《圆的对称性》教学设计

合集下载

九年级数学下册《圆的对称性》教案、教学设计

九年级数学下册《圆的对称性》教案、教学设计
-运用问题驱动法,引导学生通过自主探究、合作讨论等方式,发现并理解圆的对称性质。
-使用直观演示法,利用多媒体和几何画板等工具,形象直观地展示圆的对称性质,帮助学生克服难点。
2.教学过程:
-导入:通过展示生活中具有对称美的圆形物体,激发学生的兴趣,引导学生关注圆的对称性。
-新课导入:以学生已有的知识为基础,引导学生通过观察、思考和讨论,发现圆的对称性质。
-知识讲解:系统讲解圆的轴对称和中心对称的概念,强调对称轴和对称中心的作用。
-实践应用:设计具有挑战性的问题,让学生运用圆的对称性解决问题,巩固所学知识。
-归纳总结:引导学生总结圆的对称性质,形成知识体系,加深理解。
3.教学评价:
-采用形成性评价,关注学生在课堂上的表现,及时给予反馈,指导学生改进学习方法。
-结合圆的对称性质,尝试解决以下问题:如何在圆中找到一条弦,使得这条弦平分给定的两条弧?
3.创新作业:
-利用圆的对称性,设计一个创意图案,要求具有美观性和实用性,如可以作为装饰画或应用于生活用品;
-与同学合作,开展一次关于圆的对称性的研究,可以选择历史、文化、艺术等方面的课题,进行深入研究并撰写研究报告。
九年级数学下册《圆的对称性》教案、教学设计
一、教学目标Βιβλιοθήκη (一)知识与技能1.理解圆的轴对称和中心对称的概念,掌握圆的对称轴和对称中心;
2.学会运用圆的对称性分析解决问题,如求圆上的对称点、对称线段等;
3.能够运用圆的对称性进行简单的图案设计,培养学生的审美观念和创新能力;
4.掌握圆的弦、弧、圆心角等基本概念,并能运用其性质解决相关问题。
五、作业布置
为了巩固学生对圆的对称性的理解,提高他们的几何思维和创新能力,特布置以下作业:

