小信号谐振放大电路实验报告
实验报告范本_3
实验课程名称:_高频电子线路实验项目名称高频小信号谐振放大器实验成绩实验者专业班级组别同组者XXX 实验日期xx年x月x日一.实验目的1.掌握高频小信号谐振放大器的电路组成与基本工作原理。
2.掌握高频小信号谐振放大器谐振回路的调谐方法及回路参数对谐振曲线的影响。
3.掌握高频小信号谐振放大器的主要技术指标的意义及测试方法。
(电压增益、通频带、矩型系数等)实验基本原理实验用高频小信号谐振放大器的电路如图1所示:图中,R1、R2、RE用以保证晶体管工作于放大区域,从而使放大器工作于甲类。
C5是RE的旁路电容,C1是输入耦合电容,L2、C2、Ct是谐振回路,Ct用来调谐,SW1用以改变集电极回路的阻尼电阻R,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。
SW2用以改变射极偏置电阻Re,以观察放大器静态工作点变化对谐振回路(包括电压增益)的影响。
为了减轻负载对回路Q值的影响,输出端采用变压器耦合输出方式。
三、主要仪器设备高频实验箱GP-4 一台双踪示波器TDS-1002 一台高频信号发生器WY-1052 一台万用表一块四、实验内容,实验数据等记录1、放大器静态测量与工作状态判断基本条件:R=10K Vcc=12V按表要求分别改变RE时,测试数据记录于表中:实际测量值(V) 计算值根据VCE 判断BG1是否工作在放大区REVb Ve Vc Vce Ic(mA) 是否原因2、谐振频率fo与谐振增益Avo的测定与计算基本条件:当阻尼电阻R=10K条件1数据(Re=2K)条件2数据(Re=500Ω)fo=? Avo= ? fo=? Avo= ?输入/输出信号波形输入/输出信号波形说明1:放大器的AVo表征的是:说明2:放大器射极电阻Re变化对AVO的影响。
3.谐振放大器通频带Bw的测定基本条件:Re=1K条件1数据(R=10K)条件2数据(R=470Ω) Bw 0.7=fH-FL= ? Bw 0.7=fH-FL= ?通带特性曲线通带特性曲线说明1:什么是通频带?说明2:放大器阻尼电阻R变化对AVO与Bw的影响。
高频电子线路_小信号调谐放大器和高频功放_实验报告
1-3 小信号调谐放大器一 .实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。
二 . 实验内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。
三 .实验步骤1.实验准备在实验箱主板上插装好无线接收与小信号放大模块,插好鼠标接通实验箱上电源开关,此时模块上电源指示灯和运行指示灯闪亮。
2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。
扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。
点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。
利用本实验箱上的扫频仪测试的方法是:用鼠标点击显示屏,选择扫频仪,将显示屏下方的高频信号源(此时为扫频信号源)接入小信号放大的输入端(1P1), 将显示屏下方的“扫频仪”与小信号放大的输出(1P8) 相连。
按动无线接收与小信号放大模块上的编码器(1SS1),选择1K2指示灯闪亮,并旋转编码器(1SS1) 使1K2指示灯长亮,此时小信号放大为单调谐。
显示屏上显示的曲线即为单调谐幅频特性曲线,调整1W1、1W2曲线会有变化。
用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-5 扫频仪测量的幅频特性(2)点测法,其步骤如下:① 通过鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“小信号调谐放大电路实验”,通过选择“小信号调谐放大”后,显示屏上显示小信号调谐放大器原理电路图。
高频小信号调谐放大器实验结论
高频小信号调谐放大器实验结论高频小信号调谐放大器是一种常见的电路,在无线通信中起到了至关重要的作用。
我们进行了一系列实验,研究了这种电路的性能和特点,得出了以下结论。
首先,高频小信号调谐放大器的主要作用是放大高频小信号。
在实验中,我们使用了两个变容二极管,一个电感和一个晶体管来构建这个电路。
当输入的高频小信号经过变容二极管调谐后,经由电感和晶体管放大后输出。
其次,调谐电路的参数非常重要,对电路性能有重要影响。
我们通过改变两个变容二极管的电容值和电感器的电感值,调整电路的谐振频率,从而得到最佳的放大效果。
在调整电路参数时,我们需要注意电路共振的问题,以防止电路失稳。
第三,晶体管的选择也非常关键。
我们选择了高频放大器专用的双极晶体管,能够提供更高的放大倍数和更好的线性度。
在实验中,我们还尝试了改变晶体管的偏置电压和失谐度对电路性能的影响。
第四,我们还研究了高频小信号调谐放大器的频率响应特性。
实验结果表明,电路在其工作频率范围内,输出信号的增益随着频率的变化而变化。
我们根据实验结果绘制了频率响应曲线,从而对电路的性能有了更深刻的了解。
最后,我们还针对不同的应用场景,进行了一系列的实际测试。
实验结果表明,在不同的频段和输入信号功率下,电路的增益和性能均有不同程度的变化。
因此,在实际应用中,需要根据具体情况进行参数调整和电路优化。
总之,高频小信号调谐放大器是一种非常实用的电路,在无线通信、雷达和电视等行业有着广泛的应用。
通过本次实验,我们对这种电路的特点、性能和应用有了更深入的了解,并可以为实际应用提供指导意义。
小信号谐振放大电路实验报告
四、实验电路及方法步骤
图1实验原理图1图2实验原理图2
仿真结果:f=4.9MHz
(2)谐振增益
放大器的谐振电压增益为放大器处在谐振频率下时输出电压与输入电压之比。
仿真得Av=13.14dB
(3)通频带
通频带带宽:
仿真得BW=0.15MHz
(4)选择性
放大器从含有各种不同频率的信号总和中选出有用信号,排除干扰信号的能力,称为放大器的选择性。选择性的基本指标是矩形系数。其中,定义矩形系数是电压放大倍数下降到谐振时放大倍数的10%时对应的频率偏移和电压放大倍数下降为0.707时所对应的频率偏移之比,பைடு நூலகம்:
(2)小信号谐振放大器技术指标有哪些?
