中考数学易错题精选附详细答案解析
(易错题精选)初中数学有理数难题汇编附解析
(易错题精选)初中数学有理数难题汇编附解析一、选择题1.如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,则点C表示的数可能是()A.0 B.1 C.3 D.5【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C表示的数.【详解】∵点A,B互为相反数,∴AB的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C在正半轴距原点3个单位长度,∴点C表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键. 2.如图,a、b在数轴上的位置如图,则下列各式正确的是()A.ab>0 B.a﹣b>0 C.a+b>0 D.﹣b<a【答案】B【解析】解:A、由图可得:a>0,b<0,且﹣b>a,a>b∴ab<0,故本选项错误;B、由图可得:a>0,b<0,a﹣b>0,且a>b∴a+b<0,故本选项正确;C、由图可得:a>0,b<0,a﹣b>0,且﹣b>a∴a+b<0;D、由图可得:﹣b>a,故本选项错误.故选B.3.2019-的倒数是()A.2019 B.-2019 C.12019D.12019-【答案】C【解析】【分析】 先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果. 【详解】2019-=2019,2019的倒数为12019故选C【点睛】 本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.4.已知a b >,下列结论正确的是( ) A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .n m ->C .m n ->D .m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数,且m <n ,|m|<|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选:C .【点睛】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.6.和数轴上的点一一对应的是( )A .整数B .实数C .有理数D .无理数【答案】B【解析】∵实数与数轴上的点是一一对应的,∴和数轴上的点一一对应的是实数.故选B.7.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.【详解】从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .|a ﹣c |=c ﹣a ,故本选项错误;C .﹣a >﹣b ,故本选项错误;D .|b +c |=b +c ,故本选项正确.故选D .【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,用了数形结合思想.8.下列说法错误的是( )A .2 a 与()2a -相等B ()2a -2a -C .3 a 3a -D .a 与a -互为相反数【答案】D【解析】【分析】根据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、()2a -=2 a ,故A 正确;B 、()22a a -=,则()2a -与2a -互为相反数,故B 正确;C 、3 a 与3a -互为相反数,故C 正确;D 、a a -=,故D 说法错误;故选:D.【点睛】本题考查了乘方、算术平方根、立方根、绝对值,以及相反数的定义,解题的关键是熟练掌握所学的定义进行解题.9.若x <2,化简()22x -+|3-x|的正确结果是( ) A .-1B .1C .2x -5D .5-2x 【答案】C【解析】分析:本题利用绝对值的化简和二次根式()2a a = 的化简得出即可. 解析:∵x <2,∴()22x -+|3﹣x|=2352x x x -+-=- .故选D.10.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a> C .ad bc > D .a d >【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、b+d =0,∴b+c <0,故A 不符合题意;B 、c a <0,故B 不符合题意;C 、ad <bc <0,故C 不符合题意;D 、|a|>|b|=|d|,故D 正确;故选D .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键,又利用了有理数的运算.11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc+++的所有可能的值有( )个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b<0<a,且|a|<|b|,则a+b<0,b-a<0,∴原式=-(a+b)+(b-a)=-a-b+b-a=-2a,故选A.【点睛】.13.下列各组数中互为相反数的是()A.5B.-和(-C.D.﹣5和1 5【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A、5,两数相等,故此选项错误;B、和-()互为相反数,故此选项正确;C、=-2,两数相等,故此选项错误;D、-5和15,不互为相反数,故此选项错误.故选B.【点睛】本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.14.如果a+b>0,ab>0,那么()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0【答案】A【解析】解:因为ab>0,可知ab同号,又因为a+b>0,可知a>0,b>0.故选A.15.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣c|+7b-=0,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】b-=0,∵且|a-c|++7∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“6cm”分别对应数轴上表示﹣2和实数x的两点,那么x的值为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x之间的距离为6,∴x表示的数为:﹣2+6=4,故选:B.【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.17.实数,a b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .a b <B .a b <C .0a b +>D .0a b -> 【答案】A【解析】【分析】根据数轴得a<0<b ,且a b >,再根据实数的加法法则,减法法则依次判断即可.【详解】由数轴得a<0<b ,且a b >,∴a+b<0,a-b<0,故A 正确,B 、C 、D 错误,故选:A.【点睛】此题考查数轴,实数的大小比较,实数的绝对值的性质,加法法则,减法法则.18.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;19.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q【答案】C【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.20.已知235280x y x y +--+=则xy 的值是( )A .19B .-6C .9D .1-6【答案】B【解析】【分析】根据非负数的应用,列出方程组,解方程组,即可求出x 、y 的值,然后得到答案.【详解】 解:∵235280x y x y +--+=,∴2350280x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, ∴236xy =-⨯=-;故选:B.【点睛】本题考查了非负数的应用,解二元一次方程组,解题的关键是正确求出x 、y 的值.。
中考数学培优 易错 难题(含解析)之一元二次方程含详细答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.2.已知关于x 的一元二次方程()220x m x m -++=(m 为常数) (1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值及方程的另一个根.【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0.【解析】【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m 2+4,∵无论m 为何值时m 2≥0,∴m 2+4≥4>0,即△>0,所以无论m 为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t ,()220x m x m -++=根据题意得2+t=21m + ,2t=m , 解得t=0,所以m=0,即m 的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.3.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.4.已知关于x的一元二次方程有两个实数x2+2x+a﹣2=0,有两个实数根x1,x2.(1)求实数a的取值范围;(2)若x12x22+4x1+4x2=1,求a的值.【答案】(1)a≤3;(2)a=﹣1.【解析】试题分析:(1)由根的个数,根据根的判别式可求出a的取值范围;(2)根据一元二次方程根与系数的关系,代换求值即可得到a的值.试题解析:(1)∵方程有两个实数根,∴△≥0,即22﹣4×1×(a﹣2)≥0,解得a≤3;(2)由题意可得x1+x2=﹣2,x1x2=a﹣2,∵x12x22+4x1+4x2=1,∴(a﹣2)2﹣8=1,解得a=5或a=﹣1,∵a≤3,∴a=﹣1.5.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.6.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.【答案】(1)k=1;(2)证明见解析.【解析】【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,1﹣k﹣3+3k=0解得k=1;(2)证明:1,(3),3a b k c k==-+=24b ac∆=-∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.7.今年以来猪肉价格不断走高,引起了民众与区政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%.今年 11 月 10 日某市民于 A 超市购买 5 千克猪排骨花费 350 元.(1)A 超市 11 月排骨的进货价为年初排骨售价的32倍,按 11 月 10 日价格出售,平均一天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的售价定位为每千克多少元?(2)11 月 11 日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上下调a%出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该天的两种猪排骨总销量比 11 月 10 日增加了a%,且储备排骨的销量占总销量的57,两种排骨销售的总金额比 11 月 10 日提高了128a %,求 a 的值. 【答案】(1)售价为每千克65元;(2)a =35.【解析】【分析】 (1)先根据题意计算出11月10的售价和11月的进货价,设每千克降价x 元,则每千克的利润为10-x 元,日销量为100+20x 千克,根据销量×单利润=总利润列出方程求解,并根据为了尽可能让顾客优惠,对所得的解筛选;(2)根据销售总金额=储备排骨销售单价×储备排骨销售数量+非储备排骨销售单价×非储备排骨销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)11月10日的售价为350÷5=70元/千克年初的售价为:350÷5÷175%=40元/千克,11月的进货价为: 340602元/千克设每千克降价x 元,则每千克的利润为70-60-x=10-x 元,日销量为100+20x 千克 则(10020)(10)1000x x ,解得10x =,25x =因为为了尽可能让顾客优惠,所以降价5元,则售价为每千克65元. (2)根据题意可得52170(1%)100(1%)70100(1%)701001%7728a a a a ⎛⎫-++⨯+=⨯+ ⎪⎝⎭解得135a =,20a =(舍去)所以a =35.【点睛】 本题考查一元二次方程的应用,(1)中理清销售量随着单价的变化而变化的数量关系是解题关键;(2)中在求解时有些难度,可先设令%a t =,解方程求出t 后再求a 的值.8.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.9. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的),五月份用水量超过m 吨(或水费是按来计算的) 则有151=1.7×80+(80-m )×即m 2-80m+1500=0解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去.∴m=50【解析】10.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售.【解析】【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折.【详解】(1)设每千克茶叶应降价x 元.根据题意,得:(400﹣x ﹣240)(200+10x ×40)=41600. 化简,得:x 2﹣10x +240=0.解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80%400⨯=. 答:该店应按原售价的8折出售.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.。
(易错题精选)初中数学有理数难题汇编及解析
(易错题优选)初中数学有理数难题汇编及分析一、选择题1.已知a、b两数在数轴上的地点如下图,则化简代数式| a b | |1 a | | b 1| 的结果是()A.2b B.2a C. 2D.2a2【答案】 A【分析】【剖析】依据数轴判断出绝对值符号内式子的正负,而后去绝对值归并同类项即可.【详解】解:由数轴可得,b< - 1< 1< a,∴a- b> 0, 1-a < 0, b+1< 0,∴ | a b | |1 a | | b1| ,a b1ab 1 ,a b1a b1,2b,应选:A.【点睛】本题考察数轴,绝对值的性质,解答本题的重点是确立绝对值内部代数式的符号.2.若( x1)22y 1 0 ,则x+y的值为().1B.133A.C.2D.222【答案】 A【分析】解:由题意得: x-1=0, 2y+1=0,解得: x=1,y=1,∴ x+y=111.应选 A.222点睛:本题考察了非负数的性质.几个非负数的和为0,则每个非负数都为0.3.在﹣ 3,﹣ 1, 1, 3 四个数中,比 2 大的数是()A3B1C1 D 3【答案】 D【分析】【剖析】依占有理数比较大小的方法解答即可.【详解】解:比 2 大的数是3.应选: D.【点睛】本题考察了有理数比较大小,掌握有理数比较大小的比较方法是解题的重点.4.1的绝对值是 ( )611A.﹣ 6B. 6C.﹣D.66【答案】 D【分析】【剖析】利用绝对值的定义解答即可.【详解】1的绝对值是1,66应选 D.【点睛】本题考察了绝对值得定义,理解定义是解题的重点.5.若︱2a︱=- 2a,则 a 必定是 ()A.正数B.负数C.正数或零D.负数或零【答案】 D【分析】试题剖析:依据绝对值的意义,一个正数的绝对值是自己,0 的绝对值是0,一个负数的绝对值是其相反数,可知 a 必定是一个负数或0.应选 D6.以下说法错误的选项是()22a 2 2 互为相反数A. a与 a 相等B与a .C.3a与3 a 互为相反数D.a与 a 互为相反数【答案】 D【分析】【剖析】依据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判断,即可获得答案 .【详解】解: A、a 2= a2,故 A 正确;B、22a2互为相反数,故 B 正确;a a2,则a与C、3a 与3 a 互为相反数,故 C 正确;D、a a ,故D说法错误;应选: D.【点睛】本题考察了乘方、算术平方根、立方根、绝对值,以及相反数的定义,解题的重点是娴熟掌握所学的定义进行解题 .7.在有理数2, -1, 0,-5中,最大的数是()A.2B.C. 0D.【答案】A【分析】【剖析】正数都大于0,负数都小于0,正数大于全部负数,两个负数绝对值大的反而小,据此判断即可.【详解】依占有理数比较大小的方法可得:-5<-1<0<2,因此最大数是 2.应选 A.【点睛】本题主要考察了实数大小比较的方法,要娴熟掌握,解答本题的重点是要明确:正实数 >0>负实数,两个负实数绝对值大的反而小.8.以下各数中,最大的数是()11A.B.C.0D.-2 24【答案】 B【分析】【剖析】将四个数进行排序,从而确立出最大的数即可.【详解】1120,24则最大的数是1,4应选 B.【点睛】本题考察了有理数大小比较,娴熟掌握有理数大小比较的方法是解本题的重点.9.实数 a、 b 在数轴上的地点如下图用以下结论正确的选项是()A. a+b>a>b>a-b B.a>a+b>b>a-bC. a-b>a>b>a+b D. a-b>a>a+b>b【答案】 D【分析】【剖析】第一依据实数a,b 在数轴上的地点能够确立a、b 的取值范围,而后利用有理数的加减运算即可比较数的大小.【详解】解:由数轴上a,b 两点的地点可知,∵b <0, a> 0, |b| < |a| ,设 a=6, b=-2,则 a+b=6-2=4, a-b=6+2=8,又∵ -2< 4<6< 8,∴a-b> a> a+b> b.应选: D.【点睛】本题主要考察了实数与数轴之间的对应关系,解答本题的重点是依据数轴上a, b 的地点估算其大小,再取特别值进行计算即可比较数的大小.10.假如| a | a ,以下建立的是()A.a 0B. a 0C.a 0D. a 0【答案】 D【分析】【剖析】绝对值的性质:正数的绝对值等于它自己,负数的绝对值等于它的相反数,0 的绝对值是0.【详解】假如 | a | a ,即一个数的绝对值等于它的相反数,则a0 .应选 D.本题考察绝对值,娴熟掌握绝对值的性质是解题重点.11. 以下命题中,真命题的个数有()① 带根号的数都是无理数; ② 立方根等于它自己的数有两个,是③ 0.01 是 0.1 的算术平方根;④ 有且只有一条直线与已知直线垂直0 和1;A .0 个B .1 个C .2 个【答案】 A【分析】【剖析】开方开不尽的数为无理数;立方根等于自己的有 ±1和平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数, ① 错误;立方根等于自己的有:±1和 0,② 错误;D .3 个0;算术平方根指的是正数;在同一12. 已知直角三角形两边长 x 、y 知足 x 24( y 2)21 0 ,则第三边长为 ( )A .B . 13C . 5或 13D .,5或13【答案】 D【分析】【剖析】【详解】解:∵ |x 2-4| ≥0, ( y 2)2 1 ≥0,∴ x 2-4=0, ( y 2) 2 1=0,∴ x =2 或 -2(舍去), y=2 或 3,分 3 种状况解答: ① 当两直角边是 2 时,三角形是直角三角形,则斜边的长为:2222 2 2;② 当2,3 均为直角边时,斜边为2232 13 ;③ 当 2 为向来角边, 3 为斜边时,则第三边是直角, 长是32225.应选 D .考点: 1.非负数的性质; 2.勾股定理.13. 如图,数轴上 A , B 两点分别对应实数 a , b ,则以下结论正确的选项是 ( )A . b >aB . ab > 0C . a > bD . | a| > | b|【答案】C【剖析】本题要先察看 a ,b 在数轴上的地点,得 b < -1< 0< a < 1,而后对四个选项逐个剖析.