杭州市风帆中学数学一元一次方程单元测试卷(含答案解析)
杭州市七年级数学上册第三单元《一元一次方程》检测(含答案解析)

一、选择题1.下面用数学语言叙述代数式1a﹣b ,其中表达正确的是( ) A .a 与b 差的倒数 B .b 与a 的倒数的差 C .a 的倒数与b 的差D .1除以a 与b 的差2.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7 B .﹣1 C .5 D .11 3.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100B .﹣100x 100C .101x 100D .﹣101x 1004.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36 B .40 C .44D .46 5.若 3x m y 3 与﹣2x 2y n 是同类项,则( ) A .m=1,n=1 B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2 6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣97.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( ) A .1B .2C .3D .48.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1B .-1C .2020D .2020-9.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .510.已知多项式()210mx m x +--是二次三项式,m 为常数,则m 的值为( )A .2-B .2C .2±D .3±11.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( ) A .2B .﹣2C .0D .412.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( ) A .1个B .2个C .3个D .4个二、填空题13.已知等式:222 2233+=⨯,233 3388+=⨯,244441515+=⨯,…,2a a1010b b+=⨯(a ,b 均为正整数),则 a b += ___. 14.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.15.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学; 第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.16.将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C 的位置)是4,那么“峰206”中C 的位置的有理数是______.17.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.18.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.19.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)20.在整式:32x y -,98b -,336b y-,0.2,57mn n --,26a b +-中,有_____个单项式,_____个多项式,多项式分别是_______.三、解答题21.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目: 已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值.22.奇奇同学发现按下面的步骤进行运算,所得结果一定能被9整除.请你用我们学过的整式的知识解释这一现象.23.某校利用二维码进行学生学号统一编排.黑色小正方形表示1,白色小正方形表示0,将每一行数字从左到右依次记为a ,b ,c ,d ,那么利用公式 321222a b c d ⨯+⨯+⨯+计算出每一行的数据.第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,第四行表示班级学号的个位数.如图1所示,第一行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作09,第二行数字从左往右依次是1,0,1,0,则表示的数据为1×23+0×22+1×21=10,计作10,以此类推,图1代表的统一学号为091034,表示9年级10班34号.小明所对应的二维码如图2所示,则他的统一学号为________.24.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,通过观察,用你所发现的规律确定22017的个位数字.25.如图,观察下列图形,可得它们是按一定规律排列的,依照此规律,解决下列问题.(1)第5个图形有_______颗五角星,第6个图形有_______颗五角星; (2)第2020个图形有_______颗五角星,第n 个图形有_______颗五角星. 26.若单项式21425m n x y +--与413n mx y +是同类项,求这两个单项式的积【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据代数式的意义,可得答案.【详解】用数学语言叙述代数式1a﹣b为a的倒数与b的差,故选:C.【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.A解析:A【分析】先确定第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;第7次操作,a7=|-7+4|-10=-7;…第2020次操作,a2020=|-7+4|-10=-7.故选:A.【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.3.C解析:C【分析】由单项式的系数,字母x的指数与序数的关系求出第100个单项式为101x100.【详解】由﹣2x,3x2,﹣4x3,5x4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n,字母的指数为n,∴第100个单项式为(﹣1)100(100+1)x100=101x100,故选C.【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.4.A解析:A【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36,故选A.【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键.5.B解析:B【分析】根据同类项是字母相同且相同字母的指数也相,可得答案.【详解】3﹣是同类项,得3m x y和2x y2nm=2,n=3,所以B选项是正确的.【点睛】本题考查了同类项,利用了同类项的定义.6.D解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A.﹣1﹣1=﹣2,故本选项错误;B.2(a﹣3b)=2a﹣6b,故本选项错误;C.a3÷a=a2,故本选项错误;D .﹣32=﹣9,正确; 故选:D . 【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键.7.D解析:D 【分析】根据题意求得a ,b ,c ,d 的值,代入求值即可. 【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4, ∴a ,b ,c ,d 四个数的和是4, 故选:D . 【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数.8.A解析:A 【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案. 【详解】 解:11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=-所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A . 【点睛】本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 9.B解析:B 【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值. 【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4, 解得,n=3, 故选:B. 【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.10.A解析:A 【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可. 【详解】 解:因为多项式()210mxm x +--是二次三项式,∴m-2≠0,|m|=2, 解得m=-2, 故选:A. 【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键.11.A解析:A 【分析】根据题意可以写出这组数据的前几个数,从而发现数字的变化规律,再利用规律求解. 【详解】解:由题意可得,这列数为:0,2,2,0,﹣2,﹣2,0,2,2,…,∴这20个数每6个为一循环,且前6个数的和是:0+2+2+0+(﹣2)+(﹣2)=0, ∵20÷6=3…2,∴这20个数的和是:0×3+(0+2)=2. 故选:A . 【点睛】本题考查了数字的变化规律,正确理解题意,发现题目中数字的变化规律:每6个数重复出现是解题的关键.12.A解析:A 【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦. 【详解】字母可以表示任意数,当a <0时,-a >0,故①错误; 0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误; 若a=1,b=-2,a b >,但是22a b <,故④错误;235x y的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.二、填空题13.【分析】先根据已知代数式归纳出(n 为正整数)然后令n=10求得ab 最后求和即可【详解】解:由已知代数式可归纳出(n 为正整数)令n=10则b=102-1=99a=10∴a+b=10+99=109故答案 解析:109【分析】先根据已知代数式归纳出22211+=⨯--n n n n n n (n 为正整数),然后令n=10,求得a 、b ,最后求和即可. 【详解】解:由已知代数式可归纳出22211+=⨯--n n n n n n (n 为正整数), 令n=10,则b=102-1=99,a=10 ∴a+b=10+99=109.故答案为109. 【点睛】本题考查数字类规律探索,根据已有等式总结出22211+=⨯--n n n n n n 是解答本题的关键.14.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn 的值然后即可得到m+n 的值【详解】解:∵将正偶数按照如下规律进行解析:65 【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值. 【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…, ∴第m 组有m 个连续的偶数, ∵2020=2×1010, ∴2020是第1010个偶数,∵1+2+3+ (44)44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数, ∴m =45,n =20, ∴m +n =65. 故答案为:65. 【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键.15.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7 【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案. 【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌, A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7. 【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.16.