小学数学《圆的对称性》教案

小学数学《圆的对称性》教案

小学数学《圆的对称性》教案教学目标:1. 了解圆的对称轴和对称中心的概念。

2. 能通过画图判断圆是否有对称轴或者对称中心。

3. 能通过对称绘制图形。

教学重点:1. 圆的对称轴的概念和判断方法。

2. 圆的对称中心的概念和判断方法。

3. 对称绘制图形的方法。

教学难点:1. 对称绘制复杂图形。

2. 发现和利用圆的对称性质。

3. 培养学生观察、推理和绘图能力。

教学准备:1. 教师准备圆盘、圆规、铅笔等。

2. 学生准备笔、纸、橡皮等。

教学过程:一、导入新课1. 介绍圆的对称性质。

2. 引导学生回忆以前所学无线扭结的对称性质,进一步巩固学生对“对称”的理解。

二、讲授新课1. 圆的对称轴1)定义:将一个圆分成两个部分的直线叫做圆的对称轴。

2)判断方法:如果有一条直线让以它为对称轴对称的两个部分完全重合,那么这条直线就是圆的对称轴。

3)练习:教师出示一些图形,让学生判断圆的对称轴。

2. 圆的对称中心1)定义:它是圆上任意两点的中垂线的交点。

2)判断方法:圆上的任意两点的中垂线应相交于同一点上,这个点就是圆的对称中心。

3)练习:让学生结合图形,判断圆的对称中心。

3. 对称绘制图形1)定义:利用圆的对称性质进行绘制。

2)练习:让学生利用圆的对称中心和对称轴,画出不同的图形。

三、课堂练习1. 让学生在小组内练习对称绘制图形。

2. 教师出题,让学生分组展开竞赛。

四、作业布置1. 巩固课堂所学的内容,完成课后习题。

2. 要求学生在日常生活中,注意观察圆的对称性质。

五、课堂总结通过本节课的学习,学生掌握了圆的对称轴和对称中心的概念,能利用圆的对称性质进行对称绘制图形,这也为日常生活中的很多情况做好了准备。

(完整版)《圆的对称性》教案

(完整版)《圆的对称性》教案

《圆的对称性》教案教学目标1.知识与技能(1)理解圆的轴对称性和中心对称性,会画出圆的对称轴,会找圆的对称中心;(2)掌握圆心角、弧和弦之间的关系,并会用它们之间的关系解题.2.过程与方法(1)通过对圆的对称性的理解,培养学生的观察、分析、发现问题和概括问题的能力,促进学生创造性思维水平的发展和提高;(2)通过对圆心角、弧和弦之间的关系的探究,掌握解题的方法和技巧.3.情感、态度与价值观经过观察、总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的乐趣.教学重难点重点:对圆心角、弧和弦之间的关系的理解.难点:能灵活运用圆的对称性解决有关实际问题,会用圆心角、弧和弦之间的关系解题.教学过程一、创设情境,导入新课问:前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?(如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴).问:我们是用什么方法来研究轴对称图形?生:折叠.今天我们继续来探究圆的对称性.问题1:前面我们已经认识了圆,你还记得确定圆的两个元素吗?生:圆心和半径.问题2:你还记得学习圆中的哪些概念吗?忆一忆:1.圆:平面上到____________等于______的所有点组成的图形叫做圆,其中______为圆心,定长为________.2.弧:圆上_____叫做圆弧,简称弧,圆的任意一条____的两个端点分圆成两条弧,每一条弧都叫做圆的半径.__________称为优弧,_____________称为劣弧.3.___________叫做等圆,_________叫做等弧.4.圆心角:顶点在_____的角叫做圆心角.二、探究交流,获取新知知识点一:圆的对称性1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?2.大家交流一下:你是用什么方法来解决这个问题的呢?动手操作:请同学们用自己准备好的圆形纸张折叠:看折痕经不经过圆心?学生讨论得出结论:我们通过折叠的方法得到圆是轴对称图形,经过圆心的一条直线是圆的对称轴,圆的对称轴有无数条.知识点二:圆的中心对称性.问:一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?让学生得出结论:一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合,我们把圆的这个特性称之为圆的旋转不变性.圆是中心对称图形,对称中心为圆心.做一做:在等圆⊙O 和⊙O ' 中,分别作相等的圆心角∠AOB 和A O B '''∠(如图3-8),将两圆重叠,并固定圆心,然后把其中的一个圆旋转一个角度,得OA 与OA '重合.你能发现哪些等量关系吗?说一说你的理由.小红认为»¼''=AB A B ,''=AB A B ,她是这样想的: ∵半径OA 重合,'''∠∠=AOB A O B ,∴半径OB 与OB '重合,∵点A 与点A '重合,点B 与点B '重合,∴»AB 与¼A B ''重合,弦AB 与弦A B ''重合, ∴»AB =¼A B '',AB =A B ''. 生:小红的想法正确吗?同学们交流自己想法,然后得出结论,教师点拨.结论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.知识点三:圆心角、弧、弦之间的关系.问:在同圆或等圆中,如果两个圆心角所对的弧相等,那么它们所对的弦相等吗?这两个圆心角相等吗?你是怎么想的?学生之间交流,谈谈各自想法,教师点拨.结论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.三、例题讲解例:如图3-9,AB ,DE 是⊙O 的直径,C 是⊙O 上的一点,且»»=AD CE ,BE 与CE 的大小有什么关系?为什么?解:BE =CE ,理由是:∵∠AOD =∠BOE ,∴»»=AD BE , 又∵»»22=+AD CEa b∴»»=BE CE,∴BE=CE.议一议在得出本结论的过程中,你用到了哪些方法?与同伴进行交流.四、随堂练习1.日常生活中的许多图案或现象都与圆的对称性有关,试举几例.2.利用一个圆及其若干条弦分别设计出符合下列条件的图案:(1)是轴对称图形但不是中心对称图形;(2)是中心对称图形但不是轴对称图形;(3)既是轴对称图形又是中心对称图形.3.已知,A,B是⊙O上的两点,∠AOB=120°,C是»AB的中点,试确定四边形OACB 的形状,并说明理由.五、知识拓展如图,在△ABC中,∠C=90°,∠B=25°,以点C为圆心,AC为半径的圆交AB于点D,求»AD所对的圆心角的度数.六、自我小结,获取感悟1.对自己说,你在本节课中学习了哪些知识点?有何收获?2.对同学说,你有哪些学习感悟和温馨提示?3.对老师说,你还有哪些困惑?七、布置作业7273-P习题1-3题.。

初中数学初三数学下册《圆的对称性》教案、教学设计

初中数学初三数学下册《圆的对称性》教案、教学设计
2.逻辑推理和证明过程的严密性。
-在证明圆的对称性质和相关定理时,学生可能会出现推理不严、论证不完整的情况。
-教学中应注重培养学生的逻辑思维能力,通过师生共同讨论、互评作业等方式,提高证明的严密性和准确性。
(三)教学设想
1.创设情境,激发兴趣。
-教学将从生活中的圆引入,如车轮、硬币等,让学生感受到圆的对称美和实用性,激发学习兴趣。
(三)学生小组讨论
1.问题驱动的讨论:教师提出具有挑战性的问题,引导学生进行小组讨论,共同探讨圆的对称性质在实际问题中的应用。
-设计不同难度的题目,让学生在讨论中逐步掌握圆的对称性质。
-学生在小组内分享解题思路和策略,提高合作交流能力。
2.教师巡回指导:教师在各小组之间巡回指导,观察学生的讨论过程,给予及时的反馈和建议。
3.培养学生的逻辑推理能力和批判性思维。
-在证明圆的相关性质时,学生需要运用严密的逻辑推理,教师指导学生进行批判性思考,检验证明过程的严密性和正确性。
(三)情感态度与价值观
1.培养学生欣赏数学美的情感,激发学习数学的兴趣。
-通过展示圆在各种文化和艺术中的应用,让学生体会圆的对称美,从而增强对数学美的感知和欣赏。
3.培养学生的几何直观和空间想象力。
-通过作图和观察几何图形,学生应能够发展对圆及其相关图形的直观认识。
-教学设想中应包含多种直观教具和动态软件,帮助学生构建几何图形的空间想象。
(二)教学难点
1.圆的对称性质在复杂几何问题中的运用。
-学生在解决涉及圆的复杂问题时,往往难以发现对称性的应用。
-教学中应采用问题驱动的教学方法,引导学生通过分析问题特点,逐步发现并运用对称性质。
-教师可以通过展示生活中的圆实例,让学生体验圆的对称美,提高他们对数学美的感知能力。

