同济大学高等数学节多元复合函数的微分法

合集下载

《高等数学》(同济六版)教学课件★第9章.多元函数微分法及其应用(1)

《高等数学》(同济六版)教学课件★第9章.多元函数微分法及其应用(1)

例如, f ( x, y )
4
x2 y 2 2 2 xy 2 , x y 0 2 x y 0, x2 y 2 0
2 2 4
x 4x y y 2 2 y , x y 0 2 2 2 f x ( x, y ) (x y ) 0, x2 y2 0 x4 4x2 y 2 y 4 2 2 x , x y 0 2 2 2 f y ( x, y ) (x y ) 0, x2 y2 0 y f x (0, y ) f x (0, 0) lim 1 f x y (0,0) lim y 0 y y 0 y f y ( x, 0) f y (0, 0) x 1 lim f y x (0,0) lim x 0 x x 0 x
目录 上页 下页 返回 结束
r2
定理. 若 f x y ( x,y) 和 f y x ( x,y) 都在点 ( x0 , y0 ) 连续, 则
f x y ( x0 , y0 ) f y Байду номын сангаас ( x0 , y0 )
本定理对 n 元函数的高阶混合导数也成立.
(证明略)
例如, 对三元函数 u = f (x , y , z) , 当三阶混合偏导数 在点 (x , y , z) 连续时, 有
x 0 y 0
0

x 0 y 0
lim f ( x x, y y ) f ( x, y )
即 函数 z = f (x, y) 在点 (x, y) 可微
z f ( x x, y y) f ( x , y ) 函数在该点连续
下面两个定理给出了可微与偏导数的关系:
目录 上页 下页 返回

同济大学高等数学第六版下册第八章第一节多元函数微分学相关概念

同济大学高等数学第六版下册第八章第一节多元函数微分学相关概念

k 极限值与 有关,则可断言极限不存在;
(2) 找两种不同趋近方式,使 lim f ( x , y ) 存在,
x x0 y y0
但两者不相等,此时也可断言 f ( x , y ) 在点
P0 ( x 0 , y0 ) 处极限不存在.
利用点函数的形式有n 元函数的极限
定 义 2 设n 元 函 数 f (P ) 的 定 义 域 为 点 集 D , P0 是其聚点,如果对于任意给定的正数 , 总 存 在 正 数 , 使 得 对 于 适 合 不 等 式 0 | PP0 | 的 一 切 点 P D , 都 有 n | f ( P ) A | 成立,则称 A 为 元函数f (P ) 当 P P0 时的极限,记为 lim f ( P ) A . PP
(如右图) 二元函数的图形通 常是一张曲面.
二、多元函数的极限
定义 1 设 函 数 z f ( x, y) 的 定 义 域 为 D , P0 ( x 0 , y 0 ) 是其聚点,如果对于任意给定的 正数 ,总存在正数 ,使得对于适合不等式 0 | PP0 | ( x x 0 ) 2 ( y y 0 ) 2 的 一 切 点,都有| f ( x , y ) A | 成立,则称 A 为函数 z f ( x , y ) 当 x x 0 , y y 0 时的极限, lim 记为 x x f ( x , y ) A (或 f ( x , y ) A ( 0)这里 | PP0 | ).
多元函数微分学
在上册中,我们讨论的是一元函数微积分 ,但实际问题中常会遇到依赖于两个以上自变量 的函数—多元函数,也提出了多元微积分问题。
多元微积分的概念、理论、方法是一元微 积分中相应概念、理论、方法的推广和发展, 它们既有相似之处(概念及处理问题的思想方 法)又有许多本质的不同,要善于进行比较, 既要认识到它们的共同点和相互联系,更要注 意它们的区别,研究新情况和新问题,深刻理 解,融会贯通。

