二叉排序树的建立及遍历的实现

合集下载

数据结构c语言课设-二叉树排序

数据结构c语言课设-二叉树排序

题目:二叉排序树的实现1 内容和要求1)编程实现二叉排序树,包括生成、插入,删除;2)对二叉排序树进展先根、中根、和后根非递归遍历;3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。

4)分别用二叉排序树和数组去存储一个班(50 人以上)的成员信息(至少包括学号、姓名、成绩3 项),比照查找效率,并说明在什么情况下二叉排序树效率高,为什么?2 解决方案和关键代码2.1 解决方案:先实现二叉排序树的生成、插入、删除,编写DisplayBST函数把遍历结果用树的形状表示出来。

前中后根遍历需要用到栈的数据构造,分模块编写栈与遍历代码。

要求比照二叉排序树和数组的查找效率,首先建立一个数组存储一个班的成员信息,分别用二叉树和数组查找,利用clock〔〕函数记录查找时间来比照查找效率。

2.2关键代码树的根本构造定义及根本函数typedef struct{KeyType key;} ElemType;typedef struct BiTNode//定义链表{ElemType data;struct BiTNode *lchild, *rchild;}BiTNode, *BiTree, *SElemType;//销毁树int DestroyBiTree(BiTree &T){if (T != NULL)free(T);return 0;}//清空树int ClearBiTree(BiTree &T){if (T != NULL){T->lchild = NULL;T->rchild = NULL;T = NULL;}return 0;}//查找关键字,指针p返回int SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p) {if (!T){p = f;return FALSE;}else if EQ(key, T->data.key){p = T;return TRUE;}else if LT(key, T->data.key)return SearchBST(T->lchild, key, T, p);elsereturn SearchBST(T->rchild, key, T, p);}二叉树的生成、插入,删除生成void CreateBST(BiTree &BT, BiTree p){int i;ElemType k;printf("请输入元素值以创立排序二叉树:\n");scanf_s("%d", &k.key);for (i = 0; k.key != NULL; i++){//判断是否重复if (!SearchBST(BT, k.key, NULL, p)){InsertBST(BT, k);scanf_s("%d", &k.key);}else{printf("输入数据重复!\n");return;}}}插入int InsertBST(BiTree &T, ElemType e){BiTree s, p;if (!SearchBST(T, e.key, NULL, p)){s = (BiTree)malloc(sizeof(BiTNode));s->data = e;s->lchild = s->rchild = NULL;if (!p)T = s;else if LT(e.key, p->data.key)p->lchild = s;elsep->rchild = s;return TRUE;}else return FALSE;}删除//某个节点元素的删除int DeleteEle(BiTree &p){BiTree q, s;if (!p->rchild) //右子树为空{q = p;p = p->lchild;free(q);}else if (!p->lchild) //左子树为空{q = p;p = p->rchild;free(q);}else{q = p;s = p->lchild;while (s->rchild){q = s;s = s->rchild;}p->data = s->data;if (q != p)q->rchild = s->lchild;elseq->lchild = s->lchild;delete s;}return TRUE;}//整棵树的删除int DeleteBST(BiTree &T, KeyType key) //实现二叉排序树的删除操作{if (!T){return FALSE;}else{if (EQ(key, T->data.key)) //是否相等return DeleteEle(T);else if (LT(key, T->data.key)) //是否小于return DeleteBST(T->lchild, key);elsereturn DeleteBST(T->rchild, key);}return 0;}二叉树的前中后根遍历栈的定义typedef struct{SElemType *base;SElemType *top;int stacksize;}SqStack;int InitStack(SqStack &S) //构造空栈{S.base = (SElemType*)malloc(STACK_INIT_SIZE *sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base;S.stacksize = STACK_INIT_SIZE;return OK;}//InitStackint Push(SqStack &S, SElemType e) //插入元素e为新栈顶{if (S.top - S.base >= S.stacksize){S.base = (SElemType*)realloc(S.base, (S.stacksize + STACKINCREMENT)*sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base + S.stacksize;S.stacksize += STACKINCREMENT;}*S.top++ = e;return OK;}//Pushint Pop(SqStack &S, SElemType &e) //删除栈顶,应用e返回其值{if (S.top == S.base) return ERROR;e = *--S.top;return OK;}//Popint StackEmpty(SqStack S) //判断是否为空栈{if (S.base == S.top) return TRUE;return FALSE;}先根遍历int PreOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);if (!Visit(p->data)) return ERROR;p = p->lchild;}else{Pop(S, p);p = p->rchild;}}return OK;}中根遍历int InOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);p = p->lchild;}else{Pop(S, p);if (!Visit(p->data)) return ERROR;p = p->rchild;}}return OK;}后根遍历int PostOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S, SS;BiTree p;InitStack(S);InitStack(SS);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);Push(SS, p);p = p->rchild;}else{if (!StackEmpty(S)){Pop(S, p);p = p->lchild;}}}while (!StackEmpty(SS)){Pop(SS, p);if (!Visit(p->data)) return ERROR;}return OK;}利用数组存储一个班学生信息ElemType a[] = { 51, "陈继真", 88,82, "黄景元", 89,53, "贾成", 88,44, "呼颜", 90,25, "鲁修德", 88,56, "须成", 88,47, "孙祥", 87, 38, "柏有患", 89, 9, " 革高", 89, 10, "考鬲", 87, 31, "李燧", 86, 12, "夏祥", 89, 53, "余惠", 84, 4, "鲁芝", 90, 75, "黄丙庆", 88, 16, "李应", 89, 87, "杨志", 86, 18, "李逵", 89, 9, "阮小五", 85, 20, "史进", 88, 21, "秦明", 88, 82, "杨雄", 89, 23, "刘唐", 85, 64, "武松", 88, 25, "李俊", 88, 86, "卢俊义", 88, 27, "华荣", 87, 28, "杨胜", 88, 29, "林冲", 89, 70, "李跃", 85, 31, "蓝虎", 90, 32, "宋禄", 84, 73, "鲁智深", 89, 34, "关斌", 90, 55, "龚成", 87, 36, "黄乌", 87, 57, "孔道灵", 87, 38, "张焕", 84, 59, "李信", 88, 30, "徐山", 83, 41, "秦祥", 85, 42, "葛公", 85, 23, "武衍公", 87, 94, "范斌", 83, 45, "黄乌", 60, 67, "叶景昌", 99, 7, "焦龙", 89, 78, "星姚烨", 85, 49, "孙吉", 90, 60, "陈梦庚", 95,};数组查询函数void ArraySearch(ElemType a[], int key, int length){int i;for (i = 0; i <= length; i++){if (key == a[i].key){cout << "学号:" << a[i].key << " 姓名:" << a[i].name << " 成绩:" << a[i].grade << endl;break;}}}二叉树查询函数上文二叉树根本函数中的SearchBST()即为二叉树查询函数。

二叉树的建立与基本操作

二叉树的建立与基本操作

二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。

二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。

本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。

一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。

下面以使用链表的方式来建立二叉树为例。

1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。

```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。