圆的对称性 教案

圆的对称性 教案

圆的对称性教案教案标题:圆的对称性教案目标:1. 理解圆的对称性概念;2. 掌握圆的对称性特征及其应用;3. 培养学生观察、分析和解决问题的能力;4. 提高学生的几何思维能力和创造力。

教学重点:1. 圆的对称性概念;2. 圆的对称性特征;3. 圆的对称性应用。

教学难点:1. 理解圆的对称性特征;2. 运用圆的对称性解决问题。

教学准备:1. 教学投影仪或黑板;2. 圆规、直尺、铅笔等绘图工具;3. 圆形物体或图片。

教学过程:Step 1:导入新知1. 引入圆的对称性的概念,与学生一起回顾对称性的概念和常见形状的对称性特征。

2. 提问学生:你们知道圆是否具有对称性吗?为什么?Step 2:探究圆的对称性特征1. 展示一个圆形物体或图片,让学生观察,并讨论圆的对称性特征。

2. 引导学生发现圆的对称轴,并解释圆的对称性特征。

Step 3:巩固对称性特征1. 给学生分发练习题,让他们找出圆的对称轴并标出。

2. 学生互相交换练习题,检查答案并互相讨论。

Step 4:应用圆的对称性解决问题1. 引导学生思考如何利用圆的对称性解决实际问题。

2. 给学生提供一些实际问题,让他们运用圆的对称性进行解答。

Step 5:拓展活动1. 给学生展示一些具有圆对称性的艺术品或建筑物,让他们欣赏并分析其中的对称性特征。

2. 鼓励学生设计自己的圆对称艺术品或建筑物,并展示给同学们。

Step 6:总结与评价1. 与学生一起总结圆的对称性概念和特征。

2. 对学生的学习情况进行评价和反馈。

教学延伸:1. 鼓励学生探究其他形状的对称性特征,并与圆的对称性进行比较。

2. 给学生提供更复杂的圆对称性问题,培养他们的解决问题的能力。

教学资源:1. 圆形物体或图片;2. 练习题;3. 具有圆对称性的艺术品或建筑物图片。

教学评估:1. 教师观察学生在课堂上的参与情况;2. 学生完成的练习题和解答问题的能力;3. 学生设计的圆对称艺术品或建筑物的创造力和表现力。

数学圆的对称性教案设计

数学圆的对称性教案设计

数学圆的对称性教案设计篇一:圆的对称性教学设计圆的对称性教学设计宝鸡市陈仓区贾村镇第二初级中学王彦红圆的对称性(第二课时)一、教学背景分析教学内容分析:本节圆的对称性(第二课时)主要内容是圆心角、弧、弦之间的关系,它由圆的旋转不变性引出,是圆的轴对称性学习之后圆的又一重要性质,圆心角、弧、弦之间的相等关系在以后的证明和计算中有着重要的作用。

学生情况分析:学生在第二学段已经学习过中心对称与中心对称图形,对于直线型的图形如平行四边形、矩形、菱形等中心对称图形有一定的了解,了解中心对称的概念以及相关的性质。

前一节已经学习过弦、弧等圆的有关概念和垂径定理的内容,利用垂径定理及推论解决了与直径、弦、弧等有关的问题,对于圆是中心对称图形和圆具有旋转不变性容易理解。

但对弦、弧以及要学到的圆心角、弦心距等之间的关系,并且怎样利用这些关系解决一些有关的证明和计算等方面,学生缺乏亲身体验和总结。

教学方式及教学准备:教学方式:任务驱动问题教学小组合作探究教学准备:学生课前准备圆形纸片(两个等圆);教师制作几何画板课件;辅助教学的CAI软件二、教学目标知识目标:理解圆的旋转不变性,掌握圆心角、弧、弦之间的关系定理及其推论,会用这三者之间的关系进行简单的证明。

能力目标:通过本节课的学习培养学生观察、实验、探究、归纳和概括能力。

情感态度与价值观:结合本课教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育;渗透圆的内在美。

并使得学生在小组合作中尝试交流,在“做数学”中体会数学的严谨性。

三、教学重点、难点重点:圆心角、弧、弦之间的关系定理及其推论难点:对定理中“在同圆或等圆中”前提条件的理解,以及从感性到理性的认识,发现归纳能力的培养。

四、教学过程设计教学进程创设情境直观感知教学内容知识链接:问题1:什么是中心对称图形?中心对称图形有什么性质?问题2:说出你所了解的中心对称图形。

情境引入:课件展示(我来转一转)如图是一个转盘,转盘分成六个相同的扇形,颜色分为红、绿两种颜色,指针的位置固定。

小学数学《圆的对称性》教学设计(精选19篇)

小学数学《圆的对称性》教学设计(精选19篇)

小学数学《圆的对称性》教学设计(精选19篇)小学数学《圆的对称性》教学设计(精选19篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

以下是小编整理的小学数学《圆的对称性》教学设计,欢迎大家分享。

小学数学《圆的对称性》教学设计篇1一、教材分析:《圆的对称性》是义务教育课程标准实验教科书六年级上册第四单元第59页的内容。

它是在学生已经认识了长方形、正方形、等腰三角形、等腰梯形等平面图形和初步认识轴对称图形和对称轴基础上进行学习的。

这是学生研究曲线图形的开始,是学生认识发展的又一次飞跃。

教材注重从学生已有的生活经验和知识背景出发,结合具体情境和操作活动激活已经存在于学生头脑中的经验,促使学生逐步归纳内化,上升到数学层面来认识圆也是轴对称图形,体会到圆是轴对称图形且有无数条对称轴。

