专题1.2相交线与平行线(精讲精练)(解析版)【北师大版】

合集下载

压轴题02:相交线与平行线综合专练20题(解析版)-年七年级数学下学期期末精选题汇编(北师大版)

压轴题02:相交线与平行线综合专练20题(解析版)-年七年级数学下学期期末精选题汇编(北师大版)

压轴题02:相交线与平行线综合专练20题(解析版)一、单选题1.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE 的度数是()A.102°B.108°C.124°D.128°【答案】A【分析】先由矩形的性质得出∠BFE=∠DEF=26°,再根据折叠的性质得出∠CFG=180°-2∠BFE,∠CFE=∠CFG-∠EFG即可.【详解】∠四边形ABCD是矩形,∠AD∠BC,∠∠BFE=∠DEF=26°,∠∠CFE=∠CFG-∠EFG=180°-2∠BFE-∠EFG=180°-3×26°=102°,故选A.【点睛】本题考查了翻折变换(折叠问题)、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键.2.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,1)的点的个数有()A.2个B.3个C.4个D.5个【答案】C【分析】首先根据题意,可得距离坐标为(2,1)的点是到l1的距离为2,到l2的距离为1的点;然后根据到l1的距离为2的点是两条平行直线,到l2的距离为1的点也是两条平行直线,可得所求的点是以上两组直线的交点,一共有4个,据此解答即可.【详解】解:如图1,,到l 1的距离为2的点是两条平行直线l 3、l 4,到l 2的距离为1的点也是两条平行直线l 5、l 6,∠两组直线的交点一共有4个:A 、B 、C 、D ,∠距离坐标为(2,1)的点的个数有4个.故选C .【点睛】此题主要考查了点的坐标,以及对“距离坐标”的含义的理解和掌握,解答此题的关键是要明确:到l 1的距离为2的点是两条平行直线,到l 2的距离为1的点也是两条平行直线.3.如图1n //AB CB ,则∠1+∠2+∠3+…+∠n=( )A .540°B .180°nC .180°(n-1)D .180°(n+1)【答案】C【分析】 根据题意,作21//DB AB ,31//EB AB ,41//FB AB ,由两直线平行,同旁内角互补,即可求出答案.【详解】解:根据题意,作21//DB AB ,31//EB AB ,41//FB AB ,∠1n //AB CB ,∠121180B B D ∠+∠=︒,2323180DB B B B E ∠+∠=︒,3434180EB B B B F ∠+∠=︒,……∠122323343411803B B D DB B B B E EB B B B F ∠+∠+∠+∠+∠+∠=︒⨯,……∠123180(1)n n ∠+∠+∠++∠=︒⨯-;故选:C .【点睛】本题考查了平行线的性质,解题的关键是正确作出辅助线,熟练运用两直线平行同旁内角互补进行证明.4.如果两个角的两边分别平行,而其中一个角比另一个角的3倍少20°,那么这两个角是( ) A .50°、130°B .都是10°C .50°、130°或10°、10°D .以上都不对 【答案】C【分析】首先由两个角的两边分别平行,可得这两个角相等或互补.然后设其中一角为x °,由其中一个角比另一个角的3倍少20°,然后分别从两个角相等与互补去分析,即可求得答案,注意别漏解.【详解】解:∠两个角的两边分别平行,∠这两个角相等或互补.设其中一角为x °,若这两个角相等,则x =3x ﹣20,解得:x =10,∠这两个角的度数是10°和10°;若这两个角互补,则180﹣x =3x ﹣20,解得:x =50,∠这两个角的度数是50°和130°.∠这两个角的度数是50°、130°或10°、10°.故选:C .【点睛】此题考查了平行线的性质与一元一次方程的解法.此题难度适中,解题的关键是掌握如果两个角的两边分别平行,则这两个角相等或互补,注意方程思想的应用.5.如图,已知//AB CD ,M 为平行线之间一点连接AM ,CM ,N 为AB 上方一点,连接AN ,CN ,E 为NA 延长线上一点.若AM ,CM 分别平分BAE ∠,DCN ∠,则M ∠与N ∠的数量关系为( ).A .90M N ∠-∠=︒B .2180M N ∠-∠=︒C .180M N ∠+∠=︒D .2180M N ∠+∠=︒【答案】B【分析】 过点M 作//MO AB ,过点N 作//NP AB ,则//////MO AB CD NP ,根据平行线的性质可得12AMC ∠=∠+∠,223CNE ∠=∠-∠,318021∠=︒-∠,即可得出结论.【详解】解:过点M 作//MO AB ,过点N 作//NP AB ,//AB CD ,//////MO AB CD NP ∴,1AMO ∴∠=∠,OMC MCD ∠=∠, AM ,CM 分别平分BAE ∠,DCN ∠,21BAE ∴∠=∠,22NCD ∠=∠,2MCD ∠=∠,12AMC ∴∠=∠+∠,//CD NP ,22PNC NCD ∴∠=∠=∠,223CNE ∴∠=∠-∠,//NP AB ,∴∠=∠=︒-∠,NAB31802122(18021)2(12)1802180CNE AMC ∴∠=∠-︒-∠=∠+∠-︒=∠-︒,2180AMC CNE ∴∠-∠=︒,故选:B .【点睛】本题考查了平行线的性质,邻补角的定义,解题的关键是熟练掌握平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6.如图,△ABC 中,∠ACB =90°,AC =3,BC =4,AB =5,P 为直线AB 上一动点,连接PC ,则线段PC 的最小值是( )A .3B .2.5C .2.4D .2【答案】C【分析】 当PC ∠AB 时,PC 的值最小,利用面积法求解即可.【详解】解:在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,AB =5,∠当PC ∠AB 时,PC 的值最小,此时:△ABC 的面积=12•AB •PC =12•AC •BC ,∠5PC =3×4,∠PC =2.4,故选:C .【点睛】本题主要考查了垂线段最短和三角形的面积公式,解题的关键是学会利用面积法求高.7.如图,已知直线AB 、CD 被直线AC 所截,//AB CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设BAE α∠=,DCE β∠=.下列各式:∠αβ+,∠αβ-,∠a β-,∠360αβ︒--,AEC ∠的度数可能是( )A.∠∠B.∠∠C.∠∠∠D.∠∠∠∠【答案】D【分析】由题意根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB∠CD,可得∠AOC=∠DCE1=β,∠∠AOC=∠BAE1+∠AE1C,∠∠AE1C=β-α.(2)如图2,过E2作AB平行线,则由AB∠CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∠∠AE2C=α+β.(3)如图3,由AB∠CD,可得∠BOE3=∠DCE3=β,∠∠BAE3=∠BOE3+∠AE3C,∠∠AE3C=α-β.(4)如图4,由AB∠CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∠∠AE4C=360°-α-β.(5)(6)当点E在CD的下方时,同理可得∠AEC=α-β或β-α.综上所述,∠AEC的度数可能为β-α,α+β,α-β,360°-α-β,即∠∠∠∠.故选:D.【点睛】本题主要考查平行线的性质的运用,解题时注意两直线平行,同位角相等;两直线平行,内错角相等以及分类讨论.8.∠如图1,AB∥CD,则∠A+∠E+∠C=180°;∠如图2,AB∥CD,则∠E=∠A+∠C;∠如图3,AB ∥CD,则∠A+∠E-∠1=180°;∠如图4,AB∥CD,则∠A=∠C+∠P.以上结论正确的个数是()A.∠∠∠∠B.∠∠∠C.∠∠∠D.∠∠∠【答案】C【分析】∠过点E作直线EF AB∥,由平行线的性质即可得出结论;∠过点E作直线EF AB∥,由平行线的性质即可得出结论;∠过点E作直线EF AB∥,由平行线的性质可得出∠A+∠E-∠1=180°;∠先过点P作直线PF AB∥,再根据两直线平行,内错角相等和同位角相等即可作出判断.【详解】∥,解:∠过点E作直线EF AB∥∥,∠∠A+∠1=180°,∠2+∠C=180°,∠AB CD∥,∠AB CD EF∠∠A+∠C+∠AEC=360°,故∠错误;∠过点E作直线EF AB∥,∠AB CD∥,∥∥,∠∠A=∠1,∠2=∠C,∠AB CD EF∠∠AEC=∠A+∠C,即∠AEC=∠A+∠C,故∠正确;∠过点E作直线EF AB∥,∥∥,∠∠A+∠3=180°,∠1=∠2,∠AB CD∥,∠AB CD EF∠∠A+∠AEC-∠2=180°,即∠A+∠AEC-∠1=180°,故∠正确;∠如图,过点P作直线PF AB∥,∠AB CD∥∥,∥,∠AB CD PF∠∠1=∠FP A,∠C=∠FPC,∠∠FP A=∠FPC+∠CP A,∠∠1=∠C+∠CP A,∠AB ∠CD ,∠∠A =∠1,即∠A =∠C+∠C P A ,故∠正确.综上所述,正确的小题有∠∠∠.故选:C .【点睛】本题考查的是平行线的性质及平行公理的推论,根据题意作出辅助线是解答此题的关键. 9.如图,//,AD BC D ABC ∠=∠,点E 是边DC 上一点,连接AE 交BC 的延长线于点H ,点F 是边AB 上一点,使得FBE FEB ∠=∠,作FEH ∠的角平分线EG 交BH 于点G ,若100DEH ︒∠=,则BEG ∠的度数是( ).A .30︒B .40︒C .50︒D .60︒【答案】B【分析】 AD ∠BC ,∠D =∠ABC ,则AB ∠CD ,则∠AEF =180°-∠AED -∠BEG =180°-2β,在△AEF 中,100°+2α+180°-2β=180°,故β-α=40°,即可求解.【详解】解:设FBE =∠FEB =α,则∠AFE =2α,∠FEH 的角平分线为EG ,设∠GEH =∠GEF =β,∠AD ∠BC ,∠∠ABC +∠BAD =180°,而∠D =∠ABC ,∠∠D +∠BAD =180°,∠AB ∠CD ,∠DEH=100°,则∠CEH=∠F AE=80°,∠AEF=180°-∠FEG-∠BEG=180°-2β,在∠AEF中,在∠AEF中,80°+2α+180-2β=180°,故β-α=40°,而∠BEG=∠FEG-∠FEB=β-α=40°,故选:B.【点睛】此题考查平行线的性质,解题关键是落脚于∠AEF内角和为180°,即100°+2α+180°-2β=180°,题目难度较大.10.如图,直线AB MN∥,点C为直线MN上一点,连接AC、BC,∠CAB=40°,∠ACB=90°,∠BAC 的角平分线交MN于点D,点E是射线AD上的一个动点,连接CE、BE,∠CED的角平分线交MN于点F.当∠BEF=70°时,令ECMα∠=,用含α的式子表示∠EBC为().A.52αB.10α︒-C.1102α︒-D.1102α-︒【答案】D【分析】先求出∠ABC,再延长CE,交AB于点G,结合平行线的性质表示出∠BCE,然后根据三角形内角和定理表示∠CED,再根据角平分线得定义表示出∠CEB,最后根据三角形内角和定理得出答案.【详解】在∠ABC中,∠CAB=40°,∠ACB=90°,∠∠ABC=50°.延长CE,交AB于点G,∠MN BA∥,∠EGBα∠=,∠ACM=∠BAC=40°,∠∠ACE=α-40°,∠∠BCE=90°-(α-40°)=130°-α.∠∠CEA=180°-∠CAE-∠ACE,∠∠CED=180°-∠CEA=∠CAE+∠ACE=20°+(α-40°)=α-20°.∠EF平分∠CED,∠∠CEF=111022CEDα∠=-︒,∠∠CEB=1110706022αα-︒+︒=+︒,∠∠EBC=11180(60)(130)10 22ααα︒-+︒-︒-=-︒.故选:D.【点睛】本题主要考查了角平分线的定义,三角形内角和定理,平行线的性质,将待求角转化到适合的三角形是解题的关键.二、填空题11.如图,已知,∠ABG为锐角,AH∠BG,点C从点B(C不与B重合)出发,沿射线BG的方向移动,CD∠AB交直线AH于点D,CE∠CD交AB于点E,CF∠AD,垂足为F(F不与A重合),若∠ECF =n°,则∠BAF的度数为_____度.(用n来表示)【答案】n或180﹣n【分析】分两种情况讨论:当点M在线段BC上;点C在BM延长线上,根据平行线的性质,即可得到结论.【详解】解:过A作AM∠BC于M,如图1,当点C在BM延长线上时,点F在线段AD上,∠AD∠BC,CF∠AD,∠CF∠BG,∠∠BCF=90°,∠∠BCE+∠ECF=90°,∠CE∠AB,∠∠BEC=90°,∠∠B+∠BCE=90°,∠∠B=∠ECF=n°,∠AD∠BC,∠∠BAF=180°﹣∠B=180°﹣n°,过A作AM∠BC于M,如图2,当点C在线段BM上时,点F在DA延长线上,∠AD∠BC,CF∠AD,∠CF∠BG,∠∠BCF=90°,∠∠BCE+∠ECF=90°,∠CE∠AB,∠∠BEC=90°,∠∠B+∠BCE=90°,∠∠B=∠ECF=n°,∠AD∠BC,∠∠BAF=∠B=n°,综上所述,∠BAF的度数为n°或180°﹣n°,故答案为:n或180﹣n.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.12.镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN、QP上分别放置A、B两盏激光灯,如图所示.A灯发出的光束自AM逆时针旋转至AN便立即回转;B灯发出的光束自BP逆时针旋转至BQ便立即回转,两灯不间断照射,A灯每秒转动12°,B灯每秒转动4°.B灯先转动12秒,A灯才开始转动.当B灯光束第一次到达BQ之前,两灯的光束互相平行时A灯旋转的时间是.【答案】6秒或19.5秒【分析】设A灯旋转t秒,两灯光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),推出t≤45−12,即t≤33.利用平行线的性质,结合角度间关系,构建方程即可解答.【详解】解:设A灯旋转t秒,两灯的光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),∠t≤45﹣12,即t≤33.由题意,满足以下条件时,两灯的光束能互相平行:∠如图,∠MAM'=∠PBP',12t=4(12+t),解得t=6;∠如图,∠NAM'+∠PBP'=180°,12t﹣180+4(12+t)=180,解得t=19.5;综上所述,满足条件的t的值为6秒或19.5秒.故答案为:6秒或19.5秒.【点睛】本题主要考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,已知AD∥CE,∠BCF=∠BCG,CF与∠BAH的平分线交于点F,若∠AFC的余角等于2∠B 的补角,则∠BAH的度数是_____.【答案】60°##60度【分析】首先设∠BAF=x°,∠BCF=y°,过点B作BM AD,过点F作FN AD,根据平行线的性质,可得∠AFC =(x+2y)°,∠ABC=(2x+y)°,又由∠F的余角等于2∠B的补角,可得方程:90﹣(x+2y)=180﹣2(2x+y),继而求得答案.【详解】解:设∠BAF=x°,∠BCF=y°,∠∠BCF=∠BCG,CF与∠BAH的平分线交于点F,∠∠HAF=∠BAF=x°,∠BCG=∠BCF=x°,∠BAH=2x°,∠GCF=2y°,过点B作BM AD,过点F作FN AD,如图所示:∠AD CE,∠AD FN BM CE ,∠∠AFN =∠HAF =x °,∠CFN =∠GCF =2y °,∠ABM =∠BAH =2x °,∠CBM =∠GCB =y °,∠∠AFC =(x +2y )°,∠ABC =(2x +y )°,∠∠F 的余角等于2∠B 的补角,∠90﹣(x +2y )=180﹣2(2x +y ),解得:x =30,∠∠BAH =60°.故答案为:60°【点睛】此题考查了平行线的性质与判定以及余角、补角的定义.此题难度适中,注意掌握辅助线的作法,掌握数形结合思想与方程思想的应用.14.如图,已知AB //CD ,BE 、DE 的交点为E ,现作如下操作:第一次操作,分别作∠ABE 和∠CDE 的平分线,交点为E 1,第二次操作,分别作∠ABE 1和∠CDE 1的平分线,交点为E 2,第三次操作,分别作∠ABE 2和∠CDE 2的平分线,交点为E 3,...第n (n ≥2)次操作,分别作∠ABEn ﹣1和∠CDEn ﹣1的平分线,交点为En ,若∠En =α度,则∠BED =___度.【答案】2n a【分析】先过E 作//EF AB ,确定BED ABE CDE ∠=∠+∠,再根据角平分线的性质确定n E ∠与BED ∠的关系,即可求解.【详解】解:如下图,过E 作//EF AB ,∠//AB CD ,∠////AB EF CD ,∠B BEF D DEF ∠=∠∠=∠,,∠BED BEF DEF ∠=∠+∠,∠BED ABE CDE ∠=∠+∠;如下图,∠ABE ∠和CDE ∠的平分线交点为1E ∠111111222DE B ABE CDE ABE CDE BED ∠=∠+∠=∠+∠=∠ ∠1ABE ∠和1CDE ∠的平分线交点为2E , ∠22211111122412BE ABE CDE ABE CD E D E DE B B D ∠=∠+∠=∠+∠∠=∠=; ∠2ABE ∠和2CDE ∠的平分线交点为3E , ∠33322211122812BE ABE CDE ABE CD E D E DE B B D ∠=∠+∠=∠+∠∠=∠=; … 以此类推,12n n E BED ∠=∠ ∠当n E α∠=度时,2n BED α∠=度.故答案为2n α .【点睛】本题主要考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,找到角之间的关系.15.如图,直线,,AB CD EF 与直线,,GH IJ KL 分别相交,图中的同位角共有__________对.【答案】156【分析】观察图形,直线 GH,IJ,KL 上,每条直线有5个交点,直线AB,CD,EF 上,每条直线有3个交点,每个交点存在4个角,根据每2个交点可以构成4对同位角,分别求得直线GH,IJ,KL 和AB,CD,EF 上的同位角的对数即可.【详解】观察图形,直线,,GH IJ KL 上,每条直线有5个交点,直线,,AB CD EF 上,每条直线有3个交点,每个交点存在4个角,则直线,,GH IJ KL 上存在的同位角的个数是:5(51)4310434031202-⨯⨯=⨯⨯=⨯=对,同理直线,,AB CD EF 上存在的同位角的个数是:3(31)43362-⨯⨯=对, 则总数是12036156+=对.故答案为:156.【点睛】 本题考查了找同位角,分类讨论是解题的关键.三、解答题16.探究并尝试归纳:(1)如图1,已知直线a 与直线b 平行,夹在平行线间的一条折线形成一个角∠A ,试求∠1+∠2+∠A 的度数,请加以说明.(2)如图2,已知直线a 与直线b 平行,夹在平行线间的一条折线增加一个折,形成两个角∠A 和∠B,请直接写出∠1+∠2+∠A +∠B = 度.(3)如图3,已知直线a 与直线b 平行,夹在平行线间的一条折线每增加一个折,就增加一个角.当形成n 个折时,请归纳并写出所有角与∠1、∠2的总和: 【结果用含有n 的代数式表示,n 是正整数,不用证明】【答案】(1)360°(2)540(3)180(1)n ⋅+︒【分析】(1)过A 作AB //直线a ,再根据平行线的性质即可得到结论;(2)过A 作AC //直线a ,BD //直线a ,则AC//BD //直线b ,根据平行线的性质即可得到结论; (3)根据平行线的性质即可得到结论.(1)解:过A 作AB //直线a ,则AB //直线b ,1342180∴∠+∠=∠+∠=︒,12360MAN ∴∠+∠+∠=︒;(2)解:过A 作AC //直线a ,BD //直线a ,则AC //BD //直线b ,135642180∴∠+∠=∠+∠=∠+∠=︒,12540MAB ABN ∴∠+∠+∠+∠=︒,故答案为:540;(3)解:由(1),(2)知,当形成1个折时,所有角与1∠、2∠的总和180(11)360=⋅+︒=︒,当形成2个折时,所有角与1∠、2∠的总和180(21)540=⋅+︒=︒,当形成n 个折时,所有角与1∠、2∠的总和180(1)n =⋅+︒,故答案为:180(1)n ⋅+︒.【点睛】本题考查了平行线的性质,正确的作出图形是解题的关键.17.如图,已知AB CD ∥,E 、F 分别在AB CD 、上,点G 在AB 、CD 之间,连接GE GF 、.(1)当40BEG ∠=︒时,EP 平分,BEG FP ∠平分DFG ∠;∠如图1,当EG FG ⊥时,则P ∠=______°;∠如图2,在CD 的下方有一点Q ,若EG 恰好平分,BEQ FD ∠恰好平分GFQ ∠,求2Q P ∠+∠的度数;(2)在AB 的上方有一点O ,若FO 平分GFC ∠.线段GE 的延长线平分OEA ∠,则当100EOF EGF ∠+∠=︒时,直接写出OEA ∠与OFC ∠的关系.【答案】(1)∠45;∠140︒(2)3160OEA OFC ∠-∠=︒【分析】(1)根据平行线的性质,以及角平分线的定义即可求解;(2)过点O 作OT AB ∥,则OT CD ∥设OFC OFG ∠=∠β=,OEH HEA α∠=∠=,1802G BEG GFD αβ∠=∠+∠=+︒-,根据平行线的性质求得80αβ+=︒,进而根据()33222160OEA OFC ββαβα∠-∠=--=+=︒即可求解.(1)∠如图,分别过点,G P 作,GN AB PM AB ∥∥,BEG EGN ∴∠=∠,AB CD ∥,NGF GFD ∴∠=∠,EGF BEG GFD ∴∠=∠+∠,同理可得EPF BEP PFD ∠=∠+∠,EG FG ⊥,90EGF ∴∠=︒,EP 平分,BEG FP ∠平分DFG ∠;11,22BEP BEG PFD GFD ∴∠=∠∠=∠, ∴()114522EPP BEG GFD EGF ∠=∠+∠=∠=︒, 故答案为:45,∠如图,过点Q 作QR CD ∥,40BEG ∠=︒,EG 恰好平分,BEQ FD ∠恰好平分GFQ ∠,40GEQ BEG ∴∠=∠=︒,GFQ QFD ∠=∠,设GFQ QFD ∠=∠α=,QR CD ∥,AB CD ∥,1801802100EQR QEB QEG ∴∠=︒-∠=︒-∠=︒,CD QR ∥,180DFQ FQR ∴∠+∠=︒,180FQR α∴+∠=︒,100FQE α∴+∠=︒,100FQE α∴∠=︒-,由(1)可知240G P BEG EFD α∠=∠=∠+∠=︒+,210040140FQE P αα∴∠+∠=︒-+︒+=︒;(2)如图,在AB 的上方有一点O ,若FO 平分GFC ∠,线段GE 的延长线平分OEA ∠,设H 为线段GE 的延长线上一点,则OFC OFG ∠=∠,OEH HEA ∠=∠设OFC OFG ∠=∠β=,OEH HEA α∠=∠=如图,过点O 作OT AB ∥,则OT CD ∥TOF OFC β∴∠=∠=,2TOE OEA α∠=∠=2EOF βα∴∠=-HEA BEG α∠=∠=,1802GFD β∠=︒-由(1)可知1802G BEG GFD αβ∠=∠+∠=+︒-100EOF EGF ∠+∠=︒∴2βα-+1802αβ+︒-100=︒80αβ∴+=︒2,OFC OEA βα∠=-∠=β()33222160OEA OFC ββαβα∴∠-∠=--=+=︒即3160OEA OFC ∠-∠=︒【点睛】本题考查了平行线的性质,以及角平分线的定义,掌握平行线的性质是解题的关键.18.点O 是直线AB 上的一点,射线OC 从OA 出发绕点O 顺时针方向旋转,旋转到OB 停止,设AOC α∠=(0180α︒≤≤︒),射线OD OC ⊥,作射线OE 平分BOD ∠.(1)如图1,若40α=︒,且OD 在直线AB 的上方,求DOE ∠的度数(要求写出简单的几何推理过程).(2)射线OC 顺时针旋转一定的角度得到图2,当射线OD 在直线AB 的下方时,其他条件不变,请你用含α的代数式表示DOE ∠的度数,(要求写出简单的几何推理过程).(3)射线OC 从OA 出发绕点O 顺时针方向旋转到OB ,在旋转过程中你发现DOE ∠与AOC∠(01800180AOC DOB ︒≤∠≤︒︒≤∠≤︒,)之间有怎样的数量关系?请你直接用含α的代数式表示DOE ∠的度数.【答案】(1)25DOE ∠=︒ (2)1452DOE α∠=-︒ (3)1452DOE AOC ∠=︒-∠即1452DOE α∠=︒-或1452DOE AOC ∠=︒+∠即1452DOE α∠=︒+或11352DOE AOC ∠=︒-∠即11352DOE α∠=︒-或1452DOE AOC ∠=∠-︒即1452DOE α∠=-︒ 【分析】(1)根据40α=︒,∠COD =90°,求出∠BOD =50°,根据OE 平分∠BOD ,即可得出结果;(2)先用α表示出∠BOC ,再根据∠COD =90°表示出∠BOD ,根据OE 平分∠BOD ,即可得出结果; (3)分四种情况进行讨论,分别求出∠DOE 与∠AOC 的关系,用含α的代数式表示∠DOE 的度数即可.(1)解:∠OD ∠OC ,∠∠COD =90°,∠40α=︒,即40AOC ∠=︒,∠18050BOD COD AOC ∠=︒-∠-∠=︒,∠OE 平分∠BOD , ∠1252DOE BOD ∠=∠=︒. (2)AOC α∠=,180BOC α∴∠=︒-,∠OD ∠OC ,∠∠COD =90°,∠BOD COD BOC ∠=∠-∠()90180α=︒-︒-90α=-︒∠OE 平分∠BOD , ∠114522DOE BOD α∠=∠=-︒. (3)∠当090AOC ︒≤∠≤︒,OD 在直线AB 的上方时,如图所示:180BOD COD AOC ∠=︒-∠-∠18090AOC =︒-︒-∠90AOC =︒-∠,∠OE 平分∠BOD , ∠114522DOE BOD AOC ∠=∠=︒-∠, 即1452DOE α∠=︒-. ∠当090AOC ︒≤∠≤︒,OD 在直线AB 的下方时,如图所示:∠90AOD COD AOC AOC ∠=∠-∠=︒-∠,∠18090BOD AOD AOC∠=︒-∠=︒+∠,∠OE平分∠BOD,∠114522DOE BOD AOC ∠=∠=︒+∠,即1452 DOEα∠=︒+.∠当90180AOC︒∠≤︒<,OD在直线AB的上方时,如图所示:180BOC AOC∠=︒-∠,BOD DOC BOC∴∠=∠+∠90180AOC=︒+︒-∠270AOC=︒-∠,∠OE平分∠BOD,∠1113522DOE BOD AOC ∠=∠=︒-∠,即11352 DOEα∠=︒-.∠当90180AOC︒∠≤︒<,OD在直线AB的下方时,如图所示:∠180BOC AOC ∠=︒-∠,BOD COD BOC ∴∠=∠-∠()90180AOC =︒-︒-∠90AOC =∠-︒,∠OE 平分∠BOD , ∠114522DOE BOD AOC ∠=∠=∠-︒, 即1452DOE α∠=-︒. 综上分析可知,1452DOE AOC ∠=︒-∠即1452DOE α∠=︒-或1452DOE AOC ∠=︒+∠即1452DOE α∠=︒+或11352DOE AOC ∠=︒-∠即11352DOE α∠=︒-或1452DOE AOC ∠=∠-︒即1452DOE α∠=-︒. 【点睛】本题主要考查了角平分线的定义,垂直的定义,根据α的大小和OD 的位置分类讨论,是解决本题的关键.19.如图,AD //BC ,127DAC ∠=︒,15ACF ∠=︒,142EFC ∠=︒.(1)求证:EF //AD ;(2)连接CE ,若CE 平分∠BCF ,求∠FEC 的度数.【答案】(1)证明见解析(2)19FEC ∠=︒【分析】(1)先根据平行线的性质,得到∠ACB 的度数,进而得出∠FCB 的度数,再根据∠EFC =140°,即可得到∠EFC =142°,即可得到EF ∠BC ,进而得出EF ∠AD ;(2)先根据CE 平分∠BCF ,可得∠BCE =19°,再根据EF ∠BC ,即可得到∠FEC =19°.(1)证明:∠AD BC ∥∠180ACB DAC ∠+∠=︒∠127DAC ∠=︒∠53ACB ∠=︒又∠15ACF ∠=︒∠38FCB ACB ACF ∠=∠-∠=︒∠142EFC ∠=︒∠180FCB EFC ∠+∠=︒∠EF BC ∥又∠AD BC ∥∠EF AD ∥(2)解:∠CF 平分∠BCF ∠1192BCE FCB ∠=∠=︒ ∠EF BC ∥∠19FEC ECB ∠=∠=︒答:∠FEC 的度数19°.【点睛】本题考查平行线的判定,三角形内角和定理,角平分线定义,三角形的外角性质,邻补角定义,能综合运用定理运行推理是解此题的关键,难度适中.20.已知点B ,D 分别在AK 和CF 上,且∥CF AK .(1)如图1,若25CDE ∠=︒,80DEB ∠=︒,则ABE ∠的度数为________;(2)如图2,BG 平分ABE ∠,GB 的延长线与EDF ∠的平分线交于H 点,若DEB ∠比DHB ∠大60︒,求DEB ∠的度数;(3)保持(2)中所求的DEB ∠的度数不变,如图3,BM 平分EBK ∠,DN 平分CDE ∠,作∥BP DN ,则PBM ∠的度数是否改变?若不变,请求值;若改变,请说明理由.【答案】(1)55°(2)100°(3)不变,40°【分析】(1)过点E 作ES CF ,根据∥CF AK ,则ES CF AK ,运用平行线的性质计算即可.(2) 延长DE ,交AB 于点M ,则∠DEB =∠EMB +∠EBM ,利用平行线的性质,角平分线的定义,三角形外角的性质计算即可.(3) 过点E 作EQ DN ,则EQ DN BP ,利用前面的结论和方法,进行等量代换并推理计算即可.(1)解:如图1,过点E 作ES CF ,∠∥CF AK ,∠ES CF AK ,∠∠CDE =∠DES ,∠SEB =∠ABE ,∠∠CDE +∠ABE =∠DES +∠SEB =∠DEB ,∠∠CDE =25°,∠DEB =80°,∠∠ABE =∠DEB -∠CDE =80°-25°=55°.故答案为:55°.(2)解:如图2,延长DE ,交AB 于点M ,则∠DEB =∠EMB +∠EBM ,∠∥CF AK ,BG 平分ABE ∠,∠∠EMB =180°-∠MDF ,∠EBM =2∠ABG =2∠HBN ,∠MDH =∠HDF =∠HNK =12∠MDF ,∠∠HBN +∠DHB =∠HNK ,∠∠DEB =(180°-∠MDF ) +2∠HBN =180°-∠MDF +122MDF DHB ⎛⎫⨯∠-∠ ⎪⎝⎭, ∠∠DEB =180°-∠MDF +∠MDF -2∠DHB =180°-2∠DHB ,∠DEB ∠60DHB -∠=︒,∠∠DEB =180°-2(∠DEB -60°),∠3∠DEB =300°,解得∠DEB =100°.(3)解:过点E作EQ DN,则EQ DN BP,根据(1)得,∠DEB=∠CDE+∠ABE,∠BM平分EBK∠,∠,DN平分CDE∠∠DEB=2∠NDE+180°-2∠EBM,∠∠DEB=100°,∠∠EBM-∠NDE=40°,∠EQ DN,∠∠DEQ=∠NDE,∠∠EBM =40°+∠DEQ,,,∠EQ DN DN BP∠EQ BP,∠∠EBM+∠PBM +∠BEQ =180°,∠40°+∠DEQ+∠PBM +∠BEQ =180°,∠40°+∠DEB+∠PBM =180°,∠∠PBM =180°-100°-40°=40°,∠∠PBM 的度数不变,值为40°.【点睛】本题考查了平行线的判定和性质,三角形外角的性质,角的平分线定义,熟练掌握平行线的判定和性质是解题的关键.。

