最新2013--2014年浙江省各市地区中考试题汇编-----代数式和因式分解
2014年浙江绍兴市中考数学(含解析)试卷真题
2014年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)比较﹣3,1,﹣2的大小,下列判断正确的是()A.﹣3<﹣2<1B.﹣2<﹣3<1C.1<﹣2<﹣3D.1<﹣3<﹣2【考点】18:有理数大小比较.【分析】本题是对有理数的大小比较,根据有理数性质即可得出答案.【解答】解:有理数﹣3,1,﹣2的中,根据有理数的性质,∴﹣3<﹣2<0<1.故选:A.【点评】本题主要考查了有理数大小的判定,难度较小.2.(4分)计算(ab)2的结果是()A.2ab B.a2b C.a2b2D.ab2【考点】47:幂的乘方与积的乘方.【专题】11:计算题.【分析】根据幂的乘方法则:底数不变,指数相乘,进行计算即可.【解答】解:原式=a2b2.故选:C.【点评】此题考查了幂的乘方及积的乘方,属于基础题,注意掌握幂的乘方法则:底数不变,指数相乘.3.(4分)太阳的温度很高,其表面温度大概有6 000℃,而太阳中心的温度达到了19 200 000℃,用科学记数法可将19 200 000表示为()A.1.92×106B.1.92×107C.1.92×108D.1.92×109【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将19 200 000用科学记数法表示为:1.92×107.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看第一层是三个正方形,第二层是左边一个正方形.故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(4分)一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,则从袋子中随机摸出一个球是白球的概率为()A.B.C.D.【考点】X4:概率公式.【分析】由一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,直接利用概率公式求解即可求得答案.【解答】解:∵一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,∴从袋子中随机摸出一个球是白球的概率为:=.故选:C.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.6.(4分)不等式3x+2>﹣1的解集是()A.x>﹣B.x<﹣C.x>﹣1D.x<﹣1【考点】C6:解一元一次不等式.【分析】先移项,再合并同类项,把x的系数化为1即可.【解答】解:移项得,3x>﹣1﹣2,合并同类项得,3x>﹣3,把x的系数化为1得,x>﹣1.故选:C.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.7.(4分)如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A.πB.πC.D.【考点】MP:圆锥的计算.【专题】11:计算题.【分析】根据圆锥侧面展开扇形的弧长等于底面圆的周长,可以求出底面圆的半径,从而求得圆锥的底面周长.【解答】解:设底面圆的半径为r,则:2πr==π.∴r=,∴圆锥的底面周长为,故选:B.【点评】本题考查的是弧长的计算,利用弧长公式求出弧长,然后根据扇形弧长与圆锥底面半径的关系求出底面圆的半径.8.(4分)如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为()A.10克B.15克C.20克D.25克【考点】8A:一元一次方程的应用.【专题】11:计算题.【分析】根据天平仍然处于平衡状态列出一元一次方程求解即可.【解答】解:设左、右侧秤盘中一袋玻璃球的质量分别为m克、n克,根据题意得:m=n+40;设被移动的玻璃球的质量为x克,根据题意得:m﹣x=n+x+20,x=(m﹣n﹣20)=(n+40﹣n﹣20)=10.故选:A.【点评】本题考查了一元一次方程的应用,解题的关键是找到等量关系.9.(4分)将一张正方形纸片,按如图步骤①,②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是()A.B.C.D.【考点】P9:剪纸问题.【分析】按照题意要求,动手操作一下,可得到正确的答案.【解答】解:由题意要求知,展开铺平后的图形是B.故选:B.【点评】此题主要考查了剪纸问题,此类问题应亲自动手折一折,剪一剪看看,可以培养空间想象能力.10.(4分)如图,汽车在东西向的公路l上行驶,途中A,B,C,D四个十字路口都有红绿灯.AB之间的距离为800米,BC为1000米,CD为1400米,且l上各路口的红绿灯设置为:同时亮红灯或同时亮绿灯,每次红(绿)灯亮的时间相同,红灯亮的时间与绿灯亮的时间也相同.若绿灯刚亮时,甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,这两辆汽车通过四个路口时都没有遇到红灯,则每次绿灯亮的时间可能设置为()A.50秒B.45秒C.40秒D.35秒【考点】O2:推理与论证.【专题】16:压轴题;32:分类讨论.【分析】首先求出汽车行驶各段所用的时间,进而根据红绿灯的设置,分析每次绿灯亮的时间,得出符合题意答案.【解答】解:∵甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,∴两车的速度为:=(m/s),∵AB之间的距离为800米,BC为1000米,CD为1400米,∴分别通过AB,BC,CD所用的时间为:=96(s),=120(s),=168(s),∵这两辆汽车通过四个路口时都没有遇到红灯,∴当每次绿灯亮的时间为50s时,∵=1,∴甲车到达B路口时遇到红灯,故A错误;∴当每次绿灯亮的时间为45s时,∵=3,∴乙车到达C路口时遇到红灯,故B错误;∴当每次绿灯亮的时间为40s时,∵=5,∴甲车到达C路口时遇到红灯,故C 错误;∴当每次绿灯亮的时间为35s时,∵=2,=6,=10,=4,=8,∴这两辆汽车通过四个路口时都没有遇到红灯,故D正确;则每次绿灯亮的时间可能设置为:35秒.故选:D.【点评】此题主要考查了推理与论证,根据题意得出汽车行驶每段所用的时间,进而由选项分析是解题关键.二、填空题(本大题共6个小题,每小题5分,共30分)11.(5分)分解因式:a2﹣a=a(a﹣1).【考点】53:因式分解﹣提公因式法.【专题】44:因式分解.【分析】这个多项式含有公因式a,分解因式时应先提取公因式.【解答】解:a2﹣a=a(a﹣1).【点评】本题考查了提公因式法分解因式,比较简单,注意不要漏项.12.(5分)把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD 的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为5.【考点】KQ:勾股定理;M3:垂径定理的应用;MC:切线的性质.【专题】121:几何图形问题.【分析】首先由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,易求得FH的长,然后设求半径为r,则OH=8﹣r,然后在Rt△OFH中,r2﹣(16﹣r)2=82,解此方程即可求得答案.【解答】解:由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,在矩形ABCD中,AD∥BC,而IG⊥BC,∴IG⊥AD,∴在⊙O中,FH=EF=4,设求半径为r,则OH=8﹣r,在Rt△OFH中,r2﹣(8﹣r)2=42,解得r=5,故答案为:5.【点评】此题考查了切线的性质、垂径定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.13.(5分)如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是y=﹣(x+6)2+4.【考点】HD:根据实际问题列二次函数关系式.【专题】31:数形结合.【分析】根据题意得出A点坐标,进而利用顶点式求出函数解析式即可.【解答】解:由题意可得出:y=a(x+6)2+4,将(﹣12,0)代入得出,0=a(﹣12+6)2+4,解得:a=﹣,∴选取点B为坐标原点时的抛物线解析式是:y=﹣(x+6)2+4.故答案为:y=﹣(x+6)2+4.【点评】此题主要考查了二次函数的应用,利用顶点式求出函数解析式是解题关键.14.(5分)用直尺和圆规作△ABC,使BC=a,AC=b,∠B=35°,若这样的三角形只能作一个,则a,b间满足的关系式是sin35°=或b≥a.【考点】MC:切线的性质;N3:作图—复杂作图;T7:解直角三角形.【专题】26:开放型.【分析】首先画BC=a,再以B为顶点,作∠ABC=35°,然后再以点C为圆心、b为半径画圆弧交AB于点A,然后连接AC即可,①当AC⊥AB时,②当b≥a时三角形只能作一个.【解答】解:如图所示:若这样的三角形只能作一个,则a,b间满足的关系式是:①当AC⊥AB时,即sin35°=;②当b≥a时.故答案为:sin35°=或b≥a.【点评】此题主要考查了复杂作图,关键是掌握作一角等于已知角的方法.15.(5分)如图,边长为n的正方形OABC的边OA,OC在坐标轴上,点A1,A2,…,A n为OA的n等分点,点B1,B2,…,B n﹣1为CB的n等分点,连结A1B1,A2B2,…,﹣1A n﹣1B n﹣1,分别交曲线y=(x>0)于点C1,C2,…,C n﹣1.若C15B15=16C15A15,则n的值为17.(n为正整数)【考点】G6:反比例函数图象上点的坐标特征.【专题】2A:规律型.【分析】先根据正方形OABC的边长为n,点A1,A2,…,A n﹣1为OA的n等分点,点B1,B2,…,B n﹣1为CB的n等分点可知OA15=n,A15B15=15,再根据C15B15=16C15A15表示出C15的坐标,代入反比例函数的解析式求出n的值.【解答】解:∵正方形OABC的边长为n,点A1,A2,…,A n﹣1为OA的n等分点,点B1,B2,…,B n﹣1为CB的n等分点,∴OA1=A1A2=A2A3= (1)∴OA15=15,A15B15=n,∵C15B15=16C15A15,∴C15(15,),∵点C15在曲线y=(x>0)上,∴15×=n﹣2,解得n=17.故答案为:17.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上k=xy为定值是解答此题的关键.16.(5分)把标准纸一次又一次对开,可以得到均相似的“开纸”.现在我们在长为2、宽为1的矩形纸片中,画两个小矩形,使这两个小矩形的每条边都与原矩形纸的边平行,或小矩形的边在原矩形的边上,且每个小矩形均与原矩形纸相似,然后将它们剪下,则所剪得的两个小矩形纸片周长之和的最大值是4+.【考点】S6:相似多边形的性质.【专题】16:压轴题.【分析】根据相似多边形对应边的比相等的性质分别求出所剪得的两个小矩形纸片的长与宽,进而求解即可.【解答】解:∵在长为2、宽为1的矩形纸片中,画两个小矩形,使这两个小矩形的每条边都与原矩形纸的边平行,或小矩形的边在原矩形的边上,且每个小矩形均与原矩形纸相似,∴要使所剪得的两个小矩形纸片周长之和最大,则这两个小矩形纸片长与宽的和最大.∵矩形的长与宽之比为2:1,∴剪得的两个小矩形中,一个矩形的长为1,宽为=,∴另外一个矩形的长为2﹣=,宽为=,∴所剪得的两个小矩形纸片周长之和的最大值是2(1+++)=4+.故答案为:4+.【点评】本题考查了相似多边形的性质,分别求出所剪得的两个小矩形纸片的长与宽是解题的关键.三、解答题(本大题共8小题,第17-20小题每小题8分,第21小题10分,第22,23小题每小题8分,24小题14分,共80分)17.(8分)(1)计算:﹣4sin45°﹣+.(2)先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣.【考点】2C:实数的运算;4J:整式的混合运算—化简求值;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】11:计算题.【分析】(1)本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据去括号的法则,可去掉括号,根据合并同类项,可化简代数式,根据代数式求值,可得答案.【解答】解:(1)原式=2﹣2﹣1+2=1;(2)原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2=1+=.