考虑到小学生的认知水平,教材并没有给出圆的对称特征的描述,但教材通过观察与思考、画一画等活动帮助学生逐步对此加以体会,为学生到中学学习圆的知识提供了感性认识和直观经验。

通过对圆的有关知识的学习,不仅能够加深学习对周围事物的理解,提高解决简单实际问题的能力,也为以后学习圆柱、圆锥等知识和绘制扇形统计图打好基础。

二、教学内容:教材59页例3。

三、设计思想:现代课堂教学是以现代先进的教育思想和教学理论为指导的,以面向全体学生,全面提高学生作为现代人应具备的基本素质为根本目的,以充分体现学生主体地位,实现教学过程最优化为基本特征的实践活动。

“圆的对称性”的设计我力求体现:1、数学于生活,中出示的几种生活中的图形都是轴对称图形图形,很自然的就为学生创设了问题情境。

2、强化操作,在操作中探究,画一画、剪一剪、折一折,让学生在操作中感知圆对称性特征。

3、运用,用新颖的教学手段加深学生的印象,激发学生的求知欲,发挥图象的效果,让学生建立深刻的印象。

4、将知识还原于生活,运用于生活,不断激发学生的思维,促进学生思维活动的发展,培养创新意识,又让学生感受到数学起源于生活,又能应用于生活。

圆的对称性教学设计

圆的对称性教学设计

圆的对称性教学设计一、教学目标:1. 学生能够理解圆的对称性概念,并能应用到实际问题中。

2. 学生掌握圆的对称性性质,能够运用这一性质解决与圆的对称性有关的数学问题。

3. 学生培养观察、分析和推理的能力。

二、教学内容:1. 圆的对称轴及性质。

2. 圆内与圆对称的点的性质。

3. 与圆相关的对称图形的性质。

4. 运用圆的对称性解决实际问题。

三、教学过程:Step 1 引入(5分钟)引导学生回顾已学的相关知识,如什么是对称轴、什么是对称图形等,为圆的对称性的引入做铺垫。

Step 2 探究圆的对称轴及性质(15分钟)1. 要求学生将一张白纸剪成一个小圆形,然后用铅笔沿着圆形的边缘剪去一小段。

2. 让学生观察并描述剪下的小段。

3. 引导学生发现剪下的小段与原来的圆是否对称。

4. 引导学生找出圆的对称轴。

5. 通过多个小组的讨论,让学生总结出圆的对称轴的性质。

Step 3 圆内与圆对称的点的性质(20分钟)1. 让学生画一个半径为5cm的圆。

2. 让学生在圆内随便选取一个点,然后通过一条线将这个点与圆心连接。

3. 引导学生观察这条线段与圆的性质,并找出几个有关的点。

4. 让学生总结出这些点与圆的对称性质,并找出规律。

Step 4 与圆相关的对称图形的性质(20分钟)1. 让学生观察一些和圆有关的对称图形,如圆环、圆柱等。

2. 引导学生分析这些图形的性质,并总结出与圆的对称性有关的特点。

3. 让学生在小组内进行讨论,并展示自己的观察结果。

Step 5 运用圆的对称性解决实际问题(20分钟)1. 准备一些与圆的对称性有关的实际问题,如使用圆的对称性画出一幅有规律的图案等。

2. 让学生在小组内合作解决这些问题,并展示解决过程和答案。

Step 6 总结与拓展(10分钟)1. 让学生回顾本节课所学的内容,并复述圆的对称性的性质和应用。

2. 提出一些推广问题,引导学生进一步扩展和应用圆的对称性的知识。

四、教学评估:1. 在教学过程中,教师能通过观察学生的表现,评估学生对圆的对称性的理解程度。

圆的对称性教案

圆的对称性教案

圆的对称性教案圆的对称性教案一、教学目标:1. 理解圆的对称性概念。

2. 能够识别并描述圆的各种对称图形。

3. 能够根据已知的对称点绘制圆的对称图形。

4. 能够应用圆的对称性解决实际问题。

二、教学重点:1. 理解圆的对称性概念。

2. 能够识别并描述圆的各种对称图形。

三、教学难点:1. 能够应用圆的对称性解决实际问题。

四、教学过程:1. 导入新课通过展示一些圆形的图案,引起学生的兴趣,引出课题:“你们看到的这些图案有什么共同之处?”让学生进行讨论。

2. 引入新知通过引导学生讨论,引出圆的对称性的概念,即圆上的任意一点和圆心之间的连线,在圆上折叠时能够重合。

引导学生发现圆的对称轴是通过圆心的。

3. 讲解示范通过讲解和示范,让学生理解并掌握圆的对称性的基本概念和性质。

4. 练习巩固让学生进行一些练习,巩固对圆的对称性的理解和应用。

5. 拓展延伸通过讲解一些拓展内容,如对称图形的绘制方法和实际应用等,拓展学生对圆的对称性的理解和应用。

6. 总结回顾通过与学生一起总结和回顾所学的知识,确保学生对圆的对称性有清晰的理解和掌握。

五、教学方法:1. 合作探究法:通过合作学习、讨论、实践等方式,引导学生主动参与学习和思考。

2. 示例法:通过展示实际例子和解释说明,帮助学生更好地理解和掌握知识。

3. 练习巩固法:通过练习题和问题,巩固和拓展学生的知识与能力。

六、教学资源:1. 教学课件。

