[九年级数学第十六周周考题]九年级数学期末考试题
九年级数学期末测试卷【含答案】
九年级数学期末测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是正比例函数?()A. y = 3xB. y = x/2C. y = 5D. y = 4x + 13. 在直角坐标系中,点P(2, -3)关于x轴的对称点是()A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)4. 若一组数据从小到大排列为2, 4, 6, 8, x,且这组数据的平均数为6,则x的值为()A. 10B. 6C. 4D. 25. 下列哪个图形不是轴对称图形?()A. 正方形B. 圆C. 等边三角形D. 梯形二、判断题(每题1分,共5分)6. 两个负数相乘的结果是正数。
()7. 在三角形中,最长边的对角最大。
()8. 任何两个奇数之和都是偶数。
()9. 一元二次方程ax² + b x + c = 0的解可以用公式x = (-b ± √(b²-4ac)) / (2a)来求得。
()10. 若一组数据的标准差为0,则这组数据中的所有数都相等。
()三、填空题(每题1分,共5分)11. 平方差公式是_______ = (a + b)(a b)。
12. 若一个圆的半径为r,则它的面积是_______。
13. 一次函数y = 2x + 3的图像是一条_______。
14. 在直角三角形中,若一个锐角的正弦值是1/2,则这个角的度数是_______度。
15. 若一组数据的众数是10,则这组数据中出现次数最多的数是_______。
四、简答题(每题2分,共10分)16. 解释什么是算术平均数,并给出计算公式。
17. 请简要说明一元二次方程的定义。
18. 描述平行四边形的性质。
19. 什么是直角坐标系?如何用直角坐标系表示一个点?20. 请解释概率的基本概念。
九年级期末试卷数学(附答案)
九年级期末试卷数学(附答案)九年级期末试卷数学(附答案)一、选择题(共40分)1. 已知正数 a, b 满足 a + b = 6,ab = 8,求 a² + b²的值。
答案:a² + b² = (a + b)² - 2ab = 6² - 2 × 8 = 202. 若一条线段上的两个等分点的坐标分别为 (3, 5) 和 (-1, 1),则该线段的中点坐标为:答案:线段的中点坐标为 [(3 + (-1))/2, (5 + 1)/2] = (1, 3)3. 在三角形 ABC 中,∠C = 90°,CM 是 BC 的中线,CN ⊥ AM 于N。
若 AM = 6 cm,求 MN 的长度。
答案:由 AM = 6 cm 和 CN ⊥ AM,可以推算得到 AN = 3 cm。
由于 CM 是 BC 的中线,可得 BM = MC = 3 cm。
再由勾股定理可以计算出 MN 的长度为 2 cm。
4. 若 2x - 3 = 5,求不等式3x + 7 ≥ 4x + 2 的解集。
答案:将 2x - 3 = 5 移项得到 2x = 8,解得 x = 4。
将 x = 4 代入不等式3x + 7 ≥ 4x + 2,可得到19 ≥ 18,因此解集为x ≥ 4。
5. 若点 P 在圆 O 的某条弦上,且 OP 的长度为2√3 cm,弦长为 4 cm,则圆的半径长为:答案:根据圆的性质,弦经过圆心则为直径。
圆心到弦的距离垂直于弦,可以构成直角三角形。
根据勾股定理可得圆的半径长为√(OP² - 弦长²/4) = √(12 - 4) = √8 cm。
二、填空题(共20分)1. 解方程 2x + 5 = 3x - 1,得到 x = _______。
答案:从方程两边同减去 2x,得到 5 = x - 1,再将 x - 1 的两边加上1 得到 x = 6。
九年级数学周练习试卷及参考答案
九年级数学周练习试卷一、选择题(每小题4分,共24分。
)1、下列图中阴影部分面积与算式2131242-⎛⎫-++ ⎪⎝⎭的结果相同的是………………【 】2、.以等速度行驶的城际列车,若将速度提高25%,则相同距离的行车时间可节省k%,那么k 的值是 ( )(A) 35 (B) 30 (C) 25 (D) 203、如图,将△ADE 绕正方形ABCD 的顶点A 顺时针旋转90°,得△ABF ,连结EF 交AB 于H ,则下列结论错误的是( )(A) AE ⊥AF (B )EF :AF =2:1(C) AF 2= FH ·FE (D )FB :FC = HB :EC4、如图,∠ACB =60○,半径为2的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离为【 】 A 、2π B 、π C 、32 D 、45、平面内的9条直线任两条都相交,交点数最多有m 个,最少有n 个,则m n + 等于……………………………………………………………………………【 】 A 、36 B 、37 C 、38 D 、396、某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于7时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[110x +] B. y =[210x +] C. y =[310x +] D. y =[410x +] 二、填空题(每小题4分,共40分)7、小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多 ____________道。
8、若化简16812+---x x x 的结果为52-x ,则x 的取值范围是 。
2024年最新人教版初三数学(上册)期末考卷及答案(各版本)
2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。
12. 若一个数的立方根是它自己的相反数,则这个数是______。
13. 若一个数的绝对值等于它的立方,则这个数是______。
14. 若一个数的绝对值等于它的平方,则这个数是______。
15. 若一个数的平方等于它本身,则这个数是______。
16. 若一个数的立方等于它本身,则这个数是______。
17. 若一个数的平方根是它自己的倒数,则这个数是______。
18. 若一个数的立方根是它自己的相反数,则这个数是______。
19. 若一个数的绝对值等于它的立方,则这个数是______。
20. 若一个数的绝对值等于它的平方,则这个数是______。
九年级数学期末考试试卷【含答案】
九年级数学期末考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 若函数f(x) = 2x + 3,则f(-1)的值为()。
A. 1B. 2C. 3D. 54. 下列哪个数是素数?()A. 27B. 29C. 35D. 395. 若一个圆的半径为r,则它的周长为()。
A. 2rB. 2πrC. πr²D. 4r二、判断题(每题1分,共5分)6. 任何两个奇数相加的和都是偶数。
()7. √(-1)是一个实数。
()8. 若a > b,则a² > b²。
()9. 1是任何数的因数。
()10. 任何数乘以0都等于0。
()三、填空题(每题1分,共5分)11. 若一个正方形的面积为A,则它的边长是。
12. 若函数f(x) = x² 4x + 4,则f(2)的值是。
13. 两个等腰三角形的底边相等,那么这两个三角形一定全等。
()14. 若一个圆的直径为d,则它的周长是。
15. 若a、b、c是等差数列,且a = 2,b = 5,则c的值是。
四、简答题(每题2分,共10分)16. 解释什么是无理数?17. 解释什么是等差数列?18. 解释什么是函数?19. 解释什么是素数?20. 解释什么是圆的面积?五、应用题(每题2分,共10分)21. 计算下列表达式的值:3² + 4²。
22. 若一个正方形的边长为5,计算它的对角线长。
23. 计算下列函数的值:f(x) = 2x + 3,其中x = 4。
24. 列出前5个素数。
25. 计算一个半径为3的圆的面积。
六、分析题(每题5分,共10分)26. 解释为什么两个奇数相加的和是偶数。
27. 解释为什么√(-1)不是一个实数。
2024年全新九年级数学上册期末试卷及答案(人教版)
2024年全新九年级数学上册期末试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 一个三角形的两边长分别为5厘米和8厘米,第三边长为多少厘米?A. 3B. 6C. 10D. 123. 下列哪个图形是等腰三角形?A. △ABCB. △DEFC. △GHID. △JKL4. 下列哪个图形是直角三角形?A. △ABCB. △DEFC. △GHID. △JKL5. 下列哪个图形是等边三角形?A. △ABCB. △DEFC. △GHID. △JKL6. 下列哪个数是合数?A. 2B. 3C. 4D. 57. 一个正方形的边长为6厘米,它的周长是多少厘米?A. 12B. 18C. 24D. 308. 一个长方形的长为8厘米,宽为4厘米,它的面积是多少平方厘米?A. 16B. 24C. 32D. 409. 下列哪个数是偶数?A. 2B. 3C. 5D. 710. 下列哪个数是奇数?A. 2B. 3C. 4D. 6二、填空题(每题2分,共20分)1. 一个等边三角形的边长是5厘米,它的周长是______厘米。
2. 一个正方形的边长是8厘米,它的面积是______平方厘米。
3. 一个长方形的长是10厘米,宽是5厘米,它的周长是______厘米。
4. 一个三角形的两边长分别是6厘米和8厘米,第三边长是______厘米。
5. 一个直角三角形的两条直角边长分别是3厘米和4厘米,它的斜边长是______厘米。
6. 一个等腰三角形的底边长是10厘米,腰长是8厘米,它的周长是______厘米。
7. 一个长方形的长是12厘米,宽是6厘米,它的面积是______平方厘米。
8. 一个正方形的边长是7厘米,它的周长是______厘米。
9. 一个三角形的两边长分别是5厘米和12厘米,第三边长是______厘米。
10. 一个直角三角形的两条直角边长分别是5厘米和12厘米,它的斜边长是______厘米。
初三期末数学试题及答案
初三期末数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 83. 函数y = 2x + 3的斜率是:A. 2B. 3C. -2D. -34. 一个数的平方根是4,这个数是:A. 16B. -16C. 8D. -85. 以下哪个方程的解是x = 2?A. x + 2 = 4B. x - 2 = 4C. 2x = 4D. 3x = 6答案:1. B 2. A 3. A 4. A 5. A二、填空题(每题1分,共5分)6. 一个数的绝对值是5,这个数是______。
7. 一个正比例函数y = kx,当x = 2时,y = 4,k的值是______。
8. 一个二次方程ax² + bx + c = 0的判别式是b² - 4ac,当判别式小于0时,方程______实数解。
9. 一个圆的半径是r,它的面积是______。
10. 一个数的立方根是2,这个数是______。
答案:6. ±5 7. 2 8. 没有9. πr² 10. 8三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3x - 2)² - 4(x - 3)²,当x = 1。
12. 解下列方程:2x - 5 = 3x + 1。
13. 化简下列分数:\(\frac{2x}{3} + \frac{5}{x - 2}\)。
答案:11. 712. x = -613. \(\frac{2x^2 - 4x + 15}{3(x - 2)}\)四、解答题(每题10分,共20分)14. 一个长方体的长、宽、高分别是2x,3x和4x,求它的体积。
15. 一个圆的半径是5厘米,求它的周长和面积。
答案:14. 体积是 \(24x^3\)。
2022-2023学年人教版九年级数学第一学期期末测试题含答案
第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题。
