振动、波动练习题
高中物理专题振动和波练习
1. 简谐振动的条件:F kx =-3. 简谐运动的图像(1)坐标轴:横轴表示时间,纵轴表示位移。
(2)图线特点:正弦(或余弦)曲线。
(3)物理意义:表示做简谐振动的质点的位移随时间的变更规律。
4. 单摆周期公式中的l 与g ()为等效摆长悬点的等效摆长的等效1l ⎧⎨⎩(2)g 为等效重力加速度例如单摆置于以加速度a 匀加速上升的升降机中,物体处于超重状态,加速度变为g'=g +a ,此时回复力是视重mg'的切向分力,g'即为单摆的等效加速度。
不论单摆处在什么状况下,在其平衡位置上的视重所“产生”的加速度,可等效为单摆的“重力”加速度。
5. 有关波的图像的几种常见问题: (1)确定各质点的振动方向如图所示(实线)为一沿x 轴正方向传播的横波,试确定质点A 、B 、C 、D 的速度方向。
推断方法:将波形沿波的传播方向做微小移动,(如图中虚线)由于质点仅在y 方向上振动,所以A'、B'、C'、D'即为质点运动后的位置,故该时刻A 、B 沿y 轴正方向运动,C 、D 沿y 轴负方向运动。
从以上分析也可看出,波形方向相同的“斜坡”上速度方向相同。
(2)确定波的传播方向知道波的传播方向利用“微平移”的方法,可以很简洁地推断出各质点的振动方向。
反过来知道某一质点的运动方向,也可利用此法确定该波的传播方向。
另外还有一简便好用的推断方法,同学们也可以记住。
如图所示,若已知A 点速度方向向上,可假想在最靠近它的波谷内有一小球。
不难看出A 向上运动时,小球将向右滚动,此即该波的传播方向。
(3)已知波速v 和波形,画出再经△t 时间的波形图①平移法:先算出经时间波传播的距离=,再把波形沿波的传播方∆∆∆t x v t向平移即可。
因为波动图像的重复性,若知波长,则波形平移时波形不∆x n λλ 变,当时,可采取去整留零的方法,只需平移即可。
∆x n x n x x =+λλ②特殊点法:(若知周期T 则更简洁)在波形上找两个特殊点,如过平衡位置的点和与它相邻的波峰(谷)点,先确定这两点的振动方向,再看△t =nT +t ,由于经nT 波形不变,所以也实行去整nT 留零t 的方法,分别做出两特殊点经t 后的位置,然后按正弦规律画出新波形。
振动和波动习题课(改)
x)
yBP
Acos[ t
2
(30 x)]
l
两波同频率,同振幅,同方向振动,所以相干静止的点满足:
(t 2 x) [t 2 (30 x)]
l
l
(2k 1)
k 0,1,2,...
化简后 30 2x kl
30 2x kl O x
X
因为: l u 4m
x 15 k 2
1
3
x 3 102 sin(4t 1 ) (SI)
2
6
画出两振动的旋转矢量图,并求合振动的振动
方程.
x1
5
102
cos(4t
1 3
)
x2
3
102
sin(4t
1 6
)
3
102
cos(4t
1 6
1 2
)
3 102 cos(4t 2 ) 3
x x1 x2
1
2 102 cos(4t 1 )
7.一简谐振动曲线如图所示,试由图确
定在t=2s时刻质点的位移为
,速
度为
。
t=2s, x=0
Vm
A
2 A
T
3
102
8.已知两个简谐振动 曲线如图所示,
X1的位相比X2的位相
A) 落后 1
2
C) 落后
B) 超前 1 √
2
D) 超前
9.一简谐振动的振动曲线如图,求此振动的 周期。
解: =/3+ /2=5/6 t=5= 5/6 = /6
2
之间)
(1)2 1 2k k 0,1,2,
A A1 A2 振动加强; 此时有= 1= 2
A1
大学物理 振动与波、波动光学练习题
06振动与波、波动光学练习题 一、选择题 1 一物体作简谐振动,振动方程为)4cos(πω+=t A y在4T t =(T 为周期)时刻,物体的加速度为 [ ]2222321)(,321)(,221)(,221)(ωωωωA D A C A B A A -- 2 两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为)cos(1αω+=t A y 。
当第一个质点从相对平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为 [ ])cos()(),23cos()()2cos()(),2cos()(2222παωπαωπαωπαω++=-+=-+=++=t A y D t A y C t A y B t A y A 3一质点沿y 轴作简谐振动,振动方程为)SI (),32cos(1042παπ++⨯=-t y ,从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为[ ]s 61)(s,31)(s,21)(s,41)(s,81)(E D C B A 4 已知两个简谐振动曲线如图所示,1x 相位比2x 的相位 [ ]ππππ超前,落后,超前,落后)()(2)(2)(D C B A5题图 7题图5 一质点作简谐振动,周期为T 。
质点由平衡位置向X 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为 [ ],8)(6)(12)(4)(T D T C T B T A ,,, 6 在下面几种说法中,正确的说法是: [ ](A )波源不动时,波源的振动周期与波动的周期在数值上是不同的,(B )波源振动的速度与波速相同,(C) 在波传播方向上的任一质点的振动相位总是比波源的相位滞后,(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前。
7一平面简谐波,沿X 轴负方向传播,角频率为ω,波速为u 。
设4T t =时刻的波形如图所示,则该波的表达式为: [ ]])(cos[)(),(cos )(]21)(cos[)(),(cos )(πωωπωω++=+=+-=-=ux t A y D u x t A y G u x t A y B ux t A y A 8 当机械波在媒质中传播时,一媒质质元的最大变形量发生在 [ ](A)媒质质元离开其平衡位置最大位移处,(B )媒质质元离开其平衡位置)2/2(A 处,(C )媒质质元在其平衡位置处,(D )媒质质元离开其平衡位置A/2处(A 是振动振幅)。
大学物理振动波动例题习题
振动波动一、例题(一)振动1。
证明单摆是简谐振动,给出振动周期及圆频率.2. 一质点沿x 轴作简谐运动,振幅为12cm,周期为2s 。
当t = 0时, 位移为6cm ,且向x 轴正方向运动。
求: (1) 振动表达式;(2) t = 0.5s 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于x =—0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。
3。
已知两同方向,同频率的简谐振动的方程分别为:x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+求:(1)合振动的初相及振幅.(2)若有另一同方向、同频率的简谐振动x 3 = 0。
07cos (10 t +ϕ 3 ), 则当ϕ 3为多少时 x 1 + x 3 的振幅最大?又ϕ 3为多少时 x 2 + x 3的振幅最小?(二)波动1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s.在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求:(1)波动方程(2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。
2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播.已知原点的振动曲线如图所示.求:(1)原点的振动表达式;(2)波动表达式;(3)同一时刻相距m 1的两点之间的位相差.3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+.S 1距P 点3个波长,S 2距P 点21/4个波长。
求:两波在P 点引起的合振动振幅。
4。
沿X 轴传播的平面简谐波方程为:310cos[200(t )]200x y π-=- ,隔开两种媒质的反射界面A 与坐标原点O 相距2。
25m ,反射波振幅无变化,反射处为固定端,求反射波的方程.二、习题课(一)振动1. 一质点在x 轴上作简谐振动,振辐A = 4 cm,周期T = 2 s ,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则O 2.25m Ax t O A/2 -A x 1 x 2 质点第二次通过x = -2 cm 处的时刻为[ ](A) 1 s (B) (2/3) s (C ) (4/3) s (D ) 2 s2.已知某简谐振动的振动曲线如图所示,则此简谐振动的振动方程为(A ) ⎪⎭⎫ ⎝⎛+=3232cos 2ππt x ;(B ) ⎪⎭⎫ ⎝⎛-=332cos 2ππt x ;(C) ⎪⎭⎫ ⎝⎛+=3234cos 2ππt x ;(D ) ⎪⎭⎫ ⎝⎛-=334cos 2ππt x 。
振动、波动练习题及答案
振动、波动练习题及答案振动、波动练习题⼀.选择题1.⼀质点在X 轴上作简谐振动,振幅A=4cm。
周期T=2s。
其平衡位置取作坐标原点。
