集成运算放大器运用电路及详细解析

合集下载

集成运算放大电路的作用

集成运算放大电路的作用

集成运算放大电路的作用集成运算放大电路是一种广泛应用于各种电子设备中的电路,它的作用是放大输入信号并输出到负载。

本文将详细探讨集成运算放大电路的作用及其在不同领域中的应用。

一、集成运算放大电路的基本原理集成运算放大电路是一种由多个晶体管和电容组成的电路,其基本原理是将输入信号放大并输出到负载。

其中,集成运算放大器的输入端和输出端分别为正极和负极,而其内部的晶体管和电容则起到放大信号的作用。

二、集成运算放大电路的主要作用1. 放大信号集成运算放大电路的主要作用是放大输入信号并输出到负载。

通过将输入信号放大,可以使信号更加清晰、稳定,从而提高系统的工作效率和精度。

2. 滤波在某些应用中,需要对输入信号进行滤波以去除噪音或干扰。

集成运算放大电路可以通过内部的电容和电阻来实现滤波功能,从而提高信号的质量和可靠性。

3. 支持反馈电路集成运算放大电路可以支持反馈电路,通过调整反馈电路的参数,可以实现对输出信号的控制和调节,从而满足不同应用的需求。

4. 实现信号转换在某些应用中,需要将一种类型的信号转换成另一种类型的信号,例如将模拟信号转换为数字信号。

集成运算放大电路可以通过内部的电路实现信号转换,从而满足不同应用的需求。

5. 支持多种应用集成运算放大电路可以应用于多种不同的领域,例如音频放大器、振荡器、滤波器、电源管理等。

其多功能性和灵活性使得它成为广泛应用于各种电子设备中的电路之一。

三、集成运算放大电路的应用1. 音频放大器集成运算放大电路在音频放大器中得到了广泛应用。

通过将输入音频信号放大并输出到扬声器,可以实现音频信号的放大和扩音,从而提高音乐的质量和声音的清晰度。

2. 振荡器集成运算放大电路可以应用于振荡器中,通过控制内部的电容和电阻来实现频率的调节和控制,从而实现不同频率的振荡。

3. 滤波器集成运算放大电路可以应用于滤波器中,通过内部的电容和电阻来实现低通、高通、带通等不同类型的滤波器,从而实现对输入信号的滤波。

电工与电子技术第三章 集成运算放大器及其应用

电工与电子技术第三章 集成运算放大器及其应用

各级工作点相互影响 适于放大直流或变化缓慢的信号 电压放大倍数为各级放大倍数之积 零点漂移
零点漂移---当输入信号为零时,输出端电压 偏离原来的起始电压缓慢地无规则的上下漂动, 这种现象叫零点漂移。
产生原因---温度变化、电源电压的波动、电 路元件参数的变化等等。
第一级产生的零漂对放大电路影响最大。
∴ i 1= i f
即 ui/R1=-uo/ Rf
uo、ui 符合比例关系,负号表示输出输入电 压变化方向相反。
电路中引入深度负反馈, 闭环放大倍数Auf 与运放的Au无关,仅与R1、Rf 有关。
当R1=Rf 时, uo=-ui ,该电路称为反相器。 R2--平衡电阻 同相端与地的等效电阻 。其作用是保持输入 级电路的对称性,以保持电路的静态平衡。
共模信号--极性相同,幅值相同的信号。
u i1= u i2
差模输入(信号)
ui1 ui2 ui 2
IC1 IC2
UCE1 UCE2 u0 UCE1 Δ UCE2 2 UCE1
Ad 2 UCE1 / ui 2 UCE1 / 2ui1 UCE1 / ui1
i3 ui3 R3
i f u0 Rf
ui1 R1 i1
Rf if
ui2 R2 i2 ui3 R3 i3
- + +∞
uo
RP
u0 ui1 ui 2 ui 3 R f R1 R2 R3
uo R f ( ui1 ui2 ui3 ) R1 R2 R3
若 R1 R2 R3 R f
AOUi
uo
I-≈I+ ≈0
二、Rf if
ui R1 i1 R2