```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。

1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。

```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。

二叉树的遍历及常用算法

二叉树的遍历及常用算法

⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。

数据结构实验五(二叉树的建立及遍历)题目和源程序

数据结构实验五(二叉树的建立及遍历)题目和源程序

实验5:二叉树的建立及遍历(第十三周星期三7、8节)一、实验目的1.学会实现二叉树结点结构和对二叉树的基本操作。

2.掌握对二叉树每种操作的具体实现,学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法。

二、实验要求1.认真阅读和掌握和本实验相关的教材内容。

2.编写完整程序完成下面的实验内容并上机运行。

3.整理并上交实验报告。

三、实验内容1.编写程序任意输入二叉树的结点个数和结点值,构造一棵二叉树,采用三种递归遍历算法(前序、中序、后序)对这棵二叉树进行遍历并计算出二叉树的高度。

2 .编写程序生成下面所示的二叉树,并采用中序遍历的非递归算法对此二叉树进行遍历。

四、思考与提高1.如何计算二叉链表存储的二叉树中度数为1的结点数?2.已知有—棵以二叉链表存储的二叉树,root指向根结点,p指向二叉树中任一结点,如何求从根结点到p所指结点之间的路径?/*----------------------------------------* 05-1_递归遍历二叉树.cpp -- 递归遍历二叉树的相关操作* 对递归遍历二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>typedef char ElemType;using namespace std;typedef struct BiTNode {ElemType data;//左右孩子指针BiTNode *lchild, *rchild;}BiTNode, *BiTree;//动态输入字符按先序创建二叉树void CreateBiTree(BiTree &T) {char ch;ch = cin.get();if(ch == ' ') {T = NULL;}else {if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!" << endl;}else {//生成根结点T = (BiTNode * )malloc(sizeof(BiTNode));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);}}}//输出e的值ElemType PrintElement(ElemType e) { cout << e << " ";return e;}//先序遍历void PreOrderTraverse(BiTree T) { if (T != NULL) {//打印结点的值PrintElement(T->data);//遍历左孩子PreOrderTraverse(T->lchild);//遍历右孩子PreOrderTraverse(T->rchild);}}//中序遍历void InOrderTraverse(BiTree T) {if (T != NULL) {//遍历左孩子InOrderTraverse(T->lchild);//打印结点的值PrintElement(T->data);//遍历右孩子InOrderTraverse(T->rchild);}}//后序遍历void PostOrderTraverse(BiTree T) { if (T != NULL) {//遍历左孩子PostOrderTraverse(T->lchild);//遍历右孩子PostOrderTraverse(T->rchild);//打印结点的值PrintElement(T->data);}}//按任一种遍历次序输出二叉树中的所有结点void TraverseBiTree(BiTree T, int mark) {if(mark == 1) {//先序遍历PreOrderTraverse(T);cout << endl;}else if(mark == 2) {//中序遍历InOrderTraverse(T);cout << endl;}else if(mark == 3) {//后序遍历PostOrderTraverse(T);cout << endl;}else cout << "选择遍历结束!" << endl;}//输入值并执行选择遍历函数void ChoiceMark(BiTree T) {int mark = 1;cout << "请输入,先序遍历为1,中序为2,后序为3,跳过此操作为0:";cin >> mark;if(mark > 0 && mark < 4) {TraverseBiTree(T, mark);ChoiceMark(T);}else cout << "此操作已跳过!" << endl;}//求二叉树的深度int BiTreeDepth(BiTNode *T) {if (T == NULL) {//对于空树,返回0并结束递归return 0;}else {//计算左子树的深度int dep1 = BiTreeDepth(T->lchild);//计算右子树的深度int dep2 = BiTreeDepth(T->rchild);//返回树的深度if(dep1 > dep2)return dep1 + 1;elsereturn dep2 + 1;}}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;bt = NULL; //将树根指针置空cout << "输入规则:" << endl<< "要生成新结点,输入一个字符,""不要生成新结点的左孩子,输入一个空格,""左右孩子都不要,输入两个空格,""要结束,输入多个空格(越多越好),再回车!"<< endl << "按先序输入:";CreateBiTree(bt);cout << "树的深度为:" << BiTreeDepth(bt) << endl;ChoiceMark(bt);return 0;}/*----------------------------------------* 05-2_构造二叉树.cpp -- 构造二叉树的相关操作* 对构造二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05-2.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>#define STACK_INIT_SIZE 100 //栈的存储空间初始分配量#define STACKINCREMENT 10 //存储空间分配增量typedef char ElemType; //元素类型using namespace std;typedef struct BiTNode {ElemType data; //结点值BiTNode *lchild, *rchild; //左右孩子指针}BiTNode, *BiTree;typedef struct {BiTree *base; //在栈构造之前和销毁之后,base的值为空BiTree *top; //栈顶指针int stacksize; //当前已分配的存储空间,以元素为单位}SqStack;//构造一个空栈void InitStack(SqStack &s) {s.base = (BiTree *)malloc(STACK_INIT_SIZE * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base;s.stacksize = STACK_INIT_SIZE;}//插入元素e为新的栈顶元素void Push(SqStack &s, BiTree e) {//栈满,追加存储空间if ((s.top - s.base) >= s.stacksize) {s.base = (BiTree *)malloc((STACK_INIT_SIZE+STACKINCREMENT) * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base + s.stacksize;s.stacksize += STACK_INIT_SIZE;}*s.top++ = e;}//若栈不空,则删除s的栈顶元素,并返回其值BiTree Pop(SqStack &s) {if(s.top == s.base)cout << "栈为空,无法删除栈顶元素!" << endl;s.top--;return *s.top;}//按先序输入字符创建二叉树void CreateBiTree(BiTree &T) {char ch;//接受输入的字符ch = cin.get();if(ch == ' ') {//分支结束T = NULL;} //if' 'endelse if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!