2. 圆形图案。

3. 讲解示范用具。

七、教学评估:通过课堂讨论、练习和问题,对学生的掌握程度进行评估。

八、教学扩展:可以进一步引导学生探索圆的对称性在实际生活中的应用,如建筑设计、艺术作品等。

九、教学反思:通过本堂课的教学活动,学生对圆的对称性概念、性质和应用有了初步的了解。

但是在教学过程中,老师需要更加引导学生思考、参与和探索,提高学生的主动学习能力和解决问题的能力。

同时,老师还需根据学生的实际情况和学习进度,进行灵活的教学调整,以达到更好的教学效果。

北师大版九年级数学下册:3.2《圆的对称性》教学设计

北师大版九年级数学下册:3.2《圆的对称性》教学设计

北师大版九年级数学下册:3.2《圆的对称性》教学设计一. 教材分析《圆的对称性》是北师大版九年级数学下册第三章第二节的内容。

本节课主要让学生了解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。

通过学习,使学生能够运用圆的对称性解决一些实际问题,培养学生的空间想象能力和解决问题的能力。

二. 学情分析九年级的学生已经学习了初级代数、几何等知识,对图形的对称性有一定的了解。

但针对圆这一特殊图形的对称性,学生可能还比较陌生。

因此,在教学过程中,需要教师引导学生从具体实例中发现圆的对称性,并通过讲解和练习使学生理解和掌握。

三. 教学目标1.理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴。

2.能够运用圆的对称性解决一些实际问题。

3.培养学生的空间想象能力和解决问题的能力。

四. 教学重难点1.圆的对称性的理解。

2.圆的对称性在实际问题中的应用。

五. 教学方法采用问题驱动法、案例分析法、小组讨论法等教学方法。

通过具体实例引入圆的对称性,引导学生发现和总结圆的对称性特点,并通过练习和实际问题使学生理解和掌握圆的对称性。

六. 教学准备1.准备相关课件和教学素材。

2.准备练习题和实际问题。

七. 教学过程1.导入(5分钟)通过一个具体实例引入圆的对称性,例如:展示一个圆形图案,让学生观察并说出这个图案的特点。

引导学生发现圆的对称性,并提出问题:为什么圆有无数条对称轴?2.呈现(15分钟)教师通过讲解和动画演示,详细讲解圆的对称性。

讲解圆是轴对称图形,圆有无数条对称轴,以及圆的对称轴是如何确定的。

同时,展示一些实际问题,让学生理解和掌握圆的对称性。

3.操练(15分钟)学生分组进行练习,教师巡回指导。

练习题包括判断题、选择题和填空题等,主要考察学生对圆的对称性的理解和掌握。

4.巩固(10分钟)教师通过一些实际问题,让学生运用圆的对称性进行解决。

例如:一个圆形桌面,要如何摆放才能使桌子上的物体在桌面的任何位置都能看到?5.拓展(10分钟)引导学生思考圆的对称性在其他领域的应用,例如:在艺术设计、建筑、工程等领域中的应用。

圆对称性教学设计

圆对称性教学设计

圆对称性教学设计一、教学目标1.认识和理解圆的对称性。

2.通过实例观察、探索和解决问题,培养学生的观察和分析能力。

3.培养学生的合作和沟通能力。

二、教学重点1.理解圆对称的概念。

2.能够在实例中发现并描述圆的对称性。

3.能够通过实例绘制具有圆对称性的图形。

三、教学内容与过程分析1.导入(10分钟)学生已经学习过对称性的知识,由此可引出圆的对称性,并通过提问让学生回顾对称性的概念。

2.学习(15分钟)通过展示一些具有圆对称性的图形,引导学生观察、发现并描述圆的对称性,并对对称轴、对称中心进行解释。

3.活动一:观察对称(30分钟)通过实例让学生观察、探究具有圆对称性的图形,分析并找出其中的对称轴和对称中心。

活动要求:学生分组,每组给予一张具有圆对称性的图形,要求观察图形并讨论找出其中的对称轴和对称中心,并展示给全班。

教师提示:教师可以提供一些具有圆对称性的图形,通过引导问题,让学生发现图形的对称轴和对称中心。

4.活动二:绘制对称图形(30分钟)学生通过对具有圆对称性的图形进行反复观察,根据观察的结果尝试绘制具有圆对称性的图形。

活动要求:学生分组,每组给予一张具有圆对称性的图形,要求学生通过观察图形,尝试用圆规绘制出对称部分,并展示给全班。

教师提示:引导学生明确绘制的步骤和方法,帮助学生理解圆规的作用和使用方法。

5.归纳(10分钟)学生通过活动的实践,得出圆对称性的特点,并进行归纳总结。

教师引导学生一起总结圆对称性的特点,并让学生记录在黑板上。

6.作业:完成练习册上的相关练习题(10分钟)布置相关练习题,要求学生在完成后交给老师。

四、教学手段与资源1.多媒体教学设备2.图形绘制工具:圆规、直尺等3.教学PPT4.练习册五、教学评估1.通过活动一和活动二中的小组展示,观察学生对圆对称性的理解和表达能力。