北师大版七年级数学下册第二章 :相交线与平行线培优讲义(含解析)

北师大版七年级数学下册第二章 :相交线与平行线培优讲义(含解析)

第二章 相交线与平行线培优讲义如果直线a 与直线b 只有一个公共点,则称直线a 与直线b 相交,O 为交点,其中一条是另一条的相交线. 相交线的性质:两直线相交只有一个交点.邻补角的概念:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做互为邻补角. 如图中,1∠和3∠,1∠和4∠,2∠和3∠,2∠和4∠互为邻补角. 互为邻补角的两个角一定互补,但两个角互补不一定是互为邻补角。

对顶角的概念及性质:(1)对顶角的概念:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对4321D CBA顶角. 我们也可以说,两条直线相交成四个角,其中有公共顶点而没有公共边的两个角叫做对顶角.如图中,1∠和2∠,3∠和4∠是对顶角.(2)对顶角的性质:对顶角相等。

垂线的概念及性质:(1)垂线的概念:垂直是相交的一种特殊情况,两条直线互相垂直,其中一条叫另一条直线的垂线,它们的交点叫垂足.如图所示,可以记作“AB CD ⊥于O ”(2)垂线的性质:①过直线外一点有且只有一条直线与已知直线垂直;②连接直线外一点与直线上各点的所有线段中,垂线段最短,简单说成:垂线段最短.5.同位角、内错角、同旁内角的概念:①同位角:两条直线被第三条直线所截,位置相同的一对角(两个角分别在两条直线的相同一侧,并且在第三条直线的同旁)叫做同位角如图所示,∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8都是同位角.②内错角:两条直线被第三条直线所截,两个角都在两条直线之间,并且位置交错,(即分别在第三条直线的两旁),这样的一对角 叫做内错角,如图中,∠3与∠5,∠4与∠6都是内错角③同旁内角:两条直线被第三条直线所截,两个角都在两条直线之间,并且在第三条直线的同旁,这样的一对角叫做同旁内角,如图中,∠3与∠6,∠4与∠5都是同旁内角.DCBA看图识角:(1)“F ”型中的同位角.如图.(2)“Z ”字型中的内错角,如图.(3)“U”字型中的同旁内角.如图.平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a ∥b 。

北师大版七年级数学下册第二章《相交线与平行线》考试卷附解析版)

北师大版七年级数学下册第二章《相交线与平行线》考试卷附解析版)
(2)如图⑤, ,则 ______________.
(3)利用上述结论解决问题:如图已知 , 和 的平分线相交于 , ,求 的度数.
22.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.
(1)如图,一束光线 射到平面镜 上,被 反射到平面镜 上,又被 反射,若被 反射出的光线 与光线 平行,且 ,则 _________, ________.
4.如图, , ,则图中与 相等 角(不含 )有______个;若 ,则 ________.
5.在 、 两座工厂之间要修建一条笔直的公路,从 地测得 地的走向是南偏东 ,现 、 两地要同时开工,若干天后,公路准确对接,则 地所修公路的走向应该是( )
A.北偏西 B.南偏东 C.西偏北 D.北偏西
6.如图,直线l//m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()
【答案】95°
【解析】
【详解】如图,作EF∥AB,则EF∥CD,
∴∠ABE+∠BEF=180°,∵∠ABE=120°,∴∠BEF=60°,
∵∠DCE=∠FEC=35°,∴∠BEC=∠BEF+∠FEC=95°.
故答案为95°.
点睛:本题关键在于构造平行线,再利用平行线的性质解题.
13.某人在练车场上练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则这两次拐弯的角度可能是________.①第一次向左拐 ,第二次向右拐 ;②第一次向右拐 ,第二次向左拐 ;③第一次向右拐 ,第二次向左拐 ;④第一次向左拐 ,第二次向左拐 .
A. 20°B. 25°C. 30°D. 35°
【答案】A
【解析】
【详解】如图,过点B作BD//l,

北师大版初一(下)数学第二章相交线与平行线教案:相交线与平行线讲义(含解析)

北师大版初一(下)数学第二章相交线与平行线教案:相交线与平行线讲义(含解析)

北师大版初一(下)数学第二章相交线与平行线教案:相交线与平行线讲义(含解析)把握对顶角和邻补角的概念;把握垂线段的定义及其画法;3.把握三线八角的定义和找法;4.把握平行线的性质与判定.相交线在同一平面内,两条直线的位置关系有_________和________。

