《有理数》易错题训练 (7)含答案解析
第一章《有理数》易错题训练 (7)一、选择题(本大题共7小题,共21.0分)1.甲、乙、丙三地的海拔高度分别为20米,−15米和−10米,那么最高的地方比最低的地方高().A. 35米B. 30米C. 10米D. 5米2.用四舍五入法得到的近似数2.18×104,下列说法正确的是()A. 它精确到百分位B. 它精确到百位C. 它精确到万位D. 它精确到0.013.对近似数6.28×104描述正确的是()A. 精确到万位B. 精确到百位C. 精确到个位D. 精确到百分位4.下列说法正确的是()A. 如果一个数的相反数等于这个数本身,那么这个数一定是0B. 如果一个数的倒数等于这个数本身,那么这个数一定是1C. 如果一个数的平方等于这个数本身,那么这个数一定是0D. 如果一个数的绝对值等于这个数本身,那么这个数一定是05.国家统计局公布,2019年我国国内生产总值按年平均汇率折算达到14.4万亿美元,稳居世界第二位,其中14.4万亿用科学计数法可以表示为()亿.A. 1.44X1012B. 1.44×1013C. 1.44×104D. 1.44×1056.国家统计局公布,2019年我国国内生产总值按年平均汇率折算达到14.4万亿美元,稳居世界第二位.其中14.4万亿用科学计算法可以表示为()亿.A. 1.44×1012B. 1.44×1013C. 1.44×104D. 1.44×1057.为表达对新冠肺炎疫情防控工作的支持,全国广大共产党员踊跃捐款,据统计,截至3月10日,全国已有7436万多名党员自愿捐款,共捐款76.8亿元,则76.8亿元用科学记数法可表示为A. 7.68×109元B. 7.68×1010元C. 76.8×108元D. 0.768×1010元二、填空题(本大题共11小题,共33.0分)8.一个数的相反数是−0.25,则这个数的倒数是()A.−4B.4C.−14D.149.如果一个数的绝对值是它的相反数,则这个数一定是()A. 负数B.正数C.非负数D.非正数10. 某地气温开始是6℃,先升高4℃,又下降11℃,这时气温是_________.11. 在227,−(−1),3.14,−|8−22|,−3,−32,−(−13)3,0中,有理数有m 个,自然数有n 个,分数有k 个,负数有t 个,则m −n −k +t =_____12. 从1、6、−5、−2这四个数中任意选择两个数进行加、减、乘、除中的某一种运算,结果最大的是 (写出算式和结果);13. 计算:2×103×(3×102)3=______________.(结果用科学记数法表示)14. 根据国家统计局统一核算,2019年珠海市实现地区生产总值3435.89亿元,GDP 总量居全省第六.其中数据3435..89亿.用科学记数法表示为_________________. 15. 据“保护长江万里行”考察队统计,仅2006年长江流域废水排放量已经达到163.9亿吨,请将这个数据保留两个有效数字,并用科学计数法表示出来:___________________________。
人教版七年级数学第一章《有理数》易错题训练 (1)含答案解析
第一章《有理数》易错题训练 (1)一、选择题(本大题共7小题,共21.0分)−(−5),−|+3|中,负数的个数有()1.在−15,−10,0,−13A. 2个B. 3个C. 4个D. 5个2.已知a、b互为相反数,c、d互为倒数,m的绝对值为1,p是数轴到原点距离为1的数,那么p2000−+m2+1的值是().cd+a+babcdA. 3B. 2C. 1D. 03.下列说法正确的是()A. 没有最大的正数,但有最大的负数;B. 没有最小的负数,但有最小的正数;C. 有最大的负整数,也有最小的正整数;D. 有最小的有理数是0。
4.在下列选项中,具有相反意义的量是()A. 胜二局与负三局B. 气温升高3℃与气温为−3°CC. 盈利5万元与支出5万元D. 甲、乙两队篮球比赛比分分别为66:63与63:665.在−(−2.5),3,0,−5,−0.25,−1中正整数有().2A. 1个B. 2个C. 3个D. 4个6.下列各组量中,具有相反意义的量的有()①“长3.2m与重5.2千克”;②水库水位“上升1.6米”与“下降1.8米”;③温度计上“零上4℃”与“零下5℃”;④−5与3.A. 4组B. 3组C. 2组D. 1组7.下列说法正确的是()A. 有理数a的相反数是−aB. 有理数a的倒数是1aC. 2.0197≈2.010(精确到千分位)D. |−a|=a二、填空题(本大题共12小题,共36.0分)8.8352.6保留两位有效数字是______;3.05万精确到_____位;近似数1.30所表示的准确数a的取值范围:_________9.国家统计局数据显示,截至2014年末全国商品房待售面积约为62200万平方米,该数据用科学记数法可表示为____平方米.10.报告显示,2018年中国家电市场规模达到8104亿元,同比增幅达到,将8104亿元用科学计数法表示为______________亿元.11.在数−32,|−7|,(−2)3,213,−43,0,−0.01,−10.1%中属于非正整数的有______.12.近似数6.30×104精确到________位.13.若|a−3|=4,则a=______.14.2020年五一节期间,渝中区共接待游客约1610000人次,请将数1610000用科学记数法表示为__________.15.根据教育部的消息,2019年参加高考的考生人数为1031万人,1031万用科学记数法表示为______.16.我区约有2930名学生参加本次模拟考试,这个数据用科学记数法可以表示为________.(精确到百位)17.近似数6.3×104精确到______位.18.若ab≠0,a+b=0,ab=___.19.把20056800精确到百万位是___________________.三、计算题(本大题共8小题,共48.0分)20.计算:−12009+(−2)3×(−12)−|1−5|21.计算:(1)−14+(−2)÷(+13)+|−9|(2)−34×[−32×(−23)3−2]22. 计算:②(112−58+712)÷(−124)−8×(−12)323. 计算(1)−12−2×(−2)3÷|−13|(2)(−1)4+(1−0.5)×13×【2−(−3)2】24. 计算:(1)3+50÷22×(−15)−1(2)[1−(1−0.5)×13)]×[2−(−3)2]25. 计算:(1)−14+(1−0.5)×13×[2−(−3)2];(2)(12+56−712)×(−36).26. 计算:(−1)2+[4−(1+12)×2]27. 有理数计算题(1)12−(−5)−(−18)+(−5)(2)−6.5+414+834−312(3)(512+23−34)×(−12) (4)32−50÷22×(−110)−1四、解答题(本大题共3小题,共24.0分)28. 把下列各数填入它所在的数集的括号里.−12,+4,−6.1,0,−1213,|−245|,5.9,−(+8),0.0·81·,−70% 正数集合:{_____________________…}非正整数集合:{__________________…}负分数集合:{___________________…}非负数集合:{____________________…}29. 如图,数轴上有四个数a 、b 、c 、d ,请用“<”把它们的绝对值连起来30. 计算:−14+(−2)3+|2−5|−6×(12−13)参考答案及解析1.答案:B解析:本题考查了正负数,有理数的减法.判断一个数是正数还是负数,要把它化简成最后形式再判断.此题要注意0既不是正数也不是负数.根据相反数、绝对值的概念,将相关数值化简,再根据负数的定义作出判断.解:−13−(−5)=−13+5=423,−|+3|=−3,在−15,−10,0,−13−(−5),−|+3|中,负数是:−15,−10,−|+3|,共3个,故选B.2.答案:B解析:本题考查了代数式求值,主要利用了相反数的定义,倒数的定义,绝对值的性质和数轴,熟记概念与性质是解题的关键.根据互为相反数的两个数的和等于0可得a+b=0,互为倒数的两个数的乘积是1可得cd=1,再根据绝对值的性质和数轴求出m、p,然后代入代数式进行计算即可得解.解:∵a、b互为相反数,∴a+b=0,∵c、d互为倒数,∴cd=1,∵m的绝对值为1,p是数轴到原点距离为1的数,∴m=±1,p=±1,∴p2000−cd+a+babcd+m2+1,=1−1+0+1+1,=2.故选B.3.答案:C解析:本题是考查自然数的意义、整数的意义、正、负数的意义、有理数的意义等.只有深刻理解意义才能作出判断.根据自然数的意义,0是最小的自然数,根据整数的意义,没有最小的整数;根据正数的意义,没有最小的正数,但有最小的正整数,是1;根据负数的意义,既没有最大的负数,也没有最小的负数;根据有理数的意义,没有最小的有理数.解:A.没有最大的正数,也没有最大的负数,故错误;B.没有最小的负数,也没有最大的负数,故错误;C.最大的负整数是−1,最小的正整数是1,故正确;D.有理数中没有最小的数,故错误.故选C.4.答案:A解析:此题考查了正数与负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解:A.胜二局与负三局,具有相反意义的量,故正确;B.升高与降低是具有相反意义,气温为−3℃只表示某一时刻的温度,故错误;C.盈利与亏损是具有相反意义,与支出5万元不具有相反意义,故错误;D.比分66:63与63:66不具有相反意义,故错误.故选A.5.答案:A解析:根据大于0的整数是正整数,可得答案.本题考查了有理数,大于0的整数是解题关键.解:3>0,故选:A.6.答案:C解析:此题考查了正数和负数的知识点,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,据此可以得到正确答案.解:①“长3.2m与重5.2千克”;不是相反意义的量,故本选项错误,②水库水位“上升1.6米”与“下降1.8米”,是相反意义的量,故本选项正确,③温度计上“零上4℃”与“零下5℃”,是相反意义的量,故本选项正确,④−5与3不是相反意义的量,故本选项错误,故选C.7.答案:A解析:解:A、有理数a的相反数是−a,正确;(a≠0),故此选项错误;B、有理数a的倒数是1aC、2.0197≈2.020(精确到千分位),故此选项错误;D、|−a|=a(a≥0),故此选项错误;故选:A.直接利用相反数的定义以及互为倒数的定义和近似数和绝对值的性质分别分析得出答案.