2019-2020学年广东省东莞市九年级(上)期末数学试卷

合集下载

2020年广东省东莞市中考数学试卷及答案解析

2020年广东省东莞市中考数学试卷及答案解析

2020年广东省东莞市中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是( )A .﹣9B .9C .19D .−192.(3分)一组数据2,4,3,5,2的中位数是( )A .5B .3.5C .3D .2.53.(3分)在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)4.(3分)若一个多边形的内角和是540°,则该多边形的边数为( )A .4B .5C .6D .75.(3分)若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x ≠﹣26.(3分)已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( )A .8B .2√2C .16D .47.(3分)把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为( )A .y =x 2+2B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2+38.(3分)不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( ) A .无解 B .x ≤1 C .x ≥﹣1 D .﹣1≤x ≤19.(3分)如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B ′恰好落在AD 边上,则BE 的长度为( )A .1B .√2C .√3D .2 10.(3分)如图,抛物线y =ax 2+bx +c 的对称轴是直线x =1,下列结论:①abc >0;②b 2﹣4ac >0;③8a +c <0;④5a +b +2c >0,正确的有( )A .4个B .3个C .2个D .1个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy ﹣x = .12.(4分)如果单项式3x m y 与﹣5x 3y n 是同类项,那么m +n = .13.(4分)若√a −2+|b +1|=0,则(a +b )2020= .14.(4分)已知x =5﹣y ,xy =2,计算3x +3y ﹣4xy 的值为 .15.(4分)如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则∠EBD 的度数为 .16.(4分)如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m .17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M ,N 分别在射线BA ,BC 上,MN 长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=√2,y=√3.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生必选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如表:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组{ax+2√3y=−10√3,x+y=4与{x−y=2,x+by=15的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.22.(8分)如图1,在四边形ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AÊ上一点,AD =1,BC =2.求tan ∠APE 的值.23.(8分)某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35. (1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社区拟建A ,B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=8x(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=kx(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.(10分)如图,抛物线y=3+√36x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ 相似时,请直接写出所有满足条件的点Q的坐标.2020年广东省东莞市中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是( )A .﹣9B .9C .19D .−19【解答】解:9的相反数是﹣9,故选:A .2.(3分)一组数据2,4,3,5,2的中位数是( )A .5B .3.5C .3D .2.5【解答】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C .3.(3分)在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)【解答】解:点(3,2)关于x 轴对称的点的坐标为(3,﹣2).故选:D .4.(3分)若一个多边形的内角和是540°,则该多边形的边数为( )A .4B .5C .6D .7【解答】解:设多边形的边数是n ,则(n ﹣2)•180°=540°,解得n =5.故选:B .5.(3分)若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x ≠﹣2【解答】解:∵√2x −4在实数范围内有意义,∴2x ﹣4≥0,解得:x ≥2,∴x 的取值范围是:x ≥2.故选:B .6.(3分)已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( )A .8B .2√2C .16D .4【解答】解:∵D 、E 、F 分别为△ABC 三边的中点,∴DE 、DF 、EF 都是△ABC 的中位线,∴DF =12AC ,DE =12BC ,EF =12AC ,故△DEF 的周长=DE +DF +EF =12(BC +AB +AC )=12×16=8. 故选:A .7.(3分)把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为( )A .y =x 2+2B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2+3【解答】解:二次函数y =(x ﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y =(x ﹣2)2+2.故选:C .8.(3分)不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( ) A .无解 B .x ≤1 C .x ≥﹣1 D .﹣1≤x ≤1【解答】解:解不等式2﹣3x ≥﹣1,得:x ≤1,解不等式x ﹣1≥﹣2(x +2),得:x ≥﹣1,则不等式组的解集为﹣1≤x ≤1,故选:D .9.(3分)如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B ′恰好落在AD 边上,则BE 的长度为( )A.1B.√2C.√3D.2【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.10.(3分)如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=x(y﹣1).【解答】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【解答】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.13.(4分)若√a−2+|b+1|=0,则(a+b)2020=1.【解答】解:∵√a−2≥,|b+1|≥0,√a−2+|b+1|=0,∴a﹣2=0,a=2,b+1=0,b=﹣1,∴(a+b)2020=1.故答案为:1.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.【解答】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2 =15﹣8 =7, 故答案为:7.15.(4分)如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则∠EBD 的度数为 45° .【解答】解:∵四边形ABCD 是菱形, ∴AD =AB ,∴∠ABD =∠ADB =12(180°﹣∠A )=75°, 由作图可知,EA =EB , ∴∠ABE =∠A =30°,∴∠EBD =∠ABD ﹣∠ABE =75°﹣30°=45°, 故答案为45°.16.(4分)如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为13m .【解答】解:如图,连接OA ,OB ,OC ,则OB =OA =OC =1m ,因此阴影扇形的半径为1m ,圆心角的度数为120°, 则扇形的弧长为:120π×1180m ,而扇形的弧长相当于围成圆锥的底面周长,因此有: 2πr =120π×1180, 解得,r =13(m ), 故答案为:13.17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M ,N 分别在射线BA ,BC 上,MN 长度始终保持不变,MN =4,E 为MN 的中点,点D 到BA ,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为 2√5−2 .【解答】解:如图,连接BE ,BD .由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.(也可以用DE≥BD﹣BE,即DE≥2√5−2确定最小值)故答案为2√5−2.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=√2,y=√3.【解答】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生必选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如表:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【解答】解:(1)x=120﹣(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【解答】证明:∵∠ABE =∠ACD , ∴∠DBF =∠ECF ,在△BDF 和△CEF 中,{∠DBF =∠ECF∠BFD =∠CFE BD =CE ,∴△BDF ≌△CEF (AAS ), ∴BF =CF ,DF =EF , ∴∠FBC =∠FCB , ∴∠ABC =∠ACB , ∴AB =AC ,即△ABC 是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分) 21.(8分)已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.【解答】解:(1)由题意得,关于x ,y 的方程组的相同解,就是方程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =﹣4√3,b =12;(2)该三角形是等腰直角三角形,理由如下:当a =﹣4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2﹣4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.22.(8分)如图1,在四边形ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧AÊ上一点,AD=1,BC=2.求tan∠APE 的值.【解答】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,{∠OEC=∠OBC ∠OCE=∠OCB OC=OC,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图2所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD 是⊙O 的切线, ∴ED =AD =1,EC =BC =2, ∴CD =ED +EC =3,∴DF =√CD 2−CF 2=√32−12=2√2, ∴AB =DF =2√2, ∴OB =√2, ∵CO 平分∠BCD , ∴CO ⊥BE ,∴∠BCH +∠CBH =∠CBH +∠ABE =90°, ∴∠ABE =∠BCH , ∵∠APE =∠ABE , ∴∠APE =∠BCH ,∴tan ∠APE =tan ∠BCH =OBBC =√22.23.(8分)某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【解答】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)解法一:设建A摊位a个,建造这90个摊位的费用为y元,则建B摊位(90﹣a)个,由题意得:y=5a×40+3×30(90﹣a)=110a+8100,∵110>0,∴y随a的增大而增大,∵90﹣a≥3a,解得a≤22.5,∵a为整数,∴当a取最大值22时,费用最大,此时最大费用为:110×22+8100=10520;解法二:设建A摊位a(a为整数)个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B 是反比例函数y =8x(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C .反比例函数y =kx (x >0)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .(1)填空:k = 2 ; (2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.【解答】解:(1)设点B (s ,t ),st =8,则点M (12s ,12t ),则k =12s •12t =14st =2, 故答案为2;(2)连接OD ,则△BDF 的面积=△OBD 的面积=S △BOA ﹣S △OAD =12×8−12×2=3;(3)设点D (m ,2m),则点B (4m ,2m),∵点G 与点O 关于点C 对称,故点G (8m ,0), 则点E (4m ,12m),设直线DE 的表达式为:y =px +n ,将点D 、E 的坐标代入上式得{2m =mp +n 12m=4mp +n 并解得{p =−12m 2n =52m, 直线DE 的表达式为:y =−12m2x +52m ,令y =0,则x =5m ,故点F (5m ,0), 故FG =8m ﹣5m =3m ,而BD =4m ﹣m =3m =FG , 又∵FG ∥BD ,故四边形BDFG 为平行四边形. 25.(10分)如图,抛物线y =3+√36x 2+bx +c 与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,BC =√3CD . (1)求b ,c 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出所有满足条件的点Q 的坐标.【解答】解:(1)∵BO =3AO =3, ∴点B (3,0),点A (﹣1,0), ∴抛物线解析式为:y =3+√36(x +1)(x ﹣3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32; (2)如图1,过点D 作DE ⊥AB 于E ,∴CO ∥DE ,∴BC CD =BO OE ,∵BC =√3CD ,BO =3,∴√3=3OE, ∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标为(−√3,√3+1),设直线BD 的函数解析式为:y =kx +m ,由题意可得:{√3+1=−√3k +m 0=3k +m, 解得:{k =−√33m =√3,∴直线BD 的函数解析式为y =−√33x +√3;(3)∵点B (3,0),点A (﹣1,0),点D (−√3,√3+1), ∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1, ∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C (0,√3),∴OC =√3,∵tan ∠CBO =CO BO =√33,∴∠CBO =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2,∴DK =√AD2−AK 2=√8−4=2,∴DK =AK ,∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N (1,0),若∠CBO =∠PBO =30°,∴BN =√3PN =2,BP =2PN ,∴PN =2√33,BP =4√33, 当△BAD ∽△BPQ ,∴BP BA =BQ BD ,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q (1−2√33,0);当△BAD ∽△BQP ,∴BP BD =BQ AB ,∴BQ=4√33×42√3+2=4−4√33,∴点Q(﹣1+4√33,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=√2BN=2√2,当△DAB∽△BPQ,∴BPAD =BQ BD,∴√22√2=2√3+2,∴BQ=2√3+2∴点Q(1﹣2√3,0);当△BAD∽△PQB,∴BPBD =BQAD,∴BQ=2√2×2√22√3+2=2√3−2,∴点Q(5﹣2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(﹣1+4√33,0)或(1﹣2√3,0)或(5﹣2√3,0).。

【教育资料】全国名校九年级上期末(数学)试题汇总学习专用

【教育资料】全国名校九年级上期末(数学)试题汇总学习专用

全国名校2019届九年级上期末(数学)试题汇总全国名校2019届九年级上期末(数学)试题汇总地区导航上海市河北省辽宁省吉林省黑龙江安徽省山东省河南省湖南省广东省陕西省甘肃省广西省浙江省四川省江西省天津市贵州省山西省湖北省江苏省青海省新疆宁夏内蒙古云南省福建省北京市重庆陆续更新中...省份名校试题点击上海市上海市长宁区2019年中考一模(即期末)数学试题上海市虹口区2019年中考一模(即期末)数学试题上海市宝山区2019年中考一模(即期末)数学试题上海市黄浦区2019年中考一模(即期末)数学试题上海市闸北区2019年中考一模(即期末)数学试题上海市徐汇区2019年中考一模(即期末)数学试题上海市(浦东、闵行、静安、杨浦、松江、青浦)2019年中考一模(即期末)数学试题上海市普陀区2019届九年级上学期质量调研数学试题上海市奉贤区2019年中考一模(即期末)数学试题上海市崇明县2019年中考一模(即期末)数学试题北京市北京市朝阳区2019届九年级上学期期末统考数学试题北京市延庆县2019届九年级上学期期末考试数学试题北京市燕山地区2019届九年级上学期期末考试数学试题北京市顺义区2019届九年级上学期期末考试数学试题北京市平谷区2019届九年级上学期期末考试数学试题北京市密云县2019届九年级上学期期末考试数学试题北京市大兴区2019届九年级上学期期末考试数学试题. 北京市昌平区2019届九年级上学期期末考试数学试题北京市东城区2019届九年级上学期期末考试数学试题北京市西城区2019届九年级上学期期末考试数学试题北京市通州区2019届九年级上学期期末考试数学试卷北京市怀柔区2019届九年级上学期期末考试数学试题北京市石景山区2019届九年级上学期期末考试数学试题. 北京市海淀区2019-2019学年初三第一学期期末练习数学试题北京市门头沟2019届九年级上学期期末考试数学试题北京市丰台区2019届九年级上学期期末练习数学试题北京市房山区2019届九年级上学期期末考试数学试题. 河北省河北省唐山市滦南县2019届九年级上学期期末考试数学河北省栾城县2019届九年级上学期期末考试数学试题河北省保定市2019届九年级上学期期末调研考试数学河北省大城县臧屯三中2019届九年级上学期期末考试数学河北省邯郸市涉县索堡中学2019届九年级上学期期末河北省邢台市2019届九年级期末联考数学试题及答案辽宁省辽宁省营口市2019届九年级上学期期末考试数学试题辽宁省鞍山市2019届九年级上学期期末考试数学试题吉林省黑龙江黑龙江伊春区2019届九年级上学期期末检测数学试题黑龙江省哈尔滨市香坊区2019-2019学年度九年级上学期期末黑龙江省克东县2019届九年级上学期期末考试数学试题安徽省安徽省安庆市2019-2019学年九年级上学期期末数学试题安徽省淮南市2019届九年级上学期期末教学质量检测数学安徽省芜湖市滨河学校2019-2019学年上学期九年级期末数学安徽省淮南市潘集区2019届九年级上学期期末联考数学试题山东省山东省临沂开发区2019届九年级上学期期末学业水平质量调研数学试题山东省济南市济阳县2019届九年级上学期期末考试数学山东省临清市2019-2019学年九年级上学期期末考试数学山东省定陶县2019届九年级上学期期末学业水平测试数学山东省新泰市2019届九年级上学期期末考试数学试题山东省五莲县2019届九年级上学期期末考试数学试题山东省胶州市第十九中学2019届九年级上期末考试数学试题泰州市海陵区2019-2019学年第一学期期末调研测试九年级山东省泰安高新区第一中学2019-2019学年上学期九年级期末模拟试题数学山东省定陶县2019届九年级上学期期末学业水平测试数学河南省河南省周口市沈丘县李老庄乡中学2019年秋季九年级期末河南省周口市川汇区18中2019届九年级上期末考试数学河南省扶沟县2019届九年级上学期期末考试数学试题河南省郑州市2019届九年级上学期期末考试数学河南省孟津县2019届九年级上学期期末考试数学试题湖南省湖南省株洲市天元区2019届九年级上学期期末考试数学试题湖南省娄底市新化县2019届九年级上学期期末质量检测数学广东省广东省深圳市宝安区2019届九年级上学期期末考试数学试题广东省广州市越秀区2019届九年级上学期期末考试数学试题广东省广州市天河区2019届九年级上学期末考试数学试题广东省广州市海珠区2019届九年级上学期期末考试数学试题广东省东莞市2019-2019学年九年级上学期期末考试数学试题广东省深圳市南山区2019届初三上学期期末统考题数学陕西省陕西省榆林实验中学2019届九年级上学期期末考试数学甘肃省广西省广西岑溪市2019届九年级上学期期末考试数学试题广西北流市2019届九年级上学期期末考试数学试题浙江省浙江省温中实验学校2019届九年级下学期第一次模拟数学浙江省宁波市海曙、江北、高新区2019届九年级上期末数学浙江省杭州市江干区2019届九年级上学期期末数学试题浙江省绍兴地区2019-2019学年九年级第一学期期末模拟数学浙江省余姚市兰江中学2019届九年级上学期期末数学试题四川省四川省中江县初中2019届九年级“一诊”考试数学试卷四川省内江市2019—2019学年度第一学期期末考试初中九年级数学试题四川省阆中市2019届九年级上学期期末质量监测数学试题四川省遂宁市2019届九年级上学期期末教学水平监测数学四川省宜宾市2019年九年级上期教学质量检测数学四川省望子成龙学校2019届九年级上学期期末考试数学试题四川省巴中市通江中学2019年秋九年级上期末考试题数学四川省乐至县2019-2019学年九年级上学期期末质量检测数学江西省江西省吉安市万安县2019-2019学年度上学期期末质量抽测江西省景德镇市2019届九年级上学期第一次质检数学试题江西省宜春市2019届九年级上学期期末考试数学试题江西省抚州市2019届九年级上学期期末考试数学试题江西省2019届九年级上学期第五次大联考(期末)数学贵州省天津市天津市五区县2019届九年级上学期期末考试数学试题山西省山西省农业大学附属中学2019届九年级上期末数学试题江苏省江苏省常州市2019届九年级上学期期末考试数学试题江苏省盐城市第一中学教育集团2019届九年级上学期期末江苏省南京市江宁区2019届九年级上学期期末考试数学试题江苏省无锡市宜兴市2019届九年级上学期期末考试数学试题江苏省无锡市石塘湾中学2019届九年级上学期期末考试数学江苏省无锡市南菁中学2019届九年级上学期期末考试数学江苏省无锡市南长区2019届九年级上学期期末考试数学试题江苏省无锡市惠山北片2019届九年级上学期期末考试数学江苏省无锡市崇安区2019届九年级上学期期末考试数学. 江苏省靖江市2019届九年级上学期期末考试数学试题江苏省江阴市山观中学2019届九年级上学期期末考试数学江苏省江阴市青阳片2019届九年级上学期期末考试数学试题江苏省江阴市华士片2019届九年级上学期期末考试数学江苏省江阴市顾山2019届九年级上学期期末考试数学试题江苏省盐城市盐都区2019届九年级上学期期末统考数学2019年江苏省东海县九年级第一学期期末试卷江苏省盐城市东台市2019-2019学年初三上学期期末考试数学江苏省兴化市2019届九年级上学期期末调研考试数学试题江苏省江阴市2019届九年级上学期期末考试数学试题湖北省湖北省黄冈市浠水县2019届九年级上学期期末调研考试数学湖北省鄂州市2019届九年级数学试卷上学期期末考试数学湖北省宜昌市2019届九年级上学期期末调研考试数学试题湖北省沙洋县2019-2019学年九年级上学期期末考试数学湖北省大冶市2019届九年级上学期期末考试数学试题湖北省宜城市2019届九年级上学期期末水平测试数学试题湖北省利川市2019-2019年度九年级第一学期期末调研考试青海省新疆宁夏内蒙古内蒙古满洲里市2019届九年级上学期期末考试数学试题云南省福建省福建省晋江市2019年秋季九年级期末跟踪测试数学试卷福建省建阳市2019-2019上学期期末水平测试九年级数学福建省福州市2019届九年级第一学期期末质检数学试卷重庆市教育资源重庆市永川区2019届九年级上学期期末检测数学试题教育资源。

广东省东莞市东莞中学2023-2024学年九年级上学期期末数学试题[答案]

广东省东莞市东莞中学2023-2024学年九年级上学期期末数学试题[答案]