(2)相交:在同一平面内,有__________的两条直线称为相交线。

(3)邻补角:①定义:有公共顶点,且有一条公共边,另一条边互为反向延长线,具有这种位置关系的两个角,互为邻补角。

②性质:位置——互为邻角数量——互为补角(两角之和为180°)(4)对顶角:①定义:有一个公共顶点,同时有一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角②性质:对顶角相等几何语言:∵∠1+∠2=180°∠2+∠3=180°∴∠1=∠3(同角的补角相等)两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:⑴对顶角是成对显现的,对顶角是具有专门位置关系的两个角;⑵假如∠α与∠β是对顶角,那么一定有∠α=∠β;反之假如∠α=∠β,那么∠α与∠β不一定是对顶角⑶假如∠α与∠β互为邻补角,则一定有_____________;反之假如∠α+∠β=180°,则∠α与∠β不一定是邻补角。

(4)两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

2.垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做_______。

符号语言记作:如图所示:AB⊥CD,垂足为O垂线性质1:过一点_______________一条直线与已知直线垂直。

垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

简称:_______________。

3.垂线的画法:(1)过直线上一点画已知直线的垂线;(2)过直线外一点画已知直线的垂线。

北师大版七年级数学下册第二章 :相交线与平行线培优讲义(含解析)

北师大版七年级数学下册第二章 :相交线与平行线培优讲义(含解析)

第二章 相交线与平行线培优讲义如果直线a 与直线b 只有一个公共点,则称直线a 与直线b 相交,O 为交点,其中一条是另一条的相交线. 相交线的性质:两直线相交只有一个交点.邻补角的概念:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做互为邻补角. 如图中,1∠和3∠,1∠和4∠,2∠和3∠,2∠和4∠互为邻补角. 互为邻补角的两个角一定互补,但两个角互补不一定是互为邻补角。

对顶角的概念及性质:(1)对顶角的概念:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对4321D CBA顶角. 我们也可以说,两条直线相交成四个角,其中有公共顶点而没有公共边的两个角叫做对顶角.如图中,1∠和2∠,3∠和4∠是对顶角.(2)对顶角的性质:对顶角相等。

垂线的概念及性质:(1)垂线的概念:垂直是相交的一种特殊情况,两条直线互相垂直,其中一条叫另一条直线的垂线,它们的交点叫垂足.如图所示,可以记作“AB CD ⊥于O ”(2)垂线的性质:①过直线外一点有且只有一条直线与已知直线垂直;②连接直线外一点与直线上各点的所有线段中,垂线段最短,简单说成:垂线段最短.5.同位角、内错角、同旁内角的概念:①同位角:两条直线被第三条直线所截,位置相同的一对角(两个角分别在两条直线的相同一侧,并且在第三条直线的同旁)叫做同位角如图所示,∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8都是同位角.②内错角:两条直线被第三条直线所截,两个角都在两条直线之间,并且位置交错,(即分别在第三条直线的两旁),这样的一对角 叫做内错角,如图中,∠3与∠5,∠4与∠6都是内错角③同旁内角:两条直线被第三条直线所截,两个角都在两条直线之间,并且在第三条直线的同旁,这样的一对角叫做同旁内角,如图中,∠3与∠6,∠4与∠5都是同旁内角.DCBA看图识角:(1)“F ”型中的同位角.如图.(2)“Z ”字型中的内错角,如图.(3)“U”字型中的同旁内角.如图.平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a ∥b 。

北师大版七年级数学下册第二章相交线与平行线复习课件

北师大版七年级数学下册第二章相交线与平行线复习课件
cm。 3.A、B两点间的距离等于 5cm。
因为S△ABC = 1/2 AB×CD 所=以C1D=/2.24cmAC×BC
4.你能求出点C到AB的距离吗?你是
怎样做的?小组合作交流.
等面积法
三线八角:
C
两条直线AB与CD被第三条
3
E 1
直线EF所截,形成:
75
D
(2)
解:∵AD//BC(已知)
∴∠2+∠4=180°
A1
D
4
(两直线平行,同旁内角互补) 2
3
又∵∠1=∠4(对顶角相等)
B
C
∴∠1+∠2=180°(等量代换)
已知AB∥CD,E为平面内一点(E不在AB和CD
上),连接AE,CE,探索∠AEC与∠A,∠C之间
的关系。
情况1
E在AB与CD之间且向内凹
的度数。
DC
1 25 7
3 46 AE B
16.如图,两平面镜所成的角为 ∠1,一束光线由点P发出,经 OB,OA两次反
后(,1∠)1=P1Q2与0°R∠CP平Q行B吗=4?0° B
变式 P
(2)要使 PQ与RC平行 Q
C
必须改变∠1和∠PQB任何一个角的度
数,问要改变哪一个角?这个角改变
后度数是多少?
EB与AD一定平行吗?”。 ❖小王说“一定平行”;
D
E1
❖而小李说“不一定平行”。
❖你更赞同谁的观点?
❖为什么?
A
B
C
E2
操作与解释
二、强化知识、技能训练
1.(1)若∠1=50 °,
则∠2 =___5_0_°__
ED
∠BOC=__1_3_0_°__

七年级数学下册 第2章 相交线与平行线 2.3 平行线的性质精练 (新版)北师大版-(新版)北师大版

七年级数学下册 第2章 相交线与平行线 2.3 平行线的性质精练 (新版)北师大版-(新版)北师大版

3 平行线的性质测试时间:25分钟一、选择题1.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是( )A.20°B.30°C.35°D.50°1.答案 C 如图,∵AB⊥BC,∴∠ABC=90°,∴∠3=180°-90°-∠1=35°,∵a∥b,∴∠2=∠3=35°.故选C.2.如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为( )A.65°B.55°C.45°D.35°2.答案 B ∵DA⊥AC,垂足为A,∴∠CAD=90°,又∵∠ADC=35°,∴∠ACD=180°-90°-35°=55°,∵AB∥CD,∴∠1=∠ACD=55°,故选B.3.如图,直线a∥b,点C在直线b上,∠DCB=90°,若∠1=70°,则∠2的度数为( )A.20°B.25°C.30°D.40°3.答案 A 如图,∵a∥b,∴∠3=∠1=70°,∴∠2=90°-∠3=20°.故选A.4.将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为( )A.10°B.15°C.20°D.25°4.答案 B ∵BC∥DE,∴∠BCE=∠E=30°,∴∠ACE=∠ACB-∠BCE=45°-30°=15°,故选B.二、填空题5.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于.5.答案70°解析∵∠1+∠2+∠3=180°,∠3=40°,∴∠1+∠2=140°.∵∠1=∠2,∴∠1=70°.∵a∥b,∴∠4=∠1=70°.6.图①是我们常用的折叠式小刀,图②中刀柄外形是一个直角梯形挖去一个小半圆,刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图②所示的∠1与∠2,则∠1与∠2的度数和是度.6.答案90解析如图,AB∥CD,∠AEC=90°,作EF∥AB,则EF∥CD,所以∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°.7.如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则∠ACB=°.7.答案105解析如图,过点C作CD∥AE,则∠DCA=∠CAE=60°.∵CD∥AE,BF∥AE,∴CD∥BF,∴∠DCB=∠CBF=45°.∴∠ACB=∠DCA+∠DCB=105°.8.如图,l∥m,点A在直线m上,若∠ABC=60°,∠1=40°,则∠2=.8.答案20°解析如图,延长CB交直线m于点D,∵∠ABC=60°,∴∠ABD=120°.∵l∥m,∴∠BDA=∠1=40°.∴∠2=180°-∠ABD-∠BDA=180°-120°-40°=20°.9.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=.9.答案46°解析如图,因为a∥b,所以∠3=∠1=34°.因为∠3+∠BAC+∠2=180°,∠BAC=100°,所以∠2=180°-34°-100°=46°.10.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为.10.答案35°解析如图,∠3=180°-∠1=180°-55°=125°,∵直尺两边互相平行,∴∠2+90°=∠3,∴∠2=125°-90°=35°.三、解答题11.如图,已知AB∥CD,EF交AB于点E,交CD于点F,FG平分∠EFD,交AB于点G.若∠1=50°,求∠BGF的度数.11.解析∵AB∥CD,∠1=50°,∴∠CFE=∠1=50°.∵∠CFE+∠EFD=180°,∴∠EFD=180°-∠CFE=130°.∵FG平分∠EFD,∠EFD=65°.∴∠DFG=12∵AB∥CD,∴∠BGF+∠DFG=180°,∴∠BGF=180°-∠DFG=180°-65°=115°.12.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.12.解析∠AED=∠ACB.理由:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知),∴∠2=∠4(同角的补角相等).∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).。