此题主要考查了相反数的定义以及互为倒数的定义和近似数和绝对值的性质,正确把握相关定义是解题关键.8.答案:8.4×103;百;1.295≤a<1.305解析:本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.近似数精确到哪一位,应当看末位数字实际在哪一位,根据有效数字、近似数的相关知识求解.解:8352.6保留两位有效数字是8.4×103;3.05万精确到百位;近似数1.30所表示的准确数a的范围为1.295≤a<1.305.故答案为8.4×103;百;1.295≤a<1.305.9.答案:6.22×108解析:【试题解析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:62200万=622000000=6.22×108,故答案为6.22×108.10.答案:8.104×103解析:本题考查了用科学记数法表示较大的数.把一个绝对值小于1(或者大于等于10)的数记为a×10n的形式(其中1≤|a|<10),这种记数法叫做科学记数法.按照科学计数法的定义解答即可.解:8104=8.104×103.故答案为8.104×103.11.答案:−32,(−2)3,0解析:本题考查非正整数,属于基础题.根据题意,利用非正整数的定义,即可得解.解:由题意,这些数中属于非正整数的有−32、(−2)3、0,故答案为−32,(−2)3,0.12.答案:百解析:本题考查了近似数和有效数字,根据近似数的精确度求解.解:6.30×104精确到百位.故答案为百.13.答案:7或−1解析:解:∵|a−3|=4,∴a−3=4或a−3=−4,解得a=7或a=−1.故答案为:7或−1.根据互为相反的绝对值相等列式,然后求解即可.本题考查了绝对值的性质,需要注意,互为相反数的绝对值的相等.14.答案:1.61×106.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.将“1610000”用科学记数法表示为1.61×106.故答案是:1.61×106.15.答案:1.031×107解析:解:1031万用科学记数法表示为1031×104=1.031×107.故答案为:1.031×107.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.答案:2.9×103解析:此题主要考查了科学记数法的表示方法和近似数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值⩾10时,n是正数;当原数的绝对值<1时,n是负数.解:2930=2.93×103≈2.9×103.故答案为2.9×103.17.答案:千解析:解:近似数6.3×104精确到千位.故答案为:千.根据近似数的精确度进行判断.本题考查了近似数和有效数字.解题的关键是掌握近似数和有效数字的定义:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.18.答案:−1解析:此题主要考查相反数.根据a+b=0,可知a、b是互为相反数,互为相反数的两个数的商是−1.解:∵a+b=0,ab≠0,∴a、b是互为相反数,=−1,∴ab故答案为−1.19.答案:2.0×107解析:本题考查了近似数和有效数字:把数按要求进行四舍五入得到的数为近似数.根据20056800= 2.00568×107,精确到百万位是2.0×107,即可得出答案.解:20056800≈2.0×107(精确到百万位).故答案为2.0×107. 20.答案:解:原式样=−1+(−8)×(−1)−42=−1+4−4=−1.解析:本题考查有理数的混合运算,绝对值.注意运算顺序和熟练掌握有理数的运算法则是解题的关键.先计算乘方和绝对值,再计算乘法,最后计算加减即可.)+|−9|21.答案:解:(1)−14+(−2)÷(+13=−1+(−2)×(+3)+9 =−1−6+9=2;(2)原式=−34×[−9×(−827)−2]=−34×(83−2)=−34×23=−12.解析:本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.(1)先计算乘方,再计算乘除,最后计算减法即可得;(2)先计算乘方,再计算乘除,最后计算减法即可得.22.答案:解:①原式=−1−16×(−7)×(−17)=−1−16=−116;②原式=(112−58+712)×(−24)−8×(−18)=−36+15−14+1=−34.解析:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.①原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;②原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.23.答案:解:(1)原式=−1−2×(−8)×3=−1+48=47;(2)原式==1+12×13×(2−9)=1+16×(−7)=1−76=−16.解析:本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.(1)根据有理数的乘方,乘除法和加减法可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.24.答案:解:(1)原式=3+50÷4×(−15)−1=3−52−1=−12;(2)原式=[1−12×13]×(2−9)=(1−16)×(−7)=56×(−7)=−356.解析:本题主要考查的时有理数的混合运算的有关知识.(1)先将给出的式子进行变形,然后再计算即可;(2)先将给出的式子进行变形,然后再计算即可.25.答案:解:(1)原式=−1+12×13×(2−9)=−1+16×(−7)=−1−76=−136;(2)原式=−12×36−56×36+712×36=−18−30+21=−27.解析:此题考查的是有理数的混合运算,熟练掌握有理数的各种运算法则是关键.(1)按照先乘方,再乘除,最后加减的运算顺序计算,有括号的先算小括号,再算中括号;(2)根据有理数的乘法分配律变形后进行有理数的乘法运算,再进行有理数的加减运算即可.26.答案:解:原式=1+(4−112×2)=1+(4−32×2)=1+1 =2.解析:本题考查了有理数的混合运算,有理数的乘方,先算有理数的乘方,然后算小括号里面的,再算中括号里面的,最后算中括号外面的加法,注意运算顺序.27.答案:解:(1)原式=12+5+18−5,=30;(2)原式=−6.5−3.5+13,=−10+13,=3;(3)原式=−5−8+9,=−13+9,=−4;(4)原式=9−50×14×(−110)−1,=9+1.25−1,=9.25.解析:本题考查了有理数的混合运算,掌握有理数的各种运算法则是解决问题的关键.(1)根据有理数的加减运算法则进行计算即可;(2)根据有理数的加减运算法则进行计算即可;(3)根据有理数乘法的分配律进行计算即可;(4)根据有理数的混合运算顺序计算即可.28.答案:解:正数集合:{+4,|−245|,5.9,0.0˙81˙,…};非正整数集合:{0,−(+8),…};负分数集合:{−12,−6.1,−1213,−70%,…};非负数集合:{+4,|−245|,0,5.9,0.0˙81˙,…}.解析:本题考查了有理数的概念,按照有理数的分类填写:有理数认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.29.答案:解:由图可知:|b|<|c|<|d|<|a|解析:本题考查的是绝对值,数轴有关知识,根据绝对值越大,离原点越远进行判断即可.30.答案:解:原式=−1+(−8)+3−6×16=−9+3−1=−7.解析:根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.。
人教版七年级第一章有理数易错题型.doc
第一章有理数一、常见考点、题型“有理数”是中学数学最基础的知识,在中考中占有一定的比例,且是必考内容。
综 观近几年各地中考题,主要考点有以下几种类型。
考点一:考查正、负数的意义例1如果水位下降3 m 记作一3m,那么水位上升4 m 记作( )A 、 lm B> 7m C 、 4m D^ —7m析解:本例主要考查具有相反意义的量,应选C 。
个别同学易同有理数加法相混而误选A 。
考点二:考查有理数加减的意义 例2已知甲地的海拔高度是300 m,乙地的海拔高度是一50 m,那么甲地比乙地高()m 。
析解:由有理数减法的意义易知甲地比乙地高300— (-50) =350 (m)o考点三:考查基本概念例3已知a 、b 互为相反数,c> d 互为倒数,x 的绝对值等于1,求a+b+x 2 —cdx 的值。
析解:考查相反数、倒数与绝对值的概念,由己知易得a+b=0, cd=l,又由|x|=l 可知x 二 ±1。
考点四:考查有理数大小的比较方法例4、 在1, -1, —2这三个数中任意两数之和的最大值是( ) A 、1 B 、0 C 、—1 D 、—3析解:先求出任意两数之和再比较,由题意应有如下三个值1+ (-1) =0; 1+ (-2)= —1; ( — 1) + (—2) =—3。
故易知应选 B 。
考点五:考查科学记数法、近似数等例5、 2003年6月1日913寸,举世瞩目的三峡工程正式下闸蒂水,首批4台机组率先发 电,预计年内可发电5500000000度,这个数用科学记数法表示,记为 度。
析解:本题主要考查了科学记数法的概念的有关知识,另外试题注意了学科知识的渗透及 用数学的意识。
考点六:考查有理数的运算 例 8、(1)计算:-9 + 5X (-6)—(析解:计算此类题目,应注意运算顺序,先算乘方,再算乘除,最后算加、减。
如果有括号就先算括号里面的。
考点七=考查非负数的性质例7、 若有理数a 、b 满足|3&-1|+ (b-2)=0,则卞的值为 ____________________________ 析解:由绝对值及平方的非负特征,可知|3a-l |>0, (b-2)2>0, 又 |3a-l | + (b-2)2=0« (b-2)2=0,所以 a= - , b=2o /-3考点八=考查数学思想方法例& 设a 是大于1的有理数,若免乎,筈1在数轴上对应的点分别 记作A 、B 、C,则典、B 、C 三点在数轴上自左至右的顺序是) A. C 、B 、A B. B 、C 、A C. A. B 、C D. C 、A. B析解:本题考查有理数大小的比较方法,同时考查常用数学方法的灵活应用。