【详解】A 、∵ b <﹣ 1< 0< a < 1,∴ b < a ,应选项 A 错误;B 、∵ b <﹣ 1< 0< a < 1,∴ ab < 0,应选项 B 错误;C 、∵ b <﹣ 1< 0< a <1,∴ a > b ,应选项 C 正确;D 、∵ b <﹣ 1< 0< a < 1,∴ | b| > | a| ,即 | a| < | b| ,应选项 D 错误.应选 C .【点睛】本题考察了实数与数轴的对应关系,数轴上右侧的数老是大于左侧的数.14. 数轴上 A ,B , C 三点所表示的数分别是 a , b , c ,且知足 | c b || a b | | a c | ,则 A , B ,C 三点的地点可能是()A .B .C .D .【答案】 C【分析】【剖析】由 A 、 B 、C 在数轴上的地点判断出 a 、 b 、 c 的大小关系,依据绝对值性质去绝对值符号,判断左右两边能否相等即可 .【详解】当 a < c < b 时, | c b | | a b | b ca b ac, 180°-66?38=113?22′′,此选项错误;B 、当 a < b < c 时, | c b | | a b | c b a b c a 2b , 4 A-mB= 4 ,此项错误;C c a b 时, | c b | | a b | b c a b a c, | a c | a c ,此项正确 、当 < < D 、当 c < b < a 时, | cb | | a b | bc a bc a 2b , | a c | a c ,此选项错误;应选 C.【点睛】本题主要考察绝对值性质:正数绝对值等于自己,0 的绝对值是0,负数绝对值等于其相反数.15.若3 a 2 b0, 则a b的值是()A.2B、 1C、 0D、1【答案】 B【分析】试题剖析:由题意得,3﹣ a=0, 2+b=0,解得, a=3, b=﹣ 2, a+b=1,应选 B.考点: 1.非负数的性质:算术平方根;2.非负数的性质:绝对值.16.以下运算正确的选项是()A. 4 =-2B.| ﹣3|=3C. 4 = 2【答案】 B【分析】【剖析】A、依据算术平方根的定义即可判断;B、依据绝对值的定义即可判断;C、依据算术平方根的定义即可判断;D、依据立方根的定义即可判断.【详解】解: A、 C、4 2 ,应选项错误;B、 | ﹣ 3|=3 ,应选项正确;D、 9 开三次方不等于3,应选项错误.应选 B.【点睛】本题主要考察了实数的运算,注意,正数的算术平方根是正数.17.有理数a,b在数轴上的地点如下图,以下说法正确的选项是(A.a b 0B.a b 0C.ab0【答案】 D【分析】【剖析】由图可判断a、 b 的正负性, a、 b 的绝对值的大小,即可解答.【详解】依据数轴可知:-2<a< -1,0< b< 1,D.39=3)D.b a∴a+b< 0, |a| >|b| , ab<0, a-b< 0.因此只有选项 D 建立.应选: D.【点睛】本题考察了数轴的相关知识,利用数形联合思想,能够解决此类问题.数轴上,原点左侧的点表示的数是负数,原点右侧的点表示的数是正数.18.以下各数中,绝对值最大的数是()A.1B.﹣ 1C. 3.14D.π【答案】D【分析】剖析:先求出每个数的绝对值,再依据实数的大小比较法例比较即可.详解:∵ 1、 -1、 3.14、π的绝对值挨次为1、1、 3.14、π,∴绝对值最大的数是π,应选 D.点睛:本题考察了实数的大小比较和绝对值,能比较实数的大小是解本题的重点.19.小麦做这样一道题“计算 3 W”、此中“□”是被墨水污染看不清的一个数,他打开后面的答案,得悉该题计算结果是8,那么”□”表示的数是()A.5B. -5C. 11D.-5 或11【答案】D【分析】【剖析】依据绝对值的性质求得结果,采纳清除法判断正确选项.【详解】解:设”□”表示的数是x,则| ( -3) +x|=8 ,∴-3+x=-8 或-3+x=8,∴x=-5 或 11.应选:D.【点睛】本题考察了绝对值的运算 ,掌握 : 一个正数的绝对值是它自己;一个负数的绝对值是它的相反数; 0 的绝对值是 0.20.在数轴上,与原点的距离是 2 个单位长度的点所表示的数是()1A.2B.2C.2D.2【答案】 C【分析】【剖析】与原点距离是 2 的点有两个,是±2.【详解】解:与原点距离是 2 的点有两个,是±2.应选: C.【点睛】本题考察数轴的知识点,有两个答案.。
中考数学复习一元二次方程组专项易错题含答案解析
中考数学复习一元二次方程组专项易错题含答案解析一、一元二次方程1.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上.①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P﹣1,2);②P (﹣32,154) 【解析】 试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c b a++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得1(舍去)或x=1,∴点P(1,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形=12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P (32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.2.解方程:(x+1)(x ﹣3)=﹣1.【答案】x 1x 2=1【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x 2﹣2x=2,配方得:x 2﹣2x+1=3,即(x ﹣1)2=3,解得:x 1,x 2=13.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠.【解析】【分析】(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可; (2)分别求出两种方式的增长率,然后比较即可.(1)设平均每次下调x%,则7000(1﹣x)2=5670,解得:x1=10%,x2=190%(不合题意,舍去);答:平均每次下调的百分率为10%.(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x)2=(1﹣10%)2=81%.∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.4.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.(1)求证:对任意实数m,方程总有2个不相等的实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.【答案】(1)证明见解析;(2)m的值为,方程的另一个根是5.【解析】【分析】(1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可;(2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可.【详解】(1)证明:∵(x﹣3)(x﹣4)﹣m2=0,∴x2﹣7x+12﹣m2=0,∴△=(﹣7)2﹣4(12﹣m2)=1+4m2,∵m2≥0,∴△>0,∴对任意实数m,方程总有2个不相等的实数根;(2)解:∵方程的一个根是2,∴4﹣14+12﹣m2=0,解得m=±,∴原方程为x2﹣7x+10=0,解得x=2或x=5,即m的值为±,方程的另一个根是5.【点睛】此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.当△=b2-4ac>0时,方程有两个不相等的实数根;当△=b2-4ac=0时,方程有两个相等的实数根;当△=b2-4ac<0时,方程没有实数根.5.计算题(1)先化简,再求值:21xx-÷(1+211x-),其中x=2017.(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.【答案】(1)2018;(2)m=4分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21x x -÷(1+211x -) =2221111x x x x -+÷-- =()()22111x x x x x+-⋅- =x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x 2﹣2x+m ﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m ﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.6.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.【答案】(1)123,4x x =-=(2)54a ≤(3)-4【解析】分析:(1)根据一元二次方程的解法即可求出答案;(2)根据判别式即可求出a 的范围;(3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a=﹣4,a=2(舍去),所以a的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.7.解方程:(3x+1)2=9x+3.【答案】x1=﹣13,x2=23.【解析】试题分析:利用因式分解法解一元二次方程即可.试题解析:方程整理得:(3x+1)2﹣3(3x+1)=0,分解因式得:(3x+1)(3x+1﹣3)=0,可得3x+1=0或3x﹣2=0,解得:x1=﹣13,x2=23.点睛:此题主要考查了一元二次方程的解法,解题关键是认真观察一元二次方程的特点,然后再从一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法中合理选择即可.8.已知:关于的方程有两个不相等实数根.(1)用含的式子表示方程的两实数根;(2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I)kx2+(2k-3)x+k-3 = 0是关于x的一元二次方程.∴由求根公式,得.∴或(II),∴.而,∴,.由题意,有∴即(﹡)解之,得经检验是方程(﹡)的根,但,∴【解析】(1)计算△=(2k-3)2-4k(k-3)=9>0,再利用求根公式即可求出方程的两根即可;(2)有(1)可知方程的两根,再有条件x1>x2,可知道x1和x2的数值,代入计算即可.一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系.请你解答下列问题:9.由图看出,用水量在m吨之内,水费按每吨1.7元收取,超过m吨,需要加收.10.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x个人,根据题意得:x+1+(x+1)x=36,解得:x=5或x=﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.11.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【答案】共有35名同学参加了研学游活动.【解析】试题分析:由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.试题解析:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人. 设九(1)班共有x 人去旅游,则人均费用为[100﹣2(x ﹣30)]元,由题意得: x[100﹣2(x ﹣30)]=3150,整理得x 2﹣80x+1575=0,解得x 1=35,x 2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去. 答:该班共有35名同学参加了研学旅游活动.考点:一元二次方程的应用.12.已知关于x 的一元二次方程x 2+(2k +1)x +k 2=0①有两个不相等的实数根. (1)求k 的取值范围;(2)设方程①的两个实数根分别为x 1,x 2,当k =1时,求x 12+x 22的值.【答案】(1)k >–14;(2)7 【解析】【分析】 (1)由方程根的判别式可得到关于k 的不等式,则可求得k 的取值范围;(2)由根与系数的关系,可求x 1+x 2=-3,x 1x 2=1,代入求值即可.【详解】(1)∵方程有两个不相等的实数根,∴>0∆,即()22214410k k k +-=+>,解得14k >-; (2)当2k =时,方程为2x 5x 40++=,∵125x x +=-,121=x x ,∴()222121212225817x x x x x x +=+-=-=.【点睛】本题主要考查根的判别式及根与系数的关系,熟练掌握根的判别式与根的个数之间的关系是解题的关键.13.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值.解: 22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+=22()(4)0m n n ∴-+-=,0,40m n n ∴-=-=,4,4n m ∴==.根据你的观察,探究下面的问题:(1)己知2222210x xy y y ++++=,求x y -的值.(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值.(3) 若己知24,6130a b ab c c -=+-+=,求a b c -+的值.【答案】(1)2(2)6(3)7【解析】【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x 与y 的值,即可求出x ﹣y 的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a 与b 的值,根据边长为正整数且三角形三边关系即可求出c 的长;(3)由a ﹣b =4,得到a =b +4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b 与c 的值,进而求出a 的值,即可求出a ﹣b +c 的值.【详解】(1)∵x 2+2xy +2y 2+2y +1=0∴(x 2+2xy +y 2)+(y 2+2y +1)=0∴(x +y )2+(y +1)2=0∴x +y =0 y +1=0解得:x =1,y =﹣1∴x ﹣y =2;(2)∵a 2+b 2﹣6a ﹣8b +25=0∴(a 2﹣6a +9)+(b 2﹣8b +16)=0∴(a ﹣3)2+(b ﹣4)2=0∴a ﹣3=0,b ﹣4=0解得:a =3,b =4∵三角形两边之和>第三边∴c <a +b ,c <3+4,∴c <7.又∵c 是正整数,∴△ABC 的最大边c 的值为4,5,6,∴c 的最大值为6;(3)∵a ﹣b =4,即a =b +4,代入得:(b +4)b +c 2﹣6c +13=0,整理得:(b 2+4b +4)+(c2﹣6c +9)=(b +2)2+(c ﹣3)2=0,∴b +2=0,且c ﹣3=0,即b =﹣2,c =3,a =2,则a ﹣b +c =2﹣(﹣2)+3=7.故答案为7.【点睛】本题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解答本题的关键.14.今年以来猪肉价格不断走高,引起了民众与区政府的高度关注,当市场猪肉的平均价格每 千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至 11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%.今年 11 月 10 日某市 民于 A 超市购买 5 千克猪排骨花费 350 元.(1)A 超市 11 月排骨的进货价为年初排骨售价的32倍,按 11 月 10 日价格出售,平均一天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加 20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的 售价定位为每千克多少元?(2)11 月 11 日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上下调 a %出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该天的两种猪排骨总销量比 11 月 10 日增加了 a %,且储备排骨的销量占总销量的57,两种排骨销售的总金额比 11 月 10 日提高了128a %,求 a 的值. 【答案】(1)售价为每千克65元;(2)a =35.【解析】【分析】 (1)先根据题意计算出11月10的售价和11月的进货价,设每千克降价x 元,则每千克的利润为10-x 元,日销量为100+20x 千克,根据销量×单利润=总利润列出方程求解,并根据为了尽可能让顾客优惠,对所得的解筛选;(2)根据销售总金额=储备排骨销售单价×储备排骨销售数量+非储备排骨销售单价×非储备排骨销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)11月10日的售价为350÷5=70元/千克年初的售价为:350÷5÷175%=40元/千克,11月的进货价为: 340602?元/千克设每千克降价x 元,则每千克的利润为70-60-x=10-x 元,日销量为100+20x 千克 则(10020)(10)1000x x +-=,解得10x =,25x =因为为了尽可能让顾客优惠,所以降价5元,则售价为每千克65元.(2)根据题意可得52170(1%)100(1%)70100(1%)701001%7728a a a a ⎛⎫-++⨯+=⨯+ ⎪⎝⎭解得135a =,20a =(舍去)所以a =35.【点睛】本题考查一元二次方程的应用,(1)中理清销售量随着单价的变化而变化的数量关系是解题关键;(2)中在求解时有些难度,可先设令%a t =,解方程求出t 后再求a 的值.15.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.。
九年级数学易错题及解析(类型归纳)
九年级数学易错题及解析(类型归纳)
平行线的性质和判定。
错误原因:学生在运用平行线的判定和性质时,容易出现混淆和错误。
解析:
学生需要熟练掌握平行线的判定和性质,并能够正确运用到题目中。
同时,需要注意平行线的判定和性质的不同之处,不要混淆使用。
三角形的内角和定理。
错误原因:学生在运用三角形的内角和定理时,容易出现计算错误或定理运用不当等问题。
解析:
学生需要熟练掌握三角形的内角和定理,并能够正确运用到题目中。
同时,需要注意定理的适用范围和特殊情况的处理方式。
一元二次方程的解法。
错误原因:学生在解一元二次方程时,容易出现计算错误或忽略判别式的限制条件等问题。
解析:
学生需要熟练掌握一元二次方程的解法,并能够正确运用到题目中。
同时,需要注意判别式的限制条件和特殊情况的处理方式。
圆的相关知识。
错误原因:学生在学习圆的相关知识时,容易出现概念不清、定理理解不准确等问题。
解析:
学生需要熟练掌握圆的相关知识,并能够正确运用到题目中。
同时,需要注意圆的相关定理和性质的适用范围和特殊情况的处理方式。
中考数学易错题答案
1 x x x 2 2x 1 x x 2 x ( )= ( ) 1 x 1 x 1 x 1 x
=
1 1 x x2 x 1 x x 1 = . 2 ( )= x 1 x x 1 1 x x 1
专题二
方程(组)与不等式(组)
中 考
C.mx-y=my-y
2 2
州
件. 答案:4
2 易错点 4:二次函数 y a ( x h) k 的顶点坐标的表示.
易错点 5:二次函数实际应用时,y 取得最值时,自变量 x 不在其范围内. 【好题闯关】 好题 1. 函数 y= 2 x +
福
【易错分析】 易错点 1:函数自变量的取值范围考虑不周全. 易错点 2:一次函数图象性质与 k、b 之间的关系掌握不到位. 易错点 3:在反比例函数图象上求三角形面积,面积不变成惯性.
中考数学错题集 考点一 数与式
【易错分析】 易错点 1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆. 易错点 2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运 算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误. 易错点 3:平方根与算术平方根的区别,立方根的意义. 易错点 4:求分式值为零时学生易忽略分母不能为零. 易错点 5:分式运算时要注意运算法则和符号的变化. 【好题闯关】 好题 1.下列各数中,是无理数的是 A.
1 中自变量 x 的取值范围是( x3
中 考
解析:解分式方程时易忘记检验,导致结论出错. 答案:两边同时乘以(4-x2)并整理得 8=2(2+x) , 解之得 x=2 经检验 x=2 是增根,原方程无解.