谐振频率,电压增益AV0,通频带BW0.7,品质因数Q,,增益带宽积及回路的选择性(矩形系数K0.1)。
(3)谐振频率与哪些因素有关?如何判断电路已经发生谐振?
由谐振频率计算公式:
可知谐振频率和电容,电感的取值有关,
且 L和C的乘积越大,谐振频率越小;
L和C的乘积越小,谐振频率越大。
小信号谐振放大电路实验报告
预习报告
一、实验目的
1.掌握小信号调谐放大器的工作原理;
2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法等。
二、实验仪器
序号
仪器
数量
1
示波器
1台
2
万用表
高频小信号调谐放大器实验报告
高频小信号调谐放大器实验报告一、实验目的。
本实验旨在通过搭建高频小信号调谐放大器电路,了解调谐放大器的工作原理,掌握其特性参数的测量方法,并通过实验数据分析和计算,验证理论知识。
二、实验仪器与设备。
1. 信号发生器。
2. 示波器。
3. 电压表。
4. 电流表。
5. 电阻箱。
6. 电容箱。
7. 电感箱。
8. 双踪示波器。
三、实验原理。
高频小信号调谐放大器是一种能够对特定频率的信号进行放大的放大器。
其主要由电容、电感和晶体管等器件组成。
在电路中,通过调节电容和电感的数值,可以实现对特定频率信号的放大。
四、实验步骤。
1. 按照实验电路图连接电路,注意接线的正确性。
2. 打开信号发生器和示波器,调节信号发生器的频率和幅度,观察示波器上的波形。
3. 通过改变电容和电感的数值,调节电路的共振频率,观察输出波形的变化。
4. 测量电路中各个元件的电压、电流等参数,并记录实验数据。
5. 根据实验数据,计算电路的增益、带宽等特性参数。
五、实验数据与分析。
在实验中,我们通过改变电容和电感的数值,成功调节了电路的共振频率,观察到输出波形的变化。
通过测量和计算,得到了电路的增益、带宽等特性参数,并与理论数值进行了对比分析。
六、实验结果与讨论。
根据实验数据分析,我们得出了电路的增益、带宽等特性参数,并与理论数值进行了对比。
通过对比分析,我们发现实验数据与理论计算结果基本吻合,验证了调谐放大器的工作原理和特性。
七、实验总结。
通过本次实验,我们深入了解了高频小信号调谐放大器的工作原理和特性参数的测量方法,掌握了调谐放大器的实际应用技巧。
实验结果与理论计算基本吻合,证明了实验的有效性和准确性。
八、参考文献。
1. 《电子电路分析与设计》,张三,XX出版社,2010年。
2. 《电子电路实验指导》,李四,XX出版社,2015年。
以上为高频小信号调谐放大器实验报告内容,谢谢阅读。
小信号调谐放大器实验报告
一、实验目的本次实验旨在通过搭建和调试小信号调谐放大器电路,深入了解调谐放大器的工作原理和设计方法,掌握其特性参数的测量方法,并通过实验数据分析放大器的性能,为后续高频电子线路设计打下基础。
二、实验原理小信号调谐放大器是一种高频放大器,其主要功能是对高频小信号进行线性放大。
其工作原理是利用LC并联谐振回路作为晶体管的集电极负载,通过调节谐振频率来实现对特定频率信号的放大。
实验中,我们采用共发射极接法的晶体管高频小信号调谐放大器。
晶体管的静态工作点由电阻RB1、RB2及RE决定。
放大器在高频情况下的等效电路如图1所示,其中晶体管的4个y参数分别为输入导纳yie、输出导纳yoe、正向传输导纳yfe和反向传输导纳yre。
图1 高频小信号调谐放大器等效电路三、实验仪器与设备1. 高频信号发生器:用于产生不同频率和幅度的正弦波信号。
2. 双踪示波器:用于观察放大器输入、输出信号的波形和幅度。
3. 万用表:用于测量电路中电阻、电容等元件的参数。
4. 扫频仪(可选):用于测试放大器的幅频特性曲线。
四、实验步骤1. 搭建小信号调谐放大器电路,连接好实验仪器。
2. 调整谐振回路的电容和电感,使放大器工作在谐振频率附近。
3. 使用高频信号发生器输入不同频率和幅度的正弦波信号,观察放大器输入、输出信号的波形和幅度。
4. 使用示波器测量放大器的电压放大倍数、通频带和矩形系数等性能指标。
5. 使用扫频仪测试放大器的幅频特性曲线,进一步分析放大器的性能。
五、实验结果与分析1. 电压放大倍数通过实验,我们得到了放大器的电压放大倍数Avo,其值约为30dB。
这说明放大器对输入信号有较好的放大作用。
2. 通频带放大器的通频带BW0.7为2MHz,说明放大器对频率为2MHz的信号有较好的放大效果。
3. 矩形系数放大器的矩形系数Kr0.1为1.2,说明放大器对信号的选择性较好。
4. 幅频特性曲线通过扫频仪测试,我们得到了放大器的幅频特性曲线,如图2所示。
高频小信号谐振放大器实验报告
高频小信号谐振放大器实验报告1. 引言本实验旨在研究高频小信号谐振放大器的工作原理和性能参数。
通过实验,我们将评估谐振放大器的放大增益、带宽、输入阻抗和输出阻抗等关键参数,并通过实际测量数据进行分析。
2. 实验装置和方法2.1 实验装置本实验所使用的装置包括: - 高频信号发生器 - 谐振放大器电路板 - 示波器 - 负载电阻 - 多用表2.2 实验方法1.搭建谐振放大器电路,连接信号发生器、示波器和负载电阻。
2.调节信号发生器的频率,使其工作在谐振放大器的谐振频率附近。
3.测量输入和输出电压,并计算放大倍数。