集成运算放大电路

集成运算放大电路

功耗
描述放大电路在工作过程 中消耗的能量,包括静态
电流、动态功耗等。
参数与性能指标的测试方法
01
02
03
输入阻抗测试
通过测量输入电压和电流 的比值来计算输入阻抗。
输出阻抗测试
通过测量输出电压和电流 的比值来计算输出阻抗。
开环增益测试
通过测量放大电路在不同 频率下的电压增益来计算 开环增益。
参数与性能指标的测试方法
描述放大电路对电源的需求和 功耗特性,包括电源电压、静 态电流等。
主要性能指标
线性度
描述放大电路输出信号与输 入信号之间的线性关系,包 括失真度、线性范围等。
精度
描述放大电路输出信号的 精度和稳定性,包括失调
电压、失调电流等。
带宽
描述放大电路在不同频率下 的响应速度和带宽范围,包 括通频带、增益带宽积等。
集成运算放大电路
目录
• 集成运算放大电路概述 • 集成运算放大电路的应用 • 集成运算放大电路的参数与性能指标 • 集成运算放大电路的设计与实现 • 集成运算放大电路的发展趋势与展望
集成运算放大电路概
01

定义与特点
定义
集成运算放大电路是一种将差分 输入的电压信号转换成单端输出 的电压信号,并实现电压放大的 集成电路。
特点
具有高放大倍数、高输入电阻、 低输出电阻、低失真度、低噪声 等优点,广泛应用于信号放大、 运算、滤波等领域。
工作原理
差分输入
集成运算放大器采用差分输入方式, 将两个输入端之间的电压差作为输入 信号。
放大与输出
反馈机制
集成运算放大器采用负反馈机制,通 过反馈网络将输出信号的一部分反馈 到输入端,以改善电路的性能。

集成运算放大器的基本运算电路要点

集成运算放大器的基本运算电路要点
集成运算放大器的基 本运算电路要点
• 集成运算放大器概述 • 集成运算放大器的线性应用 • 集成运算放大器的非线性应用 • 集成运算放大器的实际应用 • 集成运算放大器的选择与使用注意事项
目录
Part
01
集成运算放大器概述
定义与特点
定义
集成运算放大器是一种高放大倍 数的多级直接耦合放大电路,主 要用于信号的电压放大。
积分器的应用场景
积分器电路广泛应用于信号处理、控制系统、测量仪器等领域,用于实现信号的平滑处理 和时间常数提取等功能。
微分器电路
01
微分器电路的工作原 理
微分器电路是集成运算放大器的一种 非线性应用,用于将输入信号进行微 分运算。微分器电路由运算放大器和 RC电路组成,通过正反馈实现微分功 能。
02
03
比较器的应用场景
比较器电路广泛应用于各种电子设备和系统中,如自动控制系统、信号
处理、测量仪器等。
积分器电路
积分器电路的工作原理
积分器电路是集成运算放大器的一种非线性应用,用于将输入信号进行积分运算。积分器 电路由运算放大器和RC电路组成,通过负反馈实现积分功能。
积分器的输入与输出关系
积分器的输出信号与输入信号的时间积分成正比,即输出信号的幅度随着时间的增加而增 加。
同相输入电路
STEP 01
STEP 02
STEP 03
输出电压与输入电压的增 益由反馈电阻决定。
输出电压与输入电压的相 位相同。
输出电压与输入电压成正 比关系。
加法器电路
可以将多个输入信号 相加。
可以通过改变反馈电 阻实现比例系数调整。
输出电压等于所有输 入信号的电压之和。
减法器电路