中考数学易错题集锦及答案 [整理版]
初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( )A 、2千米/小时B 、3千米/小时C 、6千米/小时D 、不能确定 4、方程2x+3y=20的正整数解有( ) A 、1个 B 、3个 C 、4个 D 、无数个 5、下列说法错误的是( )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线 6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( )A B C D 9、有理数中,绝对值最小的数是( ) A 、-1 B 、1 C 、0 D 、不存在10、21的倒数的相反数是( )A 、-2B 、2C 、-21D 、2111、若|x|=x ,则-x 一定是( )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为013、长方形的周长为x ,宽为2,则这个长方形的面积为( ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( ) A 、-x-3 B 、-(x+3) C 、3-xD 、x+315、如果0<a<1,那么下列说法正确的是( ) A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( )A 、12cmB 、10cmC 、8cmD 、4cm18、21-的相反数是( )A 、21+B 、12-C 、21--D 、12+-19、方程x(x-1)(x-2)=x 的根是( )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253- D 、x 1=0,x 2=353+, x 3=253- 20、解方程04)1(5)1(322=-+++xx x x 时,若设y x x =+1,则原方程可化为( )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=0 21、方程x 2+1=2|x|有( )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( )A 、-4B 、4C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>ax ax ,正确的结论是( )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( ) A 、0.2 B 、±0.2 C 、510D 、±510 26、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( ) A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( ) A 、k x , k 2s2B 、x , s2C 、k x , ks2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( )A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形 30、已知dcb a =,下列各式中不成立的是( )A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( ) A 、30B 、45C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心33、下列三角形中是直角三角形的个数有( )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( ) A 、4cm, 6cm B 、4cm, 3cm C 、2cm, 12cm D 、4cm, 8cm 36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( ) A 、AE=CD B 、AE>CD C 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( ) A 、矩形 B 、梯形 C 、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是( )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 不可能相等 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( )A 、30B 、60C 、150D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( )A 、∠B=30B 、斜边上的中线长为1C 、斜边上的高线长为552 D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( ) A 、0 B 、1 C 、2 D 、3 43、不等式6322+>+x x 的解是( )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( )A 、m ≤1B 、m ≥31且m ≠1C 、m ≥1D 、-1<m ≤1 45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( )ABA B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( )A 、1个B 、2个C 、3个D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( ) A 、a B 、a - C 、-a D 、-a -51、若a+|a|=0,则22)2(a a +-等于( ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( )A 、1B 、±21 C 、21 D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( )A 、18B 、6C 、23D 、±23 54、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似 A 、2个 B 、3个 C 、4个 D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_________。
中考数学图形与几何专题知识易错题50题(含答案)
中考数学图形与几何专题知识易错题50题含答案一、单选题1.圆的半径扩大到原来的3倍,它的周长扩大到原来的3倍,它的面积扩大到原来的()倍.A.3倍B.6倍C.9倍D.12倍2.小圆的半径是4cm,大圆的半径是8cm,小圆面积是大圆面积的()A.12B.14C.34D.183.如果大圆的半径长是小圆半径长的2倍,那么大圆周长是小圆周长的多少倍?()A.2B.4C.2πD.4π4.学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要()平方米的铁皮.A.18πB.27πC.0.27πD.1.8π5.矩形ABCD中,AB=3,BC=4,以AB为轴旋转一周得到圆柱,则它的表面积是().A.56πB.32πC.24πD.60π6.圆的半径扩大为原来的3倍()A.面积扩大为原来的9倍B.面积扩大为原来的6倍C.面积扩大为原来的3倍D.面积不变7.如图,直径为2个单位长度的圆从原点开始沿数轴向右无滑动地滚动一周到达点A,则点A表示的数是()A.1B.2C.πD.2π8.圆的面积扩大到原来的16倍,半径扩大到原来的()A.4倍B.8倍C.16倍D.32倍9.两个圆的直径比是1:2,其周长比是()A.1:2B.1:4C.1:πD.2:110.小明在计算一道求圆的面积的题时,错把半径当成直径的长度计算,这时只要把计算的结果乘()就能求出正确答案.A .4B .2C .圆周率11.一个圆柱体和一个圆锥体的底面周长之比是1:3,它们的体积比也是1:3,圆柱和圆锥的高的比是( ) A .1:1B .3:1C .1:9D .1:312.小圆半径是4cm ,大圆半径是8cm ,小圆面积是大圆面积的( ) A .12B .14C .16D .1813.在长方体中,下列说法错误的是( ) A .长方体中互相垂直的面共有12对 B .长方体中互相平行的面共有3对 C .长方体中相交的棱共有12对 D .长方体中异面的棱共有24对14.下列说法正确的是( ) A .半圆面积是圆面积的一半 B .半径为2的圆的面积和周长相等 C .周长相等的两个圆的面积也相等 D .两个圆的面积不相等是因为圆心位置不同15.如图,长方形的长是4厘米,宽是2厘米.分别以长边和宽边所在的直线为轴,旋转一周可以得到两个不同的圆柱.这两个圆柱的体积( )A .甲大B .乙大C .同样大D .无法判断谁大16.下列说法中不正确的是( ).A .用“长方形纸片”可以检查直线与平面平行B .用“三角尺”可以检查直线与平面垂直C .用“合页型折纸”可以检查平面与平面垂直D .空间两条直线有四种位置关系:平行、相交,垂直、异面17.如图,在矩形ABCD 中放入正方形AEFG ,正方形MNRH ,正方形CPQN ,点E 在AB 上,点M 、N 在BC 上,若4AE =,3MN =,2CN =,则图中右上角阴影部分的周长与左下角阴影部分的周长的差为( )A.5B.6C.7D.8BC=,则O的面积为()18.如图,O为正方形ABCD的外接圆,若2A.2πB.3πC.4πD.8π19.下列说法:①一个圆的周长总是直径的π倍;①甲数除以乙数(不等于0)等于甲数乘乙数的倒数;①圆心角越大,扇形就越大;①一个非零自然数除以一个假分数,商一定小于被除数;①圆的对称轴是直径;错误的个数为()A.1个B.2个C.3个D.4个二、填空题20.门的转轴和地面的位置关系_______________.21.周长是720毫米的圆上,有一条长为360毫米的弧,这条弧所对的圆心角的度数为________.22.如图所示,在长方体ABCD EFGH-中:棱AD与平面ABFE的位置关系是__________;与棱CD平行的平面是_______________.23.长方体中棱与面的位置关系有________________________________.24.圆的半径为4厘米,它的周长是________厘米.25.如图,与棱AB平行的棱有__________________________;与棱FG相交的棱有__________________________;与棱AE异面的棱有__________________________;与棱HG相交的棱有__________________________.26.在一个边长为6cm的正方形里画一个最大的圆,这个圆的面积占正方形面积的____.27.如图,在长方体ABCD-EFGH中,1)与棱DH垂直的面是_________________________,2)与棱BC垂直的面是_________________________,3)与棱AB垂直的面是_________________________,4)与面ABCD垂直的棱有_________________________________,5)与面ABFE垂直的棱有_________________________________,6)与面BCGF垂直的棱有__________________________________,7)在长方体中的每一条棱有_________个面和它垂直,每一个面有________条棱和它垂直.28.半圆形的周长等于它所在圆的周长的一半,______(判断对错)29.用______________可以检验教室里黑板的边沿是否平行于地面.30.如图所示,平面BDHF垂直于平面_______.31.把一个底面直径4分米的圆柱体,截去一个高2分米的小圆柱体,原来的圆柱体表面积减少_____平方分米.(结果保留π)32.如图,在长方体ABCD EFGH中,既与平面ADHE垂直,又与棱AD异面的棱是______.33.若把一个圆分割成3个扇形,且各个扇形面积的比为3:2:1,则最小的扇形的圆心角的度数是___.34.如图,圆柱形容器的底面半径为0.5m,高为1.5m.其里面盛有1m深的水,将底面半径为0.3m,高为0.5m的圆柱形铁块沉入水中,此时容器内的水面高度上升了______m.35.扇形的圆心角是72°,则扇形的面积是其所在圆面积的________(填分数).36.如图1中的瓶子盛满了水,如果将这个瓶子中的水全部倒入图2的杯子中,那么一共需要________个这样的杯子(瓶子和杯子的厚度忽略不计).37.如图,阴影部分面积是小圆面积的23,是大圆面积的38,则大圆面积与小圆面积的比是________.38.一根圆柱形木料长200厘米,把它截成三段圆柱形,表面积增加了12平方厘米,原来木料的体积是__________立方厘米.39.如果两个扇形A 、B 的面积相等,A 的圆心角占B 的圆心角的14,则A 的半径与B 的半径的比为________.三、解答题40.直径为18cm 的圆中,圆心角40°的扇形面积是多少?41.一个装满稻谷的粮囤,上面是圆锥形,下面是圆柱形,量得圆柱底面的周长是20π米,高2米,圆锥的高是1.2米.221ππ3V r h V r h 圆柱圆锥,⎛⎫== ⎪⎝⎭(1)这个粮囤能装稻谷多少立方米?(结果保留π)(2)如果每立方米稻谷重500千克,这个粮囤最多能装稻谷多少吨?(结果保留π) 42.如图所示,将一个横截面是正方形(面BCGF )的长方体木料,沿平面AEGC (长方形)分割成大小相同的两块,表面积增加了230cm ,已知EG 长5cm ,分割后每块木料的体积是318cm ,问原来这块长方体木料的表面积是多少?43.一块正方形的草皮,边长为4米,在两个相对的角上各有一棵树,树上各拴一只羊,绳长4米,问两只羊都能吃到的草的草皮有多少?44.如图所示:正方形的边长为2,以各边为直径在正方形内画半圆,求所围成的图形(阴影部分)的面积.45.如图,一个半圆和一条直径组成的图形的周长为20.56厘米,它的面积是多少平方厘米?46.如图,,AB BC ⊥4cm,BC =45C ∠=︒,O 为圆心,求阴影部分的面积.47.如图,两个正方形的边长分别是6和5.求图形中阴影部分的面积.48.求图中AB 的长度.49.王明用长40cm ,宽20cm 的两张长方形纸围成了甲、乙两个圆柱(如图,粘接处重叠部分不计),再给每个圆柱配上一个底面,做成了两个圆柱形容器.(1)甲、乙两个圆柱谁的体积大?先提出你的猜想;(2)如何验证你的猜想?请你设计一个验证方案.(只需设计方案,写出主要步骤,不需要列式计算.)参考答案:1.C【分析】设圆的半径为r ,则圆的面积为2r π,半径扩大到原来的3倍后为3r ,然后得到面积为()2239r r ππ⨯=,相除即可得到答案. 【详解】解:设圆的半径为r ,则圆的面积为2r π, ①半径扩大到原来的3倍后为3r ,面积为()2239r r ππ⨯=, ①2299r r ππ÷=.①它的面积扩大到原来的9倍. 故选:C .【点睛】此题考查了圆的面积公式,除法运算,解题的关键是熟练掌握圆的面积公式. 2.B【分析】用小圆面积除以大圆面积,即可求解.【详解】解:根据题意得:小圆面积是大圆面积的()()2214816644ππππ⨯÷⨯=÷=.故选:B【点睛】本题主要考查了求圆的面积,熟练掌握圆的面积公式是解题的关键. 3.A【分析】设小圆的半径长为r ,则大圆的半径长为2r ,即可分别求得大圆、小圆的周长,据此即可解答.【详解】解:设小圆的半径长为r ,则大圆的半径长为2r , 故大圆的周长为:224r r ,小圆的周长为:2r π,422r r ππ÷=,∴大圆周长是小圆周长的2倍,故选:A .【点睛】本题考查了求圆的周长公式,根据题意,列出代数式是解决本题的关键. 4.D【分析】根据横截面的半径可求出地面圆的周长,用底面圆的周长乘以圆柱的高可得展开图形的面积.【详解】解:3分米=0.3米, ①横截面半径是3分米即0.3米,①横截面的圆的周长为:2×0.3×π=0.6π,故长方形铁皮的面积为:3×0.6π=1.8π,故选:D.【点睛】本题考查圆柱题的展开图,与侧面积,圆柱体的横截面,能够利用圆柱的横截面的半径以及高求出圆柱的侧面积是解决本题的关键.5.A【详解】①以直线AB为轴旋转一周得到的圆柱体,得出底面半径为4cm,母线长为3cm,①圆柱侧面积=2π•AB•BC=2π•3×4=24π(cm2),①底面积=π•BC2=π•42=16π(cm2),①圆柱的表面积=24π+2×16π=56π(cm2).故选A【点睛】此题主要考查了圆柱的表面积的计算公式,根据旋转得到圆柱体,利用圆柱体的侧面积等于底面圆的周长乘以母线长是解决问题的关键.6.A【分析】根据圆的面积公式判断即可.【详解】S=πr2,圆的半径扩大为原来的3,所以面积扩大为原来的9倍.故答案为:A.【点睛】本题主要考查了圆的面积问题,熟练掌握圆的面积公式是解题的关键.7.D【分析】根据圆的周长πd作答即可.【详解】解:圆旋转一周,周长为2π,①点A所表示的数为0+2π=2π.故选:D.【点睛】考查圆的周长及数轴上点的意义,解题关键是通过图形求得圆的周长.8.A【分析】设圆的半径为r,面积=πr2,由此可得:圆的面积与半径的平方成正比例,所以圆的面积扩大到原来的16倍,则圆的半径则扩大到原来的4倍,由此即可解答.【详解】解:设圆的半径为r,面积=πr2,π是一个定值,则:圆的面积与r2成正比例:即半径r扩大到原来的4倍,则r2就扩大4×4=16倍,所以圆的面积就扩大16倍,反之圆的面积扩大到原来的16倍,因为16=4×4,所以圆的半径就扩大到原来的4倍. 答:一个圆的面积扩大到原来的16倍,则这个圆的半径就扩大到原来的4倍. 故选:A .【点睛】本题考查了比例,关键是掌握圆的面积与半径的平方成正比例的灵活应用. 9.A【分析】设小圆直径为d ,则根据“两个圆的直径之比是1:2,”得出大圆直径为2d ,再根据圆的周长公式C =πd ,分别表示出它们的周长,写出相应的比,再化简即可. 【详解】解:设小圆直径为d ,则大圆直径为2d , 小圆的周长:C d π=,大圆的周长:22C d d ππ'⨯==, 周长的比:πd :2πd =1:2,故A 正确. 故选:A .【点睛】本题主要考查比的意义和圆的周长公式,解题的关键是熟练掌握圆的周长公式C =πd . 10.A【分析】根据直径是半径的2倍即可得出答案. 【详解】解:①直径是半径的2倍,①只要把计算的结果乘4就能求出正确答案,故A 正确. 故选:A .【点睛】本题主要考查了圆的面积的有关计算,解题的关键是熟练掌握圆的面积公式,以及圆的直径与半径的关系. 11.A【分析】根据圆的周长公式知道底面周长的比就是半径的比,设圆柱的底面半径是1,则圆锥的底面半径是3,设圆柱的体积是1,则圆锥的体积是3,再根据圆柱的体积公式2V sh r h π==与圆锥的体积公式21133V sh r h π==得出圆柱的高与圆锥的高,进而根据题意,进行比即可.【详解】解:设圆柱的底面半径是1,则圆锥的底面半径是3,设圆柱的体积是1,则圆锥的体积是3,则:221[1(1)]:[3(3)]3ππ÷⨯÷÷⨯,11:ππ= 1:1=故选:A .【点睛】此题主要考查了圆柱的体积公式与圆锥的体积公式,关键在于熟悉圆柱的体积公式与圆锥的体积公式,利用公式推导出圆柱与圆锥的高的关系.12.B【分析】分别求出大圆和小圆的面积即可得到答案.【详解】解:由题意得:大圆的面积28864cm ππ=⨯⨯=,小圆的面积24416cm ππ=⨯⨯=,①小圆面积是大圆面积的161=644ππ, 故选B .【点睛】本题主要考查了圆的面积,求一个数是另一个数的几分之几,熟知圆面积公式是解题的关键.13.C【分析】直接根据长方体中棱、面之间的位置关系进行排除即可.【详解】A 、长方体中互相垂直的面共有12对,故正确;B 、长方体中互相平行的面共有3对,故正确;C 、长方体中相交的棱共有24对,故错误;D 、长方体中异面的棱共有24对,故正确.故选C .【点睛】本题主要考查长方体中棱、面之间的位置关系,熟练掌握概念是解题的关键. 14.C【分析】根据圆的面积及周长计算公式直接进行判断即可.【详解】A 、“半圆面积是圆面积的一半”缺少半径相等这个前提,所以错误;B 、半径为2的圆的面积和周长不相等,因为单位不一样,故错误;C 、周长相等的两个圆的面积也相等,故正确;D 、两个圆的面积不相等是由半径来决定的,圆心只决定圆的位置关系,故错误; 故选C .【点睛】本题主要考查圆的面积与周长,正确理解圆的面积及周长是解题的关键. 15.B【分析】根据题意可知,以长方形的长边为轴旋转一周得到的圆柱的底面半径是2厘米,高是4厘米;以长方形的宽边为轴旋转一周得到的圆柱的底面半径是4厘米,高是2厘米;根据圆柱的体积公式:2V r h π=,把数据分别代入公式求出它们的体积进行比较即可.【详解】解:甲:23.1424⨯⨯=3.14×4×4=50.24(立方厘米)乙:23.1442⨯⨯=3.14×16×2=100.48(立方厘米)100.48>50.24答:乙的体积大.故选:B 。