北师大版七年级下册第二单元相交线与平行线单元——探索直线平行的条件(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——探索直线平行的条件(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——探索直线平行的条件(全章知识梳理与考点分类讲解)【知识点一】平行线的定义及画法1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.特别提醒:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行线的画法:用直尺和三角板作平行线的步骤:①落:用三角板的一条直角边与已知直线重合.②靠:用直尺紧靠三角板另一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的直角边通过已知点.④画:沿着这条直角边画一条直线,所画直线与已知直线平行.【知识点二】平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.特别提醒:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.【知识点三】两直线平行的判定方法1判定方法1:同位角相等,两直线平行.如图1,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)图1【知识点二】两直线平行的判定方法2判定方法2:内错角相等,两直线平行.如图2,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)图2【知识点三】两直线平行的判定方法3判定方法3:同旁内角互补,两直线平行.如图3,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)图3特别提醒:平行线的判定是由角相等或互补,得出平行,即由数推形.【考点目录】【考点1】平行线的画法;【考点2】平行公理及推论的应用;【考点3】同位角相等,两直线平行;【考点4】内错角相等,两直线平行;【考点5】同旁内角互补,两直线平行;【考点6】垂直于同一直线的两直线平行;【考点7】判定两直线平行综合应用.【考点目录】【考点1】平行线的画法;【答案】(1)见分析;(2)见分析;(3)见分析【分析】本题考查了射线、线段的作法,画平行线,掌握平行线画法是解题关键.(1)根据射线及线段的定义作图即可;(2)过点B作AC的垂线BD,垂足为D即可;(3)将C点向右移3个单位得到点E,作直线BE即可;(1)解:射线AC,线段AB即为所求;(2)解:垂线段BD即为所求;(3)解:直线BE即为所求.【变式1】(2022下·辽宁辽阳·七年级统考期末)下列说法正确的是()A.相等的角是对顶角B.在同一平面内,两直线的位置关系有三种:平行,垂直,相交C.过一点有且只有一条直线与已知直线平行D.平面内,过一点有且只有一条直线与已知直线垂直【答案】D【分析】由对顶角的概念可判断A,由平面内直线与直线的位置关系可判断B,由过直线外一点画已知直线的平行线可判断C,由过一点画已知直线的垂线可判断D,从而可得答案.解:相等的角不一定是对顶角,故A不符合题意;在同一平面内,两直线的位置关系有二种:平行,相交,故B不符合题意;过直线外一点有且只有一条直线与已知直线平行,故C不符合题意;平面内,过一点有且只有一条直线与已知直线垂直,描述正确,故D符合题意;故选D【点拨】本题考查的是对顶角的性质,平面内,直线与直线的位置关系,平行线的含义,垂直的性质,掌握以上基础的概念是解本题的关键.【变式2】(2020·四川达州·校考一模)如图,利用三角尺和直尺可以准确的画出直线AB∥CD,下面是某位同学弄乱了顺序的操作步骤:①沿三角尺的边作出直线CD;②用直尺紧靠三角尺的另一条边;③作直线AB,并用三角尺的一条边贴住直线AB;④沿直尺下移三角尺;正确的操作顺序应是:.【答案】③②④①【分析】根据同位角相等两直线平行判断即可.解:根据同位角相等两直线平行则正确的操作步骤是③②④①,故答案我③②④①.【点拨】此题主要考查了复杂作图,关键是掌握同位角相等,两直线平行.【考点2】平行公理及推论的应用;【例2】(2022上·河南南阳·七年级校考期末)【操作】在如图的方格纸中(网格线的交点叫格点),按要求画图、填空.(1)过点A 作BC 的垂线,垂足为点D ,该垂线经过的一个格点记为点E .(2)过点E 作AC 的平行线EF ,该平行线经过的一个格点记为F ;过点B 作AC 的平行线BG ,该平行线经过的一个格点记为G .【发现】EF 与BG 的位置关系为______.【概括】根据你的发现,概括一条事实或结论:______.【答案】(1)画图见分析;(2)画图见分析;发现:平行;概括:平行于同一条直线的两条直线平行.【分析】(1)根据网格结构作出BC 的垂线AD 即可;(2)根据网格结构的特征构造相等的同位角再画图,然后标注即可.再根据平行线的判定可得EF 与BG 的位置关系以及结论.解:(1)如图,AD BC ,D 为垂足;(2)如图,EF AC ∥,BG AC ∥,EF 与BG 的位置关系为平行;结论:平行于同一条直线的两条直线平行.【点拨】本题考查了这题-应用与设计作图,利用网格结构作垂线,作平行线,熟练掌握网格结构的特征,准确找出对应点的位置是解题的关键.【变式1】(2022下·湖南长沙·七年级校考阶段练习)下列说法错误的是()A .在同一平面内,没有公共点的两条直线是平行线B .如果两条直线都与第三条直线平行,那么这两条直线也互相平行C .经过直线外一点有且只有一条直线与该直线平行D .在同一平面内,不相交的两条线段是平行线【答案】D【分析】根据平行公理等即可逐一进行判断.解:A 、在同一平面内,没有公共点的两条直线是平行线.正确,本选项不符合题意;B 、如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行线具有“传递性”,正确,本选项不符合题意;C 、经过直线外一点有且只有一条直线与该直线平行.正确,本选项不符合题意;D 、在同一平面内,不相交的两条直线是平行线.原说法错误,本选项符合题意.故选:D .【点拨】本题考查了平行公理等知识点.掌握相关结论是解题的关键.【变式2】(2022上·上海·九年级开学考试)如图,点E 、F 分别是梯形ABCD 两腰的中点,联结EF 、DE ,如果图中DEF △的面积为1.5,那么梯形ABCD 的面积等于.【答案】6【分析】过点A 作AH BC ⊥于H ,交EF 于G ,根据梯形中位线定理得到AD BC ∥EF ∥,根据三角形的面积公式、梯形的面积公式计算,得到答案.解:过点A 作AH BC ⊥于H ,交EF 于G ,如图,∵点E 、F 分别是梯形ABCD 两腰的中点,∴EF 是梯形ABCD 的中位线,∴AD BC ∥EF ∥,∴AG EF ⊥,AG GH =,∵ 1.5DEF S = ,∴1 1.52EF AG ⋅=,∴• 1.546EF AH =⨯=,∴•6ABCD S EFAH 梯形==,故答案为:6.【点拨】本题考查的是梯形的中位线、三角形的面积计算,掌握梯形中位线定理是解题的关键.【考点3】同位角相等,两直线平行;【例3】(2022上·黑龙江绥化·七年级统考期末)AB BC ⊥,12=90∠+∠︒,23∠∠=.BE 与DF 平行吗?为什么?解:BE DF ∥.AB BC ⊥ ,ABC \Ð=︒,即34∠+∠=︒.又1290∠+∠=︒ ,且23∠∠=,∴=.理由是:.BE DF ∴∥.理由是:.【答案】90;90;1∠,4∠;等角的余角相等;同位角相等,两直线平行【分析】由AB 垂直于BC ,利用垂直的定义得到ABC ∠为直角,进而得到3∠与4∠互余,再由1∠与2∠互余,根据23∠∠=,利用等角的余角相等得到14∠=∠,利用同位角相等两直线平行即可得证.解:BE DF ∥.AB BC ⊥ ,90ABC ∴∠=︒,即3490∠+∠=°.又1290∠+∠=︒ ,且23∠∠=,14∴∠=∠.理由是:等角的余角相等.BE DF ∴∥.理由是:同位角相等,两直线平行.故答案为:90;90;1∠,4∠;等角的余角相等;同位角相等,两直线平行.【点拨】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键【变式1】(2022下·福建宁德·七年级校联考期中)如图,若12∠=∠,则下列选项中,能直接利用“同位角相等,两直线平行”判定a b )A .B .C .D .【答案】B【分析】先判断出1∠与2∠是同位角,然后根据平行线的判定即可得出答案.解:A 、1∠与2∠是内错角,故该选项错误;B 、1∠与2∠是同位角,∵12∠=∠,∴a b ,故该选项正确;C 、1∠与2∠不是内错角、同位角,同旁内角,故该选项错误;D 、1∠与2∠是对顶角,故该选项错误;故选:B .【点拨】本题考查了平行线的判定,内错角相等、同位角相等,同旁内角互补两直线平行,是需要同学们熟练记忆的内容.【变式2】(2023上·七年级课时练习)如图,若12∠=∠,则 ;若23∠∠=,则 .【答案】AB DE BC EF【分析】根据12∠=∠,利用同位角相等两直线平行推出AB DE ∥;由23∠∠=,利用同位角相等两直线平行推出BC EF ∥.解:∵12∠=∠,∴AB DE ∥,∵23∠∠=,∴BC EF ∥,故答案为:AB ,DE ,BC ,EF .【点拨】此题考查平行线的判定定理,熟练掌握同位角相等两直线平行是解题的关键.【考点4【例4】(2023上·七年级课时练习)如图,已知CD AD ⊥于点,D DA AB ⊥于点,12A ∠=∠.试说明:DF AE ∥.解:CD AD ⊥ (已知),90CDA ∴∠=︒(__________).同理,90DAB ∠=︒.90CDA DAB ∴∠=∠=︒(__________),即132490∠+∠=∠+∠=︒.12∠=∠ (已知)3∴∠=_______(___________).∴_____∥_____(____________).【答案】垂直的定义,等量代换,4∠,等量代换,DF ,AE ,内错角相等,两直线平行【分析】根据垂直的定义得到90CDA DAB ∠=∠=︒,推出132490∠+∠=∠+∠=︒,得到3=4∠∠,由此证得DF AE ∥.解:CD AD ⊥ (已知),90CDA ∴∠=︒(垂直的定义).同理,90DAB ∠=︒.90CDA DAB ∴∠=∠=︒(等量代换),即132490∠+∠=∠+∠=︒.12∠=∠ (已知)3∴∠=4∠(等量代换).∴DF AE ∥(内错角相等,两直线平行).【点拨】此题考查了垂直的定义,平行线的判定,熟练掌握平行线的判定定理是解题的关键.【变式1】(2022·广东深圳·蛇口育才二中校考三模)如图,能判定EB AC ∥的条件是()A .C ABE∠∠=B .A EBD ∠∠=C .C ABC ∠∠=D .A ABE∠∠=【答案】D 【分析】通过角相等判定两直线平行,则判断两角是否能推出同位角或内错角相等即可.解:∵只有同位角相等,内错角相等,同旁内角互补才能判断两直线平行,选项D 中A ABE ∠∠=是内错角相等,故能判定两直线平行,其他选项不符合判定定理,无法判断.故选:D .【点拨】本题考查了平行线的判定,掌握平行线的判定是解题的关键.【变式2】(2023下·陕西宝鸡·七年级统考期中)三个完全相同的含30︒角的三角板如图摆放,可以判断AB 与EC 平行的理由是.【答案】BAC ACE =∠∠,内错角相等,两直线平行(答案不唯一)【分析】根据平行线的判定定理求解.解:由题意知90BAC ACE ∠=∠=︒,由内错角相等,两直线平行,可判断AB 与EC 平行.故答案为:BAC ACE =∠∠,内错角相等,两直线平行.【点拨】本题考查平行线的判定,解题的关键是掌握平行线的判定定理,即内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.【考点5】同旁内角互补,两直线平行;【例5】(2023下·山东青岛·七年级统考期中)如图,EF BC ∥,CE 平分BCF ∠,111DAC ∠=︒,23ACF FEC ∠=∠=︒,则AD 与BC 平行吗?请说明理由.【答案】AD 与BC 平行.理由见分析【分析】根据角平分线的定义可得246BCF FEC ∠=∠=︒,进而得出69ACB ∠=︒,结合题意可得69111180ACB DAC ∠+∠=︒+︒=︒,即可得证.解:AD 与BC 平行.理由如下:∵CE 平分BCF ∠,23ACF FEC ∠=∠=︒,∴246BCF FEC ∠=∠=︒,∴462369ACB BCF ACF ∠=∠+∠=︒+︒=︒,又∵111DAC ∠=︒,∴69111180ACB DAC ∠+∠=︒+︒=︒,∴AD BC ∥.【点拨】本题考查了平行线的判定,角平分线的定义,熟练掌握平行线的判定定是解题的关键.【变式1】(2023下·山东济南·七年级统考期末)如图,将一纸条ABCD 沿折痕MG 折叠,MA 时对应线段MA '与CD 相交于点N 则下列条件中,不足以证明AB CD ∥的是()A .180BMN CNM ∠+∠=︒B .2AMN MGN ∠=∠C .MN NG=D .MN MG=【答案】D 【分析】根据翻折的性质和平行线的判定逐一进行判断即可.解:A.180BMN CNM ∠+∠=︒ ,∴AB CD ∥;B .由翻折可知:2AMN AMG ∠=∠,2AMN MGN ∠=∠ ,AMG MGN ∴∠=∠,∴AB CD ∥,故B 选项不符合题意;C .由翻折可知:AMG NMG ∠=∠,MN NG = ,NMG MGN ∴∠=∠,AMG MGN ∴∠=∠,∴AB CD ∥,故C 选项不符合题意;MN MG = ,MGN MNG ∴∠=∠,AMG MGN ∴∠≠∠,AB ∴不平行CD ,故D 选项符合题意;故选:D .【点拨】本题考查了折叠的性质,平行线的判定,熟练掌握平行线的判定定理是解题的关键.【变式2】(2019下·七年级课时练习)如图,某工件要求AB ∥ED ,质检员小李量得∠ABC =146°,∠BCD =60°,∠EDC =154°,则此工件.(填“合格”或“不合格”)【答案】合格【分析】作CF ∥AB ,由平行线的性质得出∠ABC+∠1=180°,求出∠1,得出∠2,由∠2+∠EDC=180°,得出CF ∥ED ,证出AB ∥ED ,即可得出结论.解:作CF ∥AB ,如图所示:则∠ABC+∠1=180°,∴∠1=180°-146°=34°,∴∠2=∠BCD-∠1=60°-34°=26°,∵∠2+∠EDC=26°+154°=180°,∴CF ∥ED ,∴AB ∥ED ;故答案为合格.【点拨】本题考查了平行线的性质与判定;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键【考点6】垂直于同一直线的两直线平行.【例6】(2023下·七年级课时练习)探索与发现(在同一平面内):(1)若直线12a a ⊥,23a a ∥,判断直线1a 与3a 的位置关系,请说明理由;(2)若直线12a a ⊥,23a a ∥,34a a ⊥,则直线1a 与4a 的位置关系是______;(直接填结论,不需要证明)(3)现在有2023条直线1a ,2a ,3a ,…,2023a ,且有12a a ⊥,23a a ∥,34a a ⊥,45a a ∥,…,请你探索直线1a 与2023a 的位置关系.【答案】(1)13⊥a a .理由见分析;(2)14a a ∥;(3)直线1a 与2023a 的位置关系是12023a a ⊥【分析】(1)根据垂直定义和平行线的性质求解即可;(2)根据垂直定义和平行线的性质求解即可;(3)根据垂直定义和平行线的性质,找到变化规律即可求解.(1)解:13⊥a a .理由如下:如图,∵12a a ⊥,∴190∠=︒,∵23a a ∥,∴2190∠=∠=︒,∴13⊥a a .(2)解:由(1)知13⊥a a ,又34a a ⊥,根据垂直于同一条直线的两条直线平行可得14a a ∥,故答案为:14a a ∥;(3)解:直线1a 与2a ,3a 的位置关系分别是12a a ⊥,13⊥a a ,直线1a 与4a ,5a 的位置关系分别是14a a ∥,15a a ∥,从2a 开始,直线2a ,3a ,…,2023a 与直线1a 的位置关系以⊥,⊥,∥,∥为一次循环,∴12022a a ⊥,12023a a ⊥,∴直线1a 与2023a 的位置关系是12023a a ⊥.【点拨】本题考查垂直定义和平行线的性质,熟练掌握平行线的性质,得到变化规律是解答的关键.【变式1】(2018下·七年级单元测试)在同一平面内,a 、b 、c 是直线,下列说法正确的是()A .若a b ∥,b c ∥则a c∥B .若a b ⊥r r ,b c ⊥,则a c ⊥C .若a b ∥,b c ⊥,则a c∥D .若a b ∥,b c ∥,则a c ⊥【答案】A【分析】根据平行公理、平行线的性质对各选项分析判断即可解答.解:A.在同一平面内,若a b ∥,b c ∥则a c ∥正确,故本选项正确;B.在同一平面内,若a b ⊥r r ,b c ⊥则a c ∥,故本选项错误;C.在同一平面内,若a b ∥,b c ⊥则a c ⊥,故本选项错误;D.在同一平面内,若a b ∥,b c ∥则a c ∥,故本选项错误.故选:A .【点拨】本题主要考查了平行公理、平行线的性质等知识点,灵活运用相关性质是解答本题的关键.【变式2】(2018下·七年级课时练习)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线.(1)它的理由如下:(如图1)∵b ⊥a ,c ⊥a ,∴∠1=∠2=90°,∴b ∥c(2)如图2是木工师傅使用角尺画平行线,有什么道理?.【答案】平行同位角相等,两条直线平行垂直于同一条直线的两条直线平行解:∵在同一平面内,两条直线都垂直于同一条直线,∴这两条直线互相平行.故答案为平行;(1)∵b ⊥a ,c ⊥a ,∴∠1=∠2=90°,∴b ∥c (同位角相等,两条直线平行).故答案为同位角相等,两条直线平行;(2)垂直于同一条直线的两条直线平行,故答案为垂直于同一条直线的两条直线平行.【考点7】判定两直线平行的综合应用.【例7】(2024下·七年级课时练习)如图,AK 与BC 相交于点B ,BC 与CD 相交于点C ,如果160∠=︒,2120∠=︒,60D ∠=︒,那么AB 与CD 平行吗?BC 与DE 呢?并说明理由.【答案】AB CD ∥,BC DE ∥.理由见分析【分析】根据对顶角相等得出60ABC ∠=︒,进而可得2180ABC ∠+∠=︒,则AB CD ∥,进而得出BCD D ∠=∠,即可得证.解:AB CD ∥,BC DE ∥.理由如下:∵160∠=︒,1ABC ∠=∠∴60ABC ∠=︒.又∵2120∠=︒,∴2180ABC ∠+∠=︒.∴AB CD ∥.又∵2180BCD ∠+∠=︒,∴60BCD ∠=︒.∵60D ∠=︒,∴BCD D ∠=∠.∴BC DE ∥.【点拨】本题考查了对顶角相等,平行线的判定,熟练掌握平行线的判定定理是解题的关键.【变式1】(2024下·全国·七年级假期作业)如图,将一副三角尺如图放置,DE 、BC 交于点F ,(45C ∠=︒,30D ∠=︒)则下列结论不正确...的是()A .13∠=∠B .2180CAD ∠+∠=︒C .若230∠=︒,则BC AD∥D .若230∠=︒,则AC DF∥【答案】C 【分析】由余角的性质,得到13∠=∠,由 3 21802CAD CAB CAB EAD ∠=∠+∠=∠+∠-∠=︒-∠,得到2180CAD ∠+∠=︒,因为3B ∠≠∠,故BC 和DA 不平行,由160E ∠=∠=︒,得到AC DF ∥.解:1∠ +23∠=∠+290∠=︒,13∴∠=∠,故A 正确;3 21802CAD CAB CAB EAD ∠=∠+∠=∠+∠-∠=︒-∠ ,2180CAD ∴∠+∠=︒,故B 正确;230∠=︒ ,390260∴∠=︒-∠=︒,45B ∠=︒ ,3B ∴∠≠∠,BC ∴和DA 不平行,故C 错误;230∠=︒ ,190260∴∠=︒-∠=︒,60E ∠=︒ ,1E ∴∠=∠,∴AC DF ∥,故D 正确.故选:C .【点拨】本题考查平行线的判定,关键是掌握平行线的判定方法.【变式2】(2024下·全国·七年级假期作业)如图,有下列说法:①若12∠=∠,则AB CD ∥;②若3=4∠∠,则AD BC ∥;③若180ABC BCD ∠+∠=︒,则AD BC ∥;④若13180ABC ∠+∠+∠=︒,则AD BC ∥.其中说法正确的有个.【答案】1【解析】略。

备战中考数学(北师大版)巩固复习相交线与平行线(含解析)

备战中考数学(北师大版)巩固复习相交线与平行线(含解析)

备战中考数学(北师大版)巩固复习相交线与平行线(含解析)一、单选题1.已知,∠1和∠2是一对内错角,且∠1=48°,那么∠2的度数是()A.48°B.42°C.132°D.无法确定2.如图,下列推理错误的是()A.因为∠1=∠2,因此a∥bB.因为∠4=∠6,因此c∥dC.因为∠3+∠4=180°,因此a∥b D.因为∠1+∠5=180°,因此a∥b3.在同一平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交 D.平行、相交或垂直4.如图,下列能判定AB∥CD的条件有()个.①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.A.1B.2C.3D.45.如图,已知直线a∥b,∠1=40°,∠2=60°.则∠3等于().A.100°B.60°C.40°D.20°6.如图,已知AB∥CD,则图中与∠1互补的角有()A.1个B. 2个C. 3个D.4个7.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法可得△OCP≌△ODP,判定这两个三角形全等的依照是()A.SASB.ASAC.AASD.SSS二、填空题8.如图:△ABC中,∠A的同旁内角是________ .9.一个角的补角是140°,则那个角的余角是________;10.如图,木工用图中的角尺画平行线的依据是________.11.如图,若∠1=∠2,则互相平行的线段是________.12.如图,两块三角板的直角顶点O重叠在一起,则∠AOD+∠BOC=_ _______.13.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△DO C≌△D'O'C'的依据是________.14.所谓尺规作图中的尺规是指:________15.如图,直线a∥b,若∠1=140°,则∠2=________度.16.完成下列推理过程.如图,DE∥BC,点D、A、E在同一条直线上,求证:∠BAC+∠B+∠C=180°,证明:∵DE∥BC________∴∠1=∠B,∠2=∠C________∵D、A、E在同一直线上(已知),∴∠1+∠BAC+∠2=180°________∴∠BAC+∠B+∠C=180°________三、解答题17.在下面的方格纸中通过点C画与线段AB互相平行的直线l1 ,再通过点B画一条与线段AB垂直的直线l2 .18.如图所示,在5×5的网格中,AC是网格中最长的线段,请画出两条线段与AC平行同时过网格的格点.19.已知平面内四条直线共有三个交点,则这四条直线中最多有几条平行线?四、综合题20.如图,若用A(2,1)表示放置2个胡萝卜,1棵小白菜;点B(4,2)表示放置4个胡萝卜,2棵小白菜:(1)请你写出C、E所表示的意义.(2)若一只兔子从A顺着方格线向上或向右移动到达B,试问有几条路径可供选择,其中走哪条路径吃到的胡萝卜最多?走哪条路径吃到的小白菜最多?请你通过运算的方式说明.21.综合题(1)已知:如图1,BE⊥DE,∠1=∠B,∠2=∠D,试证明AB与C D平行。