2023-2024学年第一学期初三期末教学质量自查数学试卷数 学一、选择题(本大题共10 小题,每小题3分,共30分)1.下列实数中,比3-小的数是( )A .2-B .4C .5-D .12.人体中红细胞的直径约为0.0000077m ,将0.0000077用科学记数法表示为( )A .57.710-´B .67.710-´C .77710-´D .80.7710-´3.下列正确的是( )A 23=´B 23=+C 3=±D 0.7=4.化简---a b a b a b 的结果是( )A .a b +B .a b -C .22a b -D .15.若ABC DEF ∽△△, 其相似比为2:3,则ABC V 与DEF V 的面积比为( )A .4:9B .2:3CD .16:816.如图,烧杯内液体表面AB 与烧杯下底部CD 平行,光线EF 从液体中射向空气时发生折射,光线变成FH ,点G 在射线EF 上.已知20HFB Ð=°,60FED Ð=°,则GFH Ð的度数为( )A .20°B .40°C .60°D .80°7.一个多边形的内角和是外角和的2倍,这个多边形是( )A .三角形B .四边形C .五边形D .六边形8.若关于x 的方程20x x m -+=没有实数根,则m 的值可以为( )A .1-B .14-C .0D .19.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <210.如图,在平面直角坐标系中,直线AB 经过点()6,0A 、()0,6B ,O e 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作O e 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( )A B C .3D .二、填空题(本大题共5小题,每小题3分,共15分)11.不等式3x+1<-2的解集是 .12.因式分解:29ax a -= .13.将抛物线23y x =-向左平移2个单位,所得抛物线的解析式为 .14.如图,△ABC 绕点A 逆时针旋转得到△AB′C′,点C 在AB'上,点C 的对应点C′在BC 的延长线上,若∠BAC'=80°,则∠B = 度.15.如图,已知O e 的内接正六边形ABCDEF 的边长为4,H 为边AF 的中点,则图中阴影部分的面积是 .三、解答题(一)(本大题共3小题,第16题10分,第17、18题各7分,共24分)16.(1()1011 3.142p -æö-+--ç÷èø(2)化简∶22141121a a a a -æö-¸ç÷--+èø.17.如图,在ABC V 中,(1)尺规作图∶作ABC V 的高CD ,交AB 于点D (保留作图痕迹,不写作法) ;(2)若60A Ð=°,45B Ð=°,10AC =,求AB 的长.18.如图,点A 在反比例函数()0k y x x=>的图象上,AB y ^轴于点B ,2AB =,4OB =.(1)求反比例函数的表达式;(2)若直线CD垂直平分线段AO,交AO于点D,交y轴于点C,交x轴于点E,求线段OE 的长.四、解答题(二) (本大题共3 小题,每小题9分,共27分)19.劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.学校为了解学生参加家务劳动的情况,对八年级学生参加家庭劳动情况开展调查研究,请将下面过程补全.(1)收集数据,在八年级随机抽取20名学生进行问卷调查,他们一周参加家庭劳动的次数分别为:3 1 2 2 4 3 3 2 3 4 3 4 0 5 7 2 6 4 6 6(2)整理数据,结果如下:分组频数£<2x02£<9x24x£<a46x£<468根据以上信息,解答下列问题:a______,补全频数分布直方图;(1)=(2)已知这组数据的平均数为3.5,该校八年级现有200名学生,请估计该校八年级学生每周参加家庭劳动的次数达到平均水平及以上的学生人数;(3)劳动时间为68x £<的4名学生中有2名男生,2名女生,从中任意抽取2名学生参加学校开展的以“劳动美”为主题的演讲活动,用树状图或列表法求抽取的2名学生恰好是一名男生和一名女生的概率.20.2023年第31届世界大学生夏季运动会将在成都举办,与吉祥物“蓉宝”有关的纪念品现已上市.某商店计划今年购进A ,B 两种“蓉宝”纪念品若干件,订购A 种“蓉宝”纪念品花费6000元,订购B 种“蓉宝”纪念品花费3200元,其中A 种纪念品的订购单价比B 种纪念品的订购单价多20元,并且订购A 种纪念品的数量是B 种纪念品数量的1.25倍.(1)求商店订购A 种纪念品和B 种纪念品分别是多少件?(2)若商店一次性购买A ,B 纪念品共60件,要使总费用不超过3000元,最少要购买多少件B 种纪念品?21.如图,AB 是O e 的直径,点C 在O e 上,BD 平分ABC Ð交O e 于点D , 过点D 作DE BC ^于E .(1)求证∶DE 是O e 的切线;(2)若10AB =,6AD =,求EC 的长.五、解答题(三) (本大题共2小题,每小题12分,共24分)22.如图,在平面直角坐标系中,已知二次函数2y ax bx c =++的图象与x 轴交于点()2,0A -和点()6,0B 两点,与y 轴交于点()0,6C .点D 为线段BC 上的一动点.(1)求二次函数的表达式;(2)如图1,求AOD △周长的最小值;(3)如图2,过动点D 作DP AC ∥交抛物线第一象限部分于点P ,连接,PA PB ,记PAD V 与PBD △的面积和为S ,当S 取得最大值时,求点P 的坐标,并求出此时S 的最大值.23.实践操作:第一步:如图(1),正方形纸片ABCD 边AD 上有一点P ,将正方形纸片ABCD 沿BP 对折,点A 落在点E 处;第二步:如图(2),将正方形ABCD 沿AE 对折,得到折痕AF ,把纸片展平;第三步:如图(3),将图(1)中纸片沿PE 对折,得到折痕PG ,把纸片展平;第四步:如图(4),将图(3)中纸片对折,使AD 与BC 重合,得到折痕MN ,把纸片展平,发现点E 刚好在折痕MN 上.问题解决:(1)在图(2)中,判断BP 与AF 的数量关系,并证明你的结论;(2)在图(3)中,求证:PDG △的周长不变;(3)在图(4CG 的长.【分析】根据0大于负数,负数比较大小绝对值大的反而小,即可解答.【详解】解:∵53214-<-<-<<,∴比3-小的数是5-,故选C .【点睛】本题考查了有理数的大小比较,解决本题的关键是熟记0大于负数,两个负数比较大小绝对值大的反而小.2.B【分析】本题主要考查科学记数法,根据科学记数法的表示方法求解即可.科学记数法的表示形式为10n a ´的形式,其中1<10a £,n 为整数.解题关键是正确确定a 的值以及n 的值.【详解】0.0000077用科学记数法表示为67.710-´.故选:B .3.A【分析】根据二次根式的性质和算术平方根的定义,进行求解即可得出结果.【详解】解:A 23==´,选项正确,符合题意;B 23=¹+,选项错误,不符合题意;C 3=,选项错误,不符合题意;D =,选项错误,不符合题意;故选A .【点睛】本题考查二次根式的性质和算术平方根的定义.熟练掌握二次根式的性质和算术平方根的定义是解题的关键.4.D【分析】本题主要考查了分式的减法运算法则,灵活运用运算法则成为解答本题的关键.根据同分母分式的减法运算则计算即可.【详解】---a b a b a ba ba b -=-故选:D .5.A【分析】本题考查的是相似三角形的性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.根据相似三角形的面积比等于相似比的平方计算即可.【详解】∵ABC DEF ∽△△, 其相似比为2:3,∴ABC V 与DEF V 的面积比为4:9.故选:A .6.B【分析】由题意知,AB CD P ,则60GFB FED Ð=Ð=°,根据GFH GFB HFB Ð=Ð-Ð,计算求解即可.【详解】解:由题意知,AB CD P ,∴60GFB FED Ð=Ð=°,∴40GFH GFB HFB Ð=Ð-Ð=°,故选:B .【点睛】本题考查了平行线的性质.解题的关键在于明确角度之间的数量关系.7.D【分析】本题考查了多边形的内角和公式与外角和定理,根据多边形的内角和公式()2180n -×°与多边形的外角和定理列式进行计算即可解答.【详解】设这个多边形是n 边形,根据题意,得()21803602n -×°=°´,解得:6n =,∴这个多边形是六边形.故选:D8.D【分析】根据关于x 的方程20x x m --=没有实数根,判断出Δ0<,求出m 的取值范围,再找出符合条件的m 的值.【详解】解:∵关于x 的方程20x x m -+=没有实数根,∴()214114m m D =--´´=-0<,解得:14m >,故选项中只有D 选项满足,故选D.【点睛】本题考查了一元二次方程根的判别式,需要掌握一元二次方程没有实数根相当于判别式小于零.9.C【分析】一次函数y1=kx+b 落在与反比例函数y 2=c x图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x (c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,∴不等式y1>y2的解集是﹣3<x <0或x >2,故选C .【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.10.A【分析】连接OP OQ 、,根据勾股定理知222PQ OP OQ =-,当OP AB ^时,线段OP 最短,即线段PQ 最短.【详解】连接OP OQ 、.∵PQ 是O 的切线,∴OQ PQ ^,根据勾股定理知222PQ OP OQ =-,∵当PO AB ^时,线段PQ 最短,又∵()6,0A 、()0,6B ,∴6O A O B ==,∴AB =∴12OP AB ==,∵2OQ =,∴PQ ==故选:A .【点睛】此题考查切线长定理,解题关键在于掌握切线长定理和勾股定理运算.11.1x <-.【详解】试题分析:3x+1<-2,3x <-3,x <-1.故答案为x <-1.考点:一元一次不等式的解法.12.(3)(3)a x x +-【分析】先提公因式然后再用平方差公式分解因式即可.【详解】解:29ax a-()29a x =-()()33a x x =+-故答案为:()()33a x x +-.【点睛】本题主要考查了分解因式,熟练掌握平方差公式()()22a b a b a b -=+-是解题的关键.13.()232y x =-+【分析】根据图象平移的规则,“上加下减,左加右减”,即可求解,本题考查了图象的平移,解题的关键是:熟记图象平移规则.【详解】解:根据题意,将抛物线23y x =-向左平移2个单位,得:()232y x =-+,故答案为:()232y x =-+.14.30【分析】根据旋转的性质和等腰三角形的性质即可得到结论.【详解】解:∵△ABC 绕点A 逆时针旋转得到△AB′C′,∴∠C′AB′=∠CAB ,AC′=AC ,∵∠BAC'=80°,∴∠C′AB′=∠CAB =12ÐC′AB =40°,∴∠ACC′=70°,∴∠B =∠ACC′﹣∠CAB =30°,故答案为:30.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形的外角的性质,正确的识别图形是解题的关键.15.8π3+【分析】本题考查等边三角形性质,正六边形性质,扇形面积公式等.根据题意先计算出CDH S △的面积,再计算扇形COD 面积及COD S △面积,即可得到本题答案.【详解】解:过点H 作HE CD ^交CD 于点E ,连接,OC OD ,,∵O e 的内接正六边形ABCDEF 的边长为4,H 为边AF 的中点,∴60COD Ð=°,60ECO Ð=°,4CO OD ==,E 为边CD 的中点,∴2CE DE ==,∴OE =∴=EH∴142CDH S =´´=V ∴扇形COD 面积:260π48π3603°=°,∵142COD S =´´=V∴阴影部分的面积:888(πππ333-=-=,故答案为:8π3.16.(13;(2)12a a -+【分析】(1)首先计算绝对值,负整数指数幂,零指数幂和算术平方根,然后计算加减;(2)根据分式的混合运算法则求解即可.【详解】(1()1011 3.142p -æö-+--ç÷èø1213=+-+3=;(2)22141121a a a a -æö-¸ç÷--+èø()()()22211111a a a a a a +--æö=-¸ç÷--èø-()()()212122a a a a a --=×-+-12a a -=+.【点睛】本题考查了实数的运算、异分母分式的加减运算,涉及了算术平方根、负指数幂、零指数幂的运算等,熟练掌握各运算的运算法则是解题的关键.17.(1)见解析(2)5【分析】(1)以点C 为圆心,适当长度为半径画弧,交AB 于点E ,F ,然后分别以点E ,F 为圆心,以适当长度为半径画弧,两弧交于点M ,连接CM 交AB 于点D ,线段CD 即为所求;(2)首先根据含30°角直角三角形的性质求出152AD AC ==,然后利用勾股定理求出CD ==BD CD ==【详解】(1)如图所示,CD 即为所求;(2)∵CD 是ABC V 的高∴CD AB ^,即90ADC Ð=°∵60A Ð=°∴906030ACD Ð=°-°=°∴152AD AC ==∴CD ==∵45B Ð=°∴45BCD Ð=°∴BD CD ==∴5AB BD AD =+=.【点睛】此题考查了尺规作三角形的高,含30°角直角三角形的性质,勾股定理,等腰直角三角形三角形的性质等知识,解题的关键是掌握以上知识点.18.(1)8y x=(2)5【分析】(1)由题意可得点A 的坐标为()24,,代入k y x=,求出k 的值即可;(2)连接AE ,过点A 作AF OE ^于点F ,由直线CD 为线段OA 的垂直平分线可得AE OE =,设线段OE 的长为m ,则AE m =,2EF m =-,由勾股定理得222AE AF EF =+,即()22242m m =+-,求出m 的值即可.【详解】(1)解:AB y ^Q 轴,90ABO \Ð=°,∵2AB =,4OB =,\点A 的坐标为()24,,将()24A ,代入k y x=,得8k =,\反比例函数的表达式为8y x=.(2)解:连接AE ,过点A 作AF OE ^于点F ,如图所示:∵直线CD 为线段OA 的垂直平分线,AE OE \=,设线段OE 的长为m ,则AE m =,Q 点A 的坐标为()24,,4AF \=,2OF =,∴2EF m =-,在Rt V AEF 中,由勾股定理得,222AE AF EF =+,即()22242m m =+-,解得:5m =,\线段OE 的长为5.【点睛】本题考查反比例函数图象上点的坐标特征、待定系数法求反比例函数解析式、线段垂直平分线的性质,勾股定理,解题的关键是理解题意,灵活运用所学知识解决问题.19.(1)5,补图见解析(2)90人(3)23【分析】(1)根据收集到的数据找出46x £<有几个即可.(2)由图表信息先求出达到平均水平及以上的概率,然后再求解八年级学生达到平均水平及以上的人数即可.(3)列出树状图,利用概率计算公式计算即可.【详解】(1)解:由收集到的数据可知,46x £<分别有4,4,4,5,4共有5个∴5a =,如图所示;(2)解:542009020+´=(人)答:该校八年级学生每周参加家庭劳动的次数达到平均水平及以上的学生人数为90人.(3)画树状图如下:∵所有等可能出现的结果总数为12个,其中抽到一男一女的情况数有8个,∴恰好抽到一男一女概率为82123=.【点睛】本题主要考查数据统计与概率的计算,熟练掌握概率的计算是解决本题的关键.20.(1)商店订购A 种纪念品100件,B 种纪念品80件;(2)30【分析】(1)设商店订购B 种纪念品x 件,则订购A 种纪念品1.25x 件,根据“A 种纪念品的订购单价比B 种纪念品的订购单价多20元”列分式方程,求解即可;(2)设购买m 件B 种纪念品,则购买(60-m )件A 种纪念品,根据总费用不超过3000元列一元一次不等式,求解即可,【详解】(1)解:设商店订购B 种纪念品x 件,则A 种纪念品分别是1.25件,根据题意得:60003200201.25x x-=,解得:x =80,经检验,x =80是原方程的根,且符合题意,∴1.25×80=100件,答:商店订购A 种纪念品100件,B 种纪念品80件;(2)解:由(1)得:A 种商品的单价为6000÷100=60元,B 种商品的单价为60-20=40元,设购买m 件B 种纪念品,则购买(60-m )件A 种纪念品,根据题意得:60(60-m )+40m ≤3000,解得m ≥30,答:最少购买30件B 种纪念品.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,理解题意并根据题意建立等量关系或不等关系是解题的关键.21.(1)见解析(2)185CE =【分析】(1)连接OD ,由BD 为角平分线得到OBD CBD Ð=Ð,再由OB OD =,利用等边对等角得到ODB OBD Ð=Ð,从而得出ODB CBD Ð=Ð,利用内错角相等两直线平行得到OD 与BE 平行,由DE 垂直于BE 得到OD 垂直于DE ,即可得证;(2)过D 作DH AB ^于H ,根据HL 得出Rt Rt ADH CDE V V ≌,得出AH CE =,再根据勾股定理得出8BD ==,再利用等积法即可得出DE 的长,然后证明出ABD CDE V V ∽,利用相似三角形的性质求解即可.【详解】(1)证明:连接OD .∵OD OB =,∴ODB OBD Ð=Ð.∵BD 平分ABC Ð,∴OBD CBD Ð=Ð.∴ODB CBD Ð=Ð,∴OD BE ∥.∴180BED ODE Ð+Ð=°.∵BE DE ^,∴90BED Ð=°.∴90ODE Ð=°.∴OD DE ^.∴DE 与O e 相切;(2)过D 作DH AB ^于H .∵BD 平分ABC Ð,DE BE ^,∴DH DE =.∵ AD CD=,∴AD CD =.∴()Rt Rt HL ADH CDE V V ≌,∴AH CE =.∵AB 是O e 的直径,∴90ADB Ð=°.∵10AB =,6AD =,∴8BD ===.∵1122AB DH AD BD ×=×,∴245DH =.∴245DE =.∵90Ð=Ð=°E ADB ,DCE AÐ=Ð∴ABD CDEV V ∽∴AD BD CE DE =,即68245CE =解得185CE =.【点睛】此题考查了切线的判定,角平分线的性质、圆周角定理、相似三角形的性质和判定,勾股定理等知识,熟练掌握切线的判定方法是解本题的关键,属于中考常考题型.22.(1)21262y x x =-++(2)12(3)153,2æöç÷èø,272S =最大值【分析】(1)根据题意设抛物线的表达式为()()26y a x x =+-,将()0,6代入求解即可;(2)作点O 关于直线BC 的对称点E ,连接EC EB 、,根据点坐特点及正方形的判定得出四边形OBEC 为正方形,()6,6E ,连接AE ,交BC 于点D ,由对称性DE DO =,此时DO DA +有最小值为AE 的长,再由勾股定理求解即可;(3)由待定系数法确定直线BC 的表达式为6y x =-+,直线AC 的表达式为36y x =+,设21,262P m m m æö-++ç÷èø,然后结合图形及面积之间的关系求解即可.【详解】(1)解:由题意可知,设抛物线的表达式为()()26y a x x =+-,将()0,6代入上式得:()()60206a =+-,12a =-所以抛物线的表达式为21262y x x =-++;(2)作点O 关于直线BC 的对称点E ,连接EC EB 、,∵()6,0B ,()0,6C ,90BOC Ð=°,∴6OB OC ==,∵O 、E 关于直线BC 对称,∴四边形OBEC 为正方形,∴()6,6E ,连接AE ,交BC 于点D ,由对称性DE DO =,此时DO DA +有最小值为AE的长,10AE ===∵AOD △的周长为DA DO AO ++,2AO =,DA DO +的最小值为10,∴AOD △的周长的最小值为10212+=;(3)由已知点()2,0A -,()6,0B ,()0,6C ,设直线BC 的表达式为y kx n =+,将()6,0B ,()0,6C 代入y kx n =+中,600k n n +=ìí=î,解得16k n =-ìí=î,∴直线BC 的表达式为6y x =-+,同理可得:直线AC 的表达式为36y x =+,∵PD AC ∥,∴设直线PD 表达式为3y x h =+,由(1)设21,262P m m m æö-++ç÷èø,代入直线PD 的表达式得:2162h m m =--+,∴直线PD 的表达式为:21362y x m m =--+,由261362y x y x m m =-+ìïí=--+ïî,得22118411684x m m y m m ì=+ïïíï=--+ïî,∴221111,68484D m m m m æö+--+ç÷èø,∵P ,D 都在第一象限,∴PAD PBD PAB DABS S S S S =+=-△△△△2211112662284AB m m m m éùæöæö=-++---+ç÷ç÷êúèøèøëû21398284m m æö=´-+ç÷èø()22339622m m m m =-+=--2327(3)22m =--+,∴当3m =时,此时P 点为153,2æöç÷èø.272S =最大值.【点睛】题目主要考查二次函数的综合应用,包括待定系数法确定函数解析式,周长最短问题及面积问题,理解题意,熟练掌握运用二次函数的综合性质是解题关键.23.(1)BP AF =,见解析(2)见解析(3)3-【分析】(1)根据折叠可得AE BP ^,即可得到ABP DAF Ð=Ð ,易证ABP DAF ≌△△即可得到答案;(2)连接BG ,由折叠的性质知AB BE =,AP PE =,A BEP Ð=Ð,结合AB BC =,90A C Ð=Ð=°易得BEG BCG △≌△得到=EG CG ,即可得到证明;(3)根据折叠可得AB BE =,ABP EBP Ð=Ð,12AM BM AB ==,即可得到30MEB Ð=°,从而得到30ABP EBP Ð=Ð=°,即可得到AP ,从而得到PD ,由(2)得90BEG Ð=°,即可得到60NEG Ð=°,从而得到30EGN Ð=°,即可得到DG ,即可得到答案;【详解】(1)解: BP AF =,理由如下,证明:由折叠的性质知AE BP ^,∴90ABP DAF BAF Ð=Ð=°-Ð,在ABP V 和DAF △中,ABP DAF AB DABAP D Ð=Ðìï=íïÐ=Ðî,∴(ASA)ABP DAF V V ≌,∴BP AF =;(2)解:如图,连接BG ,由折叠的性质知AB BE =,AP PE =,A BEP Ð=Ð,又∵AB BC =,90A C Ð=Ð=°,∴BE BC =,90C BEP BEG Ð=Ð=Ð=°,在BEG V 和BCG V 中,BE BC BG BG=ìí=î∴HL BEG BCG V V ≌(),∴=EG CG ,∴()()2PDG C PE DP EG DG AP DP GC DG AD CD AD =+=++==V ++++,又∵AD 为正方形ABCD 的边长,∴PDG △的周长不变;(3)解:如图,连接AE,由折叠性质可得,AB BE =,ABP EBP Ð=Ð,12AM BM AB ==,EM AB ^,MN BC ∥,∴AE BE =,∴AE BE AB ==,∴ABE V 为等边三角形,∴60AEB ABE Ð=Ð=°,而EM AB ^,∴30MEB Ð=°,∴30EBC Ð=°,∴30ABP EBP Ð=Ð=°,2222(2)33AP AP AP AB -===,解得:1AP =,∴1DP ,由(2)得90BEG Ð=°,∴60NEG Ð=°,∴30EGN Ð=°,∴2PG =,∴1)3DG ===,∴(33CG ==-;【点睛】本题主要考查正方形的性质,勾股定理,直角三角形30°角所对直角边等于斜边一半,二次根式混合运算,折叠的性质及三角形全等的性质与判定,解题的关键是根据折叠得到三角形全等条件及角度关系.。

广东省东莞市2019-2020学年六年级上册数学期末卷

广东省东莞市2019-2020学年六年级上册数学期末卷

广东省东莞市2019-2020学年六年级上册数学期末卷一、填空题(共24分)(共8题;共22分)1.________÷15=24:________=________%==________(填小数).2.20公顷比________平方米多;已知甲比乙多,则乙比甲少________.3.一种汽车行千米用汽油升,这种汽车行1千米用汽油________升,这种汽车用1升汽油可行________千米.4.甲数与乙数之比为3:5,如果甲数减去6,乙数加上6,所得两数之比为3:7,那么变化前的甲数为________.5.六(1)班体育进行测试,成绩获得优秀的有15人,占全班人数的25%,制成扇形统计图时优秀人数所在扇形的圆心角是________°;成绩获得良好的同学的人数所在圆心角是72°,则有________人成绩获得良好.6.四只小猴吃桃,第一只小猴吃的是另外三只的总数的,第二只小猴吃的是另外三只吃的总数的,第三只小猴吃的是另外三只的总数的20%,第四只小猴将剩下的46个桃全吃了.则四只小猴共吃了________个桃.7.一个半圆的半径是3厘米,如果把它的半径延长1厘米,那么面积增加________.8.小明和小李去图书馆,小明走的路程比小李多,小李走的时间比小明少,小明和小李两人的速度比是________.二、选择题(共16分)(共8题;共16分)9.一个非零自然数与它的倒数和是20.05,这个自然数是()A. B. 21 C. 20 D.10.两根铁丝都长2米,第一根用去,第二根用去米,则剩下的()A. 第一根长B. 第二根长C. 两根一样长D. 无法判断11.原有7克糖和15克水,现在放入5克糖和25克水,糖水会()A. 变淡了B. 变甜了C. 没有甜味了D. 没有那么甜了12.在圆内剪去一个圆心角为45的扇形,余下部分的面积是剪去部分面积的()倍.A. 9B. 8C. 713.某班在一次数学测验中,全班同学的平均成绩是82分,男生平均成绩是80分,女生平均成绩是88分,这个班男、女生人数之比为()A. 3:2B. 2:3C. 1:3D. 3:1三、计算题(共24分)(共2题;共24分)14.脱式计算,能简便的要简便.(1)3 ÷[5 ﹣4.5×(20%+ )](2)6 ×0.125+(3)121×()×141(4)15.解方程(1)(80%x﹣20)×80%+20=x﹣68(2)(1﹣)x=(1﹣)(x+10)四、操作题(共6分)(共1题;共6分)16.求如图阴影部分的周长和面积.(单位:dm)五、解答题(共30分)(共5题;共30分)17.有一工程队铺路,第一天铺了全程的,第二天铺了余下的,第三天铺的是第二天工作量的.还剩下9千米没有铺完.求:(1)第三天铺了全程的几分之几?(2)这条路全长多少千米?18.植物园种了三种树,共有1230棵,其中杉树与樟树的棵数比是4:5,樟树与柳树的棵数比是15:14,三种树各种了多少棵?19.现有浓度为10%的盐水20千克,再加入________千克浓度为30%的盐水,可以得到浓度为22%的盐水.20.一批货物由甲、乙两个人搬运,需8天完成,现在甲先搬8天,然后乙再搬4天,这时还剩没有搬.乙单独搬运需要几天?21.(1﹣)x=(95﹣x)×(1﹣40%),请根据此方程编写一道运用方程法解决的应用题:要求:①题目通顺合理;②根据你编写的题目进行解答.答案解析部分一、填空题(共24分)1.【答案】12;30;80;0.8【解析】【解答】解:15÷5=3,4×3=12;24÷4=6,6×5=30;4÷5=0.8=80%;所以:12÷15=24÷30=80%==0.8。

2020年广东省中考模拟试卷·2019-2020学年度第二学期佛山市大沥镇初中教学质量检测九年级数学试题(含答案)

2020年广东省中考模拟试卷·2019-2020学年度第二学期佛山市大沥镇初中教学质量检测九年级数学试题(含答案)