若t=0 时刻质点第⼀次通过x= -2cm 处,且向X 轴负⽅向运动,则质点第⼆次通过x= -2cm 处的时刻为()。
A 1sB 2sC 4sD 2s332.⼀圆频率为ω的简谐波沿X 轴的正⽅向传播,t=0 时刻的波形如图所⽰,则t=0 的波形t=0 时刻,X 轴上各点的振动速度υ与X轴上坐标的关系图应()3.图⽰⼀简谐波在 t=0 时刻的波形图,波速υ =200m/s ,则图中O 点的振动加速度的表达式为()2A a 0.4 2 cos( t ) 2 23B a 0.4 2 cos( t )22C a 0.4 2cos(2 t ) 4.频率为 100Hz ,传播速度为 300m/s 的平⾯简谐波,波线上两点振动的相位差为 3 ,则这两点相距()A 2mB 2.19mC 0.5mD 28.6m5.⼀平⾯简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最⼤位置处的过程中,()。
A 它的动能转换成势能它的势能转换成动C 它从相邻的⼀段质元获得能量其能量逐渐增⼤Da20.4 2 cos(2 t2)υ (m/s)Bυ (m/s)DX(m)D 它把⾃⼰的能量传给相邻的⼀段质元,其能量逐渐减⼩6.在下⾯⼏种说法中,正确的说法是:()。
A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播⽅向上的任⼀质点振动位相总是⽐波源的位相滞后D 在波传播⽅向上的任⼀质点振动位相总是⽐波源的位相超前7.⼀质点作简谐振动,周期为T,当它由平衡位置向X 轴正⽅向运动时,从⼆分之⼀最⼤位移处到最⼤位移处这段路程所需要的时间为()。
A TBTCTDT4 12 6 88.在波长为λ的驻波中两个相邻波节之间的距离为()。
A λB 3 λ/4C λ/2D λ /49.在同⼀媒质中两列相⼲的平⾯简谐波的强度之⽐I1I 4是,则两列波的振幅之⽐是:()A A1 4 B1 2 CA1 16 DA11A2 A2 A2 A2 410.有⼆个弹簧振⼦系统,都在作振幅相同的简谐振动,⼆个轻质弹簧的劲度系数K 相同,但振⼦的质量不同。
大连工业大学大学物理学振动与波动题库
(C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、 两分振动方程分别为 x1=3cos (50πt+π/4) ㎝ 和 x2=4cos (50πt+3π/4)㎝, 则它们的合振动的振幅为 ( (A) 1 ㎝ (B)3 ㎝ (C)5 ㎝ (D)7 ㎝ 6、一平面简谐波,波速为 =5 cm/s,设t= 3 s时刻的波形 如图所示,则x=0处的质点的振动方程为 ( - (A) y=2×10 2cos (πt/2-π/2) (m) - (B) y=2×10 2cos (πt + π) (m) -2 (C) y=2×10 cos(πt/2+π/2) (m) -2 (D) y=2×10 cos (πt-3π/2) (m) )
y
u
A X -A
17.一平面简谐波,沿 X 轴负方向传播,波长λ=8 m。已知 x=2 m 处质点的振动方程为 y 4 cos(10t
5 x ) ; 8 12 2 (C) y 4 cos(10 t x ); 4 3
(A)
) , 则该波的波动方程为( 6
(B)
20.在驻波中,两个相邻波节间各质点的振动(
1、一个弹簧振子和一个单摆,在地面上的固有振动周期分别为 T1 和 T2,将它们拿到月球上去,相应 的周期分别为 1 和 2 ,则它们之间的关系为 1 T1 且 2 T2 。 。
2、一弹簧振子的周期为T,现将弹簧截去一半,下面仍挂原来的物体,则其振动的周期变为 3、一平面简谐波的波动方程为 y 0.08cos 4 πt 2 πx
《大学物理》波动练习题
《大学物理》波动练习题一、简答题1、什么是波动? 振动和波动有什么区别和联系?答:波动一般指振动在介质中的传播。
振动通常指一个质点在平衡位置附近往复地运动,波动是介质中的无数个质点振动的总体表现。
2、机械波的波长、频率、周期和波速四个量中,(1) 在同一介质中,哪些量是不变的? (2) 当波从一种介质进入另一种介质中,哪些量是不变的?答:(1) 频率、周期、波速、波长 (2)频率和周期3、波动方程⎪⎭⎫ ⎝⎛-=u x cos y t A ω中的u x 表示什么? 如果把它写成⎪⎭⎫ ⎝⎛-=u x cos y ωωt A ,u xω又表示什么? 答:u x 表示原点处的振动状态传播到x 处所需的时间。
ux ω表示x 处的质点比原点处的质点所落后的相位。
4、波形曲线与振动曲线有什么不同行? 试说明之. 答:波形曲线代表某一时间波的形状,它是质点的位移关于其空间位置的函数;振动曲线代表某一个质点的振动过程,它是质点的位移关于时间的函数。
5、波动的能量与哪些物理量有关? 比较波动的能量与简谐运动的能量.答:波的能量与振幅、角频率、介质密度以及所选择的波动区域的体积都有关系。
简谐运动中是振子的动能与势能相互转化,能量保持守恒的过程;而行波在传播过程中某一介质微元的总能量在随时间变化,从整体上看,介质中各个微元能量的变化体现了能量传播的过程。
6. 平面简谐波传播过程中的能量特点是什么?在什么位置能量为最大?答案:能量从波源向外传播,波传播时某一体元的能量不守桓,波的传播方向与能量的传播方向一致,量值按正弦或余弦函数形式变化,介质中某一体元的波动动能和势能相同,处于平衡位置处的质点,速度最大,其动能最大,在平衡位置附近介质发生的形变也最大,势能也为最大。
7. 驻波是如何形成的?驻波的相位特点什么?答案:驻波是两列振幅相同的相干波在同一直线上沿相反方向传播时叠加而成。
驻波的相位特点是:相邻波节之间各质点的相位相同,波节两边质点的振动有π的相位差。
振动和波动要点习题
振动和波一、选择题1.(3分,答D )已知一平面简谐波的表达式为cos()y A at bx =-(,a b 为正值常量),则 (A )波的频率为a (B )波的传播速度为/b a (C )波长为/b π (D )波的周期为2/a π2.(本题3分,答B )一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[]3. (3分,答B )一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点,若t =0时刻质点第一次通过x =-2cm 处,且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为(A) 1s (B) (2/3)s (C)(4/3)s (D) 2s4. (3分,答D )一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m 21的物体,则系统振动周期T 2等于 (A) 2 T 1 (B) T 1(C)T 12/ (D) T 1 /2 (E) T 1 /45.(本题3分,答A )轴一简谐波沿Ox 轴正方向传播,t = 0 时刻的波形曲线如图所示,已知周期为 2 s ,则 P 点处质点的振动速度v 与时间t 的关系曲线为:6.(3分,答B )一平面简谐波在弹性媒质时,某一时刻媒质中某质元在负最大位移处,则它的能量是(A ) 动能为零 势能最大 (B )动能为零 势能为零 (C ) 动能最大 势能最大 (D )动能最大 势能为零v (m/s)O 1 t (s)ωA(C)· v (m/s)O1 t (s)ω A(A)·1 v (m/s)t (s)(D)O-ω A1 v (m/s) t (s)-ωA(B) O ··x o A x A 21 ω(A)A 21ω(B) A 21-(C) (D)o oo A 21-xxxAxAxAxω ω2O 1 y (m)x (m)t =0 A u图17.(3分,答D )沿相反方向传播的两列相干波,其波动方程为y 1=A cos2π (νt -x /λ)y 2=A cos2π (νt + x /λ) 叠加后形成的驻波中,波节的位置坐标为(A)x =±k λ.(B)x =±k λ/2 .(C)x =±(2k +1)λ/2 .(D)x =±(2k +1)λ/4 . 其中k = 0 , 1 , 2 , 3…….8.(3分,答D )如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为y =A cos(ω t+φ0),则B 点的振动方程为 (A )y =A cos[ω t-(x/u )+φ0] (B )y =A cos ω[ t+(x/u )] (C )y =A cos{ω [t-(x/u ) ]+φ0} (D )y =A cos{ω[ t+(x/u ) ]+φ0}9.(3分,答D )一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A )它的动能转换成势能. (B )它的势能转换成动能. (C )它从相邻的一段质元获得能量,其能量逐渐增大. (D )它把自己的能量传给相邻的一段质元,其能量逐渐减小. 10.(3分,答B )在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4 (B )λ/2 (C )3λ/4 (D )λ11.(3分,答C )某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是 (A )0 (B )/2π (C )π (D )5/4π12.