2.通过批改作业,了解学生对圆对称性的掌握程度。

六、教学延伸1.对称轴和对称中心不一定位于图形的中心,可以设计更多具有圆对称性的图形,引导学生发现不同位置的对称轴和对称中心。

圆的对称性教学设计

圆的对称性教学设计

圆的对称性教学设计圆的对称性教学设计1教学内容:人教版六年级上册第四单元第一课时。

教学目标:1、知识目标:使学生认识圆,知道圆的各部分名称。

掌握圆的特征,理解直径与半径的关系。

初步学会用圆规画圆。

2、技能目标:让学生从生活中认识圆,借助动手操作活动,发现规律,培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。

3、情感目标:通过操作、研讨,培养学生独立探索能力和创新、合作的意识。

教学重点:掌握圆的基本特征,理解直径与半径的关系。

学具准备:圆的实物、剪好的圆片、圆规、直尺教具准备:细线、图钉、剪好的圆片、三角板教学过程:一、悬念产生好奇,好奇带入新课(一)设置悬念师:同学们,你们知道吗?(课件展示、图文并茂)1、车轮为什么都是圆形的?2、篮球场的中间为什么要设计成圆形呢?3、枪口、炮口为什么都是圆形的?师:同学们,这些问题你们暂时还不必回答,但老师还有一个问题需要马上回答,这三个问题都与什么有关?(当学生回答是“圆”时,教师板书课题)师:当同学们通过这堂课的学习,对圆有一定认识后,你们再回答这三个问题,相信你们的答案会更完整、更圆满。

(在黑板的一侧板书:圆满)[设计意图]不拘泥于教材内容,从学生年龄和心理特征出发,用心扑捉圆在生活中、自然中的原型,巧妙地创设了“三个问题”情境,引发学生的好奇心,从而使他们带着一种“打破沙锅问到底”的向往与追求的意向,以的状态进入学习角色。

同时,在“暂时还不回答”的关子下,把“三个问题”集中在“圆”上,旗帜鲜明地拉开了这节课的序幕,这一导课不仅意味深长,激发了学生的学习兴趣,并开始不知不觉地渗透了“圆的文化特征”意识,可谓是一举两得。

二、在猜想中探究,在探究中感悟(一)生活中的圆师:生活中你们见到哪些物体是圆形的?(学生回答时,教师可要求学生将已准备的实物举起展示)(二)运动中的圆师:你们都是生活中的有心人。

那么下面的情况可能会出现怎样的现象呢? (课件展示)1、一粒石子抛入平静的水面时2、电风扇的扇叶转动时(三)探究圆的形成一根细线,用图钉固定一端,另一端绑着一支粉笔旋转一周。

苏科版数学九年级上册2.2《圆的对称性》教学设计

苏科版数学九年级上册2.2《圆的对称性》教学设计

苏科版数学九年级上册2.2《圆的对称性》教学设计一. 教材分析《圆的对称性》是苏科版数学九年级上册第二章第二节的内容。

本节课主要学习了圆的对称性质,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是圆的直径所在的直线等。

通过本节课的学习,使学生能够理解圆的对称性质,并能运用到实际问题中。

二. 学情分析学生在学习本节课之前,已经学习了圆的基本概念,如圆的定义、圆的方程等,同时也学习了平面图形的对称性。

因此,学生对于对称性的概念已经有所了解,但对于圆的对称性质还需要进一步的引导和探究。

三. 教学目标1.理解圆的对称性质,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是圆的直径所在的直线。

2.能够运用圆的对称性质解决实际问题。

3.培养学生的观察能力、思考能力和解决问题的能力。

四. 教学重难点1.圆的对称性质的理解和运用。

2.圆的对称轴的确定。

五. 教学方法采用问题驱动法、案例分析法、小组合作学习法等,引导学生通过观察、思考、讨论、实践等方式,掌握圆的对称性质,并能够运用到实际问题中。

六. 教学准备1.教学课件或黑板。

2.圆形教具。

3.练习题。

七. 教学过程1.导入(5分钟)通过展示一些具有对称性的图形,如圆、正方形、矩形等,引导学生回顾对称性的概念,并提问:你们认为圆具有对称性吗?圆的对称性质是什么?2.呈现(10分钟)利用多媒体课件或黑板,呈现圆的对称性质,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是圆的直径所在的直线。

同时,通过举例说明圆的对称性质。

3.操练(10分钟)让学生拿出圆形教具,观察并尝试找出圆的对称轴。

学生可以自行尝试,也可以与同桌相互讨论。

在学生操作过程中,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些关于圆的对称性的练习题,让学生独立完成。

题目可以包括判断题、选择题和解答题等。

学生完成后,教师进行讲解和点评。

5.拓展(10分钟)让学生思考:圆的对称性质在实际生活中有哪些应用?引导学生举例说明,如圆形的桌面、圆形的路面等。

北师大版九年级数学下册:3.2《圆的对称性》教案1

北师大版九年级数学下册:3.2《圆的对称性》教案1

北师大版九年级数学下册:3.2《圆的对称性》教案1一. 教材分析北师大版九年级数学下册3.2《圆的对称性》这一节主要让学生理解圆的对称性,掌握圆是轴对称图形,理解圆的对称轴的定义,以及掌握圆的对称性质。