2020—2021年北师大版初中数学七年级下册图形的性质相交线与平行线(2)及答案解析(精品试题).docx

2020—2021年北师大版初中数学七年级下册图形的性质相交线与平行线(2)及答案解析(精品试题).docx

图形的性质——相交线与平行线2一.选择题(共8小题)1如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°2.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°3.将一直角三角板与两边平行的纸条如图放置.已知∠1=30°,则∠2的度数为()A.30°B.45°C.50°D.60°4.如图,已知AB∥CD,∠2=120°,则∠1的度数是()A.30°B.60°C.120°D.150°5.如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.20°D.25°6.如图,直线AB∥CD,直线EF分别交直线AB、CD于点E、F,过点F作FG⊥FE,交直线AB于点G,若∠1=42°,则∠2的大小是()A.56°B.48°C.46°D.40°7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°8.如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED 的度数是()A.16°B.33°C.49°D.66°二.填空题(共6小题)9.如图,直线a∥b,AB⊥BC,如果∠1=48°,那么∠2=_________ 度.10.如图,直线a∥b,将三角尺的直角顶点放在直线b上,∠1=35°,则∠2= _________ .11.如图所示,AB∥CD,∠D=27°,∠E=36°,则∠ABE的度数是_________ .12.直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2= _________ .13.如图,若AB∥CD∥EF,∠B=40°,∠F=30°,则∠BCF= _________ .14.如图,直线a∥b,一个含有30°角的直角三角板放置在如图所示的位置,若∠1=24°,则∠2= _________ .三.解答题(共9小题)15.如图,在三角形ABC中,点D、F在边BC上,点E在边AB上,点G在边AC上,AD∥EF,∠1+∠FEA=180°.求证:∠CDG=∠B.16.已知,如图,∠1=∠ACB,∠2=∠3,那么∠BDC+∠DGF=180°吗?说明理由.17.如图,已知BE∥CF,BE、CF分别平分∠ABC和∠BCD,求证:AB∥CD.18.如图,已知AD∥BE,∠CDE=∠C,试说明∠A=∠E的理由.19.已知直线AB和CD相交于点O,∠AOC为锐角,过O点作直线OE、OF.若∠COE=90°,OF平分∠AOE,求∠AOF+∠COF的度数.20.已知:OA⊥OB,OE、OF分别是∠AOB的角平分线,∠EOF=68°,求∠AOC的度数.21.如图所示,OA⊥OB,OC⊥OE,OD为∠BOC的平分线,∠BOE=16°,求∠DOE的度数.22.如图,已知∠B=30°,∠BCD=55°,∠CDE=45°,∠E=20°,求证:AB∥CD.23.如图,若∠ABC+∠CDE﹣∠C=180°,试证明:AB∥DE.图形的性质——相交线与平行线2参考答案与试题解析一.选择题(共8小题)1.如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A. 20°B.40°C.30°D.25°考点:平行线的性质.专题:计算题.分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选:A.点评:本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.2.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=()A. 30°B.35°C.36°D.40°考点:平行线的性质.分析:过点A作l1的平行线,过点B作l2的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补求出∠CAB+∠ABD=180°,然后计算即可得解.解答:解:如图,过点A作l1的平行线,过点B作l2的平行线,∴∠3=∠1,∠4=∠2,∵l1∥l2,∴AC∥BD,∴∠CAB+∠ABD=180°,∴∠3+∠4=125°+85°﹣180°=30°,∴∠1+∠2=30°.故选:A.点评:本题考查了平行线的性质,熟记性质并作辅助线是解题的关键.3.将一直角三角板与两边平行的纸条如图放置.已知∠1=30°,则∠2的度数为()A. 30°B.45°C.50°D.60°考点:平行线的性质.专题:计算题.分析:根据平行线的性质得∠2=∠3,再根据互余得到∠3=60°,所以∠2=60°.解答:解:∵a∥b,∴∠2=∠3,∵∠1+∠3=90°,∴∠3=90°﹣30°=60°,∴∠2=60°.故选:D.点评:本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.4.如图,已知AB∥CD,∠2=120°,则∠1的度数是()A. 30°B.60°C.120°D.150°考点:平行线的性质.专题:计算题.分析:由AB与CD平行,利用两直线平行内错角相等得到∠1=∠3,再由邻补角性质得到∠3与∠2互补,即∠1与∠2互补,即可确定出∠1的度数.解答:解:∵AB∥CD,∴∠1=∠3,∵∠2=120°,∠3+∠2=180°,∴∠3=60°.故选B点评:此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.5.如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A. 10°B.15°C.20°D.25°考点:平行线的性质.专题:计算题.分析:根据AB∥CD可得∠3=∠1=65,然后根据∠2=180°﹣∠3﹣90°求解.解答:解:∵AB∥CD,∴∠3=∠1=65°,∴∠2=180°﹣∠3﹣90°=180°﹣65°﹣90°=25°.故选:D.点评:本题重点考查了平行线的性质:两直线平行,同位角相等,是一道较为简单的题目.6.如图,直线AB∥CD,直线EF分别交直线AB、CD于点E、F,过点F作FG⊥FE,交直线AB于点G,若∠1=42°,则∠2的大小是()A. 56°B.48°C.46°D.40°考点:平行线的性质.专题:几何图形问题.分析:根据两直线平行,同位角相等可得∠3=∠1,再根据垂直的定义可得∠GFE=90°,然后根据平角等于180°列式计算即可得解.解答:解:∵AB∥CD,∴∠3=∠1=42°,∵FG⊥FE,∴∠GFE=90°,∴∠2=180°﹣90°﹣42°=48°.故选:B.点评:本题考查了平行线的性质,垂直的定义,熟记性质并准确识图是解题的关键.7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A. 45°B.54°C.40°D.50°考点:平行线的性质;三角形内角和定理.分析:根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.解答:解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.点评:本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.8.如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED 的度数是()A. 16°B.33°C.49°D.66°考点:平行线的性质.专题:计算题.分析:由AB∥CD,∠C=33°可求得∠ABC的度数,又由BC 平分∠ABE,即可求得∠ABE的度数,然后由两直线平行,内错角相等,求得∠BED的度数.解答:解:∵AB∥CD,∠C=33°,∴∠ABC=∠C=33°,∵BC平分∠ABE,∴∠ABE=2∠ABC=66°,∵AB∥CD,∴∠BED=∠ABE=66°.故选D.点评:此题考查了平行线的性质.此题比较简单,注意掌握两直线平行,内错角相等.二.填空题(共6小题)9.如图,直线a∥b,AB⊥BC,如果∠1=48°,那么∠2= 42 度.考点:平行线的性质;垂线.专题:计算题.分析:根据垂线的性质和平行线的性质进行解答.解答:解:如图,∵AB⊥BC,∠1=48°,∴∠3=90°﹣48°=42°.又∵直线a∥b,∴∠2=∠3=42°.故答案为:42.点评:本题考查了平行线的性质.此题利用了“两直线平行,同位角相等”的性质.10.如图,直线a∥b,将三角尺的直角顶点放在直线b上,∠1=35°,则∠2= 55°.考点:平行线的性质.专题:常规题型.分析:根据平角的定义求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.解答:解:如图,∵∠1=35°,∴∠3=180°﹣35°﹣90°=55°,∵a∥b,∴∠2=∠3=55°.故答案为:55°.点评:本题考查了平行线的性质,熟记性质并准确识图是解题的关键.11.如图所示,AB∥CD,∠D=27°,∠E=36°,则∠ABE的度数是63°.考点:平行线的性质.分析:先根据三角形外角性质得∠BFD=∠E+∠D=63°,然后根据平行线的性质得到∠ABE=∠BFD=63°.解答:解:如图,∵∠BFD=∠E+∠D,而∠D=27°,∠E=36°,∴∠BFD=36°+27°=63°,∵AB∥CD,∴∠ABE=∠BFD=63°.故答案为:63°.点评:本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.12.直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2= 40°.考点:平行线的性质;三角形内角和定理.专题:计算题.分析:根据两直线平行,同位角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠4,然后根据对顶角相等解答.解答:解:∵l1∥l2,∴∠3=∠1=85°,∴∠4=∠3﹣45°=85°﹣45°=40°,∴∠2=∠4=40°.故答案为:40°.点评:本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.13.如图,若AB∥CD∥EF,∠B=40°,∠F=30°,则∠BCF= 70°.考点:平行线的性质.分析:由“两直线平行,内错角相等”、结合图形解题.解答:解:如图,∵AB∥CD∥EF,∴∠B=∠1,∠F=∠2.又∠B=40°,∠F=30°,∴∠BCF=∠1+∠2=70°.故答案是:70°.点评:本题考查了平行线的性质.平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.14.如图,直线a∥b,一个含有30°角的直角三角板放置在如图所示的位置,若∠1=24°,则∠2= 36°.考点:平行线的性质.专题:几何图形问题.分析:过B作BE∥直线a,推出直线a∥b∥BE,根据平行线的性质得出∠ABE=∠1=24°,∠2=∠CBE,即可求出答案.解答:解:过B作BE∥a,∵a∥b,∴a∥b∥BE,∴∠ABE=∠1=24°,∠2=∠CBE,∵∠ABC=180°﹣90°﹣30°=60°,∴∠2=∠CBE=∠ABC﹣∠ABE=60°﹣24°=36°,故答案为:36°.点评:本题考查了平行线的性质的应用,注意:两直线平行,内错角相等,题目比较好,难度适中.三.解答题(共9小题)15.如图,在三角形ABC中,点D、F在边BC上,点E在边AB上,点G在边AC上,AD∥EF,∠1+∠FEA=180°.求证:∠CDG=∠B.考点:平行线的判定与性质.专题:证明题.分析:根据两直线平行,同位角相等求出∠2=∠3,然后求出∠1=∠3,再根据内错角相等,两直线平行DG∥AB,然后根据两直线平行,同位角相等解答即可.解答:证明:∵AD∥EF,(已知),∴∠2=∠3,(两直线平行,同位角相等),∵∠1+∠FEA=180°,∠2+∠FEA=180°,∴∠1=∠2(同角的补角相等),∴∠1=∠3(等量代换),∴DG∥AB(内错角相等,两直线平行),∴∠CDG=∠B.(两直线平行,同位角相等).点评:本题考查了平行线的性质与判定,是基础题,熟记平行线的性质与判定方法并准确识图是解题的关键.16.已知,如图,∠1=∠ACB,∠2=∠3,那么∠BDC+∠DGF=180°吗?说明理由.考点:平行线的判定与性质.分析:若证∠BDC+∠DGF=180°,则可证GF、CD两直线平行,利用图形结合已知条件能证明.解答:解:∵∠1=∠ACB,∴DE∥BC,(2分)∴∠2=∠DCF,(4分)∵∠2=∠3,∴∠3=∠DCF,(6分)∴CD∥FG,(8分)∴∠BDC+∠DGF=180°.(10分)点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.17.如图,已知BE∥CF,BE、CF分别平分∠ABC和∠BCD,求证:AB∥CD.考点:平行线的判定与性质;角平分线的定义.专题:证明题.分析:根据BE∥CF,得∠1=∠2,根据BE、CF分别平分∠ABC和∠BCD,得∠ABC=2∠1,∠BCD=2∠2,则∠ABC=∠BCD,从而证明AB∥CD.解答:证明:∵BE∥CF,∴∠1=∠2.∵BE、CF分别平分∠ABC和∠BCD,∴∠ABC=2∠1,∠BCD=2∠2,即∠ABC=∠BCD,∴AB∥CD.点评:此题综合运用了平行线的性质和判定以及角平分线的定义.18.如图,已知AD∥BE,∠CDE=∠C,试说明∠A=∠E的理由.考点:平行线的判定与性质.专题:证明题.分析:易证AB∥DE,根据同旁内角互补和等量代换,即可解答.解答:证明:∵∠CDE=∠C,∴AC∥DE,∴∠A+∠ADE=180°,∵AD∥BE,∴∠E+∠ADE=180°,∴∠A=∠E.点评:本题主要考查了平行线的判定与性质,注意平行线的性质和判定定理的综合运用.19.已知直线AB和CD相交于点O,∠AOC为锐角,过O点作直线OE、OF.若∠COE=90°,OF平分∠AOE,求∠AOF+∠COF的度数.考点:对顶角、邻补角;角平分线的定义.分析:根据角平分线的定义可得∠AOF=∠EOF,然后解答即可.解答:解:∵OF平分∠AOE,∴∠AOF=∠EOF,∴∠AOF+∠COF=∠EOF+∠COF=∠COE=90°.点评:本题考查了角平分线的定义,是基础题,熟记概念并准确识图是解题的关键.20.已知:OA⊥OB,OE、OF分别是∠AOB的角平分线,∠EOF=68°,求∠AOC的度数.考点:垂线;角平分线的定义.分析:根据角平分线的性质,可得∠BOE与∠AOB的关系,∠FOB与∠COB的关系,根据角的和差,可得答案.解答:解:OE、OF分别是∠AOB的角平分线,∠EOF=68°,∠BOE=∠AOB,∠BOF=∠BOC,∵∠EOF=(∠AOB+∠BOC)=68°,∴∠AOC=∠AOB+∠BOC=136°.点评:本题考查了垂线,利用了角平分线的性质.21.如图所示,OA⊥OB,OC⊥OE,OD为∠BOC的平分线,∠BOE=16°,求∠DOE的度数.考点:垂线;角平分线的定义.分析:首先根据垂直定义以及角平分线的性质得出∠BOD 的度数,进而得出∠DOE的度数.解答:解:∵OC⊥OE,∴∠COE=90°,∵∠BOE=16°,∴∠COB=90°+16°=106°,∵OD为∠BOC的平分线,∴∠BOD=53°,∴∠DOE=53°﹣16°=37°.点评:此题主要考查了角平分线的性质以及垂直定义,正确求出∠COB的度数是解题关键.22.如图,已知∠B=30°,∠BCD=55°,∠CDE=45°,∠E=20°,求证:AB∥CD.考点:平行线的判定.专题:证明题.分析:作CM∥AB,DN∥EF,根据平行线的性质得∠1=∠B=30°,∠4=∠E=20°,则∠2=∠BCD﹣∠1=25°,∠3=∠CDE ﹣∠4=25°,即∠2=∠3,根据平行线的判定得到CM∥DN,然后利用平行线的传递性得到AB∥EF.解答:解:作CM∥AB,DN∥EF,如图,∴∠1=∠B=30°,∠4=∠E=20°,∴∠2=∠BCD﹣∠1=45°﹣25°=25°,∠3=∠CDE﹣∠4=30°﹣10°=25°,∴∠2=∠3,∴CM∥DN,∴AB∥EF.点评:本题考查了平行线的判定:内错角相等,两直线平行.也考查了平行线的性质,熟记定义是解题的关键.23.如图,若∠ABC+∠CDE﹣∠C=180°,试证明:AB∥DE.考点:平行线的判定.专题:证明题.分析:延长ED交BC于F,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠CFD=∠CDE﹣∠C,再根据邻补角的定义表示出∠BFD,再根据内错角相等,两直线平行证明即可.解答:解:如图,延长ED交BC于F,由三角形的外角性质得,∠CFD=∠CDE﹣∠C,所以,∠BFD=180°﹣∠CFD=180°﹣(∠CDE﹣∠C),∵∠ABC+∠CDE﹣∠C=180°,∴∠ABC=180°﹣(CDE﹣∠C),∴∠ABC=∠BFD,∴AB∥DE.点评:本题考查了平行线的判定,三角形的一个外角等于与它不相邻的两个内角的和的性质,邻补角的定义,熟记性质并作辅助线是解题的关键.。

北师大版七年级下册期中备考提优训练--《相交线与平行线》(含答案)

北师大版七年级下册期中备考提优训练--《相交线与平行线》(含答案)

北师大版七年级下册期中备考提优训练《相交线与平行线》专题一各种背景下的平行1.如图,将一张长方形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E 交AF于点G,若∠BEG=50°,则∠GFE= °.2.把一张长方形纸片ABCD沿EF折叠后ED与BC 的交点为G,D,C分别落在M,N的位置上,若∠EFG=49°,则∠2-∠1= .3.如图,AB∥CD,AD与BC 相交于点O,若∠A=50°,∠COD=100°,则∠C等于()A.50°B.100°C.30°D.150°4.如图1,ABCD是长方形纸带,∠DEF=23°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是°.15.如图,ABCD为一条长方形纸带,AB∥CD,将纸带ABCD沿EF折叠,A,D 两点分别与A',D'对应,若∠1=2∠2,则∠AEF的度数为.第5 题图第6 题图6.如图,在四边形ABCD中,点M,N分别在AB,BC边上,将△BMN 沿MN翻折,得△FMN,若MF∥AD,FN∥CD,则∠B= .7.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1 等于()A.75°B.90°C.105°D.115°8.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为()A.40°B.45°C.60°D.30°9.已知直线l1∥l2,一块含30°角的直角三角板按如图所示放置,∠1=35°,则∠2等于()A.25°B.35°C.40°D.45°10.如图1 为北斗七星的位置图,如图2将北斗七星分别标为A,B,C,D,E,F,G,将A,B,C,D,E,F 顺次首尾连接,若AF 恰好经过点G,且AF∥DE,∠B=∠C+10°,∠D=105°,则∠B-∠CGF= .11.“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯,如图1所示,灯A射线从AM开始顺时针旋转至AN 便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视,若灯A转动的速度是每秒2 度,灯B转动的速度是每秒1 度,假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN= .(2)若灯B射线先转动30 秒,灯A射线才开始转动,在灯B射线到达BQ之前,A 灯转动几秒,两灯的光线互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前,若射出的光束交于点C,过C作∠ACD交PQ 于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.12.【探究】如图1,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB,CD 交于点E,G.(1)若∠AFH=60°,∠CHF=50°,则∠EOF= 度,∠FOH=度.(2)若∠AFH+∠CHF=100°,求∠FOH 的度数.【拓展】如图2,∠AFH 和∠CHI 的平分线交于点O,EG 经过点O 且平行于FH,分别与AB,CD 交于点E,G.若∠AFH+∠CHF=α,求∠FOH 的度数.(用含α的代数式表示)专题二尺规作图13.已知∠AOB,点P在OA上,请以P为顶点,OP为一边作∠OPC=∠O.(不写作法,但必须保留作图痕迹)14.尺规作图(保留作图痕迹,不写作法):已知∠α,∠β,求作一个角,使它等于∠α-∠β.15.尺规作图:已知:∠1 如图,求作:∠ABC,使∠ABC=2∠1.(保留作图痕迹,不要求写做法)16.作图题:如图,点C,E 均在直线AB 上,∠BCD=45°.(1)在图中作∠FEB,使∠BEF=∠DCB(保留作图痕迹,不写作法).(2)请直接说出直线EF与直线CD的位置关系.17.尺规作图(不写作法,保留作图痕迹):已知:如图,直线AB 与直线BC 相交于点B,点D 是直线BC 上一点.求作:直线DE,使直线DE∥AB,并说明这样操作的依据.18.如图,一个长方形的街边公园有一条小路AB,现在要再修建一条与原路平行的小路,并且经过C 处,请你用直尺和圆规作出小路的位置,不写作法,保留作图痕迹,并根据作图写出两条小路平行的依据.19.作图题:(1)在如图所示的方格纸中,经过线段AB外一点C,不用量角器与三角尺,仅用直尺,作线段AB的垂线EF和平行线GH;(2)判断EF,GH的位置关系是.20.在直线AB上任取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=45°时,∠BOD= .21.利用网格作图:(1)过点C 作AB的平行线CD;(2)过点C 作AB的垂线,垂足为E;(3)线段CE的长度是点C 到直线的距离;(4)连接CA,CB,在线段CA,CB,CE中,线段最短,理由是:.22.按要求作图:如图,已知P 为直线AB 外一点.①过点P 作PD⊥AB,垂足为D;②过点P 作PE∥AB.23.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE 上截取AD=BC,连接CD.(尺规作图,要求保留作图痕迹,不写作法)24.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O 处.(1)如图1,将三角板MON 的一边ON 与射线OB重合,此时∠MOC= .(2)如图2,将三角板MON 绕点O逆时针旋转一定角度,此时OC 是∠MOB 的平分线,求旋转后的∠BON 和∠CON 的度数.专题三与角有关的辅助线25.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1= .26.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是()A.α+β=180°B.α+β=90°C.β=3αD.α-β=90°27.如图所示,l1∥l2,则下列式子中值为180°的是()A.α+β+γ B.α+β-γ C.β+γ-α D.α-β+γ28.已知:如图,AB∥CD,则图中α,β,γ三个角之间的数量关系为()A.α-β+γ=180°B.α+β-γ=180°C.α+β+γ=360°D.α-β-γ=90°29.已知:如图,AB∥CD,E,F分别是AB,CD上的点.求证:∠EPF=∠AEP+∠CFP.30.如图,AB∥CD,E,G分别是AB,CD上的点,∠EFG=90°,且GF平分∠CGE,已知∠1=30°,求∠AEF 的度数.31.如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于.32.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示,已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°33.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的直角三角板的一个顶点在纸条的另一边上,则∠1 的度数为.34.如图,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E=140°,则∠BFD的度数为.35.(1)已知:如图1,AE∥CF,易知∠APC=∠A+∠C,请补充完整证明过程:证明:过点P 作MN∥AE∵MN∥AE(已作)∴∠APM=()又∵AE∥CF,MN∥AE∴MN∥CF∠MPC=∠()∴∠APM+∠CPM=∠A+∠C即∠APC=∠A+∠C(2)变式:如图2-4,AE∥CF,P1,P2 是直线EF 上的两点,猜想∠A,∠AP1P2,∠P1P2C,∠C 这四个角之间的关系,并直接写出以下三种情况下这四个角之间的关系.36.已知AB∥CD,点P为平面内一点,连接AP,CP.(1)探究:如图1,∠PAB=145°,∠PCD=135°,则∠APC的度数是;11如图2,∠PAB=45°,∠PCD=60°,则∠APC的度数是.(2)在图2 中试探究∠APC,∠PAB,∠PCD之间的数量关系,并说明理由.(3)拓展探究:当点P在直线AB,CD外,如图3、图4所示的位置时,请分别直接写出∠APC,∠PAB,∠PCD之间的数量关系.37.已知直线AB∥CD,点M,N分别在直线AB,CD上,点E为平面内一点.(1)如图1,∠BME,∠E,∠END的数量关系为(直接写出答案);如图2,∠BME=m°,EF平分∠MEN,NP平分∠END,EQ∥NP,求∠FEQ的度数(用含m的式子表示);(2)如图3,G 为CD 上一点,∠BMN=n∠EMN,∠GEK=n∠GEM,EH∥MN交AB于点H,探究∠GEK,∠BMN,∠GEH之间的数量关系(用含n的式子表示).图1 图2 图3(3)参考答案:。

精品解析北师大版七年级数学下册第二章相交线与平行线必考点解析试题(含解析)

精品解析北师大版七年级数学下册第二章相交线与平行线必考点解析试题(含解析)