(本题3分,答B)在驻波中,两个相邻波节间各质点的振动(A )振幅相同,相位相同 (B )振幅不同,相位相同 (C )振幅相同,相位不同 (D )振幅不同,相位不同 二、填空题1. (3分)已知一个简谐振动的振幅A=2cm, 角频率14s ωπ-=,以余弦函数表达式运动规律时的A -Ayxλ λ/2O ··a b · · · · · · · · ··x 2A A/2x 1初相12φπ=,试画出位移和时间的关系曲线(振动图线) 2.(4分)两个简谐振动方程分别为x 1=Acos(ω t ) ;x 2=Acos(ω t +π/3) 在同一坐标上画出两者的x-t 曲线.3. (3分)有两相同的弹簧,其劲度系数均为k .(1)把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为;(2)把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为.[答案:(1)22m k π,(2)22mkπ] 4.(4分)一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的劲度系数,振子的振动频率.[答案:2210N/m,1.6Hz ⨯]5.(3分)一平面机械波沿x =-1m 轴负方向传播,已知处质点的振动方程cos()y A t ωϕ=+,若波速为u ,求此波的波函数.[答案:cos{[(1)/]}y A t x u ωϕ=+++]6.(3分)一作简谐振动的振动系统,振子质量为2kg ,系统振动频率为1000Hz ,振幅为0.5cm ,则其振动能量为.(答案:29.9010J ⨯ )7.(3分)两个同方向同频率的简谐振动211310cos(),3x t ωπ-=⨯+221410cos()(SI)6x t ωπ-=⨯-,它们的合振幅是. (答案:2510m -⨯ )8.(3分)一平面简谐波沿Ox 轴正方向传播,波动表达式为cos[(/)/4]y A t x u ωπ=-+,则1x L =处质点的振动方程是;2x L =-处质点的振动和1x L =处质点的振动相位差为21φφ-=. (答案:1cos[(/)/4]y A t L u ωπ=-+,12()/L L u ω+)9.(5分)一余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在该时刻的运动方向.A 向下 ,B 向上 ,C 向上.10. (本题4分)一平面简谐波的表达式cos (/)cos(/)y A t x u A t x u ωωω=-=-其中/x u 表示,/x u ω表示,y 表示.[答案:波从坐标原点传至x 处所需时间(2分),x 处质点此原点处质点滞后的相位(1分),t 时刻x 处质点的振动位移(1分)]11. (本题3分)如图所示,两相干波源S 1和S 2相距为3λ/4,λ为波长,设两波在S 1 S 2连O Cyxu · · · A B线上传播,它们的振幅都是A ,并且不随距离变化,已知在该直线上S 1左侧各点的合成波强度为其中一个波强度的4倍,则两波源应满足的相位条件是__π/2_ 12. (3分)一驻波的表达式为y =2A cos(2πx/λ) cos(2πνt ),两个相邻波 腹之间的距离是.(答案:λ/2) 三、计算题1. (5分)一质点作简谐运动,其振动方程为110.24cos()()23x t SI ππ=+,试用旋转矢量法求出质点由初始状态运动到x =-0.12 m ,v <0的状态所经过的最短时间. 解:旋转矢量如图所示.图3分 由振动方程可得π21=ω,π=∆31φ1分667.0/=∆=∆ωφt s 1分2(本题10分)一质量m =0.25kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点,弹簧的劲度系数k =25N/m.(1)求振动的周期T 和频率ω. (2)如果振幅A =15cm ,t =0时物体位于x =7.5cm 处,且物体沿x 轴反方向运动,求初速度v 0及初相φ.(3)写出振动的数值表达式. 解:(1)12/10k m s ωπ-== (2分)2/0.63T s πω== (1分)(2) A=15cm , 在t =0时,07.5cm x =,00v < 由2200(/)A x v ω=+得2200 1.3m/s v A x ω=--=- (2分)100(/)/3/3tg v x φωππ-=-=或400,/3x φπ>∴=(3分)(3)21510cos(10/3)(SI)x t π-=⨯+(2分)3.(10分)在一轻弹簧下端悬挂0100g m =砝码时,弹簧伸长8cm. 现在这根弹簧下端悬挂0250g m =物体,构成弹簧振子,将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 的初速度(令这时t=0).选x 轴向下,求振动方程的数值式.解:k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯=N/mx (m) ωωπ/3π/3t = 0t0.12 0.24 -0.12 -0.24 OAAO xS 1S 211s 7s 25.025.12/--===m k ω(2分) 5cm )721(4/2222020=+=+=ωv x A cm (2分) 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad (3分))64.07cos(05.0+=t x (SI) (1分)4.(8分)在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长0 1.2cm l =而平衡.再经拉动后,该小球在竖直方向作振幅为2cm A =的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数(图参考上题)0/k mg l = 选平衡位置为原点,向下为正方向. 小球在x 处时,根据牛顿第二定律得202()d x mg k l x m dt -+=将k 代入整理后得 220d x g x dt l =-所以振动为简谐振动,其角频率为0/28.589.1(rad/s)g l ωπ===(5分)设振动表达式为 c o s ()x A t ωφ=+ 由题意:t=0时,200210m0x A v -==⨯=解得:0φ=2210cos(9.1)x t π-∴=⨯m (3分)5.(10分)在一轻弹簧下端悬挂m 0=100g 的砝码时,弹簧伸长8cm,现在这根弹簧下端悬挂m =250g 的物体, 构成弹簧振子. 将物体从平衡位置向下拉动4cm,并给以向上的21cm/s 的初速度(这时t =0) ,选x 轴向下,求振动方程的数值式. 解:物体受向下的重力和向上的弹性力.k=m 0g/∆l , x 0=4×10-2m, v 0=-21×10-2m/sω=()m l g m m k Δ0==7s -1A=22020ω/v x +=5×10-2m因A cos ϕ=4×10-2m, A sin ϕ=-v 0/ω=3×10-2m,有 ϕ=0.64rad 所以x=5×10-2cos(7t +0.64) (SI)6.(本题5分)一质量为0.2kg 的质点作简谐振动,其振动方程为10.6cos(5)(SI)2x t π=-求:(1)质点的初速度;(2)质点在正向最大位移一半处所受的力.解:(1)003.0sin(5)()0, 3.0m/s 2dx v t SI t v dt π==--==(2分) (2)2F ma m x ==-ω12x A =时, 1.5N F =-(无负号扣1分) (3分) 7.(5分)一平面简谐波沿x 轴正方向传播,波速为1m/s ,在x 轴上某质点的振动频率为1Hz ,振幅为0.01m. t = 0时该质点恰好在正最大位移处,若以该质点的平衡位置为x 轴的原点. 求此一维简谐波的表达式.解. 0.01cos[2()](m)y t x =-π8.(本题10分)某质点作简谐振动,周期为2s ,振幅为0.06m ,t =0时刻,质点恰好处在负最大位移处,求(1)该质点的振动方程.(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长. 解:(1)振动方程 00.06cos(2/2)0.06cos()(SI)y t t ππππ=+=+3分 (2)0.06cos[((/))0.06cos[(/2))(SI)y t x u t x ππππ=-+=-+ 4分(3)波长4m uT λ==9.(10分)一列平面简谐波在以波速5m/s u =,沿x 轴正向传播,原点O 处质点的振动曲线如图所示.1)求解并画出25cm x =处质元的振动曲线 2)求解并画出3s t =时的波形曲线 解:1)原点O 处质元的振动方程为211210cos(),(SI)22y t ππ-=⨯-(2分)波的表达式 (2分)211210cos((/5)),(SI)22y t x ππ-=⨯--x =25m 处质元的振动方程21210cos(3),(SI)2y t ππ-=⨯-振动曲线如右y-t 图 (2分)2)t=3s 时的波形曲线方程2210cos(/10),(SI)y x ππ-=⨯-(2分)波形曲线见右y-x 图 (2分)10.(10分)某质点作简谐振动,周期为2s ,振幅为0.6m ,t =0时刻,质点恰好处在负最大4O2 y(cm)t (s)2位移处,求(1)该质点的振动方程;(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长.