同济大学高等数学_第六篇_多元微积分学

同济大学高等数学_第六篇_多元微积分学

第六篇 多元微积分学第九章 多元函数微分学及其应用我们以前学习的函数只有一个自变量,这种函数我们称为一元函数.一元函数的微积分解决了很多初等数学无法解决的问题.但就是,在实际问题中往往牵扯到多方面的因素,解决这类问题必须引进多元函数.本章将在一元函数微分学的基础上,讨论多元函数的微分及其应用.从一元函数的情形推广到二元函数时会产生一些新的问题,而从二元函数推广到二元以上的多元函数则可以类推.通过本章的学习,学生要掌握多元函数微分学的基本原理以及解决几何、经济与管理、工程等领域的实际问题的具体方法、第1节 多元函数的基本概念1、1 平面点集为了介绍二元函数的概念,有必要介绍一些关于平面点集的知识,在一元函数微积分中,区间的概念就是很重要的,大部分问题就是在区间上讨论的.在平面上,与区间这一概念相对应的概念就是邻域.1.1.1 邻域设000(,)P x y 就是xOy 平面上的一定点,δ就是某一正数,与点000(,)P x y 的距离小于δ的点(,)P x y 的全体,称为点000(,)P x y 的δ邻域,记为0(,)δU P ,即{}00(,)U P P P P δδ=<,亦即 {}0(,)(,U P x y δδ=<.0(,)δU P 在几何上表示以000(,)P x y 为中心,δ为半径的圆的内部(不含圆周).上述邻域0(,)δU P 去掉中心000(,)P x y 后,称为000(,)P x y 的去心邻域,记作o0(,)U P δ.{}o0(,)(,)0U P x y δδ=<<、如果不需要强调邻域的半径δ,则用0()U P 表示点000(,)P x y 的邻域,用o0()U P 表示000(,)P x y 的去心邻域.1.1.2 区域下面用邻域来描述平面上的点与点集之间的关系.设E 就是xOy 平面上的一个点集,P 就是xOy 平面上的一点,则P 与E 的关系有以下三种情形:(1) 内点:如果存在P 的某个邻域()U P ,使得()⊂U P E ,则称点P 为E 的内点.(2) 外点:如果存在P 的某个邻域()U P ,使得()=∅U P E ,则称P 为E 的外点.(3) 边界点:如果在点P 的任何邻域内,既有属于E 的点,也有不属于E 的点,则称点P 为E 的边界点.E 的边界点的集合称为E 的边界,记作∂E .例如:点集(){}221,|01=<+<E x y xy ,除圆心与圆周上各点之外圆的内部的点都就是1E 的内点,圆外部的点都就是1E 的外点,圆心及圆周上的点为1E 的边界点;又如平面点集(){}2,|1=+≥E x y x y ,直线上方的点都就是2E 的内点,直线下方的点都就是2E 的外点,直线上的点都就是2E 的边界点(图9—1).图9—1显然,点集E 的内点一定属于E ;点集E 的外点一定不属于E ;E 的边界点可能属于E ,也可能不属于E .如果点集E 的每一点都就是E 的内点,则称E 为开集,点集(){}221,|01=<+<E x y xy 就是开集,(){}2,|1=+≥E x y x y 不就是开集.设E 就是开集,如果对于E 中的任何两点,都可用完全含于E 的折线连接起来,则称开集E 就是连通集(图9—2) .点集E 1与E 2都就是连通的,点集(){}3,|0=>E x y xy 不就是连通的(图9—2).图9—2连通的开集称为开区域(开域).从几何上瞧,开区域就是连成一片的且不包括边界的平面点集.如E 1就是开区域.开区域就是数轴上的开区间这一概念在平面上的推广.开区域E 连同它的边界E ∂构成的点集,称为闭区域(闭域),记作E (即=E E E +∂). 闭区域就是数轴上的闭区间这一概念在平面上的推广.如E 2及(){}224,|1=+≤E x y xy 都就是闭域,而(){}225,|12=≤+<E x y xy 既非闭域,又非开域.闭域就是连成一片的且包含边界的平面点集.本书把开区域与闭区域统称为区域.如果区域E 可包含在以原点为中心的某个圆内,即存在正数r ,使(),E U O r ⊂,则称E 为有界区域,否则,称E 为无界区域.例如E 1就是有界区域,E 2就是无界区域.记E 就是平面上的一个点集,P 就是平面上的一个点.如果点P 的任一邻域内总有无限多个点属于点集E ,则称P 为E 的聚点.显然,E 的内点一定就是E 的聚点,此外,E 的边界点也可能就是E 的聚点.例如,设(){}226,|01=<+≤E x y xy ,那么点()0,0既就是6E 的边界点又就是6E 的聚点,但6E 的这个聚点不属于6E ;又如,圆周221x y +=上的每个点既就是6E 的边界点,也就是6E 的聚点,而这些聚点都属于6E .由此可见,点集E 的聚点可以属于E ,也可以不属于E .再如点()7111111=1,1(,)(,),,(),2233,,E n n⎧⎫⎨⎬⎩⎭,原点()0,0就是它的聚点,7E 中的每一个点都不就是聚点.1.1.3 n 维空间R n一般地,由n 元有序实数组()12,,,n x x x 的全体组成的集合称为n 维空间,记作R n .即 (){}12,,,|,1,2,,n n i R x x x x R i n =∈=.n 元有序数组()12,,,n x x x 称为n 维空间中的一个点,数x i 称为该点的第i 个坐标.类似地规定,n 维空间中任意两点()12,,,n P x x x 与()12,,,n Q x x x 之间的距离为PQ =前面关于平面点集的一系列概念,均可推广到n 维空间中去,例如,0∈nP R ,δ就是某一正数,则点0P 的δ邻域为(){}00|,,n U P P PP P R δδ=<∈.以邻域为基础,还可以定义n 维空间中内点、边界点、区域等一系列概念.1、2 多元函数的概念1.2.1 n 元函数的定义定义1 设D 就是n R 中的一个非空点集,如果存在一个对应法则f , 使得对于D 中的每一个点()12,,,n P x x x ,都能由f 唯一地确定一个实数y ,则称f 为定义在D 上的n 元函数,记为()()1212,,,,,,,n n y f x x x x x x D =∈.其中12,,,n x x x 叫做自变量,y 叫做因变量,点集D 叫做函数的定义域,常记作()D f .取定()12,,,n x x x D ∈,对应的()12,,,n f x x x 叫做()12,,,n x x x 所对应的函数值.全体函数值的集合叫做函数f 的值域,常记为()f D [或()R f ],即()()()(){}1212|,,,,,,,n n f D y y f x x x x x x D f ==∈.当n =1时,D 为实数轴上的一个点集,可得一元函数的定义,即一元函数一般记作(),,y f x x D D R =∈⊂;当n =2时,D 为xOy 平面上的一个点集,可得二元函数的定义,即二元函数一般记作()()2,,,,z f x y x y D D R =∈⊂,若记(),P x y =,则也记作()z f P =.二元及二元以上的函数统称为多元函数.多元函数的概念与一元函数一样,包含对应法则与定义域这两个要素.多元函数的定义域的求法,与一元函数类似.若函数的自变量具有某种实际意义,则根据它的实际意义来决定其取值范围,从而确定函数的定义域、 对一般的用解析式表示的函数,使表达式有意义的自变量的取值范围,就就是函数的定义域.例1 在生产中,设产量Y 与投入资金K 与劳动力L 之间的关系为Y AK L αβ=(其中,,A αβ均为正常数).这就是以K ,L 为自变量的二元函数,在西方经济学中称为生产函数.该函数的定义域为(){},|0,0K L K L >>.例2 求函数()ln z y x =-的定义域D ,并画出D 的图形.解 要使函数的解析式有意义,必须满足220,0,10,y x x x y ->⎧⎪≥⎨⎪-->⎩即(){}22,|0,,1D x y x x y xy =≥<+<,如图9—3划斜线的部分.图9—3 图9—41.2.2、 二元函数的几何表示设函数(),=z f x y 的定义域为平面区域D ,对于D 中的任意一点(),P x y ,对应一确定的函数值()(),=z z f x y .这样便得到一个三元有序数组(),,x y z ,相应地在空间可得到一点(),,M x y z .当点P 在D 内变动时,相应的点M 就在空间中变动,当点P 取遍整个定义域D 时,点M 就在空间描绘出一张曲面S (图9—4).其中()()(){},,|,,,S x y z z f x y x y D ==∈.而函数的定义域D 就就是曲面S 在xO y 面上的投影区域.例如z ax by c =++表示一平面;221z x y =--表示球心在原点,半径为1的上半球面.1、3二元函数的极限二元函数的极限概念就是一元函数极限概念的推广.二元函数的极限可表述为定义1 设二元函数()z f P =的定义域就是某平面区域D ,P 0为D 的一个聚点,当D 中的点P 以任何方式无限趋于P0时,函数值f (P )无限趋于某一常数A ,则称A 就是函数()f P 当P 趋于P 0时的(二重)极限.记为lim ()P P f P A →=或()0()f P A P P →→,此时也称当0→P P 时()f P 的极限存在, 否则称()f P 的极限不存在.若0P 点的坐标为00(,)x y ,P 点的坐标为(),x y ,则上式又可写为()()00,lim (,),→=x y x y f x y A 或 f (x , y )→A (x →x 0,y →y 0).类似于一元函数,()f P 无限趋于A 可用()f P A ε-<来刻画,点(),P P x y =无限趋于0000(,)P P x y =可用22000()()P P x x y y δ=-+-刻画,因此,二元函数的极限也可如下定义.定义2 设二元函数()(,)z f P f x y ==的定义域为D ,000(,)P x y 就是D 的一个聚点,A 为常数.若对任给的正数ε,不论ε多小,总存在0δ>,当(,)P x y D ∈,且0P P δ=时,总有(),f P A ε-<则称A 为()z f P =当0P P →时的(二重)极限.注 ①定义中要求0P 就是定义域D 的聚点,就是为了保证在P 0的任何邻域内都有D 中的点.②注意到平面上的点P 趋近于0P 的方式可以多种多样:P 可以从四面八方趋于0P ,也可以沿曲线或点列趋于0P .定义1指出:只有当P 以任何方式趋近于0P ,相应的()f P 都趋近于同一常数A 时,才称A 为()f P 当0P P →时的极限.如果(,)P x y 以某些特殊方式(如沿某几条直线或几条曲线)趋于000(,)P x y 时,即使函数值()f P 趋于同一常数A ,我们也不能由此断定函数的极限存在.但就是反过来,当P 在D 内沿不同的路径趋于0P 时,()f P 趋于不同的值,则可以断定函数的极限不存在.③二元函数极限有与一元函数极限相似的运算性质与法则,这里不再一一叙述.例3 设222222,0,(,)0,0,xyx y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩判断极限()(),0,0lim (,)→x y f x y 就是否存在?解 当(,)P x y 沿x 轴趋于(0,0)时,有y =0,于就是()()22,0,00lim (,)lim00→→===+x y x y f x y x ; 当(,)P x y 沿y 轴趋于(0,0)时,有x =0,于就是()()22,0,000lim (,)lim00→→===+x y y x f x y y .但不能因为(,)P x y 以上述两种特殊方式趋于(0,0)时的极限存在且相等,就断定所考察的二重极限存在.因为当(,)P x y 沿直线()0=≠y kx k )趋于(0,0)时,有()()2222,0,00lim(,)lim (1)1→→===++x y x y kxkx kf x y k x k, 这个极限值随k 不同而变化,故()(),0,0lim (,)→x y f x y 不存在.例4 求下列函数的极限:(1) ()(),0,0lim →x y()()222,0,0lim →+x y xy x y ; (3)()(,0,0ln 1lim →+x y xy . 解 (1)()()()(()(,0,0,0,0,0,01limlim lim 4→→→==-=-x y x y x y .(2)当0,0→→x y 时,220x y +≠,有222x y xy +≥.这时,函数22xyx y +有界,而y 就是当x →0且y →0时的无穷小,根据无穷小量与有界函数的乘积仍为无穷小量,得()()222,0,0lim 0→=+x y xy x y . (3)()(()(()(,0,0,0,0,0,0ln 1limlimlim1→→→+===x y x y x y xy .从例4可瞧到求二元函数极限的很多方法与一元函数相同.1、4 二元函数的连续性类似于一元函数的连续性定义,我们用二元函数的极限概念来定义二元函数的连续性. 定义3 设二元函数(,)z f x y =在点000(,)P x y 的某邻域内有定义,如果()()()00,0,0lim.(,)→=x y f x y f x y ,则称函数(,)f x y 在点000(,)P x y 处连续,000(,)P x y 称为(,)f x y 的连续点;否则称(,)f x y 在000(,)P x y 处间断(不连续),000(,)P x y 称为(,)f x y 的间断点.与一元函数相仿,二元函数(,)z f x y =在点000(,)P x y 处连续,必须满足三个条件:①函数在点000(,)P x y 有定义;②函数在000(,)P x y 处的极限存在;③函数在000(,)P x y 处的极限与000(,)P x y 处的函数值相等,只要三条中有一条不满足,函数在000(,)P x y 处就不连续.由例3可知,222222,0,(,)0,0,xyx y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0,0)处间断;函数1z x y =+在直线0x y +=上每一点处间断.如果(,)f x y 在平面区域D 内每一点处都连续,则称(,)f x y 在区域D 内连续,也称(,)f x y 就是D 内的连续函数,记为()(,)f x y C D ∈.在区域D 上连续函数的图形就是一张既没有“洞”也没有“裂缝”的曲面.一元函数中关于极限的运算法则对于多元函数仍适用,故二元连续函数经过四则运算后仍为二元连续函数(在商的情形要求分母不为零);二元连续函数的复合函数也就是连续函数.与一元初等函数类似,二元初等函数就是可用含,x y 的一个解析式所表示的函数,而这个式子就是由常数、x 的基本初等函数、y 的基本初等函数经过有限次四则运算及复合所构成的,例如()sin x y +,22xy x y +,arcsin xy等都就是二元初等函数.二元初等函数在其定义域的区域内处处连续.与闭区间上一元连续函数的性质相类似,有界闭区域上的连续函数有如下性质.性质1(最值定理) 若(,)f x y 在有界闭区域D 上连续,则(,)f x y 在D 上必取得最大值与最小值.推论 若(,)f x y 在有界闭区域D 上连续,则(,)f x y 在D 上有界.性质2 (介值定理) 若(,)f x y 在有界闭区域D 上连续,M 与m 分别就是(,)f x y 在D 上的最大值与最小值,则对于介于M 与m 之间的任意一个数C ,必存在一点00(,)x y D ∈,使得00(,)f x y C =.以上关于二元函数的极限与连续性的概念及有界闭区域上连续函数的性质,可类推到三元以上的函数中去.习题9—11.判断下列平面点集哪些就是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点组成的点集与边界、(1) (){},|0,0≠≠x y x y ; (2) (){}22,|14<+≤x y xy ;(3)(){}2,|>x y y x .2.求下列函数的定义域,并画出其示意图:(1)z = (2)1ln()z x y =-;(3)=z(4)=u .3.设函数()32,23f x y x xy y =-+,求 (1)()2,3f -; (2)12,f x y ⎛⎫⎪⎝⎭; (3) (),f x y x y +-、 4.讨论下列函数在点()0,0处的极限就是否存在: (1) 24xy z x y =+; (2)x yz x y+=-. 5.求下列极限: (1)()(),0,0sin lim→x y xyx; (2)()()22,0,11lim →-+x y xy x y ;(3)()(,1,0ln lim→+y x y x e ; (4)()(),0,0lim→x y .6.证明:二元函数()22220,,0,0.+≠=+=⎩x y f x y x y 在()0,0点连续.7.设二元函数()()11sin sin ,0,,0,0.⎧+≠⎪=⎨⎪=⎩x y xy x y f x y xy ,试判断(),f x y 在点()0,0处的连续性.8.函数2222+=-y xz y x在何处就是间断的?第2节 偏导数与全微分2、1 偏导数的概念 2.1.1 偏导数的定义在研究一元函数时,我们从研究函数的变化率引入了导数概念.由于二元函数的自变量有两个,关于某点处函数的变化率问题相当复杂,因此我们不能笼统地讲二元函数在某点的变化率.在这一节,我们考虑二元函数关于某一个自变量的变化率,这就就是偏导数的概念.设函数(),z f x y =在点()00,x y 的某邻域内有定义,x 在0x 有改变量()0x x ∆∆≠,而0y y =保持不变,这时函数的改变量为()()0000,,x z f x x y f x y ∆=+-,x z ∆称为函数(),f x y 在()00,x y 处关于x 的偏改变量(或偏增量).类似地可定义(),f x y 关于y 的偏增量为()()0000,,y z f x y y f x y ∆=+-.有了偏增量的概念,下面给出偏导数的定义.定义1 设函数(),z f x y =在()00,x y 的某邻域内有定义,如果000000(,)(,)limlimx x x z f x x y f x y x x ∆→∆→∆+∆-=∆∆ 存在,则称此极限值为函数(),z f x y =在()00,x y 处关于x 的偏导数,并称函数(),z f x y =在点()00,x y 处关于x 可偏导.记作000000,,,(,).======∂∂∂∂x x x x y y y y x x xy y x zf z f x y xx类似地,可定义函数(),z f x y =在点()00,x y 处关于自变量y 的偏导数为00000(,)(,)limlimy y y z f x y y f x y yy∆→∆→∆+∆-=∆∆,记作000000,,,(,).======∂∂∂∂x x x x y y y y x x yy y y z f z f x y yy如果函数(),z f x y =在区域D 内每一点(),x y 处的偏导数都存在,即(,)(,)(,)limx x f x x y f x y f x y x∆→+∆-=∆(,)(,)(,)limy y f x y y f x y f x y y∆→+∆-=∆存在,则上述两个偏导数还就是关于x ,y 的二元函数,分别称为z 对x ,y 的偏导函数(简称为偏导数).并记作,,,(,)(,)或或或,∂∂∂∂∂∂∂∂x y x y z z f fz z f x y f x y x y x y. 不难瞧出,(),z f x y =在()00,x y 关于x 的偏导数00(,)x f x y 就就是偏导函数(,)x f x y 在()00,x y 处的函数值,而00(,)y f x y 就就是偏导函数(,)y f x y 在()00,x y 处的函数值. 由于偏导数就是将二元函数中的一个自变量固定不变,只让另一个自变量变化,相应的偏增量与另一个自变量的增量的比值的极限;因此,求偏导数问题仍然就是求一元函数的导数问题.求fx∂∂时,把y 瞧做常量,将(),z f x y =瞧做x 的一元函数对x 求导;求f y ∂∂时,把x 瞧做常量,将(),z f x y =瞧做y 的一元函数对y 求导.三元及三元以上的多元函数的偏导数,完全可以类似地定义与计算,这里就不讨论了. 例1 求函数()sin +xyz x y e =在点()1,1-处的偏导数.解 将y 瞧成常量,对x 求导得e [cos()sin()]xy zx y y x y x∂=+++∂; 将x 瞧成常量,对y 求导得e [cos()sin()]xy zx y x x y y∂=+++∂. 再将1,1x y ==-代入上式得111111e ,e x x y y z z xy--===-=-∂∂==∂∂.例2 求函数22ln 4z x y y x =++的偏导数.解 22z y xy x x ∂=+∂,22ln zx y x y∂=+∂. 例3 设()0,1yz xx x =>≠,求证:12ln x z zz y x x y∂∂+=∂∂.证 因为1y zyx x-∂=∂,ln y z x x y ∂=∂,所以111ln 2ln ln y yy y x z z x yx x x x x z y x x y y x-∂∂+=+=+=∂∂. 例4 求函数()2sin x u x y e =+-的偏导数. 解 将y 与z 瞧做常量,对x 求导得()2cos z ux y e x∂=+-∂, 同样可得()22cos x u y x y e y ∂=+-∂,()2cos z z u e x y e z∂=-+-∂. 2.1.2 二元函数偏导数的几何意义由于偏导数实质上就就是一元函数的导数,而一元函数的导数在几何上表示曲线上切线的斜率,因此,二元函数的偏导数也有类似的几何意义.设(),z f x y =在点()00,x y 处的偏导数存在,由于00(,)x f x y 就就是一元函数()0,f x y 在0x 处的导数值,即00(,)x f x y =00d (,)d x x f x y x =⎡⎤⎢⎥⎣⎦,故只须弄清楚一元函数()0,f x y 的几何意义,再根据一元函数的导数的几何意义,就可以得到00(,)x f x y 的几何意义.(),z f x y =在几何上表示一曲面,过点()00,x y 作平行于xz 面的平面0y y =,该平面与曲面(),z f x y =相截得到截线1Γ:0(,),.z f x y y y =⎧⎨=⎩若将0y y =代入第一个方程,得()0,z f x y =.可见截线Γ1就是平面0y y =上一条平面曲线,1Γ在0y y =上的方程就就是()0,z f x y =.从而00(,)x f x y =00d (,)d x x f x y x =⎡⎤⎢⎥⎣⎦表示1Γ在点()()000001,,,M x y f x y Γ=∈处的切线对x 轴的斜率(图9-5).同理,00(,)y f x y =00d (,)d y y f x y y =⎡⎤⎢⎥⎣⎦表示平面0x x =与(),z f x y =的截线 2Γ:0(,),.z f x y x x =⎧⎨=⎩在()()000002,,,M x y f x y Γ=∈处的切线对y 轴的斜率(图9—5).图9—5例5 讨论函数222222,0,(,)0,0,xyx y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩在点(0,0)处的两个偏导数就是否存在.解 0(0,0)(0,0)(0,0)limx x f x f f x∆→+∆-=∆220(0)0(0)0lim 0x x x x ∆→+∆-+∆+==∆. 