人教版七年级数学第一章有理数易错题整理
人教版七年级数学第一章有理数·易错题整理1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是________.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;5.把下列各数从小到大,用“<”号连接:[键入文字]并用“>”连接起来.8.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于4.5而大于3的整数是________.9.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么?11.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________ b.12.写出绝对值不大于2的整数.13.由|x|=a能推出x=±a吗?14.由|a|=|b|一定能得出a=b吗?15.绝对值小于5的偶数是几?16.用代数式表示:比a的相反数大11的数.17.用语言叙述代数式:-a-3.[键入文字]18.算式-3+5-7+2-9如何读?19.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.20.判断下列各题是否计算正确:如有错误请加以改正;(2)5-|-5|=10;21.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.22.若a为有理数,求a的相反数与a的绝对值的和.23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.[键入文字]24.列式并计算:-7与-15的绝对值的和.25.用简便方法计算:26.用“都”、“不都”、“都不”填空:(1)如果ab≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a ,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.27.填空:(3)a,b为有理数,则-ab是_________;(4)a,b 互为相反数,则(a+b)a是________.28.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;29.用简便方法计算:30.比较4a和-4a的大小:[键入文字]31.计算下列各题:(5)-15×12÷6×5.34.下列叙述是否正确?若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;35.计算下列各题;(1)-0.752;(2)2×32.36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;[键入文字](3)(-1)n+(-1)n+1________是零.37.下列各题中的横线处所填写的内容是否正确?若有误,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x<0,那么x3=27.38.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.39.计算下列各题:(1)(-3×2)3+3×23; (2)-24-(-2)÷4; (3)-2÷(-4)-2;40.用科学记数法记出下列各数:(1)314000000; (2)0.000034.41.判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数0.0130有4个有效数字.(2)用四舍五入法,把0.63048精确到千分位的近似数是0.63.(3)由四舍五入得到的近似数3.70和3.7是一样的.(4)由四舍五入得到的近似数4.7万,它精确到十分位.[键入文字]答案1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.2.(1)没有;(2)没有;(3)有.3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.10.x绝对值的相反数.11.(1)<;(2)>;(3)>.12.-2,-1,0,1,2.13.不一定能推出x=±a,例如,若|x|=-2.则x值不存在.14.不一定能得出a=b,如|4|=|-4|,但4≠-4.15.-2,-4,0,2,4.16.-a+11.17.a的相反数与3的差.18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.19.(1)原式=-7+4-9+2+5=-5;(2)原式=-5-7+6+4=-2.21.<;>;>.22.当a≥0时,-a+|a|=0,当a<0时,-a+|a|=-2a.23.由|a+b|=a+b知a+b≥0,根据这一条件,得a=4,b=2,所以a -b=2;a=4,b=-2,所以a-b=6.24.-7+|-15|=-7+15=8.26.(1)都不;(2)都;(3)不都;(4)都.27.(1)正数、负数或零;(2)正数、负数或零;(3)正数、负数或零;(4)0.28.(1)3或1;(2)b≠0.30.当a>0时,4a>-4a;当a=0时,4a=-4a;当a<0时,4a<-4a.(5)-150.[键入文字]32.当b≠0时,由|a|=|b|得a=b或a=-b,33.由ab>0得a>0且b>0,或a<0且b<0,求得原式值为3或-1.34.(1)平方等于16的数是±4;(2)(-2)3的相反数是23;(3)(-5)100.36.(1)不一定;(2)一定;(3)一定.37.(1)负数或正数;(2)a=-1,0,1;(3)a=0,1;(4)a3=±27;(5)x3=-27.38.(1)不一定;(2)不一定;(3)不一定;(4)不一定.40.(1)3.14×108;(2)3.4×10-5.41.(1)有3个有效数字;(2)0.630;(3)不一样;(4)千位.[键入文字]。
人教版七年级数学上册《有理数》易错题练习-有答案
人教版七年级数学上册《有理数》易错题练习-有答案【易错1例题】正数和负数1.(2021·四川中考真题)如果规定收入为正那么支出为负收入2元记作2+支出5元记作().A.5元B.5-元C.3-元D.7元【答案】B【分析】结合题意根据正负数的性质分析即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识解题的关键是熟练掌握正负数的性质从而完成求解.【易错2例题】有理数2.(2021·广西三美学校)已知下列各数:5-1340 1.5-513312-.把上述各数填在相应的集合里:正有理数集合:{}负有理数集合:{}分数集合:{}【答案】正有理数集合:11,4,5,333⎧⎫⎨⎬⎩⎭负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭【分析】正有理数指的是除了负数0无理数的数字负有理数指小于0的有理数正分数负分数小数统称为分数.【详解】解:正有理数集合:11,4,5,3 33⎧⎫⎨⎬⎩⎭负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭.【点睛】本题考查了有理数的分类熟练掌握各类数的属性和特点是解题的关键.【易错3例题】数轴3.(2021·广东七年级月考)已知下列有理数:-42-3.50-231-0.52(1)在数轴上标出这些有理数表示的点(2)设表示-0.5的点为A那么与A点的距离相差4个单位长度的点所表示的数是多少?【答案】(1)答案见解析(2)3.5或−4.5.【分析】(1)根据所给有理数画出数轴标出各数据即可.(2)直接利用数轴结合与A点的距离相差4个单位长度即可得出答案.【详解】(1)如图所示:(2)设表示−0.5的点为A则与A点的距离相差4个单位长度的点所表示的数是:−0.5+4=3.5或−0.5−4=−4.5.【点睛】本题考查数轴根据题意正确的在数轴上表示出各数据是解题关键.【易错4例题】相反数4.(2021·江苏七年级专题练习)2021的相反数为__________.-【答案】2021【分析】利用相反数的定义即可求解.【详解】-解:2021的相反数为2021-.故答案为:2021【点睛】本题考查相反数掌握相反数的定义是解题的关键.【易错5例题】绝对值5.(2021·浙江九年级三模)2021的绝对值是()A.12021B.﹣12021C.2021D.﹣2021【答案】C【分析】根据绝对值的定义即可得出正确选项.【详解】解:2021的绝对值是2021故选:C.【点睛】本题考查求绝对值.正数的绝对值是它本身0的绝对值是0负数的绝对值是它的相反数.【专题训练】一、选择题1.(2021·江苏苏州市·九年级二模)π的相反数是()A.π-B.πC.1π-D.1π【答案】A【分析】根据相反数的定义即可求解.【详解】解:π的相反数是π-故选:A【点睛】此题考查的是相反数的概念是:只有符号不同的两个数互为相反数掌握相反数的概念是解题的关键.2.(【新东方】初中数学20210625-022【初一上】)下列各对量中不具有相反意义的是()A.胜2局与负3局B.盈利3万元与亏损3万元C.气温升高4℃与气温降低10℃D.转盘逆时针转3圈与向右转5圈【答案】D【分析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【详解】解:A胜2局与负3局具有相反意义不符合题意B盈利3万元与亏损3万元具有相反意义不符合题意C气温升高4℃与气温降低10℃具有相反意义不符合题意D转盘逆时针转3圈与向右转5圈不具有相反意义符合题意故选D.【点睛】本题主要考查了正数和负数的意义解题关键是理解“正”和“负”的相对性明确什么是一对具有相反意义的量.在一对具有相反意义的量中先规定其中一个为正则另一个就用负表示.3.(【新东方】DY试卷解析初一下数学【00017】)下列关于数轴的图示画法不正确的有()A.4个B.3个C.2个D.1个【答案】B【分析】根据数轴的定义逐一判断即可得到答案.【详解】(1)中数轴的单位长度不一致画法不正确符合题意(2)中数轴没有原点画法不正确符合题意(3)中数轴画法正确不符合题意(4)中数轴没有正方向画法不正确符合题意℃画法不正确的有3个故选B.