教材通过具体的例子引导学生探究圆的对称性,培养学生的动手操作能力和抽象思维能力。

二. 学情分析九年级的学生已经掌握了八年级数学中关于轴对称图形的相关知识,对对称性有一定的理解。

但是,对于圆的对称性的理解和应用,还需要通过实例和操作来进一步深化。

此外,学生的抽象思维能力有待提高,需要通过具体的例子和问题,引导学生逐步抽象出圆的对称性质。

三. 教学目标1.让学生理解圆的对称性,知道圆是轴对称图形。

2.让学生理解圆的对称轴的定义,并能找出圆的对称轴。

3.让学生掌握圆的对称性质,并能应用于实际问题中。

四. 教学重难点1.圆的对称性的理解。

2.圆的对称轴的定义和寻找。

3.圆的对称性质的应用。

五. 教学方法采用问题驱动法,通过具体的例子引导学生探究圆的对称性,培养学生的动手操作能力和抽象思维能力。

同时,采用分组合作学习的方式,让学生在小组内共同探讨问题,提高学生的合作能力和沟通能力。

六. 教学准备1.准备一些圆形的物品,如圆规、圆形的卡片等,用于引导学生观察和操作。

2.准备一些关于圆的对称性的问题,用于引导学生思考和探究。

七. 教学过程1.导入(5分钟)a.引导学生观察圆形的物品,如圆规、圆形的卡片等,让学生感受到圆的对称性。

b.提出问题:圆有什么特殊的性质?圆是轴对称图形吗?引导学生思考和讨论。

2.呈现(10分钟)a.给出圆的对称性的定义和性质,让学生理解圆的对称性。

b.给出圆的对称轴的定义,让学生理解圆的对称轴。

3.操练(10分钟)a.让学生分组,每组找出一件圆形的物品,如圆规、圆形的卡片等,尝试找出该物品的对称轴,并记录下来。

b.让学生汇报他们的发现,并解释为什么这是对称的。

4.巩固(10分钟)a.让学生独立完成教材上的练习题,巩固圆的对称性的理解和应用。

圆的对称》教案设计

圆的对称》教案设计

第2课时圆的对称性上课解决方案教案设计设计说明“圆的对称性”是一节操作性很强的概念课。

因为学生对生活中的轴对称现象并不陌生,所以,本课主要是激活学生已有经验,使学生上升到数学层面来认识圆也是轴对称图形,并知道圆有无数条对称轴。

本课在教学设计上有以下特点:1.在观察、交流中激活已有经验。

在复习环节,先通过联系生活实例,让学生发现生活中许多物体是对称的,激活学生已有的生活经验,再结合从学过的平面几何图形中找出轴对称图形这一活动,使学生的原有知识得到巩固,为新知识的学习作好铺垫。

2.在操作中感知圆的对称轴的特点。

在新知探究环节,引导学生按照教师的要求动手做一做,让学生亲身经历推理和验证问题的过程,不但加深了学生对相关知识的理解,而且培养了学生的归纳总结能力。

3.在深入探究中拓展思维。

在巩固练习阶段,不但指导学生进一步明确不同轴对称图形的对称轴数量,而且通过问题设计,创设认知冲突,引导学生对两个圆组成的组合图形的对称轴数量进行探究,让学生在独立思考和合作交流中创新思维能力得到发展。

学前准备教具准备PPT课件、小黑板、直尺、圆规学具准备长方形、正方形、等腰梯形、等腰三角形、等边三角形、平行四边形和圆形纸片各一张、直尺、圆规教学过程⊙复习铺垫,设疑导入1.观察下面的图形,这些图形有什么特点?(把每一个图形沿一定的直线对折后,折痕两侧的图形都能完全重合)2.结合上题,概括说出什么叫轴对称图形。

(如果一个图形沿着一条直线对折,折痕两侧的图形能够完全重合,这个图形就是轴对称图形。

折痕所在的直线叫做对称轴) 3.举例说一说你所知道的平面几何图形中,哪些是轴对称图形?(长方形、正方形、等腰梯形、等腰三角形、等边三角形等都是轴对称图形)设计意图:通过观察、回忆,进一步明确轴对称图形的特点,为学生学习圆的对称性及对所学的平面图形中的轴对称图形的总结性复习作铺垫。

4.我们新学习的圆是轴对称图形吗?如果是,它的对称轴在哪儿?这节课就让我们一起来学习圆的对称性。

2.2 圆的对称性(1)教学设计

2.2 圆的对称性(1)教学设计

2.2 圆的对称性(1)教学设计一、课题:圆的对称性(1)是苏教版教科书九年级上第二章,第2节第一课时内容。

二、教材分析:圆的对称性(1)是学生学习了有关中心对称和圆的有关概念后的知识。

本节课主要是在理解了圆的相关概念和旋转不变性的基础上,通过学生的自主探究,掌握在同圆或等圆中,圆心角和它所对的的弧、弦之间的关系。

它为后续学生进一步学习圆的其它知识以及解决有关圆的问题提供了重要基础。

三、教学目标:1.知识技能(1)经历圆绕圆心旋转,理解圆的中心对称性,以及圆的旋转不变性;(2)经历操作、猜想、说理、归纳等数学活动,理解并掌握在同圆或等圆中,圆心角和它所对的弧、弦之间的关系,并能应用其解决相关的问题;(3)掌握弧的度数概念,并会计算弧的度数。

2.数学思考(1)在参与操作、猜想、说理、归纳等数学活动中,发展合情推理和演绎推理能力,清晰地表达自己的想法;(2)通过数学活动培养学生数学基本活动经验;3.问题解决(1)通过问题解决的过程让学生学会从数学角度发现问题;(2)通过对问题的解决,让学生获得分析问题和解决问题的基本方法,发展创新意识;(3)进一步培养学生解决问题的合作意识。