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?【考点】FH:一次函数的应用.【专题】33:函数思想.【分析】(1)根据CO与DE可得出A比B后出发1小时;由点C的坐标为(3,60)可求出B的速度;(2)利用待定系数法求出OC、DE的解析式,联立两函数解析式建立方程求解即可.【解答】解:(1)由图可知,A比B后出发1小时;B的速度:60÷3=20(km/h);(2)由图可知点D(1,0),C(3,60),E(3,90),设OC的解析式为s=kt,则3k=60,解得k=20,所以,s=20t,设DE的解析式为s=mt+n,则,解得,所以,s=45t﹣45,由题意得,解得,所以,B出发小时后两人相遇.【点评】本题考查利用一次函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,准确识图并获取信息是解题的关键.19.(8分)为了解某校七,八年级学生的睡眠情况,随机抽取了该校七,八年级部分学生进行调查,已知抽取七年级与八年级的学生人数相同,利用抽样所得的数据绘制如下统计图表.睡眠情况分组表(单位:时)组别睡眠时间xA x≤7.5B7.5≤x≤8.5C8.5≤x≤9.5D9.5≤x≤10.5E x≥10.5根据图表提供的信息,回答下列问题:(1)求统计图中的a;(2)抽取的样本中,八年级学生睡眠时间在C组的有多少人?(3)已知该校七年级学生有755人,八年级学生有785人,如果睡眠时间x(时)满足:7.5≤x≤9.5,称睡眠时间合格,试估计该校七、八年级学生中睡眠时间合格的共有多少人?【考点】V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图;VC:条形统计图.【专题】11:计算题;27:图表型.【分析】(1)根据扇形统计图,确定出a的值即可;(2)根据图1求出抽取的人数,乘以C占的百分比即可得到结果;(3)分别找出七八年级睡眠合格的人数,求出之和即可.【解答】解:(1)根据题意得:a=1﹣(35%+25%+25%+10%)=5%;(2)根据题意得:(6+19+17+10+8)×35%=21(人),则抽取的样本中,八年级学生睡眠时间在C组的有21人;(3)根据题意得:755×+785×(25%+35%)=453+471=924(人),答:该校七、八年级学生中睡眠时间合格的共有924人.【点评】此题考查了条形统计图,用样本估计总体,频数(率)分布表,以及扇形统计图,弄清题中的数据是解本题的关键.20.(8分)课本中有一道作业题:有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.【考点】H7:二次函数的最值;SA:相似三角形的应用.【专题】152:几何综合题.【分析】(1)设PN=2y(mm),则PQ=y(mm),然后根据相似三角形对应高的比等于相似比列出比例式求出即可;(2)设PN=x,用PQ表示出AE的长度,然后根据相似三角形对应高的比等于相似比列出比例式并用x表示出PN,然后根据矩形的面积公式列式计算,再根据二次函数的最值问题解答.【解答】解:(1)设矩形的边长PN=2y(mm),则PQ=y(mm),由条件可得△APN∽△ABC,∴=,即=,解得y=,∴PN=×2=(mm),答:这个矩形零件的两条边长分别为mm,mm;(2)设PN=x(mm),矩形PQMN的面积为S(mm2),由条件可得△APN∽△ABC,∴=,即=,解得PQ=80﹣x.∴S=PN•PQ=x(80﹣x)=﹣x2+80x=﹣(x﹣60)2+2400,∴S的最大值为2400mm2,此时PN=60mm,PQ=80﹣×60=40(mm).【点评】本题考查了相似三角形的应用,二次函数的最值问题,根据相似三角形对应高的比等于对应边的比列式表示出正方形的边长与三角形的边与这边上的高的关系是解题的关键,此题规律性较强,是道好题.21.(10分)九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图1,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数.(2)如图2,第二小组用皮尺量的EF为16米(E为护墙上的端点),EF的中点离地面FB 的高度为1.9米,请你求出E点离地面FB的高度.(3)如图3,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4米到达Q点,测得A的仰角为60°,求旗杆AE 的高度(精确到0.1米).备用数据:tan60°=1.732,tan30°=0.577,=1.732,=1.414.【考点】T9:解直角三角形的应用﹣坡度坡角问题;TA:解直角三角形的应用﹣仰角俯角问题.【专题】12:应用题;121:几何图形问题.【分析】(1)根据∠α=2∠CDB即可得出答案;(2)设EF的中点为M,过M作MN⊥BF,垂足为点N,过点E作EH⊥BF,垂足为点H,根据EH=2MN即可求出E点离地面FB的高度;(3)延长AE,交PB于点C,设AE=x,则AC=x+3.8,CQ=x﹣0.2,根据=,得出x+3.8x﹣0.2=3,求出x即可.【解答】解:(1)∵BD=BC,∴∠CDB=∠DCB,∴∠α=2∠CDB=2×38°=76°;(2)如图2,设EF的中点为M,过M作MN⊥BF,垂足为点N,过点E作EH⊥BF,垂足为点H,∵MN∥EH,MN=1.9,∴EH=2MN=3.8(米),∴E点离地面FB的高度是3.8米;(3)如图3,延长AE交直线PB于点C,设AE=x,则AC=x+3.8,∵∠APB=45°,∴PC=AC=x+3.8,∵PQ=4,∴CQ=x+3.8﹣4=x﹣0.2,∵tan∠AQC==tan60°=,∴=,x=≈5.7,∴AE≈5.7(米).答;旗杆AE的高度约是5.7米.【点评】此题考查了解直角三角形的应用,用到的知识点是仰角的定义,能作出辅助线借助仰角构造直角三角形是本题的关键.22.(12分)如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?【考点】H3:二次函数的性质;H6:二次函数图象与几何变换.【专题】23:新定义.【分析】(1)根据题意得出函数解析式,进而得出顶点坐标即可;(2)①首先得出函数解析式,进而利用函数平移规律得出答案;②分别求出两函数解析式,进而得出平移规律.【解答】解:(1)由题意可得出:y=x2﹣2x+1=(x﹣1)2,∴此函数图象的顶点坐标为:(1,0);(2)①由题意可得出:y=x2+4x﹣1=(x+2)2﹣5,∴将此函数的图象先向右平移1个单位,再向上平移1个单位后得到:y=(x+2﹣1)2﹣5+1=(x+1)2﹣4=x2+2x﹣3,∴图象对应的函数的特征数为:[2,﹣3];②∵一个函数的特征数为[2,3],∴函数解析式为:y=x2+2x+3=(x+1)2+2,∵一个函数的特征数为[3,4],∴函数解析式为:y=x2+3x+4=(x+)2+,∴原函数的图象向左平移个单位,再向下平移个单位得到.【点评】此题主要考查了二次函数的平移以及配方法求函数解析式,利用特征数得出函数解析式是解题关键.23.(6分)(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【专题】14:证明题;16:压轴题.【分析】(1)证△ADG≌△ABE,△F AE≌△F AG,根据全等三角形的性质求出即可;(2)过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.通过证明△ABM≌△ACE(SAS)推知全等三角形的对应边AM=AE、对应角∠BAM=∠CAE;然后由等腰直角三角形的性质和∠MAN=45°得到∠MAN=∠EAN=45°,所以△MAN≌△EAN(SAS),故全等三角形的对应边MN=EN;最后由勾股定理得到EN2=EC2+NC2即MN2=BM2+NC2.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△F AE和△GAF中,,∴△F AE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=【点评】本题主要考查正方形的性质,全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理的综合应用.24.(14分)如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求P A的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求P A:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y 轴的交点,若∠ACE=∠AEC,PD=2OD,求P A:PC的值.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质;KJ:等腰三角形的判定与性质;KQ:勾股定理;LD:矩形的判定与性质;S4:平行线分线段成比例;S9:相似三角形的判定与性质;SO:相似形综合题.【专题】16:压轴题.【分析】(1)易得点P的坐标是(2,1),即可得到P A的长.(2)易证∠AOB=45°,由角平分线的性质可得PM=PN,然后通过证明△ANP≌△CMP 即可求出P A:PC的值.(3)可分点P在线段OB的延长线上及其反向延长线上两种情况进行讨论.易证P A:PC =PN:PM,设OA=x,只需用含x的代数式表示出PN、PM的长,即可求出P A:PC的值.【解答】解:(1)∵点P与点B重合,点B的坐标是(2,1),∴点P的坐标是(2,1).∴P A的长为2;(2)过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,如图1所示.∵点A的纵坐标与点B的横坐标相等,∴OA=AB.∵∠OAB=90°,∴∠AOB=∠ABO=45°.∵∠AOC=90°,∴∠POC=45°.∵PM⊥x轴,PN⊥y轴,∴PM=PN,∠ANP=∠CMP=90°.∴∠NPM=90°.∵∠APC=90°.∴∠APN=90°﹣∠APM=∠CPM.在△ANP和△CMP中,,∴△ANP≌△CMP.∴P A=PC.∴P A:PC的值为1:1;(3)①若点P在线段OB的延长线上,过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,PM与直线AC的交点为F,如图2所示.∵∠APN=∠CPM,∠ANP=∠CMP,∴△ANP∽△CMP.∴.∵∠ACE=∠AEC,∴AC=AE.∵AP⊥PC,∴EP=CP.∵PM∥y轴,∴AF=CF,OM=CM.∴FM=OA.设OA=x,∵PF∥OA,∴△PDF∽△ODA.∴,∵PD=2OD,∴PF=2OA=2x,FM=x.∴PM=x.∵∠APC=90°,AF=CF,∴AC=2PF=4x.∵∠AOC=90°,∴OC=x.∵∠PNO=∠NOM=∠OMP=90°,∴四边形PMON是矩形.∴PN=OM=x.∴P A:PC=PN:PM=x:x=.②若点P在线段OB的反向延长线上,过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,PM与直线AC的交点为F,如图3所示.同理可得:PM=x,CA=2PF=4x,OC=x.∴PN=OM=OC=x.∴P A:PC=PN:PM=x:x=.综上所述:P A:PC的值为或.【点评】本题考查了角平分线的性质、全等三角形的判定与性质、相似三角形的判定与性质、矩形的判定与性质、等腰三角形的判定与性质、平行线等分线段定理、勾股定理等知识,综合性非常强.。
【2013版中考12年】浙江省嘉兴市、舟山市2002-2013年中考数学试题分类解析 专题02 代数
【2013版中考12年】浙江省嘉兴市、舟山市2002-2013年中考数学试题分类解析专题02 代数式和因式分解一、选择题1. (2003年浙江舟山、嘉兴4分)下列计算正确的是【】A .a+a=a2 B. (3a)2=6a2 C.(a+1)2=a2+1 D.a·a=a2【答案】D。
2. (2003年浙江舟山、嘉兴4分)已知a2b3=,则a bb+的值为【】A . 32B.43C.53D .353. (2004年浙江舟山、嘉兴4分)要使二次根式x1-有意义,那么x的取值范围是【】A.x>-1B. x<1C.x≥1 D .x≤14. (2004年浙江舟山、嘉兴4分)计算:1a1(1)a a-÷-的正确结果是【】A.a+1B.1C.a-1D.-15. (2005年浙江舟山、嘉兴4分)下列运算中,正确的是【】A .x2+x2=2x4 B. x2+x2=x4 C.x2x3=x6 D. x2x3=x5【答案】D。
【考点】合并同类项,同底幂乘法。
有意义,则字母x的取值范围是【】6. (2006年浙江舟山、嘉兴4分)要使根式x3A.x≠3 B.x≤3 C.x>3 D.x≥3【答案】D。