2019-2020学年度第二学期大沥镇初中教学质量检测九 年 级 数 学 试 题命题学校:石门实验学校 命题人:农成遐 审核人:李富泉 把关人:大沥镇教育局左世良一.选择题(共10小题,每小题3分,共30分) 1.﹣2020的相反数是( ) A .B .C .2020D .﹣20202.港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长约55000m ,集桥、岛、隧于一体,是世界最长的跨海大桥,数据55000用科学记数法表示为( ) A .5.5×105B .55×104C .5.5×104D .5.5×1063.如图,下列结论正确的是( )A .c >a >bB .C .|a |<|b |D .abc >04.如表是我国近六年“两会”会期(单位:天)的统计结果:则我国近六年“两会”会期(天)的众数和中位数分别是( ) A .13,11 B .13,13 C .13,14 D .14,13.5 5.在Rt △ABC ,∠C =90°,sin B =,则sin A 的值是( ) A . B . C . D . 6.下列运算中,计算正确的是( ) A .2a +3a =5a 2 B .(3a 2)3=27a 6C .x 6÷x 2=x 3D .(a +b )2=a 2+b 27.下列命题中,假命题的是()A .分别有一个角是110的两个等腰三角形相似B .若5x =8y (xy ≠0),则58y xC .如果两个三角形相似,则他们的面积比等于相似比D .有一个角相等的两个菱形相似 8.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x 个,那么可列方程为( ) A .=B .=C .=D .=9.如图,点A 是反比例函数y =2x(x >0)的图象上任意一点,AB //x 轴,交反比例函数y =-3x的图象于点B ,以AB 为边作□ABCD ,其中C 、D在x 轴上,则S □ABCD 为( )A. 2B. 3C. 4D. 510.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论: ①abc >0;②2a +b =0;③若m ≠1,则a +b >am 2+bm ;④a ﹣b +c >0;⑤若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则x 1+x 2=2. 其中正确的有( )A .2个B .3个C .4个. D.5个二.填空题(共7小题,每小题4分,共28分) 11.因式分解:x 2﹣9= .12.在平面直角坐标系中点P (﹣2,3)关于x 轴的对称点在第 象限. 13.一个正数a 的平方根分别是2m ﹣1和﹣3m +,则这个正数a 为 .14.已知反比例函数y =(k 是常数,k ≠1)的图象有一支在第二象限,那么k 的取值范围是15.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n = .16.如下左图,DE ∥BC ,DF ∥AC ,AD =4cm ,BD =8cm ,DE =5cm ,则线段BF 长为 cm .17. 如上右图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为 .三.解答题(一)(第18~20题,每题6分,共18分)18.计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣119.先化简,再求值(﹣)÷,其中a,b满足a+b ﹣=0.20.如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写作法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.四.解答题(二)(第21~23题,每题8分,共24分)21.如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF =,求AB的长.22.2020年4月23日是第二十五个“世界读书日”.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并将获奖人数绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.23.在水果销售旺季,某水果店购进一批优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?五.解答题(三)(第24~25题,每题10分,共20分)24.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB 交于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG(1)判断CG 与的位置关系,并说明理由;(2)求证:2OB2=BC·BF;(3)如图2,当∠DCE=2∠F,CE=3,DG=2时,求DE的长.25.如图,直线23y x c=-+与x轴交于点A(3,0),与y轴交于点B,抛物线243y x bx c=-++经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m 的值.2019-2020学年度第二学期大沥镇初中教学质量检测九年级数学答案及评分标准一.选择题(共10小题,每小题3分,满分30分)1.C .2.C.3.B4.B5.B6.B7.C8.A9.D10.B二.填空题(共7小题,每小题4分,满分28分)11.(x +3)(x ﹣3).12.第三象限.13.414.k <1.15.8.16.10.17.16三.解答题(一)(第18~20题,每题6分,共18分)18.解:原式=2×﹣1+﹣1+2.............4分=1+.......................6分19.解:原式=•.............3分=, (4)分由a +b ﹣=0,得到a +b =,则原式=2...........6分20.解:(1)如图所示:CO 与⊙O 为所求....................4分(2)相切;过O 点作OD ⊥AC 于D 点,∵CO 平分∠ACB ,∴OB =OD ,即d =r ,∴⊙O 与直线AC 相切.......................6分四.解答题(二)(第21~23题,每题8分,共24分)21.解:(1)∵E 是AC 的中点,∴AE =CE ,∵AB ∥CD ,∴∠AFE =∠CDE ,................1分在△AEF 和△CED 中,.6分∵,∴△AEF ≌△CED (AAS ),∴AF =CD ,........3分又AB ∥CD ,即AF ∥CD ,∴四边形AFCD 是平行四边形;........4分(2)∵AB ∥CD ,∴△GBF ∽△GCD ,...............5分∴=,即=,解得:CD =,...............6分∵四边形AFCD 是平行四边形,∴AF =CD =,...................7分.∴AB=AF+BF=+=6................8分22.解:(1)本次比赛获奖的总人数为4÷10%=40(人),二等奖人数为40﹣(4+24)=12(人)..................2分.补全条形图如下:............3分.(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×=108°;...............4分(3)树状图如图所示,∵从四人中随机抽到甲和乙两人共有12种可能性结果,每种结果的可能性相同,恰好是甲和乙的结果有两种,分别是(甲,乙),(乙,甲)..............7分∴抽取两人恰好是甲和乙的概率是=........................................................8分23.解:(1)设y与x之间的函数关系式为y=kx+b,..........................1分.将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y=﹣2x+80.......................................................................3分当x=29.6,y=25.2和x=28,y=26也满足上述关系式∴y与x之间的函数关系式为y=﹣2x+80.................................4分当x=23.5时,y=﹣2x+80=33...答:当天该水果的销售量为33千克................................5分(2)根据题意得:(x﹣20)(﹣2x+80)=150,...............................6分解得:x1=35,x2=25.∵20≤x≤32,∴x=25...............................7分答:如果某天销售这种水果获利150元,那么该天水果的售价为25元................................8分五.解答题(三)(第24~25题,每题10分,共20分)24.解:(1)CG与⊙O相切,理由如下:..........1分如图1,连接OC,∵AB是⊙O的直径,∠ACB=∠ACF=90°点G是EF的中点,∴GF=GC=GE∴∠AEO=∠GEC=∠GCE.............................2分∵OF⊥AB ∴∠OAC+∠AEO=90°∴∠OCA+∠GCE=90°∴OC⊥CG∵OC 是⊙O 的半径∴CG 是⊙O 相切...............................3分(2)∵∠AOE=∠FCE=90°,∠AEO=∠FEC ∴∠OAE=∠F 又∵∠B=∠B,∴△ABC∽△FBO .............................4分∴BC:BO=AB:BF 即OB·AB=BC·BF ..............................5分∵AB=2OB∴2OB 2=BC·BF ..................6分(3)由(1)知GC=GE=GF ∴∠F=∠GCF∴∠EGC=2∠F...........................7分∵∠DCE=2∠F ∴∠EGC=∠DCE ∵∠DEC=∠CEG ∴△ECD∽△EGC ...............................8分∴EC:EG=ED:EC ∵EC=3,DG=2∴3:(DE+2)=DE:3整理,得:DE 2+2DE-9=0....................................................9分010 1.............10DE DE >∴=- 分2(3,0)3y x c x A =-+25.(1)与轴交于∴0=-2+c,解得:c=2∴B(0,2)..............................1分24+,3y x bx c A B =-+ 抛物线经过(3,0)(0,2)两点-12+3010,223b c b c c +=⎧∴∴==⎨=⎩24102 (333)y x x ∴=-++抛物线的解析式为:分()()22123y x =-+由可知直线AB的解析式为,∵M(m,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N ,2410333P ∴2(m,-m+2),N(m,-m +m+2)222410242,3,2(2)4 (433333)PM m AM m PN m m m m m ∴=-+=-=-++--+=-+分24103332M(m,0),(m,-m+2),N(m,-m +m+2)∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°当∠BNP=90°时,BN⊥MN,N 点的纵坐标为241033∴2-m +m+2=2解得:m=0或m=2.5M(2.5,0).....................................................................5分当∠NBP=90°时,过点N 作NC⊥y 轴于点C,241090, ,33NBC BNC NC m BC m m∠+∠=︒==-+则∵∠NBP=90°,∴∠NBC+∠ABO=90°∴∠ABO=∠BNC ∴Rt△NCB∽Rt△BOA∴NC:OB=BC:OA2410:2():333110811(,0) (68)m m m m m M ∴=-+==∴解得:或分综上可知当以B ,P ,N 为顶点的三角形与△AMP 相似时,点M 的坐标为或;②M ,P ,N 三点为“共谐点”,有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,2241012,3()3332P MN m m m m ++==当为线段的中点时,则有2(-m+2)=-解得:三点重合,舍去或224102)0,3()1333M PN m m m ++===-当为线段的中点时,则有-m+2+(-解得:舍去或2241012),3()3334N PM m m m ++==-当为线段的中点时,则有-m+2=2(-解得:舍去或11“” (1024)M P N m 综上可知当,,三点成为共谐点时的值为或-1或-.分。

2019-2020学年人教A版广东省东莞市高三第一学期期末文科数学试卷(解析版)

2019-2020学年人教A版广东省东莞市高三第一学期期末文科数学试卷(解析版)

2019-2020学年高三第一学期期末(文科)数学试卷一、选择题1.若z(1﹣i)=2i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i2.已知集合A={x|x2﹣3x<0},B={0,1,2,3},则A∩B等于()A.{0,1,2,3} B.{1,2,3} C.{1,2} D.{0,3}3.已知向量满足,且与的夹角为60°,则=()A.B.C.D.4.已知数列{a n}为等差数列,S n为其前n项和,a6+a3﹣a5=3,则S7=()A.42 B.21 C.7 D.35.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图(90后指1990年及以后出生,80后指1980﹣1989年之间出生,80前指1979年及以前出生),则下列结论中不一定正确的是()A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数90后比80后多C.互联网行业中从事设计岗位的人数90后比80前多D.互联网行业中从事市场岗位的90后人数不足总人数的10%6.已知P(1,)在双曲线﹣=1(a>0,b>0)的渐近线上,则该双曲线的离心率为()A.B.2 C.D.7.函数f(x)=(其中e为自然对数的底数)的图象大致为()A.B.C.D.8.为了纪念中华人民共和国成立70周年,某单位计划印制纪念图案.为了测算纪念图案的面积,如图,作一个面积约为12cm2的正六边形将其包含在内,并向正六边形内随机投掷300个点,已知有124个点落在纪念图案部分,据此可以估计纪念图案的面积约为()A.3cm2B.4cm2C.5cm2D.6cm29.已知函数,把函数f(x)的图象上每个点向右平移个单位得到函数g(x)的图象,则函数g(x)的一条对称轴方程为()A.B.x=πC.x=2πD.10.设α是给定的平面,A,B是不在α内的任意两点.有下列四个命题:①在α内存在直线与直线AB异面;②在α内存在直线与直线AB相交;③存在过直线AB的平面与α垂直;④存在过直线AB的平面与α平行.其中,一定正确的是()A.①②③B.①③C.①④D.③④11.已知椭圆C:=1(a>b>0)的左焦点为F,直线y=与C相交于A,B两点,且AF⊥BF,则C的离心率为()A.B.﹣1 C.D.﹣112.已知函数f(x)(x∈R)满足f(x)=﹣f(2﹣x),函数g(x)=a(e x﹣1﹣e1﹣x),若方程f(x)=g(x)有2019个解,记为x i(i=1,2,…,2019),则=()A.2019 B.4038 C.2020 D.4040二、填空题13.已知函数f(x)=,满足f(﹣1)+f(a)=0,则a的值为.14.已知,则=.15.已知△ABC的内角A,B,C的对边分别为a,b,c,满足b cos A+a cos B=2c cos B,,则△ABC外接圆的面积为.16.如图,六氟化硫(SF6)的分子是一个正八面体结构,其中6个氟原子(F)恰好在正八面体的顶点上,而硫原子(S)恰好是正八面体的中心.若把该分子放入一个球内,则这个球的体积与六氟化硫分子体积之比的最小值为.三、解答题(一)必考题:本大题共5小题,每小题12分,共60分.17.已知各项均为正数的等比数列{a n}满足a1=1,a2+a3=12,n∈N*.(1)求数列{a n}的通项公式;(2)设{b n﹣a n}是首项为1,公差为2的等差数列,求数列{b n}的前n项和T n.18.某农科所对冬季昼夜温差(最高温度与最低温度的差)大小与某反季节大豆新品种一天内发芽数之间的关系进行了分析研究,他们分别记录了12月1日至12月6日每天昼夜最高、最低的温度(如图1),以及实验室每天每100颗种子中的发芽数情况(如图2),得到如下资料:(1)请画出发芽数y与温差x的散点图;(2)若建立发芽数y与温差x之间的线性回归模型,请用相关系数说明建立模型的合理性;(3)①求出发芽数y与温差x之间的回归方程(系数精确到0.01);②若12月7日的昼夜温差为8℃,通过建立的y关于x的回归方程,估计该实验室12月7日当天100颗种子的发芽数.参考数据:=2051,≈4.2,≈6.5.参考公式:相关系数:r=(当|r|>0.75时,具有较强的相关关系).回归方程中斜率和截距计算公式:=,=.19.如图1,AD,BC是等腰梯形CDEF的两条高,AD=AE=CD=2,点M是线段AE的中点,将该等腰梯形沿着两条高AD,BC折叠成如图2所示的四棱锥P﹣ABCD(E,F重合,记为点P).(1)求证:BM⊥DP;(2)求点M到平面BDP距离h.20.已知函数f(x)=e x﹣2ax(a∈R).(1)若f(x)的极值为0,求实数a的值;(2)若f(x)≥2xlnx﹣2x对于x∈(2,4)恒成立,求实数a的取值范围.21.已知抛物线C:y2=4x,在x轴正半轴上任意选定一点M(m,0)(m>0),过点M作与x轴垂直的直线交C于P,Q两点.(1)设m=1,证明:抛物线C:y2=4x在点P,Q处的切线方程的交点N与点M关于原点O对称;(2)通过解答(1),猜想求过抛物线C:y2=2px(p>0)上一点G(x0,y0)(不为原点)的切线方程的一种做法,并加以证明.(二)选考题:共10分,请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,圆C的普通方程为x2+y2﹣4x﹣6y+5=0.在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)写出圆C的参数方程和直线l的直角坐标方程;(2)设点P在C上,点Q在l上,求|PQ|的最小值及此时点P的直角坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|﹣|x﹣2|.(1)解不等式f(x)≤1;(2)记函数f(x)的最大值为s,若=s(a,b,c>0),证明:≥3.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑.1.若z(1﹣i)=2i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.解:由z(1﹣i)=2i,得z=.故选:B.2.已知集合A={x|x2﹣3x<0},B={0,1,2,3},则A∩B等于()A.{0,1,2,3} B.{1,2,3} C.{1,2} D.{0,3}【分析】可以求出集合A,然后进行交集的运算即可.解:∵A={x|0<x<3},B={0,1,2,3},∴A∩B={1,2}.故选:C.3.已知向量满足,且与的夹角为60°,则=()A.B.C.D.【分析】根据条件进行数量积的运算即可求出的值,进而得出的值.解:∵,∴,∴.故选:A.4.已知数列{a n}为等差数列,S n为其前n项和,a6+a3﹣a5=3,则S7=()A.42 B.21 C.7 D.3【分析】利用等差数列通项公式求出a1+3d=3,再由S7==7(a1+3d),能求出结果.解:∵数列{a n}为等差数列,S n为其前n项和,a6+a3﹣a5=3,∴a1+5d+a1+2d﹣a1﹣4d=a1+3d=3,∴S7==7(a1+3d)=21.故选:B.5.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图(90后指1990年及以后出生,80后指1980﹣1989年之间出生,80前指1979年及以前出生),则下列结论中不一定正确的是()A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数90后比80后多C.互联网行业中从事设计岗位的人数90后比80前多D.互联网行业中从事市场岗位的90后人数不足总人数的10%【分析】利用整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图直接求解.解:由整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图,知:在A中,互联网行业从业人员中90后占56%,故A正确;在B中,互联网行业中从事技术岗位的人数90后不一定比80后多,故B错误;在C中,互联网行业中从事设计岗位的人数90后比80前多,故C正确;在D中,互联网行业中从事市场岗位的90后人数不足总人数的10%,故D正确.故选:B.6.已知P(1,)在双曲线﹣=1(a>0,b>0)的渐近线上,则该双曲线的离心率为()A.B.2 C.D.【分析】求出双曲线的渐近线方程,由题意可得=,由双曲线的离心率公式,计算可得所求值.解:P(1,)在双曲线﹣=1(a>0,b>0)的渐近线y=x上,可得=,则双曲线的离心率为e====,故选:D.7.函数f(x)=(其中e为自然对数的底数)的图象大致为()A.B.C.D.【分析】由函数为偶函数,排除AC;由x→+∞时,f(x)→0,排除B,由此得到答案.解:,故函数f(x)为偶函数,其图象关于y轴对称,故排除A,C;当x→+∞时,x3(e x﹣1)>>e x+1,f(x)→0,故排除B.故选:D.8.为了纪念中华人民共和国成立70周年,某单位计划印制纪念图案.为了测算纪念图案的面积,如图,作一个面积约为12cm2的正六边形将其包含在内,并向正六边形内随机投掷300个点,已知有124个点落在纪念图案部分,据此可以估计纪念图案的面积约为()A.3cm2B.4cm2C.5cm2D.6cm2【分析】设纪念图案的面积为S,由题意可得:≈,解得S.解:设纪念图案的面积为S,由题意可得:≈,解得S≈5cm2.故选:C.9.已知函数,把函数f(x)的图象上每个点向右平移个单位得到函数g(x)的图象,则函数g(x)的一条对称轴方程为()A.B.x=πC.x=2πD.【分析】根据三角函数的图象平移得出函数g(x)的解析式,再求函数g(x)的对称轴方程即可.解:函数,把函数f(x)的图象上每个点向右平移个单位,得y=f(x﹣)=sin[(x﹣)﹣]=sin(x﹣)=﹣cos x的图象,则函数y=g(x)=﹣cos x;所以函数g(x)的对称轴方程为x=kπ,k∈Z;即x=2kπ,k∈Z;令k=1,得x=2π,所以x=2π是g(x)的一条对称轴方程.故选:C.10.设α是给定的平面,A,B是不在α内的任意两点.有下列四个命题:①在α内存在直线与直线AB异面;②在α内存在直线与直线AB相交;③存在过直线AB的平面与α垂直;④存在过直线AB的平面与α平行.其中,一定正确的是()A.①②③B.①③C.①④D.③④【分析】根据空间中的直线与平面、以及平面与平面的位置关系,判断题目中的命题真假性即可.解:对于①,无论直线AB与α平行,还是直线AB与α相交,都在α内存在直线与直线AB异面,所以①正确;对于②,当直线AB与α平行时,平面α内不存在直线与直线AB相交,所以②错误;对于③,无论直线AB与α平行,还是直线AB与α相交,都存在过直线AB的平面与α垂直,所以③正确;对于④,若直线AB与α相交,则不存在过直线AB的平面与α平行,所以④错误;综上知,正确的命题序号是①③.故选:B.11.已知椭圆C:=1(a>b>0)的左焦点为F,直线y=与C相交于A,B两点,且AF⊥BF,则C的离心率为()A.B.﹣1 C.D.﹣1【分析】可解得点A、B坐标,由AF⊥BF,得•=0,把b2=a2﹣c2代入该式整理后两边同除以a4,得e的方程,解出即可,注意e的取值范围解:由,消y可得得(3a2+b2)x2=a2b2,解得x=±,分别代入y=±,∴A(,),B(﹣,﹣),∴=(+c,),=(c﹣,﹣),∴•=c2﹣﹣=0,∴c2=,(*)把b2=a2﹣c2代入(*)式并整理得4a2c2﹣c4=4a2(a2﹣c2),两边同除以a4并整理得e4﹣8e2+4=0,解得e2=4﹣2∴e=﹣1,故选:D.12.已知函数f(x)(x∈R)满足f(x)=﹣f(2﹣x),函数g(x)=a(e x﹣1﹣e1﹣x),若方程f(x)=g(x)有2019个解,记为x i(i=1,2,…,2019),则=()A.2019 B.4038 C.2020 D.4040【分析】分析可知,函数f(x)与g(x)均关于(1,0)对称,根据对称性即可得解.解:∵f(x)=﹣f(2﹣x),∴f(x)关于(1,0)对称,∵g(x)=a(e x﹣1﹣e1﹣x),∴g(2﹣x)=a(e1﹣x﹣e x﹣1)=﹣a(e x﹣1﹣e1﹣x)=﹣g(x),∴g(x)关于(1,0)对称,∵方程f(x)=g(x)有2019个解,即y=f(x)与y=g(x)有2019个交点,∴必有一个交点的横坐标为1,且其余2018个交点关于关于(1,0)对称,共1009对,而且每对横坐标之和为2,∴.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上.13.已知函数f(x)=,满足f(﹣1)+f(a)=0,则a的值为2018 .【分析】推导出f(a)=﹣f(﹣1)=﹣e0=﹣1.当a<0时,f(a)=e a+1=﹣1,当a ≥0时,f(a)=a﹣2019=﹣1,由此能求出a的值.解:∵函数f(x)=,满足f(﹣1)+f(a)=0,∴f(a)=﹣f(﹣1)=﹣e0=﹣1.当a<0时,f(a)=e a+1=﹣1,无解,当a≥0时,f(a)=a﹣2019=﹣1,解得a=2018.故答案为:2018.14.已知,则=.【分析】利用换元法结合三角函数的诱导公式进行化简即可.解:设θ=α+,则sinθ=,α=θ﹣,则=cos(θ﹣﹣)=cos(θ﹣)=cos(﹣θ)=sinθ=,故答案为:15.已知△ABC的内角A,B,C的对边分别为a,b,c,满足b cos A+a cos B=2c cos B,,则△ABC外接圆的面积为4π.【分析】由正弦定理,两角和的正弦函数公式化简已知等式可得sin C=2sin C cos B,由sin C≠0,可得cos B=,结合范围B∈(0,π),可得B=,设△ABC外接圆的半径为R,则由正弦定理可求R的值,进而即可得解△ABC外接圆的面积.解:∵b cos A+a cos B=2c cos B,∴由正弦定理可得sin B cos A+sin A cos B=2sin C cos B,∴sin(A+B)=sin C=2sin C cos B,∵sin C≠0,∴可得cos B=,∵B∈(0,π),∴可得B=,∵,∴设△ABC外接圆的半径为R,则由正弦定理可得2R===4,可得R=2,∴△ABC外接圆的面积为S=πR2=4π.故答案为:4π.16.如图,六氟化硫(SF6)的分子是一个正八面体结构,其中6个氟原子(F)恰好在正八面体的顶点上,而硫原子(S)恰好是正八面体的中心.若把该分子放入一个球内,则这个球的体积与六氟化硫分子体积之比的最小值为π.【分析】连结EF,SF,则S在线段EF上,当球半径R=SF=EF时,这个球的体积与六氟化硫分子体积之比取最小值,由此能求出结果.解:连结EF,SF,则S在线段EF上,当球半径R=SF=EF时,这个球的体积与六氟化硫分子体积之比取最小值,六氟化硫(SF6)的分子是一个正八面体结构,这个正八面体结构是两个正四棱锥组合而成,设正四棱锥的底面正方形的边长为x,则2x2=4R2,解得x=,∴这个球的体积与六氟化硫分子体积之比的最小值为:=π.故答案为:π.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17至21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.(一)必考题:本大题共5小题,每小题12分,共60分.17.已知各项均为正数的等比数列{a n}满足a1=1,a2+a3=12,n∈N*.(1)求数列{a n}的通项公式;(2)设{b n﹣a n}是首项为1,公差为2的等差数列,求数列{b n}的前n项和T n.【分析】(1)直接利用已知条件和定义求出数列的通项公式.(2)利用(1)的结论,进一步利用分组法求出数列的和.解:(1)因为{a n}是正数等比数列,且a1=1,a2+a3=12,所以,即q2+q﹣12=0,分解得(q+4)(q﹣3)=0,又因为a n>0,所以q=3,所以数列{a n}的通项公式为;(2)因为{b n﹣a n}是首项为1,公差为2的等差数列,所以b n﹣a n=1+(n﹣1)×2=2n﹣1,所以,所以T n=b1+b2+…+b n=(30+1)+(31+3)+…+(3n﹣1+2n﹣1),=(30+31+…+3n﹣1)+(1+3+…+2n﹣1),=,=.18.某农科所对冬季昼夜温差(最高温度与最低温度的差)大小与某反季节大豆新品种一天内发芽数之间的关系进行了分析研究,他们分别记录了12月1日至12月6日每天昼夜最高、最低的温度(如图1),以及实验室每天每100颗种子中的发芽数情况(如图2),得到如下资料:(1)请画出发芽数y与温差x的散点图;(2)若建立发芽数y与温差x之间的线性回归模型,请用相关系数说明建立模型的合理性;(3)①求出发芽数y与温差x之间的回归方程(系数精确到0.01);②若12月7日的昼夜温差为8℃,通过建立的y关于x的回归方程,估计该实验室12月7日当天100颗种子的发芽数.参考数据:=2051,≈4.2,≈6.5.参考公式:相关系数:r=(当|r|>0.75时,具有较强的相关关系).回归方程中斜率和截距计算公式:=,=.【分析】(1)直接根据资料画出发芽数y与温差x的散点图即可;(2)先求出相关系数r,判断r是否大于0.75,再说明建立模型的合理性;(3)直接根据条件求出线性回归方程,再将x=8代入回归方程中计算出发芽数.解:(1)散点图如图所示(2)≈=,∵y与x的相关系数近似为0.952>0.75,说明y与x的线性相关程度较强,从而建立发芽数y与温差x之间的线性回归模型是合理的.(3)①由最小二乘估计公式,得≈=,,∴,②当x=8时,(颗),∴估计该实验室12月7日当天种子的发芽数为20颗,19.如图1,AD,BC是等腰梯形CDEF的两条高,AD=AE=CD=2,点M是线段AE的中点,将该等腰梯形沿着两条高AD,BC折叠成如图2所示的四棱锥P﹣ABCD(E,F重合,记为点P).(1)求证:BM⊥DP;(2)求点M到平面BDP距离h.【分析】(1)由已知可得AD⊥AP,AD⊥AB,得到AD⊥平面ABP,则AD⊥BM;再证明BM ⊥AP;由线面垂直的判定可得BM⊥平面ADP,从而得到BM⊥DP;(2)取BP中点N,连结DN,由题意AD⊥平面ABP,由V M﹣BDP=V D﹣BMP,即可求得点M到平面BDP的距离h.【解答】(1)证明:∵AD⊥EF,∴AD⊥AP,AD⊥AB,又AP∩AB=A,AP,AB⊂平面ABP,∴AD⊥平面ABP.∵BM⊂平面ABP,∴AD⊥BM;由已知得,AB=AP=BP=2,∴△ABP是等边三角形,又∵点M是AP的中点,∴BM⊥AP;∵AD⊥BM,AP⊥BM,AD∩AP=A,AD,AP⊂平面ADP,∴BM⊥平面ADP,∵DP⊂平面ADP,∴BM⊥DP;(2)解:取BP中点N,连结DN,∵AD⊥平面ABP,AB=AP=AD=2,∴,∴DN⊥BP,在Rt△DPN中,,∴,∵AD⊥平面ABP,∴,∵V M﹣BDP=V D﹣BMP,∴,又,∴,即点M到平面BDP的距离为.20.已知函数f(x)=e x﹣2ax(a∈R).(1)若f(x)的极值为0,求实数a的值;(2)若f(x)≥2xlnx﹣2x对于x∈(2,4)恒成立,求实数a的取值范围.【分析】(1)先对函数求导,然后结合导数与单调性,极值的关系可求,(2)分离系数可得,对于x∈(2,4)恒成立,构造函数,原问题转化为2a≤H(x)min,x∈(2,4),结合导数与函数的性质可求.解:(1)由题得f'(x)=e x﹣2a,①当a≤0时,f'(x)>0恒成立∴f(x)在(﹣∞,+∞)上单调递增,没有极值.②当a>0时,由f'(x)=0,得x=ln2a,当x∈(﹣∞,ln2a)时,f'(x)<0,f(x)在(﹣∞,ln2a)上单调递减当x∈(ln2a,+∞)时,f'(x)>0,f(x)在(ln2a,+∞)上单调递增,∴f(x)在x=ln2a时取到极小值,∵f(x)的极值为0,∴f(ln2a)=0,∴e ln2a﹣2aln2a=0即 2a(1﹣ln2a)=0,∴,(2)由题得e x﹣2ax≥2xlnx﹣2x对于x∈(2,4)恒成立,∴对于x∈(2,4)恒成立,令,原问题转化为2a≤H(x)min,x∈(2,4),又,令G(x)=e x x﹣e x﹣2x,则G'(x)=e x x﹣2>0在x∈(2,4)上恒成立,∴G(x)在(2,4)上单调递增,∴G(x)>G(2)=2e2﹣e2﹣4=e2﹣4>0,∴H'(x)>0∴,在(2,4)上单调递增,∴,∴,21.已知抛物线C:y2=4x,在x轴正半轴上任意选定一点M(m,0)(m>0),过点M作与x轴垂直的直线交C于P,Q两点.(1)设m=1,证明:抛物线C:y2=4x在点P,Q处的切线方程的交点N与点M关于原点O对称;(2)通过解答(1),猜想求过抛物线C:y2=2px(p>0)上一点G(x0,y0)(不为原点)的切线方程的一种做法,并加以证明.【分析】(1)m=1时可求得x=1与抛物线的交点P,Q的坐标,设在P处的切线方程,与抛物线联立用判别式为零求出斜率,进而求出在P处的切线方程,同理求出在Q处的切线方程,两式联立求出交点即N的坐标,证出N与点M关于原点O对称;(2)故G做GM⊥x轴交于M,求得M关于原点的对称点M',则GM'为抛物线的切线,将直线GM'与抛物线联立可得判别式为零,证得直线GM'与抛物线相切.解:(1)解法一:证明:当m=1时,点M(1,0),P(1,2),Q(1,﹣2),设在点P处的切线的斜率为k(k≠0),联立得,由,得k=1,故在点P处的切线方程为y=x+1,同理,求得在点Q的切线方程为y=﹣x﹣1,由得交点N(﹣1,0),所以交点N与点M关于原点O对称;解法二:m=1时,点M(1,0),P(1,2),Q(1,﹣2,由y2=4x得,故或,所以在点P处的切线方程为y﹣2=x﹣1即y=x+1,在点Q处的切线方程为y+2=﹣(x﹣1)即y=﹣x﹣1,由得交点N(﹣1,0),所以交点N与M关于原点O对称;(2)解法一:过点G(x0,y0),(x0≠0)作与x轴垂直的直线交x轴于点M(x0,0),作点M关于原点对称的点M'(﹣x0,0),猜想切线方程为直线GM':,即y0y=p(x+x0),其中,联立得,∵,所以y0y=p(x+x0)与抛物线y2=2px相切.解法二:过点G(x0,y0),(x0≠0)作与x轴垂直的直线交x轴于点M(x0,0),作点M关于原点对称的点M'(﹣x0,0),猜想切线方程为直线GM':,即y0y=p(x+x0),其中,由y2=2px得,∴或,所以在点G(x0,y0)处的切线斜率为或故点G(x0,y0)处的切线方程为或,由得或所以在点G(x0,y0)处切线方程为,整理得,即y0y=p(x+x0).(二)选考题:共10分,请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,圆C的普通方程为x2+y2﹣4x﹣6y+5=0.在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)写出圆C的参数方程和直线l的直角坐标方程;(2)设点P在C上,点Q在l上,求|PQ|的最小值及此时点P的直角坐标.【分析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用点到直线的距离公式的应用和方程组的解法的应用求出结果.解:(1)圆C的方程可化为(x﹣2)2+(y﹣3)2=8,圆心为C(2,3),半径为,∴圆C的参数方程为(α为参数)直线l的极坐标方程可化为ρsinθ+ρcosθ=﹣3,∵,∴直线l的直角坐标方程为x+y+3=0.(2):曲线C是以C(2,3)为圆心,半径为的圆,圆心C(2,3)到直线l:x+y+3=0的距离,所以,此时直线PQ经过圆心C(2,3),且与直线l:x+y+3=0垂直,k PQ•k l=﹣1,所以k PQ=1,PQ所在直线方程为y﹣3=x﹣2,即y=x+1.联立直线和圆的方程,解得或当|PQ|取得最小值时,点P的坐标为(0,1)所以,此时点P的坐标为(0,1).[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|﹣|x﹣2|.(1)解不等式f(x)≤1;(2)记函数f(x)的最大值为s,若=s(a,b,c>0),证明:≥3.【分析】(1)先将f(x)写为分段函数的形式,然后根据f(x)≤1分别解不等式即可;(2)先由(1)得到f(x)的最大值s,然后利用基本不等式即可证明≥3成立.解:(1),①当x≤﹣1时,﹣3≤1恒成立,所以x≤﹣1;②当﹣1<x<2时,2x﹣1≤1,即x≤1,所以﹣1<x≤1;③当x≥2时,3≤1显然不成立,所以不合题意;综上,不等式的解集为(﹣∞,1].(2)证明:由(1)知f(x)max=3=s,于是,所以≥=6,当且仅当a=b=c=1时取等号,所以.。