中考数学易错题精选附详细答案解析
中考数学易错题精选附详细答案解析一、选择题1. 如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( )A .15°B .30°C .45°D .60°2. 由四舍五入法得到的近似数6.8×103,下列说法中正确的是() A .精确到十分位,有2个有效数字 B .精确到个位,有2个有效数字 C .精确到百位,有2个有效数字 D .精确到千位,有4个有效数字3. 在等腰三角形ABC 中,AB=AC ,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为()A .7B .7或11C .11D .7或104. 如图,88⨯方格纸的两条对称轴EF MN ,相交于点O ,对图a①先以直线MN 为对称轴作轴对称图形,再向上平移4格; ②先以点O 为中心旋转180,再向右平移1格;③先以直线EF为对称轴作轴对称图形,再向右平移4格, 其中能将图a 变换成图b 的是()A .①②B .①③C .②③D .③5. 如图,在平行四边形ABCD中,点M为CD的中点,AM与BD相交于点N,那么=∆ABCD DMN s s 平行四边形:()A 、112B 、19C 、18D 、166. 如图,在矩形ABCD 中,BC=8,AB=6,经过 点B 和点D 的两个动圆均与AC 相切,且与AB 、 BC 、AD 、DC 分别交于点G 、H 、E 、F ,则EF+GH 的 最小值是( ▲ )A .6B .8C .9.6D .107. 如图已知梯形ABCD 中,BC ⊥AB ,∠DAB=60°,点P 从点B 出发,沿BC 、CD 边到D 停止运动,设点P 运动的路程为x,⊿ABP 的面积为y ,y 关于x 的函数图象如右图,则梯形ABCD 的面积是( )(杭州07中考题改编)(第8题图) MBCD M第1题第6题C BAPA. 20B.38C.3126+D.3612+8. 如图,在菱形ABCD 和菱形BEFG 中,点A 、B 、E 在同一直线上,P 是线段DF 的中点,连结PG ,PC 。
(完整)初三数学易错题集锦及答案
初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( A ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定4、方程2x+3y=20的正整数解有( B )A 、1个B 、3个C 、4个D 、无数个 5、下列说法错误的是( C )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( B ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( D )A B C D 9、有理数中,绝对值最小的数是( C ) A 、-1 B 、1 C 、0 D 、不存在 10、21的倒数的相反数是( A )A 、-2B 、2C 、-21 D 、2111、若|x|=x ,则-x 一定是( B )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( C ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( C ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( C ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0<a<1,那么下列说法正确的是( B ) A 、a 2比a 大 B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( B )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( A )A 、12cmB 、10cmC 、8cmD 、4cm 18、21-的相反数是( B ) A 、21+B 、12- C 、21-- D 、12+-19、方程x(x-1)(x-2)=x 的根是( D )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++xx x x 时,若设yx x =+1,则原方程可化为( B )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有( B )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( C ) A 、-4 B 、4 C 、-8 D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是( C )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( C ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( C ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( D )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n的平均数与方差分别是( A )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( B ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( A )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知dcb a =,下列各式中不成立的是( C ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( D ) A 、300 B 、450 C 、550 D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( C )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心 33、下列三角形中是直角三角形的个数有( B )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( A )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( D )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( A )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( A ) A 、矩形 B 、梯形 C、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形 38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是(C )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( D ) A 、300 B 、600 C 、1500 D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( C )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( C )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E 直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( D ) A 、0 B 、1 C 、2 D 、343、不等式6322+>+x x 的解是( C )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( B ) A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤1 AB45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( B ) A B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( B )A 、1个B 、2个C 、3个D 、无数个 47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( D )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( B ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( D )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( B )A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于( A ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( C ) A 、1 B 、±21 C 、21D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( C )A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____。
中考数学复习一元二次方程专项易错题含详细答案
【解析】
【分析】
(1)方程有两个不相等的实数根, ,代入求m取值范围即可,注意二次项系数≠0;
(2)将 代入原方程,求解即可.
【详解】
(1)由题意得: = ,解得 .
因为 ,即当 且 时,方程有两个不相等的实数根.
(2)把 带入得 ,解得 , .
试题解析:(1)∵Δ=4(k-1)2-4k2≥0,∴-8k+4≥0,∴k≤ ;
(2)∵x1+x2=2(k-1),x1x2=k2,∴2(k-1)=1-k2,
∴k1=1,k2=-3.
∵k≤ ,∴k=-3.
2.李明准备进行如下操作实验,把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.
(1)要使这两个正方形的面积之和等于58 cm2,李明应该怎么剪这根铁丝?
由方程②得,(x+n-1)[x-2(n+1)]=0,
①若4n2+3n+2=-n+1,解得n=- ,但1-n= 不是整数,舍.
②若4n2+3n+2=2(n+2),解得n=0或n=- (舍),综上所述 Nhomakorabean=0.
5.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.
(1)求m的取值范围;
(2)两正方形面积之和为48时, , ,∵ ,∴该方程无实数解,也就是不可能使得两正方形面积之和为48cm2,李明的说法正确.
考点:1.一元二次方程的应用;2.几何图形问题.
3.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.
(易错题精选)初中数学有理数的运算难题汇编附解析
(易错题精选)初中数学有理数的运算难题汇编附解析一、选择题1.港珠澳大桥东起香港国际机场附近的香港口岸人工导,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海港湾,全长55千米,设计时速100千米/小时,工程项目总投资额1269亿元,用科学记数法表示1269亿元为( )A .1269×108B .1.269×108C .1.269×1010D .1.269×1011【答案】D【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1269亿=1.269×1011故选D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,正确确定a 的值以及n 的值是解题关键.2.2017年常州市实现地区生产总值约6622亿元,将6622用科学记数法表示为( ) A .40.662210⨯B .36.62210⨯C .266.2210⨯D .116.62210⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将6622用科学记数法表示为:36.62210⨯.故选B.【点睛】本题考查科学计数法的表示方法. 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值及n 的值.3.暑期爆款国产动漫《哪吒之降世魔童》票房已斩获4930000000,开启了国漫市场崛起新篇章,4930000000用科学计数法可表示为( )A .49.3×108B .4.93×109C .4.933×108D .493×107【答案】B【解析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:4930000000=4.93×109.故选B.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a 与n的值是解题的关键.4.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4 B.6 C.7 D.10【答案】B【解析】【分析】把8.1555×1010写成不用科学记数法表示的原数的形式即可得.【详解】∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选B.【点睛】本题考查了把科学记数法表示的数还原成原数,科学记数法的表示的数a×10n还成成原数时, n>0时,小数点就向右移动n位得到原数;n<0时,小数点则向左移动|n|位得到原数.5.计算﹣6+1的结果为()A.﹣5 B.5 C.﹣7 D.7【答案】A【解析】【分析】根据有理数的加法法则,|﹣6|>|1|,所以结果为负号,并把它们的绝对值相减即可.【详解】解:﹣6+1=﹣(6﹣1)=﹣5故选:A.【点睛】本题考查了有理数的加法,注意区别同号相加与异号相加,把握运算法则是关键.6.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.10099【解析】分析:直接利用分数的性质将原式变形进而得出答案.详解:原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100 -+-+-+⋯+-,=1-1 100=99 100.故选B.点睛:此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.7.根据如图的程序运算:当输入x=50时,输出的结果是101;当输入x=20时,输出的结果是167.如果当输入x 的值是正整数,输出的结果是127,那么满足条件的x的值最多有()A.3个B.4个C.5个D.6个【答案】D【解析】【分析】根据程序中的运算法则计算即可求出所求.【详解】根据题意得:2x+1=127,解得:x=63;2x+1=63,解得:x=31;2x+1=31,解得:x=15;2x+1=15,解得:x=7;2x+1=7,解得:x=3;2x+1=3,解得:x=1,则满足条件x的值有6个,【点睛】此题考查了代数式求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.8.温州市2019年一季度生产总值(GDP)为129 800 000 000元.