同样有(0,0)0=y f .这表明(),f x y 在(0,0)处对x 与对y 的偏导数存在,即在(0,0)处两个偏导数都存在.由上节例3知:该函数在(0,0)处不连续.本例指出,对于二元函数而言,函数在某点的偏导数存在,不能保证函数在该点连续.但在一元函数中,我们有结论:可导必连续.这并不奇怪,因为偏导数只刻画函数沿x 轴与y 轴方向的变化率,00(,)x f x y 存在,只能保证一元函数()0,f x y 在x 0处连续,即0y y =与(),z f x y =的截线1Γ在()0000,,M x y z 处连续.同时00(,)y f x y 只能保证2Γ在()0000,,M x y z 处连续,但两曲线1Γ,2Γ在()0000,,M x y z 处连续并不能保证曲面(),z f x y =在()0000,,M x y z 处连续.2、2 高阶偏导数设函数(),z f x y =在区域D 内具有偏导数zx∂∂=(,)x f x y ,(,)∂=∂y z f x y y ,那么在D 内(,)x f x y 及(,)y f x y 都就是x , y 的二元函数.如果这两个函数的偏导数还存在,则称它们就是函数(),z f x y =的二阶偏导数.按照对变量求导次序的不同有下列四个二阶偏导数:22()(,)∂∂∂==∂∂∂xx z zf x y x x x,2()(,)∂∂∂==∂∂∂∂xy z z f x y y x x y ,2()(,)∂∂∂==∂∂∂∂yx z z f x y x y y x ,22()(,)∂∂∂==∂∂∂yy z zf x y y y y, 其中xy f (或12f '')与yx f (或21f '')称为(),f x y 的二阶混合偏导数.同样可定义三阶,四阶,…,n 阶偏导数.二阶及二阶以上的偏导数统称为高阶偏导数.例6 求函数2sin =+z xy x y 的所有二阶偏导数与32zy x∂∂∂. 解 因为zx∂∂=y +2x sin y , z y ∂∂=x +x 2cos y ,所以 22zx∂∂=2sin y , 2z x y ∂∂∂=1+2x cos y , 2z y x ∂∂∂=1+2x cos y , 22z y ∂∂=x 2sin y ,322cos zy y x ∂=∂∂. 从本例我们瞧到22z zx y y x∂∂=∂∂∂∂,即两个二阶混合偏导数相等,这并非偶然. 事实上,有如下定理.定理1 如果函数(),z f x y =的两个二阶混合偏导数2z x y ∂∂∂与2zy x∂∂∂在区域D 内连续,则在该区域内有22z zx y y x∂∂=∂∂∂∂. 定理1表明:二阶混合偏导数在连续的条件下与求导的次序无关、对于二元以上的函数,也可以类似的定义高阶偏导数,而且高阶混合偏导数在偏导数连续的条件下也与求导的次序无关.例7 验证函数22ln z x y =+满足方程22220z zx y∂∂+=∂∂.解 ()22221ln 2z x y x y =+=+ 所以2222,,z x z y x x y y x y∂∂==∂+∂+()()()2222222222222x y x x z y x x x y x y +-⋅∂-==∂++, ()()()2222222222222x y y y z x y y x y x y +-⋅∂-==∂++, 故()()222222222222220z z y x x y x y x y x y ∂∂--+=+=∂∂++.2、3 全微分2.3.1 全微分的概念我们知道,一元函数()y f x =如果可微,则函数的增量Δ y 可用自变量的增量Δx 的线性函数近似求得.在实际问题中,我们会遇到求二元函数(),z f x y =的全增量的问题,一般说来,计算二元函数的全增量Δ z 更为复杂,为了能像一元函数一样,用自变量的增量Δx 与Δ y 的线性函数近似代替全增量,我们引入二元函数的全微分的概念.定义2 设函数(),z f x y =在()000,P x y 的某邻域内有定义,如果函数z 在0P 处的全增量()()0000,,z f x x y y f x y ∆=+∆+∆-可表示成()+ρ∆=∆+∆z A x B y o ,其中A ,B 就是与Δx ,Δy 无关,仅与00,x y 有关的常数,ρ=22()()x y ∆+∆,o (ρ)表示当Δx →0,Δy →0时关于ρ的高阶无穷小量,则称函数(),z f x y =在()000,P x y 处可微,而称∆+∆A x B y 为(),f x y 在点()000,P x y 处的全微分,记作0d x x y y z==或00d x x y y f==,即00d ===∆+∆x x y y zA xB y .若(),z f x y =在区域D 内处处可微,则称(),f x y 在D 内可微,也称(),f x y 就是D 内的可微函数.(),z f x y =在(),x y 处的全微分记作d z ,即d =∆+∆z A x B y .二元函数(),z f x y =在点P (x ,y )的全微分具有以下两个性质: (1) d z 就是,∆∆x y 的线性函数,即d =∆+∆z A x B y ;(2) z d ∆≈z ,()()z d 0ρρ∆-=→z o ,因此,当,∆∆x y 都很小时,可将dz 作为计算Δ z的近似公式.多元函数在某点的偏导数即使都存在,也不能保证函数在该点连续.但就是对于可微函数却有如下结论:定理2 如果函数(),z f x y =在点(),x y 处可微,则函数在该点必连续. 这就是因为由可微的定义,得()()(),,+ρ∆=+∆+∆-=∆+∆z f x x y y f x y A x B y o()(),0,0lim 0x y z ∆∆→∆=,即()(),0,0lim (,)(,)x y f x x y y f x y ∆∆→+∆+∆=.即函数(),z f x y =在点(),x y 处连续.一元函数可微与可导就是等价的,那么二元函数可微与可偏导之间有何关系呢? 定理3 如果函数(),z f x y =在点(),x y 处可微,则(),z f x y =在该点的两个偏导数,z zx y∂∂∂∂都存在,且有 z z dz x y x y∂∂=∆+∆∂∂. 证 因为函数(),z f x y =在点(),x y 处可微,故()+ρ∆=∆+∆z A x B y o , ρ令0y ∆=,于就是()(),,x z f x x y f x y A x o ∆=+∆-=∆+.由此得 ()()000(),,limlim lim x x x x x x f x x y f x y zx x x xοA A ∆→∆→∆→∆∆+∆-∆==+=∆∆∆∆,即zA x∂=∂. 同理可证得zB y∂=∂. 定理3的逆命题就是否成立呢? 即二元函数在某点的两个偏导数存在能否保证函数在该点可微分呢? 一般情况下答案就是否定的.如函数222222,0,(,)0,0xyx y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在()0,0处两个偏导数都存在,但(),f x y 在()0,0处不连续,由定理2知,该函数在()0,0处不可微.但两个偏导数既存在且连续时,函数就就是可微的.我们不加证明地给出如下定理.定理 4 如果函数(),z f x y =在(),x y 处的偏导数,z z x y∂∂∂∂存在且连续,则函数(),z f x y =在该点可微.类似于一元函数微分的情形,规定自变量的微分等于自变量的改变量.即d ,d =∆=∆x x y y ,于就是由定理3有d d d z z z x y x y∂∂=+∂∂. 以上关于二元函数的全微分的概念及结论,可以类推到三元以上的函数中去.比如若三元函数(),,=u f x y z 在点(),,P x y z 处可微,则它的全微分为d d d d u u u u x y z x y z∂∂∂=++∂∂∂. 例8 求下列函数的全微分:(1) 2sin 2=z x y ; (2) =yzu x .解 (1) 因为2sin 2∂=∂zx y x,22cos 2∂=∂z x y y ,所以22sin 22cos 2=+dz x ydx x ydy .(2) 因为1-∂=∂yz uyzx x,ln ∂=∂yz u zx x y ln ∂=∂yz uyx x z, 所以 1ln ln -=++yz yz yz du yzx dx zx xdy yx xdz .例9 求xyz xy e =+在点()1,2处的全微分.解 因xy zy ye x ∂=+∂,xy zx xe y ∂=+∂得 11222222e ,1e x x y y z z xy====∂∂=+=+∂∂,于就是 ()()1222d 22e d 1e d x y zx y ===+++ .3.1.2全微分的运算法则类似于一元函数微分的运算法则,有定理5 (全微分四则运算法则) 设(),f x y ,(),g x y 在(),P x y 处可微,则 1) ()()+±+f x y g x y 在(),x y 处可微,且[][][]()()()()+±+=+±+d f x y g x y d f x y d g x y ;2) 若k 为常数,()+kf x y 在点(),x y 处可微,且[][]()()+=+d kf x y kd f x y ;3) ()()+⋅+f x y g x y 在点(),x y 处可微,且[][][]()()()()()()+⋅+=+++++d f x y g x y g x y d f x y f x y d g x y ;4) 当g (x ,y )≠0时,()()f x yg x y ++在点(),x y 处可微,且 2()()d ()()d ()d ()()f x y g x y f x y f x y g x y g x y g x y ⎡⎤++++++=⎢⎥++⎣⎦. 例10 求()22sin z x x y =+的全微分.解()()22222sin 2cos zx y x x y x∂=+++∂,()222cos z xy x y y ∂=+∂,()()()222222sin sin sin dz d x x y xd x y x y dx ⎡⎤⎡⎤=+=+++⎣⎦⎣⎦ ()()()2222222sin 2cos 2cos x y x x y dx xy x y dy ⎡⎤=+++++⎣⎦习题9—21.求下列各函数的偏导数:(1) 22365z x xy y =++; (2) ln y z x=; (3) xyz xye =; (4) yz u x =.2.已知()(),2xf x y x y e =+,求()0,1x f ,()0,1y f .3.设z x y =+求()()3,40,5,z z xy∂∂∂∂.4.设11+=e x y z ⎛⎫- ⎪⎝⎭,求证:222z z xy z x y∂∂+=∂∂.5.求下列函数的所有二阶偏导数.(1) 44224z x y x y =+-; (2) ()cos sin x z e y x y =+;(3) ()ln z x xy =; (4) arctan x u y=. 6.设()222,,f x y z xy yz zx =++,求()()()0,0,1,1,0,2,0,1,0xx xz yz f f f -及()2,0,1zzx f .7.验证r =2222222r r r x y z r∂∂∂++=∂∂∂.8.求下列函数的全微分、(1) 32645z xy x y =+; (2) x yz e =;(3 ) xz xyy=+; (4) z =.9.设()1,,zy f x y z x ⎛⎫=⎪⎝⎭,求()1,1,1|dz . 10.设,1,1,0.15,0.1,xyz e x y x y ===∆=∆=求dz .第3节 多元复合函数与隐函数的求导法则3、1复合函数的求导法则 3.1.1 复合函数的求导法则现在要将一元函数微分学中复合函数的求导法则推广到多元复合函数的情形,多元复合函数的求导法则在多元函数微分学中也起着重要作用.定理 1 设函数(),z f u v =), 其中()u x ϕ=,()v x ψ=.如果函数()u x ϕ=,()v x ψ=都在x 点可导,函数(),z f u v =在对应的点(),u v 处可微,则复合函数()()(),z f x x ϕψ=在x 处可导,且d d d d d d z z u z vx u x v x∂∂=+∂∂. (9-3-1) 证 设自变量x 的改变量为Δx ,中间变量()u x ϕ=与()v x ψ=的相应的改变量分别为Δu 与Δv ,函数z 的改变量为Δz .因(),z f u v =在(),u v 处可微,由可微的定义有()()+z zz dz o u v o u vρρ∂∂∆=+=∆+∆∂∂,其中ρ=,()()00o ρρ→→,且0()lim0ρορρ→=,故有()z z u z v x u x v x xορρρ∆∂∆∂∆=++∆∂∆∂∆∆. 因为()u x ϕ=与()v x ψ=在点x 可导,故当x ∆→时,Δu →0,Δv →0,ρ→0,u x ∆∆→d d u x ,v x ∆∆→d d v x. 在上式中令Δx →0,两边取极限,得d d z z du z dvx u dx v dx∂∂=+∂∂. 注意,当Δx →0时,()xορρρ∆→0.这就是由于limlim x x xρ∆→∆→==∆这说明Δx →0时,xρ∆就是有界量,()ορρ为无穷小量.从而()ορρxρ∆→0(Δx →0). 用同样的方法,可以得到中间变量多于两个的复合函数的求导法则.比如(),,z f u v w =,而()u x ϕ=,()v x ψ=,()w w x =,则 d d d d d d d d z zu z v z wx u x v x w x∂∂∂=++∂∂∂. (9-3-2)例1 设2z u v =,cos u t =,sin v t =求.dz dt解 利用公式(9-3-1)求导,因为22,=z zuv u u v ∂∂∂∂=, d sin d u t t =-, d cos d v t t=, 所以 223d d d sin cos 2cos sin cos d d d z z u z vuv t u t t t t t u t v t∂∂=+=-+=-+∂∂.本题也可将cos u t =,sin v t =代入函数2z u v =中,再用一元函数的取对数求导法,求得同样的结果.观察公式(9-3-1) ,(9-3-2)可以知道,若函数z 有2个中间变量,则公式右端就是2项之与,若z 有3个中间变量,则公式右端就是3项之与,一般地,若z 有几个中间变量,则公式右端就是几项之与,且每一项都就是两个导数之积,即z 对中间变量的偏导数再乘上该中间变量对x 的导数.公式(9-3-1),(9-3-2)可借助复合关系图来理解与记忆.图9—6公式(9-3-1) ,(9-3-2)称为多元复合函数求导的链式法则.上述定理还可推广到中间变量依赖两个自变量x 与y 的情形.关于这种复合函数的求偏导问题,有如下定理:定理 2 设(),=z f u v 在(u ,v )处可微,函数(),=u u x y 及(),=v v x y 在点(),x y 的偏导数存在,则复合函数()()(),,,z f u x y v x y =在(),x y 处的偏导数存在,且有如下的链式法则,.z z u z vx u x v xz z u z v y u y v y ∂∂∂∂∂⎧=+⎪∂∂∂∂∂⎪⎨∂∂∂∂∂⎪=+∂∂∂∂∂⎪⎩(9-3-3) 可以这样来理解(9-3-3):求zx∂∂时,将y 瞧做常量,那么中间变量u 与v 就是x 的一元函数,应用定理1即可得zx∂∂.但考虑到复合函数()()(),,,z f u x y v x y =以及(),=u u x y 与(),=v v x y 都就是x , y 的二元函数,所以应把(9-3-1)中的全导数符号“d ”改为偏导数符号“∂”.公式(9-3-3)也可以推广到中间变量多于两个的情形.例如,设(),u x y ϕ=,(),v x y ψ=,(),w w x y =的偏导数都存在,函数(),,z f u v w =可微,则复合函数()()()(),,,,,z f u x y v x y w x y =对x 与y 的偏导数都存在,且有如下链式法则,.z z u z v z wx u x v x w xz z u z v z w y u y v y w y∂∂∂∂∂∂∂⎧=++⎪∂∂∂∂∂∂∂⎪⎨∂∂∂∂∂∂∂⎪=++∂∂∂∂∂∂∂⎪⎩ (9-3-4) 特别对于下述情形:(),,z f u x y =可微,而(),u x y ϕ=的偏导数存在,则复合函数()(),,,z f x y x y ϕ=对x 及y 的偏导数都存在,为了求出这两个偏导数,应将f 中的变量瞧做中间变量:(),,,u x y v x w y ϕ===.此时,1,=0,0,=1v v w wx y x y∂∂∂∂∂∂∂∂==. 由公式(9-3-4)得,.z f f ux x u x z f f u y y u y ∂∂∂∂⎧=+⋅⎪∂∂∂∂⎪⎨∂∂∂∂⎪=+⋅∂∂∂∂⎪⎩(9-3-5) 注 这里z x ∂∂与f x ∂∂的意义就是不同的.fx ∂∂就是把(),,f u x y 中的u 与y 都瞧做常量对x 的偏导数,而zx∂∂却就是把二元复合函数()(),,,f x y x y ϕ中y 瞧做常量对x 的偏导数.公式(9-3-3),(9-3-4),(9-3-5)可借助图9—7理解.图9—7例2 设sin ,,uz e v u xy v x y ===+, 求,z z x y∂∂∂∂. 解e sin e cos 1u u z z u z v v y v x u x v x∂∂∂∂∂=+=+∂∂∂∂∂ ()()e sin cos xy y x y x y =+++⎡⎤⎣⎦,=e sin e cos 1u u z z u z vv x v y u y v y∂∂∂∂∂=++∂∂∂∂∂ ()()e sin cos xy x x y x y =+++⎡⎤⎣⎦.例3 设(),z f u v =可微,求()22,xy z f x y e =-对x 及y 的偏导数.解 引入中间变量22u x y =-,xyv e =,由(9-3-3)得2222122e 2(,e )e (,e )xy xy xy xy z f f x y xf x y y f x y x u v∂∂∂''=+=-+-∂∂∂,222212(2)e 2(,e )e (,e )xy xy xy xy z f f y x yf x y x f x y y u v∂∂∂''=-+=--+-∂∂∂. 注 记号221(,e )xy f x y '-与222(,e )xyf x y '-分别表示(),f u v 对第一个变量与第二个变量在(22,e xyx y -)处的偏导数,可简写为1f '与2f ',后面还会用到这种表示方法.例4 设,x y z xyf y x ⎛⎫=⎪⎝⎭, 1221=(,(,)(,)()z x y x y x y y yf xy f f x y x y x yy x x ⎡⎤∂''+⎢⎥∂-⎣⎦)+ 212(,(,)(,)x y x y y x y yf xf f y x y x x y x''=-)+,1221=,,(),+z x y x y x x y xf +xy f f yy x y x y y x x ⎡⎤⎛⎫⎛⎫⎛⎫∂''-⎢⎥ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭⎣⎦ 212,,,x y x x y x y xf f yf y x y y x y x ⎛⎫⎛⎫⎛⎫''=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.下面给出经济学中经常遇到的齐次函数的概念.设函数(),z f x y =的定义域为D ,且当(),x y D ∈时,对任给的t ∈R ,t >0,仍有(),tx ty D ∈.如果存在非负常数k ,使对任意的(),x y D ∈,恒有()(),,k f tx ty t f x y =,则称二元函数(),z f x y =为k 次齐次函数.k =1时,称为线性齐次函数.例5 证明k 次齐次函数(),f x y 满足(,)(,)(,)x y xf x y yf x y kf x y ''+=.证明 在(),z f tx ty =中,令,u tx v ty ==,当取定一点(),x y 时(),f tx ty 就是t 的一元函数,于就是有d d d (,)(,)d d d x y z z u z v f tx ty x f tx ty y t u t v t∂∂''=+=+∂∂. 又因为(),kz t f x y =,所以有1d (,)d k zkt f x y t-=. 因此,对任意的t ,有1(,)(,)(,)k x y f tx ty x f tx ty y kt f x y -''+=、3.1.2 全微分形式不变性我们知道一元函数的一阶微分形式具有不变性,多元函数的全微分形式也具有不变性.下面以二元函数为例来说明.设(),z f u v =具有连续偏导数,则有全微分d d d z z z u v u v∂∂=+∂∂. 如果u ,v 就是中间变量,即(),u x y ϕ=,(),v x y ψ=,且这两个函数也具有连续偏导数,则复合函数()()(),,,z fx y x y ϕψ=的全微分为d d d z zz x y x y∂∂=+∂∂d d z u z v z u z v x y u x v x u y v y ⎛⎫∂∂∂∂∂∂∂∂⎛⎫=+++ ⎪ ⎪∂∂∂∂∂∂∂∂⎝⎭⎝⎭ d d d d z u u z v v x y x y u x y v x y ⎛⎫⎛⎫∂∂∂∂∂∂=+++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭ d d z z u v u v∂∂=+∂∂. 可见,无论z 就是自变量u ,v 的函数还就是中间变量u ,v 的函数,它的全微分形式都就是一样的,这种性质叫做多元函数的全微分形式的不变性.例6 利用一阶全微分形式的不变性求函数()22,xy z f x y e =-的偏导数与全微分. 解 引入中间变量22,xyu x y v e =-=,则(),z f u v =.2212d d d d()d(e )xy z z z u v f x y f u v∂∂''=+=-+∂∂ 2212(d d )e d()xy f x y f xy ''=-+ 12(2d 2d )e (d d )xy f x x y y f y x x y ''=-++ 1212(2e )d (2e )d xy xy xf y f x yf x f y ''''=++-+.因此12=2e xy zxf y f x∂''+∂,12=2e xy z yf x f y ∂''-+∂.3、2 隐函数的偏导数在一元函数的微分学中,我们曾介绍了隐函数的求导方法:方程(),0F x y =两边对x 求导,再解出y ′.现在我们介绍隐函数存在定理,并根据多元复合函数的求导法导出隐函数的求导公式. 3.2.1 一个方程的情形定理3 设函数(),F x y 在点()000,P x y 的某一邻域内有连续的偏导数且()00,0F x y =,()00,0y F x y ≠,则方程(),0F x y =在点()000,P x y 的某邻域内惟一确定一个具有连续导数的函数()y f x =,它满足条件()00y f x =,并且有d d x y F yx F '=-'. (9-3-6) 公式(9-3-6)就就是隐函数的求导公式.这里仅对公式(9-3-6)进行推导.将函数()y f x =代入方程(),0F x y =得恒等式。