(接着输入)" << endl;} //if'\n'endelse {//生成根结点T = (BiTNode * )malloc(sizeof(BiTree));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);} //Create end}//输出e的值,并返回ElemType PrintElement(ElemType e) {cout << e << " ";return e;}//中序遍历二叉树的非递归函数void InOrderTraverse(BiTree p, SqStack &S) {cout << "中序遍历结果:";while(S.top != S.base || p != NULL) {if(p != NULL) {Push(S,p);p = p->lchild;} //if NULL endelse {BiTree bi = Pop(S);if(!PrintElement(bi->data))cout << "输出其值未成功!" << endl;p = bi->rchild;} //else end} //while endcout << endl;}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;SqStack S;InitStack(S);bt = NULL; //将树根指针置空cout << "老师要求的二叉树序列(‘空’表示空格):""12空空346空空空5空空,再回车!"<< endl << "请按先序输入一个二叉树序列(可另输入,但要为先序),""无左右孩子则分别输入空格。

二叉树的顺序存储及基本操作

二叉树的顺序存储及基本操作

二叉树的顺序存储及基本操作二叉树的顺序存储是将树中的节点按照完全二叉树从上到下、从左到右的顺序依次存储到一个一维数组中,采用这种方式存储的二叉树也被称为完全二叉树。

一、在使用顺序存储方式时,可以使用以下公式来计算一个节点的左右子节点和父节点:
1. 左子节点:2i+1(i为父节点的在数组中的下标)
2. 右子节点:2i+2
3. 父节点:(i-1)/2(i为子节点在数组中的下标)
二、基本操作:
1. 创建二叉树:按照上述公式将节点存储到数组中。

2. 遍历二叉树:可采用递归或非递归方式,进行前序、中序、后序、层次遍历。

3. 插入节点:先将节点插入到数组末尾,然后通过比较节点和其父节点的大小,进行上浮操作直到满足二叉树的性质。

4. 删除节点:先将待删除节点和最后一个节点交换位置,然后通过比较交换后的节点和其父节点的大小,进行下沉操作直到满足二
叉树的性质。

5. 查找节点:根据节点值进行查找,可采用递归或非递归方式。

6. 修改节点:根据节点值进行查找,然后进行修改操作。

数据结构入门-树的遍历以及二叉树的创建

数据结构入门-树的遍历以及二叉树的创建

数据结构⼊门-树的遍历以及⼆叉树的创建树定义:1. 有且只有⼀个称为根的节点2. 有若⼲个互不相交的⼦树,这些⼦树本⾝也是⼀个树通俗的讲:1. 树是有结点和边组成,2. 每个结点只有⼀个⽗结点,但可以有多个⼦节点3. 但有⼀个节点例外,该节点没有⽗结点,称为根节点⼀、专业术语结点、⽗结点、⼦结点、根结点深度:从根节点到最底层结点的层数称为深度,根节点第⼀层叶⼦结点:没有⼦结点的结点⾮终端节点:实际上是⾮叶⼦结点度:⼦结点的个数成为度⼆、树的分类⼀般树:任意⼀个结点的⼦结点的个数都不受限制⼆叉树:任意⼀个结点的⼦结点个数最多是两个,且⼦结点的位置不可更改⼆叉数分类:1. ⼀般⼆叉数2. 满⼆叉树:在不增加树层数的前提下,⽆法再多添加⼀个结点的⼆叉树3. 完全⼆叉树:如果只是删除了满⼆叉树最底层最右边的连续若⼲个结点,这样形成的⼆叉树就是完全⼆叉树森林:n个互不相交的树的集合三、树的存储⼆叉树存储连续存储(完全⼆叉树)优点:查找某个结点的⽗结点和⼦结点(也包括判断有没有⼦结点)速度很快缺点:耗⽤内存空间过⼤链式存储⼀般树存储1. 双亲表⽰法:求⽗结点⽅便2. 孩⼦表⽰法:求⼦结点⽅便3. 双亲孩⼦表⽰法:求⽗结点和⼦结点都很⽅便4. ⼆叉树表⽰法:把⼀个⼀般树转化成⼀个⼆叉树来存储,具体转换⽅法:设法保证任意⼀个结点的左指针域指向它的第⼀个孩⼦,右指针域指向它的兄弟,只要能满⾜此条件,就可以把⼀个⼀般树转化为⼆叉树⼀个普通树转换成的⼆叉树⼀定没有右⼦树森林的存储先把森林转化为⼆叉树,再存储⼆叉树四、树的遍历先序遍历:根左右先访问根结点,再先序访问左⼦树,再先序访问右⼦树中序遍历:左根右中序遍历左⼦树,再访问根结点,再中序遍历右⼦树后续遍历:左右根后续遍历左⼦树,后续遍历右⼦树,再访问根节点五、已知两种遍历求原始⼆叉树给定了⼆叉树的任何⼀种遍历序列,都⽆法唯⼀确定相应的⼆叉树,但是如果知道了⼆叉树的中序遍历序列和任意的另⼀种遍历序列,就可以唯⼀地确定⼆叉树已知先序和中序求后序先序:ABCDEFGH中序:BDCEAFHG求后序:这个⾃⼰画个图体会⼀下就可以了,⾮常简单,这⾥简单记录⼀下1. ⾸先根据先序确定根,上⾯的A就是根2. 中序确定左右,A左边就是左树(BDCE),A右边就是右树(FHG)3. 再根据先序,A左下⾯就是B,然后根据中序,B左边没有,右边是DCE4. 再根据先序,B右下是C,根据中序,c左下边是D,右下边是E,所以整个左树就确定了5. 右树,根据先序,A右下是F,然后根据中序,F的左下没有,右下是HG,6. 根据先序,F右下为G,然后根据中序,H在G的左边,所以G的左下边是H再来⼀个例⼦,和上⾯的思路是⼀样的,这⾥就不详细的写了先序:ABDGHCEFI中序:GDHBAECIF已知中序和后序求先序中序:BDCEAFHG后序:DECBHGFA这个和上⾯的思路是⼀样的,只不过是反过来找,后序找根,中序找左右树简单应⽤树是数据库中数据组织⼀种重要形式操作系统⼦⽗进程的关系本⾝就是⼀棵树⾯向对象语⾔中类的继承关系哈夫曼树六、⼆叉树的创建#include <stdio.h>#include <stdlib.h>typedef struct Node{char data;struct Node * lchild;struct Node * rchild;}BTNode;/*⼆叉树建⽴*/void BuildBT(BTNode ** tree){char ch;scanf("%c" , &ch); // 输⼊数据if(ch == '#') // 如果这个节点的数据是#说明这个结点为空*tree = NULL;else{*tree = (BTNode*)malloc(sizeof(BTNode));//申请⼀个结点的内存 (*tree)->data = ch; // 将数据写⼊到结点⾥⾯BuildBT(&(*tree)->lchild); // 递归建⽴左⼦树BuildBT(&(*tree)->rchild); // 递归建⽴右⼦树}}/*⼆叉树销毁*/void DestroyBT(BTNode *tree) // 传⼊根结点{if(tree != NULL){DestroyBT(tree->lchild);DestroyBT(tree->rchild);free(tree); // 释放内存空间}}/*⼆叉树的先序遍历*/void Preorder(BTNode * node){if(node == NULL)return;else{printf("%c ",node->data );Preorder(node->lchild);Preorder(node->rchild);}}/*⼆叉树的中序遍历*/void Inorder(BTNode * node){if(node == NULL)return;else{Inorder(node->lchild);printf("%c ",node->data );Inorder(node->rchild);}}/*⼆叉树的后序遍历*/void Postorder(BTNode * node){if(node == NULL)return;else{Postorder(node->lchild);Postorder(node->rchild);printf("%c ",node->data );}}/*⼆叉树的⾼度树的⾼度 = max(左⼦树⾼度,右⼦树⾼度) +1*/int getHeight(BTNode *node){int Height = 0;if (node == NULL)return 0;else{int L_height = getHeight(node->lchild);int R_height = getHeight(node->rchild);Height = L_height >= R_height ? L_height +1 : R_height +1; }return Height;}int main(int argc, char const *argv[]){BTNode * BTree; // 定义⼀个⼆叉树printf("请输⼊⼀颗⼆叉树先序序列以#表⽰空结点:");BuildBT(&BTree);printf("先序序列:");Preorder(BTree);printf("\n中序序列:");Inorder(BTree);printf("\n后序序列:");Postorder(BTree);printf("\n树的⾼度为:%d" , getHeight(BTree));return 0;}// ABC##DE##F##G##。