【考点】二次根式有意义的条件。
7. (2006年浙江舟山、嘉兴4分)下列计算正确的是【】.A.(ab)2=ab2 B.a2·a3=a4 C.a5+a5=2a5 D.(a2)3=a68. (2007年浙江舟山、嘉兴4分)因式分解(x-1)2-9的结果是【】A .(x+8)(x+1)B .(x+2)(x -4)C .(x -2)(x+4)D .(x -10)(x+8) 【答案】B 。
【考点】应用公式法因式分解,整体思想的应用。
9. (2008年浙江舟山、嘉兴4分)下列运算正确的是【 】 A .235a a a =B .22(ab)ab =C .329(a )a =D .632a a a ÷=10.(2009年浙江舟山、嘉兴4分)下列运算正确的是【 】A .()2a b 2a b --=--B .()2a b 2a b --=-+C .()2a b 2a 2b --=--D .()2a b 2a 2b --=-+【答案】D 。
浙江省中考数学复习 第一部分 考点研究 第一单元 数与式 第2课时 代数式与整式(含因式分解)试题-
第一单元数与式第2课时代数式与整式(含因式分解)(建议答题时间:40分钟)命题点1 列代数式及求值类型一列代数式1.(2017某某模拟)一项工程,甲单独做a小时完成,乙单独做b小时完成,甲、乙两人一起完成这项工程所需的时间为( )A. aba+b 小时 B.a+bab小时C. a+b小时D. 1a+b小时2.(2017某某)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%.已知1月份鸡的价格为24元/千克,设3月份鸡的价格为m元/千克,则( )A. m=24(1-a%-b%)B. m=24(1-a%)b%C. m=24-a%-b%D. m=24(1-a%)(1-b%)类型二 代数式求值3.(2017某某B 卷)若 x =-3,y =1,则代数式2x -3y +1的值为( )A. -10B. -8C. 4D. 104.(2017某某)若a -b =2,b -c =-3,则a -c 等于( )A. 1B. -1C. 5D. -55.已知a 2+2a -3=0,则代数式2a 2+4a -3的值是( ) A. -3 B. 0 C. 3 D. 66.(2017眉山)已知14m 2+14n 2=n -m -2,则1m -1n的值等于( ) A. 1 B. 0 C. -1 D. -147.(2017某某)已知a +b =10,a -b =8,则a 2-b 2=________. 8.(2017某某)已知2m -3n =-4,则代数式m (n -4)-n (m -6)的值为________. 命题点2 整式的相关概念9.(2017某某)单项式9x m y 3与单项式4x 2y n是同类项,则m +n 的值是( ) A. 2 B. 3 C. 4 D. 510.在下列式子12ab ,a +b 2,ab 2+b +1,3x +2y,x 2+x 3-6中,多项式有( ) A. 2个 B. 3个 C. 4个 D. 5个命题点3 整式的运算11.计算(-2a 2)2·a ,正确的是( )A. 2a 5B. -4a 5C. 4a 5D. 4a 612.(2017某某)计算(x +1)(x +2)的结果为()A. x 2+2B.x 2+3x +2C. x 2+3x +3D. x 2+2x +213.(2017某某)下列计算正确的是( )A. b 3·b 3=2b 3B. (a +2)(a -2)=a 2-4C. (ab 2)3=ab 6D. (8a -7b )-(4a -5b )=4a -12b14.(2017某某)下列计算正确的是( )A. 33=9B. (a -b )2=a 2-b 2C. (a 3)4=a 12D. a 2·a 3=a 615.(2017某某)下列运算正确的是( )A. 3a +b 6=a +b 2B. 2×a +b 3=2a +b 3 C. a 2=a D. |a |=a (a ≥0)16.(2017某某)计算(a 2)3+a 2·a 3-a 2÷a -3,结果是() A. 2a 3-a B. 2a 3-1a C . a 2D. a 617.下列各式中,计算正确的是( )A. 2x +3y =5xyB. (-x -y )(-x +y )=x 2-y 2C. (2x )3=6x 3D .(3xy )2÷xy =3xy18.下列运算正确的是( )A. 2a 6÷a 3=2a 2B. 2a 3+3a 3=5a 6C. (-a 3)2=a 6D. 2a -a =2命题点4 整式的化简及求值19.(2017某某)化简:a(3-2a)+2(a+1)(a-1).20.(2017某某A卷)计算:x(x-2y)-(x+y)2.21.(2017某某)先化简,再求值:(2x+1)2-2(x-1)(x+3)-2,其中x= 2.22.(2017某某)先化简,再求值:(a+b)(a-b)+(a-b)2-(2a2-ab),其中a,b是一元二次方程x2+x-2=0的两个实数根.23. 若代数式(x 2-y 2)(4x 2-y 2)+3x 2(4x 2-y 2)能化简为y 4,且x ≠0,求y x的值. 命题点5 因式分解24.(2017某某)下列各式由左到右的变形中,属于分解因式的是( )A. a (m +n )=am +anB. a 2-b 2-c 2=(a -b )(a +b )-c 2C. 10x 2-5x =5x (2x -1) D. x 2-16+6x =(x +4)(x -4)+6x 25.(2017某某)分解因式:2a 2+4a +2=________. 26.(2017某某)分解因式:ma 2+2mab +mb 2=______. 27.(2017潍坊)因式分解:x 2-2x +(x -2)=________. 28.(2017某某模拟)分解因式:a 3b -2a 2b +ab =________. 命题点6 数式规律探索题29. (2017某某)在一列数:a 1,a 2,a 3,…,a n 中,a 1=3,a 2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是( )A. 1B. 3C. 7D. 930. (2017某某)按照一定规律排列的n 个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则n 为( )A. 9B. 10C. 11D. 1231. (2017某某)观察下列各等式:11×2=1-12=1211×2+12×3=1-12+12-13=2311×2+12×3+13×4=1-12+12-13+13-14=34…请按上述规律,写出第n 个式子的计算结果(n 为正整数)________.(写出最简计算结果即可)32.(2017某某)观察下列各个等式的规律:第一个等式:22-12-12=1, 第二个等式:32-22-12=2, 第三个等式:42-32-12=3, …请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.答案1.A 【解析】由题意可得,甲、乙两人的工作效率分别为1a 、1b,则甲、乙两人一起完成这项工程所需时间为:11a +1b =ab a +b (小时). 2.D 【解析】∵1月份鸡的价格为24元/千克,2月份鸡的价格比1月份下降a %,∴2月份鸡的价格是24(1-a %)元/千克,∵3月份比2月份下降b %,∴3月份鸡的价格是m =24(1-a %)(1-b %)元/千克,故选D.3.BB.4.B 【解析】a -b =2,b -c =-3,两式相加得a -c =2-3=-1.5.C 【解析】a 2+2a =3,原式=2(a 2+2a )-3=6-3=3. 6.C 【解析】14m 2+14n 2=n -m -2,整理得14m 2+m +1+14n 2-n +1=0,∴(12m +1)2+(12n -1)2=0,∴12m +1=0,12n -1=0,解得m =-2,n =2,∴1m -1n =n -m mn =2-(-2)(-2)×2=-1.7.80 【解析】∵a +b =10,a -b =8,∴a 2-b 2=(a +b )(a -b )=10×8=80. 8.8 【解析】∵m (n -4)-n (m -6)=mn -4m -m n +6n =6n -4m =-2(2m -3n ),把2m -3n =-4代入,原式=-2×(-4)=8.9.D 【解析】由同类项的定义可知,相同字母的次数也相同,所以m =2,n =3,m +n =5.10.B 【解析】a +b 2,ab 2+b +1,x 2+x 3-6是多项式. 11.C 【解析】(-2a 2)2·a =4a 4·a =4a 5. 12.B 【解析】原式=x 2+2x +x +2=x 2+3x +2. 13.B 【解析】A 、原式=b 6,不符合题意;B 、原式=a 2-4,符合题意;C 、原式=a 3b 6,不符合题意;D 、原式=8a -7b -4a +5b =4a -2b ,不符合题意.14.C 【解析】∵33=27,故A 项错误;(a -b )2=a 2-2ab +b 2,B 项错误;(a 3)4=a 3×4=a 12,C 项正确;a 2·a 3=a 2+3=a 5,D 项错误.故选C. 15.D 【解析】16.D 【解析】原式=a2×3+a2+3-a2-(-3)=a6+a5-a5=a6,故选D. 17.B 【解析】逐项分析如下:18.C 【解析】19.解:原式=3a-2a2+2a2-2=3a-2.20.解:原式=x2-2xy-(x2+2xy+y2)=x2-2xy-x2-2xy-y2=-4xy-y2.21.解:原式=4x2+4x+1-2(x2+2x-3)-2=4x2+4x+1-2x2-4x+6-2=2x2+5.当x=2时,原式=2×(2)2+5=9.22.解:原式=a2-b2+a2-2ab+b2-2a2+ab=(a2+a2-2a2)+(-b2+b2)+(-2ab+ab)=-ab,∵a,b是一元二次方程x2+x-2=0的两个实数根,∴ab=-2,∴原式=-(-2)=2.23. 解:原式=(4x2-y2)(x2-y2+3x2) =(4x2-y2)(4x2-y2)=(4x2-y2)2,,∵原式=y4,∴(4x2-y2)2=y4,∵x≠0,∴4x2-y2=y2,∴4x2=2y2,∴2x=±2y,∴yx=± 2.24.C 【解析】A、该变形为去括号,故A不是因式分解;B、该等式右边没有化为几个整式的乘积形式,故B不是因式分解;C是因式分解;D、该等式右边没有化为几个整式的乘积形式,故D不是因式分解.25.2(a+1)2【解析】原式=2(a2+2a+1)=2(a+1)2.26.m(a+b)2【解析】先提取公因式,再利用公式法进行因式分解.原式=m(a2+2ab+b2)=m(a+b)2.27.(x-2)(x+1) 【解析】先将第一、二项分解为x(x-2),再提公因式(x-2),则原式=x(x-2)+(x-2)=(x-2)(x+1).28.ab(a-1)2【解析】a3b-2a2b+ab=a3b-a2b-a2b+ab=a2b(a-1)-ab(a-1)=(a-1)(a2b-ab)=ab(a-1)229.B 【解析】由题意知,数列a1,a2,a3,…,a n对应的数为3,7,1,7,7,9,3,7,1,7,7,9,…,可以看出数列中的数每6个循环一次,∵2017÷6=336×6+1,∴这一列数中的第2017个数是3.30.B 【解析】观察这组数据,可发现一个负数一个正数交替出现,且后一个数的绝对值是前一个数绝对值的2倍,第一个数是-2,所以第n个数为(-2)n,根据最后三个数的和为768得,(-2)n-2+(-2)n-1+(-2)n=768,即(-2)n-2(1-2+4)=768,所以(-2)n -2=256,所以n=10.31.nn+1【解析】观察各等式可得,第n个等式为11×2+12×3+…+1(n-1)n+1n (n +1)=1-12+12-13+…+1n -1-1n +1n -1n +1=1-1n +1=n n +1. 32.解:(1)第四个等式:52-42-12=4; (2)第n 个等式:(n +1)2-n 2-12=n , 证明:∵(n +1)2-n 2-12=(n +1+n )(n +1-n )-12=n , ∴(n +1)2-n 2-12=n.。
2014年浙江省杭州市中考数学试卷-答案
3
3
3
3
(2) 8 3
【解析】解:(1)圆心坐标分别为
圆 P 与直线 l1 , l2 相切, P 在 y 轴正半轴时,圆心 P1(0,2) ;
圆 P 与直线 l1 , l 相切. P 在第一象限时,圆心 P2 (
3 ,1) ; 3
圆 P 与直线 l2 , l 相切, P 在第一象限时,圆心 P3 ( 3,1)
图为扇形,扇形的半径为 5,弧长为 6 ,所以扇形的面积为 1 6 5=15 ,故选 B. 2
【考点】几何体的三视图及圆锥侧面积的计算.