北师大版七年级数学下册第二章相交线与平行线必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直尺的一条边经过直角三角尺的直角顶点且平分直角,它的对边恰巧经过60°角的顶点.则∠1的大小是()A.30°B.45°C.60°D.75°2、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是()A .两点之间,线段最短B .两点之间,直线最短C .两点确定一条直线D .直线外一点与直线上各点连接的所有线段中,垂线段最短3、如图,已知//AD BC ,32B =︒∠,DB 平分ADE ∠,则DEC ∠=( )A .32°B .60°C .58°D .64°4、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150°,则第二次的拐角为( )A .40°B .50°C .140°D .150°5、下列说法中,正确的是( )A .从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离B.互相垂直的两条直线不一定相交C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cmD.过一点有且只有一条直线垂直于已知直线6、下列图形中,∠1与∠2不是对顶角的有()A.1个B.2个C.3个D.0个7、如图,直线l1∥l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为()A.30°B.40°C.50°D.60°8、下列说法:(1)两条不相交的直线是平行线;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内两条不相交的线段一定平行;(4)过一点有且只有一条直线与已知直线垂直;(5)两点之间,直线最短;其中正确个数是()A.0个B.1个C.2个D.3个9、下列说法中正确的是()A .一个锐角的补角比这个角的余角大90°B .-a 表示的数一定是负数C .射线AB 和射线BA 是同一条射线D .如果︱x ︱=5,那么x 一定是510、点P 是直线l 外一点,,,A B C 为直线l 上三点,4cm,5cm,2cm PA PB PC ===,则点P 到直线l 的距离是( )A .2cmB .小于2cmC .不大于2cmD .4cm第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知 AB ∥CD ∥EF ,BC ∥AD ,AC 平分∠BAD ,那么图中与∠AGE 相等的角(不包括∠AGE )有_____个.2、201836'''︒=_________°,603855'''︒的余角是________.3、如图,点O 为直线AB 上一点,,,135OC OD OE AB ⊥⊥∠=︒.(1)EOD ∠=__________________°,2∠=__________________°;(2)1∠的余角是__________________,EOD ∠的补角是___________________.4、如图,已知AO ⊥OC ,OB ⊥OD ,∠COD =42°,则∠AOB =__________.5、若α∠与β∠互余,且:2:3αβ∠∠=,则2536αβ∠+∠=______.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,直线a 、b 、c 两两相交,且∠1=2∠3,∠2=86°,求∠4的度数.2、如图,直线AB ,CD 相交于点O ,OM ⊥AB 于点O ,ON ⊥CD 于点O .(1)试说明∠1=∠2;(2)若∠BOC =4∠2,求∠AOC 的大小.3、如图,为解决A 、B 、C 、D 四个村庄的用水问题.政府准备投资修建一个蓄水池.(1)若使蓄水池与四个村庄的距离的和最小,请画出蓄水池P 的位置;(2)为把河道l 中的水引入蓄水池P 中,需要再修建一条引水渠.若使引水渠的长度最小,请画出引水渠PQ 的修建线路.4、如图,直线AB 、CD 相交于点O ,已知OE 平分∠BOD ,且∠AOC :∠AOD =3:7.(1)求∠DOE 的度数;(2)若∠EOF 是直角,求∠COF 的度数.5、直线AB 、CD 相交于点O ,OE 平分AOD ∠,90︒∠=FOC ,140︒∠=,求2∠与3∠的度数.-参考答案-一、单选题1、D由AC平分∠BAD,∠BAD=90°,得到∠BAC=45°,再由BD∥AC,得到∠ABD=∠BAC=45°,∠1+∠CBD=180°,由此求解即可.【详解】解:∵AC平分∠BAD,∠BAD=90°,∴∠BAC=45°∵BD∥AC,∴∠ABD=∠BAC=45°,∠1+∠CBD=180°,∵∠CBD=∠ABD+∠ABC=45°+60°=105°,∴∠1=75°,故选D.【点睛】本题主要考查了平行线的性质和角平分线的定义,解题的关键在于能够熟练掌握平行线的性质.2、D【分析】根据垂线段最短即可完成.【详解】根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确【点睛】本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.3、D【分析】先根据平行线的性质(两直线平行,内错角相等),可得∠ADB=∠B,再利用角平分线的性质可得:∠ADE=2∠ADB=64°,最后再利用平行线的性质(两直线平行,内错角相等)即可求出答案.【详解】解:∵AD∥BC,∠B=32°,∴∠ADB=∠B=32° .∵DB平分∠ADE,∴∠ADE=2∠ADB=64°,∵AD∥BC,∴∠DEC=∠ADE=64°.故选:D.【点睛】题目主要考查了平行线的性质和角平分线的性质,解题的关键是熟练掌握平行线的性质,找出题中所需的角与已知角之间的关系.4、D【分析】由于拐弯前、后的两条路平行,可考虑用平行线的性质解答.【详解】解:∵拐弯前、后的两条路平行,∴∠B=∠C=150°(两直线平行,内错角相等).故选:D.【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.5、C【分析】根据点到直线距离的定义分析,可判断选项A和C;根据相交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D,从而完成求解.【详解】从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;在同一平面内,互相垂直的两条直线一定相交,即选项B错误;直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;故选:C.【点睛】本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.6、C【分析】根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.【详解】解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;②中∠1和∠2是对顶角,故②不符合题意;③中∠1和∠2的两边不互为反向延长线,故③符合题意;④中∠1和∠2没有公共点,故④符合题意.∴∠1 和∠2 不是对顶角的有3个,故选C.【点睛】此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.7、D【分析】根据平行线的性质和垂直的定义解答即可.【详解】解:∵BC⊥l3交l1于点B,∴∠ACB=90°,∵∠2=30°,∴∠CAB=180°−90°−30°=60°,∵l1∥l2,∴∠1=∠CAB=60°.故选:D.【点睛】此题考查平行线的性质,关键是根据平行线的性质解答.8、B【分析】根据平面内相交线和平行线的基本性质逐项分析即可.【详解】解:(1)在同一平面内,两条不相交的直线是平行线,故原说法错误;(2)过直线外一点有且只有一条直线与已知直线平行,故原说法错误;(3)在同一平面内两条不相交的线段不一定平行,故原说法错误;(4)过一点有且只有一条直线与已知直线垂直,故原说法正确;(5)两点之间,线段最短,故原说法错误;故选:B .【点睛】本题考查平面内两直线的关系,及其推论等,掌握基本概念和推论是解题关键.9、A【分析】根据补角和余角的概念即可判断A 选项;根据负数的概念即可判断B 选项;根据射线的概念即可判断C 选项;根据绝对值的意义即可判断D 选项.【详解】解:A 、设锐角的度数为x ,∴这个锐角的补角为180x ︒-,这个锐角的余角为90x ︒-,∴()1809090x x ︒--︒-=︒.故选项正确,符合题意;B 、当0a ≤时,0a -≥,∴-a 表示的数不一定是负数,故选项错误,不符合题意;C、射线AB是以A为端点,沿AB方向延长的的射线,射线BA是以B为端点,沿BA方向延长的的射线,∴射线AB和射线BA不是同一条射线,故选项错误,不符合题意;D、如果︱x︱=5,5x=±,∴x不一定是5,故选项错误,不符合题意,故选:A.【点睛】此题考查了补角和余角的概念,负数的概念,射线的概念,绝对值的意义,解题的关键是熟练掌握以上概念和性质.10、C【分析】根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且245<<,∴点P到直线l的距离不大于2cm,故选:C.【点睛】本题考查了垂线段最短的性质,熟记性质是解题的关键.二、填空题1、5【分析】由AB ∥CD ∥EF ,可得∠AGE =∠GAB =∠DCA ;由BC ∥AD ,可得∠GAE =∠GCF ;又因为AC 平分∠BAD ,可得∠GAB =∠GAE ;根据对顶角相等可得∠AGE =∠CGF .所以图中与∠AGE 相等的角有5个.【详解】解:∵AB ∥CD ∥EF ,∴∠AGE =∠GAB =∠DCA ;∵BC ∥AD ,∴∠GAE =∠GCF ;又∵AC 平分∠BAD ,∴∠GAB =∠GAE ;∵∠AGE =∠CGF .∴∠AGE =∠GAB =∠DCA =∠CGF =∠GAE =∠GCF .∴图中与∠AGE 相等的角有5个故答案为:5.【点睛】本题考查对顶角、邻补角及角平分线的定义和平行线的性质,根据题意仔细观察图形并找出全部答案是解题关键.2、20.31 29215'''︒【分析】根据角度的四则运算法则、余角的定义即可得.【详解】解:2018362018(3660)'''''︒=︒+÷,20180.6'︒='+,2018.6︒+=',20(18.660)︒+÷=︒,200.31︒+=︒,20.31=︒;603855'''︒的余角是9060385529215''''''︒-︒=︒,故答案为:20.31,29215'''︒.【点睛】本题考查了角度的四则运算、余角,熟练掌握角度的四则运算法则和余角的定义是解题关键. 3、35 55 COE ∠与2∠ COB ∠【分析】(1)由OC OD ⊥,OE AB ⊥可得=90COD ∠︒,=90AOE ∠︒,所以1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,所以1=EOD ∠∠,已知1∠的度数,即可得出2∠与EOD ∠的度数;(2)由(1)可得1∠的余角是COE ∠与2∠,要求EOD ∠的补角,即要求1∠的补角,1∠的补角是COB∠.【详解】解:(1)OC OD ⊥,OE AB ⊥,∴=90COD ∠︒,=90AOE ∠︒,∴1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,∴1=EOD ∠∠,135∠=︒,∴255∠=︒,35=EOD ∠︒;(2)由(1)可得1∠的余角是COE ∠与2∠,1180COB =∠∠+︒,∴1∠的补角是COB ∠,∴EOD ∠的补角是COB ∠.故答案为:(1)35,55;(2)COE ∠与2∠,COB ∠.【点睛】本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键.4、138°【分析】根据垂直的定义得到∠AOC =∠DOB =90°,由互余关系得到∠BOC =90°-∠COD =90°-42°=48°,即可求出∠AOB .【详解】解:∵AO ⊥OC ,OB ⊥OD ,∴∠AOC =∠DOB =90°,又∵∠COD =42°,∴∠BOC =90°-∠COD =90°-42°=48°,∴∠AOB =∠AOC +∠BOC =90°+48°=138°.【点睛】本题考查了余角的概念:若两个角的和为90°,那么这两个角互余.5、69°【分析】由题意可设∠α=2x ,∠β=3x ,根据α∠与β∠互余可得关于x 的方程,解方程即可求出x ,然后代值计算即可;【详解】解:因为:2:3αβ∠∠=,所以设∠α=2x ,∠β=3x ,因为α∠与β∠互余,所以2x +3x =90°,解得x =18°,所以∠α=36°,∠β=54°, 所以25253654693636αβ∠+∠=⨯︒+⨯︒=︒;故答案为69°.【点睛】本题考查了互余的概念和简单的一元一次方程的应用,属于基本题目,熟练掌握基本知识,掌握求解的方法是关键.三、解答题1、43°【分析】根据对顶角相等可得12∠=∠,3=4∠∠结合已知条件即可求得∠4的度数.【详解】解:根据对顶角相等,∴∠1=∠2=86°.又∵∠1=2∠3,∴86°=2∠3,∴∠3=43°,又∠3与∠4对顶角,所以∠3=∠4=43°.【点睛】本题考查了对顶角相等,角度的计算,根据对顶角相等找出图中相等的角是解题的关键.2、(1)见解析;(2)60°【分析】(1)利用同角的余角相等解答即可得出结论;(2)利用(1)的结论,等量代换可得∠BOC=4∠1,利用∠BOM=90°=3∠1,求得∠1的度数,则∠AOC=90°﹣∠1.【详解】解:(1)∵OM⊥AB,ON⊥CD,∴∠AOM=∠CON=90°,∴∠AOC+∠1=90°,∠AOC+∠2=90°,∴∠1=∠2.(2)∵OM⊥AB,∴∠BOM=90°.∵∠1=∠2,∠BOC=4∠2,∴∠BOC=4∠1.∴∠BOM=∠BOC﹣∠1=4∠1﹣∠1=3∠1,即3∠1=90°,∴∠1=30°.∴∠AOC=∠AOM﹣∠1=90°﹣30°=60°.【点睛】本题考查了对顶角、垂线性质、余角等基本几何知识,属于基础题.熟练掌握基本几何公理、基本几何概念是关键.3、(1)见解析;(2)见解析.【分析】(1)利用两点之间距离线段最短,进而得出答案;(2)利用点到直线的距离垂线段最短,即可得出答案.【详解】解答:解:(1)如图所示:由两点之间,线段最短,连接AC 、BD 交点即为P 点,(2)如图所示:由垂线段最短,过P 作PQ ⊥河道l ,垂足即为Q 点.【点睛】本题主要考查了应用设计与作图,正确掌握点与点以及点到直线的距离定义是解题关键.4、(1)27︒;(2)117︒【分析】(1)由∠AOC :∠AOD =3:7,180,AOC AOD 先求解,AOC ∠ 再利用对顶角相等求解,BOD ∠ 结合角平分线的定义可得答案;(2)先求解,DOF 再利用平角的定义可得答案.【详解】解:(1) ∠AOC :∠AOD =3:7,180,AOC AOD 318054,126,10AOC AOD 54,BOD AOCOE 平分∠BOD ,1DOE DOB27.2DOE EOF(2)27,90,DOF902763,COF18063117.【点睛】本题考查的是角平分线的定义,对顶角的性质,平角的定义,垂直的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.5、∠3=50°,∠2=65°.【分析】根据邻补角的性质、角平分线的定义进行解答即可.【详解】∵∠FOC=90°,∠1=40°,∴∠3=180°-∠FOC-∠1 =180°-90°-40°=50°,∴∠AOD=180°-∠3=180°-50°=130°,又∵OE平分∠AOD,∴∠2=1∠AOD=65°.2【点睛】本题考查的是邻补角的概念和性质、角平分线的定义,掌握邻补角之和等于180°是解题的关键.。

北师大版数学七年级下册期末专题复习2相交线与平行线导学课件

北师大版数学七年级下册期末专题复习2相交线与平行线导学课件
90°.∴∠EOF=90°-∠COE=90°-31°=59°. 3.如图,∠ACB=90°,∠DAB=70°,AC平分∠DAB,∠DCA=35°.
当点P在线段DC的延长线上时,∠2=∠3-∠1. 解:(1)用量角器量得∠1=80°,射线OC即为所求,如图1.
数学·北师大版·七年级下册
真题体验
5.(2020年孝感)如图,直线AB,CD相交于点O,OE⊥CD,垂足
______________.
D.∠1=∠2 (2)在l1∥l2的前提下,若点P在线段CD之外时,∠1,∠2,∠3之间的关系又怎样?
当点P在线段DC的延长线上时,∠2=∠3-∠1.
又∵∠2=∠APE+∠BPE,∴∠2=∠1+∠3.
∴∠GFH=∠GFB-∠HFB=45°-20°=25°.
②延长射线AB到点C;
数学·北师大版·七年级下册
真题体验
4.(2020年河池)如图,直线a,b被直线c所截,则∠1与∠2的位置
关系是
(A )
A.同位角
B.内错角
C.同旁内角
D.邻补角
数学·北师大版·七年级下册
∵l1∥l2,∴PF∥5l2..∴∠(F2PB0=2∠30.年∴∠2郴=∠州FPB-)∠如FPA图=∠3,-∠1直; 线a,b被直线c,d所截.下列条件能判定
度数是
(A )
A.20°
B.30°
C.40°
D.50°
数学·北师大版·七年级下册
3.(2020年哈尔滨香坊区期末)如图,已知直线AB和DF相交于点 O(∠AOD为锐角),∠COB=90°,OE平分∠AOF.则2∠EOF-∠COD =____9_0_____°.
数学·北师大版·七年级下册
4.(2020年威海文登区期末)如图,直线AB,CD相交于点O,OE平 分∠AOC,∠BOD=62°,OF⊥OD.求∠EOF的度数.