解:(1) 振动方程)22cos(06.00π+π=ty )cos(06.0π+π=t (SI) (3分) (2) 波动表达式])/(cos[06.0π+-π=u x t y (4分)])21(cos[06.0π+-π=x t (SI)(3) 波长4==uT λm (3分)11.(5分)如图所示,一简谐波向x 轴正向传播,波速0500/,1,u m s x m P ==点的振动方程为10.03cos(500)(SI)2y t ππ=-. (1) 按图所示坐标系,写出相应的波的表达式; (2) 在图上画出t=0时刻的波形曲线.解:(1) 2m )250/500(/===νλu m 波的表达式 ]/2)1(21500cos[03.0),(λπ--π-π=x t t x y110.03cos[500(1)2/2]0.03cos(500)(SI)22t x t x =π-π--π=π+π-π(3分)(2) t = 0时刻的波形曲线x x x y π=π-π=sin 03.0)21cos(03.0)0,( (SI) (2分)12.(10分)图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图(波向左传播).已知波速为u ,波的周期大于2 s ,求(1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式. 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点φcos 0A =,φωsin 00A -=<v ,故2πφ-= 又t = 2 s ,O 处质点位移为)24cos(2/ππ-=νA A 所以244πππ-=-ν,ν = 1/16 Hz 振动方程为)28/cos(0ππ-=t A y (SI)(2) 波速u = 20 /2 m/s = 10 m/s,波长λ = u /ν = 160 m 波动表达式]21)16016(2cos[π-+π=x t A y (SI) x (m)uP y (m)O-2-112-0.030.03x (m)O160A y (m)8020t =0t =2 s2A。
高考物理总复习专题练习:振动和波
高考物理复习振动和波专题训练及其答案一、单项选择题1.如图所示为一列简谐横波t时刻的图象,已知波速为0.2m/s,以下说法正确的是()A.经过0.5s,质点a、b、c通过的路程均为75cmB.若从t时刻起质点a比质点b先回到平衡位置,则波沿x轴正方向传播C.图示时刻质点a、b、c所受的回复力大小之比为2∶1∶3D.振源的振动频率为0.4Hz2.一列向右传播的简谐横波在某一时刻的波形如图所示,该时刻,两个质量相同的质点P、Q 到平衡位置的距离相等。
关于P、Q两个质点,以下说法正确的是()A.P较Q先回到平衡位置B.再经14周期,两个质点到平衡位置的距离相等C.两个质点在任意时刻的动量相同D.两个质点在任意时刻的加速度相同3.图为一列简谐波在0=t时刻的波形图,此时质点Q正处于加速运动过程中,且质点N在1st=时第一次到达波峰。
则下列判断正确的是()A.此时质点P也处于加速运动过程B.该波沿x轴负方向传播C.从0=t时刻起,质点P比质点Q晚回到平衡位置D.在0=t时刻,质点N的振动速度大小为1m/s4.如图所示为一列机械波在t=0时刻传播的波形图,此刻图中P点速度沿y轴正方向,t=2s 时刻,图中Q点刚好在x轴上。
则下列说法正确的是()A.该机械波沿x轴正方向传播B.该机械波周期不可能是8s3C.无论周期是多少,当Q点在x轴时,P点一定离x轴最远D.P点振幅是10cm5.如图所示是沿x轴传播的一列简谐横波在t=0时刻的波形图,已知波的传播速度为16.0m/s,从此时起,图中的P质点比Q质点先经过平衡位置.那么下列说法中正确的是()A.这列波一定沿x轴正向传播B.这列波的频率是3.2HzC.t=0.25s时Q质点的速度和加速度都沿y轴负向D.t=0.25s时P质点的速度和加速度都沿y轴负向6.如图(a)所示为波源的振动图象(在t=0时刻之前波源就已经开始振动了),图(b)为xy 平面内沿x轴传播的简谐横波在t=0时刻的波形图象,t=0时刻P点向y轴负方向运动,关于图(b)上x=0.4m处的Q点的说法正确的是().A.t=0时,速度最大,其大小为0.1m/s,方向沿y轴正方向B.t=0到t=5s内,通过的路程为20cmC.t=2s时,运动到x=0.2m处D.t=3s时,加速度最大,且方向向下7.一列简谐横波在某时刻的波形图如图所示,已知图中质点b的起振时刻比质点a延迟了0.5s,b和c之间的距离是5m,以下说法正确的是()A.此列波的波长为2.5mB.此列波的频率为2HzC.此列波的波速为2.5m/sD.此列波的传播方向为沿x轴正方向传播8.P、Q、M是某弹性绳上的三个质点,沿绳建立x坐标轴。
物体的振动和波动练习题
物体的振动和波动练习题一、选择题1. 下列哪个不属于机械振动的基本特征?A. 振幅B. 周期C. 频率D. 波长2. 以下哪种波不需要介质传播?A. 机械波B. 横波C. 纵波D. 都需要介质传播3. 以下哪个现象不属于机械波传播中的失能?A. 反射B. 折射C. 干涉D. 散射4. 把频率为30Hz的振动用电路方式表示,需要设备的最小档位是A. 10sB. 1sC. 1msD. 1us5. 振幅越大,波的能量传播速度越快,这一说法A. 对B. 错6. 当一个横波传播时,传播介质上的每一个质点的振动方向A. 垂直于波的传播方向B. 与波的传播方向相同C. 与波的传播方向相反D. 与波的振动方向相同7. 下列不属于机械波的是A. 音波B. 光波C. 水波D. 地震波8. 声音能传播的介质是A. 真空B. 水C. 铁D. 木头9. 长度为0.1m的弦上传播的频率为500Hz的波,其波长为A. 10cmB. 20cmC. 40cmD. 50cm10. 一个在弹簧中传播的波,它所具有的振动特点可以用频率 f 表示。
当频率 f 增大时,振动速度将A. 不变B. 增大C. 减小D. 变为零二、填空题1. 机械波在介质中的传播速度与_________、_________有关。
2. 波长和_________成反比。
3. 波的频率和振动的_________有关。
4. 当光束从水中垂直射入空气时,光的_________发生折射。
5. 在两根相互平行的弹簧上各拧一节,右手拇指指向电流的方向,右手四指的弯曲方向表示_________。
三、简答题1. 请简要说明机械波和电磁波的区别。
2. 请解释频率和周期的概念,并写出它们的单位。
3. 什么是衰减? 请说明衰减对波传播的影响。
4. 什么是驻波? 它是如何形成的?5. 请举例说明机械波的反射和折射现象。
四、计算题1. 一支弦上传播的横波的振动频率为100Hz,波长为0.5m。
振动波动部分大练习
振动波动部分大练习一、填空题1. 一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则(1) 摆线的张力T =_____________________;(2) 摆锤的速率v =_____________________.2. 三个简谐振动方程分别为 ⎪⎭⎫ ⎝⎛+=πω21cos 1t A x 、⎪⎭⎫ ⎝⎛+=πω67cos 2t A x 和⎪⎭⎫ ⎝⎛+=πω611cos 3t A x ,画出它们的旋转矢量图,并在同一坐标上画出它们的振动曲线.3. 一倔强系数k =196牛顿/米的轻弹簧,下挂一质量为m = 1 kg 的物体,并作谐振动,则此物体从2A +位置运动到2A -位置(A 为振幅)的最短时间为_________________.4. 一声波在空气中的波长是0.25 m ,传播速度是340 m /s ,当它进入另一介质时,波长变成了0.37 m ,它在该介质中传播速度为______________.5. 如图所示为一平面简谐波在t = 2 s 时刻的波形图,该简谐波的表达式是________________________________________;P 处质点的振动方程是____________________________. (该波的振幅A 、波速u 与波长λ 为已知量)6. 在简谐波的一条射线上,相距0.2 m 两点的振动相位差为 π/6.又知振动周期为0.4 s ,则波长为_________________,波速为________________. 7. 一质点作简谐振动,其运动速度与时间的曲线如图所示,若质点的振动规律如图所示,则其初位相为__________.8. 两个弹簧振子的周期都是0.4 s , 设开始时第一个振子从平衡位置向负方向运动,经过0.5 s 后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为___________.9. 一简谐振动曲线如图所示,其振动周期T 为_______________,振动表达式为__________________.10. 一弹簧振子作简谐振动,振幅为A ,周期T = 4 s 。
振动和波动习题
3 Hz 2
18. 有一谐振子沿 x 轴运动, 平衡位置在 x = 0 处, 周期为 T, 振幅为 A, t = 0 时刻振子 过x = [
A 处向 x 轴正方向运动, 2 1 ] (A) x = A cos( ω t ) 2 2ω t − (C) x = − A sin( T
则其运动方程可表示为
π ) 3