将129 800 000 000用科学记数法表示应为()A.1298×108B.1.298×108C.1.298×1011D.1.298×1012【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】129 800 000 000=1.298×1011,故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.下列说法中,正确的是()A.在数轴上表示-a的点一定在原点的左边B.有理数a的倒数是1 aC.一个数的相反数一定小于或等于这个数D.如果a a=-,那么a是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A、如果a<0,那么在数轴上表示-a的点在原点的右边,故选项错误;B、只有当a≠0时,有理数a才有倒数,故选项错误;C、负数的相反数大于这个数,故选项错误;D、如果a a=-,那么a是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.(﹣1)4可表示为()A.(﹣1)×4 B.(﹣1)+(﹣1)+(﹣1)+(﹣1)C.﹣1×1×1×1 D.(﹣1)×(﹣1)×(﹣1)×(﹣1)【答案】D【解析】【分析】根据有理数乘法的定义可得出结论.【详解】(﹣1)4=(-1)×(-1)×(-1)×(-1).故答案选D.【点睛】本题考查的知识点是有理数的乘方,解题的关键是熟练的掌握有理数的乘方.11.按如图所示的运算程序,能使输出y的值为1的是()A.a=3,b=2 B.a=﹣3,b=﹣1 C.a=1,b=3 D.a=4,b=2【答案】A【解析】【分析】根据题意,每个选项进行计算,即可判断.【详解】解:A、当a=3,b=2时,y=12a-=132-=1,符合题意;B、当a=﹣3,b=﹣1时,y=b2﹣3=1﹣3=﹣2,不符合题意;C、当a=1,b=3时,y=b2﹣3=9﹣3=6,不符合题意;D、当a=4,b=2时,y=12a-=142-=12,不符合题意.故选:A.【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.12.2019年春节联欢晚会在某网站取得了同时在线人数超34200000的惊人成绩,创下了全球单平台网络直播记录,将数34200000用科学记数法表示为( )A.8⨯D.634.2103.4210⨯⨯B.70.342103.4210⨯C.8【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将34200000用科学记数法表示为:3.42×107.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.去年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为()A.6⨯D.83.0510⨯3.05103.0510⨯B.630.510⨯C.7【答案】C【解析】【分析】根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】3050万=30500000=7⨯,3.0510故选:C.【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.现规定一种运算,a*b=ab-a+b,计算(-3*5)等于多少?()A.-7 B.-15 C.2 D.7【答案】A【解析】【分析】根据题目所给的运算法则,代入具体数进行计算即可.【详解】解:(-3*5)=(-3×5)-(-3)+5=-7,故选:A .【点睛】此题主要考查了有理数的混合运算,关键是掌握有理数的加法、减法法则.15.6万亿=296000000000000=2.96×1013.故选B .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示的关键是要正确确定a 的值以及n 的值.16.2018年4月10日,“2018博鳌亚洲论坛”在我国海南省博鳌小镇如期举行,据统计,在刚刚过去的一年,亚洲经济总量为29.6万亿美元,高居全球七大洲之首.数据“29.6万亿”用科学记数法可表示为( )A .2.96×108B .2.96×1013C .2.96×1012D .29.6×1012【答案】B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】17.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.18.双十一是阿里巴巴打造的年中购物狂欢,从2009年到2018年十年时间,双十一就像一个符号一样,融入到人们的日常生活当中.2018年京东在双十一期间(11月1日﹣11月11日)累计下单金额达1598亿元人民币.用科学记数法表示数1598亿是( )A .1.598×1110B .15.98×1010C .1.598×1010D .1.598×810【答案】A【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】用科学记数法表示数1598亿是1.598×1011.故选A .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.今年3月12日,支付宝蚂蚁森林宣布2019春种正式开启,称“春天,是种出来的”.超过4亿人通过蚂蚁森林在地球上种下了超过5500万棵真树,总面积超76万亩,大约相当于7.6万个足球场.数据“5500万”用科学计数法表示为( )A .4550010⨯B .65510⨯C .75.50010⨯D .80.5510⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:5500万用科学记数法表示为5.500×107.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.近似数2.864×104精确到( )A .千分位B .百位C .千位D .十位【答案】D【解析】解:2.864×104=28640,数字4在十位上,故选D .。
初三数学复习常见易错题总结与解析
初三数学复习常见易错题总结与解析在初三数学学习中,很多学生经常会遇到一些难以理解或易错的题目,这就需要我们在复习的过程中针对这些题目进行总结与解析,以便更好地理解和掌握数学知识。
本文旨在对初三数学复习中常见的易错题进行总结与解析,帮助同学们更好地备考。
一、乘法与除法乘法与除法是初三数学中的基础操作,而很多同学在应用乘法和除法解题时经常容易出现错误。
下面是一些常见易错题及解析:1. 已知 a = 10,b = 2,c = 5,求 a × b ÷ c 的值。
解析:根据乘法与除法的运算顺序,我们首先进行乘法运算,得到a × b = 10 × 2 = 20。
然后再进行除法运算,得到 20 ÷ c = 20 ÷ 5 = 4。
因此,a × b ÷ c 的值为 4。
2. 某商品原价为 100 元,售价为原价的 80%,求售价。
解析:售价是原价的 80%,即售价 = 原价 × 80%。
将原价代入得到售价 = 100 × 80% = 100 × 0.8 = 80 元。
二、分数运算分数运算是初三数学中较为复杂的部分,很多同学在处理分数运算时容易出现错误。
下面是一些常见易错题及解析:1. 计算:1/2 + 2/3。
解析:对于分数的加法,我们需要找到两个分数的最小公共倍数(LCM),然后将分数的分子和分母都乘以一个相同的数使其分母等于 LCM。
在这个例子中,2 和 3 的 LCM 是 6,所以我们得到:1/2 +2/3 = (1×3)/(2×3) + (2×2)/(3×2) = 3/6 + 4/6 = 7/6。
2. 计算:5/6 ÷ 2/5。
解析:对于分数的除法,我们可以将除号转换为乘号的倒数。
即,5/6 ÷ 2/5 = 5/6 × 5/2 = (5×5)/(6×2) = 25/12。
中考数学易错题经典题含答案
中考数学易错题经典题含答案中考数学往往有很多容易出错的题目,因此我们需要对这些容易出错的题目进行集中突破和练,下面是一些经典易错题目,附带答案供大家参考:1. 在上图中,四边形ABCD 是矩形,E 点在AD 边上,BE=2,CE=3,则 DE 的长度为 $()$。
A. $\sqrt{13}$B. 1C. $\frac{1}{2}$D. 4答案:A解析:$\triangle BDE$ 是直角三角形,则有:$BD^2=BE^2+DE^2=4+DE^2$。
$\because \quad AD//BC\quad$(矩形 ABCD)$\therefore \quad \triangle BDE\sim \triangle ADC$$\therefore \quad \frac{DE}{DC}=\frac{BD}{AD}$$\because \quad \triangle ACD$ 是等腰直角三角形(矩形 ABCD)$\therefore \quad AD=CD=5$$\therefore \quad \frac{DE}{5}=\frac{2}{5}$$\therefore \quad DE=2\sqrt{13}$因此,DE 的长度为 $\sqrt{13}$。
2. 在平行六面体 ABCDEFGH 中,已知 AB $\bot$ GD,P 是AD 上的点,且 DP=3AD,过 P 作 AF//CD 交 BE 于 Q,则$()$。
A. $3:2$B. $2:3$C. $1:2$D. $2:1$答案:A解析:$\because \quad DP=3AD$$\therefore \quad AP=2AD$又$\because \quad AB\parallel DG,\quad \therefore \quadAB\parallel DP$$\therefore \quad AB\parallel AFDQ\quad (\because \quadAF\parallel CD)$$\therefore \quad因此,以上是我总结的中考数学经典易错题目,同学们在平时练习中着重攻克这些题目,相信能够取得好成绩。
中考数学易错题综合专题三(附答案详解)
易错题错题二一.选择题(共11小题)1.(•武汉)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD⊥DC,BD=DC,CE平分∠BCD,交AB于点E,交BD于点H,EN∥DC交BD于点N.下列结论:①BH=DH;②CH=;③.其中正确的是()A.①②③B.只有②③C.只有②D.只有③2.(•武汉)(北师大版)如图,在矩形ABCD中,对角线AC、BD相交于点G,E为AD的中点,连接BE交AC于F,连接FD,若∠BFA=90°,则下列四对三角形:①△BEA与△ACD;②△FED与△DE B;③△CFD与△ABG;④△ADF与△CFB.其中相似的为()A.①④B.①②C.②③④D.①②③3.(•齐齐哈尔)如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB且EF=AB;②∠BAF=∠CAF;③S四边形ADFE=AF•DE;④∠BDF+∠FEC=2∠BAC,正确的个数是()A.1B.2C.3D.44.(•黑龙江)如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=BC,CE=AC,BE、AD相交于点F,连接DE,则下列结论:①∠AFE=60°;②DE⊥AC;③CE2=DF•DA;④AF•BE=AE•AC,正确的结论有()A.4个B.3个C.2个D.1个5.(•山西)已知:如图,在▱ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于C、H.请判断下列结论:(1)BE=DF;(2)AG=GH=HC;(3)EG=BG;(4)S△ABE=3S△AGE.其中正确的结论有()A.1个B.2个C.3个D.4个6.在课外活动课上,某同学做了一个对角线互相垂直的等腰梯形形状的风筝,其面积为450 cm2,则两条对角线共用的竹条至少需()A.30cm B.40cm C.60cm D.80cm7.(•兰州)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.8.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB 交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,正方形ABCC2010的面积为()A.5×B.5×C.5×D.5×9.(•佳木斯)如图,已知▱ABCD中,∠BDE=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是()A.①②③④B.①②③C.①②④D.②③④10.(•鸡西)在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD.则以下结论中一定正确的个数有()①EF=FD;②AD:AB=AE:AC;③△DEF是等边三角形;④BE+CD=BC;⑤当∠ABC=45°时,BE=DE.A.2个B.3个C.4个D.5个11.如图,ABCD、CEFG是正方形,E在CD上,直线BE、DG交于H,且HE•HB=,BD、AF交于M,当E在线段CD(不与C、D重合)上运动时,下列四个结论:①BE⊥GD;②AF、GD所夹的锐角为45°;③GD=;④若BE平分∠DBC,则正方形ABCD的面积为4.其中正确的结论个数有()A.1个B.2个C.3个D.4个二.填空题(共10小题)12.如图△ABC中,∠ACB=90°,BC=6cm,AC=8cm,动点P从A出发,以2cm/s的速度沿AB移动到B,则点P出发_________s时,△BCP为等腰三角形.13.如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN=_________.14.(•眉山)如图,已知梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,AD=4,AB=3,则下底BC的长为_________.15.在半径为5的⊙O中,有两平行弦AB.CD,且AB=6,CD=8,则弦AC的长为_________.16.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是_________.17.(•锦州)如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是_________.18.(•牡丹江)开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为_________元.19.⊙O的弦AB的长等于半径,那么弦AB所对的圆周角等于_________度.20.如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB且;②∠BAF=∠CAF ;③;④∠BDF+∠FEC=2∠BAC,正确结论的序号是___ .21.(•江西)如图,已知点F的坐标为(3,0),点A,B分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点.设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5﹣x(0≤x≤5),给出以下四个结论:①AF=2;②BF=5;③OA=5;④OB=3.其中正确结论的序号是_________.三.解答题(共4小题)22.在平面直角坐标系中,点A、B分别在2=0的两个实数根,C是线段AB的中点,OC=3,D在线段OC上,OD=2CD.(1)求OA、OB的长;(2)求直线AD的解析式;(3)P是直线AD上的点,在平面内是否存在点Q,使以O、A、P、Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.23.(•朝阳)如图①,点A′,B′的坐标分别为(2,0)和(0,﹣4),将△A′B′O绕点O按逆时针方向旋转90°后得△ABO,点A′的对应点是点A,点B′的对应点是点B.(1)写出A,B两点的坐标,并求出直线AB的解析式;(2)将△ABO沿着垂直于x轴的线段CD折叠,(点C在x轴上,点D在AB上,点D不与A,B重合)如图②,使点B落在x轴上,点B的对应点为点E.设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.①试求出S与x之间的函数关系式(包括自变量x的取值范围);②当x为何值时,S的面积最大,最大值是多少?③是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.24.如图所示,在平面直角坐标系中,四边形OABC是等腰梯形.BC∥OA,∠COA=60°,OA、AB(OA>AB)是方程x2﹣11x+28=0的两个根.(1)求点B的坐标;(2)求线段AC的长;(3)在x轴上是否存在一点P,使以点P、A、C为顶点的三角形为等腰三角形?若存在,请接写出点P的坐标;若不存在,请说明理由.25.(•山西)在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交是(2)中直线DE上的一个动点,在、N 为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.5月29龙江易错题错题二参考答案与试题解析一.选择题(共11小题)1.(•武汉)如图,在直角梯形A BCD中,AD∥BC,∠ABC=90°,BD⊥DC,BD=DC,CE平分∠BCD,交AB于点E,交BD于点H,EN∥DC交BD于点N.下列结论:①BH=DH;②CH=;③.其中正确的是()A.①②③B.只有②③C.只有②D.只有③考点:直角梯形.分析:①如图,过H作HM⊥BC于M,根据角平分线的性质可以得到DH=HM,而在Rt△BHM中BH>HM,所以容易判定①是错误的;②设HM=x,那么DH=x,由于∠ABC=90°,BD⊥DC,BD=DC,由此得到∠DBC=45°,而AD∥CB,由此可以证明△ADB是等腰直角三角形,又CE平分∠BCD,∠BDC=∠ABC=90°,由此可以证明△DCH∽△EBC,再利用相似三角形的性质可以推出∠BEH=∠DHC,然后利用对顶角相等即可证明∠BHC=∠BEH,接着得到BH=BE,然后即可用x分别表示BE、EN、CD,又由EN∥DC可以得到△DCH∽△NEH,再利用相似三角形的性质即可结论②;③利用(2)的结论可以证明△ENH∽△CBE,然后利用相似三角形的性质和三角形的面积公式即可证明结论③.