3.【答案】D 【解析】在 RtABC 中, A 40 ,B 50 , BC 3 , tan B AC , AC BC tan B 3tan50 ,故
2
【考点】统计图与中位数.
15.【答案】 y 1 x2 1 x 2 或 y 1 x2 3 x 2
84
84
【解析】 抛物线 y ax2 bx c(a≠0) 过点 A(0,2) , B(4,3) 和点 C,c 2 ,16a 4b 2 3 , 点 C 在
2/8
【解析】解方程组
1
3 1 3
x x
y y
4 2
得
x=9 , y 1
x
y
9
(1)
8
.
【考点】二元一次方程组的解.
14.【答案】15.6
【解析】中位数是一组按大小顺序排列起来的数据中处于中间位置的一个数或中间两个数的平均数由统计
图可以看出六个整点的气温分别是 4.5℃ ,10.5℃,15.3℃ ,19.6℃, 20.1℃和15.9℃,按从小到大顺序排列为 4.5℃,10.5℃,15.3℃,15.9℃,19.6℃, 20.1℃.中位数是 15.3+15.9 =15.6℃.
浙教版2014年数学中考第一轮复习分类测试--代数式-1.doc
浙教版2014年数学中考第一轮复习分类测试--代数式(一)答案二.填空题11. 2(x+2)(x-2) 12. 1 13. 13 14. 8 15. 54+a b ()16. 2 三.解答题 17(1)(2)原式22)1(2)1113(--÷----=x x x x x2)1(1)2)(2(2--⋅--+-=x x x x x22+--=x xb a b a b a ab ab ba ab b a ab b a a b b a abba -=-+⨯==-÷+=-÷+1))(()()(22 当a =1,b =-2时.原式=()312-111=-=-b a(2)解:原式=22444a a a a -+++=224a +当a =时,原式=24+=1019.解:原式=(23)(23)1233)233223x x x x x x +--+⋅⋅⋅+-=23x ;由23x =23,可,解得x = 18(1)解原式=20.(1)解:原式=b a b b a b a b a a -⨯-+--))(()(ba b b a b a b -⨯-+=))((b a +-=1[]2(2)(2)228(2)(2)22x x x x x x x x +----⨯=-++原式= (3)解:原式()()111111a a a a a a -+++=⨯+-+2111a a a -=+-- 11a a +=-. (4)解:原式=33)347(331034)32(33912-=+-+=-++--21(本题12分)将下列各式进行因式分解:(1)am an bm bn +++ (2)22944x y y ---(3)3225105x x y xy -+ (4) 32412xx x --(1)原式=m(a+b)+n(a+b)=(a+b)(m+n)()()22(2)32(32)(32)x y x y x y -+=++--解:原式=222(3)2)5()xy y x x y -+=-解原式=5x(x2(4)412)(6)(2)x x x x --=-+解原式=x(x22.(1)如果2xa =,3ya=,23x y+求a2323(1)2,4,3,27427108x x y y x ya a a a+=∴==∴=∴=⨯= 解a(2)①当a =3,b =4时, a 2+b 2+2ab =2()a b +=49.②答案不唯一,式子写对给1分,因式分解正确给2分.例如,若选a 2,b 2,则a 2-b 2=(a +b )(a -b ). (若选a 2,2ab ,则a 2±2ab =a (a ±2b ).)223.(1)∴∴∴我们发现这一列数奇数为负数,偶数为正数.第一行1个数;第2行3个数;第3行5个数...第n 行2n-1个数1+3+5+7+9+...+2n-1=n 第99行共有数为1+3+5+7+...+197=9801,即第100行第1个数为9802,第100行第2列的数为-9803(2)让我们轻松一下,做一个数字游戏: 第一步:取一个自然数n 1=5,计算n 12+1得a 1; 第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2; 第三步:算出a 2的各位数字之和得n 3,计算n 32+1得a 3;………… 依此类推,求2014a212223342014(2)5126,268,656511,122,5,26...20143671......1,26a n a n a n a a =+==+===+====÷=∴= 解。
精编版-2013浙江省金华市中考数学真题及答案
2013浙江省金华市中考数学真题及答案一、选择题(本大题共10小题,每小题3分,共30分)1.在数0,2,﹣3,﹣1.2中,属于负整数的是()A.0 B.2 C.﹣3 D.﹣1.22.化简﹣2a+3a的结果是()A.﹣a B.a C.5a D.﹣5a3.用3个相同的立方块搭成的几何体如图所示,则它的主视图是()A. B. C. D.4.若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解是()A.x≤2 B.x>1 C.1≤x<2 D.1<x≤25.如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是()A.80° B.70° C.60° D.50°6.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别A型B型AB型O型频率0.4 0.35 0.1 0.15A.16人 B.14人 C.4人 D.6人7.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4 B.x﹣6=4 C.x+6=4 D.x+6=﹣48.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4 B.5 C.6 D.89.若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点()A.(2,4) B.(﹣2,﹣4) C.(﹣4,2) D.(4,﹣2)10.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1cm的速度从点A出发,沿折线AC ﹣CB运动,到点B停止,过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示,当点P运动5秒时,PD的长是()A.1.5cm B.1.2cm C.1.8cm D.2cm二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:x2﹣2x= .12.分式方程120x-=的解是.13.合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则学生B坐在2号座位的概率是.14.如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.15.如图,四边形ABCD与四边形AEFG都是菱形,其中点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则ABAE=.16.如图,点P是反比例函数kyx=(k<0)图象上的点,PA垂直x轴于点A(﹣1,0),点C的坐标为(1,0),PC交y轴于点B,连结AB,已知5(1)k的值是;(2)若M(a,b)是该反比例函数图象上的点,且满足∠MBA<∠ABC,则a的取值范围是.三、解答题(本大题共8小题,共66分)17.(6分)计算:18|2|2⎛⎫--+-⎪⎝⎭.18.(6分)先化简,再求值:(a+2)2+(1﹣a)(1+a),其中34a=-.19.(6分)一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高3BE m=,斜面坡角为30°,求木箱端点E距地面AC的高度EF.20.(8分)如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.21.(8分)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求AD的长.22.(10分)本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.根据统计图解答下列问题:(1)本次测试的学生中,得4分的学生有多少人?(2)本次测试的平均分是多少分?(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行第二次测试,测得成绩的最低分为3分,且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?23.(10分)如图,已知抛物线y=12x2+bx与直线y=2x交于点O(0,0),A(a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E.(1)求抛物线的函数解析式;(2)若点C为OA的中点,求BC的长;(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.24.(12分)如图1,点A是x轴正半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B 作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点,连结AC,BC,CD,设点A的横坐标为t.(1)当t=2时,求CF的长;(2)①当t为何值时,点C落在线段BD上;②设△BCE的面积为S,求S与t之间的函数关系式;(3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到△C′D′F′,再将A,B,C′,D′为顶点的四边形沿C′F′剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的点C′的坐标.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.在数0,2,﹣3,﹣1.2中,属于负整数的是()A.0 B.2 C.﹣3 D.﹣1.2【知识考点】有理数【思路分析】先在这些数0,2,﹣3,﹣1.2中,找出属于负数的数,然后在这些负数的数中再找出属于负整数的数即可.【解答过程】解:在这些数0,2,﹣3,﹣1.2中,属于负数的有﹣3,﹣1.2,则属于负整数的是﹣3;故选C.【总结归纳】此题考查了有理数,根据实数的相关概念及其分类方法进行解答,然后判断出属于负整数的数即可.2.化简﹣2a+3a的结果是()A.﹣a B.a C.5a D.﹣5a【知识考点】合并同类项【思路分析】合并同类项,系数相加字母和字母的指数不变.【解答过程】解:﹣2a+3a=(﹣2+3)a=a.故选B.【总结归纳】本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.3.用3个相同的立方块搭成的几何体如图所示,则它的主视图是()A. B. C. D.【知识考点】简单组合体的三视图.【思路分析】从正面看到的图叫做主视图,根据图中立方体摆放的位置判定则可.【解答过程】解:由图可知:右上角有1个小正方形,下面有2个小正方形,故选:A.【总结归纳】此题主要考查了三种视图中的主视图,比较简单,注意主视图是从物体的正面看得到的视图.4.若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解是()A.x≤2 B.x>1 C.1≤x<2 D.1<x≤2【知识考点】在数轴上表示不等式的解集.【思路分析】根据数轴表示出解集即可.【解答过程】解:根据题意得:不等式组的解集为1<x≤2.故选D【总结归纳】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是()A.80° B.70° C.60° D.50°【知识考点】平行线的性质;三角形内角和定理【思路分析】根据平行线性质求出∠D,根据三角形的内角和定理得出∠C=180°﹣∠D﹣∠COD,代入求出即可.【解答过程】解:∵AB∥CD,∴∠D=∠A=20°,∵∠COD=100°,∴∠C=180°﹣∠D﹣∠COD=60°,故选C.【总结归纳】本题考查了三角形的内角和定理和平行线的性质的应用,关键是求出∠D的度数和得出∠C=180°﹣∠D﹣∠COD.6.