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝解析:-1029 【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可. 【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-. 故答案为:1029-. 【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.17.【分析】根据题意可知单项式与是同类项从而可求出m 的值【详解】解:∵若单项式与的差仍是单项式∴这两个单项式是同类项∴m-2=1解得:m=3故答案为:3【点睛】本题考查合并同类项和单项式解题关键是能根据 解析:3【分析】根据题意可知单项式322m x y -与3-x y 是同类项,从而可求出m 的值.【详解】解:∵若单项式322m x y -与3-x y 的差仍是单项式,∴这两个单项式是同类项, ∴m-2=1 解得:m=3. 故答案为:3. 【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3.18.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算. 19.【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图 解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.20.4【分析】根据单项式与多项式的概念即可求出答案【详解】解:单项式有2个:02多项式有4个:【点睛】本题考查单项式与多项式的概念解题的关键是正确理解单项式与多项式之间的联系本题属于基础题型解析:4 32x y -、336b y -、57mn n --、26a b +- 【分析】 根据单项式与多项式的概念即可求出答案.【详解】解:单项式有2个:98b -,0.2,,多项式有4个:32x y -,336b y -,57mn n --26a b +- 【点睛】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型. 三、解答题21.见解析,7.【解析】试题分析:注意观察等号两边的变化,等号右边添加了括号,然后观察符号的变化即可;根据已知条件将要求的式子通过添括号进行变形,然后再代入求值即可.试题添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.∵a 2+b 2=5,1-b =-2,∴-1+a 2+b +b 2=(a 2+b 2)-(1-b)=5-(-2)=7.【点睛】本题是阅读理解题,主要是通过阅读发现添括号时符号的变化规律,解题的关键是要注意符号的变化问题.22.见解析.【分析】设原来的两位数十位数字为a ,个位数字为b ,表示出原来两位数与新的两位数,相减得到结果,即可得出结果.【详解】解:设原来的两位数十位数字为a ,个位数字为b ,则原来两位数为10a+b ,交换后的新两位数为10b+a ,(10a+b )-(10b+a )=10a+b-10b-a=9a-9b=9(a-b ),则这个结果一定是被9整除.【点睛】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键. 23.070629【分析】利用公式求出图2中每行表示的数据,将其组合起来即可得出结论.【详解】解:∵第一行:0×23+1×22+1×21+1=7,计作07,第二行:0×23+1×22+1×21+0=6,计作06,第三行:0×23+0×22+1×21+0=2,计作2,第四行:1×23+0×22+0×21+1=9,计作9,∴他的统一学号为070629.故答案为:070629.【点睛】本题考查了规律型:图形的变化类以及尾数特征,读懂题意,利用公式求出图2中每行表示的数据是解题的关键.24.22017的个位数字是2.【分析】根据已知的等式观察得到规律:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n为自然数),每四个一循环,由此得到答案.【详解】观察可知:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n为自然数),每四个一循环,∵22017=450412⨯+,∴22017的个位数字是2.【点睛】此题考查数字的规律,有理数乘方计算的实际应用,观察已知中等式的特点总结规律,并运用规律解答问题是解题的关键.n+.25.(1)16,19;(2)6061,31【分析】(1)将每一个图案分成两部分,最下面位置处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第5、6个图形中★的个数;(2)利用(1)中所得规律可得.【详解】解:(1)观察发现,+=,第1个图形★的颗数是134+⨯=,第2个图形★的颗数是1327+⨯=,第3个图形★的颗数是13310+⨯=,第4个图形★的颗数是13413+⨯=,所以第5个图形★的颗数是13516+⨯=.第6个图形★的颗数是13619故答案为:16,19.+⨯=,(2)由(1)知,第2020个图形★的颗数是1320206061n+.第n个图形★的颗数是31n+.故答案为:6061,31【点睛】本题考查了图形变化规律的问题,把★分成两部分进行考虑,并找出第n 个图形★的个数的表达式是解题的关键.26.10453x y - 【分析】根据题意,可得到关于m ,n 的二元一次方程组,求出m ,n 的值,即可求得答案.【详解】∵单项式21425m n x y +--与413n m x y +是同类项, ∴21442m n n m+=+⎧⎨-=⎩, 解得21m n =⎧⎨=⎩, ∴21425252441011355533n m m n x y x y x y x y x y ++--⋅-⋅=-= 【点睛】本题主要考查同类项的定义和单项式乘单项式的法则,根据同类项的定义,列出关于m ,n 的二元一次方程组,是解题的关键.。
杭州市风帆中学必修第一册第二单元《一元一次函数,方程和不等式》检测题(答案解析)

一、选择题1.若对(0,)t ∀∈+∞,都有22(1)3x t x t+<+成立,则x 的取值范围是( ) A .()2,6-B .(,3)(2,6)-∞--C .(,3)(2,)-∞-⋃-+∞D .(,3)(2,)-∞-⋃-+∞2.已知函数22(0)y ax bx c a =+->的图象与x 轴交于()2,0A 、()6,0B 两点,则不等式220cx bx a +-< 的解集为( ) A .(6,2)--B .11,,62⎛⎫⎛⎫-∞+∞ ⎪⎪⎝⎭⎝⎭C .11,26--⎛⎫⎪⎝⎭D .11,,26⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭3.已知0a >,0b >,且1a b +=,则14a b+的最小值为( ) A .9 B .8C .7D .64.当104x <<时,不等式11014m x x+-≥-恒成立,则实数m 的最大值为( ) A .7B .8C .9D .105.已知不等式20ax bx c ++>的解集是{}41x x -<<,则不等式2(1)(3)0b x a x c -+++>的解集为( )A .{}14x x -<< B .413x x ⎧⎫-<<⎨⎬⎩⎭C .413x x x⎧⎫⎨⎬⎩⎭或 D .{}21x x x -或6.已知2x >,那么函数42y x x =+-的最小值是( ) A .5B .6C .4D .87.若,a b 为实数,且2a b +=,且33a b +的最小值为( )A .18B .6C .D .8.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2463450x x -+<成立的x 的取值范围是( ) A .[)1,15B .[]2,8C .[)2,8D .[)2,15 9.下列命题中是真命题的是( )A .y =的最小值为2;B .当a >0,b >0时,114a b++; C .若a 2+b 2=2,则a +b 的最大值为2;D .若正数a ,b 满足2,a b +=则11+4+22a b +的最小值为12.10.已知1x >,0y >,且1211x y+=-,则2x y +的最小值为( )A .9B .10C .11D .7+11.已知正实数,x y 满足3x y +=,则41x y+的最小值( ) A .2B .3C .4D .10312.已知,a b R +∈,2229ab b a b +++=,则+a b 的最小值( ) A .1B .2C .52D .3二、填空题13.已知正实数a ,b 满足21ab a b ++=,则188a b a b+++的取值范围为_________. 14.已知函数()f x =的定义域为R ,则实数m 的取值范围是________.15.已知函数()()2,f x x ax b a b R =++∈的值域为[)0,+∞,若关于x 的不等式()f x c <的解集为(),6m m +,则实数c 的值为________.16.设x >0,y >0,x +2y =4,则(4)(2)x y xy++的最小值为_________.17.某企业开发一种产品,生产这种产品的年固定成本为3600万元,每生产x 千件,需投入成本c (x )万元,c (x )=x 2+10x .若该产品每千件定价a 万元,为保证生产该产品不亏损,则a 的最小值为_____.18.若不等式256x xt <--对于1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,则实数t 的取值范围是______.19.已知向量()2,1a y =-,(),3b x =,且a b ⊥,若x ,y 均为正数,则32x y+的最小值是______.20.在ABC 中,角,,A B C 所对的边分别为,,a b c ,120,ABC ABC ∠=︒∠的平分线交AC 于点D ,且1BD =,则9a c +的最小值为________.参考答案三、解答题21.已知2,()23a f x ax x ∈=+-R .(Ⅰ)关于x 的方程()0f x =有且只有正根,求实数a 的取值范围; (Ⅱ)若()30f x a -≥对[1,0]a ∈-恒成立,求实数x 的取值范围.22.解关于x 的不等式:22(2)20().ax a x a a R -++>∈23.已知函数()()221f x ax a x b =-++-.(1)若2a =-,9b =,求函数()()0f x y x x=<的最小值; (2)若1b =-,解关于x 的不等式()0f x ≥.24.(1)已知01x <<,求函数()(33)f x x x =-的最大值: (2)已知关于x 的不等式210ax bx a +-<的解集为122x x ⎧⎫-<<⎨⎬⎩⎭,求a ,b 的值.25.解关于x 的不等式:()2220ax x ax a -≥-<.26.设矩形()ABCD AD AB >的周长为20,把ADC 沿AC 向ABC 折叠AD 折过去后交BC 于点P .设AD x =,求ABP △的最大面积及相应x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先利用基本不等式得到2(1)4t t +≥,再根据题意得到243x x <+,解不等式即可.【详解】令()2(1)t t tf +=,()0,t ∈+∞,()2)2(11t t f t t t==+++,因为()0,t ∈+∞,所以()1224f t t t=++≥=, 当1t t=即1t =时取等号,又因为(0,)t ∀∈+∞,都有22(1)3x t x t +<+,所以243x x <+即可.由243x x <+得()243033x x x x +-<++,即241203x x x --<+, ()()241230xx x --+<,所以()()()6230x x x -++<,解得3x <-或26x -<<. 故选:B. 【点睛】易错点点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.D解析:D 【分析】利用函数图象与x 的交点,可知()2200ax bx c a +-=>的两个根分别为12x =或26x =,再利用根与系数的关系,转化为4b a =-,12c a =-,最后代入不等式220cx bx a +-<,求解集.【详解】由条件可知()2200ax bx c a +-=>的两个根分别为12x =或26x =,则226b a +=-,26ca⨯=-,得4b a =-,12c a =-, 22201280cx bx a ax ax a ∴+-<⇔---<,整理为:()()21281021610x x x x ++>⇔++>, 解得:16x >-或12x <-, 所以不等式的解集是11,,26⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭. 故选:D【点睛】思路点睛:本题的关键是利用根与系数的关系表示4b a =-,12c a =-,再代入不等式220cx bx a +-<化简后就容易求解.3.A解析:A 【分析】利用“1”的代换,转化()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭,结合基本不等式即可得解. 