解答:解:①如图,过H作HM⊥BC于M,∵CE平分∠BCD,BD⊥DC∴DH=HM,而在Rt△BHM中BH>HM,∴BH>HD,∴所以容易判定①是错误的;②∵CE平分∠BCD,∴∠DCE=∠BCE,而∠EBC=∠BDC=90°,∴∠BEH=∠DHC,而∠DHC=∠EHB,∴∠BEH=∠EHB,∴BE=BH,设HM=x,那么DH=x,∵BD⊥DC,BD=DC,∴∠DBC=∠ABD=45°,∴BH=x=BE,∴EN=x,∴CD=BD=DH+BH=(+1)x,即=+1,∵EN∥DC,∴△DCH∽△NEH,∴=+1,即CH=(+1)EH;③由②得∠BEH=∠EHB,∵EN∥DC,∴∠ENH=∠CDB=90°,∴∠ENH=∠EBC,∴△ENH∽△CBE,∴EH:EC=NH:BE,而,∴.所以正确的只有②③.故选B.点评:此题比较复杂,综合性很强,主要考查了梯形的性质,相似三角形的判定和性质以及等腰直角三角形的性质.2.(•武汉)(北师大版)如图,在矩形ABCD中,对角线AC、BD相交于点G,E为AD的中点,连接BE交AC于F,连接FD,若∠BFA=90°,则下列四对三角形:①△BEA与△ACD;②△FED与△DEB;③△CFD与△ABG;④△ADF 与△CFB.其中相似的为()A.①④B.①②C.②③④D.①②③解答:解:根据题意得:∠BAE=∠ADC=∠AFE=90°∴∠AEF+∠EAF=90°,∠DAC+∠ACD=90°∴∠AEF=∠ACD∴①中两三角形相似;容易判断△AFE∽△BAE,得=,又∵AE=ED,∴=而∠B ED=∠BED,∴△FED∽△DEB.故②正确;∵AB∥CD,∴∠BAC=∠GCD,∵∠ABE=∠DAF,∠EBD=∠EDF,且∠ABG=∠ABE+∠EBD,∴∠ABG=∠DAF+∠EDF=∠DFC;∵∠ABG=∠DFC,∠BAG=∠DCF,∴△CFD∽△ABG,故③正确;所以相似的有①②③.故选D.点评:此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.3.(•齐齐哈尔)如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB且EF=AB;②∠BAF=∠CAF;③S四边形ADFE=AF•DE;④∠BDF+∠FEC=2∠BAC,正确的个数是()A.1B.2C.3D.4分析:根据对折的性质可得AE=EF,∠DAF=∠DFA,∠EAF=∠AFE,∠BAC=∠DFE,据此和已知条件判断图中的相等关系.解答:解:①由题意得AE=EF,BF=FC,但并不能说明AE=EC,∴不能说明EF是△ABC的中位线,故①错;②题中没有说AB=AC,那么中线AF也就不可能是顶角的平分线,故②错;③易知A,F关于D,E对称.那么四边形ADFE是对角线互相垂直的四边形,那么面积等于对角线积的一半,故③对;④∠BDF=∠BAF+∠DFA,∠FEC=∠EAF+∠AFE,∴∠BDF+∠FEC=∠BAC+∠DFE=2∠BAC,故④对.正确的有两个,故选B.点评:翻折前后对应线段相等,对应角相等.4.(•黑龙江)如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=BC,CE=AC,BE、AD相交于点F,连接DE,则下列结论:①∠AFE=60°;②DE⊥AC;③CE2=DF•DA;④AF•BE=AE•AC,正确的结论有()A.4个B.3个C.2个D.1个分析:本题是开放题,对结论进行一一论证,从而得到答案.①利用△ABD≌△BCE,再用三角形的一个外角等于与它不相邻的两个内角和,即可证∠AFE=60°;②从CD上截取CM=CE,连接EM,证△CEM是等边三角形,可证明DE⊥AC;③△BDF∽△ADB,由相似比则可得到CE2=DF•DA;④只要证明了△AFE∽△BAE,即可推断出AF•BE=AE•AC.解答:解:∵△ABC是等边三角形∴AB=BC=AC,∠BAC=∠ABC=∠BCA=60°∵BD=BC,CE=AC∴BD=EC∴△ABD≌△BCE∴∠BAD=∠CBE,∵∠ABE+∠EBD=60°∴∠ABE+∠CBE=60°∵∠AFE是△ABF的外角∴∠AFE=60°∴①是对的;如图,从CD上截取CM=CE,连接EM,则△CEM是等边三角形∴EM=CM=EC∵EC=CD∴EM=CM=DM∴∠CED=90°∴DE⊥AC,∴②是对的;由前面的推断知△BDF∽△ADB∴BD:AD=DF:DB∴BD2=DF•DA∴CE2=DF•DA∴③是对的;在△AFE和△BAE中,∠BAE=∠AFE=60°,∠AEB是公共角∴△AFE∽△BAE∴AF•BE=AE•AC∴④是正确的.故选A.点评:本题主要应用到了三角形外角与内角的关系,直角三角形的判定,全等三角形和相似三角形的判定及性质,内容较多,较为复杂.5.(•山西)已知:如图,在▱ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于C、H.请判断下列结论:(1)BE=DF;(2)AG=GH=HC;(3)EG=BG;(4)S△ABE=3S△AGE.其中正确的结论有()A.1个B.2个C.3个D.4个分析:(1)根据BF∥DE,BF=DE可证BEDF为平行四边形;(2)根据平行线等分线段定理判断;(3)根据△AGE∽△CGB可得;(4)由(3)可得△ABG的面积=△AGE面积×2.解答:解:(1)∵▱ABCD,∴AD=BC,AD∥BC.E、F分别是边AD、BC的中点,∴BF∥DE,BF=DE.∴BEDF为平行四边形,BE=DF.故正确;(2)根据平行线等分线段定理可得AG=GH=HC.故正确;(3)∵AD∥BC,AE=AD=BC,∴△AGE∽△CGB,AE:BC=EG:BG=1:2,∴EG=BG.故正确.(4)∵BG=2EG,∴△ABG的面积=△AGE面积×2,∴S△ABE=3S△AGE.故正确.故选D.点评:此题考查了平行四边形的判定及性质、相似三角形的判定及性质等知识点,难度中等.6.在课外活动课上,某同学做了一个对角线互相垂直的等腰梯形形状的风筝,其面积为450 cm2,则两条对角线共用的竹条至少需()A.30cm B.40cm C.60cm D.80cm考点:等腰梯形的性质.专题:应用题.分析:设对角线的长是x,根据面积公式可求得对角线的长,从而可得到两条对角线所用的竹条至少需要多少.解答:解:等腰梯形的对角线互相垂直且相等,可以设对角线的长是.故选C点评:对角线互相垂直的四边形的面积的计算方法是需要注意记忆的问题,两对角线长若是a,b则面积是ab.7.(•兰州)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.分析:过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.解答:解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选B.点评:本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.8.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB 交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,正方形ABCC的面积为()A.5×B.5×C.5×D.5×分析:先利用ASA证明△AOD和△A1BA相似,根据相似三角形对应边成比例可以得到AB=2A1B,所以正方形A1B1C1C的边长等于正方形ABCD边长的以此类推,后一个正方形的边长是前一个正方形的边长的然后即可求出第个正方形的边长与第1个正方形的边长的关系,从而求出第个正方形的面积.解答:解:∵四边形ABCD是正方形,∴∠ABC=∠BAD=90°,AB=BC,∴∠ABA1=90°,∠DAO+∠BAA1=180°﹣90°=90°,又∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠ADO=∠BAA1,在△AOD和A1BA中,∵,∴△AOD∽△A1BA,∴==2,∴BC=2A1B,∴A1C=BC,以此类推A2C1=A1C,A3C2=A2C1即后一个正方形的边长是前一个正方形的边长的倍,∴第个正方形的边长为()BC,∵A的坐标为(1,0),D点坐标为(0,2),∴BC=AD==,∴正方形ABCC的面积为[()BC]2=5×()4022=5×().故选D.点评:本题考查的是一次函数综合题,涉及到正方形的性质及直角三角形的性质、相似三角形的判定与性质,属规律性题目.9.(•佳木斯)如图,已知▱ABCD中,∠BDE=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是()A.①②③④B.①②③C.①②④D.②③④分析:根据已知及相似三角形的判定方法对各个结论进行分析从而得到最后答案.解答:解:∵∠BDE=45°,DE⊥BC∴DB=BE,BE=DE∵DE⊥BC,BF⊥CD∴∠BEH=∠DEC=90°∵∠BHE=∠DHF∴∠EBH=∠CDE∴△BEH≌△DEC∴∠BHE=∠C,BH=CD∵▱ABCD中∴∠C=∠A,AB=CD∴∠A=∠BHE,AB=BH∴正确的有①②③故选B.点评:此题考查了相似三角形的判定和性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.相似三角形的对应边成比例,对应角相等.10.(•鸡西)在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD.则以下结论中一定正确的个数有()①EF=FD;②AD:AB=AE:AC;③△DEF是等边三角形;④BE+CD=BC;⑤当∠ABC=45°时,BE=DE.A.2个B.3个C.4个D.5个分析:①EF、FD是直角三角形斜边上的中线,都等于BC的一半;②可证△ABD∽△ACE;③证明∠EFD=60°;④假设结论成立,在BC上取满足条件的点H,证明其存在性;⑤当∠ABC=45°时,EF不一定是BC边的高.解答:解:①∵BD、CE为高,∴△BEC、△BDC是直角三角形.∵F是BC的中点,∴EF=DF=BC.故正确;②∵∠ADB=∠AEC=90°,∠A公共,∴△ABD∽△ACE,得AD:AB=AE:AC.故正确;③∵∠A=60°,∴∠ABC+∠ACB=120°.∵F是BC的中点,∴EF=BF,DF=CF.∴∠ABF=∠BEF,∠ACB=∠CDF.∴∠BFE+∠CFD=120°,∠EFD=60°.又EF=FD,∴△DEF是等边三角形.故正确;④若BE+CD=BC,则可在BC上截取BH=BE,则HC=CD.∵∠A=60°,∴∠ABC+∠ACB=120°.又∵BH=BE,HC=CD,∴∠BHE+∠CHD=120°,∠EHD=60°.所以存在满足条件的点,假设成立,但一般情况不一定成立,故错误;⑤当∠ABC=45°时,在Rt△BCE中,BC=BE,在Rt△ABD中,AB=2AD,由B、C、D、E四点共圆可知,△ADE∽△ABC,∴==,即=,∴BE=DE,故正确;故此题选C.点评:此题考查了相似三角形的判定和性质,综合性很强.11.如图,ABCD、CEFG是正方形,E在CD上,直线BE、DG交于H,且HE•HB=,BD、AF交于M,当E在线段CD(不与C、D重合)上运动时,下列四个结论:①BE⊥GD;②AF、GD所夹的锐角为45°;③GD=;④若BE平分∠DBC,则正方形ABCD的面积为4.其中正确的结论个数有()A.1个B.2个C.3个D.4个分析:①由已知条件可证得△BEC≌△DGC,∠EBC=∠CDG,因为∠BDC+∠DBH+∠EBC=90°,所以∠BDC+∠DBH+∠CDG=90°,即BE⊥GD,故①正确;②若以BD为直径作圆,那么此圆必经过A、B、C、H、D五点,根据圆周角定理即可得到∠AHD=45°,所以②的结论也是正确的.③此题要通过相似三角形来解;由②的五点共圆,可得∠BAH=∠BDH,而∠ABD=∠DBG=45°,由此可判定△ABM∽△DBG,根据相似三角形的比例线段即可得到AM、DG的比例关系;④若BE平分∠DBC,那么H是DG的中点;易证得△ABH∽△BCE,得BD•BC=BE•BH,即BC2=BE•BH,因此只需求出BE•BH的值即可得到正方形的面积,可先求出BE、EH的比例关系,代入已知的乘积式中,即可求得BE•BH的值,由此得解.解答:解:①正确,证明如下:∵BC=DC,CE=CG,∠BCE=∠DCG=90°,∴△BEC≌△DGC,∴∠EBC=∠CDG,∵∠BDC+∠DBH+∠EBC=90°,∴∠BDC+∠DBH+∠CDG=90°,即BE⊥GD,故①正确;②由于∠BAD、∠BCD、∠BHD都是直角,因此A、B、C、D、H五点都在以BD为直径的圆上;由圆周角定理知:∠DHA=∠ABD=45°,故②正确;③由②知:A、B、C、D、H五点共圆,则∠BAH=∠BDH;又∵∠ABD=∠DBG=45°,∴△ABM∽△DBG,得AM:DG=AB:BD=1:,即DG=AM;故③正确;④过H作HN⊥CD于N,连接EG;若BH平分∠DBG,且BH⊥DG,易知:BH垂直平分DG;得DE=EG,H是DG中点,HN为△DCG的中位线;设CG=x,则:HN=x,EG=DE=x,DC=BC=(+1)x;∵HN⊥CD,BC⊥CD,∴HN∥BC,∴∠NHB=∠EBC,∠ENH=∠ECB,∴△BEC∽△HEN,则BE:EH=BC:HN=2+2,即EH=;∴HE•BH=BH•=4﹣2,即BE•BH=4;∵∠DBH=∠CBE,且∠BHD=∠BCE=90°,∴△DBH∽△CBE,得:DB•BC=BE•BH=4,即BC2=4,得:BC2=4,即正方形ABCD的面积为4;故④正确;因此四个结论都正确,故选D.点评:本题主要考查三角形相似和全等的判定及性质、正方形的性质以及圆周角定理等知识的综合应用,能够判断出A、B、C、D、H五点共圆是解题的关键.二.填空题(共10小题)12.如图△ABC中,∠ACB=90°,BC=6cm,AC=8cm,动点P从A出发,以2cm/s的速度沿AB移动到B,则点P 出发2,2.5,1.4s时,△BCP为等腰三角形.分析:根据∠ACB=90°,BC=6cm,AC=8cm,利用勾股定理求出AB的长,再分别求出BC=BP,BP=PC时,AP的长,然后利用P点的运动速度即可求出时间.解答:解;∵△ABC中,∠ACB=90°,BC=6cm,AC=8cm,∴AB===10,∵当BC=BP时,△BCP为等腰三角形,即BC=BP=6cm,△BCP为等腰三角形,∴AP=AB﹣BP=10﹣6=4,∵动点P从A出发,以2cm/s的速度沿AB移动,∴点P出发=2s时,△BCP为等腰三角形,当点P从A出发,以2cm/s的速度沿AB移动到AB的中点时,此时AP=BP=PC,则△BCP为等腰三角形,点P出发=2.5s时,△BCP为等腰三角形,当BC=PC时,过点C作CD⊥AB于点D,则△BCD∽△BAC,∴,解得:BD=3.6,∴BP=2BD=7.2,∴AP=10﹣7.2=2.8,∴点P出发1.4s时,△BCP为等腰三角形.故答案为:2;2.5;1.4.点评:此题主要考查勾股定理和等腰三角形的判定,解答此题的关键是首先根据勾股定理求出AB的长,然后再利用等腰三角形的性质去判定.13.如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN=.分析:连接BP,作EF⊥BC于点F,由正方形的性质可知△BEF为等腰直角三角形,BE=1,可求EF,利用面积法得S△BPE+S△BPC=S△BEC,将面积公式代入即可.解答:由正方形的性质可知∠EBF=45°,∴△BEF为等腰直角三角形,又根据正方形的边长为1,得到BE=BC=1,在直角三角形BEF中,sin∠EBF=,即BF=EF=BEsin45°=1×=,又PM⊥BD,PN⊥BC,∴S△BPE+S△BPC=S△BEC,即BE×PM+×BC×PN=BC×EF,∵BE=BC,PM+PN=EF=;故答案为:.点评:解决本题的关键是作出辅助线,构造矩形和全等三角形,把所求的线段转移到正方形的对角线上.14.(•眉山)如图,已知梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,AD=4,AB=3,则下底BC的长为10.分析:过A作AE∥CD,把梯形分成平行四边形和直角三角形,利用平行四边形的对边相等得到CE=AD,所以BE可以求出,在直角三角形中,根据∠B=30°,利用勾股定理求出BE,BC的长也就可以求出了.解答:解:如图,过A作AE∥CD交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD=4,∵∠B=30°,∠C=60°,∴∠BAE=90°,∴AE=BE(直角三角形30°角所对的直角边等于斜边的一半),在Rt△ABE中,BE2=AB2+AE2,即BE2=(3)2+(BE)2,BE2=27+BE2,BE2=36,解得BE=6,∴BC=BE+EC=6+4=10.故答案为:10.点评:通过作腰的平行线,把梯形分成平行四边形和直角三角形,再利用直角三角形30°角所对的直角边等于斜边的一半和勾股定理求解,考虑本题的突破口在于两个已知角的和是90°.15.在半径为5的⊙O中,有两平行弦AB.CD,且AB=6,CD=8,则弦AC的长为或5.解答:解:利用垂径定理和勾股定理可知:OE=3,OF=4,①如图,∵4﹣3=1,(8﹣6)÷2=1,∴AC==;②如图,∵4+3=7,(8﹣6)÷2=1,∴AC==5.点评:本题综合考查了垂径定理和勾股定理的运用.16.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是(26,50).分析:解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100÷2=50;其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依此类推可得到P100的横坐标.解答:解:经过观察可得:以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100÷2=50;其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依此类推可得到:P n的横坐标为n÷4+1(n是4的倍数).故点P100的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P第100次跳动至点P100的坐标是(26,50).故答案填(26,50).