(每题5分,共45分)1.在下列图形中,是中心对称图形的是( )A.B.C.D.2.下列事件属于必然事件的是( )A.打开电视,正在播放新闻B.我们班的同学将会有人成为航天员C.实数0<a ,则02<aD.新疆的冬天不下雪3.若关于x 的一元二次方程01)12=++-x x k (有两个实数根,则k 的取值范围是( ) A.45≤k B.45>kC.45<k 且1≠kD.45≤k 且1≠k4.用配方法解方程0982=++x x ,变形后的结果正确的是 A.9)4(2-=+x B.7)4(2-=+x C.25)4(2=+xD.7)4(2=+x5.二次函数3)1(2+-=x y 的图象的顶点坐标是 A.)3,1(-B.)3,1(C.)3,1(--D.)3,1(-6.如图,在圆O 中,所对的圆周角50=∠ACB ,若P 为上一点,55=∠AOP ,则=∠POB ( ) A.30B.45 C.55D.60第6题图 第7题图7.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作圆锥形生日礼帽.如图,圆锥帽底面半径为cm 9,母线长为cm 36,请你帮助他们计算制作一个这样的生日礼帽需要纸板的面积为( ) A.2648cm ΠB.2432cm ΠC.2324cm ΠD.2216cm Π8.下列各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是( )A.B. C. D.9.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有( )A.10890)1050)(20180=--+xx ( B.10890)1018050)(20=---x x (C.180902050)108050(=⨯---x xD.108902050)1050)(180=⨯--+xx (二、 填空题。
九年级数学全册期末复习试卷(培优篇)(Word版 含解析)
九年级数学全册期末复习试卷(培优篇)(Word 版 含解析)一、选择题1.二次函数y=﹣(x ﹣1)2+5,当m≤x≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为( ) A .B .2C .D .2.如图,AB 为圆O 直径,C 、D 是圆上两点,∠ADC=110°,则∠OCB 度( )A .40B .50C .60D .703.如图,在△ABC 中,DE ∥BC ,若DE =2,BC =6,则ADE ABC 的面积的面积=( )A .13B .14C .16D .194.如果两个相似三角形的周长比是1:2,那么它们的面积比是( ) A .1:2B .1:4C .12D 2:1 5.方程2x x =的解是( ) A .x=0 B .x=1 C .x=0或x=1 D .x=0或x=-1 6.已知⊙O 的直径为4,点O 到直线l 的距离为2,则直线l 与⊙O 的位置关系是 A .相交B .相切C .相离D .无法判断7.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值38.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>9.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( )A .13B .14C .15D .1610.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( ) A .y =(x +3)2+2B .y =(x ﹣3)2+2C .y =(x +2)2+3D .y =(x ﹣2)2+311.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤ B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 12.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A .12B .1C .2D .213.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1214.关于二次函数y =x 2+2x +3的图象有以下说法:其中正确的个数是( ) ①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y 轴的直线;③它与x 轴没有公共点;④它与y 轴的交点坐标为(3,0). A .1 B .2 C .3 D .4 15.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )A .40B .60C .80D .100二、填空题16.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.17.已知tan (α+15°)=33,则锐角α的度数为______°. 18.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.19.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米;20.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________; 21.若关于x 的一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.22.抛物线21(5)33y x =--+的顶点坐标是_______.23.已知二次函数y =ax 2+bx+c 中,函数y 与自变量x 的部分对应值如表, x 6.17 6.18 6.19 6.20 y﹣0.03﹣0.010.020.04则方程ax 2+bx+c =0的一个解的范围是_____.24.在▱ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35,则EFBF的值为_____.25.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.26.二次函数2y ax bx c =++的图像开口方向向上,则a ______0.(用“=、>、<”填空)27.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.28.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.29.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.30.如图,AE 、BE 是△ABC 的两个内角的平分线,过点A 作AD ⊥AE .交BE 的延长线于点D .若AD =AB ,BE :ED =1:2,则cos ∠ABC =_____.三、解答题31.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?32.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求AC的长.33.如图,在△ABC中,AB=AC=13,BC=10,求tan B的值.34.已知关于的方程,若方程的一个根是–4,求另一个根及的值. 35.定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,若∠MPN绕点P旋转时始终满足OM•ON=OP2,则称∠MPN是∠AOB的“相关角”.(1)如图1,已知∠AOB=60°,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA ,OB 交于M ,N 两点,且∠MPN =150°.求证:∠MPN 是∠AOB 的“相关角”; (2)如图2,已知∠AOB =α(0°<α<90°),OP =3,若∠MPN 是∠AOB 的“相关角”,连结MN ,用含α的式子分别表示∠MPN 的度数和△MON 的面积; (3)如图3,C 是函数4y x=(x >0)图象上的一个动点,过点C 的直线CD 分别交x 轴和y 轴于点A ,B 两点,且满足BC =3CA ,∠AOB 的“相关角”为∠APB ,请直接写出OP 的长及相应点P 的坐标.四、压轴题36.如图①,A (﹣5,0),OA =OC ,点B 、C 关于原点对称,点B (a ,a +1)(a >0). (1)求B 、C 坐标; (2)求证:BA ⊥AC ;(3)如图②,将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,连接DC ,问:∠BDC 的角平分线DE ,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.37.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 3C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.38.MN 是O 上的一条不经过圆心的弦,4MN =,在劣弧MN 和优弧MN 上分别有点A,B (不与M,N 重合),且AN BN =,连接,AM BM .(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:290MOD DMO ︒∠+∠=;(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求出这个值;若不是,请说明理由. 39.已知抛物线y =﹣14x 2+bx +c 经过点A (4,3),顶点为B ,对称轴是直线x =2.(1)求抛物线的函数表达式和顶点B 的坐标;(2)如图1,抛物线与y 轴交于点C ,连接AC ,过A 作AD ⊥x 轴于点D ,E 是线段AC 上的动点(点E 不与A ,C 两点重合);(i )若直线BE 将四边形ACOD 分成面积比为1:3的两部分,求点E 的坐标; (ii )如图2,连接DE ,作矩形DEFG ,在点E 的运动过程中,是否存在点G 落在y 轴上的同时点F 恰好落在抛物线上?若存在,求出此时AE 的长;若不存在,请说明理由. 40.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P的坐标(请在图2中探索)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为2m为负数,最大值为2n为正数.将最大值为2n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)2+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=n时y取最大值,即2n=﹣(n﹣1)2+5,解得:n=2或n=﹣2(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=1时y取最大值,即2n=﹣(1﹣1)2+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,2m=-(n-1)2+5,n=52,∴m=11 8,∵m<0,∴此种情形不合题意,所以m+n=﹣2+52=12.2.D解析:D【解析】【分析】根据角的度数推出弧的度数,再利用外角∠AOC的性质即可解题.【详解】解:∵ ADC=110°,即优弧ABC的度数是220°,∴劣弧ADC的度数是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=12∠AOC=70°,故选D.【点睛】本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.D解析:D【解析】【分析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【详解】解:∵DE∥BC∴△ADE∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即ADEABC的面积的面积=2213:=19.故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.4.B解析:B【解析】【分析】直接根据相似三角形的性质即可得出结论.【详解】解:∵两个相似三角形的周长比是1:2,∴它们的面积比是:1:4.故选:B.【点睛】本题考查相似三角形的性质,掌握相似三角形的周长比等于相似比,面积比等于相似比的平方是解题的关键.5.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】解:2x x,方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.6.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O的直径为4,∴⊙O 的半径为2,∵圆心O 到直线l 的距离是2,∴根据圆心距与半径之间的数量关系可知直线l 与⊙O 的位置关系是相切.