集成运算放大器的基础知识图解课件

集成运算放大器的基础知识图解课件

选择合适的集成运算放大器
01
02
03
04
根据应用需求选择合适的类型 和规格。
考虑集成运算放大器的性能参 数,如带宽增益积、精度、噪
声等。
考虑集成运算放大器的功耗和 散热性能。
考虑集成运算放大器的封装形 式和引脚排列,以便于电路设
计和连接。
05 集成运算放大器的常见应 用电路
反相比例运算电路
总结词
02 集成运算放大器的基本结 构与工作原理
差分输入级
差分输入级是集成运算放大器 的核心部分,负责将差分输入 信号转换为单端输出信号。
它通常由两个对称的晶体管组 成,能够有效地抑制温漂和减 小噪声干扰。
差分输入级的作用是提高放大 器的输入电阻和共模抑制比, 从而提高信号的信噪比。
电压放大级
电压放大级是集成运算放大器中 用于放大输入信号的级,通常由
微分电路
总结词
微分电路是一种将输入信号进行微分运算的 电路,通常用于测量变化快速的物理量。
详细描述
在微分电路中,输入信号通过电阻R1和电 容C加到集成运算放大器的反相输入端,输 出信号通过反馈电阻RF反馈到反相输入端 。由于电容C的充电和放电过程,输出信号 与输入信号的时间导数成正比,从而实现微 分运算。微分电路常用于测量流量、振动等 变化快速的物理量。
06 集成运算放大器的使用注 意事项与故障排除
使用注意事项
避免电源电压过高或过低
集成运算放大器的正常工作电压范围 有限,过高或过低的电压可能导致器 件损坏。
输入信号幅度控制
输入信号幅度过大可能导致集成运算 放大器过载,影响性能甚至损坏器件 。
避免直流偏置
直流偏置可能导致集成运算放大器性 能下降,甚至无法正常工作。

集成运算放大器(压控电流源)运用电路及详细解析

集成运算放大器(压控电流源)运用电路及详细解析
u-=u+=0,即反相输入端的电位为地电位,通常称为虚地。
8.2 模拟运算电路
8.2.1 比例运算电路
1、反相输入比例运算电路
根据运放工作在线性区的两条
分析依据可知:i1 if , u u 0

i1
ui u R1

ui R1
if

u uo RF
uo RF
u1 u1 ui1
u2 u2 ui2
u i1

ui2
u1
u2

R1
R1 2R2
(u o1

uo2 )
故:
u o1

u o2

1
2R2 R1
(ui1

ui2 )
第二级是由运放 A3 构成的差动放大电路,其输出电压为:
uo

R4 R3
(uo2
xi
+
xd 基本放大电路A
xo
- xf
反馈网络F
负反馈放大电路的原理框图
xd xi x f xo Axd x f Fxo
若xi、xf和xd三者同相,则xd> xi ,即反馈信号起了削弱净 输入信号的作用,引入的是负反馈。
反馈放大电路的放大倍数为:
Af
xo xi
xo xd x f
R3
Δ

- +
+
uo
u o u i2 u i1
由此可见,输出电压与两个输入电压 之 差成正比,实现了减法运算。该电路又称 为 差动输入运算电路或差动放大电路。
例:求图示电路中uo与ui1、ui2的关系。
R

集成运算放大器及应用—集成运算放大器(电子技术课件)

集成运算放大器及应用—集成运算放大器(电子技术课件)

(a)新国标符号
(b)以往用过的符号
图3.1.2 集成运放的符号
4.集成运放实物 (1)封装形式、引脚排列
金属壳封装
双列直插式 塑料封装
图3.1.3 集成运放封装与引脚图
图3.1.4 LM324引脚图
(2)运算放大器外形图
图3.1.5 集成运放实物图
三、理想集成运放的主要参数 1.理想集成运放
4.共模抑制比 KCMR 反映了集成运放对共模信号的抑制能力。
5.输入失调电压、电流 U IO 0 I IO 0 它是指集成运放输出电压为零时,两个输入端所加补偿电压的大小、两个输
入端的静态电流之差均为零。 6.上限截止频率 f H
反映集成运放的频率特性。
集成运放的线性应用(一)
3.2.1 集成运放的线性应用(一)
差模信号是指 ui1 = – ui2,即两个输入信号大小相同,极性相反。 共模信号是指 ui1 = ui2 ,即两个输入信号大小相同,极性相同。
2.输入电阻 rid
它是指集成运放在开环状态下,输入差模信号时两输入端之间的动态电阻, 反映差模输入时,集成运放向信号源索取电流的大小。
3.输出电阻 ro 0
二、集成运放的组成及符号 1.集成运放的组成框图
uid +
输入级
中间电压 放大级
输出级 uo
偏置电路
图3.1.1 集成运放的组成框图
2.各组成部分的特点
采用差分放大电路。要求输入电阻 高,输入端耐压高,抑制温度漂移 能力强,静态电流小。
采用共发射极放大 电路。要求有足够 的放大能力。
采用互补对称输出电 路。要求输出电压范 围宽,输出电阻小, 非线性失真小。
一、线性区的集成运放