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别A型B型AB型O型频率0.4 0.35 0.1 0.15A.16人 B.14人 C.4人 D.6人【知识考点】频数与频率.【思路分析】根据频数和频率的定义求解即可.【解答过程】解:本班A型血的人数为:40×0.4=16.故选A.【总结归纳】本题考查了频数和频率的知识,属于基础题,掌握频数和频率的概念是解答本题的关键.7.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4 B.x﹣6=4 C.x+6=4 D.x+6=﹣4【知识考点】解一元二次方程-直接开平方法.【思路分析】方程两边直接开平方可达到降次的目的,进而可直接得到答案.【解答过程】解:(x+6)2=16,两边直接开平方得:x+6=±4,则:x+6=4,x+6=﹣4,故选:D.【总结归纳】本题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.8.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4 B.5 C.6 D.8【知识考点】垂径定理;勾股定理【思路分析】根据垂径定理求出BC,根据勾股定理求出OC即可.【解答过程】解:∵OC⊥AB,OC过O,∴BC=AC=AB=×16=8,在Rt△OCB中,由勾股定理得:OC===6,故选C.【总结归纳】本题考查了勾股定理和垂径定理的应用,关键是求出BC的长.9.若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点()A.(2,4) B.(﹣2,﹣4) C.(﹣4,2) D.(4,﹣2)【知识考点】二次函数图象上点的坐标特征.【思路分析】先确定出二次函数图象的对称轴为y轴,再根据二次函数的对称性解答.【解答过程】解:∵二次函数y=ax2的对称轴为y轴,∴若图象经过点P(﹣2,4),则该图象必经过点(2,4).故选A.【总结归纳】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数图象的对称性,确定出函数图象的对称轴为y轴是解题的关键.10.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1cm的速度从点A出发,沿折线AC ﹣CB运动,到点B停止,过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示,当点P运动5秒时,PD的长是()A.1.5cm B.1.2cm C.1.8cm D.2cm【知识考点】动点问题的函数图象.【思路分析】根据图2可判断AC=3,BC=4,则可确定t=5时BP的值,利用sin∠B的值,可求出PD.【解答过程】解:由图2可得,AC=3,BC=4,当t=5时,如图所示:,此时AC+CP=5,故BP=AC+BC﹣AC﹣CP=2,∵sin∠B==,∴PD=BPsin∠B=2×==1.2cm.故选B.【总结归纳】本题考查了动点问题的函数图象,解答本题的关键是根据图2得到AV、BC的长度,此题难度一般.二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:x2﹣2x= .【知识考点】因式分解-提公因式法【思路分析】提取公因式x,整理即可.【解答过程】解:x2﹣2x=x(x﹣2).【总结归纳】本题考查了提公因式法分解因式,因式分解的第一步:有公因式的首先提取公因式.12.分式方程120x-=的解是.【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答过程】解:去分母得:1﹣2x=0,解得:x=,经检验x=是方程的解.故答案为:x=【总结归纳】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则学生B坐在2号座位的概率是.【知识考点】列表法与树状图法.【思路分析】根据题意画出树状图,找出所有可能的情况数,找出学生B坐在2号座位的情况数,即可求出所求的概率.【解答过程】解:根据题意得:所有可能的结果有6种,其中学生B坐在2号座位的情况有2种,则P==.故答案为:【总结归纳】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.【知识考点】角平分线的性质.【思路分析】过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【解答过程】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是×DE×BC=×10×3=15,故答案为:15.【总结归纳】本题考查了角平分线性质和三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.15.如图,四边形ABCD与四边形AEFG都是菱形,其中点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则ABAE=.【知识考点】菱形的性质;含30度角的直角三角形;等腰直角三角形;旋转的性质.【思路分析】根据菱形的性质可得出∠BAE=30°,∠B=45°,过点E作EM⊥AB于点M,设EM=x,则可得出AB、AE的长度,继而可得出的值.【解答过程】解:∵∠BAD=135°,∠EAG=75°,四边形ABCD与四边形AEFG都是菱形,∴∠B=180°﹣∠BAD=45°,∠BAE=∠BAC﹣∠EAC=30°,过点E作EM⊥AB于点M,设EM=x,在Rt△AEM中,AE=2EM=2x,AM=x,在Rt△BEM中,BM=x,则==.故答案为:.【总结归纳】本题考查了菱形的性质及解直角三角形的知识,属于基础题,关键是掌握菱形的对角线平分一组对角.16.如图,点P是反比例函数kyx=(k<0)图象上的点,PA垂直x轴于点A(﹣1,0),点C的坐标为(1,0),PC交y轴于点B,连结AB,已知5(1)k的值是;(2)若M(a,b)是该反比例函数图象上的点,且满足∠MBA<∠ABC,则a的取值范围是.【知识考点】反比例函数综合题.【思路分析】(1)设P(﹣1,t).根据题意知,A(﹣1,0),B(0,2),C(1,0),由此易求直线BC的解析式y=﹣2x+2.把点P的坐标代入直线BC的解析式可以求得点P的坐标,由反比例函数图象上点的坐标特征即可求得k的值;(2)如图,延长线段BC交抛物线于点M,由图可知,当x<a时,∠MBA<∠ABC;过点C 作直线AB的对称点C′,连接BC′并延长BC′交抛物线于点M′,当x<a时,∠MBA<∠ABC.【解答过程】解:(1)如图,PA垂直x轴于点A(﹣1,0),∴OA=1,可设P(﹣1,t).又∵AB=,∴OB===2,∴B(0,2).又∵点C的坐标为(1,0),∴直线BC的解析式是:y=﹣2x+2.∵点P在直线BC上,∴t=2+2=4∴点P的坐标是(﹣1,4),∴k=﹣4.故填:﹣4;(2)①如图1,延长线段BC交双曲线于点M.由(1)知,直线BC的解析式是y=﹣2x+2,反比例函数的解析式是y=﹣.则,解得,或(不合题意,舍去).根据图示知,当0<a<2时,∠MBA<∠ABC;②如图,过点C作直线AB的对称点C′,连接BC′并延长BC′交抛物线于点M′.∵A(﹣1,0),B(0,2),∴直线AB的解析式为:y=2x+2.∵C(1,0),∴C′(﹣,),则易求直线BC′的解析式为:y=x+2,∴,解得:x=或x=,则根据图示知,当<a<时,∠MBA<∠ABC.综合①②知,当0<a<2或<a<时,∠MBA<∠ABC.故答案是:0<a<2或<a<.【总结归纳】本题综合考查了待定系数法求一次函数的解析式,反比例函数图象上点的坐标特征以及分式方程组的解法.解答(2)题时,一定要分类讨论,以防漏解.另外,解题的过程中,利用了“数形结合”的数学思想.三、解答题(本大题共8小题,共66分)17.(618|22⎛⎫--+-⎪⎝⎭.【知识考点】实数的运算;零指数幂.【思路分析】本题涉及二次根式化简、绝对值、零指数幂三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答过程】解:﹣|﹣|+(﹣)0=2﹣+1=+1.【总结归纳】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式化简、绝对值、零指数幂等考点的运算.18.(6分)先化简,再求值:(a+2)2+(1﹣a)(1+a),其中34a=-.【知识考点】整式的混合运算—化简求值.【思路分析】原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并得到最简结果,将a的值代入计算即可求出值.【解答过程】解:原式=a2+4a+4+1﹣a2=4a+5,当a=﹣时,原式=4×(﹣)+5=﹣3+5=2.【总结归纳】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.19.(6分)一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高3BE m=,斜面坡角为30°,求木箱端点E距地面AC的高度EF.【知识考点】解直角三角形的应用-坡度坡角问题.【思路分析】连接AE,在Rt△ABE中求出AE,根据∠EAB的正切值求出∠EAB的度数,继而得到∠EAF的度数,在Rt△EAF中,解出EF即可得出答案.【解答过程】解:连接AE,在Rt△ABE中,AB=3m,BE=m,则AE==2m,又∵tan∠EAB==,∴∠EAB=30°,在Rt△AEF中,∠EAF=∠EAB+∠BAC=60°,∴EF=AE×sin∠EAF=2×=3m.答:木箱端点E距地面AC的高度为3m.【总结归纳】本题考查了坡度、坡角的知识,解答本题的关键是构造直角三角形,熟练运用三角函数求线段的长度.20.(8分)如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.【知识考点】反比例函数的应用.【思路分析】(1)根据面积为60m2,可得出y与x之间的函数关系式;(2)由(1)的关系式,结合x、y都是正整数,可得出x的可能值,再由三边材料总长不超过26m,DC的长<12,可得出x、y的值,继而得出可行的方案.【解答过程】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=.(2)由y=,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.【总结归纳】本题考查了反比例函数的应用,根据矩形的面积公式得出y与x的函数关系式是关键,第二问注意结合实际解答.21.(8分)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求AD的长.【知识考点】切线的性质;圆周角定理;弧长的计算【思路分析】(1)连接AE,求出AE⊥BC,根据等腰三角形性质求出即可;(2)求出∠ABC,求出∠ABF,即可求出答案;(3)求出∠AOD度数,求出半径,即可求出答案.【解答过程】解:(1)连接AE,∵AB是⊙O直径,∴∠AEB=90°,即AE⊥BC,∵AB=AC,∴BE=CE.(2)∵∠BAC=54°,AB=AC,∴∠ABC=63°,∵BF是⊙O切线,∴∠ABF=90°,∴∠CBF=∠ABF﹣∠ABC=27°.(3)连接OD,∵OA=OD,∠BAC=54°,∴∠AOD=72°,∵AB=6,∴OA=3,∴弧AD的长是=.【总结归纳】本题考查了切线的性质,等腰三角形的性质,弧长公式,圆周角定理的应用,主要考查学生运用定理进行推理和计算的能力.22.(10分)本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.根据统计图解答下列问题:(1)本次测试的学生中,得4分的学生有多少人?(2)本次测试的平均分是多少分?(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行第二次测试,测得成绩的最低分为3分,且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?【知识考点】条形统计图;二元一次方程组的应用;扇形统计图;加权平均数.