[
32. 拍现象是由怎样的两个简谐振动合成的? ] (A) 同方向、同频率的两个简谐振动 (B) 同方向、频率很大但相差甚小的两个简谐振动 (C) 振动方向互相垂直、同频率的两个简谐振动 (D) 振动方向互相垂直、频率成整数倍的两个简谐振动合成
33. 两个同方向、同频率、等振幅的谐振动合成, 如果其合成振动的振幅仍不变, 则此 二分振动的相位差为 [ ] (A)
[
35. 下面的结论哪一个可以成立? ] (A) 一个简谐振动不可以看成是两个同频率相互垂直谐振动的合振动 (B) 一个简谐振动只可以看成是两个同频率同方向谐振动的合振动 (C) 一个简谐振动可以是两个同频率相互垂直谐振动的合振动 (D) 一个简谐振动只可以是两个以上同频率谐振动的合振动 36. 一 质 点 同 时 参 与 两 个 相 互 垂 直 的简 谐 振 动 , 如 果 两 振 动 的振 动 方 程 分 别 为
4
[
] (A) kA
2
(B)
1 2 kA 2
(C)
1 2 kA 4
(D) 0
31. 如果两个同方向同频率简谐振动的振动方程分别为 x1 = 1.73 cos(3t +
3 π) cm 和 4
x 2 = cos(3t +
[
1 π) cm, 则它们的合振动方程为 4 3 1 (B) x = 0.73 cos(3t + π) cm ] (A) x = 0.73 cos(3t + π) cm 4 4 7 5 (C) x = 2 cos(3t + π) cm (D) x = 2 cos(3t + π) cm 12 12
振动与波动习题课
2.一简谐波沿X轴正方向传播,图中所示为
t =T /4 时的波形曲线。若振动以余弦函数
表示,且次提各点振动的初相取 到
之间的值,则:
(A)0点的初位相为 0= 0; (B)1点的初位相为 1= /2; (C)2点的初位相为 2= (D)3点的初位相为 3= /2;
频率为
(A)nS
(B)u uvRns
(C)uuvRnS ;
(D) u
u
vRnS
[B]
13.两列完全相同的平面简谐波相向而行 形成驻波。以下几种说法中为驻波所特有 的特征是: (A)有些质元总是静止不动; (B)迭加后各质点振动相位依次落后; (C)波节两侧的质元振动位相相反; (D)质元的振动能与势能之和不守恒。
(A) 1/2 ; (C) 1/3;
(B) 1/5; (D) 2/3.
[A]
13.两偏振片堆叠在一起,一束自然光垂 直入射其上时没有光线透过。当其中一偏 振片慢慢转动180 °时透射光强度发生的 变化为:
(A)光强单调增加; (B)光强先增加,后有减小至零; (C)光强先增加,后减小,再增加; (D)光强先增加,然后减小,再增加再 减小至零。
[B]
20.根据惠更斯-菲涅耳原理,若已知光在
某时刻的波阵面为 S,则 S 的前方某点 P 的光强度决定于波阵面 S 上所在面积元发 出的子波各自传到 P 点的
(A)振动振幅之和; (B)光强之和; (C)振动振幅之和的平方; (D)振动的相干叠加。
[D]
21.一束光是自然光和线偏振光的混合光, 让它垂直通过一偏振片。若以此入射光束 为轴旋转偏振片,测得透射光强度最大值 是最小值的 5 倍,那么入射光束中自然光 与线偏振光的光强比值为
振动和波动习题
振动习题一、选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的 [ ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ ](C)(3)题4. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为:[ ]215(A),or ;A;(B),;3326632(C),or ;(D),;4433ππ±±π±±±π±ππ±±π±±±π±5. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = m 处,且向x 轴正方向运动的最短时间间隔为 [ ](A)s 81; (B) s 61; (C) s 41; (D) s 216. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为 [ ]xtOx 1x 2(A) π23; (B) π; (C) π21 ; (D) 0一、 填空题1. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: , ,2. 一质点作简谐振动,周期为T ,质点由平衡位置到二分之一最大位移处所需要的时间为 ;由最大位移到二分之一最大位移处所需要的时间为 。
振动和波动习题
振动和波动习题(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--振动习题 一、选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的 [ ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动; (C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ ](C)(3)题4. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ ]215(A),or ;A;(B),;3326632(C),or ;(D),;4433ππ±±π±±±π±ππ±±π±±±π±5. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = m 处,且向x 轴正方向运动的最短时间间隔为 [ ](A) s 81; (B) s 61; (C) s 41; (D) s 216. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为 [ ]xtOx 1x 2(A) π23; (B) π; (C) π21 ; (D) 0一、 填空题 1. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: , ,2. 一质点作简谐振动,周期为T ,质点由平衡位置到二分之一最大位移处所需要的时间为 ;由最大位移到二分之一最大位移处所需要的时间为 。
2.波动学练习试题
振动与波练习题一、填空题1. 图中所示为两个简谐振动的振动曲线.若以余弦函数表示这两个振动的合成结果,则合振动的方程为=+=21x x x ____0.04cos(wt-____________(SI)2. 双频氦氖激光器发射出频率分别为(ν+ ∆ν )和(ν- ∆ν )的两种光,其中ν =3.620×1014 Hz ,∆ν = 1.6×106 Hz . 经过某种装置处理后,这两种光变为振动方向相同的光而在某处叠加,则该处合成光强度的变化频率为___3.2MHz_______.3. 为测定某音叉C 的频率,选取频率已知且与C 接近的另两个音叉A 和B ,已知A 的频率为800 Hz ,B 的频率是797 Hz ,进行下面试验:第一步,使音叉A 和C 同时振动,测得拍频为每秒2次. 第二步,使音叉B 和C 同时振动,测得拍频为每秒5次. 由此可确定音叉C 的频率为___802___________.4. 一质点同时参与两个互相垂直的同频率的谐振动,其合成运动的轨迹及旋转方向如图所示,旋转周期为2 s .t = 0时质点位于图中x 轴上的B 点.两个分振动的数值表达式分别为x = _______________________(SI) y = _______________________(SI)5. 一钢尺两端固定,中间固定一小电机,电机轴上接有一偏心锤,电机以一定的角速度转动.若系统的固有振动频率为ν0,当偏心锤以角速度ω = ________________转动时,系统发生共振.6. 一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时,波长变成了0.37 m ,它在该介质中传播速度为_503_____________.7. 已知钢的密度ρ = 7.80 g/cm 3,杨氏模量Y = 2.03×1011 N ·m -2.则钢轨中纵波的传播速度为_____________________.8. 一横波在均匀柔软弦上传播,其表达式为y = 0.02cos π (5 x - 200 t ) (SI),若弦的线密度 μ = 50 g/m ,则弦中张力为________________________.9. 图为一种声波干涉仪,声波从入口E 进入仪器,分BC 两路在管中传播至喇叭口A 汇合传出,弯管C 可以移动以改变管路长度,当它渐渐移动时从喇叭口发出的声音周期性地增强或减弱,设C 管每移动10 cm ,声音减弱一次,则该声波的频率为(空气中声速为340 m/s )850________________________.10. 一平面简谐机械波在媒质中传播时,若一媒质质元在t 时刻的总机械能是10 J ,则在)(T t +(T 为波的周期)时刻该媒质质元的振动动能是__5J_________.--C11. (1) 一列波长为λ 的平面简谐波沿x 轴正方向传播.已知在λ21=x 处振动的方程为y = A cos ω t ,则该平面简谐波的表达式为________________________. (2) 如果在上述波的波线上x = L (λ21>L )处放一如图所示的反射面,且假设反射波的振幅为A ',则反射波的表达式为_______________________ (x ≤L ).12. 