北师大版七年级下册数学第二章 相交线与平行线含答案(汇总)

北师大版七年级下册数学第二章 相交线与平行线含答案(汇总)

北师大版七年级下册数学第二章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,AB=AC,AF∥BC,∠FAC=75°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°2、如图,在下列条件中,不能判定AB∥DF的是()A. B. C. D.3、如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=115°,则∠4的度数为( )A.55°B.60°C.65°D.75°4、如图,AB是⊙O的直径,点C,D在⊙O上,且点C,D在AB的异侧,连接AD,BD,OD,OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°5、如图,直线,点A在直线上,以点A为圆心,适当长度为半径画弧,分别交直线、于B、C两点,连结AC、BC.若,则的大小为()A. B. C. D.6、如图,已知∠1=∠2,∠3=80°,则∠4=()A.80°B.70°C.60°D.50°7、如果a∥b,b∥c,d⊥a,那么()A.b⊥dB.a⊥cC.b∥dD.c∥d8、如图,∠BAC=40°,DE∥AB,交AC于点F,∠AFE的平分线 FG交AB于点H,则结论正确的是()A.∠AFG=70°B.∠AFG>∠AGFC.∠FHB=100°D.∠CFH =2∠EFG9、如图,a∥b,∠1是∠2的3倍,则∠2等于()A.45°B.90°C.135°D.150°10、如图,直线c与直线a相交于点A,与直线b相交于点B,,,若要使直线,则将直线a绕点A按如图所示的方向至少旋转()A. B. C. D.11、如图,由已知条件推出结论正确的是()A.由,可以推出B.由,可以推出C.由,可以推出D.由,可以推出12、将一块三角板如图放置,∠ACB=90°,∠ABC=60°,点B,C分别在PQ,MN上,若PQ∥MN,∠ACM=42°,则∠ABP的度数为()A.45°B.42°C.21°D.12°13、已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是()A.如果a∥b,a⊥c,那么b⊥cB.如果b∥a,c∥a,那么b∥cC.如果b⊥a,c⊥a,那么b⊥cD.如果b⊥a,c⊥a,那么b∥c14、如图,下列条件中不能判定AB∥CD的是()A.∠3=∠5B.∠1=∠5C.∠1+∠4=180°D.∠3=∠415、如图,若∠1+∠2=180°,则( )A.c∥dB.a∥bC.c∥d且a∥bD.∠3=∠2二、填空题(共10题,共计30分)16、如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:解:∵AD∥BC(已知),∴∠1=∠3(________).∵∠1=∠2(已知),∴∠2=∠3.∴BE∥________(________).∴∠3+∠4=180°(________).17、如图,在中,CD平分∠ACB,DE∥BC,DE交AC于E,若DE=7,AE=5,则AC=________。