【思路分析】(1)用总人数乘以得4分的学生所占的百分百即可得出答案;(2)根据平均数的计算公式把所有人的得分加起来,再除以总人数即可;(3)先设第二次测试中得4分的学生有x人,得5分的学生有y人,再根据成绩的最低分为3分,得4分和5分的人数共有45人,平均分比第一次提高了0.8分,列出方程组,求出x,y的值即可.【解答过程】解:(1)根据题意得:得4分的学生有50×50%=25(人),答:得4分的学生有25人;(2)根据题意得:平均分==3.7(分);(3)设第二次测试中得4分的学生有x人,得5分的学生有y人,根据题意得:,解得:,答:第二次测试中得4分的学生有15人,得5分的学生有30人.【总结归纳】此题考查了条形统计图、扇形统计图、平均数和二元一次方程组的解法,掌握平均数的计算公式以及二元一次方程组的解法,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(10分)如图,已知抛物线y=12x2+bx与直线y=2x交于点O(0,0),A(a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E.(1)求抛物线的函数解析式;(2)若点C为OA的中点,求BC的长;(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.【知识考点】二次函数综合题.【思路分析】(1)将点A的坐标代入直线解析式求出a的值,继而将点A的坐标代入抛物线解析式可得出b的值,继而得出抛物线解析式;(2)根据点A的坐标,求出点C的坐标,将点B的纵坐标代入求出点B的横坐标,继而可求出BC的长度;(3)根据点D的坐标,可得出点E的坐标,点C的坐标,继而确定点B的坐标,将点B的坐标代入抛物线解析式可求出m,n之间的关系式.【解答过程】解:(1)∵点A(a,12)在直线y=2x上,∴12=2a,解得:a=6,又∵点A是抛物线y=x2+bx上的一点,将点A(6,12)代入y=x2+bx,可得b=﹣1,∴抛物线解析式为y=x2﹣x.(2)∵点C是OA的中点,∴点C的坐标为(3,6),把y=6代入y=x2﹣x,解得:x1=1+,x2=1﹣(舍去),故BC=1+﹣3=﹣2.(3)∵点D的坐标为(m,n),∴点E的坐标为(n,n),点C的坐标为(m,2m),∴点B的坐标为(n,2m),把点B(n,2m)代入y=x2﹣x,可得m=n2﹣n,∴m、n之间的关系式为m=n2﹣n.【总结归纳】本题考查了二次函数的综合,涉及了矩形的性质、待定系数法求二次函数解析式的知识,解答本题需要同学们能理解矩形四个顶点的坐标之间的关系.24.(12分)如图1,点A是x轴正半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B 作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点,连结AC,BC,CD,设点A的横坐标为t.(1)当t=2时,求CF的长;(2)①当t为何值时,点C落在线段BD上;②设△BCE的面积为S,求S与t之间的函数关系式;(3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到△C′D′F′,再将A,B,C′,D′为顶点的四边形沿C′F′剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的点C′的坐标.【知识考点】相似形综合题.【思路分析】(1)由Rt△ACF∽Rt△BAO,得CF=OA=t,由此求出CF的值;(2)①由Rt△ACF∽Rt△BAO,可以求得AF的长度;若点C落在线段BD上,则有△DCF∽△DBO,根据相似比例式列方程求出t的值;②有两种情况,需要分类讨论:当0<t≤8时,如题图1所示;当t>8时,如答图1所示.(3)本问涉及图形的剪拼.在△CDF沿x轴左右平移的过程中,符合条件的剪拼方法有三种,需要分类讨论,分别如答图2﹣4所示.【解答过程】解:(1)由题意,易证Rt△ACF∽Rt△BAO,∴.∵AB=2AM=2AC,∴CF=OA=t.当t=2时,CF=1.(2)①由(1)知,Rt△ACF∽Rt△BAO,∴,∴AF=OB=2,∴FD=AF=2,.∵点C落在线段BD上,∴△DCF∽△DBO,∴,即,解得t=﹣2或t=﹣﹣2(小于0,舍去)∴当t=﹣2时,点C落在线段BD上;②当0<t≤8时,如题图1所示:S=BE•CE=(t+2)•(4﹣t)=t2+t+4;当t>8时,如答图1所示:S=BE•CE=(t+2)•(t﹣4)=t2﹣t﹣4.(3)符合条件的点C的坐标为:(12,4),(8,4)或(2,4).理由如下:在△CDF沿x轴左右平移的过程中,符合条件的剪拼方法有三种:方法一:如答图2所示,当F′C′=AF′时,点F′的坐标为(12,0),根据△C′D′F′≌△AHF′,△BC′H为拼成的三角形,此时C′的坐标为(12,4);方法二:如答图3所示,当点F′与点A重合时,点F′的坐标为(8,0),根据△OC′A≌△BAC′,可知△OC′D′为拼成的三角形,此时C′的坐标为(8,4);方法三:当BC′=F′D′时,点F′的坐标为(2,0),根据△BC′H≌△D′F′H,可知△AF′C′为拼成的三角形,此时C′的坐标为(2,4).【总结归纳】本题考查了坐标平面内几何图形的多种性质,是一道难度较大的中考压轴题.涉及到的知识点包括相似三角形、全等三角形、点的坐标、几何变换(旋转、平移、对称)、图形的剪拼、解方程等,非常全面;分类讨论的思想贯穿第(2)②问和第(3)问,第(3)问还考查了几何图形的空间想象能力.本题涉及考点众多,内涵丰富,对考生的数学综合能力要求较高.。
2014浙江省各市中考压轴题集锦及答案
浙江省杭州市2014年中考数学试卷10.(3分)(2014•杭州)已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F关于BD对称,AC与BD相交于点G,则()cos∠AGB=15.(4分)(2014•杭州)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为.16.(4分)(2014•杭州)点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH=AC,则∠ABC所对的弧长等于(长度单位).21.(10分)(2014•杭州)在直角坐标系中,设x轴为直线l,函数y=﹣x,y=x的图象分别是直线l1,l2,圆P(以点P为圆心,1为半径)与直线l,l1,l2中的两条相切.例如(,1)是其中一个圆P的圆心坐标.(1)写出其余满足条件的圆P的圆心坐标;(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.22.(12分)(2014•杭州)菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=4,动点P在线段BD上从点B向点D运动,PF⊥AB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称.设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,BP=x.(1)用含x的代数式分别表示S1,S2;(2)若S1=S2,求x的值.23.(12分)(2014•杭州)复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.浙江省丽水市、衢州市2014年中考数学试卷9.(3分)(2014•丽水)如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于()A. B. C.4 D.310.(3分)(2014•丽水)如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣ B.y=﹣ C.y=﹣ D.y=﹣14.(4分)(2014•丽水)有一组数据如下:3,a,4,6,7.它们的平均数是5,那么这组数据的方差为.16.(4分)(2014•丽水)如图,点E,F在函数y=(x>0)的图象上,直线EF分别与x轴、y轴交于点A,B,且BE:BF=1:m.过点E作EP⊥y轴于P,已知△OEP的面积为1,则k值是,△OEF的面积是(用含m的式子表示)22.(10分)(2014•丽水)如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠FGD的值.23.(10分)(2014•丽水)提出问题:(1)如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;类比探究:(2)如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O,探究线段EF与HG的数量关系,并说明理由;综合运用:(3)在(2)问条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO,求图中阴影部分的面积.24.(12分)(2014•丽水)如图,二次函数y=ax2+bx(a≠0)的图象经过点A (1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y 轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.(1)求该二次函数的解析式;(2)求点B坐标和坐标平面内使△EOD∽△AOB的点E的坐标;(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?浙江省台州市2014年中考数学试卷9.(4分)(2014•台州)如图,F是正方形ABCD的边CD上的一个动点,BF 的垂直平分线交对角线AC于点E,连接BE,FE,则∠EBF的度数是()A .45°B.50°C.60°D.不确定10.(4分)(2014•台州)如图,菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为()A .4:3 B.3:2 C.14:9 D.17:914.(5分)(2014•台州)抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.15.(5分)(2014•台州)如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为cm.16.(5分)(2014•台州)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n= (用含字母x和n的代数式表示).23.(12分)(2014•台州)某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.24.(14分)(2014•台州)研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定.定义:六个内角相等的六边形叫等角六边形.(1)研究性质①如图1,等角六边形ABCDEF中,三组正对边AB与DE,BC与EF,CD 与AF分别有什么位置关系?证明你的结论②如图2,等角六边形ABCDEF中,如果有AB=DE,则其余两组正对边BC 与EF,CD与AF相等吗?证明你的结论③如图3,等角六边形ABCDEF中,如果三条正对角线AD,BE,CF相交于一点O,那么三组正对边AB与DE,BC与EF,CD与AF分别有什么数量关系?证明你的结论.(2)探索判定三组正对边分别平行的六边形,至少需要几个内角为120°,才能保证六边形一定是等角六边形?2014年浙江省绍兴市中考数学试卷9.(4分)(2014年浙江绍兴)将一张正方形纸片,按如图步骤①,②,沿虚线对着两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是()A.B.C.D.10.(4分)(2014年浙江绍兴)如图,汽车在东西向的公路l上行驶,途中A,B,C,D四个十字路口都有红绿灯.AB之间的距离为800米,BC为1000米,CD为1400米,且l上各路口的红绿灯设置为:同时亮红灯或同时亮绿灯,每次红(绿)灯亮的时间相同,红灯亮的时间与绿灯亮的时间也相同.若绿灯刚亮时,甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,这两辆汽车通过四个路口时都没有遇到红灯,则每次绿灯亮的时间可能设置为()A.50秒B.45秒C.40秒D.35秒14.(5分)(2014年浙江绍兴)用直尺和圆规作△ABC,使BC=a,AC=b,∠B=35°,若这样的三角形只能作一个,则a,b间满足的关系式是.15.