【详解】1a b +=,0a >,0b >()1414455549b a a b a b a b a b ⎛⎫+++=++≥+=+= ⎪⎝⎭∴=, 当且仅当4b a a b =,即13a =,23b =时,等号成立. 14a b ∴+的最小值为9 故选:A. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.C解析:C 【分析】 分离参数化为41414m x x≤+-恒成立,再利用基本不等式求出不等式右边的最小值即可得解. 【详解】不等式11014m x x+-≥-恒成立化为41414m x x ≤+-恒成立, 因为104x <<,所以140x ->,所以()4141414414414x x x x x x ⎛⎫+=+-+ ⎪--⎝⎭44(14)5144x x x x -=++-5≥+549=+=,当且仅当44(14)144x x x x -=-,即16x =时,等号成立.所以9m ≤,所以m 的最大值为9. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方5.B解析:B 【分析】根据不等式的解集与对应的方程根的关系的关系求得3,4b a c a ==-且0a <,化简不等式为2340x x +-<,结合一元二次不等式的解法,即可求解. 【详解】由题意,不等式20ax bx c ++>的解集是{}41x x -<<, 可得4x =-和1x =是方程20ax bx c ++=的两根,且0a <,所以4141b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,可得3,4b a c a ==-,所以不等式2(1)(3)0b x a x c -+++>可化为23(1)(3)40a x a x a -++->, 因为0a <,所以不等式等价于23(1)(3)40x x -++-<, 即234(1)(34)0x x x x +-=-+<,解得413x -<<, 即不等式2(1)(3)0b x a x c -+++>的解集为413x x ⎧⎫-<<⎨⎬⎩⎭. 故选:B. 【点睛】解答中注意解一元二次不等式的步骤:(1)变:把不等式变形为二次项系数大于零的标准形式; (2)判:计算对应方程的判别式;(3)求出对应的一元二次方程的根,或根据判别式说明方程有没有实根; (4)利用“大于取两边,小于取中间”写出不等式的解集.6.B解析:B 【分析】根据基本不等式可求得最小值. 【详解】∵2x >,∴442+24+2622y x x x x =+=+-≥==--,当且仅当422x x =--,即4x =时等号成立.∴y 的最小值是6. 故选:B . 【点睛】本题考查用基本不等式求最值,利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.7.B解析:B 【分析】根据基本不等式可知33a b +≥,结合条件求解出33a b +的最小值. 【详解】因为233236a b a b ++≥=⋅=,取等号时1a b ==,所以33a b +的最小值为6, 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.8.A解析:A 【分析】先由不等式[][]2463450x x -+<得出[]x 的取值范围,再由[]x 的定义得出x 的取值范围. 【详解】不等式[][]2463450x x -+<即为[]()[]()43150x x --<,解得[]3154x <<, 则[]{}1,2,3,,14x ∈,因此,115x ≤<,故选A.【点睛】本题考查一元二次不等式的解法,同时也考查了取整函数的定义,解题的关键要结合不等式得出[]x 的取值,考查计算能力,属于中等题.9.B解析:BCD 【分析】利用基本不等式分别判断A 、B 、D 选项,C选项可设,a b αα==,利用三角函数的值域求范围. 【详解】 A 选项,222x +≥0>,∴2y =≥==,即221x +=±时成立,又222x ≥+,故A 错;B 选项,当a >0,b >0时,1124a b +++≥⨯=,当且仅当1a b =⎧=,即1a b ==时等号成立,B 正确;C选项,设,a b αα==,则2sin 24a b πααα⎛⎫+==+≤ ⎪⎝⎭,C 正确;D 选项,2a b +=,()212192a b ⎡⎤⎛⎫∴+++= ⎪⎢⎥⎝⎭⎣⎦, 则()121252229291111++4+22442+2242a b a b a b a b a b ⎛⎫+ ⎪⎡⎤+⎛⎫⎛⎫+++=⨯++ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝=+⎣+⎭⎦ ⎪⎝⎭251942⎛ ≥⨯+= ⎝⎭,当且仅当122422a b a b ++=++且2a b +=时等号成立,解得1a b ==,故D 正确. 故选:BCD 【点睛】本题考查基本不等式的应用、利用三角函数的值域求范围,注意取等号的条件,属于中档题.10.B解析:B 【分析】利用“乘1法”将问题转化为求[]12(1)211x y x y ⎛⎫-+++ ⎪-⎝⎭的最小值,然后展开利用基本不等式求解. 【详解】1x >,10x ->,又0y >,且1211x y+=-, 2(1)21x y x y ∴+=-++[]12(1)211x y x y ⎛⎫=-+++ ⎪-⎝⎭22(1)61y x x y-=++- 262x +-10=, 当且仅当22(1)1y x x y-=-,解得4x =,3y =时等号成立, 故2x y +的最小值为10. 故选:B . 【点睛】本题考查利用基本不等式求最和的最值,考查“1”的巧妙运用,难度一般,灵活转化是关键.11.B解析:B 【详解】()41141144133y x x y x y x y x y ⎛⎫⎛⎫+=++=+++ ⎪ ⎪⎝⎭⎝⎭1533⎛≥+= ⎝, 当且仅当4y x x y =,即21x y ==,,时41x y+的最小值为3. 故选B.点睛:本题主要考查基本不等式.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.12.C解析:C 【分析】令z a b =+,得a z b =-,代入2229ab b a b +++=,化简后利用判别式列不等式,解不等式求得+a b 的最小值. 【详解】令z a b =+,得a z b =-,代入2229ab b a b +++=并化简得()212290b z b z +--+=,关于b 的一元二次方程有正解,所以首先()()2124290z z ∆=---+≥, 即()()27250z z +-≥,由于,a b 是正实数,所以250z -≥,即52z ≥,也即+a b 的最小值为52. 此时对称轴1221120222z z z ---==-≥>,所以关于b 的一元二次方程()212290b z b z +--+=有正解,符合题意.故选:C 【点睛】本小题主要考查判别式法求最值,考查一元二次不等式的解法,属于中档题.二、填空题13.【分析】先根据正实数ab 满足找到ab 的关系及ab 的范围然后把通换元法转化为函数求值域【详解】由得∴且∵∴∴∴则令则在上递减(因为)∴令则∴=在上单增∴故答案为:(69)【点睛】利用基本不等式求最值时 解析:()6,9【分析】先根据正实数a ,b 满足21ab a b ++=找到a ,b 的关系及a ,b 的范围,然后把188a b a b+++通换元法转化为函数求值域. 【详解】 由21ab a b ++=得21ab a b ++=,∴121a b a -=+,且(1)(2)3a b ++=. ∵0,0a b >>,∴120a ->,∴12a <∴102a <<. 则3321311a b a a a a +=+-=++-++, 令31,1,2u a u ⎛⎫=+∈ ⎪⎝⎭则33a b u u+=+-在31,2⎛⎫ ⎪⎝⎭上递减,(因为32<), ∴112a b ⎛⎫+∈ ⎪⎝⎭,. 令=+t a b ,则112t ⎛⎫∈ ⎪⎝⎭,, ∴188a b a b +++=18t t +在112⎛⎫ ⎪⎝⎭,上单增, ∴()1886,9a b a b++∈+. 故答案为:(6,9).【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正二定三相等”(1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.14.【分析】因为函数的定义域为即不等式恒成立需按二次项系数:为零与不为零分类讨论当系数不为零时只需让系数大于零且根的判别式小于零解此不等式组即可求出的取值范围【详解】∵函数的定义域为∴对于任意恒有①若则 解析:2(,)[2,)3-∞⋃+∞ 【分析】因为函数的定义域为R ,即不等式22(32)(2)10m m x m x -++-+>恒成立,需按二次项系数:232m m -+为零与不为零,分类讨论,当系数不为零时,只需让系数大于零且根的判别式小于零,解此不等式组,即可求出m 的取值范围.【详解】∵ 函数()f x 的定义域为R ,∴ 对于任意x ∈R ,恒有22(32)(2)10m m x m x -++-+>,① 若2320m m -+=,则2m =或1,当1m =时,不等式即为101x x -+>⇒<,不符合题意,当2m =时,不等式即为10>,符合题意,∴ 2m =符合题意;② 若2320m m -+≠,由题意得()22232024(32)0m m m m m ⎧-+>⎪⎨∆=---+<⎪⎩, 解得:2m >或23m <; 综上可得,m 的取值范围是2m ≥或23m <. 故答案为:2(,)[2,)3-∞⋃+∞.【点睛】关键点睛:本题主要考查二次不等式的恒成立问题.讨论二次项系数为零与不为零,当系数不为零时,只需让系数大于零且根的判别式小于零是解决本题的关键. 15.【分析】由题意可得然后求出不等式的解结合已知条件可得出关于的方程进而可求得的值【详解】由题意知因为函数的值域为所以可得由可知且有解得所以所以解得故答案为:【点睛】利用一元二次不等式的解集求参数一般转 解析:9【分析】 由题意可得24a b =,然后求出不等式()f x c <的解,结合已知条件可得出关于c 的方程,进而可求得c 的值.【详解】由题意知()22224a a f x x ax b x b ⎛⎫=++=++- ⎪⎝⎭,因为函数()f x 的值域为[)0,+∞,所以,204a b -=,可得24a b =,由()f x c <可知0c >,且有22a x c ⎛⎫+< ⎪⎝⎭,解得22a a x -<<-+,所以,2a m =-,62a m +=-所以,()66m m =+-=9c =.故答案为:9.【点睛】利用一元二次不等式的解集求参数,一般转化为解集的端点值为对应的一元二次方程的根,可以利用韦达定理或者利用代入法求解.16.9【分析】将分式展开利用基本不等式求解即可【详解】又x +2y =4即当且仅当等号成立故原式故填9【点睛】本题考查基本不等式求最值考查等价变换思想与求解能力注意等号成立条件解析:9【分析】将分式展开,利用基本不等式求解即可【详解】(4)(2)82416161x y xy x y xy xy xy xy xy++++++===+又x +2y =4≥即2xy ≤,当且仅当2,1x y ==等号成立,故原式9≥ 故填9【点睛】本题考查基本不等式求最值,考查等价变换思想与求解能力,注意等号成立条件 17.130【分析】本题先根据题意建立函数与不等式关系再运用参变分离化简最后运用基本不等式求最值即可【详解】解:有题意建立利润函数关系:()整理得:为保证生产该产品不亏损则()即当且仅当即取最小值130此 解析:130【分析】本题先根据题意建立函数与不等式关系,再运用参变分离化简,最后运用基本不等式求最值即可.【详解】解:有题意建立利润函数关系:2()(103600)f x ax x x =-++,(0x >) 整理得:2()(10)3600f x x a x =-+--,为保证生产该产品不亏损,则2()(10)36000f x x a x =-+--≥,(0x >)即36001010130a x x ≥++≥=, 当且仅当3600x x=即60x =,a 取最小值130,此时产品不亏损 故答案为:130.【点睛】 本题考查函数与不等式关系、参变分离法,基本不等式解决实际问题中的最值问题,是基础题.18.【分析】整理已知条件得到对于恒成立利用二次函数的特点求解范围即可【详解】由得则对于恒成立令则;令则;综上:故答案为:【点睛】本题主要考查了绝对值不等式和一元二次不等式属于中档题 解析:57,22⎛⎫ ⎪⎝⎭【分析】整理已知条件得到2211010x xt x xt ⎧+-<⎨-+<⎩对于1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,利用二次函数的特点求解范围即可.