七级数学下册第章相交线与平行线单元综合试题含解析新版北师大版课件

七级数学下册第章相交线与平行线单元综合试题含解析新版北师大版课件

相交线及平行线一、选择题(共小题).(•呼和浩特)如图,已知∠°,如果∥,那么∠的度数为().°.°.°.°.(•永州)如图,下列条件中能判定直线∥的是().∠∠.∠∠.∠∠°.∠∠.(•抚顺)如图,直线、被直线、所截,下列条件中,不能判断直线∥的是().∠∠.∠∠.∠∠°.∠∠°.(•铜仁市)如图,在下列条件中,能判断∥的是().∠∠.∠∠°.∠∠.∠∠.(•福州)下列图形中,由∠∠能得到∥的是().....(•黔南州)如图,下列说法错误的是().若∥,∥,则∥.若∠∠,则∥.若∠∠,则∥.若∠∠°,则∥.(•泰安)如图,∥,∠°,平分∠,则∠的度数等于().°.°.°.°.(•东莞)如图,直线∥,∠°,∠°,则∠的度数是().°.°.°.°.(•泸州)如图,∥,平分∠.若∠°,则∠的度数为().°.°.°.°.(•宁波)如图,直线∥,直线分别及,相交,∠°,则∠的度数为().°.°.°.°.(•毕节市)如图,直线∥,直角三角形的顶点在直线上,∠°,∠β°,则∠α的度数为().°.°.°.°.(•荆门)如图,∥,直线分别交,于点,点,⊥,交直线于点,若∠°,则∠等于().°.°.°.°.(•新疆)已知,∥,∠°,∠°,则∠的度数是().°.°.°.°.(•常州)如图,⊥于点,∥,∠°,则∠的度数是().°.°.°.°.(•山西)如图,直线∥,一块含°角的直角三角板(∠°)按如图所示放置.若∠°,则∠的度数为().°.°.°.°.(•湖北)如图,将一块含有°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠°,那么∠的度数为().°.°.°.°.(•随州)如图,∥,∠°,则∠的大小是().°.°.°.°.(•莱芜)如图,∥,平分∠,若∠°,那么∠的度数为().°.°.°.°.(•河北)如图,∥,⊥,∠°,则∠().°.°.°.°.(•临沂)如图,直线∥,∠°,∠°,则∠等于().°.°.°.°.(•汕尾)如图,能判定∥的条件是().∠∠.∠∠.∠∠.∠∠.(•长春)如图,直线及直线交于点,及直线交于点,∠°,∠°,若使直线及直线平行,则可将直线绕点逆时针旋转().°.°.°.°二、填空题(共小题).(•西藏)如图,点、、在同一条直线上,请你写出一个能使∥成立的条件:.(只写一个即可,不添加任何字母或数字).(•成都)如图,直线∥,△为等腰三角形,∠°,则∠度..(•宜宾)如图,∥,及交于点.若∠°,∠°,则∠..(•威海)如图,直线∥,∠°,∠°,则∠的度数为..(•株洲)如图,∥,∠°,∠°,则∠的大小是..(•汕尾)已知,,为平面内三条不同直线,若⊥,⊥,则及的位置关系是..(•湘潭)如图,直线、被直线所截,若满足,则、平行.三、解答题(共小题).(•邵阳)将一副三角板拼成如图所示的图形,过点作平分∠交于点.()求证:∥;()求∠的度数.北师大新版七年级(下)近年中考题单元试卷:第章相交线及平行线参考答案及试题解析一、选择题(共小题).(•呼和浩特)如图,已知∠°,如果∥,那么∠的度数为().°.°.°.°【考点】平行线的性质;对顶角、邻补角.【专题】计算题.【分析】先求出∠的对顶角,再根据两直线平行,同旁内角互补即可求出.【解答】解:如图,∵∠°,∴∠∠°,∵∥,∴∠°﹣∠°﹣°°.故选:.【点评】本题利用对顶角相等和平行线的性质,需要熟练掌握..(•永州)如图,下列条件中能判定直线∥的是().∠∠.∠∠.∠∠°.∠∠【考点】平行线的判定.【分析】平行线的判定定理有:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行.根据以上内容判断即可.【解答】解:、根据∠∠不能推出∥,故选项错误;、∵∠∠,∠∠,∴∠∠,即根据∠∠不能推出∥,故选项错误;、∵∠∠°,∴∥,故选项正确;、根据∠∠不能推出∥,故选项错误;故选:.【点评】本题考查了平行线的判定的应用,注意:平行线的判定定理有:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行..(•抚顺)如图,直线、被直线、所截,下列条件中,不能判断直线∥的是().∠∠.∠∠.∠∠°.∠∠°【考点】平行线的判定.【分析】依据平行线的判定定理即可判断.【解答】解:、已知∠∠,根据内错角相等,两直线平行可以判断,故命题正确;、不能判断;、同旁内角互补,两直线平行,可以判断,故命题正确;、同旁内角互补,两直线平行,可以判断,故命题正确.故选.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行..(•铜仁市)如图,在下列条件中,能判断∥的是().∠∠.∠∠°.∠∠.∠∠【考点】平行线的判定.【分析】根据各选项中各角的关系及利用平行线的判定定理,分别分析判断、是否平行即可.【解答】解:、∵∠∠,∴∥(内错角相等,两直线平行),故正确;、根据“∠∠°”只能判定“∥”,而非∥,故错误;、根据“∠∠”只能判定“∥”,而非∥,故错误;、根据“∠∠”只能判定“∥”,而非∥,故错误;故选:.【点评】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角..(•福州)下列图形中,由∠∠能得到∥的是()....【考点】平行线的判定.【专题】计算题.【分析】利用平行线的判定方法判断即可.【解答】解:如图所示:∵∠∠(已知),∴∥(内错角相等,两直线平行),故选【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键..(•黔南州)如图,下列说法错误的是().若∥,∥,则∥.若∠∠,则∥.若∠∠,则∥.若∠∠°,则∥【考点】平行线的判定.【分析】根据平行线的判定进行判断即可.【解答】解:、若∥,∥,则∥,利用了平行公理,正确;、若∠∠,则∥,利用了内错角相等,两直线平行,正确;、∠∠,不能判断∥,错误;、若∠∠°,则∥,利用同旁内角互补,两直线平行,正确;故选.【点评】此题考查平行线的判定,关键是根据几种平行线判定的方法进行分析..(•泰安)如图,∥,∠°,平分∠,则∠的度数等于().°.°.°.°【考点】平行线的性质.【分析】根据两直线平行,同位角相等求出∠,再根据角平分线的定义求出∠,然后根据两直线平行,同旁内角互补解答.【解答】解:∵∥,∠°,∵平分∠,∴∠∠×°°,∵∥,∴∠°﹣∠°.故选.【点评】题考查了平行线的性质,角平分线的定义,比较简单,准确识图并熟记性质是解题的关键..(•东莞)如图,直线∥,∠°,∠°,则∠的度数是().°.°.°.°【考点】平行线的性质;三角形的外角性质.【分析】根据平行线的性质得出∠∠°,然后根据三角形外角的性质即可求得∠的度数.【解答】解:∵直线∥,∠°,∴∠∠°,∵∠∠∠,∴∠∠﹣∠°﹣°°.故选.【点评】本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键..(•泸州)如图,∥,平分∠.若∠°,则∠的度数为().°.°.°.°【考点】平行线的性质.【分析】先利用平行线的性质易得∠°,因为平分∠,所以∠°,再利用平行线的性质两直线平行,同旁内角互补,得出结论.【解答】解:∵∥,∠°,∴∠°,∵平分∠,∴∠°,∴∠°.故选.【点评】本题主要考查了平行线的性质和角平分线的定义,利用两直线平行,内错角相等;两直线平行,同旁内角互补是解答此题的关键..(•宁波)如图,直线∥,直线分别及,相交,∠°,则∠的度数为().°.°.°.°【考点】平行线的性质.【分析】先根据两直线平行同位角相等,求出∠的度数,然后根据邻补角的定义即可求出∠的度数.【解答】解:如图所示,∴∠∠°,∵∠∠°,∴∠°.故选.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补..(•毕节市)如图,直线∥,直角三角形的顶点在直线上,∠°,∠β°,则∠α的度数为().°.°.°.°【考点】平行线的性质.【分析】首先过点作∥,可得∥∥,然后根据两直线平行,内错角相等,即可求得答案.【解答】解:过点作∥,∵∥,∴∥∥,∴∠∠α,∠∠β°,∵∠°,∴∠α∠∠﹣∠°.故选.【点评】此题考查了平行线的性质.此题比较简单,注意掌握辅助线的作法,注意掌握两直线平行,内错角相等定理的应用..(•荆门)如图,∥,直线分别交,于点,点,⊥,交直线于点,若∠°,则∠等于().°.°.°.°【考点】平行线的性质.【分析】根据平行线的性质,可得∠及∠的关系,根据两直线垂直,可得所成的角是°,根据角的和差,可得答案.【解答】解:如图,∵⊥,∴∠∠°,∴∠°﹣∠°﹣°°,∵直线∥,∴∠∠°,故选:【点评】本题考查了平行线的性质,利用了平行线的性质,垂线的性质,角的和差..(•新疆)已知,∥,∠°,∠°,则∠的度数是().°.°.°.°【考点】平行线的性质.【分析】因为∥,所以∠∠,而∠是△的外角,所以∠∠∠∠.【解答】解:∵在△中,∠°,∠°,∴∠∠∠°°°,∵∥,∴∠∠°.故选【点评】本题考查的是两直线平行的性质,关键是根据三角形外角及内角的关系及两直线平行的性质分析..(•常州)如图,⊥于点,∥,∠°,则∠的度数是().°.°.°.°【考点】平行线的性质;垂线.【专题】计算题.【分析】由及垂直,得到三角形为直角三角形,利用直角三角形两锐角互余,求出∠的度数,再利用两直线平行同位角相等即可求出∠的度数.【解答】解:∵⊥,∴∠°,在△中,∠°,∴∠°﹣∠°,∵∥,∴∠∠°,故选.【点评】此题考查了平行线的性质,以及垂线,熟练掌握平行线的性质是解本题的关键..(•山西)如图,直线∥,一块含°角的直角三角板(∠°)按如图所示放置.若∠°,则∠的度数为().°.°.°.°【考点】平行线的性质.【分析】如图,首先证明∠∠;然后运用对顶角的性质求出∠°,借助三角形外角的性质求出∠即可解决问题.【解答】解:如图,∵直线∥,∴∠∠;∵∠∠,而∠°,∴∠°,∴∠∠∠°°°,故选.【点评】该题主要考查了平行线的性质、对顶角的性质、三角形的外角性质等几何知识点及其应用问题;牢固掌握平行线的性质、对顶角的性质等几何知识点是灵活运用、解题的基础..(•湖北)如图,将一块含有°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠°,那么∠的度数为().°.°.°.°【考点】平行线的性质.【分析】根据三角形外角性质可得∠°∠,由于平行线的性质即可得到∠∠°,即可解答.【解答】解:如图,∵∠∠°,∵∥,∴∠∠°,∴∠∠﹣°°﹣°°.故选【点评】本题考查了平行线的性质,关键是根据:两直线平行,内错角相等.也利用了三角形外角性质..(•随州)如图,∥,∠°,则∠的大小是().°.°.°.°【考点】平行线的性质.【分析】由平行线的性质可得出∠,根据对顶角相得出∠.【解答】解:如图:∵∥,∴∠∠°,∴∠°,∴∠∠°.故选.【点评】本题考查了平行线的性质,关键是根据两直线平行同旁内角互补和对顶角相等分析..(•莱芜)如图,∥,平分∠,若∠°,那么∠的度数为().°.°.°.°【考点】平行线的性质.【分析】先根据两直线平行同旁内角互补,求出∠的度数,然后根据角平分线的定义求出∠的度数,然后根据两直线平行内错角相等,即可求出∠的度数.【解答】解:∵∥,∠°,∴∠∠°,∴∠°,∵平分∠,∴∠∠°,∵∥,∴∠∠°.故选.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补..(•河北)如图,∥,⊥,∠°,则∠().°.°.°.°【考点】平行线的性质;垂线.【分析】如图,作辅助线;首先运用平行线的性质求出∠的度数,借助三角形外角的性质求出∠即可解决问题.【解答】解:如图,延长交于点;∵∥,∴∠∠°;∵⊥,∴∠°,∴∠°°°,故选.【点评】该题主要考查了垂线的定义、平行线的性质、三角形的外角性质等几何知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用平行线的性质、三角形的外角性质等几何知识点来分析、判断、解答..(•临沂)如图,直线∥,∠°,∠°,则∠等于().°.°.°.°【考点】平行线的性质.【分析】根据对顶角相等和利用三角形的内角和定理列式计算即可得解.【解答】解:如图:∵∠∠°,∠∠°,∴∠°﹣°﹣°°,故选.【点评】本题考查了平行线的性质,三角形的内角和定理,熟记性质并准确识图理清各角度之间的关系是解题的关键..(•汕尾)如图,能判定∥的条件是().∠∠.∠∠.∠∠.∠∠【考点】平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:、∠∠不能判断出∥,故选项不符合题意;、∠∠不能判断出∥,故选项不符合题意;、∠∠只能判断出,不能判断出∥,故选项不符合题意;、∠∠,根据内错角相等,两直线平行,可以得出∥,故选项符合题意.故选:.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行..(•长春)如图,直线及直线交于点,及直线交于点,∠°,∠°,若使直线及直线平行,则可将直线绕点逆时针旋转().°.°.°.°【考点】平行线的判定.【专题】几何图形问题.【分析】先根据邻补角的定义得到∠°,根据平行线的判定当及的夹角为°时,∥,由此得到直线绕点逆时针旋转°﹣°°.【解答】解:∵∠°,∴∠°,∵∠°,∴当∠∠°时,∥,∴直线绕点逆时针旋转°﹣°°.故选:.【点评】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行.二、填空题(共小题).(•西藏)如图,点、、在同一条直线上,请你写出一个能使∥成立的条件:∠∠.(只写一个即可,不添加任何字母或数字)【考点】平行线的判定.【专题】开放型.【分析】欲证∥,在图中发现、被一直线所截,故可按同旁内角互补两直线平行补充条件或同位角相等两直线平行补充条件.【解答】解:要使∥,则只要∠∠(同位角相等两直线平行),或只要∠∠°(同旁内角互补两直线平行).故答案为∠∠(答案不唯一).【点评】本题考查了平行线的判定,判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式及能力..(•成都)如图,直线∥,△为等腰三角形,∠°,则∠度.【考点】平行线的性质;等腰直角三角形.【分析】先根据等腰三角形性质和三角形的内角和定理求出∠,根据平行线的性质得出∠∠,即可得出答案.【解答】解:∵△为等腰三角形,∠°,∴∠∠°,∵直线∥,∴∠∠°,故答案为:.【点评】本题考查了等腰三角形的性质,三角形内角和定理,平行线的性质的应用,解此题的关键是求出∠∠和求出∠的度数,注意:两直线平行,同位角相等..(•宜宾)如图,∥,及交于点.若∠°,∠°,则∠°.【考点】平行线的性质;三角形的外角性质.【分析】先利用平行线的性质易得∠°,再利用三角形外角的性质得出结论.【解答】解:∵∥,∠°,∴∠°,∵∠°,∴∠∠∠°°°,故答案为:°.【点评】本题主要考查了平行线的性质和外角的性质,综合利用平行线的性质和外角的性质是解答此题的关键..(•威海)如图,直线∥,∠°,∠°,则∠的度数为°.【考点】平行线的性质.【分析】要求∠的度数,结合图形和已知条件,先求由两条平行线所构成的同位角或内错角,再利用三角形的外角的性质就可求解.【解答】解:如图:∵∠∠°,又∵∥,∴∠∠°.∵∠∠∠,∴∠°﹣°°,故答案为:°.【点评】本题考查了三角形的外角的性质和平行线的性质;三角形的外角的性质:三角形的外角等于和它不相邻的两个内角的和;平行线的性质:两直线平行,同位角相等..(•株洲)如图,∥,∠°,∠°,则∠的大小是°.【考点】平行线的性质.【专题】计算题.【分析】先根据平行线的性质得∠∠°,然后根据三角形外角性质计算∠的大小.【解答】解:∵∥,∴∠∠°,∵∠∠∠,∴∠°﹣°°.故答案为°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等..(•汕尾)已知,,为平面内三条不同直线,若⊥,⊥,则及的位置关系是平行.【考点】平行线的判定;垂线.【分析】根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行可得答案.【解答】解:∵⊥,⊥,∴∥,故答案为:平行.【点评】此题主要考查了平行线的判定,关键是掌握在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行..(•湘潭)如图,直线、被直线所截,若满足∠∠或∠∠或∠∠°,则、平行.【考点】平行线的判定.【专题】开放型.【分析】根据同位角或内错角相等以及同旁内角互补,两直线平行可得∥.【解答】解:∵∠∠,∴∥(同位角相等两直线平行),同理可得:∠∠或∠∠°时,∥,故答案为:∠∠或∠∠或∠∠°.【点评】此题主要考查了平行线的判定,关键是掌握同位角相等两直线平行.三、解答题(共小题).(•邵阳)将一副三角板拼成如图所示的图形,过点作平分∠交于点.()求证:∥;()求∠的度数.【考点】平行线的判定;角平分线的定义;三角形内角和定理.【专题】证明题.【分析】()首先根据角平分线的性质可得∠°,再有∠°,再根据内错角相等两直线平行可判定出∥;()利用三角形内角和定理进行计算即可.【解答】()证明:∵平分∠,∴∠∠∠,∵∠°,∴∠°,∵∠°,∴∠∠,∴∥(内错角相等,两直线平行);()∵∠°,∠°,∴∠°﹣°﹣°°.【点评】此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年七年级下学期期中考试高分直通车(北师大版)专题1.2相交线与平行线【目标导航】【知识梳理】1.对顶角与邻补角(1)对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.(2)邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.(3)对顶角的性质:对顶角相等.(4)邻补角的性质:邻补角互补,即和为180°.(5)邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的.2.垂线及其性质:(1)垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.(2)垂线的性质在平面内,过一点有且只有一条直线与已知直线垂直.注意:“有且只有”中,“有”指“存在”,“只有”指“唯一”“过一点”的点在直线上或直线外都可以.(3)垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.(4)垂线段的性质:垂线段最短.正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.3.同位角、内错角、同旁内角(1)同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.(2)内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.(3)同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.(4)三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.4.平行线的判定:(1)定理1:两条直线被第三条所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.(2)定理2:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.(3)定理3:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.(4)定理4:两条直线都和第三条直线平行,那么这两条直线平行.(5)定理5:在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.5.平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.6.平行线的性质与判定综合题解题方法:(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(3)平行线的判定与性质的联系与区别区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.【典例剖析】【考点1】余角和补角【例1】.如图所示,OE和OD分别是∠AOB和∠BOC的平分线,且∠AOB=90°,∠EOD=67.5°的度数.(1)求∠BOD的度数;(2)∠AOE与∠BOC互余吗?请说明理由.【分析】(1)根据角平分线的定义可求∠AOE与∠BOE,再根据角的和差关系可求∠BOD的度数;(2)根据角平分线的定义可求∠BOC,再根据角的和差关系可求∠AOE与∠BOC是否互余.【解析】(1)∵OE是∠AOB的平分线,∠AOB=90°,∴∠AOE=∠BOE=45°,∴∠BOD=∠EOD﹣∠BOE=22.5°;(2)∵OD是∠BOC的平分线,∴∠BOC=45°,∴∠AOE+∠BOC=45°+45°=90°,∴∠AOE与∠BOC互余.点评:考查了余角和补角,角平分线的定义,首先确定各角之间的关系,利用角平分线的定义来求.【变式1-1】如图,将一副三角板的直角顶点重合,摆放在桌面上,∠AOD=130°,则∠BOC=()A.20°B.30°C.40°D.50°【分析】从图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【解析】∵∠AOB=∠COD=90°,∠AOD=130°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣130°=50°.故选:D.点评:此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.【变式1-2】一个角的补角比这个角的余角的3倍少20°,这个角的度数是()A.30°B.35°C.40°D.45°【分析】设这个角为α,根据余角的和等于90°,补角的和等于180°表示出这个角的补角与余角,然后根据题意列出方程求解即可.【解析】设这个角为α,则它的补角为180°﹣α,余角为90°﹣α,根据题意得,180°﹣α=3(90°﹣α)﹣20°,解得α=35°.故选:B.点评:本题考查了余角与补角的定义,熟记“余角的和等于90°,补角的和等于180°”是解题的关键.【变式1-3】已知∠AOB+∠COD=180°.(1)如图1,若∠AOB=90°,∠AOD=68°,求∠BOC的度数;(2)如图2,指出∠AOD的补角并说明理由.【分析】(1)根据角的和差关系解答即可;(2)根据如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角,据此解答即可.【解析】(1)∵∠AOB+∠COD=180°,∠AOB=90°,∴∠COD=180°﹣∠AOB=90°,∵∠AOC=∠COD﹣∠AOD,∠AOD=68°,∴∠AOD=90°﹣68°=22°,∵∠BOC=∠AOB+∠AOC,∴∠BOC=90°+22°=112°;答:∠BOC=112°.(2)∵∠BOC+∠AOD=180°﹣∠AOD+∠AOD=180°,∴∠BOC是∠AOD的补角.点评:本题考查了补角邻补角的定义,解题的关键是了解有关的定义,属于基础题,难度不大.【考点2】对顶角与邻补角【例2】如图,直线AB与CD相交于点O,∠AOE=90°.(1)如图1,若OC平分∠AOE,求∠AOD的度数;(2)如图2,若∠BOC=4∠FOB,且OE平分∠FOC,求∠EOF的度数.【分析】(1)依据角平分线的定义,即可得到∠AOC的度数,进而得出∠AOD的度数;(2)设∠BOF=α,则∠BOC=4α,∠COF=3α,依据∠BOE=90°,即可得到α的值,进而得出∠EOF的度数.【解析】(1)∵∠AOE=90°,OC平分∠AOE,∴∠AOC=45°,∴∠AOD=180°﹣∠AOC=135°;(2)设∠BOF=α,则∠BOC=4α,∠COF=3α,∵OE平分∠FOC,∴∠EOF=1.5α,∵∠BOE=90°,∴1.5α+α=90°,∴α=36°,∴∠EOF=54°.点评:本题主要考查了角的计算,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.【变式2-1】如图,直线AB、CD相交于点O,∠AOE=2∠AOC,若∠1=38°,则∠DOE等于()A.66°B.76°C.90°D.144°【分析】根据条件∠AOE=2∠AOC、对顶角相等和补角的定义可得答案.【解析】如图,∠1=∠AOC=38°.∵∠AOE=2∠AOC,∴∠AOE=76°.∴∠DOE=180°﹣∠AOC﹣∠AOE=180°﹣38°﹣76°=66°.故选:A点评:此题主要考查了邻补角和对顶角,关键是掌握对顶角相等.【变式2-2】如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠MOC=35°,则∠BON的度数为()A.35°B.45°C.55°D.64°【分析】根据角平分线的定义求出∠MOA的度数,根据邻补角的性质计算即可.【解析】∵射线OM平分∠AOC,∠MOC=35°,∴∠MOA=35°,又∠MON=90°,∴∠BON=55°,故选:C.点评:本题考查的是邻补角的概念以及角平分线的定义,掌握邻补角的性质是邻补角互补是解题的关键.【变式2-3】下列各图中,∠1与∠2是对顶角的是()【分析】根据对顶角的定义对各选项分析判断后利用排除法求解.【解析】A、∠1与∠2不是对顶角,故A选项不符合题意;B、∠1与∠2不是对顶角,故B选项不符合题意;C、∠1与∠2是对顶角,故C选项符合题意;D、∠1与∠2不是对顶角,故D选项不符合题意.故选:C.点评:本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.【变式2-4】如图,直线AB、CD相交于点O,已知∠AOC=75°,∠BOE:∠DOE=2:3.(1)求∠BOE的度数;(2)若OF平分∠AOE,∠AOC与∠AOF相等吗?为什么?【分析】(1)根据对顶角相等求出∠BOD的度数,设∠BOE=2x,根据题意列出方程,解方程即可;(2)根据角平分线的定义求出∠AOF的度数即可.【解析】(1)设∠BOE=2x,则∠EOD=3x,∠BOD=∠AOC=75°,∴2x+3x=75°,解得x=15°,则2x=30°,3x=45°,∴∠BOE=30°;(2)∵∠BOE=30°,∴∠AOE=150°,∵OF平分∠AOE,∴∠AOF=75°,∴∠AOC=∠AOF.点评:本题考查的是对顶角、邻补角的概念和性质、角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.【例1】如图直线AB,CD被EF所截,图中标注的角中为同旁内角的是()A.∠1与∠7B.∠2与∠8C.∠3与∠5D.∠4与∠7【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.【解析】A.∠1与∠7不是直线AB,CD被EF所截而成的同旁内角,故本选项错误;B.∠2与∠8不是直线AB,CD被EF所截而成的同旁内角,故本选项错误;C.∠3与∠5是直线AB,CD被EF所截而成的同旁内角,故本选项正确;D.∠4与∠7不是直线AB,CD被EF所截而成的同旁内角,故本选项错误;故选:C.点评:此题考查了同位角,内错角,同旁内角的概念,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.【变式3-1】下列所示的四个图形中,∠1和∠2是同位角的是()A.①②B.②③C.①③D.②④【分析】根据同位角,内错角,同旁内角的概念解答即可.【解析】∠1和∠2是同位角的是①②,故选:A.点评:此题考查同位角,内错角,同旁内角的概念,关键是根据同位角,内错角,同旁内角的概念解答.【变式3-2】已知∠1与∠2是同旁内角,则()A.∠1=∠2B.∠1+∠2=180°C.∠1<∠2D.以上都有可能【分析】同旁内角在两直线平行时互补,也可能相等,不平行时,∠1<∠2,也可能∠1>∠2,进而可得答案.【解析】∠1与∠2是同旁内角,则可能∠1=∠2,∠1+∠2=180°,∠1<∠2,故选:D.点评:此题主要考查了同旁内角,关键是掌握同旁内角的边构成“U”形.【考点44】平行线【例2】若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定能与直线AB相交D.过点Q只能画出一条直线与直线AB平行【分析】根据过直线外一点有且只有一条直线与已知直线平行以及两直线的位置关系即可回答.【解析】PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选:C.点评:本题考查了平行线、相交线、垂线的性质,掌握相关定义和性质是解题的关键.【变式4-1】下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4B.3C.2D.1【分析】根据同一平面内,任意两条直线的位置关系是相交、平行;过直线外一点有且只有一条直线和已知直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可.【解析】①任意两条直线的位置关系不是相交就是平行,说法错误,应为根据同一平面内,任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线和已知直线平行,说法错误,应为过直线外一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b,说法错误;④若直线a∥b,b∥c,则c∥a,说法正确;故选:D.点评:此题主要考查了平行线,关键是掌握平行公理:过直线外一点有且只有一条直线和已知直线平行;推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式4-2】在同一平面内,不重合的两条直线的位置关系可能是()A.相交或平行B.相交或垂直C.平行或垂直D.不能确定【分析】同一平面内,直线的位置关系通常有两种:平行或相交;垂直不属于直线的位置关系,它是特殊的相交.【解析】平面内的直线有平行或相交两种位置关系.故选:A.点评:本题主要考查了在同一平面内的两条直线的位置关系.【考点5】平行线的判定条件【例5】如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠BAC=∠EBD C.∠ABC=∠BAE D.∠BAC=∠ABE【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解析】A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠BAC=∠EBD不能判断出EB∥AC,故本选项错误;C、∠ABC=∠BAE只能判断出EA∥CD,不能判断出EB∥AC,故本选项错误;D、∠BAC=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确.故选:D.点评:本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.【变式5-1】如图,若∠1=∠2,则下列选项中可以判定AB∥CD的是()A.B.C.D.【分析】根据两条直线被第三条所截,如果内错角相等,那么这两条直线平行可得只有D答案中∠1,∠2是AB和DC是被AC所截而成的内错角.【解析】若∠1=∠2,则下列四个选项中,能够判定AB∥CD的是D,故选:D.点评:此题主要考查了平行线的判定,关键是掌握同位角相等,两直线平行.【变式5-2】如图,下列条件能判定AD∥BC的是()A.∠C=∠CBE B.∠FDC=∠CC.∠FDC=∠A D.∠C+∠ABC=180°【分析】根据平行线的判断对每一项分别进行分析即可得出答案.【解析】A、∵∠C=∠CBE,∴DC∥AB,故本选项错误,不符合题意;B、∵∠FDC=∠C,∴AD∥BC,故本选项正确,符合题意;C、∵∠FDC=∠A,∴DC∥AB,故本选项错误,不符合题意;D、∵∠C+∠ABC=180°,∴DC∥AB,故本选项错误,不符合题意;故选:B.点评:本题考查的是平行线的判定,熟练掌握内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行是本题的关键.【变式5-3】以下四种沿AB折叠的方法中,由相应条件不一定能判定纸带两条边线a,b互相平行的是()A.展开后测得∠1=∠2B.展开后测得∠1=∠2且∠3=∠4C.测得∠1=∠2D.测得∠1=∠2【分析】根据平行线的判定定理,进行分析,即可解答.【解析】A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确;C、测得∠1=∠2,∵∠1与∠2即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D、∠1=∠2,根据同位角相等,两直线平行进行判定,故正确.故选:C.点评:本题考查了平行线的判定,解决本题的关键是熟记平行线的判定定理.【例6】如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连接AC、BC.若∠ABC=54°,则∠1的度数为()A.36°B.54°C.60°D.72°【分析】根据题意和平行线的性质,可以得到∠1+∠ACB+∠ABC=180°,再根据AC=BC,∠ABC=54°,即可求得∠1的度数.【解析】∵直线l1∥l2,∴∠1+∠ACB+∠ABC=180°,∵∠ABC=54°,AC=AB,∴∠ABC=∠ACB=54°,∴∠1=72°,故选:D.点评:本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质和数形结合的思想解答.【变式6-1】如图,直线AE∥DF,若∠ABC=120°,∠DCB=95°,则∠1+∠2的度数为()A.45°B.55°C.35°D.不能确定【分析】利用平行线的性质以及三角形的外角的性质解决问题即可.【解析】∵AE∥DF,∴∠3+∠4=180°,∵∠ABC=∠1+∠3=120°,∠DCB=∠2+∠4=95°,∴∠1+∠3+∠2+∠4=120°+95°,∴∠1+∠2=215°﹣180°=35°,故选:C.点评:本题考查平行线的性质,三角形的外角等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式6-2】如图,已知AB∥CD,BE和DF分别平分∠ABF和∠CDE,2∠E﹣∠F=48°,则∠CDE的度数为()A.16°B.32°C.48°D.64°【分析】利用基本结论:∠E=∠ABE+∠CDE,∠F=∠CDF+∠ABF,构建方程组解决问题即可.【解析】设∠ABE=∠EBF=x,∠FDE=∠FDC=y,∵AB∥CD,∴易知∠E=∠ABE+∠CDE=x+2y,∠F=∠CDF+∠ABF=2x+y,∵2∠E﹣∠F=48°,∴2(x+2y)﹣(2x+y)=48°,∴y=16°,∴∠CDE=2y=32°,故选:B.点评:本题考查平行线的性质,解题的关键是掌握基本结论,学会构建方程组解决问题.【例7】如图,△ABC中,∠B=∠ACB,D在BC的延长线,CD平分∠ECF,求证:AB∥CE.【分析】根据角平分线及对顶角相等可得∠ACB=∠EDC,再借助已知可得∠B=∠DEC,根据同位角相等两直线平行可得结论.【解答】证明:∵CD平分∠ECF,∴∠DCF=∠DCE.又∵∠DCF=∠ACB,∴∠ACB=∠DCE.又∵∠B=∠ACB,∴∠B=∠EDC.∴AB∥CE.点评:本题主要考查了平行线的判定,解决这类问题关键是熟知平行线的判定方法以及对角的转化.【变式7-1】如图,已知AD⊥BC,EF⊥BC,∠1=∠2.求证:DG∥BA.【分析】首先证明AD∥EF,再根据平行线的性质可得∠1=∠BAD,再由∠1=∠2,可得∠2=∠BAD,根据内错角相等,两直线平行可得DG∥BA.【解答】证明:∵AD⊥BC,EF⊥BC,∴∠EFB=∠ADB=90°,∴AD∥EF,∴∠1=∠BAD,∵∠1=∠2,∴∠2=∠BAD,∴AB∥DG.点评:此题主要考查了平行线的判定和性质,关键是掌握内错角相等,两直线平行;两直线平行,同位角相等.【变式7-2】已知:如图,∠1+∠2=180°,∠A=∠D.求证:AB∥CD.(在每步证明过程后面注明理由)【分析】结合图形,利用平行线的性质及判定逐步分析解答.【解答】证明:∵∠1与∠CGD是对顶角,∴∠1=∠CGD(对顶角相等),∵∠1+∠2=180°(已知),∴∠CGD+∠2=180°(等量代换),∴AE∥FD(同旁内角互补,两直线平行),∴∠A=∠BFD(两直线平行,同位角相等),又∵∠A=∠D(已知),∴∠BFD=∠D(等量代换),∴AB∥CD(内错角相等,两直线平行).点评:本题利用了平行线的判定和性质,还利用了对顶角相等,等量代换等知识.【变式7-3】如图,已知∠1=∠2,∠C=∠D,证明AC∥DF.【分析】利用平行线的判定与性质证明即可.【解答】证明:如图,∵∠1=∠2(已知),∠2=∠3(对顶角相等)∴∠1=∠3(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴DF∥AC(内错角相等,两直线平行).点评:此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.【例8】已知如图,CD是△ABC的高,∠1=∠ACB,∠2=∠3.(1)∠2与∠DCB相等吗?为什么?(2)判断FH与AB的位置关系并说明理由.【分析】(1)由同位角∠1=∠ACB证出DE∥BC,由平行线的性质即可得出∠2=∠DCB;(2)证出∠3=∠DCB,得出CD∥FH,由平行线的性质得出∠BDC=∠BHF,即可得出结论.【解析】(1)∠2=∠DCB;理由如下:∵∠1=∠ACB,∴DE∥BC,∴∠2=∠DCB;(2)FH⊥AB;理由如下;∵∠2=∠3,∠2=∠DCB,∴∠3=∠DCB,∴CD∥FH,∴∠BDC=∠BHF,又∵CD是△ABC的高,∴CD⊥AB,∴∠BDC=∠BHF=90°,∴FH⊥AB.点评:本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键.【变式8-1】已知如图,CD是△ABC的高,∠1=∠ACB,∠2=∠3.(1)∠2与∠DCB相等吗?为什么?(2)判断FH与AB的位置关系并说明理由.【分析】(1)由同位角∠1=∠ACB证出DE∥BC,由平行线的性质即可得出∠2=∠DCB;(2)证出∠3=∠DCB,得出CD∥FH,由平行线的性质得出∠BDC=∠BHF,即可得出结论.【解析】(1)∠2=∠DCB;理由如下:∵∠1=∠ACB,∴DE∥BC,∴∠2=∠DCB;(2)FH⊥AB;理由如下;∵∠2=∠3,∠2=∠DCB,∴∠3=∠DCB,∴CD∥FH,∴∠BDC=∠BHF,又∵CD是△ABC的高,∴CD⊥AB,∴∠BDC=∠BHF=90°,∴FH⊥AB.点评:本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键.【变式8-2】在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)如图,∠1+∠2=180°,∠3=∠4.求证:EF∥GH.【分析】由对顶角相等得出∠AEG=∠1,得出∠AEG+∠2=180°,证出AB∥CD,由平行线的性质得出∠AEG=∠DGE,证出∠FEG=∠HGE,即可得出结论.【解析】∵∠1+∠2=180°(已知),∠AEG=∠1(对顶角相等)∴∠AEG+∠2=180°,∴AB∥CD(同旁内角互补,两直线平行),∴∠AEG=∠DGE(两直线平行,内错角相等),∵∠3=∠4(已知),∴∠3+∠AEG=∠4+∠DGE,(等式性质)∴∠FEG=∠HGE,∴EF∥GH.点评:本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键.。

相关文档
最新文档