点评:本题的关键是分析出题目的规律,找出题目中点的坐标的规律,总结规律是近几年出现的常见题目.17.(•锦州)如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是(51,50).考点:坐标与图形性质;规律型:图形的变化类.专题:规律型.分析:根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.解答:解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故答案为:(51,50).点评:本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.18.(•牡丹江)开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为210或200元.分析:根据题意读懂商场的活动规则,应该分两种情况:让其先买120元的运动鞋,得50元购物券,再用购物券去买那两样东西,依此计算实际花费;若先购买120元和80元,可得到100元的购物券,那么60元的就不用再掏钱了.所以应该是200或210.解答:解:他的实际花费=120+60﹣50+80=210元或若现购买120元和80元,可得到100元的购物券,那么60元的就不用再掏钱了,即120+80=200(元).点评:本题旨在学生养成仔细读题的习惯.19.⊙O的弦AB的长等于半径,那么弦AB所对的圆周角等于30或150度.分析:一条弦所对的圆周角有两种情况:当圆周角的顶点在优弧上,圆周角应是一个锐角;当圆周角的顶点在劣弧上,圆周角是一个钝角.解答:解:∵弦AB的长等于半径,∴当把圆心分别与点A,B连接,可得等边三角形,等边三角形的内角是60°,∴弦AB所对的圆心角是60°,∴弦AB把圆分成60°和300°的两段弧,根据弧的度数等于它所对的圆心角的度数,而一条弧所对的圆周角的度数等于所对圆心角度数的一半,∴弦AB所对的圆周角等于30°或150°.故弦AB所对的圆周角等于30°或150°.点评:一条弦(非直径)把圆分成两条弧,两条弧对应两个不同度数的圆周角.20.如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB且;②∠BAF=∠CAF;③;④∠BDF+∠FEC=2∠BAC,正确结论的序号是③④.分析:根据折叠得到DE垂直平分AF,再根据对角线互相垂直的四边形的面积等于两条对角线的乘积的一半即可证明③,根据三角形的外角的性质即可证明④.解答:解:①要使EF∥AB且,则需EF是△ABC的中位线,根据折叠得AE=EF,显然本选项不一定成立;②要使∠BAF=∠CAF,则需AD=AE,显然本选项不一定成立;③根据折叠得到DE垂直平分AF,故本选项正确;④根据三角形的外角的性质,得∠BDF=∠DAF+∠AFD,∠CEF=∠EAF+∠AFE,又∠BAC=∠DFE,则∠BDF+∠FEC=2∠BAC,故本选项成立.故答案为③④.点评:此题综合考查了折叠的性质、对角线互相垂直的四边形的面积等于两条对角线的乘积的一半、三角形的外角的性质.21.(•江西)如图,已知点F的坐标为(3,0),点A,B分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点.设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5﹣x(0≤x≤5),给出以下四个结论:①AF=2;②BF=5;③OA=5;④OB=3.其中正确结论的序号是①②③.分析:一次函数与正比例函数动点函数图象的问题.解答:解:此题由解析式求点的坐标,再求线段长,是数形结合的典范.当x=5时,d=2=AF,故①正确;当x=0时,d=5=BF,故②正确;OA=OF+FA=5,故③正确.当x=0时,BF=5,OF=3,OB=4,故④错误.故答案为①②③.点评:本题是今年出现的一种新题型,以多选题的形式出现,从考生所填的项中,能看出学生思维层次上的差异,弥补了填空题的不足.答题时,不少学生选择④,有的考生甚至填入⑤,说明学生对这类新题型的缺乏答题策略,对没有把握的结论宁可少选,也不可乱选;即宁缺勿滥.三.解答题(共4小题)22.在平面直角坐标系中,点A、B分别在2=0的两个实数根,C是线段AB的中点,OC=3,D在线段OC上,OD=2CD.(1)求OA、OB的长;(2)求直线AD的解析式;(3)P是直线AD上的点,在平面内是否存在点Q,使以O、A、P、Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.分析:(1)求出AB=2OC=6,根据OA+OB=2m+6,OA×OB=2m2,得出方程(2m+6)2﹣4m2=180,求出m的值,代入方程,求出方程的解即可;(2)过C作CM⊥OA于M,过D作DN⊥OA于N,求出C、D的坐标,设直线AD的解析式是y=kx+b,把A、D的坐标代入求出即可;(3)求出AD与y轴的交点F的坐标,求出AF,①以OA为一边时,共有4个点,根据A坐标和OP=OA即可求出R、T的坐标,K(3,﹣3),同理求出G、K的坐标;②以OA为对角线,作OA的垂直平分线交AD于P,交OA于M,在OA的下方作MP=MQ,把x=3代入y=﹣x+6求出y,即可得出此时Q的坐标.解答:解:(1)∵AB=2OC=6,∴OA2+OB2=AB2==180,∵OA+OB=2m+6,OA×OB=2m2,∴(OA+OB)2﹣2OA×OB=180,即(2m+6)2﹣4m2=180,∴m=6,即方程为x2﹣18x+72=0,∴x1=12,⊥OA于M,过D作DN⊥OA于N,∵CM∥OB,∴===,∵OA=6,OB=12,∴CM=6,AM=3,OM=3,∴C(3,6),∵OD=2CD,∴===,∴DN=4,ON=2,。
中考数学易错题综合专题五附答案详解
卷错题一.选择题(共9小题)1.(2011?鸡西)如图,A、B、C、D是⊙O上的四个点,AB=AC,AD交BC于点E,AE=3,ED=4,则AB的长为()A.3B.2C.D.32.(2011?黑龙江)把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.则共有学生()A.4人B.5人C.6人D.5人或6人3.(2012?黑龙江)如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC边的中点,连接AF、CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE=:3;⑤S△EPM=S梯形ABCD,正确的个数有()A.5个B.4个C.3个D.2个4.(2012?鸡西)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①(BE+CF)=BC;②S△AEF≤S△ABC;③S=AD?EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()四边形AEDFA.1个B.2个C.3个D.4个5.(2012?牡丹江)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论:①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH,④AD2=OD?DH中,正确的是()A.①②④B.①②③C.②③④D.①②③④6.四边形ABCD中,AC和BD交于点E,若AC平分∠DAB,且AB=AE,AC=AD,有以下四个命题:①AC⊥BD;②BC=DE;③∠DBC=∠DAB;④AB=BE=AE.其中命题一定成立的是()A.①②B.②③C.①③D.②④7.已知一个圆锥的底面半径是5cm,侧面积是65πcm2,则圆锥的母线长是()A.6.5cm B.13cm C.15cm D.26cm8.(2007?黑龙江)如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=BC,CE=AC,BE、AD相交于点F,连接DE,则下列结论:①∠AFE=60°;②DE⊥AC;③CE2=DF?DA;④AF?BE=AE?AC,正确的结论有()A.4个B.3个C.2个D.1个9.(2010?牡丹江)在锐角△ABC中,∠BAC=60°,BD、CE为高,F为BC的中点,连接DE、DF、EF,则结论:①DF=EF;②AD:AB=AE:AC;③△DEF是等边三角形;④BE+CD=BC;⑤当∠ABC=45°时,BE=DE中,一定正确的有()A.2个B.3个C.4个D.5个二.填空题(共4小题)10.(2010?牡丹江)观察下表,请推测第5个图形有_________ 根火柴棍.11.(2011?黑龙江)已知关于x的分式方程﹣=0无解,则a的值为_________ .12.矩形纸片ABCD中,AB=3,AD=4,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为_________ .13.(2012?宁波)把二次函数y=(x﹣1)2+2的图象绕原点旋转180°后得到的图象的解析式为_________ .卷错题一.选择题(共9小题)1.(2011?鸡西)如图,A、B、C、D是⊙O上的四个点,AB=AC,AD交BC于点E,AE=3,ED=4,则AB的长为()A.3B.2C.D.3分析:根据圆周角定理可得∠ACB=∠ABC=∠D,再利用三角形相似△ABD∽△AEB,即可得出答案.解答:解:∵AB=AC,∴∠ACB=∠ABC=∠D,∵∠BAD=∠BAD,∴△ABD∽△AEB,∴,∴AB2=3×7=21,∴AB=.故选C.点评:此题主要考查了圆周角定理以及相似三角形的判定与性质,根据题意得出△ABD∽△AEB是解决问题的关键.2.(2011?黑龙江)把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.则共有学生()A.4人B.5人C.6人D.5人或6人分析:根据每人分3本,那么余8本,如果前面的每个学生分5本,那么最后一人就分不到3本,得出3x+8≥5(x﹣1),且5(x﹣1)+3>3x+8,分别求出即可.解答:解:假设共有学生x人,根据题意得出:5(x﹣1)+3>3x+8≥5(x﹣1),解得:5<x≤.故选:C.点评:此题主要考查了不等式组的应用,根据题意找出不等关系得出不等式组是解决问题的关键.3.(2012?黑龙江)如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC边的中点,连接AF、CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE=:3;⑤S△EPM=S梯形ABCD,正确的个数有()A.5个B.4个C.3个D.2个分析:连接DF,AC,EF,如图所示,由E、F分别为AB、BC的中点,且AB=BC,得到EB=FB,再由一对公共角相等,利用SAS可得出△ABF与△CBE全等,由确定三角形的对应角相等得到一对角相等,再由AE=FC,对顶角相等,利用AAS 可得出△AME与△CMF全等,由全等三角形的对应边相等可得出ME=MF,再由BE=BF,BM=BM,利用SSS得到△BEM与△BFM全等,根据全等三角形的对应角相等可得出∠ABN=∠CBN,选项①正确;由AD=AE,梯形为直角梯形,得到∠EAD 为直角,可得出△AED为等腰直角三角形,可得出∠AED为45°,由∠ABC为直角,且∠ABN=∠CBN,可得出∠ABN为45°,根据同位角相等可得出DE 平行于BN,选项②正确;由AD=AE=AB=BC,且CF=BC,得到AD=FC,又AD与FC平行,根据一组对边平行且相等的四边形为平行四边形得到ADCF为平行四边形,可得出AF=DC,又AF=CE,等量代换可得出DC=EC,即△DCE为等腰三角形,选项③正确;由EF为△ABC的中位线,利用三角形中位线定理得到EF平行于AC,由两直线平行得到两对内错角相等,根据两对对应角相等的两三角形相似可得出△EFM与△ACM相似,且相似比为1:2,可得出EM:MC=1:2,设EM=x,则有MC=2x,用EM+MC表示出EC,设EB=y,根据BC=2EB,表示出BC,在直角三角形BCE中,利用勾股定理表示出EC,两者相等得到x 与y的比值,即为EM与BE的比值,即可判断选项④正确与否;由E为AB的中点,利用等底同高得到△AME的面积与△BME的面积相等,由△BME与△BFM全等,得到面积相等,可得出三个三角形的面积相等都为△ABF面积的,由E为AB的中点,且EP平行于BM,得到P为AM的中点,可得出△AEP 的面积等于△PEM的面积,得到△PEM的面积为△ABF面积的,由ABFD为矩形得到△ABF与△ADF全等,面积相等,由△ADF与△CFD全等得到面积相等,可得出三个三角形面积相等都为梯形面积的,综上得到△PEM的面积为梯形面积的,可得出选项⑤错误,综上,得到正确的个数.解解:连接DF,AC,EF,如图所示:答:∵E、F分别为AB、BC的中点,且AB=BC,∴AE=EB=BF=FC,在△ABF和△CBE中,,∴△ABF≌△CBE(SAS),∴∠BAF=∠BCE,AF=CE,在△AME和△CMF中,,∴△AME≌△CMF(AAS),∴EM=FM,在△BEM和△BFM中,,∴△BEM≌△BFM(SSS),∴∠ABN=∠CBN,选项①正确;∵AE=AD,∠EAD=90°,∴△AED为等腰直角三角形,∴∠AED=45°,∵∠ABC=90°,∴∠ABN=∠CBN=45°,∴∠AED=∠ABN=45°,∴ED∥BN,选项②正确;∵AB=BC=2AD,且BC=2FC,∴AD=FC,又AD∥FC,∴四边形AFCD为平行四边形,∴AF=DC,又AF=CE,∴DC=EC,则△CED为等腰三角形,选项③正确;∵EF为△ABC的中位线,∴EF∥AC,且EF=AC,∴∠MEF=∠MCA,∠EFM=∠MAC,∴△EFM∽△CAM,∴EM:MC=EF:AC=1:2,设EM=x,则有MC=2x,EC=EM+MC=3x,设EB=y,则有BC=2y,在Rt△EBC中,根据勾股定理得:EC==y,∴3x=y,即x:y=:3,∴EM:BE=:3,选项④正确;∵E为AB的中点,EP∥BM,∴P为AM的中点,∴S△AEP=S△EPM=S△AEM,又S△AEM=S△BEM,且S△BEM=S△BFM,∴S△AEM=S△BEM=S△BFM=S△ABF,∵四边形ABFD为矩形,∴S△ABF=S△ADF,又S△ADF=S△DFC,∴S△ABF=S△ADF=S△DFC=S梯形ABCD,∴S△EPM=S梯形ABCD,选项⑤错误.则正确的个数有4个.故选B点评:此题考查了直角梯形的性质,全等三角形的判定与性质,勾股定理,等腰直角三角形的性质,平行四边形的判定与性质,相似三角形的判定与性质,以及三角形的中位线定理,熟练掌握性质与定理是解本题的关键.4.(2012?鸡西)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①(BE+CF)=BC;②S△AEF≤S△ABC;③S 四边形AEDF=AD?EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个分析:先由ASA证明△AED≌△CFD,得出AE=CF,再由勾股定理即可得出BE+CF=AB=BC,从而判断①;设AB=AC=a,AE=CF=x,先由三角形的面积公式得出S△AEF=﹣(x﹣a)2+a2,S△ABC=×a2=a2,再根据二次函数的性质即可判断②;由勾股定理得到EF的表达式,利用二次函数性质求得EF最小值为a,而AD=a,所以EF≥AD,从而④错误;先得出S四边形AEDF=S△ADC=AD,再由EF≥AD得到AD?EF≥AD2,∴AD?EF>S四,所以③错误;边形AEDF如果四边形AEDF为平行四边形,则AD与EF互相平分,此时DF∥AB,DE∥AC,又D为BC中点,所以当E、F分别为AB、AC的中点时,AD与EF互相平分,从而判断⑤.解答:解:∵Rt△ABC中,AB=AC,点D为BC中点,∴∠C=∠BAD=45°,AD=BD=CD,∵∠MDN=90°,∴∠ADE+∠ADF=∠ADF+∠CDF=90°,∴∠ADE=∠CDF.在△AED与△CFD中,∵,∴△AED≌△CFD(ASA),∴AE=CF,在Rt△ABD中,BE+CF=BE+AE=AB==BD=BC.故①正确;设AB=AC=a,AE=CF=x,则AF=a﹣x.∵S△AEF=AE?AF=x(a﹣x)=﹣(x﹣a)2+a2,∴当x=a时,S△AEF有最大值a2,又∵S△ABC=×a2=a2,∴S△AEF≤S△ABC.故②正确;EF2=AE2+AF2=x2+(a﹣x)2=2(x﹣a)2+a2,∴当x=a时,EF2取得最小值a2,∴EF≥a(等号当且仅当x=a时成立),而AD=a,∴EF≥AD.故④错误;由①的证明知△AED≌△CFD,∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=AD2,∵EF≥AD,∴AD?EF≥AD2,∴AD?EF>S四边形AEDF故③错误;当E、F分别为AB、AC的中点时,四边形AEDF为正方形,此时AD与EF互相平分.故⑤正确.综上所述,正确的有:①②⑤,共3个.故选C.点评:本题主要考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,图形的面积,函数的性质等知识,综合性较强,有一定难度.5.(2012?牡丹江)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论:①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH,④AD2=OD?DH中,正确的是()A.①②④B.①②③C.②③④D.①②③④分析:由菱形ABCD中,AB=AC,易证得△ABC是等边三角形,则可得∠B=∠EAC=60°,由SAS即可证得△ABF≌△CAE;则可得∠BAF=∠ACE,利用三角形外角的性质,即可求得∠AHC=120°;在HD上截取HK=AH,连接AK,易得点A,H,C,D四点共圆,则可证得△AHK是等边三角形,然后由AAS即可证得△AKD≌△AHC,则可证得AH+CH=DH;易证得△OAD∽△AHD,由相似三角形的对应边成比例,即可得AD2=OD?DH.