二叉树常用的三种遍历方法

二叉树常用的三种遍历方法

二叉树常用的三种遍历方法二叉树是一种常用的数据结构,它由一个根节点和两个子节点组成,其中左子节点小于根节点,右子节点大于根节点。

遍历二叉树是对所有节点进行访问的过程,常用的三种遍历方法是前序遍历、中序遍历和后序遍历。

下面将详细介绍这三种方法的实现步骤。

一、前序遍历前序遍历是指先访问根节点,然后按照左子树、右子树的顺序依次访问每个节点。

具体实现步骤如下:1. 如果当前节点为空,则返回。

2. 访问当前节点。

3. 递归进入左子树。

4. 递归进入右子树。

代码实现:void preorderTraversal(TreeNode* root) {if (root == NULL) return;cout << root->val << " ";preorderTraversal(root->left);preorderTraversal(root->right);}二、中序遍历中序遍历是指先访问左子树,然后访问根节点,最后访问右子树。

具体实现步骤如下:1. 如果当前节点为空,则返回。

2. 递归进入左子树。

3. 访问当前节点。

4. 递归进入右子树。

代码实现:void inorderTraversal(TreeNode* root) {if (root == NULL) return;inorderTraversal(root->left);cout << root->val << " ";inorderTraversal(root->right);}三、后序遍历后序遍历是指先访问左子树,然后访问右子树,最后访问根节点。

具体实现步骤如下:1. 如果当前节点为空,则返回。

2. 递归进入左子树。

3. 递归进入右子树。

4. 访问当前节点。

代码实现:void postorderTraversal(TreeNode* root) {if (root == NULL) return;postorderTraversal(root->left);postorderTraversal(root->right);cout << root->val << " ";}总结:以上就是二叉树常用的三种遍历方法的详细介绍和实现步骤。

数据结构_二叉树的遍历_课程设计

数据结构_二叉树的遍历_课程设计

8
if(bt!=NULL)/*二叉树 bt 非空*/ { inorder(bt->lchild);/*中序遍历 bt 的左子树*/ printf("%c",bt->data);/*访问结点 bt*/ inorder(bt->rchild);/*中序遍历 bt 的右子树*/ } } void postorder(bitree *bt)/*后序序遍历二叉树*/ { if(bt!=NULL) { postorder(bt->lchild); postorder(bt->rchild); printf("%c",bt->data); } }
3.2.2 二叉树的中序递归遍历算法
void inorder(bitree *bt)/*中序序遍历二叉树*/ { if(bt!=NULL)/*二叉树 bt 非空*/ { inorder(bt->lchild);/*中序遍历 bt 的左子树*/ printf("%c",bt->data);/*访问结点 bt*/ inorder(bt->rchild);/*中序遍历 bt 的右子树*/ } }
图 1 “菜单”界面
图2
创建二叉树
5
图 3 二叉树的先序遍历
图4
二叉树的中序输出
6
图 5 二叉树的后序输出
五:实验总结 虽然做的过程中出现很多错误。但是最后还是一一纠正了,并在其中发现了自 身的不足,补学补差。最后终于完成了。
六:源程序附录
#include<stdio.h> #include<stdlib.h> typedef char datatype; typedef struct node { datatype data;/*数据元素*/ struct node *lchild,*rchild;/*指向左,右孩子*/ }bitree; bitree *root;/*二叉树结点类型定义*/ bitree *creatbitree(bitree *root)/*创建二叉树*/ { char ch;

数据结构实验三——二叉树基本操作及运算实验报告

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。

问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。

由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。

处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。

算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。

输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。

对二叉树的一些运算结果以整型输出。

程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。

计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。

对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。

测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。

山东大学数据结构实验报告四

山东大学数据结构实验报告四

山东大学数据结构实验报告四一、引言数据结构实验报告四旨在通过实践巩固和应用所学的数据结构知识,培养学生的编程能力和问题解决能力。

本次实验的主要目的是设计并实现一个基于数据结构的应用程序,通过使用合适的数据结构和算法解决实际问题。

二、实验内容本次实验要求设计一个程序,实现以下功能:1. 输入一组整数,建立一个二叉排序树;2. 实现二叉排序树的查找、插入和删除操作;3. 对建立的二叉排序树进行中序遍历,并输出排序结果。

三、实验步骤1. 设计二叉排序树的数据结构在开始编写代码之前,我们需要先设计二叉排序树的数据结构。

二叉排序树的每个节点包含一个整数值和两个指针,分别指向左子树和右子树。

2. 实现二叉排序树的建立首先,我们需要实现一个函数,用于创建二叉排序树。

该函数根据输入的一组整数,逐个插入到二叉排序树中。

具体步骤如下:- 创建一个空的二叉排序树;- 依次读取输入的整数,并将其插入到二叉排序树中的合适位置;- 返回建立好的二叉排序树。

3. 实现二叉排序树的查找在二叉排序树中查找一个特定的值,可以使用递归或迭代的方式实现。

具体步骤如下:- 如果当前节点为空,返回空指针;- 如果当前节点的值等于目标值,返回当前节点;- 如果目标值小于当前节点的值,递归地在左子树中查找;- 如果目标值大于当前节点的值,递归地在右子树中查找。

4. 实现二叉排序树的插入在二叉排序树中插入一个新的值,需要保持二叉排序树的有序性。

具体步骤如下:- 如果树为空,将新值作为根节点插入;- 如果新值小于当前节点的值,将新值插入到左子树中;- 如果新值大于当前节点的值,将新值插入到右子树中。

5. 实现二叉排序树的删除在二叉排序树中删除一个特定的值,需要保持二叉排序树的有序性。