【详解】 由256x xt <--, 得22265565xt x x xt x -<-⇒-<-<-, 则2211010x xt x xt ⎧+-<⎨-+<⎩对于1,22x ⎡∈⎤⎢⎥⎣⎦恒成立, 令()211f x x xt =+-, 则()431072272202t f t t f ⎧⎧⎛⎫<⎪<⎪⎪ ⎪⇒⇒<⎝⎭⎨⎨⎪⎪<<⎩⎪⎩; 令()21g x x xt =-+, 则()51052252202t g t t g ⎧⎧⎛⎫>⎪<⎪⎪ ⎪⇒⇒>⎝⎭⎨⎨⎪⎪><⎩⎪⎩; 综上:5722t <<. 故答案为:57,22⎛⎫⎪⎝⎭.【点睛】本题主要考查了绝对值不等式和一元二次不等式.属于中档题.19.8【分析】由题意利用两个向量垂直的性质基本不等式求得的最大值可得要求式子的最小值【详解】解:向量且若均为正数则当且仅当时取等号则故答案为:8【点睛】本题主要考查两个向量垂直的性质基本不等式的应用属于 解析:8【分析】由题意利用两个向量垂直的性质,基本不等式,求得xy 的最大值,可得要求式子的最小值.【详解】 解:向量(2,1)a y =-,(,3)b x =,且a b ⊥,∴23(1)0a b x y =+-=.若x ,y 均为正数,则23326x y xy +=,38xy∴,当且仅当3232x y ==时,取等号. 则32233838y x x y xy ++==,故答案为:8.【点睛】本题主要考查两个向量垂直的性质,基本不等式的应用,属于中档题.20.【分析】先根据三角形面积关系列等量关系再根据基本不等式求最值【详解】因为所以因此当且仅当即时取等号即的最小值为故答案为:【点睛】本题考查三角形面积公式利用基本不等式求最值考查综合分析求解能力属中档题 解析:16【分析】先根据三角形面积关系列,a c 等量关系,再根据基本不等式求最值.【详解】 因为ABC ABD BDC SS S =+, 所以11111sin1201sin 601sin 601222ac ac a c=⨯⨯+⨯⨯∴+= 因此1199(9)()101016c a a c a c a c a c +=++=++≥+= 当且仅当911,1c a a c a c =+=即44,3a c ==时取等号 即9a c +的最小值为16故答案为:16【点睛】本题考查三角形面积公式、利用基本不等式求最值,考查综合分析求解能力,属中档题.三、解答题21.无22.无23.无24.无25.无26.无。
2019-2020浙教版初中数学七年级上册《一元一次方程》专项测试(含答案) (2)

浙教版初中数学试卷2019-2020年七年级数学上册《一元一次方程》精选试题学校:__________一、选择题1.(2分)若方程233mx x -=+的解满足10x -=,则m 的值是( ) A .-6B . -8C .-6或-12D .任何数2.(2分)23,33和43分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,63也能按此规律进行“分裂”,则63“分裂”出的奇数中最大的是( ) A .41 B .39 C .31 D .293.(2分)一件标价为600元的上衣,按8折(即按标价的80%)销售仍可获利20元.设这件上衣的成本价为x 元,根据题意,下面所列方程正确的是( ) A .6000.820x ⨯-= B .600820x ⨯-= C .6000.820x ⨯=- D .600820x ⨯=- 4.(2分)若1x =是方程20x a -=的根,则a =( ) A .1B .1-C .2D .2-5.(2分)某市按以下标准收取水费:用小不超过20吨,按每吨1.2元收费,超过20吨,则超过部分按每吨1.5元收费.某家庭五月份的水费是平均每吨1.25元,那么这个家庭五月份应交水费( ) A .20元B .24元C .30元D .36元6.(2分)若x=2是方程k (2x-1)=kx+7 的解,则k 的值为( ) A .1B .-1C .7D .-77.(2分)在公式2012S v at +=中,已知 S=13,4t =,18a =,求0v ( ) 8.(2分)某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过l00元但不超过300元一律九折;③一次性购物超过300元一律八折,王波两次购物分别付款80元、252元.若王波一次性购买与上两次相同的商品,则应付款 ( )A .288元B .288元或316元C .332元D .332元或363元9.(2分)设某数为x ,“比某数的12大3的数等于5的相反数”,列方程为 ( ) A .1352x -+=- B .1352x +=-C .1(3)52x -+=D .1352x -=-二、填空题10.(2分)已知某个一元一次方程的解为 2,请写出这个一元一次方程 . 11.(2分)已知代数式x 2-mx-5,当x=2时的值是3,则当x=-2时的值为 .12.(2分)某校七(1)班学生为“希望工程”捐款,每人平均2元还多35元,共捐得131元.设这个班的学生有n 人,根据题意,可列方程为 . 13.(2分)在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立.则第一个方格内的数是___________.14.(2分)一件工作,甲独做要 3 h 完成,乙独做要5 h 完成,若两人合作完成这件工作的45,则需要 h 完成. 15.(2分)用直径为200 mm 的圆钢锻造长、宽、高分别为300 mm 、300 mm 、100 mm 的长方体零件,应截取圆钢多长?设需直径为200 mm 的圆钢x(mm)长,则根据题意所列方程为 . 16.(2分)要使式子13x -与式子32x -的值相等,则x = .17.(2分)一个班共有44人,全部报名参加了学校组织的兴趣活动小组,参加数学兴趣活动小组的有38人,参加物理兴趣活动小组的有35人,则既参加数学兴趣活动小组又参加物理兴趣活动小组的有 人.18.(2分)将3,5x-2,13x-两两用等号连结,可组成 个一元一次方程,它们分别是 .三、解答题19.(7分)已知关于x 的方程2x 132k x kx ---=-与方程3(2)45x x -=-同解,求k 的值.20.(7分)一个底面半径为4cm,高为10cm的圆柱形烧杯中装满水.把烧杯中的水倒入底面半径为1cm的圆柱形试管中,刚好倒满8根试管,求每根试管的高为多少cm?设试管的高为xcm,则有π×42×10=8×π×12×x , 解得 x=2021.(7分)学校周末组织一次知识问答有奖竞赛,甲、乙两队参加比赛,比赛规则规定:①甲、乙两队各答难度相同的25道题;②每答对l道题得4分;③答错或不答都倒扣1分.比赛结果是甲队以85分获胜,乙队仅得65分.问:甲队答对几道、答错几道?乙队答对几道,答错几道?22.(7分)一辆卡车从甲地匀速开往乙地,出发2 h后,一辆轿车从甲地去追这辆卡车.轿车的速度比卡车的速度快30 km/h,但轿车行驶1 h后突遇故障,修理l5 min后,又上路追这辆卡车,但速度减小了13,结果又用2 h才追上这辆卡车,求卡车的速度.23.(7分)解下列方程:(1)0.511 0.20.3x x+-=(2)0.40.950.030.020.520.03x x x+-+-=24.(7分)解下列方程:(1)317 52 x x-+=(2)1017201 73x x--=(3)2211 632x x x-+--=+25.(7分)王老师利用假期带领团员同学到农村搞社会调查,每张车票原价是 50 元,甲车主说乘我的车可以 8折优惠;乙车主说乘我的车学生 9 折,老师不买票. 王老师心里计算了一下,觉得不论坐谁的车,花费都一样,请问:王老师一共带了多少名学生?26.(7分)已知方程141[()](1)234x x m mx--=-的解是x=4,求m的值.5 4 -27.(7分)小马虎解一元一次方程11(32)152x x--=,解法如下:解:先去括号:131 52x x-+=再移项:131 52 x x+=-合并同类项:61 52 x=-化系数为 1 得:512 x=-问:你认为小马虎解得对吗?若不对,请说明你是怎样检查出来的,并写出正确的解.28.(7分)芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算, 5月份小明家将多支付电费多少元?29.(7分)利用等式的性质解下列方程,并写出检验过程.(1)9x=8x-6(2)253 3x-=(3)11 232 x+=30.(7分)解下列方程(1)1.510.530.6x x--=(2)0.180.21 0.20.03x x--=【参考答案】***试卷处理标记,请不要删除一、选择题1.C2.A3.A4.C5.C6.C 7.38.B 9.B二、填空题10.答案不唯一,如2x 31-= 11.-5 12.2n+35=131 13.314.3215.22200300100()2x π⨯= 16.16 17.2918.3;523x -=,133x -=,5213xx -=-三、解答题19.解方程3(2)45x x -=-,得1x =-,把1x =-代入方程2132x k x kx ---=-, 得21232k k-----=-,解得11k =- 20.21.甲队答对22道,答错3道;乙队答对l8道,答错7道 22.24 km/h 23.(1)1310x =(2)9x = 24.(1)x=37 (2)1417x = (3)94x =-25.826.54-27.错误. 检查方法:先把512x =-代入原方程,发现左边≠右边,说明512x =-不是原方程的根. 再看步骤,发现移项时,“32-”从左边移到右边时没有改变符号.正确的解:2512x =28.解:(1)设原销售电价为每千瓦时x 元,根据题意得:40(0.03)60(0.25)42.73x x ⨯++⨯-=,40 1.2601542.73x x ++-=10042.7313.8x =+,0.5653x =.∴当0.5653x =时,0.030.5953x +=;0.250.3153x -=.答:小明家该月支付平段电价为每千瓦时0.5953元、谷段电价每千瓦时0.3153元. (2) 1000.565342.7313.8⨯-=(元)答::如不使用分时电价结算,小明家5月份将多支付13.8元. 29.(1)6x =-检验略 (2)x =12 (3)13x =30.(1)57x =- (2)35x =。
杭州市风帆中学七年级数学上册第三单元《一元一次方程》知识点(含答案解析)

一、选择题1.在《九章算术》方田章“圆田术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种无限与有限的转化的思想,比如在234111112222+++++…中,“…”代表按规律不断求和,设234111112222x +++++⋅⋅⋅=.则有112x x =+,解得2x =,故2341111122222+++++⋅⋅⋅=.类似地2461111333++++⋅⋅⋅的结果为( ) A .43 B .98 C .65 D .22.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++ C .2(1)43x x -=-+ D .2(1)4(3)x x -=-+3.新制作的渗水防滑地板是形状完全相同的长方形.如图,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150cm ,那么一块渗水防滑地板的面积是( ).A .2450cmB .2600cmC .2900cmD .21350cm 4.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0 B .2 C .﹣2 D .﹣65.下列变形中,正确的是( )A .2x +6=0变形为2x =6B .x+32=2+x 变形为x +3=4+2xC .−2(x −4)=2变形为x −4=1D .−x+12=12变形为−x +1=16.下列变形不正确的是( )A .由2x-3=5得:2x=8B .由-23x=2得:x=-3C .由2x=5得:x=25D .由x+5 =3x-2得:7=2x 7.下列方程中,其解为﹣1的方程是( ) A .2y=﹣1+y B .3﹣y=2 C .x ﹣4=3 D .﹣2x ﹣2=48.关于y 的方程331y k +=与350y +=的解相同,则k 的值为( )A .-2B .34C .2D .43- 9.下列说法正确的是( ) A .若a c =b c ,则a=b B .若-12x=4y ,则x=-2y C .若ax=bx ,则a=bD .若a 2=b 2,则a=b 10.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- 11.宜宾某机械厂加工车间有34名工人,平均每名工人每天加工小齿轮20个或大齿轮15个.已知3个小齿轮和2个大齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天生产的齿轮刚好配套?若设加工小齿轮的工人有x 名,则可列方程为( ) A .2015(34)x x =-B .220315(34)x x ⨯=⨯-C .320215(34)x x ⨯=⨯-D .320(34)215x x ⨯-=⨯ 12.佳佳的压岁钱由爸爸存入某村镇银行,当年年利率为1.5%,一年后取出时得到本息和为4060元,则佳佳的压岁钱是( )A .2060元B .3500元C .4000元D .4100元 13.