【点睛】本题主要考查数轴的画法掌握画数轴的三要素:正方向单位长度原点是解题的关键.4.(2021·上海期中)在-125% 23250-0.30.67-4257-中非负数有()A.2个B.3个C.4个D.5个【答案】C【分析】根据非负数的范围即非负数是大于等于零的数即可求解.【详解】解:非负数有:232500.67负数有:-125% -0.32 57 -非负数有4个.故选:C【点睛】本题主要考查了有理数的分类解题的关键是熟练掌握有理数的分类情况.5.(2021·江苏南京一中七年级月考)一个数的绝对值是7这个数是()A.7B.﹣7C.7或﹣7D.不能确定【答案】C【分析】根据绝对值的定义即可求解.【详解】解:℃一个数的绝对值是7℃这个数是7或﹣7.故选:C.【点睛】此题主要考查绝对值的求解解题的关键是熟知绝对值的性质.二填空题6.(2021·福建七年级期末)﹣2的相反数是___.【答案】2【分析】根据一个数的相反数就是在这个数前面添上“-”号 求解即可. 【详解】解:-2的相反数是:-(-2)=2故答案为:2. 【点睛】本题考查了相反数的意义 一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数 一个负数的相反数是正数 0的相反数是0.不要把相反数的意义与倒数的意义混淆.7.(1.有理数(题型篇))如果节约20元钱 记作“+20”元 那么浪费15元钱 记作_______元.【答案】-15 【分析】根据节约20元钱 记作“+20”元 可知浪费记为负 可得结果. 【详解】解:根据题意 节约记为正 浪费记为负 那么浪费15元钱 记作-15元故答案为:-15. 【点睛】本题考查了正负数的意义 解题关键是明确正负数代表意义相反的两个量 节约记为正 浪费记为负. 8.(2021·江苏七年级期末)下列各数:﹣1 2 1.01001…(每两个1之间依次多一个0) 0 227 3.14 其中有理数有_____个.【答案】4.【分析】 根据有理数的定义逐一判断即可.【详解】解:在所列实数中 有理数有﹣1 0227 3.14 故答案为:4.【点睛】本题考查了有理数 掌握有理数的概念是解题的关键.9.(1.有理数(题型篇))如果若|x -2|=1 则x =________.【答案】3或1根据绝对值的性质可得x-2=±1再求出x即可.【详解】解:℃|x-2|=1℃x-2=±1则x-2=1或x-2=-1解得:x=3或1故答案为:3或1.【点睛】此题主要考查了绝对值关键是掌握绝对值等于一个正数的数有两个它们互为相反数.10.(2021·湖南七年级期末)已知A B是数轴上的两点且AB=4.5点B表示的数为1则点A表示的数为___________.【答案】﹣3.5或5.5【分析】根据AB=4.5点B表示的数为1进行分类讨论A可以在B的左边或右边求得点A表示的数.【详解】解:℃AB=4.5B表示1℃A表示的数为1﹣4.5=﹣3.5或1+4.5=5.5.故答案为:﹣3.5或5.5.【点睛】本题考查了数轴上两点之间的距离解题的关键是分类讨论借助数轴来分析.三解答题11.(2021·河北七年级期中)把下列各数填在相应的表示集合的大括号里:﹣2312﹣(﹣96)﹣|﹣3| ﹣4.50|﹣2.5|13.(1)正有理数集合{…} (2)非负整数集合{…} (3)负分数集合{…}.【答案】(1)12﹣(﹣96)|﹣2.5| 13(2)12﹣(﹣96)0|﹣2.5| (3)﹣23﹣4.5化简各数 进而分别利用正有理数 非负整数 负分数分析 再分类填写. 【详解】解:﹣(﹣96)=96 ﹣|﹣3|=﹣3 |﹣2.5|=2.5(1)正有理数集合{12 ﹣(﹣96) |﹣2.5| 13…} (2)非负整数集合{12 ﹣(﹣96) 0 …}(3)负分数集合{﹣23 ﹣4.5 …}. 【点睛】本题主要考查了有理数的相关定义 正确化简各数是解题关键.12.(【新东方】初中数学1283-初一上)把下面的数填入它所属于的集合的大括号内(填序号) ① 5.3- ②5+ ③20% ④0 ⑤27- ⑥7- ⑦3--∣∣ ⑧( 1.8)-- 正数集合{ }整数集合{ }分数集合{ }有理数集合{ }【答案】见解析【分析】根据有理数的分类填空.【详解】解:-|-3|=-3 -(-1.8)=1.8.正数集合{②③⑧}整数集合{②④⑥⑦}分数集合{①③⑤⑧}有理数集合{①②③④⑤⑥⑦⑧}.【点睛】本题考查了有理数 认真掌握正数 负数 整数 分数 正有理数 负有理数 非负数的定义与特点.注意整数和正数的区别 注意0是整数 但不是正数.13.(2020·贵阳市清镇养正学校七年级期中)已知下列各有理数 2.5- 0 3- ()2-- 0.5 1-.(1)画出数轴 在数轴上标出表示这些数的点(2)用>符号把这些数连接起来.【答案】(1)见解析 (2)3->-(-2)>0.5>0>-1>-2.5【分析】(1)求出|-3|=3 -(-2)=2 在数轴上把各个数表示出来(2)根据数轴上右边的数总比左边的数大比较即可.【详解】解:(1)如图(2)3->-(-2)>0.5>0>-1>-2.5.【点睛】本题考查了有理数的大小比较和数轴的应用 关键是求出各个数的大小和在数轴上把各个数表示出来 注意:在数轴上右边的数总比左边的数大.14.(【新东方】初中数学20210625-022【初一上】)在数轴上 A B 两点的数分别用a b 表示 如果2a =- 2b a = 请你在给定的数轴上(1)画出B 点可能的位置 并标上字母(2)计算A B 两点的距离为多少?【答案】(1)见解析 (2)2或6【分析】(1)根据绝对值的意义求出b 值 在数轴上画出即可(2)根据b 值 利用两点间的距离计算方法计算即可.【详解】解:(1)℃a =-2℃2=a℃2224b a ==⨯=b=±℃4画图如下:(2)如图可知:当b=-4时AB=2即A B两点距离为2当b=4时AB=6即A B两点距离为6℃A B两点的距离为2或6.【点睛】本题考查了绝对值的意义数轴上两点之间的距离解题的关键是要进行分类讨论.15.(2021·河南七年级期末)点A B在数轴上所表示的数如图所示回答下列问题:(1)将A在数轴上向左移动1个单位长度再向右移动9个单位长度得到点C求出B C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D且A D两点间的距离是3求m的值.【答案】(1)B C两点间的距离是3个单位长度(2)m的值为2或8.【分析】(1)利用数轴上平移左移减右移加可求点C所表示的数为﹣3﹣1+9=5利用绝对值求两点距离BC=|2﹣5|=3(2)分类考虑当点D在点A的左侧与右侧利用AD=3求出点D所表示的数再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5℃BC=|2﹣5|=3.(2)当点D在点A的右侧时点D所表示的数为﹣3+3=0所以点B移动到点D的距离为m=|2﹣0|=2。
人教版七年级数学第一章有理数·易错题整理
人教版七年级数学第一章有理数·易错题整理1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是________.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;5.把下列各数从小到大,用“<”号连接:6.并用“>”连接起来.17.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于4.5而大于3的整数是________.8.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.9.代数式-|x|的意义是什么?10.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________b.11.写出绝对值不大于2的整数.12.由|x|=a能推出x=±a吗?13.由|a|=|b|一定能得出a=b吗?14.绝对值小于5的偶数是几?15.用代数式表示:比a的相反数大11的数.16.用语言叙述代数式:-a-3.17.算式-3+5-7+2-9如何读?18.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.19.判断下列各题是否计算正确:如有错误请加以改正;2(2)5-|-5|=10;20.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.21.若a为有理数,求a的相反数与a的绝对值的和.22.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.23.列式并计算:-7与-15的绝对值的和.24.用简便方法计算:25.用“都”、“不都”、“都不”填空:(1)如果ab≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.26.填空:34(3)a,b 为有理数,则-ab 是_________;(4)a,b 互为相反数,则(a+b)a 是________.27.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;28.用简便方法计算:29.比较4a 和-4a 的大小:30.计算下列各题:(5)-15×12÷6×5.31.32.下列叙述是否正确?若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;33.计算下列各题;(1)-0.752;(2)2×32.34.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;(3)(-1)n+(-1)n+1________是零.35.下列各题中的横线处所填写的内容是否正确?若有误,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x<0,那么x3=27.36.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.37.计算下列各题:(1)(-3×2)3+3×23;(2)-24-(-2)÷4;(3)-2÷(-4)-2;5。
人教版七年级数学第一章有理数易错题整理