2019年广东省东莞市中考数学试卷及答案解析

2019年广东省东莞市中考数学试卷及答案解析

2019年广东省东莞市中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3分)﹣2的绝对值是( ) A .2B .﹣2C .12D .±22.(3分)某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为( )A .2.21×106B .2.21×105C .221×103D .0.221×1063.(3分)如图,由4个相同正方体组合而成的几何体,它的左视图是( )A .B .C .D .4.(3分)下列计算正确的是( ) A .b 6÷b 3=b 2B .b 3•b 3=b 9C .a 2+a 2=2a 2D .(a 3)3=a 65.(3分)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .6.(3分)数据3,3,5,8,11的中位数是( ) A .3B .4C .5D .67.(3分)实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a >bB .|a |<|b |C .a +b >0D .ab <08.(3分)化简√42的结果是( )A.﹣4B.4C.±4D.29.(3分)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0C.x1+x2=2D.x1•x2=2 10.(3分)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN:S△ADM=1:4.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)计算:20190+(13)﹣1=.12.(4分)如图,已知a∥b,∠1=75°,则∠2=.13.(4分)一个多边形的内角和是1080°,这个多边形的边数是.14.(4分)已知x=2y+3,则代数式4x﹣8y+9的值是.15.(4分)如图,某校教学楼AC与实验楼BD的水平间距CD=15√3米,在实验楼顶部B 点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).16.(4分)如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示).三.解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)解不等式组:{x−1>2①2(x+1)>4②18.(6分)先化简,再求值:(xx−2−1x−2)÷x2−xx2−4,其中x=√2.19.(6分)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若ADDB=2,求AEEC的值.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如图表所示,根据图表信息解答下列问题:成绩等级频数分布表成绩等级频数A24B10C xD2合计y(1)x=,y=,扇形图中表示C的圆心角的度数为度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.21.(7分)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?22.(7分)在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,̂与BC相切于点D,分别交AB、AC △ABC的三个顶点均在格点上,以点A为圆心的EF于点E、F.(1)求△ABC三边的长;̂所围成的阴影部分的面积.(2)求图中由线段EB、BC、CF及EF五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,一次函数y=k1x+b的图象与反比例函数y=k2x的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足k1x+b>k2x的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.24.(9分)如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC•BE=25,求BG的长.25.(9分)如图1,在平面直角坐标系中,抛物线y =√38x 2+3√34x −7√38与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE . (1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥x 轴,点M 为垂足,使得△P AM 与△DD 1A 相似(不含全等). ①求出一个满足以上条件的点P 的横坐标; ②直接回答这样的点P 共有几个?2019年广东省东莞市中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3分)﹣2的绝对值是( ) A .2B .﹣2C .12D .±2【解答】解:|﹣2|=2,故选:A .2.(3分)某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为( )A .2.21×106B .2.21×105C .221×103D .0.221×106【解答】解:将221000用科学记数法表示为:2.21×105. 故选:B .3.(3分)如图,由4个相同正方体组合而成的几何体,它的左视图是( )A .B .C .D .【解答】解:从左边看得到的是两个叠在一起的正方形,如图所示.故选:A .4.(3分)下列计算正确的是( ) A .b 6÷b 3=b 2B .b 3•b 3=b 9C .a 2+a 2=2a 2D .(a 3)3=a 6【解答】解:A 、b 6÷b 3=b 3,故此选项错误; B 、b 3•b 3=b 6,故此选项错误; C 、a 2+a 2=2a 2,正确;D 、(a 3)3=a 9,故此选项错误. 故选:C .5.(3分)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,不是中心对称图形,故本选项错误; B 、是轴对称图形,不是中心对称图形,故本选项错误; C 、既是轴对称图形,也是中心对称图形,故本选项正确; D 、是轴对称图形,不是中心对称图形,故本选项错误. 故选:C .6.(3分)数据3,3,5,8,11的中位数是( ) A .3B .4C .5D .6【解答】解:把这组数据按照从小到大的顺序排列为:3,3,5,8,11, 故这组数据的中位数是,5. 故选:C .7.(3分)实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a >bB .|a |<|b |C .a +b >0D .ab <0【解答】解:由图可得:﹣2<a <﹣1,0<b <1, ∴a <b ,故A 错误; |a |>|b |,故B 错误; a +b <0,故C 错误;a b<0,故D 正确;故选:D .8.(3分)化简√42的结果是( ) A .﹣4B .4C .±4D .2【解答】解:√42=√16=4. 故选:B .9.(3分)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0C.x1+x2=2D.x1•x2=2【解答】解:∵Δ=(﹣2)2﹣4×1×0=4>0,∴x1≠x2,选项A不符合题意;∵x1是一元二次方程x2﹣2x=0的实数根,∴x12﹣2x1=0,选项B不符合题意;∵x1,x2是一元二次方程x2﹣2x=0的两个实数根,∴x1+x2=2,x1•x2=0,选项C不符合题意,选项D符合题意.故选:D.10.(3分)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN:S△ADM=1:4.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:∵四边形EFGB是正方形,EB=2,∴FG=BE=2,∠FGB=90°,∵四边形ABCD是正方形,H为AD的中点,∴AD=4,AH=2,∠BAD=90°,∴∠HAN=∠FGN,AH=FG,∵∠ANH=∠GNF,∴△ANH≌△GNF(AAS),故①正确;∴∠AHN=∠HFG,∵AG =FG =2=AH , ∴AF =√2FG =√2AH , ∴∠AFH ≠∠AHF ,∴∠AFN ≠∠HFG ,故②错误; ∵△ANH ≌△GNF , ∴AN =12AG =1, ∵GM =BC =4, ∴AH AN=GM AG=2,∵∠HAN =∠AGM =90°, ∴△AHN ∽△GMA , ∴∠AHN =∠AMG , ∵AD ∥GM , ∴∠HAK =∠AMG , ∴∠AHK =∠HAK , ∴AK =HK , ∴AK =HK =NK , ∵FN =HN ,∴FN =2NK ;故③正确;方法二:可得N 也是中点,结合已知H 是中点,连接GD 交AM 于点P ,则根据勾股定理GD =2√5, ∵点P 为对称中心, ∴GP =√5,又∵NK 也是△AGP 的中位线, ∴NK =√52,在Rt △FGN 中,FN =√5, ∴FN =2NK ,故③正确. ∵延长FG 交DC 于M , ∴四边形ADMG 是矩形, ∴DM =AG =2,∵S△AFN=12AN•FG=12×2×1=1,S△ADM=12AD•DM=12×4×2=4,∴S△AFN:S△ADM=1:4故④正确,故选:C.二.填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)计算:20190+(13)﹣1=4.【解答】解:原式=1+3=4.故答案为:4.12.(4分)如图,已知a∥b,∠1=75°,则∠2=105°.【解答】解:∵直线c直线a,b相交,且a∥b,∠1=75°,∴∠3=∠1=75°,∴∠2=180°﹣∠3=180°﹣75°=105°.故答案为:105°13.(4分)一个多边形的内角和是1080°,这个多边形的边数是8.【解答】解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.14.(4分)已知x=2y+3,则代数式4x﹣8y+9的值是21.【解答】解:∵x=2y+3,∴x﹣2y=3,则代数式4x﹣8y+9=4(x﹣2y)+9=4×3+9=21.故答案为:21.15.(4分)如图,某校教学楼AC与实验楼BD的水平间距CD=15√3米,在实验楼顶部B 点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是(15+15√3)米(结果保留根号).【解答】解:过点B作BE⊥AB于点E,在Rt△BEC中,∠CBE=45°,BE=15√3;可得CE=BE×tan45°=15√3米.在Rt△ABE中,∠ABE=30°,BE=15√3,可得AE=BE×tan30°=15米.故教学楼AC的高度是AC=15√3+15米.答:教学楼AC的高度是(15√3+15)米.16.(4分)如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是a+8b(结果用含a,b代数式表示).【解答】解:方法1、如图,由图可得,拼出来的图形的总长度=5a +4[a ﹣2(a ﹣b )]=a +8b故答案为:a +8b .方法2、∵小明用9个这样的图形(图1)拼出来的图形 ∴口朝上的有5个,口朝下的有四个,而口朝上的有5个,长度之和是5a ,口朝下的有四个,长度为4[b ﹣(a ﹣b )]=8b ﹣4a , 即:总长度为5a +8b ﹣4a =a +8b , 故答案为a +8b .三.解答题(一)(本大题3小题,每小题6分,共18分) 17.(6分)解不等式组:{x −1>2①2(x +1)>4②【解答】解:{x −1>2①2(x +1)>4②解不等式①,得x >3 解不等式②,得x >1 则不等式组的解集为x >3 18.(6分)先化简,再求值:(x x−2−1x−2)÷x 2−xx 2−4,其中x =√2. 【解答】解:原式=x−1x−2⋅(x+2)(x−2)x(x−1)=x+2x当x =√2时, 原式=√2+2√2=√2+119.(6分)如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE ,使∠ADE =∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹) (2)在(1)的条件下,若AD DB=2,求AE EC的值.【解答】解:(1)如图,∠ADE 为所作;(2)∵∠ADE =∠B ∴DE ∥BC , ∴AE EC=AD DB=2.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如图表所示,根据图表信息解答下列问题: 成绩等级频数分布表成绩等级频数 A 24 B 10 C x D 2 合计y(1)x = 4 ,y = 40 ,扇形图中表示C 的圆心角的度数为 36 度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.【解答】(1)随机抽取男生人数:10÷25%=40(名),即y =40; C 等级人数:40﹣24﹣10﹣2=4(名),即x =4; 扇形图中表示C 的圆心角的度数360°×440=36°. 故答案为4,40,36; (2)画树状图如下:P (同时抽到甲,乙两名学生)=26=13.21.(7分)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个? (2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球? 【解答】解:(1)设购买篮球x 个,购买足球y 个, 依题意得:{x +y =6070x +80y =4600.解得{x =20y =40.答:购买篮球20个,购买足球40个;(2)设购买了a 个篮球, 依题意得:70a ≤80(60﹣a )解得a≤32.答:最多可购买32个篮球.22.(7分)在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC的三个顶点均在格点上,以点A为圆心的EF̂与BC相切于点D,分别交AB、AC 于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及EF̂所围成的阴影部分的面积.【解答】解:(1)AB=√22+62=2√10,AC=√62+22=2√10,BC=√42+82=4√5;(2)由(1)得,AB2+AC2=BC2,∴∠BAC=90°,连接AD,AD=√22+42=2√5,∴S阴=S△ABC﹣S扇形AEF=12AB•AC−14π•AD2=20﹣5π.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,一次函数y=k1x+b的图象与反比例函数y=k2x的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足k1x+b>k2x的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.【解答】解:(1)∵点A 的坐标为(﹣1,4),点B 的坐标为(4,n ). 由图象可得:k 1x +b >k 2x的x 的取值范围是x <﹣1或0<x <4;(2)∵反比例函数y =k2x 的图象过点A (﹣1,4),B (4,n ),∴k 2=﹣1×4=﹣4,k 2=4n , ∴n =﹣1, ∴B (4,﹣1),∵一次函数y =k 1x +b 的图象过点A ,点B , ∴{−k 1+b =44k 1+b =−1, 解得:k 1=﹣1,b =3,∴一次函数的解析式y =﹣x +3,反比例函数的解析式为y =−4x ;(3)设直线AB 与y 轴的交点为C , ∴C (0,3),∵S △AOC =12×3×1=32,∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=152, ∵S △AOP :S △BOP =1:2, ∴S △AOP =152×13=52, ∴S △AOC <S △AOP ,S △COP =52−32=1, ∴12×3•x P =1,∴x P =23,∵点P 在线段AB 上, ∴y =−23+3=73, ∴P (23,73).24.(9分)如图1,在△ABC 中,AB =AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD =∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF =AC ,连接AF . (1)求证:ED =EC ; (2)求证:AF 是⊙O 的切线;(3)如图2,若点G 是△ACD 的内心,BC •BE =25,求BG 的长.【解答】解:(1)∵AB =AC , ∴∠ABC =∠ACB ,又∵∠ACB =∠BCD ,∠ABC =∠ADC , ∴∠BCD =∠ADC , ∴ED =EC ;(2)如图1,连接OA ,∵AB =AC ,∴AB̂=AC ̂, ∴OA ⊥BC ,∵CA =CF ,∴∠CAF =∠CF A ,∴∠ACD =∠CAF +∠CF A =2∠CAF ,∵∠ACB =∠BCD ,∴∠ACD =2∠ACB ,∴∠CAF =∠ACB ,∴AF ∥BC ,∴OA ⊥AF ,∴AF 为⊙O 的切线;(3)∵∠ABE =∠CBA ,∠BAD =∠BCD =∠ACB ,∴△ABE ∽△CBA ,∴AB BC =BE AB ,∴AB 2=BC •BE ,∵BC •BE =25,∴AB =5,如图2,连接AG ,如图2,连接AG ,∴∠BAG =∠BAD +∠DAG ,∠BGA =∠GAC +∠ACB ,∵点G 为内心,∴∠DAG =∠GAC ,又∵∠BAD =∠BCD =∠ACB ,∴∠BAD +∠DAG =∠ACB +∠GAC ,即∠BAG =∠BGA ,∴BG =AB =5.25.(9分)如图1,在平面直角坐标系中,抛物线y =√38x 2+3√34x −7√38与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥x 轴,点M 为垂足,使得△P AM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答这样的点P 共有几个?【解答】解:(1)令√38x 2+3√34x −7√38=0,解得x 1=1,x 2=﹣7.∴A (1,0),B (﹣7,0).由y =√38x 2+3√34x −7√38=√38(x +3)2﹣2√3得,D (﹣3,﹣2√3);(2)证明:∵DD 1⊥x 轴于点D 1,∴∠COF =∠DD 1F =90°,∵∠D 1FD =∠CFO ,∴△DD 1F ∽△COF ,∴D 1DFD 1=CO OF ,∵D (﹣3,﹣2√3),∴D 1D =2√3,OD 1=3,∵AC =CF ,CO ⊥AF∴OF =OA =1∴D 1F =D 1O ﹣OF =3﹣1=2,∴2√32=OC 1, ∴OC =√3,∴CA =CF =F A =2,∴△ACF 是等边三角形,∴∠AFC =∠ACF ,∵△CAD 绕点C 顺时针旋转得到△CFE ,∴∠ECF =∠AFC =60°,∴EC ∥BF ,∵EC =DC =√32+(√3+2√3)2=6,∵BF =6,∴EC =BF ,∴四边形BFCE 是平行四边形;(3)∵点P 是抛物线上一动点,∴设P 点(x ,√38x 2+3√34x −7√38),①当点P 在B 点的左侧时,∵△P AM 与△DD 1A 相似,∴DD 1PM =D 1A MA 或DD 1AM =D 1A PM , ∴√3√38x +3√34x−7√38=41−x 或2√31−x =√38x +3√34x−7√38,解得:x 1=1(不合题意舍去),x 2=﹣11或x 1=1(不合题意舍去)x 2=−373;当点P 在A 点的右侧时,∵△P AM 与△DD 1A 相似,∴PM AM =DD 1D 1A 或PMMA =D 1A DD 1,∴√38x 2+3√34x−7√38x−1=2√34或√38x 2+3√34x−7√38x−1=2√3, 解得:x 1=1(不合题意舍去),x 2=﹣3(不合题意舍去)或x 1=1(不合题意舍去),x 2=−53(不合题意舍去);当点P 在AB 之间时,∵△P AM 与△DD 1A 相似,∴PM AM =DD 1D 1A 或PMMA =D 1A DD 1,∴√38x 2+3√34x−7√38x−1=2√34或√38x 2+3√34x−7√38x−1=2√3,解得:x 1=1(不合题意舍去),x 2=﹣3(不合题意舍去)或x 1=1(不合题意舍去),x 2=−53; 综上所述,点P 的横坐标为﹣11或−373或−53;②由①得,这样的点P 共有3个.。