一列强度为I 的平面简谐波通过一面积为S 的平面,波速u 与该平面的法线0n13. 有A 和B 两个汽笛,其频率均为404 Hz .A 是静止的,B 以3.3 m/s 的速度远离A .在两个汽笛之间有一位静止的观察者,他听到的声音的拍频是(已知空气中的声速为330 m/s )______4______.14. 一静止的报警器,其频率为1000 Hz ,有一汽车以79.2 km 的时速驶向和背离报警器时,坐在汽车里的人听到报警声的频率分别是_________1__________和___797____________(设空气中声速为340 m/s ). 二、计算题1. 如图所示,质量为m 、长度为L 的均匀细杆,挂在无摩擦的固定轴O 上.杆的中点C 与端点A 分别用劲度系数为k 1和k 2的两个轻弹簧水平地系于固定端的墙上.杆在铅直位置时,两弹簧无变形,求细杆作微小摆动的周期.2. 一长度为l 质量为m 的均匀细杆,可绕过中点O 且垂直于杆的水平固定轴自由转动.杆的一端连一劲度系数为k 的轻弹簧,弹簧另一端固定.杆在水平位置时处于平衡,这时弹簧与杆垂直,如图所示.求此系统作微小振动(绕O 转动)的周期.3. 如图所示,将质量为M 半径为R的均匀圆柱体中心系于一水平的轻弹簧上,使它可以在水平面上无滑动地滚动.弹簧的劲度系数为k = 3 N/m .假设将圆柱体从弹簧原长处拉开x 0 = 0.20 m 后由静止释放.(1) 求圆柱体通过平衡位置时的平动动能和转动动能;(2) 求圆柱体质心的振动周期.4. 一复摆由长为l 、质量为m 的均匀细杆构成,在杆上离中心C 的距离为d 处装一光滑的水平固定轴O ,杆可绕此轴在竖直平面内振动.试求此摆作微振动的周期T .5. 一艘船在25 m 高的桅杆上装有一天线,不断发射某种波长的无线电波,已知波长在2 - 4 m 范围内,在高出海平面 150 m 的悬崖顶上有一接收站能收到这无线电波.但当那艘船驶至离悬崖底部 2 km 时,接收站就收不到无线电波.设海平面完全反射这无线电波,求所用无线电波的波长.6. 频率为 ν = 12.5×103 Hz 的平面余弦纵波沿细长的金属棒传播,棒的杨氏模量为Y = 1.9×1011 N/m 2 ,棒的密度 ρ =7.6×103 kg/m 3 .已知振幅A = 0.1 mm ,把传播方向取为x 轴,且取x = 0处初相φ 0 = 0,写出: (1) 波的表达式(数值式);(2) x = 0.10 m 处的振动方程(数值式).7. 在实验室中做驻波实验时,在一根两端固定长3 m 的弦线上以60 Hz 的频率激起横向简谐波.弦线的质量为60×10-3 kg .如要在这根弦线上产生有四个波腹的很强的驻波,必须对这根弦线施加多大的张力?8. 在作驻波实验时,将一根长2.5 m 的弦线一端系于音叉的一臂的A 点上 (如图).此音叉在垂直于弦线长度的方向上作每秒30次的简谐振动.B 点为固定端.弦线的线密度为η4×10-3 kg/m .在这根弦线上形成的驻波有五个波腹,求对这根弦线应施加多大的拉力?(A 点的振幅相对于弦线上驻波的波腹来说很小,所以A 点可以近似看作是波节).9. 一弦线的左端系于音叉的一臂的A 点上,右端固定在B 点,并用T = 7.20 N 的水平拉力将弦线拉直,音叉在垂直于弦线长度的方向上作每秒50次的简谐振动(如图).这样,在弦线上产生了入射波和反射波,并形成了驻波.弦的线密度η = 2.0 g/m , 弦线上的质点离开其平衡位置的最大位移为4 cm .在t = 0时,O 点处的质点经过其平衡位置向下运动,O 、B 之间的距离为L = 2.1 m .试求: (1) 入射波和反射波的表达式; (2) 驻波的表达式.10. 由振动频率为 400 Hz 的音叉在两端固定拉紧的弦线上建立驻波.这个驻波共有三个波腹,其振幅为0.30 cm .波在弦上的速度为 320 m/s .(1) 求此弦线的长度. (2) 若以弦线中点为坐标原点,试写出弦线上驻波的表达式.11. 如图,一角频率为ω ,振幅为A 的平面简谐波沿x 轴正方向传播,设在t = 0时该波在原点O 处引起的振动使媒质元由平衡位置向y 轴的负方向运动.M 是垂直于x 轴的波密媒质反射面.已知OO '= 7 λ /4,PO '= λ /4(λ为该波波长);设反射波不衰减,求: (1) 入射波与反射波的表达式;(2) P 点的振动方程.12. 一声源S 的振动频率为νS = 1000 Hz ,相对于空气以v S = 30 m/s 的速度向右运动,如图.在其运动方向的前方有一反射面M ,它相对于空气以v = 60 m/s 的速度向左运动.假设声波在空气中的传播速度为u = 330 m/s ,求:(1) 在声源S 右方空气中S 发射的声波的波长; (2) 每秒钟到达反射面的波的数目;(3) 反射波的波长.。
振动、波动练习题及答案
振动、波动练习题一.选择题1.一质点在X 轴上作简谐振动,振幅A=4cm 。
周期T=2s 。
其平衡位置取作坐标原点。
若t=0时刻质点第一次通过x= -2cm 处,且向X 轴负方向运动,则质点第二次通过x= -2cm 处的时刻为( )。
A 1sB 32s C 34s D 2s2.一圆频率为ω的简谐波沿X 轴的正方向传播,t=0时刻的波形如图所示,则t=0时刻,X 轴上各点的振动速度υ与X 轴上坐标的关系图应( )。
3.图示一简谐波在t=0时刻的波形图,波速υ=200m/s ,则图中O 点的振动加速度的表达式为( )。
)22cos(4.0)2cos(4.0)23cos(4.0)2cos(4.02222ππππππππππππ+-=--=-=-=t a D t a C t a B t a A4.频率为100Hz点振动的相位差为3π,则这两点相距( )。
A 2mB 2.19mC 0.5mD 28.6m5.一平面简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最大位置处的过程中,( )。
A 它的动能转换成势能B 它的势能转换成动能C 它从相邻的一段质元获得能量其能量逐渐增大D 它把自己的能量传给相邻的一段质元,其能量逐渐减小6.在下面几种说法中,正确的说法是:( )。
A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播方向上的任一质点振动位相总是比波源的位相滞后D 在波传播方向上的任一质点振动位相总是比波源的位相超前7.一质点作简谐振动,周期为T ,当它由平衡位置向X 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为( )。
A 4T B 12T C 6T D 8T8.在波长为λ的驻波中两个相邻波节之间的距离为( )。
A λ B 3λ/4 C λ/2 D λ/49.在同一媒质中两列相干的平面简谐波的强度之比421=I I 是,则两列波的振幅之比是:( ) A=21A A 4 B =21A A 2 C =21A A 16 D =21A A 4110.有二个弹簧振子系统,都在作振幅相同的简谐振动,二个轻质弹簧的劲度系数K 相同,但振子的质量不同。
高中物理练习振动与波(习题含答案)
1.下列关于简谐振动和简谐波的说法,正确的是A.媒质中质点振动的周期一定和相应的波的周期相等B.媒质中质点振动的速度一定和相应的波的波速相等C.波的传播方向一定和媒质中质点振动的方向一致D.横波的波峰与波谷在振动方向上的距离一定是质点振幅的两倍2.做简谐振动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度减小为原来的1/2,则单摆振动的A.频率、振幅都不变B.频率、振幅都改变C.频率不变、振幅改变D.频率改变、振幅不变3.家用洗衣机在正常脱水时较平稳,切断电源后,洗衣机的振动先是变得越来越剧烈,然后逐渐减弱。
对这一现象,下列说法正确的是A.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率大B.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率小C.正常脱水时,洗衣机脱水缸的运转频率等于洗衣机的固有频率D.当洗衣机的振动最剧烈时,脱水缸的运转频率恰好等于洗衣机的固有频率4.两个振动情况完全一样的波源S1、S2相距6m,它们在空间产生的干涉图样如图所示,图中实线表示振动加强的区域,虚线表示振动减弱的区域,下列说法正确的是A.两波源的振动频率一定相同B.虚线一定是波谷与波谷相遇处C.两列波的波长都为2mD.两列波的波长都为1m5.频率一定的声源在空气中向着静止的接收器匀速运动。
以u表示声源的速度,V表示声波的速度(u<V),v表示接收器接收到的频率。
若u增大,则A.v增大,V增大 B. v增大,V不变C. v不变,V增大D. v减少,V不变6.如图所示,沿x轴正方向传播的一列简谐横波在某时刻的波形图为一正弦曲线,其波速为200m/s,下列说法中正确的是A.图示时刻质点b的加速度将减小B.从图示时刻开始,经过0.01s,质点a通过的路程为0.4mC.若此波遇到另一列波并发生稳定干涉现象,则另一列波的频率为50HzD.若该波传播中遇到宽约4m的障碍物能发生明显的衍射现象7.一列沿x轴正方向传播的简谐横波,周期为0.50s。
2.波动学练习题