人教版七年级数学第一章有理数·易错题整理1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是________.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;5.把下列各数从小到大,用“<”号连接:并用“>”连接起来.8.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于 4.5而大于3的整数是________.9.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么?11.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________ b.12.写出绝对值不大于2的整数.13.由|x|=a能推出x=±a吗?14.由|a|=|b|一定能得出a=b吗?15.绝对值小于5的偶数是几?16.用代数式表示:比a的相反数大11的数.17.用语言叙述代数式:-a-3.18.算式-3+5-7+2-9如何读?19.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.20.判断下列各题是否计算正确:如有错误请加以改正;(2)5-|-5|=10;21.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.22.若a为有理数,求a的相反数与a的绝对值的和.23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.24.列式并计算:-7与-15的绝对值的和.25.用简便方法计算:26.用“都”、“不都”、“都不”填空:(1)如果ab≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.27.填空:(3)a,b为有理数,则-ab是_________;(4)a,b互为相反数,则(a+b)a是________.28.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;29.用简便方法计算:30.比较4a和-4a的大小:31.计算下列各题:(5)-15×12÷6×5.34.下列叙述是否正确?若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;35.计算下列各题;(1)-0.752;(2)2×32.36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;(3)(-1)n+(-1)n+1________是零.37.下列各题中的横线处所填写的内容是否正确?若有误,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x<0,那么x3=27.38.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.39.计算下列各题:(1)(-3×2)3+3×23; (2)-24-(-2)÷4; (3)-2÷(-4)-2;40.用科学记数法记出下列各数:(1)314000000; (2)0.000034.41.判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数0.0130有4个有效数字.(2)用四舍五入法,把0.63048精确到千分位的近似数是0.63.(3)由四舍五入得到的近似数 3.70和3.7是一样的.(4)由四舍五入得到的近似数 4.7万,它精确到十分位.答案1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.2.(1)没有;(2)没有;(3)有.3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.10.x绝对值的相反数.11.(1)<;(2)>;(3)>.12.-2,-1,0,1,2.13.不一定能推出x=±a,例如,若|x|=-2.则x值不存在.14.不一定能得出a=b,如|4|=|-4|,但4≠-4.15.-2,-4,0,2,4.16.-a+11.17.a的相反数与3的差.18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.19.(1)原式=-7+4-9+2+5=-5;(2)原式=-5-7+6+4=-2.21.<;>;>.22.当a≥0时,-a+|a|=0,当a<0时,-a+|a|=-2a.23.由|a+b|=a+b知a+b≥0,根据这一条件,得a=4,b=2,所以a -b=2;a=4,b=-2,所以a-b=6.24.-7+|-15|=-7+15=8.26.(1)都不;(2)都;(3)不都;(4)都.27.(1)正数、负数或零;(2)正数、负数或零;(3)正数、负数或零;(4)0.28.(1)3或1;(2)b≠0.30.当a>0时,4a>-4a;当a=0时,4a=-4a;当a<0时,4a<-4a.(5)-150.32.当b≠0时,由|a|=|b|得a=b或a=-b,33.由ab>0得a>0且b>0,或a<0且b<0,求得原式值为3或-1.34.(1)平方等于16的数是±4;(2)(-2)3的相反数是23;(3)(-5)100.36.(1)不一定;(2)一定;(3)一定.37.(1)负数或正数;(2)a=-1,0,1;(3)a=0,1;(4)a3=±27;(5)x3=-27.38.(1)不一定;(2)不一定;(3)不一定;(4)不一定.40.(1)3.14×108;(2)3.4×10-5.41.(1)有3个有效数字;(2)0.630;(3)不一样;(4)千位.。
人教版七年级数学上册 第一章 有理数 常见错误整理
人教版七年级数学上册第一章有理数常
见错误整理
本文档旨在整理人教版七年级数学上册第一章有理数中常见的错误,以便同学们能够更好地理解有理数的概念和运算规则,避免犯同样的错误。
错误类型一:正负数的概念混淆
有理数是正数、负数和零的统称。
同学们在研究有理数时,可能会将正数、负数的概念混淆,例如把负数当成正数或忘记考虑正负号的问题。
为了避免这类错误,同学们可以通过练题或数学游戏来加深对正负数概念的理解。
错误类型二:加减乘除运算错误
有理数的加减乘除运算是常见的知识点,但同学们在运算时容易出现错误。
例如在加减时,没有注意正负号的运用;在乘除时,没有理解两个有理数的正负性质。
为了解决这类错误,同学们应该多进行题训练,加强对运算规则的理解和掌握。
错误类型三:计算过程中粗心错误
有时同学们在计算有理数的过程中会出现粗心错误,如错写数字、运算符号或计算过程中出现漏算、错算等。
为了避免这类错误,同学们可以在做题时做好笔记和步骤标记,注意每一步的计算过程,提高计算的准确性。
错误类型四:未能理解有理数的实际应用
有理数在现实生活中有着广泛的应用,例如温度变化、高低海拔、银行账户的存取等。
但同学们可能未能理解有理数在实际应用
中的意义和作用,从而在解决实际问题时出现错误。
为了加深对有
理数实际应用的理解,同学们可以通过实例分析和相关题练来提高
应用能力。
本文档整理了人教版七年级数学上册第一章有理数中常见的错误,同学们可以通过注意上述错误类型,加强练习和复习,提高对
有理数概念和运算规则的理解和应用能力。
希望同学们能够在学习
有理数中取得好成绩!。
人教版七年级数学上册 第一章 有理数 易错题整理
易错题一、选择题1. 如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,那么a ,b ,—a ,—b 的大小关系是( )A. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—bD. —a<—b<b<a2. 如果b a ,互为相反数,那么下面结论中不一定正确的是( ) A. 0=+b a B.1-=baC. 2a ab -=D. b a = 3. 若│a│=│b│,则a 、b 的关系是( )A. a=bB. a=-bC. a+b=0或a -b=0D. a=0且b=0 4. 若a<0,则下列各式不正确的是( )A. 22)(a a -=B. 22a a =C. 33)(a a -=D. )(33a a --= 5. -52表示( )A. 2个-5的积B. -5与2的积C. 2个-5的和D. 52的相反数 6. -42+ (-4) 2的值是( )A. –16B. 0C. –32D. 32 7. 已知|x|=5,|y|=3,且x>y ,则x +y 的值为( ) A. 8 B. 2 C. -8或-2 D. 8或28.已知│a│=2,│b│=5,且ab<0,求a +b 的值.0 ABGF E D C BA 9. 已知a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则c+a+b= . 10. 数轴上点A 表示的数为-2,若点B 到点A 的距离为3个单位,则点B 表示的数为 . 11. 如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示-4,点G 表示8.(1)点B 表示的有理数是 ;表示原点的是点 .(2)图中的数轴上另有点M 到点A ,点G 距离之和为13,则这样的点M 表示的有理数是 .12.-⎪⎪⎪⎪⎪⎪-23的相反数是 .13. 如果x 2=9,那么x 3= . 14. 化简:|π-4|+|3-π|= .15. 绝对值小于2.5的所有非负整数的和为 ,积为 .16. 若 a 、b 互为相反数,c 、d 互为倒数,则 (a +b)10 -(cd) 10 = . 17. 已知()0422=-++y x ,求x y 的值为 .18.(1);(2).(3))()(6131211-++-+ (4)43-27+(-61)-(-32)-1(5))49()2115()375()25.4(37153)371012(+---+--++-19.计算1-3+5-7+9-11+…+97-99..20.已知有理数a,b,c在数轴上的对应点如图所示,化简:a b b c c a-+---.21.观察下列算式:21=2,22 =4,23 =8,24=16,25 =32,26=64,27=128,通过观察,用你所发现的规律确定22011的个位数字是()A. 2B. 4C. 6D. 822.下面一组按规律排列的数:1,2,4,8,16.......,第2011个数应是()A. 22011B. 22011-1C.22010 D.以上答案不对23. 将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有个小圆. (用含 n 的代数式表示)第1个图形第 2 个图形第3个图形第 4 个图形。