4.情感态度(1)在解决问题的过程中,体验获得成功的乐趣,锻炼克服困难的意志。

四、教学重难点1.重点:在同圆或等圆中,圆心角和它所对的弧、弦三者之间的关系及应用2.难点:从感性认识到理性认识,从直观到抽象的数学知识探索过程以及归纳能力的培养。

五、设计理念1.注重学生的自主动手实践,体现学生的主体地位,数学教学活动应激发学生兴趣,调动学生积极性。

而重视了学生的动手实践,自主活动,能够很好的达到这个效果。

2.注重“数学活动基本经验”,体现了数学知识的形成过程:“操作、猜想、说理、归纳”是一个较完整的探索数学知识的过程,让学生亲自体验数学知识探索的全过程,有助于学生形成良好的数学思维方式,有助于学生对数学知识的理解,有助于培养学生数学基本活动的经验。

圆的对称性教案设计

圆的对称性教案设计

圆的对称性【教学目标】1.知识与技能:(1)认识圆的对称性,知道圆既是轴对称图形,又是中心对称图形。

(2)垂径定理及其逆定理。

(3)能说出等弦、等弧之间的关系,能灵活运用垂径定理及逆定理进行有关计算和证明。

2.过程与方法:(1)通过折叠、旋转的动手实验,多观察、探索、发现圆中圆心、弧、弦之间的关系,体会研究几何图形的各种方法。

(2)利用圆的对称性通过折叠来发现垂径定理,充分体验探索的过程。

3.情感与价值观要求:通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神。

【教学重难点】1.重点:(1)揭示与圆有关的本质属性;(2)垂径定理探索及其应用。

2.难点:垂径定理探索及其应用。

【教学过程】一、创设问题情境,引入新课:[师]前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?[生]如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫轴对称图形,这条直线叫对称轴。

[师]我们是用什么方法研究了轴对称图形?[生]折叠。

[师]今天我们继续用前面的方法来研究圆的对称性。

二、讲授新课:[师]同学们想一想:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?[生]圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴。

[师]是吗?你是用什么方法解决上述问题的?大家互相讨论一下。

[生]我们可以利用折叠的方法,解决上述问题。

把一个圆对折以后,圆的两半部分重合,折痕是一条过圆心的直线,由于过圆心可以作无数条直线,这样便可知圆有无数条对称轴。

[师]很好。

教师板书:圆是轴对称图形,其对称轴是任意一条过圆心的直线。

下面我们来认识一下弧、弦、直径这些与圆有关的概念。

1.圆弧:圆上任意两点间的部分叫做圆弧,简称弧(arc )。

2.弦:连接圆上任意两点的线段叫做弦(chord)。

3.直径:经过圆心的弦叫直径(diameter)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2圆的对称性学案
学习目标:
1.理解圆的轴对称性;
2.理解垂径定理及逆定理的的推导过程,并能初步应用。

一、课前预习
自学课本P96,回答下列问题:
1.平面上,到的距离等于的所有点组成的图形叫做。

2.点与圆的位置关系有三种:点在、点在、点在。

3.连接圆上任意两点间的线段叫做__________,经过圆心的弦叫做_________。

4.圆上任意两点间的部分叫做 ,简称 .如图,以A、B为端点的弧记作,读作“”或“”。

5.弧包括和,大于半圆的弧称为,小于半圆的弧称为。

半圆既不是,也不是。

优弧一般用个大写字母来表示,劣弧一般用个大写字母来表示,如图,以A、D为端点的弧有两条,优弧ACD(记作 )劣弧ABD(记作 )。

二、合作探究
【自主学习】
1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?
2.你是用什么方法解决上述问题的?
3.右图还是轴对称图形吗?如果是你能找出它的对称轴吗?
【小组讨论】
4.如图,AB是⊙O的一条弦.作直径CD, CD⊥AB,垂足为M.
(1)此图是轴对称图形吗?如果是,其对称轴是什么?
(2)你能发现图中有那些等量关系吗?说一说你的理由。

垂径定理:。

用几何语言表达:∵∴
在下列图形中,哪些符合垂径定理的条件?
三、典型例题
E
O
B
A
E
O
B
A E
O
B
A E
O
B
A
D
O
B
A
例1 如图,已知在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径。

例2:如图,一条公路的转弯处是一段圆弧,(即图中 CD,点O是CD的圆心),其中CD =600m,E为CD上一点,且OE⊥CD,垂足为F,EF=90m。

求这段弯路的半径。

四.练习:
1.半径为4cm的⊙O中,弦AB=4cm, 那么圆心O到弦AB的距离是。

2.⊙O的直径为10cm,圆心O到弦AB的距离为3cm,则弦AB的长是。

3.半径为2cm的圆中,过半径中点且垂直于这条半径的弦长是。

(1)题(2)题(3)题(4)题(5)题
4.如图,在⊙O中,AB、AC是互相垂直的两条弦,OD⊥AB于点D,OE⊥AC于点E,
且AB=8cm,AC=6cm,那么的⊙O的半径OA长为。

5.弓形的弦长AB为24cm,弓形的高CD为8cm,则这弓形所在圆的半径为 _____
6.已知如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点。

求证:AC=BD
五.小结感悟
学了本节课你有哪些收获?
六.作业《分层作业B本》第21-22面,17题选做。

相关文档
最新文档