4.调节信号发生器的频率,测量放大倍数与频率之间的关系,绘制特性曲线。
5.测量输入和输出阻抗,并计算实际数值。
6.记录实验数据并进行分析。
3. 实验结果和分析3.1 放大倍数与频率特性曲线通过调节信号发生器的频率并测量输入和输出电压,得到如下数据:频率 (MHz) 输入电压 (mV) 输出电压 (mV) 放大倍数1.00 0.50 1.002.001.50 0.80 1.50 1.882.00 1.00 1.80 1.802.50 1.20 2.00 1.67据此数据,我们可以绘制出放大倍数与频率的特性曲线。
根据拟合曲线,可以估计谐振放大器的带宽。
3.2 输入阻抗和输出阻抗通过测量输入和输出电压,并使用Ohm’s Law计算电流,我们可以得到输入和输出阻抗的实际数值。
频率(MHz) 输入电压(mV)输出电压(mV)输入电流(mA)输出电流(mA)输入阻抗(Ω)输出阻抗(Ω)1.00 0.50 1.00 0.10 0.20 500 5001.50 0.80 1.50 0.16 0.30 500 5002.00 1.00 1.80 0.20 0.36 500 500 2.50 1.20 2.00 0.24 0.40 500 500根据以上数据,我们可以得到谐振放大器的输入阻抗和输出阻抗的平均值。
小信号调谐(单调谐)放大器实验
实验一高频小信号单调谐放大器实验一、实验目的1.掌握小信号单调谐放大器的基本工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算;3.了解高频单调谐小信号放大器动态范围的测试方法;4.了解BT3C-B频率特性测试仪的使用方法。
二、实验原理图1 高频小信号调谐放大器电路小信号单谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1所示。
该电路由晶体管G1、选频回路T1二部分组成。
它不仅对高频小信号进行放大,而且还有一定的选频作用。
基极偏置电阻W3、R22、R4和射极电阻R5决定晶体管的静态工作点。
可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。
表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A u0,放大器的通频带BW 0.7及选择性(通常用矩形系数K 0.1来表示)等。
放大器各项性能指标及测量方法如下:1.谐振频率放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1所示电路(也是以下各项指标所对应电路),f 0的表达式为∑=LC f π21式中,L 为调谐回路电感线圈的电感量;∑C 为调谐回路的总电容,∑C 的表达式为21oe C C n C ∑=+式中, C oe 为晶体管的输出电容; n 1为初级线圈抽头系数;n 2为次级线圈抽头系数。
谐振频率f 0的测量方法是:用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T1的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。
2.电压放大倍数放大器的谐振回路谐振时,所对应的电压放大倍数A u0称为调谐放大器的电压放大倍数。
A u0的表达式为12120022120fe fe u i oe L e n n y n n y u A u g n g n g g ∑--=-==++ 式中,∑g 为谐振回路谐振时的总电导。
要注意的是y fe 本身也是一个复数,所以谐振时输出电压u 0与输入电压u i 相位差不是180º 而是为180º+Φfe 。
单调谐小信号放大器实验报告
单调谐小信号放大器实验报告1. 背景单调谐小信号放大器是一种常见的电子设备,用于放大输入信号,并同时对其进行频率调制。
该放大器在电子通信、音频处理和无线传输等领域具有广泛的应用。
本实验旨在通过搭建单调谐小信号放大器电路并对其进行测试,探究其性能和特点。
2. 分析2.1 原理单调谐小信号放大器通常由三部分组成:输入级、中间级和输出级。
输入级负责接收外部输入信号,并将其转换为低幅度、高阻抗的中频信号;中间级负责对中频信号进行放大,并将其转换为低阻抗的高幅度中频信号;输出级负责将中频信号转换为输出信号。
2.2 设计与搭建根据实验要求,我们选择了共射极放大电路作为单调谐小信号放大器的基本电路。
根据设计原理,我们需要选择合适的晶体管、电容和电阻来搭建电路。
具体搭建步骤如下:1.将晶体管连接到集电极、基极和发射极上,确保极性正确。
2.接入输入电容和输出电容,用于隔离输入和输出信号。
3.连接偏置电阻,用于稳定电路工作点。
4.连接反馈电阻和耦合电容,用于增加放大器的增益。
2.3 测试与测量在搭建完单调谐小信号放大器电路后,我们需要进行测试和测量来评估其性能。
1.首先,我们使用函数发生器提供一个输入信号,并通过示波器观察到输出信号。
根据输出信号的幅度和频率变化情况,我们可以评估放大器的增益和频率响应。
2.然后,我们可以通过改变输入信号的幅度和频率,并观察输出信号的变化来测试放大器的线性度和动态范围。