《易错题》初中七年级数学上册第一章《有理数》知识点总结(专题培优)
1.有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <0C解析:C【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可.【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确;而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误;故选C .【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小. 2.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1C 解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.3.下列各式中,不相等的是( )A .(﹣5)2和52B .(﹣5)2和﹣52C .(﹣5)3和﹣53D .|﹣5|3和|﹣53|B 解析:B【分析】本题运用有理数的乘方,相反数以及绝对值的概念进行求解.【详解】选项A :22(5)(5)(5)5-=--=选项B :22(5)(5)(5)525-=--==;25(55)25-=-⨯=-∴22(5)5-≠-选项C :3(5)(5)(5)(5)125-=---=-;35(555)125-=-⨯⨯=-∴33(5)5-=-选项D :35555555125-=-⨯-⨯-=⨯⨯=;35(555)125125-=-⨯⨯=-= ∴3355-=-故选B .【点睛】本题考查了有理数的乘方,相反数(只有正负号不同的两个数互称相反数),绝对值(一个有理数的绝对值是这个有理数在数轴上的对应点到原点的距离),其中正数和零的绝对值是其本身,负数的绝对值是它的相反数.4.若1<a <2,则化简|a -2|+|1-a |的结果是( )A .a -1B .1C .a +1D .a -3B 解析:B【解析】【分析】绝对值的化简求值主要需要判断绝对值里面的正负,从而去掉绝对值,再对式子进行计算进而得到答案.【详解】∵1<a <2∴a-2<0,1-a<0∴|a -2|+|1-a |= -(a-2)-(1-a )=-a+2-1+a=1,因此答案选择B.【点睛】本题考查的是绝对值的化简求值,注意一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值还是0.5.定义一种新运算2x y x y x +*=,如:2212122+⨯*==.则()(42)1**-=( ) A .1B .2C .0D .-2C 解析:C【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】 4*2=4224+⨯ =2, 2*(-1)= ()2212+⨯- =0. 故(4*2)*(-1)=0.故答案为C .【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 6.下列说法中,其中正确的个数是( )(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3A .1B .2C .3D .4C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a 表示正有理数,则-a 一定是负数,符合题意;(4)a 是大于-1的负数,则a 2大于a 3,不符合题意,故选:C .【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.7.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( )A .提高20元B .减少20元C .提高10元D .售价一样B解析:B【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解.【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元),所以现在的售价与原售价相比减少20元,故选:B .【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.8.下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个B .2个C .3个D .4个A 解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】①a-不一定是负数,故该说法错误;②||a一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.9.绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.4C解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C.10.一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 3 C解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.11.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.12.计算-3-1的结果是()A.2 B.-2 C.4 D.-4D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.13.下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则ab=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.14.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是()A.18 B.1-C.18-D.2C解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.15.把实数36.1210-⨯用小数表示为()A .0.0612B .6120C .0.00612D .612000C 解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.1.绝对值不大于2.1的所有整数是____,其和是____.﹣2﹣10120【分析】找出绝对值不大于21的所有整数求出之和即可【详解】绝对值不大于21的所有整数有﹣2﹣1012之和为﹣2﹣1+0+1+2=0故答案为:﹣2﹣1012;0【点评】此题考查了绝对值解析:﹣2,﹣1,0,1,2 0【分析】找出绝对值不大于2.1的所有整数,求出之和即可.【详解】绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0, 故答案为:﹣2,﹣1,0,1,2;0【点评】此题考查了绝对值的意义和有理数的加法,熟练掌握运算法则是解本题的关键. 2.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-.【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.3.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后解析:乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可.【详解】解:原式=-9+5+16=12.故答案为:乘方,乘法,加法,12【点睛】本题主要考查了有理数混合运算的运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.4.一个班有45个人,其中45是_____数;大门约高1.90 m,其中1.90是_____数.准确近似【分析】根据准确数和近似数的定义对数据进行判断【详解】一个班有45个人其中45是准确数;大门约高190m其中190是近似数故答案为:准确;近似【点睛】本题考查了近似数近似数与精确数的接近程度解析:准确近似【分析】根据准确数和近似数的定义对数据进行判断.【详解】一个班有45个人,其中45是准确数;大门约高1.90 m,其中1.90是近似数.故答案为:准确;近似.【点睛】本题考查了近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪5.气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.6.若m﹣1的相反数是3,那么﹣m=__.2【分析】根据只有符号不同的两个数互为相反数可得关于m的方程根据解方程可得m的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=解析:2【分析】根据只有符号不同的两个数互为相反数,可得关于m的方程,根据解方程,可得m的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【详解】解:由m-1的相反数是3,得m-1=-3,解得m=-2.-m=+2.故选:A.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.7.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1; (2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1; (3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.8.已知4a a =>,6b =,则+a b 的值是________.2或-10【分析】利用绝对值的代数意义确定出a 与b 的值即可求出所求【详解】解:∵|a|=4>a|b|=6∴a=-4b=6或-6当a=-4b=6时a+b=-4+6=2;当a=-4b=-6时a+b=-4 解析:2或-10【分析】利用绝对值的代数意义确定出a 与b 的值,即可求出所求.