故选:B .【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r ,圆心到直线的距离是d ,当d =r 时,直线和圆相切,当d >r 时,直线和圆相离,当d <r 时,直线和圆相交.7.A解析:A【解析】【分析】把点(-1,-3)代入y =x 2+mx +n 得n=-4+m ,再代入mn +1进行配方即可.【详解】∵二次函数y =x 2+mx +n 的图像经过点(-1,-3),∴-3=1-m+n ,∴n=-4+m ,代入mn+1,得mn+1=m 2-4m+1=(m-2)2-3.∴代数式mn +1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.8.D解析:D【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D .考点:二次函数图象上点的坐标特征.9.A解析:A【解析】【分析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有6个球,红球有2个,所以,取出红球的概率为2163P ==, 故选A.【点睛】 本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键.10.A解析:A【解析】【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,得到:y =x 2+2,再沿x 轴向左平移3个单位长度得到:y =(x+3)2+2.故选:A .【点睛】解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.11.C解析:C【解析】【分析】一元二次方程有实数根,则根的判别式∆≥0,且k ≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k ≥0且k ≠0, 解得:116k ≤且k ≠0. 故选:C .【点睛】 本题考查一元二次方程根的判别式与实数根的情况,注意k ≠0.12.B解析:B【解析】【分析】连接OA 、OB ,如图1,由2OA OB AB ===可判断OAB 为等边三角形,则60AOB ∠=︒,根据圆周角定理得1302APB AOB ∠=∠=︒,由于60PAC ∠=︒,所以90C ∠=︒,因为2AB =,则要使ABC 的最大面积,点C 到AB 的距离要最大;由90ACB ∠=︒,可根据圆周角定理判断点C 在D 上,如图2,于是当点C 在半圆的中点时,点C 到AB 的距离最大,此时ABC 为等腰直角三角形,从而得到ABC 的最大面积.【详解】解:连接OA 、OB ,如图1,2OA OB ==,2AB =,OAB ∴为等边三角形,60AOB ∴∠=︒,1302APB AOB ∴∠=∠=︒, 60PAC ∠=︒90ACP ∴∠=︒2AB =,要使ABC 的最大面积,则点C 到AB 的距离最大,作ABC 的外接圆D ,如图2,连接CD ,90ACB ∠=︒,点C 在D 上,AB 是D 的直径,当点C 半圆的中点时,点C 到AB 的距离最大,此时ABC 等腰直角三角形,CD AB ∴⊥,1CD =,12ABC S ∴=⋅AB ⋅CD 12112=⨯⨯=, ABC ∴的最大面积为1.故选B .【点睛】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式.13.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.14.B解析:B【解析】【分析】直接利用二次函数的性质分析判断即可.【详解】①y=x2+2x+3,a=1>0,函数的图象的开口向上,故①错误;②y=x2+2x+3的对称轴是直线x=221-⨯=﹣1,即函数的对称轴是过点(﹣1,3)且平行于y轴的直线,故②正确;③y=x2+2x+3,△=22﹣4×1×3=﹣8<0,即函数的图象与x轴没有交点,故③正确;④y=x2+2x+3,当x=0时,y=3,即函数的图象与y轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B.【点睛】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.15.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C,然后利用三角形内角和定理计算出∠C的度数,进而可得答案.【详解】解:∵△ABC≌△DEF,∴∠B=∠E=40°,∠F=∠C,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.二、填空题16.3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴解析:3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×80360=29×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x的方程,从而得到答案.17.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=3∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.18.50【解析】【分析】连接AC,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可. 【详解】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 19.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】221266(1)6h t t t =--=+﹣,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.20.-1<x <2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x2+mx+n 与x 轴的交点坐标为(-1,0),(2,0), 解析:-1<x <2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x 2+mx+n 与x 轴的交点坐标为(-1,0),(2,0),∵a=10>,开口向上,∴y <0时,x 的取值范围是-1<x <2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x 轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.21.【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴ 解析:72【解析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】 解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根, ∴2214241402b ac k k ,整理得,22410k k , ∴21+22k k 2221k k k 224k k224k k当21+22k k 时, 224k k142=-+ 72= 故答案为:72. 【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.22.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3)【解析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】 解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 23.18<x <6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y =0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x =6.18时,y =﹣0.01,当x =6.19解析:18<x <6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y =0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x =6.18时,y =﹣0.01,当x =6.19时,y =0.02,∴当y =0时,相应的自变量x 的取值范围为6.18<x <6.19,故答案为:6.18<x <6.19.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y 由正变为负时,自变量的取值即可.24..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵B 解析:38.【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.25.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.【解析】如图,由题意可知∠ADB=90°,,∴sinA=BD AB ==.26.>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数的图像开口方向向上,所以有>0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次解析:>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数2y ax bx c =++的图像开口方向向上,所以有a >0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次项系数a 与抛物线的关系是解题的关键,图像开口方向向上,a >0;图像开口方向向下,a <0. 27.8【解析】【分析】在Rt△ADC 中,利用正弦的定义得sinC ==,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos∠DAC=sinC 得到tanB =,接着在Rt△A解析:8【解析】【分析】在Rt△ADC中,利用正弦的定义得sin C=ADAC=1213,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=1213,接着在Rt△ABD中利用正切的定义得到BD=13x,所以13x+5x=12,解得x=23,然后利用AD=12x进行计算.【详解】在Rt△ADC中,sin C=ADAC=1213,设AD=12x,则AC=13x,∴DC=5x,∵cos∠DAC=sin C=12 13,∴tan B=12 13,在Rt△ABD中,∵tan B=ADBD=1213,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=23,∴AD=12x=8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.28.1,,【解析】【分析】根据P的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP∥AB时∴△DCP∽△BCA∴即,解得DP=1如图:当P在AB上,即DP∥AC∴△DC解析:1,83,32 【解析】【分析】 根据P 的不同位置,分三种情况讨论,即可解答. 【详解】解:如图:当DP ∥AB 时∴△DCP ∽△BCA∴DC DP BC AB =即263DP =,解得DP=1 如图:当P 在AB 上,即DP ∥AC∴△DCP ∽△BCA∴BD DP BC AC =即6264DP -=,解得DP=83 如图,当∠CPD=∠B ,且∠C=∠C 时,∴△DCP ∽△ACB∴PD CD AB AC =即243DP =,解得DP=32故答案为1,83,32. 【点睛】本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P 点是解答本题的关键.29.【解析】【分析】先在CB 上取一点F ,使得CF=,再连接PF 、AF ,然后利用相似三角形的性质和勾股定理求出AF ,即可解答.