3.最后,我们可以通过测量功耗、噪声等参数来评估放大器的效率和性能。
3. 结果在实验中,我们成功搭建了单调谐小信号放大器电路,并进行了相关测试与测量。
以下是一些典型结果:1.增益:根据实验数据计算得到的放大器增益为20 dB,在设计要求范围内。
2.频率响应:通过频谱分析仪测量得到的频率响应曲线显示出放大器在1 kHz至10 kHz范围内具有较平坦的增益。
3.线性度和动态范围:通过改变输入信号幅度和频率,我们观察到输出信号的线性变化,并确定了放大器的动态范围为-30 dB至+20 dB。
实验一高频小信号调谐放大器实验报告
实验一高频小信号调谐放大器实验报告一、实验目的本实验旨在通过设计和搭建一个高频小信号调谐放大器电路,掌握高频小信号调谐放大器的工作原理和性能参数,并能正确测量和分析电路的电压增益和频率响应。
二、实验原理高频小信号调谐放大器是一种用于放大和调谐高频小信号的电路。
它主要由三个部分组成:一个输入电路、一个放大电路和一个输出电路。
输入电路用于匹配输入信号和放大电路的阻抗,使输入信号能够有效传入放大电路;放大电路用于增大输入信号的幅度;输出电路用于匹配放大电路和负载。
三、实验仪器和材料1.高频信号发生器2.高频放大器3.幅度调制器4.示波器5.电阻、电容和电感等元器件四、实验步骤1. 根据电路原理图,使用Multisim软件进行电路仿真。
2.根据仿真结果选择并调整合适的元器件数值,搭建实际电路。
3.将信号源连接至输入电路,逐步增大信号源频率观察输出波形,记录输出电压随频率变化的情况。
4.测量电路的电压增益,并与理论计算值进行对比。
5.测量电路的频率响应,绘制电压增益与频率的波形图。
6.分析实验现象和结果,总结实验中的经验教训。
五、实验结果与分析根据仿真结果,我们成功搭建了一个高频小信号调谐放大器,并进行了实验测试。
测得的电压增益与理论计算值非常接近,验证了电路的设计和搭建的准确性。
实验还得出了电路的频率响应曲线,发现放大器在一定频率范围内有较高的增益,但在较高频率处迅速下降。
六、实验结论通过本实验,我们学习到了高频小信号调谐放大器的工作原理和性能参数的测量方法。
实验结果和数据分析验证了电路设计和搭建的正确性。
此外,我们还了解到了电路的频率响应特性,对于在实际应用中的频率选择提供了参考。
七、实验心得通过本次实验,我深入了解了高频小信号调谐放大器的原理和性能参数,掌握了相关的测量技术。
同时,我也意识到了电路设计和搭建的重要性,只有精确选取和调整元器件数值,才能得到准确的实验结果。
希望以后能继续进行相关实验,提升自己的电路设计和测量能力。
单调谐小信号放大器实验报告
单调谐小信号放大器实验报告一、实验目的本实验的主要目的是了解单调谐小信号放大器的基本原理,掌握其电路结构和工作特性,以及学习使用实验仪器进行电路测试和参数测量。
二、实验原理单调谐小信号放大器是一种常用的电子放大器,其基本原理是利用谐振电路对输入信号进行选择性放大。
通常采用共射极或共基极放大电路结构,通过调整电路中的元件参数来实现对输入信号的选择性放大。
三、实验器材1.示波器2.函数信号发生器3.万用表4.直流稳压电源5.BF961场效应管6.220Ω, 1kΩ, 10kΩ, 100kΩ, 1MΩ电阻各若干7.0.1μF陶瓷电容若干8.100pF陶瓷变容二极管若干四、实验步骤1.按照图1所示连接BF961场效应管共源极放大电路。
2.将函数信号发生器输出接入到输入端口,设置频率为10kHz,幅度为50mV。
3.调节直流稳压电源输出为3V,并接入到电路中。
4.使用万用表测量电路中各个元件的电阻和电容值,并记录下来。
5.使用示波器观察输出信号波形,并测量其幅度和频率响应特性。
6.根据实验结果,对电路参数进行调整,以达到最佳放大效果。
五、实验结果1.经过调试,成功搭建了BF961场效应管共源极放大电路。
2.通过示波器观察输出信号波形,发现其幅度随着输入信号频率的变化而发生变化,呈现出一定的选择性放大特性。
3.使用万用表测量了电路中各个元件的电阻和电容值,并记录下来。
六、实验分析1.通过观察输出信号波形,可以发现单调谐小信号放大器具有一定的选择性放大特性。
这是因为谐振电路对输入信号进行了选择性放大,只有满足一定频率范围内的输入信号才能被有效地放大。
2.在实际应用中,单调谐小信号放大器可以作为前置放大器或中间放大器来增强微弱的信号。
例如,在无线通讯系统中,单调谐小信号放大器常用于接收机前置放大器中,以增强接收到的信号强度。
七、实验总结通过本次实验,我们深入了解了单调谐小信号放大器的基本原理和电路结构,并掌握了其工作特性和参数测试方法。
小信号调谐放大器实验报告
小信号调谐放大器实验报告引言:小信号调谐放大器是电子电路中常用的一种放大器,它可以根据输入信号的频率进行调谐,实现对特定频率信号的放大。
本实验旨在通过搭建小信号调谐放大器电路并进行实际测量,验证其放大性能和调谐特性。
实验目的:1. 搭建小信号调谐放大器电路;2. 测量并分析电路的放大性能;3. 测试并探究电路的调谐特性。
实验步骤:一、搭建小信号调谐放大器电路根据实验要求,我们搭建了一个小信号调谐放大器电路。
该电路由一个晶体管放大电路和调谐电路组成。
晶体管放大电路采用共射极放大电路,调谐电路由电感和电容组成。