下列方程的变形,符合等式的性质的是( )A .由2x ﹣3=7,得2x=7﹣3B .由3x ﹣2=x+1,得3x ﹣x=1﹣2C .由﹣2x=5,得x=﹣3D .由﹣13x=1,得x=﹣3 14.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( )A .m>n>kB .n>k>mC .k>m>nD .m> k> n 15.甲、乙两个工程队,甲队32人,乙队28人,现在从乙队抽调x 人到甲队,使甲队人数为乙队人数的2倍.则根据题意列出的方程是( )A .32+x =2(28−x)B .32−x =2(28−x)C .32+x =2(28+x)D .2(32+x)=28−x二、填空题16.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有______________幅.17.某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y 的值等于______.18.购买某原料有如下优惠方案:①一次性购买金额不超过1万元不享受优惠;②一次性购买金额超过1万元但不超过3万元给予9折优惠;③一次性购买金额超过3万元,其中3万元给予9折优惠,超过部分给予7折优惠.(1)若某人购该原料付款9900元,则他购买的原料原价是________元;(2)某人分两次购买该原料,第1次付款8000元,第2次付款25200元,若他一次性购买同样数量的原料,可比分两次购买少付________元.19.当3x =时,式子22x +与5x k +的值相等,则k 的值是______.20.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券,也不得找零. 小明只购物买了单价别为60元,80元和120元的物品各一件,使用购物券后,他的实际花费为_________元.21.在方程1322x -=-的两边同时_________,得x =__________. 22.完成下列的解题过程: 用两种方法解方程:11(31)1(3)43x x -=-+. (1)解法一:去分母,得______________.去括号,得_________________.移项、合并同类项,得________________.系数化为1,得_____________.(2)解法二:去括号,得______________.去分母,得________________.移项、合并同类项,得____________.系数化为1,得_______________. 23.方程3622y y y -+=,左边合并同类项后,得____________. 24.如果ma mb =,那么下列等式一定成立的是_______. ①a b =;②66ma mb -=-;③1122ma mb -=-;④88ma mb +=+;⑤3131ma mb -=-;⑥33ma mb -=+.25.一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.26.若关于x 的方程3x m -2-m =0是一元一次方程,则m =________,方程的解为________.三、解答题27.甲、乙两人骑自行车分别从相距36km 的两地匀速同向而行,如果甲比乙先出发半小时,那么在乙出发后经3小时甲追上乙;如果乙比甲先出发1小时,那么在甲出发后经5小时甲才能追上乙.请问:甲、乙两人骑自行车每小时各行多少千米?28.解方程:32122234x x ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦. 29.运用等式的性质解下列方程:(1)112x +=; (2)212x -=;(3)185x =-;(4)3212x x =+;(5)352x -=(需检验); (6)2153x +=-(需检验); (7)23257m m -=(需检验) 30.某市百货商店元月1日搞促销活动,购物不超200元不予优惠;购物超过200元而不足500元的按全价的90%优惠;超过500元,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元.问:(1)列方程求出此人两次购物若其物品不打折共值多少钱?(2)若此人将这两次购物合为一次购买是否更节省?为什么?。
2019年秋浙教版初中数学七年级上册《一元一次方程》单元测试(含答案) (284)

浙教版初中数学试卷2019-2020年七年级数学上册《一元一次方程》精选试题学校:__________一、选择题1.(2分)规定运算|a b ad bc c d =−,若22178632x x −−=+,则x 的值是( ) A . -60 B . 4.8 C .24 D .-122.(2分)已知当1a =,2b =−时,代数式10ab bc ca ++=,则c 的值为( )A . 12B . 6C .-6D . -123.(2分)已知关于x 的方程3x +2a =2的解是a -1,则a 的值是( )A .1B .53C .51D .-14.(2分)小岚与小律现在的年龄分别为 x 岁、y 岁,且x 、y 的关系式为3(2)x y +=.下列关于两人年龄的叙述正确的是( )A .两年后,小律年龄是小岚年龄的 3倍B .小岚现在年龄是小律两年后年龄的 3倍C .小律现在年龄是小岚两年后年龄的 3倍D .两年前,小岚年龄是小律年龄的 3 倍5.(2分)一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元,设这件商品的成本价为x 元,根据题意,下面所列的方程正确的是 ( )A .x ·40%×80%=240B .x (1+40%)×80%=240C .240×40%×80%=xD .x ·40%=240×80%6.(2分)随着计算机技术的迅速发展,电脑价格不断降低,某品牌电脑按原售价降低m 元后,又降20%,现售价为n 元,那么该电脑的原售价为( )A .(45n m +)元B .(54n m +)元C .(5m n +)元D .(5n m +)元7.(2分)800 m 跑道上有两人在练长跑,甲的速度为320 m /min ,乙的速度为280 m /min ,两人同时同地同向出发t (min )后,甲、乙两人第一次相遇,则t 等于( )A .10 minB .15 minC .20 minD .30 min8.(2分) 解方程45(30)754x −=,较简便的是( ) A .先去分母 B .先去括号 C .先两边都除以45 D .先两边都乘以549.(2分)方程2-3y=8的解是( )A .12y =−B .12y =C .2y =−D .y=2二、填空题10.(2分)当a = 时,关于x 的方程22x 146x a +−−=的解是0. 11.(2分)某中学组织七年级同学春游,如果租用 45 座客车若干辆,则有 15 人没有座位;如果 租用同样数量的 60 座客车,则多出一辆车,其余车辆恰好坐满,则租用的客车有 辆.12.(2分)根据条件“x 的 2倍与-9 的差等于x 的15与 6 的和”列出方程 . 13.(2分)如果2x =−是方程10kx k +−=的解,那么k = .14.(2分)要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时才完成,已知甲每小时比乙多加工2个零件,则甲每小时加工 个零件,乙每小时加工 个零件.15.(2分)用直径为200 mm 的圆钢锻造长、宽、高分别为300 mm 、300 mm 、100 mm 的长方体零件,应截取圆钢多长?设需直径为200 mm 的圆钢x(mm)长,则根据题意所列方程为 . 16.(2分)一条环城公路长l8 km ,甲沿公路骑自行车,速度为550 m /min ,乙沿公路跑步,速度为250 m /min ,两人同时从同一起点向相反方向出发,经x(min)两人又相遇,可以列出方程为 .17.(2分)方程24153x x −+=−的解也是方程|8|x b −=的解,则b= . 18.(2分)如果13212m n a b +−与44n a b +−是同类项,那么m= ,n= . 19.(2分)已知代数式 2m 的值是 4,则代数式231m m −+的值是 .三、解答题20.(7分)2008年5月12日,四川省汶川发生8.0级强烈地震,给当地人民造成巨大的经济损失.某学校积极组织捐款支援灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表;表中捐款2元和 5元的人数不小心被墨水污染已看不清楚,请你帮助确定表中数据,并说明理由.21.(7分)解方程43160.205x x +−−=−.22.(7分)小明去文具店购买2B 铅笔,店主说:“如果多买一些,给你打8折“,小明测算了一下.如果买50支,比按原价购买可以便宜6元,那么每支铅笔的原价是多少元?23.(7分)在一次美化校园的活动中,老师安排32人除草,20人植树.后来发现人手不够,就增派20人去支援,并且使除草的人数是植树人数的2倍.问:增派的20人中,支援除草的有多少人?24.(7分)现有一条直径为l2 cm 的圆柱形铅柱,若要铸造12个直径为l2 cm 的铅球,应截取多长的铅柱(损耗不计)?(球的体积公式343R π,R 为球半径)25.(7分)根据图给出的信息,求每件T 恤衫和每瓶矿泉水的价格.26.(7分)某商场进了一批布,出售时要在进价的基础上加一定的利润,其数量x与售价y 如下表:数量x(米)1234…售价y(元)8+0.316+0.624+0.932+1.2…(1)用含x 的代数式表示y;(2)某日,该商场出售此种布的总价为2158元,问总共卖了多少米布?27.(7分)请编一个实际应用题,要求所列的方程为30x+40x=450.28.(7分)某校七年级(9)班学生用班费向某一出版社邮购50本数学课外读物,每本书标价为 7.50元,根据出版社规定邮购10本以下(包括l0本)需另加邮购费3元;邮购l0本以上(不包括10本)需加书费的15%的邮购费.在邮局汇款时,每100元汇款需付汇费1元,汇款不足100元时,按l00元汇款付汇费.(1)经班委讨论有两种不同邮购方案:方案一是每次邮购l0本,分5次邮购;方案二是一次性邮购50本,请求出两种不同邮购方案所需的费用?(2)若邮购的本数分别为60本、70本时,请比较用上述两种不同邮购方案邮购每本书的差价,并求出差价,从而说明采用哪种方案邮购更省钱.29.(7分)京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?30.(7分)某商场出售的A型冰箱每台售价2190元,每日耗电量为l度,而B型节能冰箱每台售价虽比A型冰箱高出10%,但是每日耗电量为0.55度,现将A型冰箱打折出售,问商场至少打几折,消费者购买才合算?(按使用期为10年,每年365天,每度电0.40元计算)【参考答案】***试卷处理标记,请不要删除一、选择题1.D2.D3.A4.C5.B6.B7.C8.B9.C二、填空题10.311.512.12(9)65x x −−=+13.-l14.16,14 15.22200300100()2x π⨯= 16.25055018000x x +=17.77818.3,319.-1三、解答题20.捐2元的有4人,捐5元的有38人.理由如下:设捐款2元的有x 人,则捐款5元的有(5567x −−−)人.根据题意,得1625(5567)107274x x ⨯++−−−+⨯=,解得4x =,∴556738x −−−=(人)21.将原方程分母化为 1,得5(4)2(3)16x x +−−=−,解得14x =−22.解:设每支铅笔的原价是x 元,依题意得:50x (1-0.8)=650x ×0.2=6,x=0.6答:每支铅笔的原价是0.6元.23.设支援除草的有x 人,则支援植树的有(20—x )人,由题意得322(40)x x +=− ,x=16,∴支援除草的有16 人.24.96cm25.T 恤衫每件 20 元,矿泉水每瓶 2 元26.(1)8.3y x = (2)260 米 27.略28.(1)方案一为394元,方案二为436.25元 (2)方案一省钱29.解:设这次试车时,由北京到天津的平均速度是每小时x 千米,则由天津返回北京的平均速度是每小时(40)x +千米.依题意,得3061(40)602x x +=+. 解得200x =.答:这次试车时,由北京到天津的平均速度是每小时200千米.30.8折。
最新七年级一元一次方程单元测试卷(含答案解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。
(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。
(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。
浙江省杭州市杭州风帆中学2024届中考一模数学试题含解析