【详解】解:如图:在CB 上取一点F ,使得CF=,再连接PF 、AF ,【解析】【分析】先在CB 上取一点F ,使得CF=12,再连接PF 、AF ,然后利用相似三角形的性质和勾股定理求出AF ,即可解答.【详解】解:如图:在CB 上取一点F ,使得CF=12,再连接PF 、AF , ∵∠DCE=90°,DE=4,DP=PE ,∴PC=12DE=2, ∵14CF CP =,14CP CB = ∴CF CP CP CB= 又∵∠PCF=∠BCP ,∴△PCF ∽△BCP , ∴14PF CF PB CP == ∴PA+14PB=PA+PF ,∵PA+PF≥AF ,==∴PA+14∴PA+14PB.【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.30.【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可3解析:【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可求得结论.【详解】取DE的中点F,连接AF,∴EF=DF,∵BE:ED=1:2,∴BE=EF=DF,∴BF=DE,∵AB=AD,∴∠ABD=∠D,∵AD⊥AE,EF=DF,∴AF=EF,在△BAF和△DAE中AB AD ABF D BF DE =⎧⎪∠=∠⎨⎪=⎩∴△BAF ≌△DAE (SAS ),∴AE =AF ,∴△AEF 是等边三角形,∴∠AED =60°,∴∠D =30°,∵∠ABC =2∠ABD ,∠ABD =∠D ,∴∠ABC =60°,∴cos ∠ABC =cos60°【点睛】 本题考查了全等三角形的判定和性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题31.(1)20%;(2)8640万元.【解析】【分析】(1)设平均增长率为x,根据题意可得2018年投入的资金是5000(1+x)万元,2019年投入的资金是5000(1+x) (1+x)万元,由2019年投入的资金是7200万元即可列出方程.,求解即可.(2)相当于数字7200增长了20%,列式计算.【详解】解:(1)设两年间每年投入资金的平均增长率为x ,根据题意得,5000(1+x)2=7200解得,x 1=0.2=20%,x 2= -2.2(不符合题意,舍去)答:该市对市区绿化工程投入资金的年平均增长率为20%;(2)根据题意得,7200(1+20%)=8640万元.答:在2020年预计需投入8640万元.【点睛】本题考查一元二次方程的实际应用,增长率问题,根据a(1+x)2=b (a 、b 、x 、n 分别表示增长前量、增长后量、增长率和增长次数)列方程是解答增长率问题的关键.32.(1)证明见解析;(2)2AC π=【解析】【分析】【详解】分析:(1)根据平行线的性质得出∠AEO=90°,再利用垂径定理证明即可;(2)根据弧长公式解答即可.详证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴AC BD=,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴AC=7252 180ππ⨯=.点睛:此题考查弧长公式,关键是根据弧长公式和垂径定理解答.33.12 5【解析】【分析】过A点作AD⊥BC,将等腰三角形转化为直角三角形,利用勾股定理求AD,利用锐角三角函数的定义求∠B的正切值.【详解】过点A作AD⊥BC,垂足为D,∵AB=AC=13,BC=10,∴BD=DC=12BC=5,∴AD222213512AB BD-=-=,在Rt△ABD中,∴tan B125 ADBD==.【点睛】本题考查了勾股定理,等腰三角形的性质和三角函数的应用,关键是将问题转化到直角三角形中求解,并且要熟练掌握好边角之间的关系.34.1,-2【解析】【分析】把方程的一个根–4,代入方程,求出k,再解方程可得.【详解】【点睛】考察一元二次方程的根的定义,及应用因式分解法求解一元二次方程的知识.35.(1)见解析;(2)19180,sin22MONMPN Sαα∠=︒-=△;(3)433OP=,P点坐标为4646⎝⎭或2626⎝⎭【解析】【分析】(1)由角平分线求出∠MOP=∠NOP=12∠AOB=30°,再证出∠OMP=∠OPN,证明△MOP∽△PON,即可得出结论;(2)由∠MPN是∠AOB的“相关角”,判断出△MOP∽△PON,得出∠OMP=∠OPN,即可得出∠MPN=180°﹣12α;过点M作MH⊥OB于H,由三角形的面积公式得出:S△MON=12ON•MH,即可得出结论;(3)设点C(a,b),则ab=3,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;当点A在x轴的负半轴上时,BC=3CA不可能;当点A在x轴的正半轴上时;先求出14CAAB=,由平行线得出△ACH∽△ABO,得出比例式:14CH AH ACOB OA AB===,得出OB,OA,求出OA•OB,根据∠APB是∠AOB的“相关角”,得出OP,即可得出点P 的坐标;②当点B在y轴的负半轴上时;同①的方法即可得出结论.【详解】(1)证明:∵∠AOB=60°,P为∠AOB的平分线上一点,∴∠AOP=∠BOP=12∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴OM OP OP ON=,∴OP2=OM•ON,∴∠MPN是∠AOB的“相关角”;(2)解:∵∠MPN是∠AOB的“相关角”,∴OM•ON=OP2,∴OM OP OP ON=,∵P为∠AOB的平分线上一点,∴∠MOP=∠NOP=12α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣12α,即∠MPN=180°﹣12α;过点M作MH⊥OB于H,如图2,则S△MON=12ON•MH=12ON•OM sinα=12OP2•sinα,∵OP=3,∴S△MON=92sinα;(3)设点C(a,b),则ab=4,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;Ⅰ、当点A在x轴的负半轴上,如图3所示:BC=3CA不可能,Ⅱ、当点A在x轴的正半轴上时,如图4所示:∵BC=3CA,∴14 CAAB=,∵CH//OB,∴△ACH∽△ABO,∴14 CH AH ACOB OA AB===,∴14 b OA aOB OA-==,∴OB=4b,OA=43 a,∴OA•OB=43a•4b=163ab=643,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴64833OP OA OB⋅∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:4646,⎛⎫⎪ ⎪⎝⎭;②当点B在y轴的负半轴上时,如图5所示:∵BC=3CA,∴AB=2CA,∴12 CAAB=,∵CH//OB,∴△ACH∽△ABO,∴12 CH AH ACOB OA AB===,∴12 b a OA OB OA-==∴OB=2b,OA=23 a,∴OA•OB=23a•2b=43ab=163,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴16433OP OA OB⋅=∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:2626⎝⎭;综上所述:点P的坐标为:4646⎝⎭或2626⎝⎭.【点睛】本题考查反比例函数与几何综合,掌握数形结合和分类讨论的思想是解题的关键.四、压轴题36.(1)点B(3,4),点C(﹣3,﹣4);(2)证明见解析;(3)定点(4,3);理由见解析.【解析】【分析】(1)由中心对称的性质可得OB=OC=5,点C(﹣a,﹣a﹣1),由两点距离公式可求a 的值,即可求解;(2)由两点距离公式可求AB,AC,BC的长,利用勾股定理的逆定理可求解;(3)由旋转的性质可得DO=BO=CO,可得△BCD是直角三角形,以BC为直径,作⊙O,连接OH,DE与⊙O交于点H,由圆周角定理和角平分线的性质可得∠HBC=∠CDE =45°=∠BDE=∠BCH,可证CH=BH,∠BHC=90°,由两点距离公式可求解.【详解】解:(1)∵A(﹣5,0),OA=OC,∴OA=OC=5,∵点B、C关于原点对称,点B(a,a+1)(a>0),∴OB=OC=5,点C(﹣a,﹣a﹣1),∴5∴a=3,∴点B(3,4),∴点C(﹣3,﹣4);(2)∵点B(3,4),点C(﹣3,﹣4),点A(﹣5,0),∴BC=10,AB=,AC=∵BC2=100,AB2+AC2=80+20=100,∴BC2=AB2+AC2,∴∠BAC=90°,∴AB⊥AC;(3)过定点,理由如下:∵将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,∴CO=DO,又∵CO=BO,∴DO=BO=CO,∴△BCD是直角三角形,∴∠BDC=90°,如图②,以BC为直径,作⊙O,连接OH,DE与⊙O交于点H,。
数学期末测试卷及答案初三
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001…(无限循环小数)D. -3/42. 已知a,b是方程x^2 - 4x + 3 = 0的两个实数根,则a + b的值是()A. 3B. 4C. 5D. 63. 下列函数中,一次函数是()A. y = x^2 - 2x + 1B. y = 2x + 3C. y = √xD. y = log2x4. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 60°B. 75°C. 90°D. 105°5. 已知正方体的体积为64立方厘米,则其棱长是()A. 2厘米B. 4厘米C. 8厘米D. 16厘米6. 下列等式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2 + 2abB. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab + b^27. 下列命题中,正确的是()A. 平行四边形的对角线相等B. 矩形的对角线互相垂直C. 等腰三角形的底角相等D. 直角三角形的两条直角边相等8. 已知等差数列{an}的首项为a1,公差为d,则第n项an可以表示为()A. an = a1 + (n - 1)dB. an = a1 - (n - 1)dC. an = a1 + (n + 1)dD. an = a1 - (n + 1)d9. 下列各式中,正确的是()A. (x + y)^2 = x^2 + y^2B. (x - y)^2 = x^2 - y^2C. (x + y)^2 = x^2 + 2xy + y^2D. (x - y)^2 = x^2 - 2xy + y^210. 下列各数中,无理数是()A. √9B. 3.1415926…C. -√16D. 2/3二、填空题(每题5分,共50分)11. 若a = 3,b = -2,则a^2 + b^2 = ________。
人教版九年级上册《数学》期末考试卷及答案【可打印】
人教版九年级上册《数学》期末考试卷及答案【可打印】一、选择题(每题1分,共5分)1. 若x^2 3x + 2 = 0,则x的值为多少?A. 1B. 2C. 1D. 22. 若sin(θ) = 1/2,则θ的值为多少?A. 30°B. 45°C. 60°D. 90°3. 若一个正方形的边长为4cm,则其面积为多少?A. 16cm^2B. 8cm^2C. 12cm^2D. 6cm^24. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则其体积为多少?A. 24cm^3B. 12cm^3C. 6cm^3D. 8cm^35. 若一个等腰三角形的底边长为6cm,腰长为5cm,则其面积为多少?A. 15cm^2B. 10cm^2C. 12cm^2D. 8cm^2二、判断题(每题1分,共5分)1. 一个等边三角形的三个内角都是60°。
()2. 一个正方形的对角线互相垂直且平分。
()3. 一个圆的半径是直径的一半。
()4. 一个长方体的对角线互相垂直。
()5. 一个等腰三角形的底角等于顶角。
()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角是______度。
2. 一个正方形的对角线长是边长的______倍。
3. 一个圆的周长是直径的______倍。
4. 一个长方体的体积是长、宽、高的______。
5. 一个等腰三角形的底边长是腰长的______倍。