具体步骤如下:- 如果树为空,返回空指针;- 如果目标值小于当前节点的值,递归地在左子树中删除;- 如果目标值大于当前节点的值,递归地在右子树中删除;- 如果目标值等于当前节点的值,进行删除操作。

设计以先序遍历的顺序建立二叉树的二叉链表存储结构的算法

设计以先序遍历的顺序建立二叉树的二叉链表存储结构的算法

设计以先序遍历的顺序建立二叉树的二叉链表存储结构的算法一、算法简介二叉树是一种重要的树形结构,它的建立方式有多种,其中一种是按照先序遍历的顺序建立二叉树。

这种方式需要将先序遍历序列和二叉树的存储结构相结合,采用二叉链表存储结构。

具体流程是按照先序遍历序列的顺序依次创建二叉树的各个节点,同时使用二叉链表结构保存每个节点的数据和指针信息。

二、算法实现算法的实现主要包括初始化二叉树、创建节点、建立二叉树等步骤,下面对这些步骤进行详细描述。

1. 初始化二叉树初始化二叉树需要创建一个根节点,同时将根节点的左右指针指向NULL,表示二叉树为空。

2. 创建节点创建节点需要通过输入元素数据来创建,同时节点的左右指针也需要初始化为NULL。

3. 建立二叉树建立二叉树是按照先序遍历序列来实现的,具体流程如下:(1)读入当前节点的元素数据,创建节点,并将其作为当前节点。

(2)判断当前节点的元素数据是否为结束符号(这里结束符号可以指定),如果是,则返回NULL。

(3)递归创建当前节点的左子树,将左子树的根节点赋值给当前节点的左指针。

(4)递归创建当前节点的右子树,将右子树的根节点赋值给当前节点的右指针。

(5)返回当前节点。

三、算法优化虽然上述算法实现简单明了,但它有一个缺点,即无法处理空节点的情况,如果输入的先序遍历序列中存在空节点,那么该算法就无法建立正确的二叉树了。

因此,可以在输入的先序遍历序列中使用一个特殊的符号(如#)表示空节点,在建立节点时,如果遇到该符号,则将该节点的指针设置为NULL即可。

四、算法总结按照先序遍历的顺序建立二叉树是一种基于二叉链表存储结构的建树方式。

它通过递归的方式构建整个二叉树,同时为了处理空节点的情况,还需要对输入的先序遍历序列进行特殊处理。

该算法的效率较高,适用于对先序遍历序列已知的情况下建立二叉树。

二叉树的遍历代码

二叉树的遍历代码

二叉树的遍历代码二叉树是一种非常常见的数据结构,它由根节点、左子树和右子树组成,可以用于实现各种算法和应用。

在使用二叉树时,我们常常需要进行遍历来获取树中的节点信息。

下面,我们将详细介绍二叉树的遍历方法及其代码实现。

二叉树的遍历方法分为三种:前序遍历、中序遍历和后序遍历。

它们的不同之处在于遍历节点的顺序不同。

我们分别来介绍一下这三种遍历方法。

1.前序遍历前序遍历的顺序是:先访问根节点,然后递归访问左子树和右子树。

实现前序遍历的代码如下:```pythondef preorder_traversal(node):if node:print(node.data)preorder_traversal(node.left)preorder_traversal(node.right)```在代码中,我们首先输出根节点的值,然后分别递归访问左子树和右子树,直到遍历完整个树。

2.中序遍历中序遍历的顺序是:先递归访问左子树,然后访问根节点,最后递归访问右子树。

实现中序遍历的代码如下:```pythondef inorder_traversal(node):if node:inorder_traversal(node.left)print(node.data)inorder_traversal(node.right)```在代码中,我们先递归访问左子树,然后输出根节点的值,最后递归访问右子树。

3.后序遍历后序遍历的顺序是:先递归访问左子树和右子树,然后访问根节点。

实现后序遍历的代码如下:```pythondef postorder_traversal(node):if node:postorder_traversal(node.left)postorder_traversal(node.right)print(node.data)```在代码中,我们先递归访问左子树和右子树,然后输出根节点的值。

通过前序遍历、中序遍历和后序遍历,我们可以获取二叉树中每个节点的值。

二叉树的建立和遍历实验报告

二叉树的建立和遍历实验报告

二叉树的建立和遍历实验报告一、引言(100字)二叉树是一种常见的数据结构,它由根节点、左子树和右子树组成,具有递归性质。

本次实验的目的是了解二叉树的建立过程和遍历算法,以及熟悉二叉树的相关操作。

本实验采用C语言进行编写。

二、实验内容(200字)1.二叉树的建立:通过输入节点的值,逐个建立二叉树的节点,并通过指针连接起来。

2.二叉树的遍历:实现二叉树的三种常用遍历算法,即前序遍历、中序遍历和后序遍历。

三、实验过程(400字)1.二叉树的建立:首先,定义二叉树的节点结构,包含节点值和指向左右子树的指针;然后,通过递归的方式,依次输入节点的值,创建二叉树节点,建立好节点之间的连接。

2.二叉树的前序遍历:定义一个函数,实现前序遍历的递归算法,先输出当前节点的值,再递归遍历左子树和右子树。

3.二叉树的中序遍历:同样,定义一个函数,实现中序遍历的递归算法,先递归遍历左子树,再输出当前节点的值,最后递归遍历右子树。

4.二叉树的后序遍历:同样,定义一个函数,实现后序遍历的递归算法,先递归遍历左子树和右子树,再输出当前节点的值。

四、实验结果(300字)通过实验,我成功建立了一个二叉树,并实现了三种遍历算法。

对于建立二叉树来说,只要按照递归的思路,先输入根节点的值,再分别输入左子树和右子树的值,即可依次建立好节点之间的连接。

建立好二叉树后,即可进行遍历操作。

在进行遍历算法的实现时,我首先定义了一个函数来进行递归遍历操作。

在每一次递归调用中,我首先判断当前节点是否为空,若为空则直接返回;若不为空,则按照特定的顺序进行遍历操作。

在前序遍历中,我先输出当前节点的值,再递归遍历左子树和右子树;在中序遍历中,我先递归遍历左子树,再输出当前节点的值,最后递归遍历右子树;在后序遍历中,我先递归遍历左子树和右子树,再输出当前节点的值。

通过运行程序,我成功进行了二叉树的建立和遍历,并得到了正确的结果。

可以看到,通过不同的遍历顺序,可以获得不同的遍历结果,这也是二叉树遍历算法的特性所在。

创建二叉树的三种算法

创建二叉树的三种算法

创建二叉树的三种算法1.递归算法递归算法是最直观也是最常用的创建二叉树的方法之一、递归算法通过递归地创建左子树和右子树来构建完整的二叉树。

具体步骤如下:-创建一个二叉树结构的定义,包含一个存储数据的变量和左右子节点。

-如果当前节点为空,直接将新节点插入当前位置。

-如果新节点的值小于当前节点的值,递归地将新节点插入当前节点的左子树。

-如果新节点的值大于等于当前节点的值,递归地将新节点插入当前节点的右子树。

递归算法的示例代码如下所示:```pythonclass TreeNode:def __init__(self, val):self.val = valself.left = Noneself.right = Nonedef insert(root, val):if root is None:return TreeNode(val)if val < root.val:root.left = insert(root.left, val)elif val >= root.val:root.right = insert(root.right, val)return root```2.先序遍历算法先序遍历算法通过遍历给定的节点集合,按照先序的顺序将节点逐个插入到二叉树中。

这种算法可以使用栈来实现。

具体步骤如下:-创建一个空栈,同时创建一个新节点的拷贝作为当前节点。

-依次遍历给定的节点集合,如果新节点的值小于当前节点的值,将当前节点的左子节点指向新节点,并将新节点入栈,并将新节点移动到当前节点的左子节点。

-如果新节点的值大于等于当前节点的值,重复上述过程,直到找到一个合适的位置并插入新节点。

-当遍历完所有节点后,返回二叉树的根节点。

先序遍历算法的示例代码如下所示:```pythonclass TreeNode:def __init__(self, val): self.val = valself.left = Noneself.right = Nonedef insert(root, val): if root is None:return TreeNode(val) stack = []cur = rootwhile True:if val < cur.val:if not cur.left:cur.left = TreeNode(val) breakelse:cur = cur.leftelse:if not cur.right:cur.right = TreeNode(val)breakelse:cur = cur.rightreturn root```3.层次遍历算法层次遍历算法通过逐层遍历给定的节点集合,按照从上到下、从左到右的顺序将节点逐个插入到二叉树中。