同济大学数学系《高等数学》笔记和课后习题(含考研真题)详解(多元函数微分法及其应用)【圣才出品】

同济大学数学系《高等数学》笔记和课后习题(含考研真题)详解(多元函数微分法及其应用)【圣才出品】

②闭集 如果点集 E 的边界属于 E,则称 E 为闭集.
③连通集 如果点集 E 内任何两点,都可用折线联结起来,且该折线上的点都属于 E,
则称 E 为连通集.
④区域(开区域) 连通的开集称为区域或开区域.
⑤闭区域 开区域连同它的边界一起所构成的点集称为闭区域.
⑥有界集 对于平面点集 E,如果存在某一正数 r,使得
P 为 E 的边界点.
(4)聚点 如果对任意给定的 δ>0,点 P 的去心邻域
总有 E 中的点,则称
P 是 E 的聚点.
4.多元函数
(1)多元函数的定义
设 D 是 Rn 的一个非空子集,称映射 f:D→R 为定义在 D 上的 n 元函数,记作

其中点集 D 称为该函数的定义域,x1,x2,…,xn 称为自变量,u 称为因变量.当 n≥2 时, n 元函数就称为多元函数.
定存在,且函数 z=f(x,y)在点(x,y)的全微分为

5 / 122
圣才电子书

3.全微分应用
十万种考研考证电子书、题库视频学习平台
如果二元函数 z=f(x,y)在点 P(x,y)的两个偏导数
连续,并且
都较小时,则有近似等式
,即
写成
四、多元复合函数的求导法则
1.一元函数与多元函数复合的情形
3.高阶偏导数
设函数 z=f(x,y)在区域 D 内具有偏导数
于是
在 D 内 fx(x,y),fy(x,y)都是 x,y 的函数.如果这两个函数的偏导数也存在,则称它
们是函数 z=f(x,y)的二阶偏导数.按照对变量求导次序的不同有下列四个二阶偏导数
其中第二、三两个偏导数称为混合偏导数.同样可得三阶、四阶……以及 n 阶偏导数.二阶 及二阶以上的偏导数统称为高阶偏导数.