2019-2020学年广东省东莞市七年级(下)期末数学试卷 (含答案解析)

2019-2020学年广东省东莞市七年级(下)期末数学试卷 (含答案解析)

2019-2020学年广东省东莞市七年级(下)期末数学试卷一、选择题(本大题共9小题,共27.0分)1.在227,−2018,√4,π这四个数中,无理数是()A. 227B. −2018C. √4D. π2.下列方程:①2x−y3=1;②x2+3y=3;③x2−y2=4;④5(x+y)=7(x+y);⑤2x2=3;⑥x+1y=4,其中是二元一次方程的是()A. ①B. ①④C. ①③D. ①②④⑥3.如图,直线l1和直线l2被直线l所截,已知l1//l2,∠1=70°,则∠2的度数是()A. 50°B. 70°C. 90°D. 110°4.为了了解某校学生的每日运动量情况,收集数据正确的是()A. 调查该校舞蹈队学生每日的运动量B. 调查该校书法小组学生每日的运动量C. 调查该校田径队学生每日的运动量D. 调查该校一定数量的学生每日的运动量5.已知点P(x+3,x−4)在x轴上,则x的值为()A. 3B. −3C. −4D. 46.若m>n,则下列各式中一定成立的是()A. m−2>n−2B. m−5<n−5C. −2m>−2nD. 4m<4n7.不等式组{2(x+5)≥6,5−2x>1+2x的解集在数轴上表示正确的是()A. B.C. D.8.用加减消元法解二元一次方程组{x+3y=4, ①2x−y=1ㅤ ②时,下列方法中无法消元的是()A. ①×2−②B. ②×(−3)−①C. ①×(−2)+②D. ①−②×39.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的().A. 南偏西50°方向B. 南偏西40°方向C. 北偏东50°方向D. 北偏东40°方向二、填空题(本大题共7小题,共28.0分)10.点P(−a2−1,a2+6)在第______象限.11.64的平方根是______.12.为了解宿迁市中小学生对中华古诗词喜爱的程度,这项调查采用______方式调查较好(填“普查”或“抽样调查”).13.若x2a−b+1−3y a+4b−2=7是关于x,y的二元一次方程,那么a+b的值为______.14.当x________时,式子3x−26的值为非负数.15.如图,直线AB、CD相交于点O,OE⊥CD,∠AOE=60°,则∠BOC=______ °.16.计算√12−3=______.三、计算题(本大题共2小题,共14.0分)17.解不等式组:{3(x+1)<2x+3x−13≤x2,并求出这个不等式组的整数解.18.已知关于x、y的二元一次方程y=kx+b的两组解是{x=0y=−1和{x=1y=2(1)求k和b的值;(2)当x=2时,求y的值。

广东省广州市越秀区2019-2020学年九年级上学期期末数学试题(解析版)

广东省广州市越秀区2019-2020学年九年级上学期期末数学试题(解析版)

2019-2020学年广东省广州市越秀区九年级上学期期末考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列图形中既是中心对称图形又是轴对称图形的是( ) A. B. C. D.【答案】A【解析】【分析】本题利用轴对称图形和中心对称图形的概念求解即可,轴对称图形:沿某一直线折叠后直线两旁的部分互相重合;中心对称图形:将一个图形绕着中心点旋转180°后能与自身重合的图形叫做中心对称图形;【详解】A 、此图形既是中心对称图形,也是轴对称图形故此选项正确;B 、此图形是中心对称图形,但不是轴对称图形故此选项不正确;C 、此图形是轴对称图形,但不是中心对称图形故此选项不正确;D 、此图形是轴对称图形,但不是中心对称图形故此选项不正确;故选:A .【点睛】本题考查了轴对称图形和中心对称图形的概念,正确理解它们的概念是解题的关键;2. 用配方法解一元二次方程2450x x --=,此方程可变形为( )A. ()229x -=B. ()229x +=C. ()221x +=D. ()221x -= 【答案】A【解析】【分析】先把常数项移到等式右边,再两边同时加上4,等式左边可以凑成完全平方的形式.【详解】解:2450x x --=24454x x -+=+ ()229x -=.故选:A .【点睛】本题考查配方法,解题的关键是掌握配方法的方法.3. 若将抛物线y=5x 2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为( )A. y=5(x ﹣2)2+1B. y=5(x+2)2+1C. y=5(x ﹣2)2﹣1D. y=5(x+2)2﹣1【答案】A【解析】 试题解析:将抛物线25y x =向右平移2个单位,再向上平移1个单位,得到的抛物线的解析式是()252 1.y x =-+故选A . 点睛:二次函数图像的平移规律:左加右减,上加下减.4. 已知A 1122(,)(,)x y B x y 、为二次函数()21y x k =--+图象上两点,且1x <2x <1,则下列说法正确的是( ) A. 120y y +> B. 120y y +< C. 12 0y y -> D. 12 0y y -<【答案】D【解析】【分析】 根据二次函数解析式得到函数图象的性质,开口向下,在对称轴左边,y 随着x 的增大而增大,从而得到因变量的大小关系.【详解】解:二次函数()21y x k =--+的对称轴是直线1x =,且开口向下,在对称轴左边,y 随着x 的增大而增大,∵1x <2x <1,∴12y y <,即120y y -<.故选:D .【点睛】本题考查二次函数的图象和性质,解题的关键是根据顶点式得出函数图象的性质.5. 下列事件为必然事件的是( )A. 掷一枚硬币,正面朝上B. 弦是直径C. 等边三角形的中心角是120︒D. 位似的两个三角形的对应边互相平行【答案】C【解析】【分析】根据必然事件的定义判断出正确选项.【详解】A是随机事件,抛一枚硬币不一定正面朝上;B是随机事件,弦不一定是直径;C是必然事件;D是随机事件,位似三角形的对应边也可能重合.故选:C.【点睛】本题考查必然事件的定义,解题的关键是掌握必然事件的定义.6. 如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A. 7B. 7.5C. 8D. 8.5【答案】B【解析】【分析】由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由AC=4,CE=6,BD=3,即可求得DF的长,则可求得答案.【详解】解:∵a∥b∥c,∴AC BD CE DF=,∵AC=4,CE=6,BD=3,∴436DF =,解得:DF=92,∴937.52BF BD DF=+=+=.故选B.考点:平行线分线段成比例.7. 如图,在△ABC中,CD,BE分别是△ABC的边AB,AC上的中线,则DEFBCFSS=()A.25B.12C.13D.14【答案】D【解析】【分析】根据中位线定理得到//DE BC和12DE BC=,再利用DEF CBF△△的性质得到它们的面积比.【详解】解:∵CD,BE分别是边AB,AC上的中线,∴//DE BC,12DE BC=,∴DEF CBF△△,∴214DEFBCFS DES CB⎛⎫==⎪⎝⎭.故选:D.【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.8. 如图,AB、AC为O的两条切线,50BAC∠=︒,点D是BC上一点,则BDC∠的大小是()A. 100︒B. 110︒C. 115︒D. 125︒【答案】C【解析】【分析】连接OB、OC,作出优弧BC对应的一个圆周角∠BD′C,首先求出∠BOC,再根据∠BD′C=12∠BOC,∠BDC+∠BD′C=180°,即可解决问题.【详解】解:连接OB、OC,作出优弧BC对应的一个圆周角∠BD′C,如图,∵AB、AC是⊙O的切线,∴OB⊥AB,OC⊥AC,∴∠ABO=∠ACO=90°,∵∠BAC=50°,∴∠BOC=360°-90°-90°-50°=130°,∴∠BD′C=12∠BOC=65°,∴∠BDC=180°-65°=115°,故选:C.【点睛】本题考查切线的性质、圆周角定理,圆内接四边形的性质等知识,解题的关键是学会添加常用辅助线.9. 《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A. 13寸B. 20寸C. 26寸D. 28寸【答案】C【解析】分析:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.详解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,∴⊙O的直径为26寸,故选C.点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题10. 如图,BD为矩形ABCD的对角线,将△BCD沿BD翻折得到BC D'△,BC'与边AD交于点E.若AB=x1,BC=2x2,DE=3,其中x1、x2是关于x的方程x2﹣4x+m=0的两个实根,则m的值是()A. 165B.125C. 3D. 2【答案】A 【解析】分析】利用根与系数的关系得到x1+x2=4,x1x2=m,AB+12BC=4,m=AB×12BC,再利用折叠的性质和平行线的性质得到∠EBD=∠EDB,则EB=ED=3,所以AE=AD−DE=5−2AB,利用勾股定理得到AB2+(5−2AB)2=32,解得AB=10255-或AB=1055+,则BC=20455+,然后计算m的值.【详解】∵x1、x2是关于x的方程x2−4x+m=0的两个实根,∴x1+x2=4,x1x2=m,即AB+12BC=4,m=AB×12BC,∵△BCD沿BD翻折得到△BC′D,BC′与边AD交于点E,∴∠CBD =∠EBD ,∵AD ∥BC ,∴∠CBD =∠EDB ,∴∠EBD =∠EDB ,∴EB =ED =3,在Rt △ABE 中,AE =AD−DE =BC −3=8−2AB−3=5−2AB ,∴AB 2+(5−2AB )2=32,解得AB 或AB (舍去),∴BC =8−2AB ,∴m =12×105-×205+=165. 故选:A .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a.也考查了矩形的性质和折叠的性质. 二、填空题(本大题共6小题,每小题3分,共18分)11. 关于x 的方程()21210m x mx +++=是一元二次方程,则m 的取值范围是_____. 【答案】1m ≠-【解析】【分析】根据定义,一元二次方程的二次项系数不能是0,求出m 的取值范围.【详解】解:∵方程()21210m x mx +++=是一元二次方程, ∴10m +≠,即1m ≠-.故答案是:1m ≠-.【点睛】本题考查一元二次方程的定义,解题的关键是掌握一元二次方程的定义.12. 在平面直角坐标系中,有两点A (1,2),B (3,1),以原点O 为位似中心,将△OAB 放大为原来的3倍,得到OA B ''△,则点A 的对应点A '的坐标是_______.【答案】()3,6或()3,6--【解析】根据位似图形的定义,以原点O 为位似中心,将原三角形放大3倍,则对应点坐标也变为原来的3倍.【详解】解:以原点O 为位似中心,将△OAB 放大为原来的3倍,则点A 的横纵坐标都变为原来的3倍,对应的点A '()3,6或()3,6--.故答案是:()3,6或()3,6--.【点睛】本题考查位似图形,解题的关键是掌握位似图形的定义.13. 一个袋中装有m 个红球,10个黄球,n 个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m 与n 的关系是________.【答案】m +n =10.【解析】【分析】直接利用概率相同的频数相同进而得出答案.【详解】∵一个袋中装有m 个红球,10个黄球,n 个白球,摸到黄球的概率与不是黄球的概率相同, ∴m 与n 的关系是:m +n =10.故答案为m +n =10.【点睛】此题主要考查了概率公式,正确理解概率求法是解题关键.14. 若圆锥的底面半径是2,侧面展开图是一个圆心角为120︒的扇形,则该圆锥的母线长是________.【答案】6【解析】【分析】先根据圆锥的底面半径求出底面圆周长,也就是侧面图扇形的弧长,再利用弧长公式求出扇形半径,也就是圆锥的母线.【详解】解:∵圆锥的底面半径是2,∴底面圆周长是4π,即展开后的扇形弧长是4π, 根据弧长公式:180n r l =︒π, 得1204180r ππ︒=︒,解得6r =,即该圆锥的母线长是6. 故答案是:6.【点睛】本题考查扇形和圆锥的有关计算,解题的关键是掌握扇形的弧长公式,以及圆锥和侧面展开的扇15. 如图,已知点B (3,3)、C (0,6)是抛物线24y ax x c =-+ (0a ≠)上两点,A 是抛物线的顶点,P 点是x 轴上一动点,当PA+PB 最小时,P 点的坐标是_____.【答案】(2.4,0)【解析】【分析】根据点B (3,3)、C (0,6)是抛物线24y ax x c =-+(a≠0)上两点,可以求得该抛物线的解析式,从而可以求得顶点A 的坐标,然后即可得到点A 关于x 轴的对称点的坐标,则点A 关于x 轴的对称点的坐标与点B 所连直线与x 轴的交点即为所求的点P 的坐标.【详解】解:∵点B (3,3)、C (0,6)是抛物线24y ax x c =-+ (a ≠0)上两点, ∴91236a c c -+=⎧⎨=⎩,得16a c =⎧⎨=⎩ , ∴抛物线解析式为2246(22)y x x x =-+=-+,∴点A 的坐标为(2,2),点A 关于x 轴的对称点的坐标为(2,−2),则点(2,−2)与点B (3,3)所连直线与x 轴的交点即为所求的点P ,此时P A +PB 最小,设过点(2,−2)与点B (3,3)的直线解析式为y =kx +b , 2233k b k b +=-⎧⎨+=⎩,得512k b =⎧⎨=-⎩ , 即过点(2,−2)与点B (3,3)的直线解析式为y =5x −12,当y =0时,0=5x −12,得x =2.4,∴点P 的坐标为(2.4,0),故答案为:(2.4,0).【点睛】本题考查了二次函数的性质、二次函数上点的坐标特征、对称轴最短路径问题,解本题的关键是明确题意,利用二次函数的性质和数形结合思想解答.16. 如图,在四边形ABCD 中,B D 90∠∠==︒,AD=CD ,AB+BC=8,则四边形ABCD 的面积是_________.【答案】16【解析】【分析】求不规则四边形的面积,可以转化为两个三角形的面积,由题意B D 90∠∠==︒,可知:求出Rt ABC 与Rt ADC 的面积,即为四边形ABCD 的面积.【详解】连接AC ,∵B D 90∠∠==︒,∴222AB BC AC +=,222AD DC AC +=, ∴11=22ABC ADC ABCD S S S BC AB CD AD +=⋅+⋅四边形21122BC AB AD =⋅+ ()2221111=2224BC AB CD AB BC AB BC ⋅+=⋅++, ∵AB+BC=8,∴222=64AB BC BC AB ++⨯,∴4464ABC ADC S S +=,∴=16ABC ADC ABCD S S S +=四边形故答案为:16.【点睛】本题主要考查的是四边形面积的求解,三角形面积以及勾股定理,熟练运用三角形面积公式以及勾股定理是解答本题的关键.三、解答题(本大题共9题,共102分,解答应写出文字说明、证明过程或演算步骤.)17. 解方程:22320x x --= 【答案】12x =,212x =- 【解析】 【分析】利用公式法求出24b ac =-△,继而求一元二次方程的解; 【详解】∵2a =,3b =-,2c =-, ∴()()224342225b ac -=--⨯⨯-=,∴32522x ±=⨯,∴12x =,212x =-. 【点睛】本题考查了解一元二次方程的方法,公式法:先求出24b ac =-△,继而用b x -±=△求出解即可,是基础性考点;18. 在平面直角坐标系中, OAB △的位置如图所示,且点A (-3,4),B (2,1),将 OAB △绕点O 顺时针旋转90︒后得到 OA B ''△. (1)在图中画出 OA B ''△;(2)求点A 在旋转过程中所走过的路线长.【答案】(1)见解析;(2)52π【解析】 【分析】(1)将点A 绕着点O 顺时针旋转90︒得到点A ',用同样的方法得到点B ',就可以画出OA B ''△; (2)先算出AO 的长度,再利用弧长公式求出路线长. 【详解】解:(1)如图所示:(2)22345AO =+=,90551802l ππ︒⨯==︒.【点睛】本题考查图形的旋转和弧长公式,解题的关键是掌握画旋转图形的方法和弧长公式的运用. 19. 已知抛物线2y x 2x 3=-++. (1)该抛物线的对称轴是_____;(2)选取适当的数据填入下表,并在如图的直角坐标系内描点画出该抛物线的图象:x…………y …… ……(3)根据函数的图象,直接写出不等式2230x x -++>的解.【答案】(1)1x =;(2)见解析;(2)13x【解析】 【分析】(1)利用对称轴公式求出抛物线的对称轴; (2)利用5点作图法列出表格并画出图象;(3)不等式的解表示:函数图象在x 轴上方时,x 的取值范围,根据图象得出解集. 【详解】解:(1)2122bx a , 对称轴是直线1x =, 故答案是:1x =;(2)令1x =-,则1230y =--+=, 令0x =,则3y =,令1x =,则1234y =-++=, 令2x =,则4433y =-++=, 令3x =,则9630y =-++=,x …… -1 0 1 2 3 …… y……343……图象如图所示:(3)不等式2230x x -++>的解表示:函数图象在x 轴上方时,x 的取值范围, 根据图象得不等式的解是:13x.【点睛】本题考查二次函数的图象和性质,解题的关键是掌握二次函数的图象的画法,以及利用函数图象去解不等式.20. 如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,ADE 60∠=︒. (1)求证:BAD CDE ∠=∠;(2)若BD=4,CE=2,求△ABC 的边长.【答案】(1)见解析;(2)8 【解析】 【分析】(1)根据等边三角形的性质得到60B ADE ∠=∠=︒,再根据外角和定理证明结论; (2)根据(1)的结论证明ABD DCE △△,利用相似三角形对应边成比例列式求出CD 的长,就可以得到三角形ABC 的边长.【详解】解:(1)∵ABC 是等边三角形, ∴60B ∠=︒, ∵60ADE ∠=︒, ∴B ADE ∠=∠,∵BAD B ADC ADE CDE ∠+∠=∠=∠+∠, ∴BAD CDE ∠=∠;(2)∵BAD CDE ∠=∠,60B C ∠=∠=︒, ∴ABD DCE △△,∴AB BDDC CE=, 设DC x =,则4AB BC x ==+, ∴442x x +=,解得4x =, ∴448BC =+=,即△ABC 的边长是8.【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定定理. 21. 有A 、B 两个黑布袋,A 布袋中有四个除标号外完全相同的小球,小球上分别标有数字-1,0,1,2;B 布袋中有二个除标号外完全相同的小球,小球上分别标有数字0,1.小明先从A 布袋中随机取出一个小球,用m 表示取出的球上标有的数字 ,再从B 布袋中随机取出一个小球,用n 表示取出的球上标有的数字. (1)若用(m n ,)表示小明取球时m n 与的对应值,请用树状图或列表法表示()m n ,的所有取值; (2)求关于x 的一元二次方程2102x mx n -+=有实数根的概率. 【答案】(1)见解析;(2)58【解析】 【分析】(1)用列表的方法或树状图去表示所有可能性;(2)利用根的判别式算出m 和n 的关系式,找到符合条件的组合. 【详解】解:(1)如图:(2)要使一元二次方程202x mx n -+=有实数根,则0∆≥,即220m n -≥, 满足条件的组合有:()1,0-,()0,0,()1,0,()2,0,()2,1,∴概率是58.【点睛】本题考查概率求解,解题的关键是掌握通过画树状图或列表求解概率的方法.22. 有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.在甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元,依此类推,即每多买一台,则所买各台单价均再减20元;乙公司一律按原售价75%促销.某单位需购买一批图形计算器:(1)若此单位需购买4台图形计算器,应去哪家公司购买花费较少?(2)若该单位计划购买m台图形计算器,经过对比发现,在两家公司购买相差480元,试求m的值.【答案】(1)去乙公司购买花费少;(2)4或6或12【解析】【分析】(1)把数量4分别代入甲乙两家公司的计算即可求出到哪家公司购买花费较少;(2)把数量m分别代入甲乙两家公司计算,费用用含m表示,然后讨论①当去甲公司花费比乙公司多480元时;②当去甲公司花费比乙公司少480元时,分别列等式求出m的值即可.【详解】(1)去甲公司购买花费:(800-4×20)×4=2880(元),去乙公司购买花费:800×4×75%=2400(元),∵2880>2400,∴去乙公司购买花费少(2)去甲公司购买花费:m(800-20m)=800m-20m2,去乙公司购买花费:800×75%m=600m,∴在两家公司购买相差480元,∴当去甲公司花费较多时,800m-20m2=600m+480 整理得:m2-10m+24=0 解得:m1=4,m2=6 当去甲公司花费较少时,800m-20m2=600m-480 整理得:m2-10m-24=0,解得:m1=12,m2=-2(舍去)综上m的值为4或6或12.【点睛】本题考查了利用方程思想解决生活中的数学问题.只要把握住总花费=单价×数量这一等量关系,注意分情况讨论“两家公司购买相差480元”是解答此题的易漏点 . 23. 如图,在△ABC 中,AB=AC=5,BC=6.(1)动手操作:利用尺规作以BC 为直径的圆O ,并标出圆O 与AB 的交点D ,与AC 的交点E ,连接DE (保留作图痕迹,不写作法); (2)综合应用:在你所作的圆中, ①求证:DE//BC ; ②求线段DE 的长.【答案】(1)见解析;(2)①见解析;②4225DE = 【解析】 【分析】(1)作BC 的垂直平分线得到BC 的中点O ,以O 为圆心,BO 的长为半径画圆,得到圆O ; (2)①根据等腰三角形的性质即可证明结论;②根据三角形的面积和勾股定理即可求出线段DE 的长. 【详解】解:(1)如图所示:(2)①在ABC 中,AB AC =, ∴A ABC CB =∠∠, ∴DEC EDB =, ∴EC DB =,∴DEB CBE ∠=∠, ∴//DE BC ; ②∵//DE BC , ∴ADE ABC ,∴AE DEAC BC=, ∵5AB AC ==,6BC =, ∴3OB OC OE ===, ∴4AO =, 连接BE , ∵BC 是O 的直径,∴90BEC ∠=︒, ∴1122ABCSBC AO AC BE =⋅=⋅, ∴245BE =, 在Rt AEB 中,根据勾股定理,得222AE EB AB +=,即2222455AE ⎛⎫+= ⎪⎝⎭,解得75AE =, ∴7556DE =,解得4225DE =.【点睛】本题考查了尺规作图,等腰三角形的性质,勾股定理,圆周角定理和相似三角形的性质和判定,解题的关键是掌握这些几何性质进行证明求解.24. 如图,抛物线y =ax 2+(4a ﹣1)x ﹣4与x 轴交于点A 、B ,与y 轴交于点C ,且OC =2OB ,点D 为线段OB 上一动点(不与点B 重合),过点D 作矩形DEFH ,点H 、F 在抛物线上,点E 在x 轴上. (1)求抛物线解析式;(2)当矩形DEFH 的周长最大时,求矩形DEFH 的面积;(3)在(2)的条件下,矩形DEFH 不动,将抛物线沿着x 轴向左平移m 个单位,抛物线与矩形DEFH 的边交于点M 、N ,连接M 、N .若MN 恰好平分矩形DEFH 的面积,求m 的值.【答案】(1)y=12x2+x﹣4;(2)10;(3)m的值为52.【解析】【分析】(1)先求出点C的坐标,由OC=2OB,可推出点B坐标,将点B坐标代入y=ax2+(4a﹣1)x﹣4可求出a的值,即可写出抛物线的解析式;(2)设点D坐标为(x,0),用含x的代数式表示出矩形DEFH的周长,用函数的思想求出取其最大值时x 的值,即求出点D的坐标,进一步可求出矩形DEFH的面积;(3)如图,连接BH,EH,DF,设EH与DF交于点G,过点G作BH的平行线,交ED于M,交HF于点N,则直线MN将矩形DEFH的面积分成相等的两半,依次求出直线BH,MN的解析式,再求出点M的坐标,即可得出m的值.【详解】解:(1)在抛物线y=ax2+(4a﹣1)x﹣4中,当x=0时,y=﹣4,∴C(0,﹣4),∴OC=4.∵OC=2OB,∴OB=2,∴B(2,0),将B(2,0)代入y=ax2+(4a﹣1)x﹣4,得:a=12,∴抛物线的解析式为y=12x2+x﹣4;(2)设点D坐标为(x,0).∵四边形DEFH为矩形,∴H(x,12x2+x﹣4).∵y=12x2+x﹣4=12(x+1)2﹣92,∴抛物线对称轴为x=﹣1,∴点H到对称轴的距离为x+1,由对称性可知DE=FH=2x+2,∴矩形DEFH的周长C=2(2x+2)+2(﹣1 2 x2﹣x+4)=﹣x2+2x+12=﹣(x﹣1)2+13,∴当x=1时,矩形DEFH周长取最大值13,∴此时H(1,﹣52),∴HF=2x+2=4,DH=52,∴S矩形DEFH=HF•DH=4×52=10;(3)如图,连接BH,EH,DF,设EH与DF交于点G,过点G作BH的平行线,交ED于M,交HF于点N,则直线MN将矩形DEFH的面积分成相等的两半,由(2)知,抛物线对称轴为x=﹣1,H(1,﹣52),∴G(﹣1,﹣54),设直线BH的解析式为y=kx+b,将点B(2,0),H(1,﹣52)代入,得:2052k bk b+=⎧⎪⎨+=-⎪⎩,解得:525kb⎧=⎪⎨⎪=-⎩,∴直线BH的解析式为y=52x﹣5,∴可设直线MN解析式为y=52x+n,将点(﹣1,﹣54)代入,得n=54,∴直线MN的解析式为y=52x+54,当y=0时,x=﹣12,∴M(﹣12,0).∵B(2,0),∴将抛物线沿着x轴向左平移52个单位,抛物线与矩形DEFH的边交于点M、N,连接M、N,则MN恰好平分矩形DEFH的面积,∴m的值为52.【点睛】本题考查了待定系数法求解析式,矩形的性质,函数思想求最大值,平移规律等,解题关键是知道过矩形对角线交点的直线可将矩形的面积分成相等的两半.25. 如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD上一动点,过点C 作AE的垂线交AE的延长线于点F.(1)求∠D的度数;(2)若点E为CD的中点,求EF的值;(3)当点E在线段CD上运动时,AFAE是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.【答案】(1)∠ADC=120°;(2)EF=1919,(3)有最大值,最大值为:1392【解析】【分析】(1)由四边形ABCD是平行四边形,得AB∥CB,进而即可得到答案;(2)作AH⊥CD交CD的延长线于H,由在Rt△ADH中,∠H=90°,∠ADH=60°,得A 3DH=12,结合勾股定理得AE=192,易证△AEH∽△CEF,得EH AEEF EC,进而即可求解;(3)作△AFC的外接圆⊙O,作AH⊥CD交CD的延长线于H,作OK⊥CD于K,交⊙O于M,作FP∥CD交AD的延长线于P,作MN∥CD交AD的延长线于N,作NQ⊥CD于Q.易得P A的值最大时,AFAE的值最大,P A的值最大=AN的长,根据勾股定理和三角函数的定义得DN12-,从而得AN=AD+DN=132+,进而即可得到答案.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CB,∴∠ADC+∠DAB=180°,∵∠DAB=60°,∴∠ADC=120°.(2)作AH⊥CD交CD的延长线于H,如图1,∵在Rt△ADH中,∠H=90°,∠ADH=60°,AD=2,∴AH=AD•sin60DH=AD•cos60°=12,∵DE=EC=32,∴EH=DH+DE=2,∴AE2==,∵CF⊥AF,∴∠F=∠H=90°,∵∠AEH=∠CEF,∴△AEH∽△CEF,∴EH AEEF=,∴2232EF=,∴EF=19.(3)如图2中,作△AFC的外接圆⊙O,作AH⊥CD交CD的延长线于H,作OK⊥CD于K,交⊙O于M,作FP∥CD交AD的延长线于P,作MN∥CD交AD的延长线于N,作NQ⊥CD于Q.∵DE∥PF,∴AF AP AE AD=,∵AD是定值,∴P A的值最大时,AFAE的值最大,观察图形可知,当点F与点M重合时,P A的值最大,最大值=AN的长,由(2)可知,AHCH=72,∠H=90°,∴AC==∴OM=12AC,∵OK∥AH,AO=OC,∴KH=KC,∴OK=12 AH∴MK=NQ=2﹣4,在Rt△NDQ中,DN=1 sin6022NQ==-︒,∴AN=AD+DN=132+,∴AFAE的最大值=ANAD=12【点睛】本题主要考查平行四边形的性质,解直角三角形,相似三角形的判定与性质定理,圆的性质,添加辅助线,构造圆与相似三角形,是解题的关键.。