【详解】解:∵|a|=4>a ,|b|=6,∴a=-4,b=6或-6,当a=-4,b=6时,a+b=-4+6=2;当a=-4,b=-6时,a+b=-4-6=-10.故答案为:2或-10.【点睛】此题考查了有理数的加法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 9.已知2x =,3y =,且x y <,则34x y -的值为_______.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 10.计算:(-0.25)-134⎛⎫- ⎪⎝⎭+2.75-172⎛⎫+ ⎪⎝⎭=___.-175【分析】根据减法法则将减法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算【详解】解:原式=-025+325+275-75=(-025-75)+(325+275)=-775+解析:-1.75【分析】根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.【详解】解:原式=-0.25+3.25+2.75-7.5=(-0.25-7.5)+( 3.25+2.75)=-7.75+6=-1.75.故答案为:-1.75.【点睛】本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算.11.某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5, ∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5, ∴最多能制作5×6=30(张). 故答案为30. 【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键. 1.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭;(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.- 【分析】(1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案. 【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭;()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭16733=-+ 93.3=-=-【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.2.某路公交车从起点经过A ,B ,C ,D 站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数))到终点下车还有多少 人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算. 解析:(1)30;(2)B ,C ;(3)71.5元. 【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A 、B 、C 、D 站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解. 【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人; 故到终点下车还有30人. 故答案为:30;(2)根据图表:A 站人数为:16+15-3=28(人) B 站人数为:28+12-4=36(人) C 站人数为:36+7-10=33(人) D 站人数为:33+8-11=30(人) 易知B 和C 之间人数最多. 故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元). 答:该出车一次能收入71.5元. 【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键. 3.计算 (1) ()375244128⎛⎫---⨯- ⎪⎝⎭ (2) ()212382455-+--÷-⨯解析:(1)47;(2)4925【分析】(1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值. 【详解】 解: ()375244128⎛⎫---⨯- ⎪⎝⎭ =18+14+15 =47(2)()212|38|2455-+--÷-⨯=11452455⎛⎫-+-⨯-⨯ ⎪⎝⎭=24125+4925=【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.4.计算:(1)[]2(2)18(3)24-+--⨯÷(2)()()243513224⎡⎤----⨯÷-⎢⎥⎣⎦解析:(1)10;(2)-15 【分析】(1)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题. 【详解】(1)解:原式=4+[18-(-6)]÷4 =4+24÷4 =4+6 =10;(2)解:原式=-1-[9-10÷(-2)] =-1-[9-(-5)] =-1-14 =-15.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.。
人教版七年级数学上册-第1章-有理数-拔高题及易错题精选(Word版附答案)
人教版七年级数学上册-第1章-有理数-拔高题及易错题精选(Word版附答案)人教版七年级数学第1章有理数拔高及易错题精选一、选择题(每小题3分,共30分)1.如图,数轴上的两个点A、B所表示的数分别是a、b,那么a,b,—a,—b的大小关系是()A。
b < -a < -b < aB。
b < -b < -a < aC。
b < -a < a < -bD。
-a < -b < b < a2.如果a,b互为相反数,那么下面结论中不一定正确的是()A。
a + b = 0B。
a / b = -1C。
ab = -a2D。
a = b3.若│a│=│b│,则a、b的关系是()A。
a = bB。
a = -bC。
a + b = 0或a - b = 0D。
a = 0且b = 04.已知数轴上两点A、B到原点的距离是2和7,则A,B 两点间的距离是A。
5B。
9C。
5或9D。
75.若a < 0,则下列各式不正确的是()A。
a2 = (-a)2B。
a2 = a2C。
a3 = (-a)3D。
a3 = -(-a3)6.-52表示()A。
2个-5的积B。
-5与2的积C。
2个-5的和D。
52的相反数7.-42 + (-4)2的值是()A。
-16B。
0C。
-32D。
328.已知a为有理数时,a + 1 / (a2 + 1) = ()A。
1B。
-1C。
±1D。
不能确定9.设n是自然数,则(-1)n+(-1)n+1 / 2的值为()A。
0B。
1C。
-1D。
1或-110.已知|x| = 5,|y| = 3,且x。
y,则x + y的值为()A。
8B。
2C。
-8或-2D。
8或211.我国西部地区面积约为640万平方公里,640万用科学记数法表示为()A。
640×104B。
64×105C。
6.4×106D。
6.4×10712.京九铁路的全长用四舍五入法得到近似数为2.5×106m,则它精确到()A。
人教版初一上有理数易错题总结
有理数易错题1、下列说法正确的是( )A.整数就是自然数B.分数就是带分母的数C.正数与负数统称为有理数D.正整数与负整数统称为整数E.0是偶数F.正有理数与负有理数统称为有理数2、把下列各数按照要求填写。
-6.3, 20, -8, 8%, 0, -1, 3.4, -320 , 227 其中 整数:_________________________________.分数:_________________________________,负数:_________________________________.负分数:_______________________________.非负数:_______________________________.非负整数:_____________________________.3、在数轴上,规定从原点向右为_____________.4、若一个数的相反数是非负数,则这个数一定是( )A.正数B.负数C.非正数D.零5、下列说法正确的是( ) A.若两个数的绝对值相等,则这两个数一定相等。
B.绝对值等于本身的数只有0C.任何一个有理数的绝对值都是非负数D.绝对值最小的整数是1.6、计算:382-⨯-+-=______.7、若2a =,则a =______;若3a -=,则a =______。
8、如图,数轴上的A 点所表示的是有理数a ,则点A 到原点的距离是( )A.aB. a -C. a ±D. a -9、判断:两个不等的有理数相加,和一定不等于零。
( )10、绝对值不大于2014的所有整数的和是______________。
11、如果两个有理数的和是正数,那么这两个数一定( )A.都是正数B.只有一个是正数C.至少有一个是正数D.以上结论都不对12、计算:1138183737⎛⎫⎛⎫⎛⎫⎛⎫++++-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()()111.5 3.1254382⎛⎫⎛⎫-+++-+- ⎪ ⎪⎝⎭⎝⎭13、在-44,-43,-42,-41,…,0,1,2,…,2013,这一串连续的整数中,前100个整数的和是_____.14、若0,0,0,b a c ><<且c b a >>,试比较....a b c a b a c ++的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学第一章有理数·易错题整理
1.填空:
(1)当a________时,a与-a必有一个是负数;
(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;
(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;
(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是________.