多元复合函数的微分法

多元复合函数的微分法

一、多元复合函数的求导法则
证明
当t取得增量Δt时,u,v及z相应地也取得增量Δu,Δv及 Δz.由于z=f(u,v)在点u,v具有连续偏导数,于是函数z=f(u,v) 在点u,v可微分,即
其中
因此,有
一、多元复合函数的求导法则
定理1可以推广到更多中间变量的情况.设z=f(u,v,w),其 中u=φt,v=ψt,w=ωt,即构成复合函数z=fφt,ψt,ωt,其变量 相互依赖关系如图8-12所示,有
实际上该情形是第2种情形的特例.
一、多元复合函数的求导法则
图 8-15
一、多元复合函数的求导法则
【例4】
设z=uarctan(uБайду номын сангаас),u=xey,v=y2,求z关于x,y的偏导数. 解
一、多元复合函数的求导法则
设u=φ(x,y)在点x,y具有偏导数,z=f(u,x)在相应点u,x 处有连续偏导数,则复合函数z=f[φ(x,y),x]在点x,y处有 偏导数,且
多元复合函数 的微分法
一、多元复合函数的求导法则
1. 复合函数的中间变量均为同一自变量的一元函数的情形
设函数z=f(u,v),其中u=[φ(t),v=ψ (t)] ,即构成复合 函数z=f[φ (t),ψ (t) ] ,其变量相互依赖关系如图8-11所示.
图 8-11
一、多元复合函数的求导法则
定 理1
二、多元复合函数的高阶偏导数
计算多元复合函数的高阶偏导数,只要重复运用前面 的求导法则即可.
为表达简便起见,引入记号f′1,f′2,f″12等,这里下标 “1”表示对第一个变量u求偏导数,下标“2”表示对第二 个变量v求偏导数,即
同理可规定f″11,f″22等.

同济大学多元函数微分法及其应用讲义六

同济大学多元函数微分法及其应用讲义六
第 9.6 节 多元函数微分学的几何应用 一.空间曲线的切线与法平面 情况 1.参数方程
x x t 设空间曲线 : y y t ,点 M x0 , y0 , z0 对应参数 t t0 ,则该点处的 z z t
切线方程为:
x x0 y y0 z z0 ,过 M 且与切线垂直的平面称为 x t0 y t0 z t0
在该点处的法平面.
情况 2.一般方程 设空间曲线 :
F x, y , z 0 G x, y, z 0
,则 T Fx , Fy , Fz Gx , Gy , Gz .

例.求 :
xyz 1 x y z 垂直于 的法平面方程. 2 2 1 1 x y 2 0

故法平面方程为 2 x 1 y 1 z 1 0 ,即 2 x y z 0 . 二.曲面的切平面与法线 光滑曲面 : F x, y, z 0 , M x, y , z ,则 n Fx , Fy , Fz 称为曲面的 法向量,过 M 以 n 为法向量的平面称为曲面的切平面,过 M 以 n 为 方向向量的直线称为曲面的法线.

x y b ,求 a , b . ax y z 3
解. n 2 x, 2 y , 1 1,2,5 2, 4, 1 ,设 : x y b ax y z 3 0 ,则
1 a 1 1 2 , a 1 ,又 1, 2,5 b . 2 4 1 3 3
2
1



例.求 x 2 2 y 2 3 z 2 21 上平行于 x 4 y 6 z 0 的切平面方程. 解.设切点为 x, y, z ,则由 n 2 x, 4 y , 6 z // 1, 4, 6

同济大学第七版高等数学上册第九章—多元微分法

同济大学第七版高等数学上册第九章—多元微分法

5
链式法则如图示
u
x
z
v
y
z z u z v , x u x v x z z u z v . y u y v y
2021/3/16
6
推论2
设u ( x, y)、v ( x, y)、 w w(x, y) 都在点( x, y)
具有对 x和 y 的偏导数,复合函数
z f [( x, y), ( x, y), w( x, y)]
第四节
多元复合函数的求导法则
一元复合函数 求导法则 微分法则
本节内容: 一、多元复合函数求导的链式法则 二、多元复合函数的全微分
机动 目录 上页 下页 返回 结束
一、多元复合函数求导的链式法则
1、中间变量为一元函数的情形
定理 1 如果函数u (t)及v (t)都在点t 可
导,函数 z f (u,v)在对应点(u,v)具有连续偏导
u
解: x
f
1
yf
2
yzf
3
u y
xf
2
xzf
3
u z
xyf
3
2021/3/16
14
例5. 设

w,
2w .
x xz
解:令 u x y z , v
w f (u, v)
f 具有二阶连续偏导数, xyz, 则
w x
f2 yz
2w
xz
f12 x y
为简便起见f11, 引y入(x记号z) f12
yz f2 (x y z, x yz)
z
z u
u
z v
v
1u
2v,
当u 0,v 0时, 1 0, 2 0
z t

高等数学(同济大学第六版)第9章多元函数微分法小结

高等数学(同济大学第六版)第9章多元函数微分法小结

法平面方程为
⎧x = x ⎧ F ( x, y , z ) = 0 ⎪ 情况 2.若空间曲线的方程为: ⎨ ,可化为情况 1 的形式为 ⎨ y = y ( x ) , 可得曲线在 ⎩G (x, y, z ) = 0 ⎪ z = z (x ) ⎩
y 0 = f ( x0 ) ,并有
F' dy = − x' . dx Fy
高等数学 -4-
高等数学阶段小结
第九章多元函数的微分法及其应用
2)一个三元方程确定一个二元隐函数的情形 设 函 数 F ( x, y , z ) 在 点 P ( x 0 , y 0 , z 0 ) 的 某 一 邻 域 内 具 有 连 续 的 偏 导 数 , 且
Fy' Fx' ∂z ∂z =− ' , =− ' . ∂x Fz ∂y Fz
3)一个四元方程组确定两个二元隐函数的情形 设 F ( x, y , u , v ) 、 G ( x, y , u , v ) 在点 P ( x 0 , y 0 , u 0 , v0 ) 的某一邻域内具有对各个变量的连续偏导数 , 又
Gu' Gv'
Gu' Gv'
Fy' Fv'
' Gy Gv' 1 ∂ (F , G ) ∂u =− =− ' ' ∂y J ∂ ( y, v ) Fu Fv
Fu' Fy
,
' Gu' G y ∂v 1 ∂ (F , G ) =− =− ' ' ∂y J ∂ (u, y ) Fu Fv
'
Gu' Gv'
Gu' Gv'