振动与波练习题一、填空题1. 图中所示为两个简谐振动的振动曲线.若以余弦函数表示这两个振动的合成结果,则合振动的方程为=+=21x x x ____0.04c os(w t-____________(SI)2. 双频氦氖激光器发射出频率分别为(ν+ ∆ν )和(ν- ∆ν )的两种光,其中ν =3.620×1014Hz ,∆ν = 1.6×106 Hz . 经过某种装置处理后,这两种光变为振动方向相同的光而在某处叠加,则该处合成光强度的变化频率为___3.2MHz_______.3. 为测定某音叉C 的频率,选取频率已知且与C 接近的另两个音叉A 和B ,已知A 的频率为800 Hz ,B 的频率是797 Hz ,进行下面试验:第一步,使音叉A 和C 同时振动,测得拍频为每秒2次. 第二步,使音叉B 和C 同时振动,测得拍频为每秒5次. 由此可确定音叉C 的频率为___802___________.4. 一质点同时参与两个互相垂直的同频率的谐振动,其合成运动的轨迹及旋转方向如图所示,旋转周期为2 s .t = 0时质点位于图中x 轴上的B 点.两个分振动的数值表达式分别为x = _______________________(SI) y = _______________________(SI)5. 一钢尺两端固定,中间固定一小电机,电机轴上接有一偏心锤,电机以一定的角速度转动.若系统的固有振动频率为ν0,当偏心锤以角速度ω = ________________转动时,系统发生共振.6. 一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时,波长变成了0.37 m ,它在该介质中传播速度为_503_____________.7. 已知钢的密度ρ = 7.80 g/c m 3,杨氏模量Y = 2.03×1011 N ·m -2.则钢轨中纵波的传播速度为_____________________.8. 一横波在均匀柔软弦上传播,其表达式为y = 0.02c os π (5 x - 200 t ) (SI),若弦的线密度 μ = 50 g/m ,则弦中张力为________________________.9. 图为一种声波干涉仪,声波从入口E 进入仪器,分BC 两路在管中传播至喇叭口A 汇合传出,弯管C 可以移动以改变管路长度,当它渐渐移动时从喇叭口发出的声音周期性地增强或减弱,设C 管每移动10 c m ,声音减弱一次,则该声波的频率为(空气中声速为340 m/s )850________________________.10. 一平面简谐机械波在媒质中传播时,若一媒质质元在t 时刻的总机械能是10 J ,则在)(T t +(T 为波的周期)时刻该媒质质元的振动动能是__5J_________.--C11. (1) 一列波长为λ 的平面简谐波沿x 轴正方向传播.已知在λ21=x 处振动的方程为y = A c os ω t ,则该平面简谐波的表达式为________________________. (2) 如果在上述波的波线上x = L (λ21>L )处放一如图所示的反射面,且假设反射波的振幅为A ',则反射波的表达式为_______________________ (x ≤L ).12. 一列强度为I 的平面简谐波通过一面积为S 的平面,波速u与该平面的法线0n的夹角为θ ,则通过该平面的能流是______________________________.13. 有A 和B 两个汽笛,其频率均为404 Hz .A 是静止的,B 以3.3 m/s 的速度远离A .在两个汽笛之间有一位静止的观察者,他听到的声音的拍频是(已知空气中的声速为330 m/s )______4______.14. 一静止的报警器,其频率为1000 Hz ,有一汽车以79.2 km 的时速驶向和背离报警器时,坐在汽车里的人听到报警声的频率分别是_________1__________和___797____________(设空气中声速为340 m/s ). 二、计算题1. 如图所示,质量为m 、长度为L 的均匀细杆,挂在无摩擦的固定轴O 上.杆的中点C 与端点A 分别用劲度系数为k 1和k 2的两个轻弹簧水平地系于固定端的墙上.杆在铅直位置时,两弹簧无变形,求细杆作微小摆动的周期.2. 一长度为l 质量为m 的均匀细杆,可绕过中点O 且垂直于杆的水平固定轴自由转动.杆的一端连一劲度系数为k 的轻弹簧,弹簧另一端固定.杆在水平位置时处于平衡,这时弹簧与杆垂直,如图所示.求此系统作微小振动(绕O 转动)的周期.3. 如图所示,将质量为M 半径为R的均匀圆柱体中心系于一水平的轻弹簧上,使它可以在水平面上无滑动地滚动.弹簧的劲度系数为k = 3 N/m .假设将圆柱体从弹簧原长处拉开x 0 = 0.20 m 后由静止释放.(1) 求圆柱体通过平衡位置时的平动动能和转动动能;(2) 求圆柱体质心的振动周期.4. 一复摆由长为l 、质量为m 的均匀细杆构成,在杆上离中心C 的距离为d 处装一光滑的水平固定轴O ,杆可绕此轴在竖直平面内振动.试求此摆作微振动的周期T .5. 一艘船在25 m 高的桅杆上装有一天线,不断发射某种波长的无线电波,已知波长在2 - 4 m 范围内,在高出海平面 150 m 的悬崖顶上有一接收站能收到这无线电波.但当那艘船驶至离悬崖底部 2 km 时,接收站就收不到无线电波.设海平面完全反射这无线电波,求所用无线电波的波长.6. 频率为 ν = 12.5×103 Hz 的平面余弦纵波沿细长的金属棒传播,棒的杨氏模量为Y = 1.9×1011 N/m 2 ,棒的密度 ρ =7.6×103 kg/m 3 .已知振幅A = 0.1 mm ,把传播方向取为x 轴,且取x = 0处初相φ 0 = 0,写出: (1) 波的表达式(数值式);(2) x = 0.10 m 处的振动方程(数值式).7. 在实验室中做驻波实验时,在一根两端固定长3 m 的弦线上以60 Hz 的频率激起横向简谐波.弦线的质量为60×10-3 kg .如要在这根弦线上产生有四个波腹的很强的驻波,必须对这根弦线施加多大的张力?8. 在作驻波实验时,将一根长2.5 m 的弦线一端系于音叉的一臂的A 点上 (如图).此音叉在垂直于弦线长度的方向上作每秒30次的简谐振动.B 点为固定端.弦线的线密度为η4×10-3 kg/m .在这根弦线上形成的驻波有五个波腹,求对这根弦线应施加多大的拉力?(A 点的振幅相对于弦线上驻波的波腹来说很小,所以A 点可以近似看作是波节).9. 一弦线的左端系于音叉的一臂的A 点上,右端固定在B 点,并用T = 7.20 N 的水平拉力将弦线拉直,音叉在垂直于弦线长度的方向上作每秒50次的简谐振动(如图).这样,在弦线上产生了入射波和反射波,并形成了驻波.弦的线密度η = 2.0 g/m , 弦线上的质点离开其平衡位置的最大位移为4 c m .在t = 0时,O 点处的质点经过其平衡位置向下运动,O 、B 之间的距离为L = 2.1 m .试求: (1) 入射波和反射波的表达式; (2) 驻波的表达式.10. 由振动频率为 400 Hz 的音叉在两端固定拉紧的弦线上建立驻波.这个驻波共有三个波腹,其振幅为0.30 c m .波在弦上的速度为 320 m/s .(1) 求此弦线的长度. (2) 若以弦线中点为坐标原点,试写出弦线上驻波的表达式.11. 如图,一角频率为ω ,振幅为A 的平面简谐波沿x 轴正方向传播,设在t = 0时该波在原点O 处引起的振动使媒质元由平衡位置向y 轴的负方向运动.M 是垂直于x 轴的波密媒质反射面.已知OO '= 7 λ /4,PO '= λ /4(λ为该波波长);设反射波不衰减,求: (1) 入射波与反射波的表达式;(2) P 点的振动方程.12. 一声源S 的振动频率为νS = 1000 Hz ,相对于空气以v S = 30 m/s 的速度向右运动,如图.在其运动方向的前方有一反射面M ,它相对于空气以v = 60 m/s 的速度向左运动.假设声波在空气中的传播速度为u = 330 m/s ,求:(1) 在声源S 右方空气中S 发射的声波的波长; (2) 每秒钟到达反射面的波的数目;(3) 反射波的波长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