浙江省杭州市杭州风帆中学2024年中考一模数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)1.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE=DFB .AE=CFC .AF//CED .∠BAE=∠DCF2.下列说法正确的是( )A .负数没有倒数B .﹣1的倒数是﹣1C .任何有理数都有倒数D .正数的倒数比自身小3.若△ABC ∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于( )A .30°B .50°C .40°D .70°4.如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧),则∠C 与∠D 的大小关系为( )A .∠C >∠DB .∠C <∠D C .∠C=∠D D .无法确定5.如图,⊙O 内切于正方形ABCD ,边BC 、DC 上两点M 、N ,且MN 是⊙O 的切线,当△AMN 的面积为4时,则⊙O 的半径r 是( )A 2B .2C .2D .36.如图,Rt AOB 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .7.下列几何体中,主视图和俯视图都为矩形的是( )A .B .C .D .8.估计112-的值在( )A .0到l 之间B .1到2之间C .2到3之间D .3到4之间9.不论x 、y 为何值,用配方法可说明代数式x 2+4y 2+6x ﹣4y+11的值( )A .总不小于1B .总不小于11C .可为任何实数D .可能为负数10.若31x -与4x 互为相反数,则x 的值是( ) A .1 B .2 C .3 D .4二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:34x x -=______.12.已知a+b=4,a-b=3,则a 2-b 2=____________.13.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则列出的方程组为_____.14.分解因式:4ax 2-ay 2=________________.15.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x 人,则可列方程为__________.16.分解因式:x2y﹣2xy2+y3=_____.三、解答题(共8题,共72分)17.(8分)解方程组:222232() x yx y x y ⎧-=⎨-=+⎩.18.(8分)2018年4月22日是第49个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土一讲好我们的地球故事”地球日活动周中,同学们开展了丰富多彩的学习活动,某小组搜集到的数据显示,山西省总面积为15.66万平方公里,其中土石山区面积约5.59万平方公里,其余部分为丘陵与平原,丘陵面积比平原面积的2倍还多0.8万平方公里.(1)求山西省的丘陵面积与平原面积;(2)活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30元.经协商,甲旅行社的优惠条件是,家长免费,学生都按九折收费;乙旅行社的优惠条件是,家长、学生都按八折收费.若只考虑收费,这两位家长应该选择哪家旅行社更合算?19.(8分)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣1.求一次函数的解析式;求△AOB的面积;观察图象,直接写出y1>y1时x的取值范围.20.(8分)如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点M(-2,0)与动点P(0,t)的直线MP记作l.(1)若l的解析式为y=2x+4,判断此时点A是否在直线l上,并说明理由;(2)当直线l与AD边有公共点时,求t的取值范围.21.(8分)如图1,在矩形ABCD中,AD=4,AB=23,将矩形ABCD绕点A逆时针旋转α(0<α<90°)得到矩形AEFG.延长CB与EF交于点H.(1)求证:BH=EH;(2)如图2,当点G落在线段BC上时,求点B经过的路径长.22.(10分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表:组别身高A x<160B 160≤x<165C 165≤x<170D 170≤x<175E x≥175根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E组的有人,E组所在扇形的圆心角度数为;(3)已知该校共有男生600人,女生480人,请估让身高在165≤x<175之间的学生约有多少人?23.(12分)如图,已知一次函数的图象与反比例函数的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2。
(北师大版)杭州市七年级数学上册第五单元《一元一次方程》测试题(有答案解析)

一、选择题1.由于换季,超市准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元;而按原售价的九折出售,将盈利20元,则该商品的原售价为( )A .300元B .270元C .250元D .230元2.观察下列两行数:1,3,5,7,9,11,13,15,17,19,…1,4,7,10,13,16,19,22,25,28,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n 个相同的数是103,则n 等于( )A .17B .18C .19D .20 3.新世纪綦江商都一件商品标价为420元,进价为280元,要使利润率为5%,应该打( )折A .9B .8C .7D .6 4.一个角的余角比它的补角的23还少40°,这个角的度数是( )度 A .20 B .30 C .40 D .455.某商品的价格标签已丢失,售货员只知道它的进价为80元,打七折售出后,仍可获利5%,你认为标签上的价格为( )元.A .110B .120C .130D .140 6.若()25289m m x---=是关于x 的一元一次方程,则m =( ) A .3 B .2 C .2或3 D .任何整数 7.2020年武汉抗击疫情期间,全国各地加班加点为前线医护人员提供防护面罩和防护服.已知某车间有40名工人,每人每天生产防护服160件或防护面罩240个,一件防护服和一个防护面罩配成一套,若分配x 名工人生产防护服,其他工人生产防护面罩,恰好使每天生产的防护服和防护面罩配套,则所列方程是( )A .()16024040x x =-B .()16040240x x -=C .()160240402x =-D .()240160402x x -= 8.下列说法中,其中正确的个数有( )①两点之间的所有连线中,线段最短;②倒数等于它本身的数是1-、0、1;③不能作射线OA 的延长线;④单项式3222a b -的系数是2-,次数是7;⑤若a b =,则a b =±;⑥方程||2(3)40m m x --+=是关于x 的一元一次方程,则3m =±.A .1个B .2个C .3个D .4个9.小明在解方程513m x -=(x 为未知数)时,误将x -看作x +,得方程的解为2x =-,原方程的解为( )A .0x =B .1x =C .2x =D .3x = 10.小涵在2020年某月的月历上圈出了三个数a ,b ,c ,并求出了它们的和为30,则这三个数在月历中的排位位置不可能是( ) A . B . C . D . 11.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t ;如用新工艺,则废水排量要比环保限制的最大量少100t .新、旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?如果设新工艺的废水排量为2xt ,旧工艺的废水排量为5xt .那么下面所列方程正确的是( )A .52002100x x -=+B .52002100x x +=-C .52002100x x +=+D .52002100x x -=- 12.甲、乙、丙三数之比是2:3:4,甲、乙两数之和比乙、丙两数之和大30,则甲数为( )A .30-B .45-C .15-D .60- 二、填空题13.服装厂生产一批学生校服,已知生产1件上衣需要布料1.5米,生产1条裤子需要布料1米.因为裤子旧得快,要求1件上衣和2条裤子配一套.生产这批校服共用了2016米布料,问共生产了多少套校服?设共生产了x 套校服,则可列方程____________. 14.线段15AB =,点P 从点A 开始向点B 以每秒1个单位长度的速度运动,点Q 从点B 开始向点A 以每秒2个单位长度的速度运动,当其中一个点到达终点时另一个点也随之停止运动,当2AP PQ =时,t 的值为________.15.若关于x 的方程3220x kx -+=的解为2x =,则k 的值为_____.16.已知关于x 的方程5x +m =﹣2的解为x =2,则m 的值为_____.17.《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车无人乘坐,若每2人共乘一车,最终剩余9个人无车可乘,则有_____辆车,_____人.18.今有若干人乘车,若每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9人无车可乘,则共有__人,_辆车.19.若0a b =≠,则下列式子中正确的是(填序号)______①22a b -=-,②1132a b =,③3344a b -=-,④551a b =-. 20.在风速度为30千米/小时的条件下,一架飞机顺风从A 机场飞到B 机场要用2.8小时,它逆风飞行同样的航线要用3小时,则飞机在无风情况下的飞行速是__________千米/小时.21.解方程:(1)5+3x =8+2x ;(2)12x -=1﹣325x +. 22.求值或解方程(1)12-4(x-3)=7(x+5) (2)3221211245x x x +-+-=- (3)()()222213216122a b ab ab a b +---+,其中12a =,13b =- 23.解方程: (1)()254x x -+=-(2)1213323x x x --+=- 24.解下列方程:(1)2(3)4(5)x x -=-+ (2)2145135y y ---= 25.解方程:352x +-1=23x . 26.为减少疫情对农产品销售的影响,年轻党员干部晓辉借助“学习强国”平台直播活动,向网友们大力推介自己乡镇的特色农产品,让原本面临滞销、亏损的农户迎来了新的转机.在帮助某农户推广滞销乳鸽的直播中,晓辉计划首月销售1000只乳鸽,每只乳鸽定价30元.(1)经过首月试销售,晓辉发现单只乳鸽售价每降低0.5元,销量将增加50只,若计划每月乳鸽的销售总量为1500只,则每只乳鸽售价应定为多少元?(2)随着疫情的好转和直播的推广作用,乳鸽的线下销售也终于迎来了复苏,在线上、线下销售单价一致的情况下,11 月线上、线下的销售总额为37500元.受寒流影响,12 月价格进行了一定调整,线下单价与(1)间中的售价保持一-致,线上单价在(1)问的售价基础上提高了2%5a ,但12月整体月销售总量仍比(1)问中的计划销售总量上涨%a ,其中线下销售量占到了12月总销售量的37,最终12月总销售额比11月增加了495a 元,求a 的值.【参考答案】***试卷处理标记,请不要删除1.A解析:A【分析】七五折售价+亏损25元=九折售价-盈利的20元,根据此成本不变等量关系列出方程,求出方程的解即可得到结果.【详解】解:设该商品的原售价为x 元,根据题意得:75%x+25=90%x-20,解得:x=300,则该商品的原售价为300元.故选:A .【点睛】此题考查了一元一次方程的应用,弄清题中的等量关系是解本题的关键.2.B解析:B【分析】先分别表示:第1个相同的数是:0611,⨯+= 第2个相同的数是:1617,⨯+= 第3个相同的数是:26113,⨯+= 第4个相同的数是:36119,⨯+= …,再总结出规律,利用规律列方程即可得到答案.【详解】解:探究规律:第1个相同的数是:0611,⨯+=第2个相同的数是:1617,⨯+=第3个相同的数是:26113,⨯+=第4个相同的数是:36119,⨯+=…总结并归纳:第n 个相同的数是:()61165,n n -+=-运用规律:65103,n -=6108,n ∴=18.n ∴=故选:.B本题考查的是数字的规律探究,一元一次方程的解法,掌握列代数式表示规律,利用方程思想解决问题是解题的关键.3.C解析:C【分析】设该商品应该打x 折,根据“(售价-进价)÷进价=利润率”建立方程,再解方程即可得.【详解】设该商品应该打x 折,则该商品的售价为4200.142x x ⨯=元, 由题意得:422805%280x -=, 解得7x =,即该商品应该打7折,故选:C .【点睛】 本题考查了一元一次方程的应用,依据题意,正确建立方程是解题关键.4.B解析:B【分析】设这个角为x ,根据余角和补角的定义列式即可.