同济大学(高等数学)_第六篇_多元微积分学

同济大学(高等数学)_第六篇_多元微积分学

同济⼤学(⾼等数学)_第六篇_多元微积分学第六篇多元微积分学第九章多元函数微分学及其应⽤我们以前学习的函数只有⼀个⾃变量,这种函数我们称为⼀元函数.⼀元函数的微积分解决了很多初等数学⽆法解决的问题.但是,在实际问题中往往牵扯到多⽅⾯的因素,解决这类问题必须引进多元函数.本章将在⼀元函数微分学的基础上,讨论多元函数的微分及其应⽤.从⼀元函数的情形推⼴到⼆元函数时会产⽣⼀些新的问题,⽽从⼆元函数推⼴到⼆元以上的多元函数则可以类推.通过本章的学习,学⽣要掌握多元函数微分学的基本原理以及解决⼏何、经济与管理、⼯程等领域的实际问题的具体⽅法.第1节多元函数的基本概念1.1 平⾯点集为了介绍⼆元函数的概念,有必要介绍⼀些关于平⾯点集的知识,在⼀元函数微积分中,区间的概念是很重要的,⼤部分问题是在区间上讨论的.在平⾯上,与区间这⼀概念相对应的概念是邻域.1.1.1 邻域设000(,)P x y 是xOy 平⾯上的⼀定点,δ是某⼀正数,与点000(,)P x y 的距离⼩于δ的点(,)P x y 的全体,称为点000(,)P x y 的δ邻域,记为0(,)δU P ,即 {}00(,)U P P P P δδ=<,亦即 {}0(,)(,U P x y δδ=<.0(,)δU P 在⼏何上表⽰以000(,)P x y 为中⼼,δ为半径的圆的内部(不含圆周).上述邻域0(,)δU P 去掉中⼼000(,)P x y 后,称为000(,)P x y 的去⼼邻域,记作o0(,)U Pδ. {}o0(,)(,)0U P x y δδ=<<.如果不需要强调邻域的半径δ,则⽤0()U P 表⽰点000(,)P x y 的邻域,⽤o0()U P表⽰000(,)P x y 的去⼼邻域.1.1.2 区域下⾯⽤邻域来描述平⾯上的点与点集之间的关系.设E 是xOy 平⾯上的⼀个点集,P 是xOy 平⾯上的⼀点,则P 与E 的关系有以下三种情形:(1) 内点:如果存在P 的某个邻域()U P ,使得()?U P E ,则称点P 为E 的内点.(2) 外点:如果存在P 的某个邻域()U P ,使得()=? U P E ,则称P 为E 的外点. (3) 边界点:如果在点P 的任何邻域内,既有属于E 的点,也有不属于E 的点,则称点P 为E 的边界点.E 的边界点的集合称为E 的边界,记作?E .例如:点集(){}221,|01=<+y ,除圆⼼与圆周上各点之外圆的内部的点都是1E 的内点,圆外部的点都是1E 的外点,圆⼼及圆周上的点为1E 的边界点;⼜如平⾯点集(){}2,|1=+≥E x y x y ,直线上⽅的点都是2E 的内点,直线下⽅的点都是2E 的外点,直线上的点都是2E 的边界点(图9—1).图9—1 显然,点集E 的内点⼀定属于E ;点集E 的外点⼀定不属于E ;E 的边界点可能属于E ,也可能不属于E .如果点集E 的每⼀点都是E 的内点,则称E 为开集,点集(){}221,|01=<+y 是开集,(){}2,|1=+≥E x y x y 不是开集.设E 是开集,如果对于E 中的任何两点,都可⽤完全含于E 的折线连接起来,则称开集E 是连通集(图9—2) .点集E 1和E 2都是连通的,点集(){}3,|0=>E x y xy 不是连通的(图9—2).图9—2连通的开集称为开区域(开域).从⼏何上看,开区域是连成⼀⽚的且不包括边界的平⾯点集.如E 1是开区域.开区域是数轴上的开区间这⼀概念在平⾯上的推⼴.开区域E 连同它的边界E ?构成的点集,称为闭区域(闭域),记作E (即=E E E +?).闭区域是数轴上的闭区间这⼀概念在平⾯上的推⼴.如E 2及(){}224,|1=+≤E x y xy 都是闭域,⽽(){}225,|12=≤+y 既⾮闭域,⼜⾮开域.闭域是连成⼀⽚的且包含边界的平⾯点集.本书把开区域与闭区域统称为区域.如果区域E 可包含在以原点为中⼼的某个圆内,即存在正数r ,使(),E U O r ?,则称E 为有界区域,否则,称E 为⽆界区域.例如E 1是有界区域,E 2是⽆界区域.记E 是平⾯上的⼀个点集,P 是平⾯上的⼀个点.如果点P 的任⼀邻域内总有⽆限多个点属于点集E ,则称P 为E 的聚点.显然,E 的内点⼀定是E 的聚点,此外,E 的边界点也可能是E 的聚点.例如,设(){}226,|01=<+≤E x y xy ,那么点()0,0既是6E 的边界点⼜是6E 的聚点,但6E 的这个聚点不属于6E ;⼜如,圆周221x y +=上的每个点既是6E 的边界点,也是6E 的聚点,⽽这些聚点都属于6E .由此可见,点集E 的聚点可以属于E ,也可以不属于E .再如点()7111111=1,1(,)(,),,(),2233,,E n n ?,原点()0,0是它的聚点,7E 中的每⼀个点都不是聚点.1.1.3 n 维空间R n⼀般地,由n 元有序实数组()12,,,n x x x 的全体组成的集合称为n 维空间,记作R n .即(){}12,,,|,1,2,,n n i R x x x x R i n =∈= .n 元有序数组()12,,,n x x x 称为n 维空间中的⼀个点,数x i 称为该点的第i 个坐标.类似地规定,n 维空间中任意两点()12,,,n P x x x 与()12,,,n Q x x x 之间的距离为PQ =前⾯关于平⾯点集的⼀系列概念,均可推⼴到n 维空间中去,例如,0∈nP R ,δ是某⼀正数,则点0P 的δ邻域为(){}00|,,n U P P PP P R δδ=<∈.以邻域为基础,还可以定义n 维空间中内点、边界点、区域等⼀系列概念.1.2 多元函数的概念 1.2.1 n 元函数的定义定义1 设D 是nR 中的⼀个⾮空点集,如果存在⼀个对应法则f , 使得对于D 中的每⼀个点()12,,,n P x x x ,都能由f 唯⼀地确定⼀个实数y ,则称f 为定义在D 上的n 元函数,记为()()1212,,,,,,,n n y f x x x x x x D =∈.其中12,,,n x x x 叫做⾃变量,y 叫做因变量,点集D 叫做函数的定义域,常记作()D f .取定()12,,,n x x x D ∈,对应的()12,,,n f x x x 叫做()12,,,n x x x 所对应的函数值.全体函数值的集合叫做函数f 的值域,常记为()f D [或()R f ],即()()()(){}1212|,,,,,,,n n f D y y f x x x x x x D f ==∈.当n =1时,D 为实数轴上的⼀个点集,可得⼀元函数的定义,即⼀元函数⼀般记作(),,y f x x D D R =∈?;当n =2时,D 为xOy 平⾯上的⼀个点集,可得⼆元函数的定义,即⼆元函数⼀般记作()()2,,,,z f x y x y D D R =∈?,若记(),P x y =,则也记作⼆元及⼆元以上的函数统称为多元函数.多元函数的概念与⼀元函数⼀样,包含对应法则和定义域这两个要素.多元函数的定义域的求法,与⼀元函数类似.若函数的⾃变量具有某种实际意义,则根据它的实际意义来决定其取值范围,从⽽确定函数的定义域. 对⼀般的⽤解析式表⽰的函数,使表达式有意义的⾃变量的取值范围,就是函数的定义域.例1 在⽣产中,设产量Y 与投⼊资⾦K 和劳动⼒L 之间的关系为Y AK L αβ=(其中,,A αβ均为正常数).这是以K ,L 为⾃变量的⼆元函数,在西⽅经济学中称为⽣产函数.该函数的定义域为(){},|0,0K L K L >>.例2 求函数()ln z y x =-D ,并画出D 的图形.解要使函数的解析式有意义,必须满⾜220,0,10,y x x x y ->??≥?-->即(){}22,|0,,1D x y x x y xy =≥<+<,如图9—3划斜线的部分.图9—3 图9—41.2.2. ⼆元函数的⼏何表⽰设函数(),=z f x y 的定义域为平⾯区域D ,对于D 中的任意⼀点(),P x y ,对应⼀确定的函数值()(),=z z f x y .这样便得到⼀个三元有序数组(),,x y z ,相应地在空间可得到⼀点(),,M x y z .当点P 在D 内变动时,相应的点M 就在空间中变动,当点P 取遍整个定义域D 时,点M 就在空间描绘出⼀张曲⾯S (图9—4).其中()()(){},,|,,,S x y z z f x y x y D ==∈.⽽函数的定义域D 就是曲⾯S 在xO y ⾯上的投影区域.例如z ax by c =++表⽰⼀平⾯;z =1的上半球⾯.1.3⼆元函数的极限⼆元函数的极限概念是⼀元函数极限概念的推⼴.⼆元函数的极限可表述为定义1 设⼆元函数()z f P =的定义域是某平⾯区域D ,P 0为D 的⼀个聚点,当D 中的点P 以任何⽅式⽆限趋于P0时,函数值f (P )⽆限趋于某⼀常数A ,则称A 是函数()f P 当P 趋于P 0时的(⼆重)极限.记为lim ()P P f P A →=或()0()f P A P P →→,此时也称当0→P P 时()f P 的极限存在,否则称()f P 的极限不存在.若0P 点的坐标为00(,)x y ,P 点的坐标为(),x y ,则上式⼜()()00,lim (,),→=x y x y f x y A 或 f (x , y )→A (x →x 0,y →y 0).类似于⼀元函数,()f P ⽆限趋于A 可⽤()f P A ε-<来刻画,点(),P P x y =⽆限趋于0000(,)P P x y =可⽤0P P δ=刻画,因此,⼆元函数的极限也可如下定义.定义2 设⼆元函数()(,)z f P f x y ==的定义域为D ,000(,)P x y 是D 的⼀个聚点,A 为常数.若对任给的正数ε,不论ε多⼩,总存在0δ>,当(,)P x y D ∈,且0P P δ=<时,总有(),f P A ε-<则称A 为()z f P =当0P P →时的(⼆重)极限.注①定义中要求0P 是定义域D 的聚点,是为了保证在P 0的任何邻域内都有D 中的点.②注意到平⾯上的点P 趋近于0P 的⽅式可以多种多样:P 可以从四⾯⼋⽅趋于0P ,也可以沿曲线或点列趋于0P .定义1指出:只有当P 以任何⽅式趋近于0P ,相应的()f P 都趋近于同⼀常数A 时,才称A 为()f P 当0P P →时的极限.如果(,)P x y 以某些特殊⽅式(如沿某⼏条直线或⼏条曲线)趋于000(,)P x y 时,即使函数值()f P 趋于同⼀常数A ,我们也不能由此断定函数的极限存在.但是反过来,当P 在D 内沿不同的路径趋于0P 时,()f P 趋于不同的值,则可以断定函数的极限不存在.③⼆元函数极限有与⼀元函数极限相似的运算性质和法则,这⾥不再⼀⼀叙述.例3 设222222,0,(,)0,0,xy x y x y f x y x y ?+≠?+=??+=?判断极限()(),0,0lim (,)→x y f x y 是否存在?解当(,)P x y 沿x 轴趋于(0,0)时,有y =0,于是()()22,0,00lim (,)lim00→→===+x y x y f x y x ;当(,)P x y 沿y 轴趋于(0,0)时,有x =0,于是()()22,0,00000→→===+x y y x f x y y .但不能因为(,)P x y 以上述两种特殊⽅式趋于(0,0)时的极限存在且相等,就断定所考察的⼆重极限存在.因为当(,)P x y 沿直线()0=≠y kx k )趋于(0,0)时,有()()2222,0,00lim(,)lim (1)1→→===++x y x y kxkx kf x y k x k,这个极限值随k 不同⽽变化,故()(),0,0lim (,)→x y f x y 不存在.例4 求下列函数的极限:(1) ()(,0,0lim →x y ;(2)()()222,0,0lim→+x y xy x y ; (3)()(,0,0ln 1lim →+x y xy 解 (1)()()()(()(,0,0,0,0,0,01limlim lim 4→→→==-=-x y x y x y .(2)当0,0→→x y 时,220x y +≠,有222x y xy +≥.这时,函数22xyx y +有界,⽽y 是当x →0且y →0时的⽆穷⼩,根据⽆穷⼩量与有界函数的乘积仍为⽆穷⼩量,得()()222,0,0lim 0→=+x y xy x y . (3)()(()(()(,0,0,0,0,0,0ln 1limlimlim1→→→+===x y x y x y xy .从例4可看到求⼆元函数极限的很多⽅法与⼀元函数相同.1.4 ⼆元函数的连续性类似于⼀元函数的连续性定义,我们⽤⼆元函数的极限概念来定义⼆元函数的连续性.定义3 设⼆元函数(,)z f x y =在点000(,)P x y 的某邻域内有定义,如果()()()00,0,0lim.(,)→=x y f x y f x y ,则称函数(,)f x y 在点000(,)P x y 处连续,000(,)P x y 称为(,)f x y 的连续点;否则称(,)f x y 在000(,)P x y 处间断(不连续),000(,)P x y 称为(,)f x y 的间断点.与⼀元函数相仿,⼆元函数(,)z f x y =在点000(,)P x y 处连续,必须满⾜三个条件:①函数在点000(,)P x y 有定义;②函数在000(,)P x y 处的极限存在;③函数在000(,)P x y 处的极限与000(,)P x y 处的函数值相等,只要三条中有⼀条不满⾜,函数在000(,)P x y 处就不连续.由例3可知,222222,0,(,)0,0,xyx y x y f x y x y ?+≠?+=??+=?在(0,0)处间断;函数1z x y =+在直线0x y +=上每⼀点处间断.如果(,)f x y 在平⾯区域D 内每⼀点处都连续,则称(,)f x y 在区域D 内连续,也称(,)f x y 是D 内的连续函数,记为()(,)f x y C D ∈.在区域D 上连续函数的图形是⼀张既没有“洞”也没有“裂缝”的曲⾯.⼀元函数中关于极限的运算法则对于多元函数仍适⽤,故⼆元连续函数经过四则运算后仍为⼆元连续函数(在商的情形要求分母不为零);⼆元连续函数的复合函数也是连续函数.与⼀元初等函数类似,⼆元初等函数是可⽤含,x y 的⼀个解析式所表⽰的函数,⽽这个式⼦是由常数、x 的基本初等函数、y 的基本初等函数经过有限次四则运算及复合所构成的,例如()sin x y +,22xy x y +,arcsin xy等都是⼆元初等函数.⼆元初等函数在其定义域的区域内处处连续.与闭区间上⼀元连续函数的性质相类似,有界闭区域上的连续函数有如下性质.性质1(最值定理) 若(,)f x y 在有界闭区域D 上连续,则(,)f x y 在D 上必取得最⼤值与最⼩值.推论若(,)f x y 在有界闭区域D 上连续,则(,)f x y 在D 上有界.性质2 (介值定理) 若(,)f x y 在有界闭区域D 上连续,M 和m 分别是(,)f x y 在D 上的最⼤值与最⼩值,则对于介于M 与m 之间的任意⼀个数C ,必存在⼀点00(,)x y D ∈,使得00(,)f x y C =.以上关于⼆元函数的极限与连续性的概念及有界闭区域上连续函数的性质,可类推到三元以上的函数中去.习题9—11.判断下列平⾯点集哪些是开集、闭集、区域、有界集、⽆界集?并分别指出它们的聚点组成的点集和边界.(1) (){},|0,0≠≠x y x y ; (2) (){}22,|14<+≤x y xy ;(3)(){}2,|>x y y x .2.求下列函数的定义域,并画出其⽰意图:(1)z =; (2)1ln()z x y =-;(3)=z(4)=u .3.设函数()32,23f x y x xy y =-+,求 (1)()2,3f -; (2)12,f x y ??; (3) (),f x y x y +-. 4.讨论下列函数在点()0,0处的极限是否存在: (1) 24xy z x y=+; (2)x yz x y +=-. 5.求下列极限: (1)()(),0,0sin lim→x y xy x ; (2)()()22,0,11lim →-+x y xyx y ;(3)()(,1,0ln lim→+y x y x e ; (4)()(),0,0lim→x y .6.证明:⼆元函数()22220,,0,0.+≠=+=?x y f x y x y 在()0,0点连续.7.设⼆元函数()()11sin sin ,0,,0,0.?+≠?=??=?x y xy x y f x y xy ,试判断(),f x y 在点()0,0处的连续性.8.函数2222+=-y xz y x在何处是间断的?第2节偏导数与全微分2.1 偏导数的概念 2.1.1 偏导数的定义在研究⼀元函数时,我们从研究函数的变化率引⼊了导数概念.由于⼆元函数的⾃变量有两个,关于某点处函数的变化率问题相当复杂,因此我们不能笼统地讲⼆元函数在某点的变化率.在这⼀节,我们考虑⼆元函数关于某⼀个⾃变量的变化率,这就是偏导数的概念.设函数(),z f x y =在点()00,x y 的某邻域内有定义,x 在0x 有改变量()0x x ??