集成运算放大器(压控电流源)运用电路及详细解析

集成运算放大器(压控电流源)运用电路及详细解析

微分器的电路结构与积分器类似,包括集成运算放大器、 电容和反馈电阻。
微分器在信号处理、控制系统和电子测量等领域有广泛 的应用。
06 结论与展望
结论总结
01
集成运算放大器(压控电流源)在电路中具有重要作用,能够实现信号的放大、运 算和处理等功能。
02
通过对不同类型集成运算放大器(压控电流源)的特性、应用和电路设计进行比较 ,可以更好地选择适合特定需求的集成运算放大器(压控电流源)。
差分输入电路
总结词
差分输入电路是一种较为特殊的集成运算放大器应用电路,其输出电压与两个输 入电压的差值呈线性关系。
详细描述
差分输入电路的输出电压与两个输入电压的差值呈线性关系,适用于信号比较、 差分信号放大等应用。这种电路具有高输入阻抗和低输出阻抗的特点,能够有效 地减小外界干扰对信号的影响。
03 压控电流源的应用电路
详细描述
反相输入电路的输出电压与输入电压呈反相关系,即当输入 电压增加时,输出电压减小,反之亦然。这种电路具有高输 入阻抗和低输出阻抗的特点,适用于信号放大、减法运算等 应用。
同相输入电路
总结词
同相输入电路是一种较为简单的集成运算放大器应用电路,其输出电压与输入 电压呈同相关系。
详细描述
同相输入电路的输出电压与输入电压保持一致,适用于信号跟随、缓冲等应用。 这种电路具有低输入阻抗和低输出阻抗的特点,能够提高信号的驱动能力。
积分器可以将输入的电压信号 转换成电流信号,再通过负载 电阻转换成电压信号,实现信 号的积分运算。
案例三:微分器的应用
微分器是集成运算放大器的另一种应用可以将输入的电压信号转换成电流信号,再通过 负载电阻转换成电压信号,实现信号的微分运算。

实验3.8 集成运算放大器基本运算电路

实验3.8  集成运算放大器基本运算电路

113实验3.8 集成运算放大器基本运算电路一、实验目的(1)掌握由集成运算放大器组成的比例、加法、减法和积分等模拟运算电路功能。

(2)熟悉运算放大器在模拟运算中的应用。

二、实验设备及材料函数信号发生器、双踪示波器、交流毫伏表、数字万用表、直流稳压电源、实验电路板。

三、实验原理集成运算放大器在线性应用方面,可组成比例、加法、减法、积分、微分、对数、指数等模拟运算电路。

1、反相比例运算电路反相比例运算电路如图3.8.1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为:i 1f o U R RU -= (3-8-1)为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R ´=R 1||R f 。

实验中采用10 k Ω和100 k Ω两个电阻并联。

2、同相比例运算电路图3.8.2是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1f o )1(U R RU += (3-8-2)当R 1→∞时,U o =U i ,即为电压跟随器。

3、反相加法电路反相加法电路电路如图3.8.3所示,输出电压与输入电压之间的关系为)+(=B 2f A 1f o U R RU R R U - (3-8-3)R ´ = R 1 || R 2 || R f4、同相加法电路同相加法电路电路如图3.8.4所示,输出电压与输入电压之间的关系为:)+++(+=B211A 2123f 3o U R R R U R R R R R R U(3-8-4)图3.8.3 反相加法运算电路图3.8.2 同相比例运算电路图3.8.1 反相比例运算电路1145、减法运算电路(差动放大器)减法运算电路如图3.8.5所示,输出电压与输入电压之间的关系为:f f o A B 1121 ()()R R R U U U R R R R '=+'+-+当R 1 = R 2,R ´ = R f 时,图3.8.5电路为差动放大器,输出电压为:)(=A B 1f o U U R RU - (3-8-5)6、积分运算电路反相积分电路如图3.8.6所示,其中R f是为限制低频增益、减小失调电压的影响而增加的。