二叉树的创建与遍历的实验总结

二叉树的创建与遍历的实验总结

二叉树的创建与遍历的实验总结引言二叉树是一种重要的数据结构,在计算机科学中有着广泛的应用。

了解二叉树的创建和遍历方法对于数据结构的学习和算法的理解至关重要。

本文将对二叉树的创建和遍历进行实验,并总结相应的经验和思考。

二叉树的定义在开始实验之前,我们首先需要了解二叉树的定义和基本概念。

二叉树是一种每个节点最多拥有两个子节点的树形结构。

每个节点包含一个值和指向其左右子节点的指针。

根据节点的位置,可以将二叉树分为左子树和右子树。

创建二叉树二叉树的创建可以采用多种方法,包括手动创建和通过编程实现。

在实验中,我们主要关注通过编程方式实现二叉树的创建。

1. 递归方法递归是一种常用的创建二叉树的方法。

通过递归,我们可以从根节点开始,逐层创建左子树和右子树。

具体步骤如下:1.创建一个空节点作为根节点。

2.递归地创建左子树。

3.递归地创建右子树。

递归方法的代码实现如下所示:class TreeNode:def __init__(self, value):self.value = valueself.left = Noneself.right = Nonedef create_binary_tree(values):if not values:return None# 使用队列辅助创建二叉树queue = []root = TreeNode(values[0])queue.append(root)for i in range(1, len(values)):node = TreeNode(values[i])# 当前节点的左子节点为空,则将新节点作为左子节点if not queue[0].left:queue[0].left = node# 当前节点的右子节点为空,则将新节点作为右子节点elif not queue[0].right:queue[0].right = node# 当前节点的左右子节点已经齐全,可以从队列中删除该节点queue.pop(0)# 将新节点添加到队列中,下一次循环时可以使用该节点queue.append(node)return root2. 非递归方法除了递归方法,我们还可以使用非递归方法创建二叉树。

二叉排序树与平衡二叉排序树基本操作的实现 文本文档

二叉排序树与平衡二叉排序树基本操作的实现 文本文档

10 设计说明书(论文)质量 30 综述简练完整,有见解;立论正确,论述充分,结论严谨合理;实验正确,分析处理科学。
11 创新 10 对前人工作有改进或突破,或有独特见解。
成绩
指导教师评语
指导教师签名: 年 月 日
摘要及关键字
本程序中的数据采用“树形结构”作为其数据结构。具体采用的是“二叉排序树”。
1.2.5 平衡二叉树( AVL树 )
①平衡二叉树(Balanced Binary Tree)是指树中任一结点的左右子树的高度大致相同。 ②任一结点的左右子树的高度均相同(如满二叉树),则二叉树是完全平衡的。通常,只要二叉树的高度为O(1gn),就可看作是平衡的。 ③平衡的二叉排序树指满足BST性质的平衡二叉树。 ④AVL树中任一结点的左、右子树的高度之差的绝对值不超过1。在最坏情况下,n个结点的AVL树的高度约为1.44lgn。而完全平衡的二叉树高度约为lgn,AVL树是最接近最优的。
1.2.4平均查找长度…………………………………………………………… 6
1.2.5平均二叉树(AVL树)…………………………………………………… 6
1.2.6平衡因子………………………………………………………………… 7
1.2.7平衡二叉树的调整方法…………………………………………………… 7
攀枝花学院本科学生课程设计任务书
题 目 二叉排序树与平衡二叉树的实现
1、课程设计的目的
使学生进一步理解和掌握课堂上所学各种基本抽象数据类型的逻辑结构、存储结构和操作实现算法,以及它们在程序中的使用方法。
使学生掌握软件设计的基本内容和设计方法,并培养学生进行规范化软件设计的能力。
3) 使学生掌握使用各种计算机资料和有关参考资料,提高学生进行程序设计的基本能力。

二叉树的四种遍历算法

二叉树的四种遍历算法

⼆叉树的四种遍历算法⼆叉树作为⼀种重要的数据结构,它的很多算法的思想在很多地⽅都⽤到了,⽐如STL算法模板,⾥⾯的优先队列、集合等等都⽤到了⼆叉树⾥⾯的思想,先从⼆叉树的遍历开始:看⼆叉树长什么样⼦:我们可以看到这颗⼆叉树⼀共有七个节点0号节点是根节点1号节点和2号节点是0号节点的⼦节点,1号节点为0号节点的左⼦节点,2号节点为0号节点的右⼦节点同时1号节点和2号节点⼜是3号节点、四号节点和五号节点、6号节点的双亲节点五号节点和6号节点没有⼦节点(⼦树),那么他们被称为‘叶⼦节点’这就是⼀些基本的概念⼆叉树的遍历⼆叉树常⽤的遍历⽅式有:前序遍历、中序遍历、后序遍历、层序遍历四种遍历⽅式,不同的遍历算法,其思想略有不同,我们来看⼀下这四种遍历⽅法主要的算法思想:1、先序遍历⼆叉树顺序:根节点 –> 左⼦树 –> 右⼦树,即先访问根节点,然后是左⼦树,最后是右⼦树。

上图中⼆叉树的前序遍历结果为:0 -> 1 -> 3 -> 4 -> 2 -> 5 -> 62、中序遍历⼆叉树顺序:左⼦树 –> 根节点 –> 右⼦树,即先访问左⼦树,然后是根节点,最后是右⼦树。

上图中⼆叉树的中序遍历结果为:3 -> 1 -> 4 -> 0 -> 5 -> 2 -> 63、后续遍历⼆叉树顺序:左⼦树 –> 右⼦树 –> 根节点,即先访问左⼦树,然后是右⼦树,最后是根节点。

上图中⼆叉树的后序遍历结果为:3 -> 4 -> 1 -> 5 -> 6 -> 2 -> 04、层序遍历⼆叉树顺序:从最顶层的节点开始,从左往右依次遍历,之后转到第⼆层,继续从左往右遍历,持续循环,直到所有节点都遍历完成上图中⼆叉树的层序遍历结果为:0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6下⾯是四种算法的伪代码:前序遍历:preOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束cout << tree[n].w ; // 输出当前节点内容preOrderParse(tree[n].leftChild); // 递归输出左⼦树preOrderParse(tree[n].rightChild); // 递归输出右⼦树}中序遍历inOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束inOrderParse(tree[n].leftChild); // 递归输出左⼦树cout << tree[n].w ; // 输出当前节点内容inOrderParse(tree[n].rightChild); // 递归输出右⼦树}pastOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束pastOrderParse(tree[n].leftChild); // 递归输出左⼦树pastOrderParse(tree[n].rightChild); // 递归输出右⼦树cout << tree[n].w ; // 输出当前节点内容}可以看到前三种遍历都是直接通过递归来完成,⽤递归遍历⼆叉树简答⽅便⽽且好理解,接下来层序遍历就需要动点脑筋了,我们如何将⼆叉树⼀层⼀层的遍历输出?其实在这⾥我们要借助⼀种数据结构来完成:队列。

二叉树先序遍历c语言

二叉树先序遍历c语言

二叉树先序遍历c语言在计算机科学的领域中,二叉树是一种非常重要且常用的数据结构。

它由节点组成,每个节点可以存储一个值,并且最多有两个子节点,分别称为左子节点和右子节点。

二叉树可以用来解决许多实际问题,例如在编写搜索算法时,可以使用二叉树来快速定位目标值。

同时,二叉树还可以用于构建更复杂的数据结构,例如堆和红黑树。

在二叉树中,先序遍历是一种遍历方式。

它的步骤如下:1. 访问根节点。

2. 遍历左子树。

3. 遍历右子树。

下面我们将用C语言来实现二叉树的先序遍历。