2018-2019学年九年级上学期期末数学试题(解析版)

2018-2019学年九年级上学期期末数学试题(解析版)

2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。

广东省东莞市可园中学2024-2025学年九年级上学期期中考试数学试卷

广东省东莞市可园中学2024-2025学年九年级上学期期中考试数学试卷

广东省东莞市可园中学2024-2025学年九年级上学期期中考试数学试卷一、单选题1.下列方程是一元二次方程的是()A .230x y ++=B .2320x -=C .217x x+=D .530x +=2.下面各组图形中,不是相似图形的是()A .B .C .D .3.一元二次方程242x x +=配方后化为()A .()226x +=B .()226x -=C .()226x +=-D .()222x +=-4.一元二次方程220x x +-=的根的情况是().A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根5.在我市组织的一次青少年足球比赛预赛中,每两队之间都要进行一场比赛,共要比赛28场,则参赛队个数是()A .7B .8C .12D .146.把抛物线2y x =的图象向右平移2个单位,再向上平移3个单位,所得函数解析式为()A .2(2)3y x =-+B .2(2)3y x =++C .2(3)2y x =--D .2(3)2y x =-+7.下列对抛物线()2231y x =-+-的描述不正确的是()A .开口向下B .y 有最大值C .对称轴是直线3x =-D .顶点坐标为()31-,8.已知抛物线221y x x =--与x 轴的一个交点为()0m ,,则代数式222024m m -+的值为()A .2022B .2023C .2024D .20259.如图,在ABCD 中,对角线AC ,BD 相交于点O ,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为()A .12B .1C .43D .210.根据表格中二次函数y =ax 2+bx +c 的自变量x 与函数值y 的对应值,可以判断方程ax 2+bx +c =0的一个解x 的范围是()x 00.51 1.52y =ax 2+bx +c1-0.5-13.57A .0<x <0.5B .0.5<x <1C .1<x <1.5D .1.5<x <2二、填空题11.一元二次方程22024x x =的解是.12.二次函数22y x =-+的图象与y 轴的交点坐标为.13.设1x ,2x 是一元二次方程260x x m -+=的两个实数根,若12x =,则2x 的值为.14.若点()13,A y ,()25,B y 在函数241y x x =-++的图象上,则1y 2y (用“<”、“>”或者“=”连接).15.如图,为测量学校旗杆高度,小艺同学在脚下水平放置一平面镜,然后向后退,直到她刚好在镜子中看到旗杆的顶端,已知小艺的眼睛离地面高度为1.6米,同时量得小艺与镜子的水平距离为2米,镜子与旗杆的水平距离为10米.则旗杆的高度为米.16.如图,抛物线2(0)y ax bx c a =++≠与x 轴交于点(3,0),对称轴为直线1x =.结合图象分析下列结论:①0abc <;②420a b c ++>;③20a c +<;④一元二次方程20cx bx a ++=的两根分别为113x =,21x =-.其中正确的结论有.(请填序号)三、解答题17.解方程:2230x x +-=.18.已知二次函数的图象以(1,4)A -为顶点,且过点(2,5)B -,求该函数的关系式.19.如图,在等腰△ABC 中,AE 是顶角∠BAC 的角平分线,BD 是腰AC 边上的高,垂足为点D .求证:△ACE ∽△BCD .20.已知二次函数243y x x =-+,(1)补全表格,并在平面直角坐标系中用描点法画出该二次函数的图象;x⋯01234⋯y⋯31-⋯(2)当x ________时,y 随x 的增大而减小;(3)当0y >时,x 的取值范围是________;(4)根据图象回答:当03x ≤<时,y 的取值范围是________.21.已知关于x 的一元二次方程2x 2﹣(a +1)x +a ﹣1=0(a 为常数)(1)当a =2时,求出该一元二次方程实数根;(2)若x 1,x 2是这个一元二次方程两根,且x 1,x 2为斜边的直角三角形两直角边,求a 的值.22.根据以下素材,探索完成任务.素材1随着数字技术、新能源、新材料等不断突破,我国制造业发展迎来重大机遇.某工厂一车间借助智能化,对某款车型的零部件进行一体化加工,生产效率提升,该零件4月份生产100个,6月份生产144个.素材2该厂生产的零件成本为30元/个,销售一段时间后发现,当零件售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元,则月销售量将减少10个.问题解决任务1求该车间4月份到6月份生产数量的平均增长率;任务2为使月销售利润达到10000元,而且尽可能让车企得到实惠,则该零件的实际售价应定为多少元?23.小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.24.如图,拋物线2410233y x x =-++与x 轴交于点A ,与y 轴交于点B ,C 为线段OA 上的一个动点,过点C 作x 轴的垂线,交直线AB 于点D ,交该抛物线于点E .(1)求直线AB 的表达式;(2)若ABE 的面积取得最大值,求出这个最大值;(3)当以B ,E ,D 为顶点的三角形与CDA 相似时,求点C 的坐标.25.已知关于x 的一元二次方程()()221x m 1x m 102-+++=有实数根.(1)求m 的值;(2)先作()()221y x m 1x m 12=-+++的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求2n 4n -的最大值和最小值.。

2019-2020年初三第一次阶段性测试数学试卷及答案

2019-2020年初三第一次阶段性测试数学试卷及答案

2019-2020年初三第一次阶段性测试数学试卷及答案一、填空题:(本大题每题2分,共20分,把答案填写在题中横线上)1、┃π-14.3┃=_____________;若a <0,则3322a a a a +++=____________.2、当a __________时,42-a 无意义;22--x x有意义的条件是_____________. 3、已知一个样本1,2,3,x ,5,它的平均数是3,则这个样本的极差是___________;方差是____________.4、某校九年级上学期期末统一考试后,甲、乙两班的数学成绩(单位:分)的统计情况如下表所示:从各统计指标(平均分、中位数、众数、方差)综合来看,你认为______班的成绩较好。

5、若关于x 的方程22)2()1(2+=--b x a x 有两个相等的实根,则=a ________;=b ________.6、已知菱形ABCD 中对角线AC 、BD 相交于点O ,添加条件______________或_____________可使菱形ABCD 成为正方形.7、已知点C 为线段AB 的黄金分割点,且AC=1㎝,则线段AB 的长为____________________.8、如图,E 为□ABCD 中AD 边上的一点,将△ABE 沿BE 折叠使得点A 刚好落在BC 边上的F 点处,若AB 为4,ED 为3,则□ABCD 的周长为_________.9、已知:如图,矩形ABCD 的对角线相交于O ,AE 平分∠BAD 交BC 于E ,∠CAE=15°, 则∠BOE=_______°.第8题图 第9题图 第10题图10、如图,折叠直角梯形纸片的上底AD ,点D 落在底边BC 上点F 处,已知DC=8㎝,FC = 4㎝,则EC 长 ㎝.二、选择题:(下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后【 】内,每小题2分,共18分) 11、下列各式中与327x --是同类二次根式的是【 】.A 、327x B 、273x - C 、2391x -- D 、3x12、在下列各式的化简中,化简正确的有【 】. ①3a =a a ;②5x x -x x =4x x ;③6a2b a =ab ab 23 ;④24+61=86 A 、1个 B 、2个 C 、3个 D 、4个 13、下面是李刚同学在一次测验中解答的填空题,其中答对的是【 】. A 、若x 2=4,则x =2B 、方程x (2x -1)=2x -1的解为x =1C 、若x 2+2x +k =0的一个根为1,则3-=kD 、若分式1232-+-x x x 的值为零,则x =1,214、若关于x 的方程06)(22=+--x k x x 无实根,则k 可取的最小整数为【 】. A 、5- B 、4- C 、3- D 、2-15、甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后填入下表:某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);(3)甲班成绩比乙班成绩波动大。

广东省东莞市岭南师范学院附属中学2024届九年级上学期第二次月考数学试卷(含答案)

广东省东莞市岭南师范学院附属中学2024届九年级上学期第二次月考数学试卷(含答案)

九年级第二次月考 数学试卷满分:120分 时间:90分钟一、选择题:本大题共 10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列图形既是轴对称图形,又是中心对称图形的是( )2.抛物线y=﹣3(x+2)²﹣1的顶点坐标是( )A .(2,﹣1)B .(2,1)C .(﹣2,﹣1)D .(﹣2,1)3.将抛物线y=-x²向右平移2个单位后所得的解析式为( )A .y=-(x-2)²B .y=-(x+2)²C .y=-x²-2D .y=-x²+24.一直角三角形的两直角边长分别为方程的两根,则它的面积是( )A .5B .7C .10D .355.如图,AB ,AC,BD 是⊙O 的切线,切点分别是P ,C ,D .若AB =5,AC =3,则BD 的长是()A. 4 B. 3 C. 2 D. 16.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD=( )A .116°B .32°C .58°D .64°7.如图,⊙O 的弦垂直半径,垂足为,若半径长为5,CD=2,则的长为( )A .6B .8C .10D .128.已知圆锥的底面半径为2 cm ,母线长为10 cm ,则这个圆锥的侧面积是( )A. 20π cm²B. 20 cm²C. 40π cm²D. 40 cm²9.如果关于的方程无实数根,则的取值范围是( )A .B .且C .D .且10.二次函数的图象如图所示,有下列4个结论:① ;②; ③;④, 其中正确的结论有( )1个 B. 2个 C. 3个 D. 4个第6题图第7题图第5题图二、填空题:本大题共5小题,每小题3分,共15分.11.点关于原点对称点的坐标是_____.12.已知二次函数的图象开口向下,则m的取值范围是______ .13.若点P在二次函数y=x²+2x+2的图象上,且点P到y轴的距离为2,则点P坐标为______ .14.如图,四边形ABCD是⊙O的内接四边形,∠D=3∠B,则∠B的度数为_____.15.在△ABC中,AB=6,BC=4.则当∠A最大时,AC的长为________.三、解答题(一):本小题共3小题,第16题10分,第17、18题各7分,共24分.16.(1)计算:;(2)解方程:.17.如图是一次函数y=kx+b(k≠0)的图象.(1)请你根据图中信息求出这个一次函数的解析式;(2)观察函数图象,写出关于x的不等式kx+b>2的解集.18.如图,已知△ABC是等边三角形.(1)求作△ABC的外接圆⊙O(尺规作图,保留作图痕迹)(2)若AB=4,求⊙O的半径.四、解答题(二):本大题共3小题,每小题9分,共27分.19.为了调查某小区11月份家庭用电量情况,调查员抽查了10户人家该月某一天的用电量,抽查数据如下表:(1)这10户当天用电量的众数是_______度,中位数是_______度;(2)求这10户当天用电量的平均数;(3)已知该小区共有300户人家,试估计该小区该月的总用电量.20.某商城销售一种进价为每件10元的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y= -2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数表达式;(2)当销售单价定为多少元时,该商城每天获利最大?最大利润为多少?21.如图,AB是⊙O的直径,DA与⊙O相切于点A.(1)若OD平分∠ADE,求证:DE是⊙O的切线;(2)在(1)的条件下,若AE=8,AD=6,求⊙O的半径.五、解答题(三):本小题共2小题,每小题12分,共24分.22.如图,在△ABC中,AB=AC,将△ABC绕点A逆时针旋转得到△ADE,连接BD,CE,BD与CE相交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.23.如图,抛物线与轴交于、,与轴交于点.(1)求抛物线的解析式;(2)在直线上方的抛物线上找一点,过点作轴于,交于点,当点的横坐标运动到什么位置时,线段最长?此时等于多少?(3)在该抛物线上是否存在一点,使得三角形是直角三角形?若存在,求出所有满足条件点的坐标;若不存在,请说明理由.只考虑以为直角边的情形数学试卷参考答案一、选择题:(本大题共10小题,每小题3分,共30分)二、填空题:(本大题共5小题,每小题3分,共15分)11.(4,-1) 12.m<2 13.(2,10)或(-2,2)14.45° 15.三、解答题(一):本小题共3小题,第16题10分,第17、18题各7分,共24分. 16.(1)解:=3分=95分(2)解:2分或4分∴,5分17.解:(1)由图可知,函数图象过点(3,3),(0,2),则解得,3分∴这个一次函数的解析式为y=x+2. 5分(2)观察图象可知,关于x的不等式kx+b>2的解集为x>0. 7分18.解:(1)如答图,⊙O即为所作. 3分(2)如答图,OD⊥BC于点D,OE⊥AB于点E,连接OB.∴AE=BE=AB=2,∠AEO=90°.∵△ABC是等边三角形,∴∠C=60°.∴∠AOB=2∠C=120°.又∵OA=OB,∴∠AOE=∠AOB=60°.∴∠EAO=90°-∠AOE=30°.∴OA=2OE.5分设⊙O的半径为r,OE=r.在Rt△AOE中,由勾股定理,得AE²+OE²=OA²,即22+(r)²=r².解得r1=,r2=-(不合题意,舍去).的半径为.3小题,每小题19.(1)9,8.5 2分(2)这10户当天用电量的平均数为=8.4度 5分(3)∵300×30×8.4=75600(度)∴估计该小区该月的总用电量为75600度9分20.解:(1)根据题意,得W=(-2x+100)(x-10). 2分整理,得W=-2x²+120x-1 000.∴W与x之间的函数关系式为W=-2x²+120x-1 000. 4分(2)由(1)知,W=-2x²+120x-1 000=-2(x-30)²+800. 7分∵-2<0,∴当x=30时,W有最大值为800. 8分答:当销售单价定为30元时,该商城每天获利最大,最大利润为800元.9分21.解:(1)证明:如答图,过点O作OF⊥DE于点F.∵DA与⊙O相切于点A,∴OA⊥DA.∵OD平分∠ADE,OA⊥DA,OF⊥DE,∴OA=OF.又∵OA是⊙O的半径,∴OF是⊙O的半径.∴DE是⊙O的切线. 4分(2)解:设⊙O的半径为r.在Rt△ADE中,∠DAE=90°,AE=8,AD=6,由勾股定理,得DE===10.∵DA与DF是⊙O的切线,∴DA=DF.∴EF=DE-DF=DE-DA=4,OE=AE-r=8-r.在Rt△OEF中,由勾股定理,得OF²+EF²=OE²,即r²+4²=(8-r)²解得r=3.∴⊙O的半径为3. 9分五、解答题(三):本小题共2小题,每小题12分,共24分.22.解:(1)∵将△ABC绕点A逆时针旋转得到△ADE,且AB=AC,∴AE=AD,∠BAC=∠DAE.∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠BAD.在△AEC和△ADB中,AE=AD, ∠CAE=∠BAD,AC=AB∴△AEC≌△ADB(SAS). 5分(2)解:∵四边形ADFC是菱形,∴AD=DF=FC=AC=AB=2,AD∥CF,DF∥AC.∴∠DBA=∠BAC=45°.∵AD=AB,∴∠BDA=∠DBA=45°.∴∠DAB=90°.∴BD=²==2∴BF=BD-DF=2-2. 12分23.解:(1)由题意把点、代入得:解得:,∴此抛物线解析式为:,(2)如图,由,当时,∴点,设解析式为,∴,解得:,∴解析式为,设,则,∴,∴当时,有最大值;(3)存在,设,∵,,∴,如图,当,过作轴于点,∴,,,∵,∴,∵,即,解得:(舍去),,∴点,如图,当,过作轴于点,∴,,,∴,∴,∴,解得:(舍去),,∴点,综上可知:或.。

2019-2020学年广东省东莞市石碣镇五年级上学期期末考试数学试卷及答案解析

2019-2020学年广东省东莞市石碣镇五年级上学期期末考试数学试卷及答案解析

2019-2020学年广东省东莞市石碣镇五年级上学期期末考试数学
试卷
一、填空.(每小题2分,共20分)
1.(2分)根据7.2÷0.15=48,直接写出下面各题的得数.
72÷1.5=
720÷15=
48×0.15=
4.8×0.15=
2.(2分)8.09吨=千克
4.3公顷=平方米
45分=时
2.15平方米=平方分米
3.(2分)在下面的〇里填上“>”、“<”或“=”.
8.25×2〇8.52
9.6×1.2〇9.6÷1.2
4.35×2〇4.35+4.35
6.45÷0.5〇64.5÷0.05
4.(2分)90÷22的商是一个无限小数,用简便形式记作:,循环节是,用“四舍五入”法保留三位小数是.
5.(2分)图中,大正方形的边长是20厘米.小正方形的边长是8厘米,图中阴影部分的面积是平方厘米.
6.(2分)如图,靠墙用篱笆围成一块菜地(靠墙的一面不围),围菜地的篱笆长48m.这块菜地的面积是平方米.
第1页(共19页)。

2020年广东省东莞市中考数学试卷试题带答案

2020年广东省东莞市中考数学试卷试题带答案
21.因受疫情影响,东莞市 2020 年体育中考方案有较大变化,由原来的必考加选考,调整为“七选二”,其中
男生可以从 A (篮球 1 分钟对墙双手传接球)、 B (投掷实心球)、 C (足球 25 米绕杆)、 D (立定跳远)、 E (1000 米跑步)、 F (排球 1 分钟对墙传球)、 G (1 分钟踢毽球)等七个项目中选考两项.据统计,某 校初三男生都在“ A ”“ B ”“ C ”“ D ”四个项目中选择了两项作为自己的体育中考项目.根据学生选择情况,进
16.7
17.64(填 26 亦可)
三、解答题(一)
18.解:原式 2 2 2 1 1 2
4 19.解:原式 (x 1)2 1
x(x 1) (x 1)
1 x
当 x 2 3 时,原式 1 3 23 6
20.解:(1)如图, EF 为 AB 的垂直平分线;
(2)∵ EF 为 AB 的垂直平分线 ∴ AE 1 AB 5 , AEF 90
A.3
B.4
C. a3
D.75° D.5,4
D. a4
9.如图,已知 AB//CD , CE 平分 ACD ,且 A 120 ,则 1 ( )
A.30°
B.40°
C.45°
D.60°
10.如图,一次函数 y x 1和 y 2x 与反比例函数 y 2 的交点分别为点 A 、 B 和 C ,下列结论中,正 x
24.(1)证明:
∵ ED为 AC 平移所得,
∴ AC //ED , AC ED , ∴四边形 ACDE 为平行四边形, ∴ AE CD ,
在 RtABC 中,点 E 为斜边 AB 的中点,
∴ AE CE BE , ∴ CD BE .
(2)证明:

2020-2021学年东莞市可园中学九年级上学期第一次月考数学试卷(含解析)

2020-2021学年东莞市可园中学九年级上学期第一次月考数学试卷(含解析)