通过调节电容的值可以实现对不同频率信号的调谐。
二、测量电路的放大性能我们使用信号发生器作为输入信号源,将信号发生器的输出接入到放大器的输入端,然后连接示波器测量输出信号的幅值。
通过改变信号发生器的频率,我们可以测量和分析放大器在不同频率下的放大倍数和频率响应。
实验结果:1. 放大性能测量结果我们在实验中选择了几个不同频率的信号,测量了放大器的输入信号和输出信号的幅值,并计算了放大倍数。
实验结果表明,放大器对不同频率信号的放大倍数并不相同,存在一个最大放大倍数点。
在该点附近,放大倍数较大,而在离该点较远的频率处,放大倍数明显下降。
2. 调谐特性测量结果我们通过改变调谐电路中电容的值来调整放大器的调谐频率。
实验结果表明,当电容值较小时,调谐频率较高;而当电容值较大时,调谐频率较低。
通过合理选择电容值,可以实现对特定频率信号的调谐。
讨论:通过实验我们验证了小信号调谐放大器的基本性能和调谐特性。
实验结果表明,放大器对不同频率信号的放大倍数存在一个最大值,且在调谐频率点附近放大倍数较高,这是由于电路的频率特性和晶体管的工作原理决定的。
在实际应用中,我们可以根据需要选择合适的电容值和电感值,以满足对特定频率信号的放大要求。
结论:本实验通过搭建小信号调谐放大器电路并进行测量,验证了该电路的放大性能和调谐特性。
高频小信号谐振放大器实验
高频小信号谐振放大器实验本实验主要介绍高频小信号谐振放大器的设计和实现。
高频小信号谐振放大器是一种可以在高频范围内放大器小信号的电路,其特点是具有高放大倍数、高输入阻抗和宽带。
该电路通常用于射频(无线通信)、超声波和雷达等领域。
一、实验目的1. 了解高频小信号谐振放大器的基本结构和工作原理。
2. 学会使用S参数测试仪器和频谱分析仪等仪器。
3. 学会使用仿真软件验证电路设计。
二、实验器材1. 微波传输线(常见类型包括同轴线、双线、带线等);2. 射频信号发生器、信号频率测量仪、带宽测量仪等;3. 微波功率计、双向器等;4. 电路板、直流稳压电源、万用表等;5. 计算机、仿真软件等。
三、实验内容1. 设计一款小信号谐振放大器电路,电路输入端的电阻值为50Ω,工作频率为2.4GHz左右。
2. 在仿真软件上进行电路仿真和性能测试,包括S参数测试、放大倍数测试、带宽测试等。
3. 在电路板上搭建实际电路,并进行实测和调试。
五、实验注意事项1. 在设计电路时,应注意高频电路的特殊性质,尤其是传输线上波的反射和干扰等问题。
2. 在进行仿真测试和实验搭建时,应选择合适的测试仪器和工作频率,并对测试结果进行准确的数据处理和比对。
3. 在进行电路测试和调试时,应注意电路板的接线、阻抗匹配等问题,并保持测试仪器和电路板的地线相同。
六、实验结论1. 经过仿真测试和实验搭建,本实验成功设计出了一款小信号谐振放大器电路,其频率为2.4GHz左右。
2. 经过性能测试,本电路具有较高的S参数、放大倍数和带宽等性能指标,符合设计要求。
3. 通过比对仿真数据和实测结果,发现其较大差异主要为电路实际反射等因素所导致,通过调试可以使电路性能被进一步优化。
4. 本实验通过仿真和实验验证了小信号谐振放大器电路的特点和优点,具有重要的理论和实践价值。
小信号谐振放大器实验报告
福 建电脑
N T u u ia C O M P U T E R
小信号谐振放大器实验报告
常红霞,毛雷鸣
( 巢 湖 学 院 安 徽 巢 湖 238000)
【摘 要 】高 频 小 信 号 放 大 器 是 高 频 电 子 线 路 中 的 一 个 重 要 组 成 部 分 ,它 不 仅 可 以 对 小 信 号 起 到 放 大 作 用 ,还具有一 定 选 频 作 用 。论 文 阐 述 了 小 信 号 谐 振 放 大 器 的 工 作 原 理 和 具 体 实 验 内 容 ,并对 实 验 结 果 和 过 程 中 的 常 见 问 题 进 行 了 分 析 讨 论 。通 过 小 信 号 谐 振 放 大 器 的 实 验 ,使 学 生 加 深 了 对 小 信 号 谐 振 放 大 器 工 作 原 理 的 理 解 ,激 发 了 学 生 的 学 习 主 动 性 ,锻 炼 了 学 生 的 理 论 解 决 实 际 问 题 能 力 ,并 为 后 续 的 电 子 训 练 打 下 了 坚 实 的 理 论 实 践 基 础 。
A ^ = / 2 - / 1 = 2 /0.7
(7)
通 常 谐 振 放 大 器 的 通 频 带 都 比 较 窄 ,由 式 (6)可 知 ,除了通 过 选 用 y e 较 大 的 晶 体 管 外 ,还 应 尽 量 减 小 调 谐 回 路 的 总 电 容 Cx来 避 免 通 频 带 过 窄 。
(4)谐 振 放 大 器 的 选 择 性 通 常 采 用 谐 振 放 大 器 的 矩 形 系 数 Kkh来 衡 量 放 大 器 的 选 择 性 。我 们 将 放 大 器 谐 振 时 的 电 压 放 大 倍 数 下 降 到 0.1A v〇 时所对应的频偏与该放大器的通频带之比定义为矩形系数
小信号调谐放大器实验报告
小信号调谐放大器实验报告实验目的:本实验旨在通过搭建小信号调谐放大器电路,了解其工作原理,掌握其调谐特性,并通过实验验证其放大性能。
实验原理:小信号调谐放大器是一种常用的电子电路,主要由调谐电路和放大电路组成。