(5分)(2014年浙江绍兴)如图,边长为n的正方形OABC的边OA,OC 在坐标轴上,点A1,A2…A n﹣1为OA的n等分点,点B1,B2…B n﹣1为CB的n等分点,连结A1B1,A2B2,…A n﹣1B n﹣1,分别交曲线y=(x>0)于点C1,C2,…,C n﹣1.若C15B15=16C15A15,则n的值为.(n为正整数)16.(5分)(2014年浙江绍兴)把标准纸一次又一次对开,可以得到均相似的“开纸”.现在我们在长为2、宽为1的矩形纸片中,画两个小矩形,使这两个小矩形的每条边都与原矩形纸的边平行,或小矩形的边在原矩形的边上,且每个小矩形均与原矩形纸相似,然后将它们剪下,则所剪得的两个小矩形纸片周长之和的最大值是.21.(10分)(2014年浙江绍兴)九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图1,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数.(2)如图2,第二小组用皮尺量的EF为16米(E为护墙上的端点),EF的中点离地面FB的高度为1.9米,请你求出E点离地面FB的高度.(3)如图3,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4米到达Q点,测得A的仰角为60°,求旗杆AE的高度(精确到0.1米).备用数据:tan60°=1.732,tan30°=0.577,=1.732,=1.414.22.(12分)(2014年浙江绍兴)如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?23.(6分)(2014年浙江绍兴)(1)如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.25.(14分)(2014年浙江绍兴)如图,在平面直角坐标系中,直线l平行x 轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.。
2013年浙江省各市中考分类解析专题2代数式和因式分解
浙江省各市2013年中考数学分类解析 专题2 代数式和因式分解一、选择题1. (2013年浙江杭州3分)下列计算正确的是【 】 A .m 3+m 2=m 5B .m 3m 2=m 6C .()()21m 1m m 1-+=-D .()4221m m 1-=--2. (2013年浙江杭州3分)若a b 3a b 7+=-=,,则ab=【 】 A .-10 B .-40 C .10D .403. (2013年浙江杭州3分)如图,设k=(a >b >0),则有【 】A.k>2 B.1<k<2 C. D.4. (2013年浙江舟山3分)下列运算正确的是【】A.x2+x3=x5 B.2x2﹣x2=1 C.x2•x3=x6 D.x6÷x3=x3-+的结果是【】5. (2013年浙江金华、丽水3分)化简2a3aA.-a B.a C.5a D.-5a()-+=-+=.故选B。
2a3a23a a6. (2013年浙江宁波3分)下列计算正确的是【】A.a2+a2=a4 B.2a﹣a=2 C.(ab)2=a2b2 D.(a2)3=a57. (2013年浙江湖州3分)计算6x3•x2的结果是【】A.6x B.6x5 C.6x6 D.6x98. (2013年浙江衢州3分)下列计算正确的是【】A.3a+2b=5ab B.a﹣a4=a4 C.a6÷a2=a3 D.(﹣a3b)2=a6b29. (2013年浙江绍兴4分)计算3a•(2b)的结果是【】A.3ab B.6a C.6ab D.5ab10. (2013年浙江浙江嘉兴4分)下列运算正确的是【 】A .x 2+x 3=x 5B .2x 2﹣x 2=1 C .x 2•x 3=x 6D .x 6÷x 3=x 311. (2013年浙江温州4分) 若分式x 3x 4-+的值为0,则x 的值是【 】 A. x 3= B. x 0= C. x 3=- D. x 4=-二、填空题1. (2013年浙江舟山4分)x 的取值范围是 ▲ .x 30x 3-≥⇒≥。
浙江省各市中考数学分类解析 专题2 代数式和因式分解
专题2:代数式和因式分解一、选择题1.(2012浙江杭州3分)下列计算正确的是【】A.(﹣p2q)3=﹣p5q3B.(12a2b3c)÷(6ab2)=2abC.3m2÷(3m﹣1)=m﹣3m2D.(x2﹣4x)x﹣1=x﹣4【答案】D。
【考点】整式的混合运算,积的乘方和幂的乘方,整式的乘法,同底数幂的乘法和除法。
【分析】根据整式的混合运算法则对各选项分别进行计算,即可判断:A、(﹣p2q)3=﹣p6q3,故本选项错误;B、12a2b3c)÷(6ab2)=2abc,故本选项错误;C、223m3m3m13m1÷=(﹣)(﹣),故本选项错误;D、(x2﹣4x)x﹣1=x﹣4,故本选项正确。
故选D。
2.(2012浙江湖州3分)计算2a-a,正确的结果是【】A.-2a3 B.1 C.2 D.a【答案】D。
【考点】合并同类项。
【分析】根据合并同类项的运算法则计算作出判断:2a-a= a。
故选D。
3.(2012浙江湖州3分)要使分式1x有意义,x的取值范围满足【】A.x=0 B.x≠0 C.x>0 D.x<0 【答案】B。
【考点】分式有意义的条件。
【分析】根据分式分母不为0的条件,要使1x在实数范围内有意义,必须x≠0。
故选B。
4.(2012浙江嘉兴、舟山4分)若分式x1x+2-的值为0,则【】A. x=﹣2 B.x=0 C.x=1或2 D. x=1 【答案】D。
【考点】分式的值为零的条件。
【分析】∵分式x 1x+2-的值为0,∴x 1=0x+2x+20-⎧⎪⎨⎪≠⎩,解得x=1。
故选D 。
5. (2012浙江丽水、金华3分)计算3a•(2b)的结果是【 】A .3abB .6aC .6abD .5ab【答案】C 。
【考点】单项式乘单项式。
【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可:3a•(2b)=3·2a•b=6ab .故选C 。
【2013版中考12年】浙江省衢州市2002-2013年中考数学试题分类解析 专题2 代数式和因式分
某某省某某市2002-2013年中考数学试题分类解析 专题2 代数式和因式分解一、选择题1. (2002年某某某某、某某4分)已知:x y32=,那么下列式子中一定成立的是【 】 (A )2x =3y (B )3x=2y (C )x =6y (D )xy =62. (2002年某某某某、某某4分)当x >l 时,2(x 1)1--化简的结果是【 】 (A )2-x (B )x -2 (C )x (D)-x【答案】B 。
【考点】二次根式的性质。
【分析】∵x>l ,即x -1>0,∴2(x 1)1x 11x 2--=--=-。
故选B 。
3. (2003年某某某某、某某4分)下列二次根式中,不是最简二次根式的是【 】A .aB .3C .4bD .a 1+4. (2004年某某某某4分)按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是【 】A、6B、21C、156D、2315. (2012年某某某某3分)下列计算正确的是【】A.2a2+a2=3a4B.a6÷a2=a3C.a6•a2=a12D.(﹣a6)2=a126.(2013年某某某某3分)下列计算正确的是【】A.3a+2b=5ab B.a﹣a4=a4 C.a6÷a2=a3 D.(﹣a3b)2=a6b2【答案】D。
【考点】合并同类项,同底数幂的除法,幂的乘方与积的乘方。
【分析】根据合并同类项,同底数幂的除法,幂的乘方与积的乘方运算法则对各选项分析判断后利用排除法求解:A、3a和2b不是同类项,不可以合并,故本选项错误;B、a和a4=a4不是同类项,不可以合并,故本选项错误;C、a6÷a2=a4,故本选项错误;D 、(﹣a 3b )2=a 6b 2,故本选项正确。
故选D 。
二、填空题1. (2005年某某某某5分)已知a 1a b 3=+,则ab= ▲ . 【答案】12。
【考点】比例的性质。
【分析】根据比例的基本性质,将分式方程转化为整式方程,从而求出a 与b 的关系:∵a 1ab 3=+,∴3a=a+b,2a=b 。
2014年浙江杭州初中数学中考试卷(带解析)
2014年初中毕业升学考试(浙江杭州卷)数学(带解析)考试范围:xxx ;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释一、单选题(注释)1、( )A .B .C .D .2、已知某几何体的三视图(单位:cm )则该几何体的侧面积等于( )cm 2.A .B .C .D .3、在直角三角形ABC 中,已知∠C=90°,∠A=40°,BC=3,则AC=( )A .B .C .D .4、已知边长为a 的正方形面积为8,则下列关于a 的说法中,错误的是( )A .a 是无理数B .a 是方程的解C .a 是8的算术平方根D .a 满足不等式组5、下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能互相垂直D.平行四边形的对角线可以互相垂直6、函数的自变量x满足时,函数值y满足,则这个函数可以是()A.B.C.D.7、若,则w=()A.B.C.D.8、已知2001年至2012年杭州市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图,由图得出如下四个结论:①学校数量2007至2012年比2001至2006年更稳定;②在校学生人数有两次连续下降,两次连续增长的变化过程;③2009年的大于1000;④2009~2012年,各相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年.其中,正确的结论是()A.①②③④B.①②③C.①②D.③④9、让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于()A .B .C .D .10、已知AD//BC,AB⊥AD,点E点F分别在射线AD,射线BC上,若点E与点B关于AC对称,点E点F关于BD对称,AC与BD相交于点G,则()A .B .C .D .中考试卷/eplist_1_0_0_1_1.html初中试卷/分卷II分卷II 注释(注释)11、2012年末统计,杭州市常住人口是880.2万人,用科学记数法表示为.12、已知直线,若∠1=40°50′,则∠2=.13、设实数x,y满足方程组,则.14、已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是.15、设抛物线过A(0,2),B(4,3),C 三点,其中点C 在直线上,且点C 到抛物线对称轴的距离等于1,则抛物线的函数解析式为 . 16、点A,B,C 都在半径为r 的圆上,直线AD⊥直线BC ,垂足为D ,直线BE⊥直线AC ,垂足为E ,直线AD 与BE 相交于点H ,若,则∠ABC 所对的弧长等于 (长度单位).(注释) 17、一个布袋中装有只有颜色不同的个球,分别是2个白球,4个黑球,6个红球和b 个黄球,从中任意摸出一个球,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整),请补全该统计图并求出的值.18、在△ABC 中,AB=AC ,点E,F 分别在AB,AC 上,AE=AF ,BF 与CE 相交于点P ,求证:PB=PC ,并请直接写出图中其他相等的线段.19、设,是否存在实数,使得代数式能化简为?若能,请求出所有满足条件的值,若不能,请说明理由.20、把一条12个单位长度的线段分成三条线段,其中一条线段长为4个单位长度,另两条线段长都是单位长度的整数倍.(1)不同分法得到的三条线段能组成多少个不全等的三角形?用尺规作出这些三角形(用给定的单位长度,不写作法,保留作图痕迹);(2)求出(1)中所作三角形外接圆的周长.21、在直角坐标系中,设x轴为直线l,函数的图像分别是,半径为1的与直线中的两条相切,例如是其中一个的圆心坐标.(1)写出其余满足条件的的圆心坐标;(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.22、菱形ABCD的对角线AC,BD相交于点O,.动点P在线段BD上从点B向点D运动,PF⊥AB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PFBG关于AC对称.设菱形ABCD被这两个四边形盖住部分的面积为,未盖住部分的面积为,.(1)用含x代数式分别表示,;(2)若,求x.23、复习课中,教师给出关于x的函数(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:①存在函数,其图像经过(1,0)点;②函数图像与坐标轴总有三个不同的交点;③当时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;教师:请你分别判断四条结论的真假,并给出理由,最后简单写出解决问题时所用的数学方法.试卷答案1,C. 2,B. 3,D. 4,D. 5,D. 6,A. 7,D. 8,B. 9,C. 10,A.11,8.802×106.12,139°10′.13,8.14,15.615,或.16,或.17,补全该统计图见解析;0.4.18,证明见解析;BF=CE,PF=PE,BE=CF.19,能,或.20,(1)能组成2个不全等的三角形,作图见解析;(2)和.21,(1);(2).22,(1)当时,,当时,,;(2).23,①真,②假,③假,④真,理由和所用的数学方法见解析.。