2020-2021学年东莞市可园中学九年级上学期第一次月考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列各数:−(+3),−|−4|,−325,−(−1)2015,(−13)2,−22,−0.1010010001┅(每个1之间的0逐次增加)中,负有理数的个数是()A. 2B. 3C. 4D. 52.2015年5月25日有700多位来自人画各地的知名企业家聚首湖北共签约项目投资额为909560,000,000元,将该数精确到十亿位,用科学记数法表示为()A. 9.1×1011B. 9.09×1011 C. 9.0956×1011D.9.10×10113.下列选项中,能写成反比例函数的是()A. 人的体重和身高B. 正三角形的边长和面积C. 速度一定,路程和时间的关系D. 销售总价不变,销售单价与销售数量的关系4.如果线段a=2,c=8,那么线段a和c的比例中项b是()A. 4B. 16C. ±4D. ±165.一元二次方程−3x2+5x=7的二次项系数是()A. −3B. 5C. 7D. −76.已知a m=3,a n=2,那么a m+n的值为()A. 5B. 6C. 7D. 87.给出四个实数−2,0,0.5,√2,其中无理数是()A. −2B. 0C. 0.5D. √28.复印纸的型号有A0,A1,A2,A3、A4等几种类型,它们之间存在着这样一种关系:将其中某一型号(如A3)的复印纸较长边的中点对折后,就能得到两张下一型号(A4)的复印纸,且得到的两个矩形都和原来的矩形相似(如图),那么这些型号的复印纸的长宽之比为()A. √2:1B. √3:1C. 1:√2D. 3:19.在△ABC中,BC=15cm,CA=55cm,AB=63cm,另一个和它相似的三角形的最短边长是5cm,则最长边长是()A. 18cmB. 21cmC. 24cmD. 19.5cm10.如果反比例函数y=ax的图象分布在第一、三象限,那么a的值可以是()A. −3B. 2C. 0D. −1二、填空题(本大题共7小题,共28.0分)11.若(1−x)2+|y+2|=0,则x0+y−1=______.12.已知ab =cd=3,则a+cb+d(b+d≠0)的值是______.13.三角形两边的长分别是8和6,第三边的长是方程x2−12x+20=0的一个实数根,则三角形的周长是______.14.已知m是方程x2−2x−3=0的一个根,则2m2−4m−1=______ .15.如图,在△ABC中,AB=4,BC=5,点D、E分别在BC、AC上,CD=2BD,CE=2AE,BE交AD于点F,则△AFE面积的最大值是______ .16.如图,平面直角坐标系内有一点A,O为坐标原点.点B在x轴上,且构成的△AOB为等腰三角形,则符合条件的点B有______个.17.若函数y=mx与y=nx 的图象有一个交点是(12,2),则另一个交点坐标是______ .三、解答题(本大题共8小题,共62.0分)18.阅读材料,回答下列问题:阿尔⋅花拉子米(约780~约850),著名阿拉伯数学家、天文学家、地理学家,是代数与算术的整理者,被誉为“代数之父”.他利用正方形图形巧妙解出了一元二次方程x2+2x−35=0的一个解.将边长为x的正方形和边长为1的正方形,外加两个长方形,长为x,宽为1,拼合在一起面积就是x2+2⋅x×1+12,即x2+2x+1,而由原方程x2+2x−35=0变形得x2+2x+1=35+1,即边长为x+1的正方形面积为36.所以(x+1)2=36,则x=5.(1)上述求解过程中所用的方法与下列哪种方法是一致的______ .A.直接开平方法B.公式法C.配方法D.因式分解法(2)所用的数学思想方法是______ .A.分类讨论思想B.数形结合思想C.转化思想(3)山西特产专卖店销售的某品牌枣夹核桃,进价为每袋20元,现在按每袋30元出售时,平均每天售出200袋,由于货源紧缺,现要涨价销售,经过市场调查发现,单价每上涨1元,则平均每天的销售会减少10袋,若该专卖店销售这种枣夹核桃每天的利润为y元,售价为x元,请求出y与x的函数解析式,再利用(1)的方法求出x是多少时,y最大,最大是多少?19.如图,洋洋和华华用所学的数学知识测量一条小河的宽度,河的对岸有一棵大树,底部记为点A,在他们所在的岸边选择了点B,并且使AB与河岸垂直,在B处与地面垂直竖起标杆BC,再在AB的延长线上选择点D,与地面垂直竖起标杆DE,使得A、C、E三点共线.经测量,BC=1m,DE=1.5m,BD=5m,求小河的宽度.20.阅读下列材料:实验数据显示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)随时间的增加逐步增高达到峰值,之后血液中酒精含量随时间的增加逐渐降低.小带根据相关数据和学习函数的经验,对血液中酒精含量随时间变化的规律进行了探究,发现血液中酒精含量y是时间x的函数,其中y表示血液中酒精含量(毫克/百毫升),x表示饮酒后的时间(小时).下表记录了6小时内11个时间点血液中酒精含量y(毫克/百毫升)随饮酒后的时间x(小时)(x>0)的变化情况。

2022-2023学年广东省东莞市九年级(上)期中数学试题及答案解析

2022-2023学年广东省东莞市九年级(上)期中数学试题及答案解析

2022-2023学年广东省东莞市九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列函数中,是二次函数的是( )A. y=−2−3x B. y=−(x−1)2+x2x2C. y=11x2+29xD. y=ax2+bx+c2. 在抛物线y=x2−4x−4上的一个点是( )A. (4,4)B. (3,−1)C. (−2,−8)D. (1,−7)3. 下面图形是用数学家名字命名的,其中是中心对称图形但不是轴对称图形的是( )A. 赵爽弦图B. 笛卡尔心形线C. 科克曲线D. 斐波那契螺旋线4. 关于抛物线y=−4(x+6)2−5的图象,下列结论正确的是( )A. 对称轴是直线x=6B. 当x<−6时,y随x的增大而增大C. 与y轴的交点坐标是(0,−5)D. 顶点坐标是(−6,5)5. 如图是抛物线y=ax2+bx+c的示意图,则a的值可以是( )A. 1B. 0C. −1D. −26. 在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为( )A. y=(x−2)2+1B. y=(x+2)2+1C. y=(x+2)2−1D. y=(x−2)2−17. 已知点(1,y1),(2,y2)都在函数y=−x2的图象上,则( )A. y1<y2B. y1>y2C. y1=y2D. y1,y2大小不确定8. 二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是( )A. a>0,b>0,c>0B. a>0,b<0,c<0C. a<0,b>0,c<0D. a<0,b<0,c<09. 参加一次聚会的每两人都握了一次手,所有人共握手10次,参加聚会的人数为是( )A. 4人B. 5人C. 6人D. 7人10. 在同一平面直角坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是( )A. B. C. D.二、填空题(本大题共7小题,共28.0分)11. 二次函数y=x2+4x+1的图象的对称轴是______.12. 抛物线y=3(x−1)2+8的顶点坐标为______.13. 已知关于x的一元二次方程x2−3x=15两实数根为x1,x2,则x1+x2=______.14. 关于x的一元二次方程(k+2)x2+6x+k2+k−2=0有一个根是0,则k的值是______.15. 如图,将△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,连接CC′,若CC′//AB,则∠BAC的度数为______.16. 如图,一元二次方程ax2+bx+c=0的解为______.17. 二次函数y=x2−x−2的图象如图所示,则函数值y<0时,x的取值范围是______.三、计算题(本大题共1小题,共6.0分)18. 解方程:x2+4x−5=0.四、解答题(本大题共7小题,共56.0分。

广东省东莞市新世纪英才学校2022-2023学年九年级下学期第一次月考数学试卷

广东省东莞市新世纪英才学校2022-2023学年九年级下学期第一次月考数学试卷

抛物线的解析式是( )
A. y 2(x 6)2
B. y 2(x 6)2 4 C. y 2x2
D. y 2x2 4
8.如图,在 VABC 中, AB AC , A 40 , CD / / AB ,则 BCD ( )
A. 40
B. 50
C. 60
试卷第 1 页,共 5 页
D. 70
A.4
B.5
C.6
D.7
5.若式子 2x 4 在实数范围内有意义,则 x 的取值范围是( )
A. x 2
B. x 2
C. x 2
6.不等式 3(1﹣x)>2﹣4x 的解在数轴上表示正确的是(
D. x 2 )
A.
B.Leabharlann C.D.7.将抛物线 y 2(x 3)2 2 向左平移 3 个单位长度,再向下平移 2 个单位长度,得到
A. 400 500 x 30 x
B. 400 500 x x 30
C. 400 500 x x 30
D. 400 500 x 30 x
10.二次函数 y ax2 bx c 的图象如图所示,下列结论:① ac 0 ;② 3a c 0;③
4ac b2 0 ;④当 x 1时,y 随 x 的增大而减小,其中正确的有( )
15.如图,在 e O 中,点 A 在 B»C 上,BOC 100, 则 BAC _______________________
o
16.如图,在 VABC 中,ACB 90 ,点 D 为 AB 边的中点,连接 CD ,若 BC 4 ,CD 3 , 则 cos DCB 的值为______.
试卷第 2 页,共 5 页
设计出最省钱的购买方案,并说明理由.
22.如图,一次函数 y 1 x 1的图象与反比例函数 y k 的图象相交于 A2, m 和 B 两

2021-2022学年广东省东莞市光明中学九年级(上)期中数学试卷(附答案详解)

2021-2022学年广东省东莞市光明中学九年级(上)期中数学试卷(附答案详解)