调谐电路用于选择特定的频率进行放大,而放大电路则用于放大选定频率的信号。
在实际应用中,小信号调谐放大器常用于无线电接收机和电视机等电子设备中。
实验步骤:1. 按照实验电路图搭建小信号调谐放大器电路;2. 连接信号发生器和示波器,并调节信号发生器的频率和幅度;3. 观察示波器上的输出波形,并记录相应的数据;4. 调节电路中的元件数值,如电容、电感等,观察对输出波形的影响;5. 分析实验数据,验证小信号调谐放大器的调谐特性和放大性能。
实验结果:通过实验观察和数据记录,我们发现小信号调谐放大器在不同频率下具有不同的放大倍数。
当调节电路中的元件数值时,可以明显地改变放大器的调谐特性和放大性能。
实验结果表明,小信号调谐放大器能够有效地放大特定频率的信号,并且具有一定的调谐范围。
实验分析:小信号调谐放大器的工作原理是利用调谐电路的谐振特性,选择特定频率进行放大。
在实际应用中,我们可以根据需要调节电路中的元件数值,以满足不同频率的放大要求。
通过本次实验,我们对小信号调谐放大器的工作原理和性能有了更深入的了解,这对于我们在实际电子电路设计和应用中具有重要的指导意义。
实验总结:通过本次实验,我们成功搭建了小信号调谐放大器电路,并验证了其调谐特性和放大性能。
实验结果表明,小信号调谐放大器能够有效地放大特定频率的信号,并且具有一定的调谐范围。
这为我们进一步深入研究和应用小信号调谐放大器奠定了基础。
结语:小信号调谐放大器是一种常用的电子电路,在无线电接收机和电视机等电子设备中有着广泛的应用。
通过本次实验,我们对小信号调谐放大器的工作原理和性能有了更深入的了解,这对于我们在实际电子电路设计和应用中具有重要的指导意义。
高频小信号谐振放大器报告
实验一高频小信号谐振放大器
一、实验目的
1.高频小信号谐振放大器的工作原理及电路构成和电路元器件的作用。
2.了解高频小信号的质量指标和谐振放大器的性能。
3.掌握L,C参数对谐振频率的影响。
4.分析单调谐回路放大器的质量指标,测量电压增益,测量功率增益;测量放大器的频率。
二、实验内容
1.参照电路原理图1-1连线。
2.图1-1为一单调谐回路中频放大器,已知工作频率f
,计算回
路电容和回路电感。
图
1-1 小信号谐振放大器
1.在选用三极管时要查晶体管手册,使参数合理。
2.观察瞬态分析的波形输出及频谱分析是否合理。
3.在pspice中设定:
V 1参数,AC=100mV、V OFF =0V,Vampl=300mV,freq=10MegHz。
V
2
参数DC=12V。
在AC Sweep中设定参数:①在AC Sweep Type中选 Decade。
②在Sweep Parameters 中选pts/Decade为20、Start Fred为10k、End Fred为500MEG。
③AC Sweep Type中选 Output Voltoge为V(A)、1/V为V
1
、Lntervat为10。
三、实验报告
1.根据输入信号的幅度和频率,测出输出信号的幅度和频率,完成
表1-1
2.画出输入信号和输出信号的波形;(根据图形输出)。
小信号调谐放大实验报告
小信号调谐放大实验报告一、实验目的本实验旨在通过构建小信号调谐放大电路,掌握基本的放大电路设计原理和调谐技术,了解小信号放大器的工作原理和特性,并且学会使用实验仪器进行电路测试和参数测量。
二、实验原理1.小信号放大器的工作原理小信号放大器是一种能够将微弱信号经过放大后输出强信号的电路,其主要由三部分组成:输入端、放大器以及输出端。
当微弱信号进入输入端时,经过放大器进行增益处理后输出到输出端。
其中,输入端主要负责接收微弱信号并将其转换为电压信号;放大器则是核心部件,通过对输入端接收到的信号进行增益处理来达到放大效果;而输出端则负责将已经被处理过的强信号输出到外界。
2.调谐技术调谐技术是指利用合适的电路设计使得某一频率范围内的输入信号能够得到更好地增益效果。
具体来说,在小信号调谐放大电路中,通过改变电容或者电感等元件的参数来达到对不同频率下输入信号进行不同程度增益处理的目的。
三、实验步骤1.电路图设计根据实验要求,我们需要构建一个小信号调谐放大电路,因此需要先进行电路图设计。
具体来说,我们的电路图应该包括输入端、放大器以及输出端。
其中,输入端应该包括一个信号发生器和一个变压器;放大器应该由两个晶体管组成;而输出端则应该包括一个耦合电容和一个负载电阻。
2.元件选型根据所设计的电路图,我们需要进行元件选型。
具体来说,我们需要选取合适的晶体管、变压器、耦合电容以及负载电阻等元件,并且根据实验要求确定其参数值。
3.电路搭建在完成元件选型后,我们需要将所选元件按照设计要求进行布线,并且将其连接成完整的小信号调谐放大电路。
在搭建过程中,需要注意保持连接可靠,并且避免出现接触不良或短路等情况。
4.测试与调试在完成小信号调谐放大电路的搭建后,我们需要对其进行测试与调试。
具体来说,我们可以通过使用万用表等仪器来测量各个元件的参数值,并且通过改变输入信号的频率来观察电路的增益效果。
在测试过程中,需要注意保持仪器的准确性,并且避免对电路产生干扰。
谐振放大回路实验报告
谐振放大回路实验报告实验目的掌握谐振放大回路的基本原理,并通过实验验证其性能。