四、简答题(每题2分,共10分)1. 简述等边三角形的性质。
2. 简述正方形的性质。
3. 简述圆的性质。
4. 简述长方体的性质。
5. 简述等腰三角形的性质。
五、应用题(每题2分,共10分)1. 一个等边三角形的边长为10cm,求其周长。
2. 一个正方形的边长为8cm,求其对角线长。
3. 一个圆的直径为14cm,求其周长。
4. 一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积。
5. 一个等腰三角形的底边长为10cm,腰长为8cm,求其周长。
初三数学期末考试练习试题及答案
初三数学期末考试练习试题及答案初三数学期末考试练习试题及答案初三数学期末考试练习试题一、选择题(每题3分、共30分)1.四会市现在总人口43万多,数据43万用科学记数法表示为( )A.43×104B.4.3×105C.4.3×106D.0.43×1062.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是( )A.①②B.②③C.②④D.①④3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC 等于( )A.20B.15C.10D.54.如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是( )A.2B.3C.4D.55.在平面中,下列命题为真命题的是( )A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形6.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是( )A.m<﹣4b.m>﹣4C.m<4d.m>47.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为( )A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=18.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( )A.B.C.D.9.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.10.如图,抛物线y=x2与直线y=x交于A点,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为A点,则平移后抛物线的解析式是( )A.y=(x+1)2﹣1B.y=(x+1)2+1C.y=(x﹣1)2+1D.y=(x﹣1)2﹣1二、填空题(每题3分、共30分)11.若在实数范围内有意义,则x的取值范围是 .12.已知一次函数y=kx+3的图象经过第一、二、四象限,则k的取值范围是 .13.分解因式:3ax2﹣3ay2= .14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .15.设x1、x2是方程3x2﹣x﹣1=0的两个实数根,则3x12﹣2x1﹣x2的值等于 .16.某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程 .17.若|a﹣3|+(a﹣b)2=0,则ab的倒数是 .18.如图,在?ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x﹣3=0的根,则?ABCD的周长是 .19.如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为 .三、解答题(共60分)20.(﹣1)0+()﹣2﹣.21.先化简,再求值:,其中.22.解不等式组:,并把解集在数轴上表示出来.23.某校初三(1)班的同学踊跃为“雅安芦山地震”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但生活委员不小心把墨水滴在统计表上,部分数据看不清楚.捐款人数0~20元21~40元41~60元61~80元681元以上4(1)全班有多少人捐款?(2)如果捐款0~20元的人数在扇形统计图中所占的圆心角为72°,那么捐款21~40元的有多少人?24.四张扑克牌的点数分别是2,3,4,8,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数偶数的概率;(2)从中随机抽取一张牌,接着再抽取一张,求这两张牌的点数都是偶数的概率.25.如图.直线y=ax+b与双曲线相交于两点A(1,2),B(m,﹣4).(1)求直线与双曲线的解析式;(2)求不等式ax+b>的解集(直接写出答案)26.(10分)(2013南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?27.(12分)(2008包头)阅读并解答:①方程x2﹣2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.②方程2x2﹣x﹣2=0的根是x1=,x2=,则有x1+x2=,x1x2=﹣1.③方程3x2+4x﹣7=0的根是x1=﹣,x2=1,则有x1+x2=﹣,x1x2=﹣.(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;(2)利用你的猜想结论,解决下面的问题:已知关于x的方程x2+(2k+1)x+k2﹣2=0有实数根x1,x2,且x12+x22=11,求k的值.参考答案与试题解析一、选择题(每题3分、共30分)1.四会市现在总人口43万多,数据43万用科学记数法表示为( )A.43×104B.4.3×105C.4.3×106D.0.43×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于43万有6位,所以可以确定n=6﹣1=5.解答:解:43万=430000=4.3×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n 值是关键.2.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是( )A.①②B.②③C.②④D.①④考点:中心对称图形;轴对称图形.分析:根据正多边形的性质和轴对称与中心对称的性质解答.解答:解:由正多边形的对称性知,偶数边的正多边形既是轴对称图形,又是中心对称图形;奇数边的正多边形只是轴对称图形,不是中心对称图形.故选C.点评:此题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC 等于( )A.20B.15C.10D.5考点:菱形的性质;等边三角形的判定与性质.分析:根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.解答:解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.点评:本题考查了菱形的性质和等边三角形的判定.4.如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是( )A.2B.3C.4D.5考点:由三视图判断几何体.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再结合题意和三视图的特点找出每行和每列的小正方体的个数再相加即可.解答:解:由俯视图易得最底层有3个立方体,第二层有1个立方体,那么搭成这个几何体所用的小立方体个数是4.故选C.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5.在平面中,下列命题为真命题的是( )A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形考点:正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,不是真命题的可以举出反例.解答:解:A、四边相等的四边形不一定是正方形,例如菱形,故此选项错误;B、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;C、四个角相等的四边形是矩形,故此选项正确;D、对角线互相垂直的四边形不一定是平行四边形,如右图所示,故此选项错误.故选:C.点评:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是( )A.m<﹣4b.m>﹣4C.m<4d.m>4考点:根的判别式.专题:计算题.分析:由方程没有实数根,得到根的判别式的值小于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.解答:解:∵△=(﹣4)2﹣4m=16﹣4m<0,∴m>4.故选D点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.7.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为( )A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1考点:解一元二次方程-配方法.分析:移项后配方,再根据完全平方公式求出即可.解答:解:x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.点评:本题考查了解一元二次方程的应用,关键是能正确配方.8.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( )A.B.C.D.考点:由实际问题抽象出分式方程.分析:题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解答:解:根据题意,得.故选:C.点评:理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.9.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.考点:二次函数的图象;一次函数的图象.专题:数形结合.分析:根据二次函数的性质首先排除B选项,再根据a、b的值的正负,结合二次函数和一次函数的性质逐个检验即可得出答案.解答:解:根据题意可知二次函数y=ax2+bx的图象经过原点O(0,0),故B选项错误;当a<0时,二次函数y=ax2+bx的图象开口向下,一次函数y=ax+b的斜率a为负值,故D选项错误;当a<0、b>0时,二次函数y=ax2+bx的对称轴x=﹣>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴正半轴,故C选项错误;当a>0、b<0时,二次函数y=ax2+bx的对称轴x=﹣>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴负半轴,故A选项正确.故选A.点评:本题主要考查了二次函数的性质和一次函数的性质,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.10.如图,抛物线y=x2与直线y=x交于A点,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为A点,则平移后抛物线的解析式是( )A.y=(x+1)2﹣1B.y=(x+1)2+1C.y=(x﹣1)2+1D.y=(x﹣1)2﹣1考点:二次函数图象与几何变换.分析:首先根据抛物线y=x2与直线y=x交于A点,即可得出A 点坐标,然后根据抛物线平移的性质:左加右减,上加下减可得解析式.解答:解:∵抛物线y=x2与直线y=x交于A点,∴x2=x,解得:x1=1,x2=0(舍去),∴A(1,1),∴抛物线解析式为:y=(x﹣1)2+1,故选:C.点评:此题主要考查了二次函数图象的几何变换,关键是求出A 点坐标,掌握抛物线平移的性质:左加右减,上加下减.二、填空题(每题3分、共30分)11.若在实数范围内有意义,则x的取值范围是x≥2 .考点:二次根式有意义的条件.专题:计算题.分析:让二次根式的被开方数为非负数列式求解即可.解答:解:由题意得:3x﹣6≥0,解得x≥2,故答案为:x≥2.点评:考查二次根式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数.12.已知一次函数y=kx+3的图象经过第一、二、四象限,则k的取值范围是 k<0 .考点:一次函数图象与系数的关系.