振动1. (3380)如图所示,质量为m 的物体由劲度系数为k 1和k 2的两个轻弹簧连接,在水平光滑导轨上作微小振动,则系统的振动频率为(A) mk k 212+π=ν . (B)mk k 2121+π=ν .(C) 212121k mk k k +π=ν . (D) )(212121k k m k k +π=ν . [ B ]2. (3042)一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[ ]3.(5186) 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为: (A) )3232cos(2π+π=t x . (B) )3232cos(2π-π=t x .(C) )3234cos(2π+π=t x .(D) )3234cos(2π-π=t x .(E) )4134cos(2π-π=t x . [ ]4. (5181) 一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是(A) 4f . (B) 2 f . (C) f .(D) 2/f . (E) f /4 [ ]5. (5311)一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是(A) T /4. (B) 2/T . (C) T . (D) 2 T . (E) 4T . [ ]6. (3030) 两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位 (A) 落后/2. (B) 超前. (C) 落后. (D) 超前. [ ]7. (3009) 一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时,(1) 振子在负的最大位移处,则初相为______________________;(2) 振子在平衡位置向正方向运动,则初相为________________;(3) 振子在位移为A /2处,且向负方向运动,则初相为______. 8. (3015)在t = 0时,周期为T 、振幅为A 的单摆分别处于图(a)、(b)、(c)三种状态.若选单摆的平衡位置为坐标的原点,坐标指向正右方,则单摆作小角度摆动的振动表达式(用余弦函数表示)分别为(a) ______________________________;(b) ______________________________;(c) ______________________________.9.(3553)无阻尼自由简谐振动的周期和频率由__________________________决定.对于给定的简谐振动系统,其振辐、初相由______________决定.10. (3057) 三个简谐振动方程分别为 )21cos(1π+=t A x ω,)67cos(2π+=t A x ω和)611cos(3π+=t A x ω画出它们的旋转矢量图,并在同一坐标上画出它们的振动曲线.11. (3816)一质点沿x 轴以 x = 0 为平衡位置作简谐振动,频率为 Hz .t= 0时x = 0.37 cm 而速度等于零,则振幅是_____________________,振动的数值表达式为______________________________.12.(3046) 一简谐振动的旋转矢量图如图所示,振幅矢量长 2 cm ,则该简谐振动的初相为____________.振动方程为______________________________.13. (3017) 一质点沿x 轴作简谐振动,其角频率 = 10 rad/s .试分别写出以下两种初始状态下的振动方程:(c)v 0v 0v = 0ωωπtxOt =0t = t π/4Ox(1) 其初始位移x 0 = cm ,初始速度v 0 = cm/s ;(2) 其初始位移x 0 = cm ,初始速度v 0 = cm/s .14. (3827) 质量m = 10 g 的小球与轻弹簧组成的振动系统,按)318cos(5.0π+π=t x 的规律作自由振动,式中t 以秒作单位,x 以厘米为单位,求(1) 振动的角频率、周期、振幅和初相; (2) 振动的速度、加速度的数值表达式; (3) 振动的能量E ; (4) 平均动能和平均势能.15. (3054)一简谐振动的振动曲线如图所示.求振动方程.x (cm)t (s)-5 10 O -10216. (3043)一质点同时参与两个同方向的简谐振动,其振动方程分别为x 1 =5×10-2cos(4t + /3) (SI) , x 2 =3×10-2sin(4t - /6) (SI) 画出两振动的旋转矢量图,并求合振动的振动方程.机械波一 选择题 1. (3058)在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的. (B) 波源振动的速度与波速相同.(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于计).(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于计) [ ]2. (3067)一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为 m .(B) 波长为3 m .x (m)O 0.1 ua b(C) a 、b 两点间相位差为π21.(D) 波速为9 m/s . [ ]3. (3072)如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为)cos(0φω+=t A y ,则波的表达式为(A) }]/)([cos{0φω+--=u l x t A y . (B) })]/([cos{0φω+-=u x t A y .(C) )/(cos u x t A y -=ω.(D) }]/)([cos{0φω+-+=u l x t A y . [ ]4. (3434)两相干波源S 1和S 2相距 /4,(为波长),S 1的相位比S 2的相位超前π21,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0. (B) π21. (C) . (D) π23. [ ]5. (3101)在驻波中,两个相邻波节间各质点的振动(A) 振幅相同,相位相同. (B) 振幅不同,相位相同. (C) 振幅相同,相位不同. (D) 振幅不同,相位不同. [ ]6. (3112)一机车汽笛频率为750 Hz ,机车以时速 90 公里远离静止的观察者.观察者听到的声音的频率是(设空气中声速为340 m/s ). (A) 810 Hz . (B) 699 Hz .(C) 805 Hz . (D) 695 Hz . [ ]二 填空题.7. (本题3分)(3420)一简谐波沿BP 方向传播,它在B 点引起的振动方程为 t A y π=2cos 11.另一简谐波沿CP 方向传播,它在C 点引起的振动方程为)2cos(22π+π=t A y .P 点与B 点相距 m ,与C 点相距 m (如图).波速均为u = m/s .则两波在P 点的相位差为______________________.xOu l PyS 1S 2P λ/4P CB8. (本题3分)(3076)图为t = T / 4 时一平面简谐波的波形曲线,则其波的表达式为______________________________________________.9. (本题5分)(3133)一平面简谐波沿Ox 轴正方向传播,波长为.若如图P 1点处质点的振动方程为)2cos(1φν+π=t A y ,则P 2点处质点的振动方程为_________________________________;与P 1点处质点振动状态相同的那些点的位置是___________________________.10. (本题3分) (3291)一平面简谐机械波在媒质中传播时,若一媒质质元在t 时刻的总机械能是10 J ,则在)(T t +(T 为波的周期)时刻该媒质质元的振动动能是___________.11. (本题3分)(3587)两个相干点波源S 1和S 2,它们的振动方程分别是 )21cos(1π+=t A y ω和)21cos(2π-=t A y ω.波从S 1传到P 点经过的路程等于2个波长,波从S 2传到P 点的路程等于7 / 2个波长.设两波波速相同,在传播过程中振幅不衰减,则两波传到P 点的振动的合振幅为__________________________.12. (本题4分)(3317)一弦上的驻波表达式为)90cos()cos(1.0t x y ππ=(SI).形成该驻波的两个反向传播的行波的波长为________________,频率为__________________.三 计算题13. (本题8分)(3335)一简谐波,振动周期21=T s ,波长 = 10 m ,振幅A = m .当 t = 0时,波源振动的位移恰好为正方向的最大值.若坐标原点和波源重合,且波沿x (m)O -0.101u =330 m/sy (m)234xOP 1P 2L 1L 2Ox 轴正方向传播,求:(1) 此波的表达式; (2) t 1 = T /4时刻,x 1 = /4处质点的位移;(3) t 2 = T /2时刻,x 1 = /4处质点的振动速度.14. (本题10分)(3410)一横波沿绳子传播,其波的表达式为 )2100cos(05.0x t y π-π= (SI)(1) 求此波的振幅、波速、频率和波长.(2) 求绳子上各质点的最大振动速度和最大振动加速度. (3) 求x 1 = m 处和x 2 = m 处二质点振动的相位差.15. (本题8分)(5516)平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s .在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度.16. (本题8分)(3143)如图所示为一平面简谐波在t = 0 时刻的波形图,设此简谐波的频率为250 Hz ,且此时质点P 的运动方向向下,求(1) 该波的表达式;(2) 在距原点O 为100 m 处质点的振动方程与振动速度表达式.17. (本题8分)(3158)在均匀介质中,有两列余弦波沿Ox 轴传播,波动表达式分别为)]/(2cos[1λνx t A y -π=与 )]/(2cos[22λνx t A y +π= ,试求Ox 轴上合振幅最大与合振幅最小的那些点的位置.x (m)100-AP O 2/2A y (m)。