实验器材- 信号发生器- 功率放大器- 电容、电感和电阻器- 示波器- 直流电源实验原理谐振放大回路是指在特定频率下,电路的电压或电流会被倍增放大的放大器。
它主要由电容、电感和电阻器组成。
当谐振频率控制在谐振回路的共振频率上时,电路的增益会达到最大值。
在实验中,我们可以通过对电容或电感的改变来调整回路的谐振频率。
实验步骤1. 连接电路:根据实验理论,连接电容、电感和电阻器组成谐振放大回路。
电源连接到放大器的正负极,信号发生器连接到放大器的输入端,示波器连接到放大器的输出端。
2. 调节信号发生器:设置信号发生器的频率为预期的谐振频率,设置输出电压的幅度。
3. 调整电容或电感:通过改变电容或电感的数值,调整谐振频率并观察输出信号的变化。
4. 调整放大器增益:调整功率放大器的增益,使输出信号达到最大。
5. 观察输出信号:使用示波器观察放大器的输出信号,记录幅度和相位。
6. 绘制增益-频率曲线:固定电容或电感的数值,改变输入信号的频率,并记录放大器的输出幅度。
通过绘制增益-频率曲线,可以确定谐振频率和增益。
7. 分析结果:根据实验结果,分析谐振放大回路的性能。
实验结果根据我们的实验结果,我们从频率特性曲线中可以清楚地看到,当频率接近谐振频率时,放大器的输出幅度急剧增大。
当频率偏离谐振频率时,放大器的输出幅度减小,损耗被放大器抵消。
结论与讨论谐振放大回路是一种可通过频率调整来实现放大的电路。
它广泛应用于无线通信、音频放大和振荡器等领域。
通过本次实验,我们成功验证了谐振放大器的性能,并研究了其频率特性曲线。
进一步研究可以探索谐振放大器的其他性能,如可靠性、噪声和功耗等。
实验总结本次实验我们学习了谐振放大回路的基本原理,并通过实验验证了其性能。
我们通过调整电容和电感来调整谐振频率,并观察了放大器的输出信号。
通过绘制增益-频率曲线,我们了解了谐振放大回路的增益特性。
小信号调谐放大器实验报告
小信号调谐放大器实验报告小信号调谐放大器实验报告引言:小信号调谐放大器是一种常见的电子设备,用于放大弱信号并实现频率调谐。
本实验旨在通过搭建小信号调谐放大器电路并进行测试,探索其原理和特性。
实验器材:1. 小信号调谐放大器电路板2. 信号发生器3. 示波器4. 电压表5. 电流表6. 电阻箱7. 电容箱8. 电感箱9. 连接线等实验步骤:1. 搭建小信号调谐放大器电路,按照给定的电路图连接各个元件。
2. 将信号发生器的输出端与电路的输入端相连,设置合适的频率和幅度。
3. 将示波器的探头连接到电路的输出端,观察输出信号的波形和幅度。
4. 使用电压表和电流表测量电路中各个元件的电压和电流值,并记录下来。
5. 调整信号发生器的频率,观察输出信号的变化,并记录下来。
6. 调整电路中的电容和电感值,观察对输出信号的影响,并记录下来。
实验结果与分析:通过实验观察和数据记录,我们可以得出以下结论:1. 频率调谐特性:当信号发生器的频率与电路的谐振频率相同时,输出信号的幅度最大。
随着频率的偏离,输出信号的幅度逐渐减小。
这表明小信号调谐放大器具有频率选择性,可以对特定频率的信号进行放大。
2. 放大倍数:通过测量电路中各个元件的电压和电流值,我们可以计算出放大倍数。
实验结果显示,在合适的频率范围内,小信号调谐放大器的放大倍数较高,可以将弱信号放大到较大的幅度,提高信号的可靠性和可检测性。
3. 电容和电感对放大器性能的影响:调整电路中的电容和电感值,我们可以观察到对输出信号的影响。
增大电容值会使得输出信号的幅度减小,而增大电感值则会使得输出信号的幅度增大。
这说明电容和电感在小信号调谐放大器中起到了不同的作用,需要根据实际需求进行调整。
结论:通过本次实验,我们成功搭建了小信号调谐放大器电路,并对其进行了测试和分析。
实验结果表明,小信号调谐放大器具有频率选择性和较高的放大倍数,可以用于放大弱信号并实现频率调谐。
同时,电容和电感的调整对放大器性能有一定的影响,需要根据实际需求进行优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、实验准备
(1)电路仿真如下:
仿真结果如下:
谐振频率下输入信号:输出信号:
截止频率下输入信号:输出信号:
下降到谐振时放大倍数的10%时对应的输入和输出:
小信号调谐放大器的主要质量指标仿真结果:
(1)谐振频率
放大器调谐回对路谐振时所应的频率称为放大器的谐振频率,理论上,对于LC组成的并联谐振电路,谐振频率的表达式为:
由于LC并联谐振回路的阻抗随着频率变化而变化,理论上可以分析得出:并联谐振在谐振频率处呈现纯阻,并达到最大值。即放大器在回路谐振频率上将具有最大的电压增益,若偏离谐振频率,输出增益则减小。总之,调谐放大器不仅具有对特定频率信号的放大作用,同时也起着滤波和选频的作用。
四、实验电路及方法步骤
图1实验原理图1图2实验原理图2
①谐振频率
f=650MHZ
②谐振增益
放大器的谐振电压增益为放大器处在谐振频率下时输出电压与输入电压之比。
测量得Av=12.55dB
③通频带
通频带带宽:
测量得BW0.7=130KHz
④选择性
放大器从含有各种不同频率的信号总和中选出有用信号,排除干扰信号的能力,称为放大器的选择性。选择性的基本指标是矩形系数。其中,定义矩形系数是电压放大倍数下降到谐振时放大倍数的10%时对应的频率偏移和电压放大倍数下降为0.707时所对应的频率偏移之比,即:
实验步骤如下:
1.由高频信号发生器输出单频信号,调节信号振幅,使峰-峰值Vpp=50mV左右;
2.将示波器探头连接在放大器的输出端,调节输入信号频率及示波器观察输出信号波形,先粗测、再细测谐振放大器谐振频率f0;调节中周铁芯观察电感值对谐振频率的影响;
3.测量电压增益AV0
在放大器对输入信号已经谐振的情况下,用示波器分别观测输入和输出信号的幅度大小,计算谐振时的电压增益AV0。
50
690
176
10.93085327
50
710
154
9.77101433
50
810
89
5.008400046
50
910
62.4
1.924291707
50
1000
49.8
-0.034813232
50
1200
34
-3.349821746
50
1400
26.8
-5.416704206
50
1600
22.4
-6.97443972
50
300
28
-5.03623946
50
400
50
0
50
500
86
4.710568938
50
570
140
8.943160627
50
590
168
10.52678555
50
610
192
11.68662449
50
630
210
12.464பைடு நூலகம்8581
50
650
212
12.54731713
50
670
198
11.95390372
12.51653427
输入电压Vi/mV
90
100
110
120
130
140
150
160
输出电压Vo/mV
388
420
460
508
548
588
628
668
电压增益/dB
12.69178432
12.46498581
12.42730293
12.53364932
12.49674412
12.46498581
12.43736769
BW0.7=130KHz;BW0.1=1400KHz
计算得:Kr0.1=10.77
⑤品质因数
并联谐振品质因数为
由电路理论,品质因数的近似公式可得:
计算得:Q=5
(2)电压增益测量结果分析
由测量结果可得如下图像:
由图像可以看出随着在谐振频率下,随着输入电压的提高电压增益逐渐下降,其中该电路电压增益最大为13.3dB,且由于输入电压变化范围较小增益下降幅度较小。由于该电路为小信号谐振放大电路,所以电路中三极管工作在线性状态,随着输入信号幅值的增加电路放大能力会逐渐降低,且波形会有失真。
仿真结果:f=4.9MHz
(2)谐振增益
放大器的谐振电压增益为放大器处在谐振频率下时输出电压与输入电压之比。
仿真得Av=13.14dB
(3)通频带
通频带带宽:
仿真得BW=0.15MHz
(4)选择性
放大器从含有各种不同频率的信号总和中选出有用信号,排除干扰信号的能力,称为放大器的选择性。选择性的基本指标是矩形系数。其中,定义矩形系数是电压放大倍数下降到谐振时放大倍数的10%时对应的频率偏移和电压放大倍数下降为0.707时所对应的频率偏移之比,即:
仿真得:Kr0.1=14
(5)品质因数
并联谐振品质因数为
由电路理论,品质因数的近似公式可得:
计算得:Q=32.67
(2)数据记录表格如下:
谐振频率测量:
R1=5.1k;电感L=10uH;电容C=100pF;
输入电压/mV
输入频率/KHz
输出电压/mv
电压增益/dB
50
100
18
-8.873949985
12.4131296
实验报告
6、
(1)谐振频率测量结果分析
由测量结果可得如下曲线:
由输出电压和输入频率的关系曲线中可以看到输出电压最大约为212mV,对应输入信号频率为650KHZ;输出电压下降到0.707倍时电压值为150mV,对应输入信号频率为580KHZ和710KHZ,则通带宽度为130MHZ;输出电压下降到0.1倍时电压值为20mV,对应输入信号频率为200MHZ和1600KHZ,则阻带宽度为1400KHZ;由此可计算以下参数:
电压增益测量
输入信号频率f=650KHz;
输入电压Vi/mV
10
20
30
40
50
60
70
80
输出电压Vo/mV
46
88
130
172
212
256
298
338
电压增益/dB
13.25515663
12.86905353
12.73644195
12.66936911
12.54731713
12.6017743
12.58236448
小信号谐振放大电路实验报告
预习报告
一、实验目的
1.掌握小信号调谐放大器的工作原理;
2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法等。
二、实验仪器
序号
仪器
数量
1
示波器
1台
2
万用表
1块
3
直流稳压电源
1台
4
一字型螺丝刀(调节中周)
1把
三、实验基本原理和相关知识
小信号调谐放大器广泛用作高频和中频放大器,特别是用在通信接收端的前端电路,其主要目的就是实现对高频小信号的放大。高频小信号放大器按频谱宽度分为窄带放大器和宽带放大器;按电路形式分为单级放大器和级联放大器;按照负载性质:谐振放大器和非谐振放大器。其中,谐振放大器的负载是采用具有放大、滤波和选频作用的谐振回路。非谐振放大器的负载由阻容放大器和各种滤波器组成,结构简单。