【详解】设这个角为x ,则这个角的余角为90x ︒-,这个角的补角为180x ︒-, 根据题意可得:()290180403x x ︒-=︒--︒, 整理得:290120403x x ︒-=︒--︒, 解得:30x =︒;故选:B .【点睛】本题主要考查了一元一次方程的应用,结合余角和补角的定义求解是解题的关键. 5.B解析:B【分析】设标签上的价格为x 元,根据打折后售价=成本+利润即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设标签上的价格为x 元,根据题意得:0.7x =80×(1+5%),解得:x =120.故选:B .【点睛】本题考查了一元一次方程的应用,解题的关键是根据数量关系售价=成本+利润列出一元一次方程.6.A解析:A【分析】根据|2m-5|=1,且m-2≠0求解即可.【详解】∵()25289m m x ---=是关于x 的一元一次方程,∴|2m-5|=1,且m-2≠0,∴m=2或m=3, 且m-2≠0,∴m=3,故选A.【点睛】本题考查了一元一次方程的定义,解答时,确保x 指数为1且x 的系数不为零是解题的关键.7.A解析:A【分析】若分配x 名工人生产防护服,根据“某车间有40名工人,每人每天生产防护服160件或防护面罩240个,一件防护服和一个防护面罩配成一套”列出方程.【详解】解:设分配x 名工人生产防护服,则分配(40−x )人生产防护面罩,根据题意,得160x =240(40−x ).故选:A .【点睛】本题主要考查了由实际问题抽象出一元一次方程,解题的关键是找到等量关系. 8.C解析:C【分析】根据线段的性质,倒数的性质,射线的性质,单项式的定义,绝对值的性质,一元一次方程的定义依次判断.【详解】①两点之间的所有连线中,线段最短,故正确;②倒数等于它本身的数是1-、1,0没有倒数,故该项错误;③不能作射线OA 的延长线,故正确;④单项式3222a b -的系数是2-3,次数是4,故该项错误;⑤若a b =,则a b =±,故正确;⑥方程||2(3)40m m x --+=是关于x 的一元一次方程,则m=-3,故该项错误; 故正确的有:①③⑤,故选:C .【点睛】此题考查线段的性质,倒数的性质,射线的性质,单项式的定义,绝对值的性质,一元一次方程的定义,熟练掌握各部分知识是解题的关键.9.C解析:C【分析】把x =−2代入方程513m x +=,求出m ,得出方程为15−x =13,求出方程的解即可.【详解】解:把x =−2代入方程513m x +=得:5m−2=13,解得m =3,即原方程为15−x =13,解得x =2.故选:C .【点睛】本题考查了一元一次方程的解和解一元一次方程,根据方程的解的定义能求出m 的值是解此题的关键.10.D解析:D【分析】由月历表数字之间的特点可依次排除选项即可.【详解】解:由A 选项可得:7,14b a c a =+=+,∴71432130a b c a a a a ++=++++=+=,解得3a =,故不符合题意;由B 选项可得:6,12b a c a =+=+,∴61231830a b c a a a a ++=++++=+=, 解得4a =,故不符合题意;由C 选项得1,8b a c a =+=+,∴183930a b c a a a a ++=++++=+=, 解得7a =,故不符合题意;由D 选项得6,14b a c a =+=+,∴61432030a b c a a a a ++=++++=+=,解得103a=,故符合题意;故选D.【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.11.A解析:A【分析】设新工艺的废水排量为2xt,旧工艺的废水排量为5xt,根据如用旧工艺,则废水排量要比环保限制的最大量还多200t;如用新工艺,则废水排量要比环保限制的最大量少100t 列方程.【详解】设新工艺的废水排量为2xt,旧工艺的废水排量为5xt,由题意得52002100x x-=+,故选:A.【点睛】此题考查一元一次方程的实际应用,正确理解题意是解题的关键.12.A解析:A【分析】设甲数是2x,则乙数是3x,丙数是4x,列出方程,解方程求得x的值即可.【详解】解:设甲数是2x,则乙数是3x,丙数是4x,则2x+3x-(3x+4x)=30解得x=-15.故2x=-30,3x=-45,4x=-60.即甲、乙、丙分别为-30、-45、-60.故选:A.【点睛】考查了一元一次方程的应用,难度不大,关键是根据题意恰当的设未知数,列出方程.二、填空题13.5x+2x=2016【分析】根据题意列出一元一次方程即可;【详解】设生产了x 套校服∴生产了x件上衣2x条裤子∴列方程为15x+2x=2016故答案为:15x+2x=2016【点睛】本题考查了一元一次解析:5x+2x=2016【分析】根据题意列出一元一次方程即可;【详解】设生产了x 套校服,∴ 生产了x 件上衣,2x 条裤子,∴ 列方程为1.5x+2x=2016,故答案为:1.5x+2x=2016.【点睛】本题考查了一元一次方程的应用,正确理解题意是解题的关键;14.或6【分析】根据时间与速度可以分别表示出APBQ 结合分别从相遇前和相遇后利用线段的和差关系计算出的值【详解】解:此题可分为两种情况进行讨论:①如图1点PQ 相遇前由题意得AP =tBQ =2tPQ =AB - 解析:307或6 【分析】 根据时间与速度可以分别表示出AP 、BQ ,结合2AP PQ =分别从相遇前和相遇后,利用线段的和差关系计算出t 的值.【详解】解:此题可分为两种情况进行讨论:①如图1,点P 、Q 相遇前,由题意得AP =t ,BQ =2t ,PQ =AB -AP -BQ ,当2AP PQ =时,t =2(15-t -2t),解得t =307; ②如图2,点P 、Q 相遇后,由题意得AP =t ,BQ =2t ,PQ =AP +BQ -AB ,当2AP PQ =时,t =2(t +2t -15),解得t =6.综上所述:t 的值为307或6. 故答案为:307或6. 【点睛】此题考查了与线段有关的动点问题,正确理解题意,利用线段的和差关系列出方程是解题的关键.15.2【分析】把x=2代入3x-2kx+2=0得到关于k 的方程即可求出k 的值【详解】解:∵关于x 的方程的解是x=2∴6-4k+2=0解得k=2故选:2【点睛】本题考查了一元一次方程的解的定义:使一元一次解析:2【分析】把x=2代入3x-2kx+2=0,得到关于k 的方程,即可求出k 的值.【详解】解:∵关于x 的方程3220x kx -+=的解是x=2,∴6-4k+2=0,解得k=2.故选:2.【点睛】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.也考查了一元一次方程的解法.16.-12【分析】把x =2代入方程得出一个关于m 的方程求出方程的解即可【详解】解:把x =2代入方程5x+m =﹣2得:10+m =﹣2解得:m =﹣12故答案为:﹣12【点睛】本题考查了解一元一次方程和一元一解析:-12【分析】把x =2代入方程,得出一个关于m 的方程,求出方程的解即可.【详解】解:把x =2代入方程5x +m =﹣2得:10+m =﹣2,解得:m =﹣12,故答案为:﹣12.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的方程是解此题的关键. 17.39【分析】设有x 辆车找准等量关系:人数是定值列一元一次方程可解此题【详解】解:设有x 辆车依题意得:3(x-2)=2x+9解得x=15∴2x+9=2×15+9=39(人)答:15辆车有39人故答案为解析:39【分析】设有x 辆车,找准等量关系:人数是定值,列一元一次方程可解此题.【详解】解:设有x 辆车,依题意得:3(x-2)=2x+9.解得,x=15.∴2x+9=2×15+9=39(人)答:15辆车,有39人.故答案为:15,39.【点睛】本题考查了一元一次方程的应用,找准等量关系是解此题的关键.18.15【分析】设有x 辆车根据人数不变即可得出关于x 的一元一次方程此题得解【详解】解:设有x 辆车依题意得:3(x-2)=2x+9解得x=15人数=2×15+9=39故答案是:3915【点睛】本题考查了由解析:15【分析】设有x 辆车,根据人数不变,即可得出关于x 的一元一次方程,此题得解.【详解】解:设有x 辆车,依题意得:3(x-2)=2x+9.解得,x=15,人数=2×15+9=39,故答案是:39,15.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.19.①③【分析】根据等式的性质进行逐一判断即可【详解】解:①若根据等式基本性质1则故①正确;②若根据等式基本性质2则故②错误;③若根据等式基本性质2则故③正确;④若根据等式基本性质2则故④错误故答案为:解析:①③【分析】根据等式的性质进行逐一判断即可.【详解】解:①若0a b =≠,根据等式基本性质1,则22a b -=-,故①正确;②若0a b =≠,根据等式基本性质2,则111332a b b =≠,故②错误; ③若0a b =≠,根据等式基本性质2,则3344a b -=-,故③正确; ④若0a b =≠,根据等式基本性质2,则5551a b b =-≠,故④错误.故答案为:①③.【点睛】本题考查了等式的性质,解决本题的关键是掌握等式的性质. 20.870【分析】设无风时飞机的航速是x 千米/时根据顺风速度×顺风时间=逆风速度×逆风时间列出方程求出x 的值【详解】解:设无风时飞机的航速是x 千米/时依题意得:28×(x+30)=3×(x-30)解得:解析:870【分析】设无风时飞机的航速是x千米/时,根据顺风速度×顺风时间=逆风速度×逆风时间,列出方程求出x的值.【详解】解:设无风时飞机的航速是x千米/时,依题意得:2.8×(x+30)=3×(x-30),解得:x=870,所以,飞机在无风情况下的飞行速是870千米/小时,故答案为:870.【点睛】此题考查了一元一次方程的应用,用到的知识点是顺风速度=无风时的速度+风速,逆风速度=无风时的速度-风速,关键是根据顺风飞行的路程等于逆风飞行的路程列出方程.三、解答题21.(1)x=3;(2)x=1【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:(1)移项,可得:3x﹣2x=8﹣5,合并同类项,可得:x=3.(2)去分母,可得:5(x﹣1)=10﹣2(3x+2),去括号,可得:5x﹣5=10﹣6x﹣4,移项,可得:5x+6x=10﹣4+5,合并同类项,可得:11x=11,系数化为1,可得:x=1.【点睛】本题考查一元一次方程的求解,熟练掌握一元一次方程的解法是解题关键.22.(1)x=-1;(2)928x=-;(3)263ab-,83-.【分析】(1)按方程的解法,去括号,移项合并,系数化1即可;(2)按方程的解法,去分母,去括号,移项合并,系数化1即可;(3)去括号,合并同类项,赋值,代入计算即可.【详解】解:(1)12-4(x-3)=7(x+5),去括号得:12-4x+12=7x+35,移项合并得:-11x=11,系数化1得:x=-1;(2)3221211245x x x +-+-=-, 去分母得:()()()103220521421x x x +-=--+,去括号得:30202010584x x x +-=---,移项合并得:289x =-,系数化1得:928x =-; (3)原式=2222633+36a b ab ab a b -+-,=263ab -, 当12a =,13b =-时, 原式=612⨯213⎛⎫⨯- ⎪⎝⎭-3=83-. 【点睛】本题考查一元一次方程与代数式化简求值问题,掌握一元一次方程的解法,与代数式化简求值的步骤是解题关键.23.(1)6x =-;(2)2325x =【分析】(1)解一元一次方程,先去括号,然后移项,合并同类项,系数化1求解;(2)解一元一次方程,先去分母,然后去括号,移项,合并同类项,最后系数化1求解【详解】解:(1)()254x x -+=-去括号,得:1024x x --=-移项,得:24+10x x -=-合并同类项,得:6x -=系数化1,得:6x =-(2)1213323x x x --+=- 去分母,得:()()183118221x x x +-=--去括号,得:18331842x x x +-=-+移项,得:183+4182+3x x x +=+合并同类项,得:2523x =系数化1,得:2325x =【点睛】本题考查解一元一次方程,掌握解方程的步骤正确计算是解题关键.24.(1)13x =-;(2)52y =-. 【分析】 (1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母 ,去括号,移项合并,把x 系数化为1,即可求出解;【详解】(1)2(3)4(5)x x -=-+解:去括号得:62420x x -=--移项得 :24206x x -+=--合并同类项得 :226x =-系数化为1得 :13x =-(2)2145135y y ---= 解:去分母得 :5(21)153(45)y y --=- 去括号得 :105151215y y --=-移项得:101215515y y -=-++合并同类项得 :25y -=系数化为1得 :52y =-【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解即可; 25.95x =- 【分析】首先方程去分母,去括号,再移项,合并同类项,通过计算,即可完成求解.