《模拟电子技术基础》第6章 集成运算放大器

《模拟电子技术基础》第6章 集成运算放大器

RF R RF [ R1 (R2 // R ')uI1 R2 (R1 // R ')uI2 ] RF R R1 R1 (R2 // R ') R2 R2 (R1 // R ')
RF Rn
( RP R1
uI1
RP R2
uI2 )
当 R1 R2 R Rp Rn
uO
RF R
(uI1
uI2 )
t /ms
-2
0
-2
12 34 5
t /ms
uO /V
uO /V
12345 0 -1
t /ms
12345
0
t /ms
-2
-1
-2
输入方波不完全对称,导致输出偏移,以致饱和。 旁路电阻只对直流信号起作用,对交流信号影响要尽量小。
积分电路应采用失调电压、偏置电流和失调电流较小的运放,并在同相输 入端接入可调平衡电阻;选用泄漏电流小的电容,可以减少积分电容的漏电流 产生的积分误差。
iR
iD
uI R
uO uD
由二极管的伏安特性方程:
uo
iD
ISexp
uD UT
对数运算电路
uO
UTln
iD IS
U T ln
uI RI S
只有uI>0时,此对数函数关系才成立。
6.6 对数和指数运算电路
6.6.2 指数运算电路
将对数运算电路中的二极管VD和电阻R互换,可得指数运算电路。
uP
A
uN
uO
UoM 非线性区
uo
+Uom
uO
O
uId =uP -uN
非线性区 uId
非线性区 0

集成运算放大器的运用.pptx

集成运算放大器的运用.pptx

度系数的热敏电阻RT,也可消除UT =kT/q引 起的温度漂移,实现温度稳定性良好的对数
运算关系。
第25页/共54页

二、反对数(指数)

指数运算是对数的逆运算,在电路结构上只要将对数运算器的电阻和
晶体管位置调换一下即可,如图7.1.16所示。
uBE
uo Rif RiC RISe UT
uBE ui
第7页/共54页
• 7.1.2
(Adder)
•1.反相输入求和电路 (Inver ting Adder)
•( 1 ) 电 路 如 图 7 . 1 . 4 所 示 。 •直 流 平 衡 电 阻 :
if Rf
R1 i1
ui1
i2 i-
ui2
-
RP R1 R2 R3 R f
R2
i+ +
+
uo
R3
(2)关系式:
图7.1.4 反相求和运算电路
因为反相端“虚地”(Virtual Ground),
i1 i2 i f
ui1 ui2 uo
R1 R2
Rf
uo
Rf R1
ui1
Rf R2
ui 2
第8页/共54页
若 R1 R2 R

uo
Rf R
(ui1 ui2 )
例1:利用集成运放实现以下求和运算关系:
反向饱和电流的影响,RT是热敏电阻,用以补偿UT引起的温度漂移。由图
可见:
uo
(1
R3 R2 RT
)u A
uA
u BE 2
uBE1
UT
ln
ic 2 IS2
UT
ln
ic1 IS1

第四章 集成运算放大器各种运用

第四章 集成运算放大器各种运用

的R1对应于当具用有R1内+R阻s代Rs替的,信为号了源不,使上电面压公增式益中 受Rs的太大影响,R1应该取大一些。但为了 保运证 放输 的入 内电 阻流,远对大于于通偏用置型电运流放,,RR11应 不宜远小超于过 数十千欧,反馈电阻RF越大则电压增益越大, 但要求反馈电流也应远大于偏置电流,所以 RF也不能取得过大,通常不宜超过兆欧。因 此,当Rs达到数千欧时,这个电路难以获得 高增益。另外,反相放大器是并联负反馈电
集成运放的基本组成
右图是运算放大器
的电路符号。它有两个 输入端和一个输出端。 反相输入端标“-”号, 同相输入端标“+”号。 输出电压与反相输入电 压相位相反,与同相输 入电压相位相同。此外 还有两个端分别接正、 负电源,有些集成运放 还有调零端和相位补偿 端。在电路中不画出。
二. 集成运算放大器的使用
由于集成运放具有性能稳定、可靠性高、寿命 长、体积小、重量轻、耗电量少等优点得到了广泛 应用。可完成放大、振荡、调制、解调及模拟信号 的各种运算和脉冲信号的产生等。
本章将介绍集成运放的基本知识、基本电路及 其主要应用。
主要内容
第一节 运算放大器的基本知识 第二节 运算放大器的基本电路 第三节 运算放大器的应用
因Ii=0,故i1≈if,因此 又因u+≈u-,因此
uo与ui之间的比例 关系也与运放本身
的参数无关,电路
精度和稳定度都很 高。KF为正表示uo 与ui同相,并且KF 总是大于或等于1, 这一点与反相放大 器不同。
当RF=0时KF=1,电路就变成电压 跟随器。
同相放大器实际上是一个电压串 联负反馈放大器,因此其输入阻抗高、 输出阻抗低,而且增益不受信号源内 阻的影响。该电路的不足是其共模抑 制比CMRR不太大。