2014年浙江省杭州市中考数学试卷(附答案与解析)
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前浙江省杭州市2014年各类高中招生文化考试数 学本试卷满分120分,考试时间100分钟.参考公式:圆锥的侧面积公式πS rl =(其中S 是侧面积,r 是底面半径,l 是母线长)弧长公式π180n rl =(其中l 是弧长,n 是圆心角的度数,r 是圆半径)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.23(2)a a -=( ) A .312a -B .26a -C .312aD .26a2.已知某几何体的三视图(单位:cm )则该几何体的侧面积等于( )A .212πcm B .215πcm C .224πcmD .230πcm3.在直角三角形ABC 中,已知90C ∠=,40A ∠=,3BC =,则AC =( )A .3sin40B .3sin50C .3tan40D .3tan504.已知边长为a 的正方形面积为8,则下列说法中,错误的是 ( )A .a 是无理数B .a 是方程280x -=的解C .a 是8的算术平方根D .a 满足不等式组30,40a a -⎧⎨-⎩><5.下列命题中,正确的是( )A .梯形的对角线相等B .菱形的对角线不相等C .矩形的对角线不能互相垂直D .平行四边形的对角线可以互相垂直6.函数的自变量x 满足122x ≤≤时,函数值y 满足114y ≤≤,则这个函数可以是 ( )A .12y x =B .2y x =C .18y x =D .8y x=7.若241()142w a a+=--,则w =( ) A .2(2)a a +≠± B .2(2)a a -+≠± C .2(2)a a -≠±D .2(2)a a --≠±8.已知2001年至2012年杭州市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图.由图得出如下四个结论:①学校数量2007~2012年比2001~2006年更稳定; ②在校学生人数有两次连续下降,两次连续增长的变化过程;③2009年的在校学生人数学校数量大于1 000;④2009~2012年,各相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年.其中,正确的结论是( )A .①②③④B .①②③C .①②D .③④9.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于( )A .316B .38C .58D .1316毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)10.已知AD BC ∥,AB AD ⊥,点E ,点F 分别在射线AD ,射线BC 上,若点E 与点B 关于AC 对称,点E 与点F 关于BD 对称,AC 与BD 相交于点G ,则( )A .1tan2ADB +∠= B .25BC CF =C .22AEB DEF ∠+=∠D .4cos 6AGB ∠=第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上) 11.2012年末统计,杭州市常住人口是880.2万人,用科学记数法表示为 人. 12.已知直线a b ∥,若14050'∠=,则2∠= .13.设实数x ,y 满足方程组14,312,3x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩则x y += .14.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是 ℃.15.设抛物线2(0)y ax bx c a =++≠过(0,2)A ,(4,3)B ,C 三点,其中点C 在直线2x =上,且点C 到抛物线的对称轴的距离等于1,则抛物线的函数解析式为 . 16.点A ,B ,C 都在半径为r 的圆上,直线AD ⊥直线BC ,垂足为D ,直线BE ⊥直线AC ,垂足为E ,直线AD 与BE 相交于点H .若3BH AC =,则ABC ∠所对的弧长等于 (长度单位).三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)一个布袋中装有只有颜色不同的(12)a a >个球,分别是2个白球,4个黑球,6个红球和b 个黄球,从中任意摸出一个球.把摸出白球、黑球、红球的概率绘制成统计图(未绘制完整).请补全该统计图并求出ba的值.18.(本小题满分8分)在ABC △中,AB AC =,点E ,F 分别在AB ,AC 上,AE AF =,BF 与CE 相交于点P .求证:PB PC =,并请直接写出图中其他相等的线段.19.(本小题满分8分)设y kx =,是否存在实数k ,使得代数式2222222()(4)3(4)x y x y x x y --+-能化简为4x ?若能,请求出所有满足条件的k 的值;若不能,请说明理由.20.(本小题满分10分)把一条12个单位长度的线段分成三条线段,其中一条线段长为4个单位长度,另两条线段长都是单位长度的整数倍.(1)不同分法得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角形(用给定的单位长度,不写作法,保留作图痕迹); (2)求出(1)中所作三角形外接圆的周长.数学试卷 第5页(共24页) 数学试卷 第6页(共24页)21.(本小题满分10分)在直角坐标系中,设x 轴为直线l ,函数y =,y =的图象分别是1l ,2l ,圆P (以点P 为圆心,1为半径)与直线l ,1l ,2l 中的两条相切.例如是其中一个圆P 的圆心坐标.(1)写出其余满足条件的圆P 的圆心坐标;(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.22.(本小题满分12分)菱形ABCD 的对角线AC ,BD 相交于点O,AC =4BD =.动点P 在线段BD 上从点B 向点D 运动,PF AB ⊥于点F ,四边形PFBG 关于BD 对称.四边形QEDH 与四边形PFBG 关于AC 对称.设菱形ABCD 被这两个四边形盖住部分的面积为1S ,未被盖住部分的面积为2S ,BP x =. (1)用含x 代数式分别表示1S ,2S ; (2)若12S S =,求x 的值.23.(本小题满分12分)复习课中,教师给出关于x 的函数22(41)1y kx k x k =-+-+(k 是实数). 教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上. 学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当1x >时,不是y 随x 的增大而增大就是y 随x 的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数. 教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共24页)数学试卷 第8页(共24页)223(2)3412-==a a a a a ,故选【考点】整式的乘法运算. B【解析】由三视图可判断该几何体为圆锥,圆锥底面圆的直径为图为扇形,扇形的半径为5,弧长为,3BC =,tan 3tan50BC B =,22是无理数,的算术平方根,也是方程5 / 12)1ω=,)1ω=(,)1ω=(,14ω=,2)±,故选【解析】1=4050∠︒,//a b ,∴∠数学试卷 第11页(共24页)数学试卷 第12页(共24页)【解析】抛物线,点,AD BC ⊥3BH =ABC ∴∠=1803BD r π5rπ绘制统计图如图b【解析】解:在AFB△与AEC△中,7/ 12数学试卷 第15页(共24页)数学试卷 第16页(共24页)4)2x20.【答案】(1)不全等的三角形有两种,其三边分别为 ①3,4,5;②4,4,4当三边为3,4,5时,作图如图1 当三边为4,4,4时,作图如图2.9/ 12数学试卷 第19页(共24页)数学试卷 第20页(共24页)832AC BD =2211/ 12数学试卷第23页(共24页)数学试卷第24页(共24页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新2013--2014年浙江省各市地区中考试题汇编-----代数式和因式分解
(2014金华)18. (本题6分)先化简,再求值:,其中.
(2014金华)7.把代数式分解因式,结果正确的是【】
A.B.C.D.
(2014温州)11. 因式分解:▲
(2014杭州)19. 设是否存在实数,使得代数式能化简为?若能,请求出所有满足条件的值,若不能,请说明理由。
17.(6分)计算:(π﹣3.14)0+()﹣1+|﹣2|﹣.
12.(4分)计算:3a*a2+a3=4a3.
18.(8分)化简:(x+1)(x﹣1)﹣x2.
11.(5分)计算:x^5÷x^3=x^2.
17.(8分)(1)化简:(a﹣1)2+2(a+1)
(2)解不等式:+≤1.
11.(5分)分解因式:x2﹣y2=(x+y)(x﹣y).
17.(8分)(1)计算:|﹣4|﹣+(﹣2)0;
(2)化简:a(b+1)﹣ab﹣1.
13.(5分)(2010鞍山)因式分解:ab2﹣a=a(b+1)(b﹣1).
5.(4分)下列运算正确的是()
A.x2+x3=x5 B.2x2﹣x2=1 C.x2x3=x6 D.x6÷x3=x3
1.(4分)﹣2的相反数是()
A.2B.﹣2 C.D.
12.(2013杭州)把7的平方根和立方根按从小到大的顺序排列为.
11.(2013杭州)3^2×3.14+3×(﹣9.42)= .
4.(2013杭州)若a+b=3,a﹣b=7,则ab=()
A.﹣10 B.﹣40 C.10 D.40
2.(2013杭州)下列计算正确的是()
A.m3+m2=m5 B.m3m2=m6 C.(1﹣m)(1+m)=m2﹣1 D.
(2013温州数学)17.(本题10分)
(1)计算:;(2)化简:
(2013温州数学)12. 在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是_____分
(2013温州数学)11. 因式分解:=__________
(2013湖州)17.(本小题6分)
因式分解:mx2-my2
(2013湖州)15. 将连续的正整数按以下规律排列,则位于第7行、第7列的数x是______
(2013湖州)2. 计算6x3·x2的结果是
A. 6x
B. 6x5
C. 6x6
D. 6x9
(2013宁波)19.(本题6分)先化简,再求值:(1+a)(1-a)+(a-2)2,其中a=-3
(2013宁波)14.因式分解:x2-4=
(2013宁波)2.下列计算正确的是()
A.a2+a2=a4
B.2a-a=2
C.(ab)2=a2b2
D.(a2)3=a5
(2013丽水)18.(本题6分)
先化简,再求值:,其中
(2013丽水)17.(本题6分)
计算:
(2013丽水)11. 分解因式:x2-2x==__________
(2013丽水)2. 化简-2a+3a的结果是()
A. -a
B. a
C. 5a。