分析:根据一次函数经过的象限确定其图象的增减性,然后确定k 的取值范围即可.解答:解:∵一次函数y=kx+3的图象经过第一、二、四象限,∴k<0;故答案为:k<0.点评:本题考查了一次函数的图象与系数的关系,解题的关键是根据图象的位置确定其增减性.13.分解因式:3ax2﹣3ay2= 3a(x+y)(x﹣y) .考点:提公因式法与公式法的综合运用.分析:当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.解答:解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后再利用平方差公式继续进行二次因式分解,分解因式一定要彻底.14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .考点:概率公式.分析:由在10个外观相同的产品中,有2个不合格产品,直接利用概率公式求解即可求得答案.解答:解:∵在10个外观相同的产品中,有2个不合格产品,∴现从中任意抽取1个进行检测,抽到合格产品的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.15.设x1、x2是方程3x2﹣x﹣1=0的两个实数根,则3x12﹣2x1﹣x2的值等于 .考点:根与系数的关系;一元二次方程的解.分析:根据题意可知,x1+x2=,然后根据方程解的定义得到3x12=x1+1,然后整体代入3x12﹣2x1﹣x2计算即可.解答:解:∵x1,x2是方程3x2﹣x﹣1=0的两个实数根,∴x1+x2=,∵x1是方程x2﹣5x﹣1=0的实数根,∴3x12﹣x1﹣1=0,∴x12=x1+1,∴3x12﹣2x1+x2=x1+1﹣2x1﹣x2=1﹣(x1+x2)=1﹣=.故答案为:.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系x1+x2=﹣,x1x2=,以及一元二次方程的解.16.某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程289×(1﹣x)2=256 .考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=256,把相应数值代入即可求解.解答:解:第一次降价后的价格为289×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为289×(1﹣x)×(1﹣x),则列出的方程是289×(1﹣x)2=256.点评:考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.17.若|a﹣3|+(a﹣b)2=0,则ab的倒数是 .考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣3=0,a﹣b=0,解得a=b=3,所以,ab=33=27,所以,ab的倒数是.故答案为:.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.如图,在?ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x﹣3=0的根,则?ABCD的周长是 4+2 .考点:解一元二次方程-因式分解法;平行四边形的性质.专题:计算题.分析:先解方程求得a,再根据勾股定理求得AB,从而计算出?ABCD的周长即可.解答:解:∵a是一元二次方程x2+2x﹣3=0的根,∴(x﹣1)(x+3)=0,即x=1或﹣3,∵AE=EB=EC=a,∴a=1,在Rt△ABE中,AB==a=,∴?ABCD的周长=4a+2a=4+2.故答案为:4+2.点评:本题考查了用因式分解法解一元二次方程,以及平行四边形的性质,是基础知识要熟练掌握.19.如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为 y=﹣ .考点:待定系数法求反比例函数解析式;平行四边形的性质.专题:待定系数法.分析:设经过C点的反比例函数的解析式是y=(k≠0),设C(x,y).根据平行四边形的性质求出点C的坐标(﹣1,3).然后利用待定系数法求反比例函数的解析式.解答:解:设经过C点的反比例函数的解析式是y=(k≠0),设C(x,y).∵四边形OABC是平行四边形,∴BC∥OA,BC=OA;∵A(4,0),B(3,3),∴点C的纵坐标是y=3,|3﹣x|=4(x<0),∴x=﹣1,∴C(﹣1,3).∵点C在反比例函数y=(k≠0)的图象上,∴3=,解得,k=﹣3,∴经过C点的反比例函数的解析式是y=﹣.故答案为:y=﹣.点评:本题主要考查了平行四边形的性质(对边平行且相等)、利用待定系数法求反比例函数的解析式.解答反比例函数的解析式时,还借用了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.三、解答题(共60分)20.(﹣1)0+()﹣2﹣.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,即可得到结果.解答:解:原式=1+4﹣=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.先化简,再求值:,其中.考点:分式的化简求值;约分;分式的乘除法;分式的加减法.专题:计算题.分析:先算括号里面的减法,再把除法变成乘法,进行约分即可.解答:解:原式=&pide;()=×=,当x=﹣3时,原式==.点评:本题主要考查对分式的加减、乘除,约分等知识点的理解和掌握,能熟练地运用法则进行化简是解此题的关键.22.解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:分别解两个不等式得到x≥﹣2和x<1,再根据大于小的小于大的取中间确定不等式组的解集,然后用数轴表示解集.解答:解:,由①得:x≥﹣2,由②得:x<1,∴不等式组的解集为:﹣2≤x<1,如图,在数轴上表示为:.点评:本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.也考查了在数轴上表示不等式的解集.23.某校初三(1)班的同学踊跃为“雅安芦山地震”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但生活委员不小心把墨水滴在统计表上,部分数据看不清楚.捐款人数0~20元21~40元41~60元61~80元681元以上4(1)全班有多少人捐款?(2)如果捐款0~20元的人数在扇形统计图中所占的圆心角为72°,那么捐款21~40元的有多少人?考点:扇形统计图;统计表.分析:(1)根据扇形统计图中的捐款81元以上的认识和其所占的百分比确定全班人数即可;(2)分别确定每个小组的人数,最后确定捐款数在21﹣40元的人数即可.解答:解:(1)4&pide;8%=50答:全班有50人捐款.(2)∵捐款0~20元的人数在扇形统计图中所占的圆心角为72°∴捐款0~20元的人数为50×=10∴50﹣10﹣50×32%﹣6﹣4=14答:捐款21~40元的有14人.点评:本题考查了扇形统计图及统计表的知识,解题的关键是确定总人数.24.四张扑克牌的'点数分别是2,3,4,8,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数偶数的概率;(2)从中随机抽取一张牌,接着再抽取一张,求这两张牌的点数都是偶数的概率.考点:列表法与树状图法;概率公式.分析:(1)利用数字2,3,4,8中一共有3个偶数,总数为4,即可得出点数偶数的概率;(2)利用树状图列举出所有情况,让点数都是偶数的情况数除以总情况数即为所求的概率.解答:解:(1)根据数字2,3,4,8中一共有3个偶数,故从中随机抽取一张牌,这张牌的点数偶数的概率为:;(2)根据从中随机抽取一张牌,接着再抽取一张,列树状图如下:根据树状图可知,一共有12种情况,两张牌的点数都是偶数的有6种,故连续抽取两张牌的点数都是偶数的概率是:=.点评:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.25.如图.直线y=ax+b与双曲线相交于两点A(1,2),B(m,﹣4).(1)求直线与双曲线的解析式;(2)求不等式ax+b>的解集(直接写出答案)考点:反比例函数与一次函数的交点问题.分析:(1)先把先把(1,2)代入双曲线中,可求k,从而可得双曲线的解析式,再把y=﹣4代入双曲线的解析式中,可求m,最后把(1,2)、(﹣,﹣4)代入一次函数,可得关于a、b的二元一次方程组,解可求a、b的值,进而可求出一次函数解析式;(2)根据图象观察可得x>1或﹣<x<0.主要是观察交点的左右即可.<>解答:解:(1)先把(1,2)代入双曲线中,得k=2,∴双曲线的解析式是y=,当y=﹣4时,m=﹣,把(1,2)、(﹣,﹣4)代入一次函数,可得,解得,∴一次函数的解析式是y=4x﹣2;(2)根据图象可知,若ax+b>,那么x>1或﹣<x<0.<>点评:本题考查了一次函数与反比例函数交点问题,解题的关键是掌握待定系数法求函数解析式,并会根据图象求出不等式的解集.26.(10分)(2013南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?考点:二次函数的应用.分析:(1)把两组数据代入二次函数解析式,然后利用待定系数法求解即可;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,根据总利润等于两种产品的利润的和列式整理得到W与m的函数关系式,再根据二次函数的最值问题解答.解答:解:(1)∵当x=1时,y=1.4;当x=3时,y=3.6,∴,解得,所以,二次函数解析式为y=﹣0.1x2+1.5x;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m)=﹣0.1m2+1.2m+3=﹣0.1(m﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W有最大值6.6,∴购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.点评:本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,比较简单,(2)整理得到所获利润与购进A产品的吨数的关系式是解题的关键.27.(12分)(2008包头)阅读并解答:①方程x2﹣2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.②方程2x2﹣x﹣2=0的根是x1=,x2=,则有x1+x2=,x1x2=﹣1.③方程3x2+4x﹣7=0的根是x1=﹣,x2=1,则有x1+x2=﹣,x1x2=﹣.(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;(2)利用你的猜想结论,解决下面的问题:已知关于x的方程x2+(2k+1)x+k2﹣2=0有实数根x1,x2,且x12+x22=11,求k的值.考点:根与系数的关系;解一元二次方程-公式法;解一元二次方程-因式分解法;根的判别式.专题:压轴题;阅读型.分析:(1)由①②③中两根之和与两根之积的结果可以看出,两根之和正好等于一次项系数与二次项系数之比的相反数,两根之积正好等于常数项与二次项系数之比.(2)欲求k的值,先把代数式x12+x22变形为两根之积或两根之和的形式,然后与两根之和公式、两根之积公式联立组成方程组,解方程组即可求k值.解答:解:(1)猜想为:设ax2+bx+c=0(a≠0)的两根为x1、x2,则有,.理由:设x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么由求根公式可知,,.于是有,,综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有,.(2)x1、x2是方程x2+(2k+1)x+k2﹣2=0的两个实数根∴x1+x2=﹣(2k+1),x1x2=k2﹣2,又∵x12+x22=x12+x22+2x1x2﹣2x1x2=(x1+x2)2﹣2x1x2∴[﹣(2k+1)]2﹣2×(k2﹣2)=11整理得k2+2k﹣3=0,解得k=1或﹣3,又∵△=[﹣(2k+1)]2﹣4(k2﹣2)≥0,解得k≥﹣,∴k=1.点评:本题考查了学生的总结和分析能力,善于总结,善于发现,学会分析是学好数学必备的能力.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.。