3.4集成运算放大器的应用

3.4集成运算放大器的应用

退出
结束
The End
退出
运算电路图 幅频特性
低频 衰减
高频 通过
退出
本章小结
本章的主要内容是在基础放大模块层面 之上的级间问题。集成运放则又上到集 成芯片层级,是实际应用性的电路。
负反馈的分类及判断方法
正负 瞬时极性法 交流直流 反馈元件法 电压电流 串联并联
输出短路法 叠加点接地法
退出
负反馈的作用 减小整体增益,但提高增益稳定性 拓展通频带,频率特性改善 减少非线性失真 电压负反馈稳定输出电压,减小输出电阻; 电流负反馈稳定输出电流,增大输出电阻;
退出
为了提高滤波效果,可以再加上一节RC网络,构成二阶低 通电路。这样高频信号衰减速度更快,为-40dB/十倍频程。 运算电路图 幅频特性
引入反馈,加强 高频段衰减程度 退出
(2)高通滤波器
低通滤波器即是高频信号能通过而低频信号不能通过的滤波器。 将低通滤波器中起滤波作用的电阻、电容互换,即成为高通。
2. 集成运放的线性区与非线性区 (1)线性区
满足uo Aod (u u )
为了使运放工作在线性区,集成运放外围都接有深度负反馈, 以减小其净输入电压,从而使其输出电压不超出线性范围。 有两条基本结论:
u u 0即u u
称之为“虚短”现象,即同相端“+”与反相端“–”电位 相同,但并非真正短路,即两端之间无电流导通。
上述结论也可利用叠加定理来导出。
退出
3.4.3 信号处理电路
1. 滤波器
滤波器是一种能使部分频率的信号顺利通过而其他频 率的信号受到很大衰减的装置,在信息处理、数据传 送和抑制干扰等方面广泛应用。
退出
(1)低通滤波器

集成运算放大器电路分析及应用(完整电子教案)

集成运算放大器电路分析及应用(完整电子教案)

集成运算放大器电路分析及应用(完整电子教案)3.1 集成运算放大器认识与基本应用在太阳能充放电保护电路中要利用集成运算放大器LM317实现电路电压检测,并通过三极管开关电路实现电路的控制。

首先来看下集成运算放大器的工作原理。

【项目任务】测试如下图所示,分别测量该电路的输出情况,并分析电压放大倍数。

R115kΩR315kΩR410kΩV2 4 VXFG11VCC5V U1ALM358AD 32481VCC35240R115kΩR215kΩR315kΩR410kΩV24 VXFG11VCC5V U1ALM358AD 32481VCC3524函数信号发生器函数信号发生器(a)无反馈电阻 (b)有反馈电阻 图3.1集成运算符放大器LM358测试电路(multisim)【信息单】集成运放的实物如图3.2 所示。

图3.2 集成运算放大1.集成运放的组成及其符号各种集成运算放大器的基本结构相似,主要都是由输入级、中间级和输出级以及偏置电路组成,如图3.3所示。

输入级一般由可以抑制零点漂移的差动放大电路组成;中间级的作用是获得较大的电压放大倍数,可以由共射极电路承担;输出级要求有较强的带负载能力,一般采用射极跟随器;偏置电路的作用是为各级电路供给合理的偏置电流。

图3.3集成运算放大电路的结构组成集成运放的图形和文字符号如图 3.4 所示。

图3.4 集成运放的图形和文字符号其中“-”称为反相输入端,即当信号在该端进入时, 输出相位与输入相位相反; 而“+”称为同相输入端,输出相位与输入信号相位相同。

2.集成运放的基本技术指标 集成运放的基本技术指标如下。

⑴输入失调电压 U OS实际的集成运放难以做到差动输入级完全对称,当输入电压为零时,输出电压并不为零。

规定在室温(25℃)及标准电源电压下,为了使输出电压为零,需在集成运放的两输入端额外附加补偿电压,称之为输入失调电压U OS ,U OS 越小越好,一般约为 0.5~5mV 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R1 i1 Rp if ui RF
- +