≠,⽽0y y =保持不变,这时函数的改变量为()()0000,,x z f x x y f x y ?=+- ,x z ?称为函数(),f x y 在()00,x y 处关于x 的偏改变量(或偏增量).类似地可定义(),f x y 关于y 的偏增量为()()0000,,y z f x y y f x y ?=+- .有了偏增量的概念,下⾯给出偏导数的定义.定义1 设函数(),z f x y =在()00,x y 的某邻域内有定义,如果000000(,)(,)limlim x x x z f x x y f x y x x ?→?→?+?-=??存在,则称此极限值为函数(),z f x y =在()00,x y 处关于x 的偏导数,并称函数(),z f x y =在点()00,x y 处关于x 可偏导.记作000000,,,(,).======x x x x y y y y x x xy y x zf z f x y xx类似地,可定义函数(),z f x y =在点()00,x y 处关于⾃变量y 的偏导数为00000(,)(,)limlimy y y z f x y y f x y yy→?→?+?-=??,记作000000,,,(,).======x x x x y y y y x x yy y y z f z f x y yy如果函数(),z f x y =在区域D 内每⼀点(),x y 处的偏导数都存在,即(,)(,)(,)limx x f x x y f x y f x y x→+?-=?(,)(,)(,)limy y f x y y f x y f x y y→+?-=?存在,则上述两个偏导数还是关于x ,y 的⼆元函数,分别称为z 对x ,y 的偏导函数(简称为偏导数).并记作,,,(,)(,)或或或,x y x y z z f fz z f x y f x y x y x y.不难看出,(),z f x y =在()00,x y 关于x 的偏导数00(,)x f x y 就是偏导函数(,)x f x y 在()00,x y 处的函数值,⽽00(,)y f x y 就是偏导函数(,)y f x y 在()00,x y 处的函数值.由于偏导数是将⼆元函数中的⼀个⾃变量固定不变,只让另⼀个⾃变量变化,相应的偏增量与另⼀个⾃变量的增量的⽐值的极限;因此,求偏导数问题仍然是求⼀元函数的导数问题.求f x ??时,把y 看做常量,将(),z f x y =看做x 的⼀元函数对x 求导;求fy时,把x 看做常量,将(),z f x y =看做y 的⼀元函数对y 求导.三元及三元以上的多元函数的偏导数,完全可以类似地定义和计算,这⾥就不讨论了.例1 求函数()sin +xyz x y e =在点()1,1-处的偏导数.解将y 看成常量,对x 求导得e [cos()sin()]xy zx y y x y x=+++;将x 看成常量,对y 求导得e [cos()sin()]xy zx y x x y y=+++.再将1,1x y ==-代⼊上式得111111e ,e x x y y z z xy--===-=-??==??.例2 求函数22ln 4z x y y x =++的偏导数.解22z y xy x x=+,22ln zx y x y ?=+?.例3 设()0,1yz xx x =>≠,求证:12ln x z zz y x x y+= .证因为1y z yx x -?=?,ln y z x x y=,所以111ln 2ln ln y yy y x z z x yx x x x x z y x x y y x-??+=+=+=?? .例4 求函数()2sin xu x y e =+-的偏导数.解将y 和z 看做常量,对x 求导得()2cos z ux y e x=+-,同样可得()22cos x uy x y e y=+-,()2cos z z u e x y e z ?=-+-?. 2.1.2 ⼆元函数偏导数的⼏何意义由于偏导数实质上就是⼀元函数的导数,⽽⼀元函数的导数在⼏何上表⽰曲线上切线的斜率,因此,⼆元函数的偏导数也有类似的⼏何意义.设(),z f x y =在点()00,x y 处的偏导数存在,由于00(,)x f x y 就是⼀元函数()0,f x y 在0x 处的导数值,即00(,)x f x y =00d (,)d x x f x y x =??,故只须弄清楚⼀元函数()0,f x y 的⼏何意义,再根据⼀元函数的导数的⼏何意义,就可以得到00(,)x f x y 的⼏何意义.(),z f x y =在⼏何上表⽰⼀曲⾯,过点()00,x y 作平⾏于xz ⾯的平⾯0y y =,该平⾯与曲⾯(),z f x y =相截得到截线1Γ:0(,),.z f x y y y =??=? 若将0y y =代⼊第⼀个⽅程,得()0,z f x y =.可见截线Γ1是平⾯0y y =上⼀条平⾯曲线,1Γ在0y y =上的⽅程就是()0,z f x y =.从⽽00(,)x f x y =00d (,)d x x f x y x =??表⽰1Γ在点()()000001,,,M x y f x y Γ=∈处的切线对x 轴的斜率(图9-5).同理,00(,)y f x y =00d (,)d y y f x y y =??表⽰平⾯0x x =与(),z f x y =的截线 2Γ:0(,),.=?在()()000002,,,M x y f x y Γ=∈处的切线对y 轴的斜率(图9—5).图9—5例5 讨论函数222222,0,(,)0,0,xyx y x yf x y x y ?+≠?+=??+=?在点(0,0)处的两个偏导数是否存在.解 0(0,0)(0,0)(0,0)l i m x x f x f f x→+?-=220(0)0(0)0lim 0x x x x ?→+?-+?+==? .同样有(0,0)0=y f .这表明(),f x y 在(0,0)处对x 和对y 的偏导数存在,即在(0,0)处两个偏导数都存在.由上节例3知:该函数在(0,0)处不连续.本例指出,对于⼆元函数⽽⾔,函数在某点的偏导数存在,不能保证函数在该点连续.但在⼀元函数中,我们有结论:可导必连续.这并不奇怪,因为偏导数只刻画函数沿x 轴与y 轴⽅向的变化率,00(,)x f x y 存在,只能保证⼀元函数()0,f x y 在x 0处连续,即0y y =与(),z f x y =的截线1Γ在()0000,,M x y z 处连续.同时00(,)y f x y 只能保证2Γ在()0000,,M x y z 处连续,但两曲线1Γ,2Γ在()0000,,M x y z 处连续并不能保证曲⾯(),z f x y =在()0000,,M x y z 处连续.2.2 ⾼阶偏导数设函数(),z f x y =在区域D 内具有偏导数z x ??=(,)x f x y ,(,)?=?y zf x y y,那么在D 内(,)x f x y 及(,)y f x y 都是x , y 的⼆元函数.如果这两个函数的偏导数还存在,则称它们是函数(),z f x y =的⼆阶偏导数.按照对变量求导次序的不同有下列四个⼆阶偏导数:22()(,)==xx z z f x y x x x ,2()(,)==?xy z z f x y y x x y, 2()(,)==?yx z z f x y x y y x ,22()(,)==yy z z f x y y y y,其中xy f (或12f '')与yx f (或21f '')称为(),f x y 的⼆阶混合偏导数.同样可定义三阶,四阶,…,n 阶偏导数.⼆阶及⼆阶以上的偏导数统称为⾼阶偏导数.sin =+z xy x y 的所有⼆阶偏导数和32zy x.解因为z x ??=y +2x sin y , z y=x +x 2cos y , 所以 22z x ??=2sin y , 2zx y=1+2x cos y , 2z y x=1+2x cos y , 22z y ??=x 2sin y , 322c o s zy y x ?=??.从本例我们看到22z zx y y x=,即两个⼆阶混合偏导数相等,这并⾮偶然.事实上,有如下定理.定理1 如果函数(),z f x y =的两个⼆阶混合偏导数2z x y 和2zy x在区域D 内连续,则在该区域内有22z z x y y x=.定理1表明:⼆阶混合偏导数在连续的条件下与求导的次序⽆关.对于⼆元以上的函数,也可以类似的定义⾼阶偏导数,⽽且⾼阶混合偏导数在偏导数连续的条件下也与求导的次序⽆关.例7 验证函数ln z =22220z zx y+=.解 ()221l l n 2z x y ==+ 所以2222,,z x z yx x y y x y==?+?+()()()2222222222222x y x x z y x x x y x y +-??-==++, ()()()2222222222222x y y y z x y y x y x y +-??-==?++,故 ()()222222222222220z z y x x y x y x y x y ??--+=+=??++.2.3 全微分2.3.1 全微分的概念我们知道,⼀元函数()y f x =如果可微,则函数的增量Δ y 可⽤⾃变量的增量Δx 的线性函数近似求得.在实际问题中,我们会遇到求⼆元函数(),z f x y =的全增量的问题,⼀般说来,计算⼆元函数的全增量Δ z 更为复杂,为了能像⼀元函数⼀样,⽤⾃变量的增量Δx 与Δ y 的线性函数近似代替全增量,我们引⼊⼆元函数的全微分的概念.定义2 设函数(),z f x y =在()000,P x y 的某邻域内有定义,如果函数z 在0P 处的全增量()()0000,,z f x x y y f x y ?=+?+?-可表⽰成()+ρ?=?+?z A x B y o ,其中A ,B 是与Δx ,Δy ⽆关,仅与00,x y 有关的常数,ρo (ρ)表⽰当Δx →0,Δy →0时关于ρ的⾼阶⽆穷⼩量,则称函数(),z f x y =在()000,P x y 处可微,⽽称+A x B y 为(),f x y 在点()000,P x y 处的全微分,记作00d x x y y z ==或00d x x y y f==,即d ===?+?x x y y zA xB y .若(),z f x y =在区域D 内处处可微,则称(),f x y 在D 内可微,也称(),f x y 是D 内的可微函数.(),z f x y =在(),x y 处的全微分记作d z ,即d =?+?z A x B y .⼆元函数(),z f x y =在点P (x ,y )的全微分具有以下两个性质: (1) d z 是,??x y 的线性函数,即d =?+?z A x B y ;(2) z d ?≈z ,()()z d 0ρρ?-=→z o ,因此,当,??x y 都很⼩时,可将dz 作为计算Δ z 的近似公式.多元函数在某点的偏导数即使都存在,也不能保证函数在该点连续.但是对于可微函数却有如下结论:定理2 如果函数(),z f x y =在点(),x y 处可微,则函数在该点必连续.这是因为由可微的定义,得()()(),,+ρ?=+?+?-=?+?z f x x y y f x y A x B y o()(),0,0lim 0x y z ??→?=,即()(),0,0lim (,)(,)x y f x x y y f x y ??→+?+?=.即函数(),z f x y =在点(),x y 处连续.⼀元函数可微与可导是等价的,那么⼆元函数可微与可偏导之间有何关系呢? 定理3 如果函数(),z f x y =在点(),x y 处可微,则(),z f x y =在该点的两个偏导数,z zx y都存在,且有 z zdz x y x y=+.证因为函数(),z f x y =在点(),x y 处可微,故()+ρ?=?+?z A x B y o ,ρ令0y ?=,于是()(),,x z f x x y f x y A x o ?=+?-=?+.由此得 ()()000(),,limlim lim x x x x x x f x x y f x y zx x x xοA A ?→?→?→??+?-?==+= ,即zA x=.同理可证得zB y=.定理3的逆命题是否成⽴呢? 即⼆元函数在某点的两个偏导数存在能否保证函数在该点可微分呢? ⼀般情况下答案是否定的.如函数222222,0,(,)0,0xyx y x yf x y x y ?+≠?+=??+=?在()0,0处两个偏导数都存在,但(),f x y 在()0,0处不连续,由定理2知,该函数在()0,0处不可微.但两个偏导数既存在且连续时,函数就是可微的.我们不加证明地给出如下定理.定理 4 如果函数(),z f x y =在(),x y 处的偏导数,z zx y存在且连续,则函数(),z f x y =在该点可微.类似于⼀元函数微分的情形,规定⾃变量的微分等于⾃变量的改变量.即d ,d =?=?x x y y ,于是由定理3有d d d z zz x y x y=+??.以上关于⼆元函数的全微分的概念及结论,可以类推到三元以上的函数中去.⽐如若三元函数(),,=u f x y z 在点(),,P x y z 处可微,则它的全微分为d d d d u u uu x y z x y z=++.例8 求下列函数的全微分:(1) 2sin 2=z x y ; (2) =yzu x .解 (1) 因为2sin 2?=?z x y x ,22cos 2?=?zx y y ,所以22sin 22cos2=+dz x ydx x ydy . (2) 因为1-?=?yz u yzx x ,ln ?=?yz u zx x yln ?=?yz u yx x z ,所以 1ln ln -=++yz yz yz du yzx dx zx xdy yx xdz .例9 求xy z xy e =+在点()1,2处的全微分.解因xy z y ye x ?=+?, xy zx xe y=+得11222222e ,1e x x y y zz xy====??=+=+??,于是 ()()1222d 22e d 1e d x y zx y ===+++ .3.1.2全微分的运算法则类似于⼀元函数微分的运算法则,有定理5 (全微分四则运算法则) 设(),f x y ,(),g x y 在(),P x y 处可微,则 1) ()()+±+f x y g x y 在(),x y 处可微,且[][][]()()()()+±+=+±+d f x y g x y d f x y d g x y ;2) 若k 为常数,()+kf x y 在点(),x y 处可微,且[][]()()+=+d kf x y kd f x y ;3) ()()+?+f x y g x y 在点(),x y 处可微,且[][][]()()()()()()+?+=+++++d f x y g x y g x y d f x y f x y d g x y ;4) 当g (x ,y )≠0时,()()f x yg x y ++在点(),x y 处可微,且 2()()d ()()d ()d ()()f x y g x y f x y f x y g x y g x y g x y ??++++++=?++.例10 求()22sin z x x y =+的全微分.解()()22222sin 2cos z x y x x y x ?=+++?,()222cos zxy x y y=+, ()()()222222sin sin sin dz d x x y xd x y x y dx =+=+++ ()()()2222222sin 2cos 2cos x y x x y dx xy x y dy ??=+++++??习题9—21.求下列各函数的偏导数:(1) 22365z x xy y =++; (2) ln y z x=; (3) xyz xye =; (4) yz u x =.2.已知()(),2xf x y x y e =+,求()0,1x f ,()0,1y f .3.设z x y =+,求()()3,40,5,z z xy.4.设11+=e x y z ??-,求证:222z z xy z x y+=.5.求下列函数的所有⼆阶偏导数.(1) 44224z x y x y =+-; (2) ()cos sin x z e y x y =+; (3) ()ln z x xy =; (4) arctan x u y=. 6.设()222,,f x y z xy yz zx =++,求()()()0,0,1,1,0,2,0,1,0x x x z y zf f f -及()2,0,1zzx f .7.验证r =2222222r r r x y z r++=.8.求下列函数的全微分.(1) 32645z xy x y =+; (2) xyz e =; (3 ) xz xyy=+; (4) z =9.设()1,,zy f x y z x ??=,求()1,1,1|dz . 10.设,1,1,0.15,0.1,xy z e x y x y ===?=?=求dz .。