九年级期末数学试卷【含答案】
九年级期末数学试卷【含答案】专业课原理概述部分一、选择题1. 如果一个三角形的两边分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?()A. 7厘米B. 23厘米C. 17厘米D. 22厘米2. 在直角坐标系中,点(3, -4)位于哪个象限?()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列哪个数是合数?()A. 11B. 29C. 39D. 474. 一个等腰三角形的底边长为10厘米,腰长为13厘米,那么这个三角形的周长是多少厘米?()A. 32厘米B. 36厘米C. 46厘米D. 52厘米5. 如果一个正方形的对角线长是10厘米,那么它的面积是多少平方厘米?()A. 50平方厘米B. 100平方厘米C. 200平方厘米D. 50厘米二、判断题6. 任何两个奇数相加的和都是偶数。
()7. 平行四边形的对角线互相平分。
()8. 一个数的平方根只有一个。
()9. 所有的等边三角形都是锐角三角形。
()10. 在一次函数y=2x+3中,y随x的增大而减小。
()三、填空题11. 如果一个数的平方是36,那么这个数是______。
12. 一个等差数列的前三项分别是2,5,8,那么这个数列的公差是______。
13. 两个互质的数的最小公倍数是它们的______。
14. 在直角坐标系中,点(0, b)位于______轴上。
15. 一个圆的半径增加了10厘米,那么它的面积增加了______平方厘米。
四、简答题16. 简述等边三角形的性质。
17. 解释什么是无理数,并给出一个无理数的例子。
18. 简述平行线的性质。
19. 解释什么是函数,并给出一个函数的例子。
20. 简述等差数列的性质。
五、应用题21. 一个长方形的长是15厘米,宽是8厘米,求这个长方形的对角线长度。
22. 一个等腰三角形的底边长是10厘米,腰长是13厘米,求这个三角形的面积。
23. 一个数的平方是49,求这个数的立方。
人教版初三上册《数学》期末考试卷及答案【可打印】
一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。
A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 已知一组数据:1,2,3,4,5,那么这组数据的众数、中位数、平均数分别是()。
A. 3,3,3B. 3,3,3.5C. 3,3,4D. 3,3,4.53. 下列函数中,属于一次函数的是()。
A. y=2x+1B. y=x^2C. y=2/xD. y=3sinx4. 已知正比例函数y=kx(k≠0),当x=2时,y=4,那么k的值为()。
A. 2B. 4C. 2D. 45. 在等腰三角形ABC中,AB=AC,∠A=40°,则∠B的度数是()。
A. 40°B. 70°C. 80°D. 90°二、判断题(每题1分,共5分)1. 任意两个等腰三角形的底边长度相等。
()2. 两条平行线上的任意两个点之间的距离相等。
()3. 当两个数的和为0时,它们互为相反数。
()4. 函数y=2x+1的图像是一条直线。
()5. 正比例函数的图像经过原点。
()三、填空题(每题1分,共5分)1. 若x2y=3,则2x4y=______。
2. 若函数y=kx(k≠0)的图像经过点(1,2),则k=______。
3. 已知等腰三角形ABC中,AB=AC=5,BC=8,则∠B的度数是______。
4. 若一组数据的平均数为5,则这组数据的总和是______。
5. 若两个等腰三角形的底边长度相等,则它们一定全等。
()四、简答题(每题2分,共10分)1. 简述正比例函数的定义。
2. 简述等腰三角形的性质。
3. 简述函数图像平移的规律。
4. 简述求解二元一次方程组的方法。
5. 简述众数、中位数、平均数的定义及区别。
五、应用题(每题2分,共10分)1. 某商店销售一批商品,售价为每件20元,成本为每件15元。
若要使利润率达到50%,则售价应定为多少元?2. 已知函数y=kx(k≠0),若该函数的图像经过点(2,4),求k的值。
初三期末数学试卷及答案
一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. √2B. 3/4C. 1.618D. 22. 已知 a、b 是方程x² - 5x + 6 = 0 的两个根,则 a + b 的值是()A. 5B. 2C. 6D. 03. 下列函数中,y 是 x 的正比例函数的是()A. y = 2x + 3B. y = 3x² - 2x + 1C. y = 2xD. y = x³ + 2x² - 3x4. 在平面直角坐标系中,点 A(2,3)关于原点对称的点是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)5. 下列各式中,正确的是()A. 5a + 2b = 2a + 5bB. 3a - 2b = 2a - 3bC. 2a + 3b = 3a + 2bD. 4a - 5b = 5a - 4b6. 若 |x| = 5,则 x 的值可以是()A. 5B. -5C. 0D. ±57. 下列各式中,绝对值最小的是()A. |2|B. |-3|C. |1/2|D. |-1/3|8. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 105°C. 135°D. 165°9. 已知函数 y = kx + b(k≠0),当 x = 1 时,y = 3;当 x = 2 时,y = 5,则函数的解析式是()A. y = 2x + 1B. y = 3x + 1C. y = 2x - 1D. y = 3x - 110. 下列各式中,分式有意义的条件是()A. x - 1 = 0B. x + 1 = 0C. x - 1 ≠ 0D. x + 1 ≠ 0二、填空题(每题5分,共25分)11. 已知 a = -2,b = 3,则 2a - 3b 的值是 _______。
九年级试卷期末数学【含答案】
九年级试卷期末数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪个是增函数?()A. y = -2x + 3B. y = x² 4x + 4C. y = 1/xD. y = -x² + 43. 若一个三角形的两边长分别为3和4,那么第三边的长度可能是()。
A. 1B. 6C. 7D. 84. 下列数列中,哪个是等差数列?()A. 1, 3, 6, 10,B. 2, 4, 8, 16,C. 5, 7, 9, 11,D. 1, 4, 9, 16,5. 若sinθ = 1/2,且θ是锐角,则cosθ等于()。
A. 1/2B. √3/2C. √2/2D. 1二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 一个等腰三角形的底角和顶角相等。
()3. 对角线互相垂直的四边形一定是菱形。
()4. 两个负数相乘的结果是正数。
()5. 一元二次方程的解一定是实数。
()三、填空题(每题1分,共5分)1. 若一个圆的半径为r,则它的面积是______。
2. 若sinA = 3/5,且A是锐角,则cosA = ______。
3. 若两个连续偶数分别为2n和2n+2,则它们的平均数是______。
4. 一元二次方程ax² + bx + c = 0的判别式是______。
5. 一个等差数列的通项公式是______。
四、简答题(每题2分,共10分)1. 解释什么是等边三角形。
2. 什么是直角坐标系?3. 简述概率的基本定义。
4. 什么是算术平均数?5. 解释一元二次方程的解的判别条件。
五、应用题(每题2分,共10分)1. 一个长方形的长是宽的两倍,若长方形的周长是24厘米,求长方形的长和宽。
2. 一个等腰三角形的底边长为10厘米,腰长为13厘米,求这个三角形的面积。
九年级初三数学期末考试卷
一、选择题(每题5分,共50分)1. 若m和n是实数,且m + n = 0,则下列等式中正确的是()A. m² = n²B. m² > n²C. m > nD. m < n2. 已知等差数列{an}中,a1 = 2,d = 3,则第10项a10等于()A. 27B. 30C. 33D. 363. 已知函数f(x) = 2x - 1,则f(-3)的值为()A. -7B. -5C. 1D. 34. 下列哪个不是一元二次方程?()A. x² + 2x + 1 = 0B. x² - 3x + 4 = 0C. x³ + 2x² - 3x - 6 = 0D. 2x² - 3x + 1 = 05. 已知三角形ABC中,∠A = 45°,∠B = 60°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°6. 若等比数列{an}中,a1 = 2,q = 3,则第5项a5等于()A. 18B. 27C. 36D. 547. 下列哪个不是等差数列?()A. 1, 4, 7, 10, ...B. 1, 3, 5, 7, ...C. 1, 2, 4, 8, ...D. 1, 2, 3, 4, ...8. 已知函数f(x) = x² - 4x + 4,则f(2)的值为()A. 0B. 2C. 4D. 89. 若等差数列{an}中,a1 = 3,d = -2,则第10项a10等于()A. -17B. -15C. -13D. -1110. 下列哪个不是一元二次方程的解?()A. x = 1B. x = 2C. x = -3D. x = 0二、填空题(每题5分,共50分)1. 若x² - 5x + 6 = 0,则x的值为__________。
数学九年级期末试卷及答案
数学九年级期末试卷及答案一、选择题(每题2分,共30分)在每小题所给的四个选项中,只有一项是符合题目要求的,请将其序号填写在前面的括号中。
1.某矩形的长是宽的3倍,如果宽是6cm,则这个矩形的面积是多少?( ) A. 12cm^2 B. 36cm^2 C. 72cm^2 D. 144cm^22.已知函数y=2x-5,当x取值为3时,y的值为多少? ( ) A. -1 B. 1 C.4 D. -13.如果a:b=3:5, b:c=4:7,那么a:b:c的比值是? ( ) A. 12:20:35 B. 3:4:5C. 4:20:7D. 9:20:354.在计算 +3 + (-5) - 2 + (-4) 的结果时,正确的计算方法是? ( ) A. 3 + 5+ 2 + 4 B. -3 + 5 - 2 - 4 C. -3 - 5 + 2 - 4 D. 3 - 5 - 2 + 45.某长方体的长、宽、高分别为3cm、4cm和5cm,那么它的体积是多少? ( ) A. 60cm^2 B. 48cm^3 C. 56cm^3 D. 120cm^3…二、填空题(每题2分,共20分)根据题目要求,在横线上填上正确的答案。
1.一个三角形有两边的长度分别为5cm和7cm,夹角的度数为_________度。
\t2.画直线y=-2x+3的图像,该直线与y轴交点的坐标为(0, _______)。
3.一个正方形的边长为8cm,它的周长是_________cm。
…三、计算题(每题10分,共50分)对于下列计算题,请写出详细的步骤,并给出最终结果。
1.计算:(2/3) + (1/4) + (3/8)解答:首先,我们需要找到这些分数的最小公倍数,即24。
然后,我们将每个分数化为分母为24的分数: (2/3) = (16/24) (1/4) = (6/24) (3/8) = (9/24) 现在,我们将它们相加: (16/24) + (6/24) + (9/24) = (31/24) 但是,这不是一个最简分数,我们需要将其化简: (31/24) = (1 7/24)所以,结果为 1 7/242.将下列分数化为小数:5/6 …四、应用题(每题10分,共20分)1.商场举办了打折促销活动,原价为300元的商品现在打7折出售,求打完折后的价格。
(完整word版)初三期末数学试题及参考答案