首先,我们需要定义一个二叉树节点的结构体,如下所示:```ctypedef struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;} TreeNode;```然后,我们可以通过递归的方式来实现先序遍历函数,代码如下:```cvoid preorderTraversal(TreeNode* root) {if (root == NULL) {return;}printf("%d ", root->val); // 访问根节点preorderTraversal(root->left); // 遍历左子树preorderTraversal(root->right); // 遍历右子树}```在这个递归函数中,我们首先判断根节点是否为空,如果为空则返回。

然后,我们访问根节点的值,并依次递归地遍历左子树和右子树。

接下来,我们可以创建一个二叉树并测试我们的先序遍历函数。

下面是一个简单的示例:```cint main() {TreeNode* root = malloc(sizeof(TreeNode));root->val = 1;TreeNode* node1 = malloc(sizeof(TreeNode));node1->val = 2;TreeNode* node2 = malloc(sizeof(TreeNode));node2->val = 3;root->left = node1;root->right = node2;printf("先序遍历结果:");preorderTraversal(root);printf("\n");return 0;}```在这个示例中,我们创建了一个具有三个节点的二叉树,并调用先序遍历函数进行遍历。

用C语言编写二叉树的建立与遍历

用C语言编写二叉树的建立与遍历

用C语言编写二叉树的建立与遍历1.对题目要有需求分析在需求分析中,将题目中要求的功能进行叙述分析,并且设计解决此问题的数据存储结构,设计或叙述解决此问题的算法。

给出实现功能的一组或多组测试数据,程序调试后,将按照此测试数据进行测试的结果列出来。

如果程序不能正常运行,写出实现此算法中遇到的问题和改进方法;2.对题目要有相应的源程序源程序要按照写程序的规则来编写。

要结构清晰,重点函数的重点变量,重点功能部分要加上清晰的程序注释。

(注释量占总代码的四分之一)程序能够运行,要有基本的容错功能。

尽量避免出现操作错误时出现死循环;3.最后提供的主程序可以象一个应用系统一样有主窗口,通过主菜单和分级菜单调用课程设计中要求完成的各个功能模块,调用后可以返回到主菜单,继续选择其他功能进行其他功能的选择。

二叉树的建立与遍历[问题描述]建立一棵二叉树,并对其进行遍历(先序、中序、后序),打印输出遍历结果。

[基本要求]从键盘接受输入,以二叉链表作为存储结构,建立二叉树,并对其进行遍历(先序、中序、后序),将遍历结果打印输出。

以下是我的数据结构实验的作业:肯定好用,里面还包括了统计树的深度和叶子数!记住每次做完一个遍历还要重新输入你的树哦!#include "stdio.h"#include "string.h"#define NULL 0typedef struct BiTNode{char data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;BiTree Create(BiTree T){char ch;ch=getchar();if(ch=='#')T=NULL;else{if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))printf("Error!");T->data=ch;T->lchild=Create(T->lchild);T->rchild=Create(T->rchild); }return T;}void Preorder(BiTree T){if(T){printf("%c",T->data); Preorder(T->lchild); Preorder(T->rchild);}}int Sumleaf(BiTree T){int sum=0,m,n;if(T){if((!T->lchild)&&(!T->rchild)) sum++;m=Sumleaf(T->lchild);sum+=m;n=Sumleaf(T->rchild);sum+=n;}return sum;}void zhongxu(BiTree T){if(T){zhongxu(T->lchild);printf("%c",T->data); zhongxu(T->rchild);}}void houxu(BiTree T){if(T){houxu(T->lchild);houxu(T->rchild);printf("%c",T->data);}}int Depth(BiTree T){int dep=0,depl,depr;if(!T) dep=0;else{depl=Depth(T->lchild);depr=Depth(T->rchild);dep=1+(depl>depr?depl:depr);}return dep;}main(){BiTree T;int sum,dep;T=Create(T);Preorder(T);printf("\n");zhongxu(T);printf("\n");houxu(T);printf("\n");sum=Sumleaf(T);printf("%d",sum);dep=Depth(T);printf("\n%d",dep);}在Turbo C的环境下,先按Ctrl+F9运行程序,此时就是建立二叉树的过程,例如输入序列ABC##DE#G##F###(其中的“#”表示空,并且输入过程中不要加回车,因为回车也有对应的ASCII码,是要算字符的,但是输入完之后可以按回车退出),然后再按ALT+F5显示用户界面,这时候就能够看到结果了。

写出由后根和中根遍历序列建二叉树的算法

写出由后根和中根遍历序列建二叉树的算法

写出由后根和中根遍历序列建二叉树的算法由后根和中根遍历序列建二叉树的算法,可以分为以下几个步骤:1. 从后根遍历序列中选取最后一个节点作为根节点。

2. 在中根遍历序列中找到根节点的位置,将中根遍历序列分为左右两个子序列。

3. 根据左子序列和右子序列的长度,将后根遍历序列分为左右两个子序列。

4. 递归处理左子树和右子树,分别以左子序列和右子序列为后根遍历序列,以左子序列和右子序列为中根遍历序列。

具体实现可以参考以下的伪代码:```function buildTree(postorder, inorder)if postorder is empty or inorder is emptyreturn null// 从后根遍历序列中选取最后一个节点作为根节点root = stnode = new TreeNode(root)// 在中根遍历序列中找到根节点的位置index = inorder.indexOf(root)// 将中根遍历序列分为左右两个子序列leftInorder = inorder[0...index-1]rightInorder = inorder[index+1...inorder.length-1]// 根据左子序列和右子序列的长度,将后根遍历序列分为左右两个子序列leftPostorder = postorder[0...leftInorder.length-1]rightPostorder = postorder[leftInorder.length...postorder.length-2]// 递归处理左子树和右子树node.left = buildTree(leftPostorder, leftInorder)node.right = buildTree(rightPostorder, rightInorder)return node```以上就是由后根和中根遍历序列建二叉树的算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计任务书题目: 二叉排序树的建立及遍历的实现初始条件:理论:学习了《数据结构》课程,掌握了基本的数据结构和常用的算法;实践:计算机技术系实验室提供计算机及软件开发环境。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、系统应具备的功能:(1)建立二叉排序树;(2)中序遍历二叉排序树并输出排序结果;2、数据结构设计;3、主要算法设计;4、编程及上机实现;5、撰写课程设计报告,包括:(1)设计题目;(2)摘要和关键字;(3)正文,包括引言、需求分析、数据结构设计、算法设计、程序实现及测试、设计体会等;(4)结束语;(5)参考文献。

时间安排:2007年7月2日-7日(第18周)7月2日查阅资料7月3日系统设计,数据结构设计,算法设计7月4日-5日编程并上机调试7月6日撰写报告7月7日验收程序,提交设计报告书。

指导教师签名: 2007年7月2日系主任(或责任教师)签名: 2007年7月2日排序二叉树的建立及其遍历的实现摘要:我所设计的课题为排序二叉树的建立及其遍历的实现,它的主要功能是将输入的数据组合成排序二叉树,并进行,先序,中序和后序遍历。