2.用“有”、“没有”填空:
在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.3.用“都是”、“都不是”、“不都是”填空:
(1)所有的整数________负整数;
(2)小学里学过的数________正数;
(3)带有“+”号的数________正数;
(4)有理数的绝对值________正数;
(5)若|a|+|b|=0,则a,b________零;
(6)比负数大的数________正数.
4.用“一定”、“不一定”、“一定不”填空:
(1)-a________是负数;
(2)当a>b时,________有|a|>|b|;
(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;
(4)|x|+|y|________是正数;
(5)一个数________大于它的相反数;
(6)一个数________小于或等于它的绝对值;
5.把下列各数从小到大,用“<”号连接:
并用“>”连接起来.
8.填空:
(1)如果-x=-(-11),那么x=________;
(2)绝对值不大于4的负整数是________;
(3)绝对值小于4.5而大于3的整数是________.9.根据所给的条件列出代数式:
(1)a,b两数之和除a,b两数绝对值之和;
(2)a与b的相反数的和乘以a,b两数差的绝对值;
(3)一个分数的分母是x,分子比分母的相反数大6;
(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么?
11.用适当的符号(>、<、≥、≤)填空:
(1)若a是负数,则a________-a;
(2)若a是负数,则-a_______0;
(3)如果a>0,且|a|>|b|,那么a________ b.12.写出绝对值不大于2的整数.
13.由|x|=a能推出x=±a吗?
14.由|a|=|b|一定能得出a=b吗?
15.绝对值小于5的偶数是几?
16.用代数式表示:比a的相反数大11的数.
17.用语言叙述代数式:-a-3.
18.算式-3+5-7+2-9如何读?
19.把下列各式先改写成省略括号的和的形式,再求出各式的值.
(1)(-7)-(-4)-(+9)+(+2)-(-5);
(2)(-5)-(+7)-(-6)+4.
20.判断下列各题是否计算正确:如有错误请加以改正;
(2)5-|-5|=10;
21.用适当的符号(>、<、≥、≤)填空:
(1)若b为负数,则a+b________a;
(2)若a>0,b<0,则a-b________0;
(3)若a为负数,则3-a________3.
22.若a为有理数,求a的相反数与a的绝对值的和.
23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.24.列式并计算:-7与-15的绝对值的和.
25.用简便方法计算:
26.用“都”、“不都”、“都不”填空:
(1)如果ab≠0,那么a,b________为零;
(2)如果ab>0,且a+b>0,那么a,b________为正数;
(3)如果ab<0,且a+b<0,那么a,b________为负数;
(4)如果ab=0,且a+b=0,那么a,b________为零.
27.填空:
(3)a,b为有理数,则-ab是_________;
(4)a,b互为相反数,则(a+b)a是________.
28.填空:
(1)如果四个有理数相乘,积为负数,那么负因数个数是________;
29.用简便方法计算:
30.比较4a和-4a的大小:
31.计算下列各题:
(5)-15×12÷6×5.
34.下列叙述是否正确?若不正确,改正过来.
(1)平方等于16的数是(±4)2;
(2)(-2)3的相反数是-23;
35.计算下列各题;
(1)-0.752;(2)2×32.
36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:
(1)(-1)n+2________是负数;
(2)(-1)2n+1________是负数;
(3)(-1)n+(-1)n+1________是零.
37.下列各题中的横线处所填写的内容是否正确?若有误,改正过来.
(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;
(2)有理数a与它的立方相等,那么a=1;
(3)有理数a的平方与它的立方相等,那么a=0;
(4)若|a|=3,那么a3=9;
(5)若x2=9,且x<0,那么x3=27.
38.用“一定”、“不一定”或“一定不”填空:
(1)有理数的平方________是正数;
(2)一个负数的偶次幂________大于这个数的相反数;
(3)小于1的数的平方________小于原数;
(4)一个数的立方________小于它的平方.
39.计算下列各题:
(1)(-3×2)3+3×23;(2)-24-(-2)÷4;(3)-2÷(-4)-2;
40.用科学记数法记出下列各数:
(1)314000000;(2)0.000034.
41.判断并改错(只改动横线上的部分):
(1)用四舍五入得到的近似数0.0130有4个有效数字.
(2)用四舍五入法,把0.63048精确到千分位的近似数是0.63.
(3)由四舍五入得到的近似数3.70和3.7是一样的.
(4)由四舍五入得到的近似数4.7万,它精确到十分位.
答案
1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.2.(1)没有;(2)没有;(3)有.
3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.
原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).
4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.
上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.
8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.
10.x绝对值的相反数.
11.(1)<;(2)>;(3)>.
12.-2,-1,0,1,2.
13.不一定能推出x=±a,例如,若|x|=-2.则x值不存在.
14.不一定能得出a=b,如|4|=|-4|,但4≠-4.
15.-2,-4,0,2,4.
16.-a+11.
17.a的相反数与3的差.
18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.
19.(1)原式=-7+4-9+2+5=-5;
(2)原式=-5-7+6+4=-2.
21.<;>;>.
22.当a≥0时,-a+|a|=0,当a<0时,-a+|a|=-2a.
23.由|a+b|=a+b知a+b≥0,根据这一条件,得a=4,b=2,所以a-b=2;a=4,b=-2,所以a-b=6.
24.-7+|-15|=-7+15=8.
26.(1)都不;(2)都;(3)不都;(4)都.
27.(1)正数、负数或零;(2)正数、负数或零;
(3)正数、负数或零;(4)0.
28.(1)3或1;(2)b≠0.
30.当a>0时,4a>-4a;当a=0时,4a=-4a;当a<0时,4a<-4a.
(5)-150.
32.当b≠0时,由|a|=|b|得a=b或a=-b,
33.由ab>0得a>0且b>0,或a<0且b<0,求得原式值为3或-1.34.(1)平方等于16的数是±4;(2)(-2)3的相反数是23;(3)(-5)100.
36.(1)不一定;(2)一定;(3)一定.
37.(1)负数或正数;(2)a=-1,0,1;(3)a=0,1;(4)a3=±27;
(5)x3=-27.
38.(1)不一定;(2)不一定;(3)不一定;(4)不一定.
40.(1)3.14×108;(2)3.4×10-5.
41.(1)有3个有效数字;(2)0.630;(3)不一样;(4)千位.。