九年级期末教学检测数学试卷一、选择题(本题共32分,每小题4分)在下列各题的四个备选答案中,只有一个是正确的,请你把正确答案前的字母填写在相应的括号中.1.如图,△ABC 中,DE ∥BC ,13AD AB =,2cm AE =, 则AC 的长是 ( )A .2cmB .4cmC .6cmD .8cm 2.若两个相似三角形的周长之比为1∶4,则它们的面积之比为( ) A .1∶2 B .1∶4 C .1∶8 D .1∶16 3.反比例函数2ky x-=的图象,当0x >时,y 随x 的增大而减小,则k 的取值范围是(). A.2k < B. k ≤2 C.2k > D. k ≥24.在平面直角坐标系xOy 中,将抛物线22y x = 先向左平移1个单位长度,再向下平移3个单位长度后所得到的抛物线的解析式为 ( )A.2=2(-1)-3y x B.2=2(-1)+3y x C.2=2(+1)-3y x D.2=2(+1)+3y x5.如图,AB 是O 的直径,CD 为弦,CD AB ⊥于E ,则下列结论中不成立...的是 ( ) A.A D ∠=∠ B.CE DE = C.90ACB ∠= D.CE BD =6.如图,PA 、PB 是O 的切线,切点分别为A 、B ,C 为O 上一点,若50P ∠=︒, 则ACB ∠=( )A .40︒B .50︒C .65︒D .130︒7.双曲线1y 、2y 在第一象限的图象如图所示,已知14y x=,过1y 上的任意一点A ,作x 轴的平行线交2y 于B ,交y 轴于C ,若1A O B S =△,则2y 的解析式是( )A .22y x =B . 23y x = C .25y x = D . 26y x=8.如图,等腰Rt ABC ∆(90ACB ∠=︒)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一直线上,开始时点C 与点D 重合,让ABC ∆沿这条直线向右BCOPBA平移,直到点A 与点E 重合为止.设CD 的长为x ,ABC ∆与正方形DEFG 重合部分(图中阴影部分)的面积为y ,则y 与x 之间的函数关系的图象大致是( )二、填空题 (本题共16分,每小题4分)9.若某人沿坡角是30︒的斜坡前进20m ,则他所在的位置比原来的位置升高 m. 10.在Rt ABC ∆中,90C ∠=︒,3sin 5A =,则tan B = . 11.若80︒的圆心角所对的弧长是83πcm ,则该圆的半径为 cm .12. 在一次数学游戏中,老师在 A 、 B 、C 三个盘子里分别放了一些糖果,糖果数依次为 a 0 ,b 0 ,c 0 ,记为 G 0 = ( a 0 , b 0 , c 0 ).游戏规则如下:若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个(若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果),记为一次操作.若三个盘子中的糖果数都相同,游戏结束. n 次操作后的糖果数记为 G n = ( a n , b n , c n ).(1)若 G 0 = ( 4 , 7 ,10 ),则第_______次操作后游戏结束;(2)小明发现:若 G 0 = ( 4 , 8 ,18 ),则游戏永远无法结束,那么 G 2014 = ________.三、解答题 (共72分)13.计算0111)2cos30()2--︒+14.(5分)一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A 处观测到河对岸水边有一点C ,测得C 在A 北偏西31°的方向上,沿河岸向北前行40米到达B 处,测得C 在B 北偏西45°的方向上,请你根据以上数据,求这条河的宽度.(参考数值:3tan315︒≈)15.(5分)在平面直角坐标系xOy 中,一次函数y x n =+和反比例函数6y x=-的图象都经过点(3,)A m .(1)求m 的值和一次函数的表达式;(2)点B 在双曲线6y x=-上,且位于直线y x n =+的下方,若点B 的横、纵坐标都是整数,直接写出点B 的坐标.16.如图,方格纸中每个小正方形的边长均为1,△ABC 的顶点均在小正方形的顶点处. (1)以点O 为旋转中心,把△ABC 顺时针旋转90°,画出旋转后的△AB C ''; (2)以O 为位似中心,把△ABC 放大到原来的2倍(一种即可),请在图中画出放大后的△DEF,并写出顶点坐标(c 自己添一个)17. (5分)如图,在ABC ∆中,12AB =,10AC BC ==,点D 、E 分别在边AB 、AC 上,且CDE A ∠=∠,设BD x =,CE y = . 求y 与x 的函数关系式;DE CA18.(5分)已知:如图,AB 是O ⊙的直径,弦CD AB ⊥,垂足为E ,60AOC ∠=︒,2AC =. (1)求弦CD 的长; (2)求图中阴影部分的面积.19.(5分)某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件.经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少时,才能使每天所获销售利润最大?最大利润是多少?20.(5分)在ABC ∆中,6AB =cm ,12AC =cm ,动点D 以1cm/s 的速度从点A 出发到点B 止,动点E 以2cm/s 的速度从点C 出发到点A 止,且两点同时运动,当以点A 、D 、E 为顶点的三角形与ABC ∆相似时,求运动的时间t .21.5分)如图,ABC △是等腰三角形,AB AC =,以AC 为直径的O 与BC 交于点D ,DE AB ⊥,垂足为E ,ED 的延长线与AC 的延长线交于点F . (1)求证:DE 是O 的切线;(2)若O 的半径为2,1BE =,求cos A 的值.22..阅读下列材料:问题:在平面直角坐标系xOy 中,一张矩形纸片OBCD 按图1所示放置,已知10OB =,6BC =,将这张纸片折叠,使点O 落在边CD 上,记作点A ,折痕与边OD (含端点)交于点E ,与边OB (含端点)或其延长线交于点F ,求点A 的坐标.小明在解决这个问题时发现:要求点A 的坐标,只要求出线段AD 的长即可.连接OA ,设折痕EF 所在直线对应的函数表达式为(0,0)y kx n k n =+<≥,于是有(0,)E n ,(,0)n F k-所以在Rt EOF △中,得到tan OFE k ∠=-,在Rt AOD △中,利用等角的三角函数值相等,就可以求出线段DA 的长(如图1).请回答:(1)如图1,若点E 的坐标为(0,4),直接写出点A 的坐标;(2)在图2中,已知点O 落在边CD 上的点A 处,请画出折痕所在的直线EF (要求:尺规作图,保留作图痕迹,不写作法); 参考小明的做法,解决以下问题:五解答题(共22分)23.(7分)已知关于x 的方程2(31)220mx m x m --+-= (1)求证:无论m 取任何实数时,方程恒有实数根;(2)若关于x 的二次函数2(31)22y mx m x m =--+-的图象与x 轴两交点间的距离为2时,求抛物线的解析式.24.(7分)如图,(2014朝阳一模)24.在△ABC中,CA=CB,在△AED中,DA=DE,点D、E分别在CA、AB上,.(1)如图①,若∠ACB=∠ADE=90°,则CD与BE的数量关系是;(2)若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图②所示的位置,则CD与BE的数量关系是;,(3)若∠ACB=∠ADE=2α(0°< α< 90°),将△AED绕点A旋转至如图③所示的位置,探究线段C D与BE的数量关系,并加以证明(用含α的式子表示).A图①A图③A图②25.(8分)已知:如图,抛物线22y ax ax c =-+ (0a ≠)与y 轴交于点C ( 0 ,4) ,与x 轴交于点A ,B ,点A 的坐标为( 4 ,0). (1) 求该抛物线的解析式;(2) 点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ . 当CQE ∆的面积最大时,求点Q 的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2 ,0). 问: 是否存在这样的直线l ,使得ODF ∆是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[九年级数学第十六周周考题]九年级数学
期末考试题
九年级数学第十六周周考题一、选择题 1 .点(—3, 4)
在反比例函数y= kx的图象上,贝卩下列各点中不在此函数图象上的是()A . (—4, 3) B . (3 , —4) C . (2 , —6) D . (—6,—
2) 2 .已知反比例函数y = —2x,下列结论不正确的是()A .图象必经过点(一1, 2) B . y随x的增大而增大C .图象在第二、四象限内 D .若x> 1,则y> — 2 3 .当x>O时,四个函数y =—x,y = 2x + 1,y =—1x,y = 2x,其中y随x的增大而增大的有(
)
A. 1 个B . 2 个C . 3 个D . 4 个4 .已知(x1 , y1), (x2 ,
y2),
(x3 , y3)是反比例函数y= —4x的图象上的三个点,且x1 v x2v0, x3>0,则y1, y2 , y3 的大小关系是()A . y3 v y1v y2 B . y2 v y1 v y3 C . y1 v y2v y3 D . y3v y2v y1 5 .对于函数y = 4x, 下列说法错误的是()A .这个函数的图象位于第一、第三象限
B. 这个函数的图象既是轴对称图形又是中心对称图形
C.当x>0时,
y随x的增大而增大D .当x v0时,y随x的增大而减小6 .在反比例函
数y = k—3x图象的任一支曲线上,y都随x的增大而减小,则k的取值范围是()A . k > 3 B . k > 0 C . k v 3
D. k v 0 7 .在同一直角坐标系中,一次函数y = kx —k与反比例函数y= kx(k工0)的图象大致是()8 .某汽车行驶时的速度
v(米/秒)与它所受的牵引力F(牛)之间的函数关系如图所示.当它所受牵引力为1200牛时,汽车的速度为()A . 180千米/时
B. 144千米/时C . 50千米/时D . 40千米/时9 .反比例函数y1=
(x >0)的图象与一次函数y2=- x+ b的图象交于A,
B两点,其中A(1 ,2).当y2 >y1时,x的取值范围是()A . x v 1 B . 1v x v 2 C . x> 2 D . x v 1 或x > 2 10 .如图,函数y = —x 与函数y= —4x的图象相交于A, B两点,过A, B两点分别作y轴的垂线,垂足分别为点C,D.则四边形ACB啲面积为() A. 2 B . 4 C . 6 D .
8 二、填空题(本大题共6小题,每小题5分,共30分)11 .已知点
P(3,—2)在反比例函数y= (k 工0)的图象上,贝S k= ;
在第四象限内,y随x的增大而__________ .12 .已知反比例函数y
=2a —1x的图象有一支位于第一象限,则常数a的取值范围是
. ____________ 13 .写出一个图象在第二、四象限的反比例函数解析式: ____________ .14 .已知反比例函数y =的图象在
第二、第四象限内,函数图象上有两点A(2, y1),B(5,y2),则y1
与y2的大小关系为y1 ________ y2. 15 .双曲线y=和一次函数y
=ax+ b的图象的两个交点分别为A( —1,—4) , B(2, m),贝S a + 2b =
_____________ .三、解答题16 .已知反比例函数y = kx(k为常
数,k z 0)的图象经过点A(2, 3). (1)求这个函数的解析式;
(2)判断点B( —1, 6) , C(3, 2)是否在这个函数的图象上,并说明
理由;
(3)当—3v x V—1时,求y的取值范围. 17 . (5分)已知y =
y1 + y2,其中y1与3x成反比例,y2与一x2成正比例,且当x= 1时,y= 5;
当x =—1时,y = — 2.求当x = 3时,y的值. 18 . (6分)已知点P(2, 2)在反比例函数y = kx(k工0)的图象上.(1)当x= — 3 时,求y的值;
(2)当1V X V 3时,求y的取值范围. 19 . (7分)已知A
=(a , b z0 且a z b) (1)化简A;
(2)若点P(a , b)在反比例函数y = —5x的图象上,求A的值. 20 .(8分)超超家利用银行贷款购买了某山庄的一套100万元的住房,在交了首期付款后,每年需向银行付款y万元.预计x
年后结清余款,y与x之间的函数关系如图,试根据图象所提供的信息回答下列问题:
(1) 确定y与x之间的函数表达式,并说明超超家交了多少万元首付
款;
(2) 超超家若计划用10年时间结清余款,每年应向银行交付多少万元?(3) 若打算每年付款不超过2万元,超超家至少要多少年才能结清余款?21 .如图,已知反比例函数y = k1x的图象与一次函
数y = k2x + b的图象交于A,B两点,A点横坐标为1,B( —12,—2).求反比例函数和一次函数的解析式;。