【详解】 ∵352x +-1=23x ∴()33564x x +-=∴9x+15-6=4x ,∴9x-4x =6-15,∴5x =-9, ∴95x =-. 【点睛】 本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的解法,从而完成求解.26.(1)25元;(2)40【分析】(1)设应降低x 元,根据题意列出方程,求解即可;(2)根据题意可得2月份的销售总量为()15001a +%,12月份的线上单价为22515a ⎛⎫+% ⎪⎝⎭,线下单价为25元,根据“12月总销售额比11月增加了495a 元”列出方程,求解即可.【详解】解:(1)设应降低x 元,根据题意可得:10005015000.5x +⨯=, 解得5x =,∴每只乳鸽售价应定为30525-=(元),答:每只乳鸽售价应定为25元;(2)12月份的销售总量为()15001a +%,12月份的线上单价为22515a ⎛⎫+% ⎪⎝⎭,线下单价为25元, 根据题意可得: ()()323150011251150012537500495757a a a a ⎛⎫⎛⎫+%-⨯+%++%⨯⨯-= ⎪ ⎪⎝⎭⎝⎭, 解得40a =或0a =(舍).【点睛】本题考查一元一次方程的应用,理解题意,找出等量关系是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学一元一次方程解答题压轴题精选(难)1.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.(1)求a、b的值;(2)若线段AB=a,在直线AB上取一点P,恰好使 =b,点Q为PB的中点,请画出图形并求出线段AQ的长.【答案】(1)解:2(a-2)=a+4,2a-4=a+4a=8,∵x=a=8,把x=8代入方程2(x-3)-b=7,∴2(8-3)-b=7,b=3(2)解:①如图:点P在线段AB上,=3,AB=3PB,AB=AP+PB=3PB+PB=4PB=8,PB=2,Q是PB的中点,PQ=BQ=1,AQ=AB-BQ=8-1=7,②如图:点P在线段AB的延长线上,=3,PA=3PB,PA=AB+PB=3PB,AB=2PB=8,PB=4,Q是PB的中点,BQ=PQ=2,AQ=AB+BQ=8+2=10.所以线段AQ的长是7或10.【解析】【分析】(1)根据题意可得两个方程的解相同,所以根据第一个方程的解,可求出第二个方程中的b。
(2)分类讨论,P在线段AB上,根据,可求出PB的长,再根据中点的性质可得PQ的长,最后根据线段的和差可得AQ;P在线段AB的延长线上,根据,可求出PB的长,再根据中点的性质可得BQ的长,最后根据线段的和差可得AQ.2.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B两点的对应的数a、b;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解.①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2 。
(2)解:①2x+1= x﹣8解得x=﹣6,∴BC=2﹣(﹣6)=8即线段BC的长为8;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得 m=3.5,当﹣3<m<2时,无解当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为零从而得出解方程组得出a,b的值,从而得出A,B两点表示的数;(2)①解方程2x+1= x﹣8 ,得出x的值,从而得到C点的坐标,根据两点间的距离得出BC的长度;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,根据两点间的距离公式列出方程|m﹣(﹣3)|+|m﹣2|=8,然后分类讨论:当m>2时,解得m=3.5,当﹣3<m<2时,无解,当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5 。
3.已知关于的方程的解也是关于的方程的解.(1)求、的值;(2)若线段,在直线AB上取一点P,恰好使,点Q是PB的中点,求线段AQ的长.【答案】(1)解:(m−14)=−2,m−14=−6m=8,∵关于m的方程的解也是关于x的方程的解.∴x=8,将x=8,代入方程得:解得:n=4,故m=8,n=4;(2)解:由(1)知:AB=8, =4,①当点P在线段AB上时,如图所示:∵AB=8, =4,∴AP= ,BP= ,∵点Q为PB的中点,∴PQ=BQ= BP= ,∴AQ=AP+PQ= + = ;②当点P在线段AB的延长线上时,如图所示:∵AB=8, =4,∴PB= ,∵点Q为PB的中点,∴PQ=BQ= ,∴AQ=AB+BQ=8+ =故AQ= 或 .【解析】【分析】(1)先解求得m的值,然后把m的值代入方程,即可求出n的值;(2)分两种情况讨论:①点P在线段AB上,②点P在线段AB的延长线上,画出图形,根据线段的和差定义即可求解;4.一根长80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长2厘米。
(1)正常情况下,当挂着千克的物体时,弹簧的长度是多少厘米?(2)正常情况下,当挂物体的质量为6千克时,弹簧的长度是多少厘米?(3)正常情况下,当弹簧的长度是120厘米时,所挂物体的质量是多少千克?(4)如果弹簧的长度超过了150厘米时,弹簧就失去弹性,问此弹簧能否挂质量为40千克的物体?为什么?【答案】(1)解:由题意得:y=80+2x,答:弹簧的长度是(80+2x)厘米(2)解:∵y=80+2x,∴当x=6时,y=80+2×6=92,答:弹簧的长度是92厘米(3)解:∵y=80+2x,∴当y=120时,120=80+2x,∴x=20,答:所挂物体的质量是20千克。
(4)解:∵y=80+2x,∴当x=40时,y=80+2×40=160(厘米)>150(厘米)∴此弹簧不能挂质量为40千克的物体.【解析】【分析】(1)由题意,物体的质量每增加1千克可使弹簧增长2厘米,于是可知物体的质量与弹簧的长度有关系.弹簧的长度=弹簧的原长+伸长的长度;弹簧伸长的长度=物体的质量×2厘米;根据这个关系可求解;(2)把x=6代入(1)中的关系式计算即可求解;(3)把y=120代入(1)中的关系式计算即可求解;(4)同理可求解.5.某校七年级10个班师生举行文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,七年级统计后发现歌唱类节目比跳舞类节目数的2倍少4个.(1)七年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从开始到结束共用2小时35分钟,问参与的小品类节目有多少个?【答案】(1)解:设七年级师生表演的舞蹈类节目有x个,表演歌唱类节目有(2x﹣4)个,根据题意,得:x+2x﹣4=10×2,解得:x=8,所以2x﹣4=12.答:七年级师生表演的歌唱类节目有12个,舞蹈类节目有8个(2)解:设参与的小品类节目有a个,根据题意,得:12×5+8×6+8a+15=2×60+35,解得:a=4,答:参与的小品类节目有4个【解析】【分析】(1)设七年级师生表演的舞蹈类节目有x个,表演歌唱类节目有(2x-4)个.根据“七年级统计后发现歌唱类节目比跳舞类节目数的2倍少4个”列方程求解可得;(2)设参与的小品类节目有a个,根据“三类节目的总时间+交接用时=2小时35分钟”列等式求解可得.6.已知,如图A、B分别为数轴上的两点,A点对应的数为-20,B点对应的数为80.(1)请写出AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,以2个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,①你知道经过几秒两只电子蚂蚁相遇?②点C对应的数是多少?③经过多长时间两只电子蚂蚁在数轴上相距15个单位长度?【答案】(1)解:M点的数值为:;(2)解:①设所用时间为t,依题意得:3t﹢2t=100,解得:t=20;②依题意得:点C位置为: 80-2t=80-2×20=40;③设所用时间为x,依题意得:3x+2x=100-15或3x+2x=100+15,解得:x=17或x=23;∴当x=17或x=23时,两个电子蚂蚁再数轴上相距15个单位长度.【解析】【分析】(1)由AM=BM,结合两点间的距离公式,即可求出AB的中点;(2)①根据时间=路程÷速度,即可求出相遇的时间;②结合相遇的时间,即可求出点C;③根据题意,两个电子蚂蚁在数轴上相距15,可分为:相遇前相距15和相遇后相距15,两种情况进行讨论.7.2016年春节即将来临,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位共102人,其中甲单位人数多于乙单位人数,且甲单位人数不够100人.经了解,该风景区的门票价格如下表:5500元.(1)如果甲、乙两单位联合起来购买门票,那么比各自购买门票共可以节省多少钱?(2)甲、乙两单位各有多少名退休职工准备参加游玩?(3)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?【答案】(1)解:如果甲、乙两单位联合起来购买门票需40×102=4080(元),则比各自购买门票共可以节省:5500﹣4080=1420(元)(2)解:设甲单位有退休职工x人,则乙单位有退休职工(102﹣x)人.依题意得:50x+60×(102﹣x)=5500,解得:x=62.则乙单位人数为:102﹣x=40.答:甲单位有62人,乙单位有40人(3)解:方案一:各自购买门票需50×60+40×60=5400(元);方案二:联合购买门票需(50+40)×50=4500(元);方案三:联合购买101张门票需101×40=4040(元);综上所述:因为5400>4500>4040.故应该甲乙两单位联合起来选择按40元一次购买101张门票最省钱【解析】【分析】(1)运用分别购票的费用和﹣联合购票的费用就可以得出结论;(2)设甲单位有退休职工x人,则乙单位有退休职工(102﹣x)人,根据“如果两单位分别单独购买门票,一共应付5500元”建立方程求出其解即可;(3)有三种方案:方案一:各自购买门票;方案二:联合购买门票;方案三:联合购买101张门票.分别求出三种方案的付费,比较即可.8.阅读理解:一部分同学围在一起做“传数”游戏, 我们把某同学传给后面的同学的数称为该同学的“传数”.游戏规则是: 同学1心里先想好一个数, 将这个数乘以2再加1后传给同学2,同学2把同学1告诉他的数除以2再减后传给同学3,同学3把同学2传给他的数乘以2再加1后传给同学4,同学4把同学3告诉他的数除以2再减后传给同学5,同学5把同学4传给他的数乘以2再加1后传给同学6,……,按照上述规律,序号排在前面的同学继续依次传数给后面的同学,直到传数给同学1为止.(1)若只有同学1,同学2,同学3做“传数”游戏.①同学1心里想好的数是2, 则同学3的“传数”是________;②这三个同学的“传数”之和为17,则同学1心里先想好的数是________.(2)若有个同学(n为大于1的偶数)做“传数”游戏,这个同学的“传数”之和为,求同学1心里先想好的数是多少.【答案】(1)5;3(2)解:设同学1心里先想好的数为x,由题意得:同学1的“传数”是2x+1同学2的“传数”是同学3的“传数”是2x+1同学4的“传数”是x……同学n(n为大于1的偶数)的“传数”是x于是∵n为大于1的偶数∴n≠0∴解得:故同学1心里先想好的数是13.【解析】【解答】解:(1)①由题意得:故同学3的“传数”是5;②设同学1想好的数是a,则解得:故答案为:3【分析】(1)根据题意分别计算出同学1和同学2、同学3的传数即可;(2)设同学1想好的数是a,由题意列出方程,再解方程求得a的值即可;(3)设同学1心里先想好的数为x,根据题意分别表示同学2、同学3、同学4的传数,找出规律,即可知同学n(n为大于1的偶数)的“传数”是x,得,化简得,根据n为大于1的偶数,即可得出答案.9.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.【答案】(1)解:∵经过t秒点P和点O相遇,∴有,解得,∴,∴点P和点Q相遇时的位置所对应的数为(2)解:∵点P比点Q迟1秒钟出发,∴点Q运动了(t+1)秒,①若点P和点Q在相遇前相距1个单位长度,则,解得:,②若点P和点Q在相遇后相距1个单位长度,则2t+1×(t+1) =4+1,解得:,综合上述,当P出发秒或秒时,P和点Q相距1个单位长度(3)解:若点P和点Q在相遇前相距1个单位长度,此时满足条件的点C即为P点,所表示的数为;若点P和点Q在相遇前相距1个单位长度,此时满足条件的点C即为Q点,所表示的数为 .【解析】【分析】(1)根据题意得出运动t秒时,P点和Q点所代表的的数字,如果两个数字相遇,则两个数P点和Q点表示的数相等,得到关于t的方程,解出值即可。