2021-2022学年广东省东莞市光明中学九年级(上)期中数学试卷1.下列图形中,既是轴对称图形,又是中心对称图形的个数是( )A. 1个B. 2个C. 3个D. 4个2.下列方程是一元二次方程的是( )A. ax2+bx+c=0B. x2+2x=x2−1C. 1−x=2 D. (x−1)(x−3)=0x23.一元二次方程x2−4x−1=0配方后可化为( )A. (x+2)2=3B. (x+2)2=5C. (x−2)2=3D. (x−2)2=54.一元二次方程x2−4x+3=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根5.抛物线y=−3x2向左平移2个单位,再向上平移5个单位,所得抛物线解析式为( )A. y=−3(x−2)2+5B. y=−3(x−2)2−5C. y=−3(x+2)2−5D. y=−3(x+2)2+56.关于抛物线y=x2−6x+9,下列说法错误的是( )A. 开口向上B. 顶点在x轴上C. 对称轴是x=3D. x>3时,y随x增大而减小7.当ab>0时,y=ax2与y=ax+b的图象大致是( )A. B. C. D.8.今年国庆节东城迎来旅游高峰,前三天的游客人数共计约5.1万人,其中第一天的游客人数是1.2万人,假设每天游客增加的百分率相同,且设为x,则根据题意可列方程为( )A. 1.2+1.2(1+x)+1.2(1+x)2=5.1B. 1.2(3+x)2=5.1C. 1.2(1+2x)2=5.1D. 1.2(1+x)2=5.19.如图,已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,则A1的坐标是( )A. (−1,2)B. (2,−1)C. (1,−2)D. (−2,1)10.抛物线y=ax2+bx+c的对称轴是直线x=−1,且过点(1,0).顶点位于第二象限,其部分图象如图所示,给出以下判断:①ab>0且c<0;②4a−2b+c>0;③8a+c>0;④c=3a−3b;⑤直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,则x1+x2+x1x2=5.其中正确的个数有( )A. 5个B. 4个C. 3个D. 2个11.已知x=3是方程x2−6x+k=0的一个根,则k=______.12.抛物线y=2(x+1)2−3的顶点坐标为______.13.已知点A(a,1)与点B(−3,b)关于原点对称,则ab的值为______.14.已知m为一元二次方程x2−3x−2020=0的一个根,则代数式2m2−6m+2的值为______.15.如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积为77m2,设道路的宽为xm,则根据题意,可列方程为____.16.已知二次函数y=−x2+10x−21,当6≤x≤12时,函数的最大值是______.17.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2019次后,点P的坐标为______.18.解一元二次方程:3x(x−1)=2x−2.19.已知抛物线的顶点为(0,4),与x轴交于点(−2,0),求抛物线的解析式.20.已知关于x的方程x2+ax+16=0有两个相等的实数根,求a的值.21.如图,点F为正方形ABCD内一点,△BFC绕点B逆时针旋转后与△BEA重合.(1)求△BEF的形状;(2)若∠BFC=90°,说明AE//BF.22.已知关于x的方程x2−(k+2)x+2k=0.(1)求证:k取任何实数值,方程总有实数根;(2)若Rt△ABC斜边长a=3,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.23.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为多少元时会获得最大利润?求出最大利润.24.如图,已知正方形ABCD的边长为6,E,F分别是AB、BC边上的点,且∠EDF=45°,将△DAE 绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=MF(2)若AE=2,求FC的长.25.已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,写出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:第一个是轴对称图形,不是中心对称图形;第二个不是轴对称图形,是中心对称图形;第三个既是轴对称图形,又是中心对称图形;第四个既是轴对称图形,又是中心对称图形.所以既是轴对称图形又是中心对称图形的个数为2.故选:B.根据轴对称图形和中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.【答案】D【解析】解:A、a=0时是一元一次方程,故A错误;B、是一元一次方程,故B错误;C、是分式方程,故C错误;D、是一元二次方程,故D正确.故选:D.根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.【答案】D【解析】解:x2−4x−1=0,x2−4x=1,x2−4x+4=1+4,(x−2)2=5,故选:D.移项,配方,即可得出选项.本题考查了配方解一元二次方程,能正确配方是解此题的关键.4.【答案】A【解析】解:一元二次方程x2−4x+3=0中,△=(−4)2−4×1×3>0,则原方程有两个不相等的实数根;故选:A.根据题意先求出△的值,再根据一元二次方程根的情况与判别式△的关系即可得出答案.此题考查了根的判别式,(1)一元二次方程根的情况与判别式△的关系:①△>0⇔方程有两个不相等的实数根;②△=0⇔方程有两个相等的实数根;③△<0⇔方程没有实数根.5.【答案】D【解析】解:抛物线y=−3x2的顶点坐标为(0,0),点(0,0)向左平移2个单位,再向上平移5个单位所得对应点的坐标为(−2,5),所以平移后的抛物线解析式为y=−3(x+2)2+5.故选:D.先确定抛物线y=−3x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移所得对应点的坐标为(−2,5),然后根据顶点式写出平移后的抛物线解析式.本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6.【答案】D【解析】解:y=x2−6x+9=(x−3)2,则a=1>0,开口向上,顶点坐标为:(3,0),对称轴是x=3,故选项A,B,C都正确,不合题意;x>3时,y随x增大而增大,故选项D错误,符合题意.故选:D.直接利用二次函数的性质进而分别分析得出答案.此题主要考查了二次函数的性质,正确掌握相关性质是解题关键.7.【答案】D【解析】解:根据题意,ab>0,则a、b同号,当a>0时,b>0,y=ax2开口向上,过原点,y=ax+b过一、二、三象限;此时,没有选项符合,当a<0时,b<0,y=ax2开口向下,过原点,y=ax+b过二、三、四象限;此时,D选项符合,故选:D.根据题意,ab>0,则a、b同号,分a>0与a<0两种情况讨论,分析选项可得答案.本题考查二次函数与一次函数的图象的性质,要求学生理解系数与图象的关系.8.【答案】A【解析】解:设每天游客增加的百分率相同且设为x,第二天的游客人数是:1.2(1+x);第三天的游客人数是:1.2(1+x)(1+x)=1.2(1+x)2;依题意,可列方程:1.2+1.2(1+x)+1.2(1+x)2=5.1.故选:A.利用平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每年增产的百分率为x,分别用x表示出第二天和第三天游客数量,即可得出方程.本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9.【答案】A【解析】解:将A点绕原点O逆时针旋转90°得到A1,即将Rt△OBA点绕原点O逆时针旋转90°得到Rt△OB1A1,如图,所以OB 1=OB =2,A 1B 1=AB =1,所以点A 1的坐标是(−1,2).故选A .将A 点绕原点O 逆时针旋转90°得到A 1,相当于将Rt △OBA 点绕原点O 逆时针旋转90°得到Rt △OB 1A 1,如图,然后根据旋转的性质得OB 1=OB =2,A 1B 1=AB =1,从而得到点A 1的坐标. 本题考查了坐标与图形变化−旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的旋转特殊角度如:30°,45°,60°,90°,180°.10.【答案】D【解析】解:∵抛物线对称轴x =−1,经过(1,0),∴−b 2a =−1,a +b +c =0,∴b =2a ,c =−3a ,∵a <0,∴b <0,c >0,∴ab >0且c >0,故①错误,∵抛物线对称轴x =−1,经过(1,0),∴(−2,0)和(0,0)关于对称轴对称,∴x =−2时,y >0,∴4a −2b +c >0,故②正确,∵抛物线与x 轴交于(−3,0),∴x =−4时,y <0,∴16a −4b +c <0,∵b =2a ,∴16a −8a +c <0,即8a +c <0,故③错误,∵c =−3a =3a −6a ,b =2a ,∴c =3a −3b ,故④正确,∵直线y =2x +2与抛物线y =ax 2+bx +c 两个交点的横坐标分别为x 1,x 2,∴方程ax 2+(b −2)x +c −2=0的两个根分别为x 1,x 2,∴x 1+x 2=−b−2a ,x 1⋅x 2=c−2a ,∴x1+x2+x1x2=−b−2a +c−2a=−2a−2a+−3a−2a=−5,故⑤错误,故选:D.根据二次函数的性质一一判断即可.本题考查二次函数与系数的关系,二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.【答案】9【解析】解:把x=3代入方程x2−6x+k=0,可得9−18+k=0,解得k=9.故答案为:9.把x=3代入原方程,得到关于k的一元一次方程,求解即可.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.本题考查的是一元二次方程的根即方程的解的定义,比较简单.12.【答案】(−1,−3).【解析】解:顶点坐标是(−1,−3).故答案为:(−1,−3).直接利用顶点式的特点可知顶点坐标.此题主要考查了二次函数的性质,根据顶点式得出顶点坐标是考查重点同学们应熟练掌握.13.【答案】−3【解析】解:∵点A(a,1)与点B(−3,b)关于原点对称,∴a=3,b=−1,故ab=3×(−1)=−3.故答案为:−3.直接利用关于原点对称点的性质得出a,b的值,进而得出答案.此题主要考查了关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.14.【答案】4042【解析】解:∵m为一元二次方程x2−3x−2020=0的一个根.∴m2−3m−2020=0,即m2−3m=2020,∴2m2−6m+2=2(m2−3m)+2=2×2020+2=4042.故答案为4042.利用一元二次方程的解的定义得到m2−3m=2020,再把2m2−6m+2变形为2(m2−3m)+2,然后利用整体代入的方法计算.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.【答案】(12−x)(8−x)=77【解析】【分析】此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是解本题的关键.把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【解答】解:∵道路的宽应为x米,∴由题意得,(12−x)(8−x)=77,故答案为(12−x)(8−x)=77.16.【答案】3【解析】∵y=−x2+10x−21=−(x−5)2+4,∴顶点坐标为(5,4),∵a=−1<0,∴抛物线开口向下,对称轴为直线x=5,∵当6≤x≤12时,y随着x的增大而减小,当x=6时,y最大值=−1+4=3,∴当6≤x≤12时,函数的最大值为3.根据二次函数解析式求出对称轴,根据x范围即可求得最大值.本题考查了二次函数的性质,二次函数的最值,求出对称轴分析增减性是解题的关键.17.【答案】(6059,2)【解析】解:第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,2),第五次P5(17,2),…发现点P的位置4次一个循环,∵2019÷4=504…3,P2019的纵坐标与P3相同为1,横坐标为10+12×504=6058,∴P2019(6058,1),故答案为(6058,1).首先求出P1~P5的坐标,探究规律后,利用规律解决问题.本题考查坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.18.【答案】解:3x(x−1)=2x−2,3x(x−1)−2(x−1)=0,(x−1)(3x−2)=0,∴x−1=0或3x−2=0,解得:x1=1,x2=2.3【解析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.19.【答案】解:∵抛物线的顶点为(0,4),∴设抛物线的解析式为y=ax2+4.将(−2,0)代入y=ax2+4,得:0=4a+4,解得:a=−1,∴抛物线的解析式为y=−x2+4.【解析】由抛物线的顶点可设出抛物线的顶点式,结合抛物线与x轴的交点坐标,利用待定系数法即可求出抛物线的解析式.本题考查了抛物线与x轴的交点、二次函数的三种形式以及待定系数法求二次函数解析式,巧设二次函数的顶点式是解题的关键.20.【答案】解:∵关于x的方程x2+ax+16=0有两个相等的实数根,∴Δ=a2−4×1×16=0,解得:a1=8,a2=−8,∴a的值为8或−8.【解析】根据方程的系数结合根的判别式Δ=0,即可得出关于a的一元二次方程,解之即可得出a 的值.本题考查了根的判别式,牢记“当Δ=0时,方程有两个相等的实数根”是解题的关键.21.【答案】解:(1)△BEF为等腰直角三角形,理由如下:∵△BFC逆时针旋转后能与△BEA重合,∴∠EBF=∠ABC=90°,BE=BF,∴△BEF为等腰直角三角形;(2)∵△BFC逆时针旋转后能与△BEA重合,∴∠BEA=∠BFC=90°,∴∠BEA+∠EBF=180°,∴AE//BF.【解析】(1)根据旋转的性质得∠EBF=∠ABC=90°,BE=BF,则可判断△BEF为等腰直角三角形;(2)根据旋转的性质得∠BEA=∠BFC=90°,从而根据平行线的判定方法可判断AE//BF.本题考查了几何变换问题,关键是根据旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等解答.22.【答案】(1)证明:△=[−(k+2)]2−8k=(k−2)2≥0,则k取任何实数值,方程总有实数根;(2)解:∵Rt△ABC斜边长a=3,另两边长b,c恰好是这个方程的两个根,∴a2=b2+c2,b+c=k+2,bc=2k则9=(b+c)2−2bc,9=(k+2)2−2×2k,解得:k=±√5,当k=−√5时,b+c=2+k=2−√5<0,不符合题意,舍去.当k=√5时,b+c=2+k=2+√5>0,符合题意故△ABC的周长C=a+b+c=3+2+√5=5+√5.【解析】此题主要考查了勾股定理以及根与系数的关系和根的判别式,正确将原式变形是解题关键.(1)直接利用根的判别式结合完全平方式得出答案;(2)直接利用勾股定理结合根与系数的关系得出答案.23.【答案】解:(1)由题意可得:y=(x−30)[600−10(x−40)]=−10x2+1300x−30000;(2)∵y=−10x2+1300x−30000,=−10(x−65)2+12250,故当x=65(元),最大利润为12250元【解析】(1)利用已知表示出每件的利润以及销量进而表示出总利润即可;(2)利用配方法求出二次函数最值即可得出答案.此题主要考查了二次函数的应用以及配方法求二次函数最值,得出y与x的函数关系是解题关键.24.【答案】解:(1)∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°.∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,∴△DEF≌△DMF(SAS),∴EF=MF.(2)设EF=MF=x,∵AE=CM=2,且BC=6,∴BM=BC+CM=6+2=8,∴BF=BM−MF=BM−EF=8−x,∵EB=AB−AE=6−2=4.在Rt△EBF中,由勾股定理得EB2+BF2=EF2.即42+(8−x)2=x2,∴解得:x=5,即FM=5.∴FC=FM−CM=5−2=3.【解析】(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=2,正方形的边长为6,用AB−AE求出EB的长,再由BC+CM 求出BM的长,设EF=MF=x,可得出BF=BM−FM=BM−EF=8−x,在直角三角形BEF 中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可解决问题.此题考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.25.【答案】解:(1)∵B的坐标为(1,0),∴OB=1.∵OC=3OB=3,点C在x轴下方,∴C(0,−3).∵将B(1,0),C(0,−3)代入抛物线的解析式得:{4a+c=0c=−3,解得:a=34,c=−3,∴抛物线的解析式为y=34x2+94x−3.(2)如图1所示:过点D作DE//y,交AC于点E.∵x=−b2a =−942×34=−32,B(1,0),∴A(−4,0).∴AB=5.∴S△ABC=12AB⋅OC=12×5×3=7.5.设AC的解析式为y=kx+b.∵将A(−4,0)、C(0,−3)代入得:{−4k+b=0b=−3,解得:k=−34,b=−3,∴直线AC的解析式为y=−34x−3.设D(a,34a2+94a−3),则E(a,−34a−3).∵DE=−34a−3−(34a2+94a−3)=−34(a+2)2+3,∴当a=−2时,DE有最大值,最大值为3.∴△ADC的最大面积=12DE⋅AO=12×3×4=6.∴四边形ABCD的面积的最大值为13.5.(3)存在.①如图2,过点C作CP1//x轴交抛物线于点P1,过点P1作P1E1//AC交x轴于点E1,此时四边形ACP1E1为平行四边形.∵C(0,−3),令34x2+94x−3=−3,∴x1=0,x2=−3.∴P1(−3,−3).②平移直线AC交x轴于点E2,E3,交x轴上方的抛物线于点P2,P3,当AC=P2E2时,四边形ACE2P2为平行四边形,当AC=P3E3时,四边形ACE3P3为平行四边形.∵C(0,−3),∴P2,P3的纵坐标均为3.令y=3得:34x2+94x−3=3,解得;x1=−3−√412,x2=−3+√412.∴P2(−3−√412,3),P3(−3+√412,3).综上所述,存在3个点符合题意,坐标分别是:P1(−3,−3),P2(−3−√412,3),P3(−3+√412,3).【解析】本题考查了二次函数综合题,涉及待定系数法求二次函数的解析式,二次函数求最值,平行四边形的判定与性质等知识,根据题意作出图形,利用数形结合求解是解答此题的关键,在解答(3)时要注意进行分类讨论.(1)根据OC=3OB,B(1,0),求出C点坐标(0,−3),把点B,C的坐标代入y=ax2+2ax+c,即可求出函数解析式;(2)过点D作DE//y轴分别交线段AC于点E.设D(m,m2+2m−3),然后求出DE的表达式,把S四边形ABCD分解为S△ABC+S△ACD,转化为二次函数求最值;(3)①过点C作CP1//x轴交抛物线于点P1,过点P1作P1E1//AC交x轴于点E1,此时四边形ACP1E1为平行四边形.②平移直线AC交x轴于点E,交x轴上方的抛物线于点P2,P3,由题意可知点P2、P3的纵坐标为3,从而可求得其横坐标.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年广东省东莞市九年级(上)期末数学试卷一、选择题(本大题共10小题,每题3分,每道题有且只有一个正确答案,共30分)1.(3分)下列四个图案中,是中心对称图形的是()A.B.C.D.2.(3分)点(﹣5,7)关于原点对称的点为()A.(﹣5,﹣7)B.(5,﹣7)C.(5,7)D.(﹣5,7)3.(3分)若x=2是方程x2﹣x+a=0的一个根,则()A.a=1B.a=2C.a=﹣1D.a=﹣24.(3分)已知方程2x2+3x﹣1=0有两个实数根x1,x2,则x1+x2=()A.﹣3B.﹣1C.﹣D.﹣5.(3分)已知方程x2+x+m=0有两个不相等的实数根,则()A.m<B.m≤C.m>D.m≥6.(3分)在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=3(x+1)2+2B.y=3(x+1)2﹣2C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣27.(3分)某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.8.(3分)如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3B.:C.4:9D.8:279.(3分)如图,AB是⊙O的弦,OC⊥AB于点C,若AB=4,OC=1,则⊙O的半径为()A.B.C.D.610.(3分)二次函数y=ax2+bx+c的图象如图所示,反比例函数y=与正比例函数y=cx 在同一坐标系内的大致图象是()A.B.C.D.二、填空题(共7小题,每小题4分,满分28分)11.(4分)反比例函数y=经过点(2,3),则k=.12.(4分)抛物线y=3(x﹣2)2+3的顶点坐标是.13.(4分)已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是个.14.(4分)已知方程x2﹣3x+1=0有一个根是m,则代数式4m2﹣12m+2024的值为.15.(4分)将三角形AOB绕顶点O旋转到如图所示的位置,若∠AOD=100°,∠AOC=20°,则∠BOA=.16.(4分)如图,已知⊙O的周长为4π,的长为π,则图中阴影部分的面积为.17.(4分)如图,在直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,△AOB 为正三角形,射线OC⊥AB,在OC上依次截取点P1,P2,P3,…,P n,使OP1=1,P1P2=3,P2P3=5,…,P n﹣1P n=2n﹣1(n为正整数),分别过点P1,P2,P3,…,P n向射线OA作垂线段,垂足分别为点Q1,Q2,Q3,…,Q n,则点Q n的坐标为.三、解答题(共3小题,每小题6分,共18分)18.(6分)解方程:x2﹣2x﹣1=0.19.(6分)小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1张牌,那么抽中20元奖品的概率为(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?20.(6分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AD=2,CD=4.求BD的长.四、解答题(共3小题,每小题8分,共24分)21.(8分)某种品牌的手机经过7、8月份连续两次降价,每部售价由2500元降到了1600元.若每次下降的百分率相同,请解答:(1)求每次下降的百分率;(2)若9月份继续保持相同的百分率降价,则这种品牌的手机售价为多少元?22.(8分)如图,一次函数y=x+m的图象与反比例函数y=的图象相交于A(2,1),B 两点.(1)求出反比例函数与一次函数的表达式;(2)请直接写出B点的坐标,并指出使反比例函数值大于一次函数值的x的取值范围.23.(8分)如图,边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B 的坐标分别是A(3,2),B(1,3).(1)作出△AOB绕点O逆时针旋转90°以后的图形;(2)求出点B在旋转过程中所经过的路径的长度;(3)点P在x轴上,当P A+PB的值最小时,求点P的坐标.五、解答题(共2小题,每小题10分,共20分)24.(10分)如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,交BC于点E,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)求证:DE•AD=PB•AC.25.(10分)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.(1)求点C的坐标和此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,BC,求△BCE面积的最大值;(3)点P在抛物线的对称轴上,若线段P A绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.2019-2020学年广东省东莞市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每题3分,每道题有且只有一个正确答案,共30分)1.(3分)下列四个图案中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念判断即可.【解答】解:A、不是中心对称图形,故本选项不合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不合题意;D、不是中心对称图形,故本选项不合题意.故选:B.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(3分)点(﹣5,7)关于原点对称的点为()A.(﹣5,﹣7)B.(5,﹣7)C.(5,7)D.(﹣5,7)【分析】直接利用关于原点对称点的性质得出答案.【解答】解:点(﹣5,7)关于原点对称的点为(5,﹣7).故选:B.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.3.(3分)若x=2是方程x2﹣x+a=0的一个根,则()A.a=1B.a=2C.a=﹣1D.a=﹣2【分析】由题意知x=2是方程x2﹣x+a=0的一个根,再根据一元二次方程的根的定义求解,代入x=2,即可求出.【解答】解:∵x=2是方程的根,由一元二次方程的根的定义,可得,22﹣2+a=0,解此方程得到a=﹣2.【点评】本题考查一元二次方程解的定义,把解代入方程易得出a的值.4.(3分)已知方程2x2+3x﹣1=0有两个实数根x1,x2,则x1+x2=()A.﹣3B.﹣1C.﹣D.﹣【分析】根据根与系数的关系x1+x2=﹣解答.【解答】解:∵方程2x2+3x﹣1=0有两个实数根x1,x2,∴x1+x2=﹣.故选:C.【点评】本题主要考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.5.(3分)已知方程x2+x+m=0有两个不相等的实数根,则()A.m<B.m≤C.m>D.m≥【分析】根据根的判别式即可求出答案.【解答】解:△=1﹣4m>0,∴m<,故选:A.【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.6.(3分)在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=3(x+1)2+2B.y=3(x+1)2﹣2C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣2【分析】先根据抛物线的顶点式得到抛物线y=3x2的对称轴为直线x=0,顶点坐标为(0,0),则抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线x=1,顶点坐标为(1,2),然后再根据顶点式即可得到平移后抛物线的解析式.【解答】解:∵抛物线y=3x2的对称轴为直线x=0,顶点坐标为(0,0),∴抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线x=1,顶点坐标为(1,2),∴平移后抛物线的解析式为y=3(x﹣1)2+2.【点评】本题考查了二次函数图象与几何变换:先把抛物线的解析式化为顶点式y=a(x ﹣k)2+h,其中对称轴为直线x=k,顶点坐标为(k,h),若把抛物线先右平移m个单位,向上平移n个单位,则得到的抛物线的解析式为y=a(x﹣k﹣m)2+h+n;抛物线的平移也可理解为把抛物线的顶点进行平移.7.(3分)某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.【分析】最后一个数字可能是0~9中任一个,总共有十种情况,其中开锁只有一种情况,利用概率公式进行计算即可.【解答】解:∵共有10个数字,∴一共有10种等可能的选择,∵一次能打开密码的只有1种情况,∴一次能打开该密码的概率为.故选:A.【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.8.(3分)如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3B.:C.4:9D.8:27【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【解答】解:两个相似三角形面积的比是(2:3)2=4:9.故选:C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.9.(3分)如图,AB是⊙O的弦,OC⊥AB于点C,若AB=4,OC=1,则⊙O的半径为()A.B.C.D.6【分析】根据垂径定理求出AC,根据勾股定理求出OA,即可得出答案.【解答】解:∵OC⊥AB,OC过O,∴CD=AB,∵AB=4,∴AC=2,在Rt△AOC中,由勾股定理得:OA==,即⊙O的半径是,故选:B.【点评】本题考查了垂径定理和勾股定理的应用,主要考查学生的推理能力和计算能力.10.(3分)二次函数y=ax2+bx+c的图象如图所示,反比例函数y=与正比例函数y=cx 在同一坐标系内的大致图象是()A.B.C.D.【分析】利用抛物线开口方向得到a<0,利用抛物线与y轴的交点位置得到c>0,然后根据反比例函数的性质和正比例函数的性质对各选项进行判断.【解答】解:由二次函数的图象得a<0,c>0,所以反比例函数y=分布在第二、四象限,正比例函数y=cx经过第一、三象限,所以C选项正确.故选:C.【点评】本题考查了反比例函数图象:反比例函数y=(k≠0)的图象为双曲线,当k >0,图象分布在第一、三象限;当k<0,图象分布在第二、四象限.也考查了正比例函数和二次函数图象.二、填空题(共7小题,每小题4分,满分28分)11.(4分)反比例函数y=经过点(2,3),则k=6.【分析】直接把点(2,3)代入反比例函数y=求出k的值即可.【解答】解:∵反比例函数y=经过点(2,3),∴3=,解得k=6.故答案为:6.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.(4分)抛物线y=3(x﹣2)2+3的顶点坐标是(2,3).【分析】直接由抛物线解析式可求得答案.【解答】解:∵y=3(x﹣2)2+3,∴抛物线顶点坐标为(2,3),故答案为:(2,3).【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.13.(4分)已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是8个.【分析】根据概率公式结合取出红球的概率即可求出袋中球的总个数.【解答】解:袋中球的总个数是:2÷=8(个).故答案为:8.【点评】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.14.(4分)已知方程x2﹣3x+1=0有一个根是m,则代数式4m2﹣12m+2024的值为2020.【分析】由题意可知:m2﹣3m+1=0,然后根据整体的思想即可求出答案.【解答】解:由题意可知:m2﹣3m+1=0,∴原式=4(m2﹣3m)+2024=4×(﹣1)+2024=2020,故答案为:2020.【点评】本题考查一元二次方程,解题的关键是正确理解一元二次方程的解的概念,本题属于基础题型.15.(4分)将三角形AOB绕顶点O旋转到如图所示的位置,若∠AOD=100°,∠AOC=20°,则∠BOA=80°.【分析】根据旋转的性质,即可得出答案.【解答】解:根据旋转的性质可得∠BOD=∠AOC=20°,所以∠BOA=∠AOD﹣∠BOD=100°﹣20°=80°.故答案为:80°.【点评】本题考查了旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.16.(4分)如图,已知⊙O的周长为4π,的长为π,则图中阴影部分的面积为π﹣2.【分析】首先根据⊙O的周长为4π,求出⊙O的半径;然后根据的长,可求得∠AOB =90°;最后用⊙O的面积的减去△AOB的面积,求出图中阴影部分的面积.【解答】解:∵⊙O的周长为4π,∴⊙O的直径是4,∴⊙O的直径是2,∵的长为π,∴的长等于⊙O的周长的,∴∠AOB=90°,∴S阴影=﹣=π﹣2.故答案为π﹣2.【点评】此题主要考查了扇形面积的计算,以及弧长的计算方法,要熟练掌握,解答此题的关键是要明确求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.17.(4分)如图,在直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,△AOB 为正三角形,射线OC⊥AB,在OC上依次截取点P1,P2,P3,…,P n,使OP1=1,P1P2=3,P2P3=5,…,P n﹣1P n=2n﹣1(n为正整数),分别过点P1,P2,P3,…,P n向射线OA作垂线段,垂足分别为点Q1,Q2,Q3,…,Q n,则点Q n的坐标为(n2,n2).【分析】利用特殊直角三角形求出OP n的值,再利用∠AOB=60°即可求出点Q n的坐标.【解答】解:∵△AOB为正三角形,射线OC⊥AB,∴∠AOC=30°,又∵P n﹣1P n=2n﹣1,P n Q n⊥OA,∴OQ n=(OP1+P1P2+P2P3+…+P n﹣1P n)=(1+3+5+…+2n﹣1)=n2,∴Q n的坐标为(n2•cos60°,n2•sin60°),∴Q n的坐标为(n2,n2).故答案为:(n2,n2).【点评】本题主要考查了坐标与图形性质,解题的关键是正确的求出OQ n的值.三、解答题(共3小题,每小题6分,共18分)18.(6分)解方程:x2﹣2x﹣1=0.【分析】先整理成一元二次方程的一般形式再利用求根公式求解,或者利用配方法求解皆可.【解答】解:解法一:∵a=1,b=﹣2,c=﹣1∴b2﹣4ac=4﹣4×1×(﹣1)=8>0∴∴,;解法二:(x﹣1)2=2∴∴,.【点评】命题意图:考查学生解一元二次方程的能力,且方法多样,可灵活选择.本题考查了解一元二次方程的方法,公式法适用于任何一元二次方程.方程ax2+bx+c=0的解为x=(b2﹣4ac≥0).19.(6分)小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1张牌,那么抽中20元奖品的概率为25%(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?【分析】(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用1除以4,求出抽中20元奖品的概率为多少即可.(2)首先应用树状图法,列举出随机翻2张牌,所获奖品的总值一共有多少种情况;然后用所获奖品总值不低于30元的情况的数量除以所有情况的数量,求出所获奖品总值不低于30元的概率为多少即可.【解答】解:(1)∵1÷4=0.25=25%,∴抽中20元奖品的概率为25%.故答案为:25%.(2),∵所获奖品总值不低于30元有4种情况:30元、35元、30元、35元,∴所获奖品总值不低于30元的概率为:4÷12==.【点评】(1)此题主要考查了概率公式,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)此题还考查了列举法与树状图法求概率问题,解答此类问题的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.20.(6分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AD=2,CD=4.求BD的长.【分析】由在Rt△ABC中,∠ACB=90°,CD⊥AB,根据同角的余角相等,可得∠ACD =∠B,又由∠CDB=∠ACB=90°,可证得△ACD∽△CBD,然后利用相似三角形的对应边成比例,即可求得答案.【解答】解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∴△ACD∽△CBD,∴=,∵AD=2,CD=4,∴=,∴BD=8.【点评】本题考查了相似三角形的判定与性质以及直角三角形的性质.此题难度不大,解题的关键是掌握有两角对应相等的三角形相似与相似三角形的对应边成比例定理的应用.四、解答题(共3小题,每小题8分,共24分)21.(8分)某种品牌的手机经过7、8月份连续两次降价,每部售价由2500元降到了1600元.若每次下降的百分率相同,请解答:(1)求每次下降的百分率;(2)若9月份继续保持相同的百分率降价,则这种品牌的手机售价为多少元?【分析】(1)设每次下降的百分率为x,根据该种品牌手机的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据该种品牌手机9月份的售价=该种品牌手机8月份的售价×(1﹣下降率),即可求出结论.【解答】解:(1)设每次下降的百分率为x,依题意,得:2500(1﹣x)2=1600,解得:x1=0.2=20%,x2=1.8(不合题意,舍去).答:每次下降的百分率为20%.(2)1600×(1﹣20%)=1280(元).答:若9月份继续保持相同的百分率降价,则这种品牌的手机售价为1280元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(8分)如图,一次函数y=x+m的图象与反比例函数y=的图象相交于A(2,1),B 两点.(1)求出反比例函数与一次函数的表达式;(2)请直接写出B点的坐标,并指出使反比例函数值大于一次函数值的x的取值范围.【分析】(1)先将点A(2,1)代入y=求得k的值,再将点A(2,1)代入反比例函数的解析式求得n,最后将A、B两点的坐标代入y=x+m,求得m即可.(2)当反比例函数的值大于一次例函数的值时,即一次函数的图象在反比例函数的图象下方时,x的取值范围.【解答】解:(1)将A(2,1)代入y=中,得k=2×1=2,∴反比例函数的表达式为y=,将A(2,1)代入y=x+m中,得2+m=1,∴m=﹣1,∴一次函数的表达式为y=x﹣1;(2)B(﹣1,﹣2);当x<﹣1或0<x<2时,反比例函数的值大于一次函数的值.【点评】本题考查了反比例函数与一次函数的交点问题,是一道综合题目,解题过程中注意数形结合的应用,是中档题,难度不大.23.(8分)如图,边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B 的坐标分别是A(3,2),B(1,3).(1)作出△AOB绕点O逆时针旋转90°以后的图形;(2)求出点B在旋转过程中所经过的路径的长度;(3)点P在x轴上,当P A+PB的值最小时,求点P的坐标.【分析】(1)根据旋转的性质即可作出△AOB绕点O逆时针旋转90°以后的图形;(2)结合(1)即可求出点B在旋转过程中所经过的路径的长度;(3)根据两点之间线段最短,作点A关于x轴的对称点A″,连接A″B交x轴于点P,此时P A+PB的值最小,进而可以求点P的坐标.【解答】解:(1)如图,△A′OB′即为△AOB绕点O逆时针旋转90°以后的图形;(2)点B在旋转过程中所经过的路径的长度为:=;(3)作点A关于x轴的对称点A″,连接A″B交x轴于点P,此时P A+PB的值最小,点P的坐标为:(2,0).【点评】本题考查了作图﹣旋转变换、轨迹、轴对称﹣最短路线问题,解决本题的关键是掌握旋转变换.五、解答题(共2小题,每小题10分,共20分)24.(10分)如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,交BC于点E,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)求证:DE•AD=PB•AC.【分析】(1)连接OD,由角平分线定义得∠BAD=∠DAC,由圆周角定理得,则BD=CD,由等腰三角形的性质得OD⊥BC,由PD∥BC,得PD⊥OD,即可得出结论;(2)由弦切角定理得∠PDB=∠BAD,证出∠PDB=∠DAC,由圆内接四边形的性质得∠PBD=∠DCA,即可得出△PBD∽△DCA;(3)由圆周角定理得∠BAD=∠DBC,证△BDE∽△ADB,得出DB2=DE•AD,由(2)得△PBD∽△DCA,得出DB•DC=PB•AC,则DB2=PB•AC,即可得出结论.【解答】证明:(1)连接OD,如图所示:∵∠BAC的平分线交⊙O于点D,∴∠BAD=∠DAC,∴,∴BD=CD,∵O是BC的中点,∴OD⊥BC,∵PD∥BC,∴PD⊥OD,又∵OD是⊙O的半径,∴PD是⊙O的切线;(2)∵∠PDB=∠BAD,∠BAD=∠DAC,∴∠PDB=∠DAC,又∵∠PBD=∠DCA,∴△PBD∽△DCA;(3)由(1)得:,∴∠BAD=∠DBC,DB=DC,又∵∠BDE=∠ADB,∴△BDE∽△ADB,∴=,∴DB2=DE•AD,由(2)得:△PBD∽△DCA,∴=,∴DB•DC=PB•AC,∴DB2=PB•AC,∴DE•AD=PB•AC.【点评】本题是圆的综合题目,考查了切线的判定与性质,圆周角定理,圆心角、弧、弦之间的关系,等腰三角形的性质,相似三角形的判定与性质,圆内接四边形的性质,平行线的性质等知识;本题综合性强,熟练掌握切线的判定与性质和圆周角定理,证明三角形相似是解题的关键.25.(10分)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.(1)求点C的坐标和此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,BC,求△BCE面积的最大值;(3)点P在抛物线的对称轴上,若线段P A绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.【分析】(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)如图2,连接BC,过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0),可得EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a,根据S△BEC=S四边形BOCE﹣S△BOC,构建二次函数,利用二次函数的性质求解即可.(3)由P在抛物线的对称轴上,设出P坐标为(﹣1,m),如图所示,过A′作A′N ⊥对称轴于N,由旋转的性质得到一对边相等,再由同角的余角相等得到一对角相等,根据一对直角相等,利用AAS得到△A′NP≌△PMA,由全等三角形的对应边相等得到A′N=PM=|m|,PN=AM=2,表示出A′坐标,将A′坐标代入抛物线解析式中求出相应m的值,即可确定出P的坐标.【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴OB=3,∵OC=OB,∴OC=3,∴c=3,∴,解得:,∴所求抛物线解析式为:y=﹣x2﹣2x+3,C(0,3).(2)如图2,连接BC,过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0),∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a,∴S△BEC=S四边形BOCE﹣S△BOC=BF•EF+(OC+EF)•OF﹣•OB•OC=(a+3)•(﹣a2﹣2a+3)+(﹣a2﹣2a+6)•(﹣a)﹣=﹣a2﹣a=﹣(a+)2+,∴当a=﹣时,S△BEC最大,且最大值为.(3)∵抛物线y=﹣x2﹣2x+3的对称轴为x=﹣1,点P在抛物线的对称轴上,∴设P(﹣1,m),∵线段P A绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,①当m≥0时,∴P A=P A1,∠AP A1=90°,如图3,过A1作A1N⊥对称轴于N,设对称轴于x轴交于点M,∴∠NP A1+∠MP A=∠NA1P+∠NP A1=90°,∴∠NA1P=∠NP A,在△A1NP与△PMA中,,∴△A1NP≌△PMA(AAS),∴A1N=PM=m,PN=AM=2,∴A1(m﹣1,m+2),代入y=﹣x2﹣2x+3得:m+2=﹣(m﹣1)2﹣2(m﹣1)+3,解得:m=1,m=﹣2(舍去),②当m<0时,要使P2A=P2A2,由图可知A2点与B点重合,∵∠AP2A2=90°,∴MP2=MA=2,∴P2(﹣1,﹣2),∴满足条件的点P的坐标为P(﹣1,1)或(﹣1,﹣2).【点评】本题考查了全等三角形的判定与性质,待定系数法求二次函数,二次函数的性质,四边形的面积,综合性较强,难度适中.利用数形结合、分类讨论及方程思想是解题的关键.。

相关文档
最新文档