设计该课题采用了C语言程序设计,简洁而方便,它主要运用了建立函数,调用函数,建立递归函数等等方面来进行设计。

关键字:排序二叉树,先序遍历,中序遍历,后序遍历0.引言我所设计的题目为排序二叉树的建立及其遍历的实现。

排序二叉树或是一棵空树;或是具有以下性质的二叉树:(1)若它的左子树不空,则作子树上所有的结点的值均小于它的根结点的值;(2)若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;(3)它的左,右子树也分别为二叉排序树。

对排序二叉树的建立需知道其定义及其通过插入结点来建立排序二叉树,遍历及其输出结果。

该设计根据输入的数据进行建立排序二叉树。

对排序二叉树的遍历,其关键是运用递归调用,这将极大的方便算法设计。

1.需求分析建立排序二叉树,主要是需要建立节点用来存储输入的数据,需要建立函数用来创造排序二叉树,在函数内,需要进行数据比较决定数据放在左子树还是右子树。

在遍历二叉树中,需要建立递归函数进行遍历。

该题目包含两方面的内容,一为排序二叉树的建立;二为排序二叉树的遍历,包括先序遍历,中序遍历和后序遍历。

排序二叉树的建立主要运用了循环语句和递归语句进行,对遍历算法运用了递归语句来进行。

2.数据结构设计本题目主要会用到建立结点,构造指针变量,插入结点函数和建立排序二叉树函数,求深度函数,以及先序遍历函数,中序遍历函数和后序遍历函数,还有一些常用的输入输出语句。

对建立的函明确其作用,先理清函数内部的程序以及算法在将其应用到整个程序中,在建立排序二叉树时,主要用到建立节点函数,建立树函数,深度函数,在遍历树是,用到先序遍历函数,中序遍历函数和后序遍历函数。

结点结构体定义:typedef struct tnode /*建立节点*/{int data;struct tnode *lchild,*rchild;}TNODE;3.算法设计在进行算法设计时,应将题目分为两部分,排序二叉树的建立,排序二叉树的遍历。

3.1 定义结点typedef struct tnode /*建立节点*/{int data;struct tnode *lchild,*rchild;}TNODE;TNODE *q; /*构造指针变量*/TNODE *bt;3.2 插入结点函数insert()Void insert(TNODE **b,TNODE *s)/*排序二叉树中插入节点*/{if((*b)==NULL)(*b)=s;else if(s->data==(*b)->data) return;else if(s->data<(*b)->data) insert((&(*b)->lchild),s);else if(s->data>(*b)->data) insert((&(*b)->rchild),s);}3.3 创建树函数creat()void creat(TNODE *b) /*建立排序二叉树*/{int x;TNODE *s;b=NULL; /*初始化二叉数*/scanf("%d",&x);s=(TNODE *)malloc(sizeof(TNODE));q=s; /*将根结点指针地址赋值给q*/while(x!=-1) /*反复读入节点,直至-1结束*/{s->data=x;s->lchild=NULL;s->rchild=NULL;insert(&bt,s);scanf("%d",&x); /*节点插入排序二叉树中*/s=(TNODE *)malloc(sizeof(TNODE));n=n+1;}}3.4 求排序二叉树的深度int deep(TNODE *t) /*求排序二叉树的深度 */ {int rd;int ld;if(!t) return 0;else { ld=deep(t->lchild);rd=deep(t->rchild);}if(ld>rd) return ld+1;else return rd+1;}3.5 建立先序遍历函数void preorder(TNODE *p) /*先序遍历二叉树*/ {if(p){printf("%4d",p->data) ;preorder(p->lchild);preorder(p->rchild);}}3.6 中序遍历void inorder(TNODE *p) /*中序遍历二叉树*/ {if(p){inorder(p->lchild);printf("%4d",p->data) ;inorder(p->rchild);}}3.7 后序遍历void postorder(TNODE *p)/*后序遍历二叉树*/ {if(p){postorder(p->lchild);postorder(p->rchild);printf("%4d",p->data) ;}}这三个函数都应用了递归调用。

最后,在主函数中分别调用所建立的函数,3.8 有关技术的讨论在设计程序时,我发现用递归函数来写程序会简洁很多,能大大的缩小程序的代码,在求排序二叉树的深度,先序遍历排序二叉树,中序遍历排序二叉树以及和;后序遍历排序二叉树中,都用到了递归函数,大大简化了源程序的代码。

在输入数据时,用 while函数会使数据能够不断的输入进来,解决了无法从外部输入数据的问题,用的很巧妙。

4.程序实现4.1 调入文件#include<math.h>#include<stdio.h>#include <stdlib.h>4.2 主函数main()void main()/*主函数*/{printf("please insert the numbers(when you finish inserting numbers,please insert -1 to the end):\n");creat(bt);/*构造排序二叉树*/printf("the numbers of the nodes are:%4d",n);/*输出排序二叉树的结点数*/printf("\nthe depth of the tree:");printf("%4d",deep(q)); /*求二叉树的深度*/printf("\npreorder,the result is:");preorder(q); /*先序遍历排序二叉树*/printf("\ninorder,the result is:");inorder(q); /*中序遍历排序二叉树*/printf("\npostorder ,the result is:");postorder(q); /*后序遍历排序二叉树*/getchar();}然后输出结果。

在设计中,最难的那一部分为求插入结点函数,在函数内部要进行比较,将较小的数赋给左子树,将将较大的数赋给右子树。

在其他的算法设计中,只要理清思路就不会太难。

4.3 运行结果显示程序:输入数据:输出结果:5.设计体会我感受最深的一点是以前用C编程,只是注重如何编写函数能够完成所需要的功能,似乎没有明确的思路该怎么设计,在哪一阶段该设计什么。

经过这一次设计,我学会了怎样设计程序,怎样控制整个程序,它使我学会了怎样设计程序,设计算法,设计课题。

通过这个星期的课程设计,我的收获还是不少。

我的c语言水平有了比较大的提高,其中c语言关于指针,链表的操作理解的比以前深刻不少。

另外是数据结构方面的提高,对存储结构,及各种查找排序方面也有不少的提高。

虽然我做的程序里还有写问题,做的不够深入,但独立完成一个比较大一点的程序的经历也是很宝贵的。

通过这次课程设计我觉得我们学习《数据结构》的方法存在一定的弊端《数据结构》的效果直接影响到我们对其它专业课的学习和今后业务的成长。

我觉得我们对于《数据结构》的学习不仅包括理论部分的学习,还要让我们勤动手,多实践。

整个实验过程要结合教学进度与我们的实际情况,制定实验的内容。

实验分两部分,一是验证性的,主要结合课堂理论教学内容展开,学生可以对在课堂上学到的基本算法进行验证;二是设计性实验,坚持“学以致用”的原则,目的是让学生充分利用所学的理论知识进行相对复杂的应用设计,以进一步提高综合能力和创新实践能力。

通过这次设计,我感慨颇多,的确,从选题到定稿,从理论到实践,在一个星期的日子里,可以说得是苦多于甜,但是可以学到很多很多的的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。

通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。

在设计的过程中遇到问题,可以说得是困难重重,这毕竟第一次做的,难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固,通过这次课程设计之后,一定把以前所学过的知识重新温故。

相关文档
最新文档