同济大学高等数学教案第六章多元函数微分学

同济大学高等数学教案第六章多元函数微分学

4、二元函数的连续性 定义 3 设二元函数 z f ( x, y) 在点 ( x0 , y0 ) 的某一邻域内有定义, ( x, y ) 是邻域内任意一点,如果
x x0 y y0
lim f ( x, y ) f ( x0 , y 0 ) ,
则称 z f ( x, y) 在点 ( x0 , y0 ) 处连续 . 如果函数 z f ( x, y) 在点 ( x0 , y0 ) 处不连续,则称函数 z f ( x, y) 在
2 2
2 2 2 2 例 2 求函数 z ln x y 2 x ln 4 x y 的定义域




2
例 3 已知函数 f ( x y, x y )
x2 y 2 , 求 f ( x, y) 的表达式,并求 f (2,1) 的值. x2 y 2
例 4 证明
x2 y 0. x , y 0,0 x 2 y 2 lim
则称常数 A 为函数 f x, y 当 x, y x0 , y0 时的极限,记作
x , y x0 , y0
o
lim
f x, y A 或 f x, y A , x, y x0 , y0 .
也可记作
P P0
lim f P A 或 f P A , P P 0.
高等数学教学教案
第六章 多元函数微分学
授课序号 01

教学课题 教学方法 教学重点 参考教材 大纲要求
第六章 第一节





复习、新知识课
多元函数的概念、 极限与连续
讲授、课堂提问、讨论、启发、自学 极限与连续的概念和性质

同济版大一高数第九章第四节多元复合函数求导法

同济版大一高数第九章第四节多元复合函数求导法
u
v yx y
∂ z ∂v + ⋅ ∂v ∂ y + e u cos v ⋅1
x
8
y2 例4 设 z = f ( x + )已知 f ′′(u ) 连续,求 x

2y y2 y2 2y y2 = − 2 f ′( x + ) + ⋅ (1 − 2 ) f ′′( x + ) x x x x x
9
例2
t
t
t
∂ z ∂ z ∂u ∂ z ∂v ′ ′ = ⋅ + ⋅ = f1′ϕ1 + f 2′ψ 1 ∂ x ∂u ∂ x ∂v ∂ x ∂ z ∂ z ∂u ∂ z ∂v ′ ′ = f1′ϕ 2 + f 2′ψ 2 = ⋅ + ⋅ ∂ y ∂u ∂ y ∂v ∂ y
z
u v
x
y x
4
y
高等数学

u=e
x2 + y2 + z 2
, z = x sin y,
2
解: ∂u = ∂ f ∂x ∂x
∂u ∂u , . ∂x ∂ y
=e x
2
+ y +z
2
2
(2 x + 2z ⋅ 2 x sin y )
2 2 x 2 + y 2 + x 4 sin 2 y
u
x y z
= 2 x (1 + 2 x sin y ) e
在计算时注意合并同类项! 下列两个例题有助于 掌握这方面问题的求导技巧。
3
推广: 推广 设下面所涉及的函数都可微 . 1、 中间变量多于两个的情形. 例如, z = f (u , v, w) , u = ϕ (t ) , v = ψ (t ) , w = ω (t ) z ∂ z dv ∂ z dw d z ∂ z du + ⋅ + ⋅ = ⋅ u v w ∂v d t ∂w d t d t ∂u d t = f1′ϕ ′ + f 2′ ψ ′ + f 3′ ω ′ 2、 中间变量是多元函数的情形.例如, z = f (u , v) , u = ϕ ( x, y ) , v = ψ ( x, y )

多元复合函数的微分法

多元复合函数的微分法
TITLE
多元复合函数的微分 法
演讲人姓名
目 录











念多








本 概













分 法




数高








勒 级




用多








的 应














单击此处添加标题
引言
主题简介
由多个变量构成的函数,其值依赖于 多个自变量的值。
泰勒级数在数学和物理中有广泛的应用。例如,在求解微分方程时,泰勒级数可以用来近似解的表达式;在分析 函数的性质时,泰勒级数可以用来逼近函数的值。
多重泰勒级数
多重泰勒级数的定义:多重泰勒级数是泰勒级数的扩展,它可以用来逼近多元函数的性质。具 体来说,如果多元函数$f(x_1, x_2, \ldots, x_n)$在点$(a_1, a_2, \ldots, a_n)$处的多 重泰勒级数为$f(x_1, x_2, \ldots, xn) = \sum{n1=0}^{\infty} \sum{n2=0}^{\infty} \ldots \sum{nn=0}^{\infty} a{n_1, n_2, \ldots, n_n} (x_1-a_1)^{n_1} (x_2a_2)^{n_2} \ldots (x_n-a_n)^{nn}$,其中$a{n_1, n_2, \ldots, n_n}$是常数,则这 个级数可以用来逼近函数$f(x)$在点$(a_1, a_2, \ldots, a_n)$附近的性质。 多重泰勒级数的应用:多重泰勒级数在数学和物理中有广泛的应用。例如,在求解偏微分方程 时,多重泰勒级数可以用来近似解的表达式;在分析多元函数的性质时,多重泰勒级数可以用 来逼近函数的值。

《高等数学》(同济六版)教学★第9章.多元函数微分法及其应用ppt课件

《高等数学》(同济六版)教学★第9章.多元函数微分法及其应用ppt课件
定义域为圆域 (x, y) x2 y2 1
图形为中心在原点的上半球面.
又如, z sin(xy), (x, y) R 2
说明: 二元函数 z = f (x, y), (x, y) D
的图形一般为空间曲面 .
三元函数 u arcsin(x2 y2 z2 )
定义域为 单位闭球
z
o 1y
2
19
机动 目录 上页 下页 返回 结束
• 二重极限 lim f (x, y) 与累次极限 lim lim f (x, y)
x x0
xx0 y y0
y y0
不同.
如果它们都存在, 则三者相等. 仅知其中一个存在, 推不出其它二者存在.
例如,
显然
lim lim f (x, y) 0,
x0 y0
但由例3 知它在(0,0)点二重极限不存在 .
在空间中,
U ( P0 , ) (x, y, z )
PP0 δ 称为点 P0 的邻域.
(圆邻域)
(球邻域)
说明:若不需要强调邻域半径 ,也可写成 U ( P0 ).
点 P0 的去心邻域记为
0 PP0 δ
3
机动 目录 上页 下页 返回 结束
在讨论实际问题中也常使用方邻域, 因为方邻域与圆 邻域可以互相包含.
ቤተ መጻሕፍቲ ባይዱ
内总有E 中的点 , 则
称 P 是 E 的聚点.
聚点可以属于 E , 也可以不属于 E (因为聚点可以为
E 的边界点 )
所有聚点所成的点集成为 E 的导集 .
6
机动 目录 上页 下页 返回 结束
(3) 开区域及闭区域
• 若点集 E 的点都是内点,则称 E 为开集;
• E 的边界点的全体称为 E 的边界, 记作E ;

8.5多元复合函数的微分法

8.5多元复合函数的微分法
乐经良
H.W 习题8 33 (1)(2)(3)(4) 34 (1)(3) 35 (1) 36 (2) 37 (1)(2) 39 (1)(3)
乐经良
x2 y2 uv 0 xy u2 v2 0
确定,求 u , v , u 及 v
x x y y
例 函数 y=y(x),z=z(x)由方程组
z x (x y)
F(x, y, z) 0
其中 , F 均可微,Fy Fz 0, 求 y,z
乐经良
8.5.3 一阶全微分形式的不变性
函数 z= f(u,v)的全微分
Chap8 ― 5
多元复合函数的微分法
上海交大乐经良
8.5.1 复合函数的偏导数
链法则
函数 u u(x, y), v v(x, y) 在(x,y)存在偏导数 , z= f (u,v) 在相应的(u,v)处可微,则复合函数
z f (u(x, y), v(x, y)) 存在偏导数
z f u f v x u x v x
乐经良
二. 隐函数组及其偏导数
若函数 F (x, y,u,v),G(x, y,u,v) 在点 P0(x0, y0,u0,v0)
某一邻域内有连续的偏导数;且 F(x0, y0,u0,v0) 0,
G(x0 , y0 , u0 , v0 ) 0,行列式
F F
J (F,G) u v (u, v) G G
u v
在点P0不等于0,则
F(x, y,u, v) G(x, y,u, v)
0 0
可唯一确定函数
u u(x, y),v v(x, y) 满足此方程组及
uv00
u(x0, v0 ) v(x0, v0 )
乐经良
且有连续偏导数

多元复合函数微分法

多元复合函数微分法
t t
e t (cos t sin t ) cos t .
例3
设 w f ( x y z , xyz ) , f 具有二阶
w 2 w 连续偏导数,求 和 . x xz
解 令 u x y z, 记
f ( u , v ) f1 , u
v xyz;
u
f
y z
h g
t y x
t
x
x
h
t
t
x
du f f h h dt f g g h h dt ( ) ( ( )) dx x y x t dx z x y x t dx f f h f h dt f g f g h f g h dt x y x y t dx z x z y x z y t dx
ye xe dz z dx z dy ( e 2) ( e 2) z xe xy z ye xy z , z . y e 2 x e 2
xy
xy
小结:
1、链式法则(分三种情况)
(特别要注意课中所讲的特殊情况)
2、全微分形式不变性 (理解其实质)
( x, y) 如果u ( x , y ) 及v ( x , y ) 都在点
具有对x 和y 的偏导数,且函数 z f ( u, v ) 在对应 点( u, v ) 具有连续偏导数,则复合函数
z f [ ( x , y ), ( x , y )]在对应点 ( x , y ) 的两个偏
dz 三、设 z arctan( xy ) ,而 y e x ,求 . dx
四、设 z f ( x 2 y 2 , e xy ), (其中f具 有一阶连续偏导
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档