+ uo
Δ
由此可得: u o
RF ui R1
式中的负号表示输出电压与输 入电压的相位相反。
闭环电压放大倍数为: uo RF Auf ui R1 当 R F R1 时, u o u i , 即 Auf 1 ,该电路就成了反 相器。 图中电阻 Rp 称为平衡 电 R R1 // R F 阻, 通 常取 p ,以 保证其输入端的电阻平衡,从 而提高差动电路的对称性。

- +
解:电路由第一级的反相器和第二级的加法运算电路级联
而成。
Δ

uo +
Δ
uo1 ui 2 RF RF RF RF u o ( ui1 uo1 ) ui 2 ui1 R1 R2 R2 R1
例:求图示电路中uo与ui的关系。
ui1

uo1 R3 R3 + R4
+ - A1 + R2 R1 R2
8.1.3 集成运算放大器的理想模型
集成运放的理想化参数: Ado=∞、 rid=∞、 ro=0 、KCMR=∞、等
uo UOM uo 理想特性 实际特性 0 u+-u-

+
u- u+
- +
理想运放符号
非线性区分析依据:
当ui>0,即u+>u-时,uo=+uOM
当ui<0,即u+<u-时,uo=-uOM
Δ
-UOM 运放电压传输特性
非线性区(饱和区)
集成运放的理想化参数: Ado=∞、 rid=∞、 ro=0 、KCMR=∞、等
uo UOM uo

+
u- u+
- + 0
理想特性 实际特性 u+-u-
理想运放符号
线性区分析依据:
(1)虚断。由rid=∞,得i + =i - =0,即理想运放两个输入端 的输入电流为零。 (2)虚短。由Ado=∞,得u+=u-,即理想运放两个输入端的 电位相等。若信号从反相输入端输入,而同相输入端接地,则 u-=u+=0,即反相输入端的电位为地电位,通常称为虚地。
t t
8.3 放大电路中的负反馈
8.3.1 反馈的基本概念
反馈:将放大电路输出信号(电压或电流)的一部分或全部,
通过某种电路(反馈电路)送回到输入回路,从而影响输入信 号的过程。 反馈到输入回路的信号称为反馈信号。根据反馈信号对输入信 号作用的不同,反馈可分为正反馈和负反馈两大类型。反馈信
号增强输入信号的叫做正反馈;反馈信号削弱输入信号的叫做
A 通常称A f 为反馈放大器的闭环放大倍数, 为开环放大倍 数, | 1 AF | 为 反 馈深 度。 从 上式 可知 , 若 | 1 AF | 1 , 则 Af A
,说明引入反馈后,由于净输入信号的减小,使放大倍
数降低了,引入的是负反馈,且反馈深度的值越大(即反馈深 Af 度越深),负反馈的作用越强, 也越小。若 | 1 AF | 1 ,则
ui2 R2 R3 RF
- +

+ uo
Δ
若 R 3 (断开),则:
RF RF u i 2 uo u i1 1 R1 R1 若 R1 R 2 ,且 R 3 R F ,则:
RF ui1 ui2 R1 R2 R3
- +

+ uo
Δ

R1 R 2 R 3 R F
故:
u o1 u o2
2R2 1 R1
(u i1 u i 2 )
第二级是由运放 A3 构成的差动放大电路,其输出电压为:
R4 R4 uo (uo 2 uo1 ) R3 R3
电压放大倍数为:
Auf
2 R2 1 (ui1 ui 2 ) R1
通常由互补对 称电路构成, 目的是为了减 小输出电阻, 提高电路的带 负载能力。
集成运放的电路符号如图所示。它有两个输入端,标 “+”的输入端称为同相输入端,输入信号由此端输入
时,输出信号与输入信号相位相同;标“-”的输入
端称为反相输入端,输入信号由此端输入时,输出信 号与输入信号相位相反。
反相输入端 - u- u+ + 同相输入端
Δ
-UOM 运放电压传输特性
线性区(放大区)
8.2 模拟运算电路
8.2.1 比例运算电路
1、反相输入比例运算电路
根据运放工作在线性区的两条 分析依据可知:i1 i f ,u u 0 而
ui u ui i1 R1 R1 u uo uo if RF RF
• 8.1 • 8.2 • 8.3 • 8.4 • 8.5
集成运算放大器简介 模拟运算电路 放大电路中的负反馈 信号处理电路 正弦波振荡器
8.1 集成运算放大器简介
8.1.1 集成运算放大器的组成
通常由共发射极放大电路构成,目的 是为了获得较高的电压放大倍数。
输入级
中间级
输出级
偏置电路 通常由差动放 大电路构成, 目的是为了减 一般由各种恒流源电路构成,作 小放大电路的 用是为上述各级电路提供稳定、 零点漂移、提 合适的偏置电流,决定各级的静 高输入阻抗。 态工作点。
2、减法运算电路
由叠加定理: ui1 单独作用时为反相输入比例运算电路,其 输出电压为: R F u i1 uo R1 ui2 单独作用时为同相输入比例运算,其输出 电压为: R F R3 ui1 R1 u o 1 ui2 R1 R 2 R 3 ui1 和 ui2 共同作用时,输出电压为: R R R3 u o F u i1 1 F uo uo R R ui2 R1 R1 2 3
A + uo
Δ
8.1.2 集成运算放大器的主要参数及种类 1、集成运放的主要参数
(1)差模开环电压放大倍数 Ado。指集成运放本身(无外加反馈回路)的 uo 差模电压放大倍数,即 Ado 。它体现了集成运放的电压放大能力,一 u u 般在 104~107 之间。Ado 越大,电路越稳定,运算精度也越高。 (2)共模开环电压放大倍数 Aco。指集成运放本身的共模电压放大倍数, 它反映集成运放抗温漂、抗共模干扰的能力,优质的集成运放 Aco 应接近于零。 (3)共模抑制比 KCMR。用来综合衡量集成运放的放大能力和抗温漂、抗共 模干扰的能力,一般应大于 80dB。 (4)差模输入电阻 rid。指差模信号作用下集成运放的输入电阻。 (5)输入失调电压 Uio。指为使输出电压为零,在输入级所加的补偿电压 值。它反映差动放大部分参数的不对称程度,显然越小越好,一般为毫伏级。 (6)失调电压温度系数Δ Uio/Δ T。是指温度变化Δ T 时所产生的失调电 压变化Δ Uio 的大小,它直接影响集成运放的精确度,一般为几十μ V/℃。 (7)转换速率 SR。衡量集成运放对高速变化信号的适应能力,一般为几 V /μ s,若输入信号变化速率大于此值,输出波形会严重失真。
Auf 1
- ui +

+ uo
电压跟随器
Δ
,这时输出电压跟随输入电
压作相同的变化,称为电压跟随器。
8.2.2 加法和减法运算电路
1、加法运算电路
根据运放工作在线性区的两条分析依据可知:
i f i1 i 2
i1
u i1 u u i2 i 2 , f o i , R1 R2 RF RF RF u o ( u i1 ui2 ) R1 R2
RF
- +

+ uo
Δ
由此可得:
R u o 1 F u i R1
输出电压与输入电压的相位相同。
同反相输入比例运算电路一样,为 了提高差动电路的对称性,平衡电 阻 R p R1 // R F 。 闭环电压放大倍数为: uo RF Auf 1 ui R1 可见同相比例运算电路的闭环电压 放大 倍 数 必定 于 或等 于u 1 。 当 大 Rf 0 R1 uo i 或 时, ,即
if ui R1 i1 Rp
RF
- +

+ uo
Δ
2、同相输入比例运算电路
根据运放工作在线性区的两条分析 依据可知: i1 i f , u u u i 而
ui 0 u i1 R1 R1 u u o ui u o if RF RF
if R1 i1 ui Rp
ui1 R1 i1 if ui2 R2 i2 Rp
Δ
RF ∞ + + uo
由此可得:


R1 R 2 R F
,则:
u o (u i1 u i 2 )
可见输出电压与两个输入电压之间是p R1 // R 2 // R F 个信号输入的情况。平衡电阻 。
iR iC
iR ui C RP ui U iC
R
u du du i R o , iC C C C i R dt dt
- +

+ uo
Δ
由此可得:
u o RC dui dt
输出电压与输入电压对时间的微分成正 0 uo 比。 若 ui 为恒定电压 U,则在 ui 作用于电路 0 的瞬间,微分电路输出一个尖脉冲电压,波 形如图所示。
ui2
- A2 + +
Δ Δ


uo
Δ
A3 +
相关文档
最新文档