解答:解:∵四边形ABCD是菱形,∴AB=BC,∵AB=AC,∴AB=BC=AC,即△ABC是等边三角形,同理:△AD C是等边三角形∴∠B=∠EAC=60°,在△ABF和△CAE中,,∴△ABF≌△CAE(SAS);故①正确;∴∠BAF=∠ACE,∵∠AEH=∠B+∠BCE,∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°;故②正确;在HD上截取HK=AH,连接AK,∵∠AHC+∠ADC=120°+60°=180°,∴点A,H,C,D四点共圆,∴∠AHD=∠ACD=60°,∠ACH=∠ADH,∴△AHK是等边三角形,∴AK=AH,∠AKH=60°,∴∠AKD=∠AHC=120°,在△AKD和△AHC中,,∴△AKD≌△AHC(AAS),∴CH=DK,∴DH=HK+DK=AH+CH;故③正确;∵∠OAD=∠AHD=60°,∠ODA=∠ADH,∴△OAD∽△AHD,∴AD:DH=OD:AD,∴AD2=OD?DH.故④正确.故选D.点评:此题考查了相似三角形的判定与性质、菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.6.四边形ABCD中,AC和BD交于点E,若AC平分∠DAB,且AB=AE,AC=AD,有以下四个命题:①AC⊥BD;②BC=DE;③∠DBC=∠DAB;④AB=BE=AE.其中命题一定成立的是()A.①②B.②③C.①③D.②④分析:根据等腰三角形的性质,等边三角形的判定,圆内接四边形的性质,全等三角形的性质判断各选项是否正确即可.解答:解:∵AB=AE,一个三角形的直角边和斜边一定不相等,∴AC不垂直于BD,①错误;利用边角边定理可证得△ADE≌△ABC,那么BC=DE,②正确;由△ADE≌△ABC可得∠ADE=∠ACB,那么A,B,C,D四点共圆,∴∠DBC=∠DAC=∠DAB,③正确;△ABE不一定是等边三角形,那么④不一定正确;②③正确,故选B.点评:此题主要考查了全等三角形的性质,以及直角三角形中斜边最长;全等三角形的对应边相等;等边三角形的三边相等.7.已知一个圆锥的底面半径是5cm,侧面积是65πcm2,则圆锥的母线长是()A.6.5cm B.13cm C.15cm D.26cm解答:解:设圆锥的母线长为R,则:65π=π×5×R,解得R=13cm,故选B.点评:本题考查圆锥侧面积公式的灵活运用,掌握公式是关键.8.(2007?黑龙江)如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=BC,CE=AC,BE、AD相交于点F,连接DE,则下列结论:①∠AFE=60°;②DE⊥AC;③CE2=DF?DA;④AF?BE=AE?AC,正确的结论有()A.4个B.3个C.2个D.1个分析:本题是开放题,对结论进行一一论证,从而得到答案.①利用△ABD≌△BCE,再用三角形的一个外角等于与它不相邻的两个内角和,即可证∠AFE=60°;②从CD上截取CM=CE,连接EM,证△CEM是等边三角形,可证明DE⊥AC;③△BDF∽△ADB,由相似比则可得到CE2=DF?DA;④只要证明了△AFE∽△BAE,即可推断出AF?BE=AE?AC.解答:解:∵△ABC是等边三角形∴AB=BC=AC,∠BAC=∠ABC=∠BCA=60°∵BD=BC,CE=AC∴BD=EC∴△ABD≌△BCE∴∠BAD=∠CBE,∵∠ABE+∠EBD=60°∴∠ABE+∠CBE=60°∵∠AFE是△ABF的外角∴∠AFE=60°∴①是对的;如图,从CD上截取CM=CE,连接EM,则△CEM是等边三角形∴EM=CM=EC∵EC=CD∴EM=CM=DM∴∠CED=90°∴DE⊥AC,∴②是对的;由前面的推断知△BDF∽△ADB∴BD:AD=DF:DB∴BD2=DF?DA∴CE2=DF?DA∴③是对的;在△AFE和△BAE中,∠BAE=∠AFE=60°,∠AEB是公共角∴△AFE∽△BAE∴AF?BE=AE?AC∴④是正确的.故选A.点评:本题主要应用到了三角形外角与内角的关系,直角三角形的判定,全等三角形和相似三角形的判定及性质,内容较多,较为复杂.9.(2010?牡丹江)在锐角△ABC中,∠BAC=60°,BD、CE为高,F为BC的中点,连接DE、DF、EF,则结论:①DF=EF;②AD:AB=AE:AC;③△DEF是等边三角形;④BE+CD=BC;⑤当∠ABC=45°时,BE=DE中,一定正确的有()A.2个B.3个C.4个D.5个分析:根据直角三角形的性质、相似三角形的判定和性质、等边三角形的判定、锐角三角函数的定义可知.解答:解:①∵BD、CE为高,∴∠BDC=∠CEB=90°,又∵F为BC的中点,∴DF=BC,EF=BC,∴DF=EF;②∵∠A=∠A,∠ADB=∠AEC,∴△ADB∽△AEC,∴AD:AB=AE:AC;③∵∠BAC=60°,∴∠ABC+∠ACB=120°,∵DF=CF,EF=BF,∴∠BEF+∠CDF=120°,∴∠BFE+∠CFD=120°,∴∠DFE=60°,又∵DF=EF,∴△DEF是等边三角形;④∵∠BAC=60°,BD、CE为高,∴∠ABD=∠ACE=30°,∴∠DBC+∠ECB=180°﹣∠A﹣∠ABD﹣∠ACE=60°,∴∠CBD=60°﹣∠BCE,∴BE+CD=BC?sin∠BCE+BC?sin∠CBD=BC?(sin∠BCE+sin∠CBD)=BC?[sin∠BCE+sin(60°﹣∠BCE)],不一定等于BC;⑤∵∠ABC=45°,∴BE=BC=DE.正确的共4个.故选C.点评:本题综合性较强,有一定的难度.主要考查了直角三角形的性质、相似三角形的判定和性质、等边三角形的判定、锐角三角函数的定义.二.填空题(共4小题)10.(2010?牡丹江)观察下表,请推测第5个图形有45 根火柴棍.分析:本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.解答:解:依题意得,第1个图形中的火柴棍有3根,即3×1根;第2个图形中的火柴棍有9根,即3×(1+2)根;第3个图形中的火柴棍有18根,即3×(1+2+3)根;第4个图形中的火柴棍有30根,即3×(1+2+3+4)根;第5个图形中的火柴棍有45根,即3×(1+2+3+4+5)根.第n个图形中的火柴棍有:3×(1+2+…+n)=根.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.11.(2011?黑龙江)已知关于x的分式方程﹣=0无解,则a的值为0、或﹣1 .考点:分式方程的解.专题:计算题.分析:根据题意得出方程无解时x的值,注意多种情况,依次代入得出a的值.解答:解:去分母得ax﹣2a+x+1=0.∵关于x的分式方程﹣=0无解,(1)x(x+1)=0,解得:x=﹣1,或x=0,当x=﹣1时,ax﹣2a+x+1=0,即﹣a﹣2a﹣1+1=0,解得a=0,当x=0时,﹣2a+1=0,解得a=.(2)方程ax﹣2a+x+1=0无解,即(a+1)x=2a﹣1无解,∴a+1=0,a=﹣1.故答案为:0、或﹣1.点评:本题主要考查了分式方程无解的情况,需要考虑周全,不要漏解,难度适中.12.矩形纸片ABCD中,AB=3,AD=4,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为.分析:由翻折的性质知,BP=B′P,而要点P到CD的距离等于PB,则该垂线段必为PB′,故有PB′⊥CD,延长AE交DC的延长线于点F,由于DF∥AB,则∠F=∠BAE=∠B′AE,所以B′F=B′A=AB=3,而B′P∥AC,利用平行线分线段成比例定理(或相似三角形的性质)即可求得B′P的长,由此得解.解答:解:根据折叠的性质知:BP=PB′,若点P到CD的距离等于PB,则此距离必与B′P相同,所以该距离必为PB′.延长AE交CD的延长线于F.由题意知:AB=AB′=3,∠BAE=∠B′AE,∵Rt△ACB′中,AB′=3,AC==,∴CB′==,由于DF∥AB,则∠F=∠BAE,又∵∠BAE=∠B′AE,∴∠F=∠B′AE,∴FB′=AB′=3;∵PB′⊥CD,AC⊥CD,∴PB′∥AC,∴,∴=,解得:PB'=故答案为:.点评:此题考查了矩形的性质、图形的翻折变换以及相似三角形的性质等知识的应用,此题的关键是能够发现PB′就是所求的P到CD的距离.13.(2012?宁波)把二次函数y=(x﹣1)2+2的图象绕原点旋转180°后得到的图象的解析式为y=﹣(x+1)2﹣2 .分析:根据顶点式解析式求出原二次函数的顶点坐标,然后根据关于中心对称的点的横坐标与纵坐标互为相反数求出旋转后的二次函数的顶点坐标,最后根据旋转变换只改变图形的位置,不改变图形的形状写出解析式即可.解答:解:二次函数y=(x﹣1)2+2顶点坐标为(1,2),绕原点旋转180°后得到的二次函数图象的顶点坐标为(﹣1,﹣2),所以,旋转后的新函数图象的解析式为y=﹣(x+1)2﹣2.故答案为:y=﹣(x+1)2﹣2.点评:本题考查了二次函数图象与几何变换,利用点的变换解决函数图象的变换,求出变换后的顶点坐标是解题的关键.。
历年中考数学易错题(含答案解析)
历年中考数学易错题(含答案解析)历年中考数学易错题汇编1、数轴上,若A、B为原点两旁的点,则它们表示的两个有理数是()。
A、互为相反数B、绝对值相等C、符号相同的数D、都是负数2、有理数a、b在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是()。
A、2aB、2bC、2a-2bD、2a+b3、轮船顺流航行时速度为m千米/小时,逆流航行时速度为(m-6)千米/小时,则水流速度为()。
A、2千米/小时B、3千米/小时C、6千米/小时D、不能确定4、方程2x+3y=20的正整数解有()。
A、1个B、3个C、4个D、无数个5、下列说法错误的是()。
A、两点确定一条直线B、线段是直线的一部分C、一条直线是一个平面D、把线段向两边延长即是直线6、函数y=(m2-1)x2-(3m-1)x+2的图象与x轴的交点情况是()。
A、当m≠3时,有一个交点B、m1时,有两个交点C、当m1时,有一个交点D、不论m为何值,均无交点7、如果两圆的半径分别为R和r(R>r),圆心距为d,且(d-r)2=R2,则两圆的位置关系是()。
A、内切B、外切C、内切或外切D、相交9、有理数中,绝对值最小的数是()。
A、-1B、1C、0D、无穷小10、1的倒数的相反数是()。
A、-1B、-2C、2D、1/211、若|x|=x,则-x一定是()。
A、正数B、非负数C、负数D、非正数12、两个有理数的和除以这两个有理数的积,其商为1,则这两个有理数为()。
A、互为相反数B、互为倒数C、互为相反数且不为0D、有一个为113、长方形的周长为x,宽为2,则这个长方形的面积为()。
A、2xB、2(x-2)C、x-4D、x-214、“比x的相反数大3的数”可表示为()。
A、-x-3B、-(x+3)C、3-xD、x+315、如果0<a<1,那么下列说法正确的是()。
A、a2比a大B、a2比a小C、a2与a相等D、a2与a的大小不能确定16、数轴上,A点表示-1,现在A开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A点表示的数是()。
中考数学易错题精选与解析
中考数学易错题精选与解析一、易错题精选与解析数学是中考考试中的一门重要科目,也是许多学生认为较难的科目之一。
在备战中考时,掌握一些易错题的解题方法和技巧对于提高数学成绩至关重要。
本文将给出一些中考数学易错题的精选,并提供相应的解析和解题技巧,希望对中考数学备考有所帮助。
1. 【题目】已知△ABC中,∠B=90°,AC=12 cm,BC=5 cm。
求AB的长。
【解析】根据勾股定理,直角三角形斜边的平方等于两直角边的平方和。
在该题中,AC为斜边,BC和AB分别为两直角边。
所以,根据勾股定理,可得:AB² = AC² - BC² = 12² - 5² = 144 - 25 = 119。
因此,AB的长为√119 cm。
2. 【题目】已知折线ABCD中,AB=BC=CD,∠BAD = 135°,则∠DCB的度数是多少?【解析】我们可以先画出题目中给出的折线ABCD。
根据题意,AB=BC=CD,由此可以推断出△ABC是一个等边三角形。
因为∠BAD = 135°,而∠BAC是一个等边三角形的内角,所以∠BAC = 180° - 135°= 45°。
由等边三角形的性质可知,∠BCA = 60°。
因此,∠DCB =∠BCA - ∠BAC = 60° - 45° = 15°。
3. 【题目】在正方形ABCD中,E是AD边上一点,且AD的中点为F。
如果∠AEB = 30°,则∠EFC的度数是多少?【解析】首先,我们可以根据正方形的性质知道,∠DAC = 45°。
由于AD的中点为F,所以∠DFA = 45°/2 = 22.5°。
又因为∠AEB = 30°,所以∠AED = 45° - 30° = 15°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学易错题精选附详细答案解析一、选择题1.如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( )A .15°B .30°C .45°D .60°2.由四舍五入法得到的近似数6.8×103,下列说法中正确的是()A .精确到十分位,有2个有效数字B .精确到个位,有2个有效数字C .精确到百位,有2个有效数字D .精确到千位,有4个有效数字3.在等腰三角形ABC 中,AB=AC ,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为()A .7B .7或11C .11D .7或10 4.如图,方格纸的两条对称轴相交于点,对图88⨯EF MN ,O a ①先以直线为对称轴作轴对称图形,再向上平移4格;MN ②先以点为中心旋转,再向右平移1格;O 180③先以直线为对称轴作轴对称图形,再向右平移4格,EF 其中能将图变换成图的是()ab A .①②B .①③C .②③D .③5.如图,在平行四边形ABCD中,点M为CD的中点,AM与BD相交于点N,那么()=∆ABCD DMN s s 平行四边形:A 、B 、C 、D 、1121918166.如图,在矩形ABCD 中,BC=8,AB=6,经过点B 和点D的两个动圆均与AC 相切,且与AB 、BC、AD 、DC 分别交于点G 、H 、E 、F ,则EF+GH 的最小值是( ▲ )A .6B .8C .9.6D .107.如图已知梯形ABCD 中,BC ⊥AB ,∠DAB=60°,点P 从点B 出发,沿BC 、CD 边到D 停止运动,设点P 运动的路程为x,⊿ABP 的面积为y ,y 关于x 的函数图象如右图,则梯形ABCD 的面积是( )(杭州07中考题改编)(第8题B第1第6题APA. 20B.C.D.383126+3612+8.如图,在菱形ABCD 和菱形BEFG 中,点A 、B 、E 在同一直线上,P 是线段DF 的中点,连结PG ,PC 。
若∠ABC=∠BEF =60°,则PG/PC=( )A. B. C.D.232233(第9题) (第8题)9.如图,AC 是某市环城路的一段,AE ,BF ,CD 都是南北方向的街道,其与环城路AC 的交叉路口分别是A 、B 、C 。
经测量花卉世界D 位于点A 的北偏东45°方向、点B 的北偏东30°方向上,AB =2km ,∠DAC=15°。
则C ,D 之间的距离=___________km .A 、2B 、33C 、332 D 、310.方程的根可视为函数的图象与函数的图象交点的横坐2310x x +-=3y x =+1y x =标,那么用此方法可推断出方程的实根所在的范围是()3210x x +-=0x A .B .C .D .010x -<<001x <<012x <<023x <<11.平行四边形的一边长为5cm ,则它的两条对角线长可以是( )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm12.已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( ) A 、m ≤1 B 、m ≥且m ≠1 C 、m ≥1 D 、-1<m ≤13113.已知方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( )A 、m ≤1B 、m ≥且m ≠1C 、m ≥D 、-1<m ≤1313114.函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( ) A 、当m ≠3时,有一个交点 B 、时,有两个交点1±≠m C 、当时,有一个交点 D 、不论m 为何值,均无交点1±=m 15.解关于x 的不等式,正确的结论是( )⎩⎨⎧-<>a x ax和A、无解B、解为全体实数C、当a>0时无解D、当a<0时无解16.第8题二、填空1.数轴上离开-2的点距离为3的数是 _______.2.已知二次函数的部分图象如图所示,则关于的一元二次方程22y x x m =-++x 的解为 .220x x m -++=3.在⊙0中,半径R=5,AB 、CD 是两条平行弦,且AB=8,CD=6,则弦AC=___.4.二次函数y=x 2-2x-3的图象关于原点O (0,0)对称的图象的解析式是____.5.已知在直角ABC 中,∠C=900,AC=8㎝,BC=6㎝,则⊿ABC 的外接圆半径长为____㎝,⊿ABC 的内切圆半径长为____㎝,⊿ABC 的外心与内心之间的距离为____㎝。
6.如图,在第一象限内作射线OC ,与x 轴的夹角为30°,在射线OC 上取一点A ,过点A 作AH ⊥x 轴于点H .在抛物线y=x 2(x >0)上取点P ,在y 轴上取点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 的坐标是 .7.如图,在半圆O 中,直径AE=10,四边形ABCD 是平行四边形,且顶点A 、B 、C 在半圆上,点D 在直径AE 上,连接CE ,若AD=8,则CE 长为 .8.如图,已知OB 是⊙O 的半径,点C 、D 在⊙O 上,∠DCB =40°,则∠OBD = 度.9.如图,在Rt △ABC 中,∠ACB =90°,半径为1的圆A 与边AB 相交于点D ,与边AC 相交于点E ,连结DE 并延长,与线段BC 的延长线交于点P 。
已知tan ∠BPD=1/2,CE=2,则⊿ABC 的周长是10.如图,边长为2的正方形ABCD 中,点E 是对角线BD 上的一点,且BE=BC ,点P 在EC 上,PM⊥BD 于M ,PN⊥BC 于N ,则PM+PN=11.如图,在平面直角坐标系上有个点P(1,0),点P 第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(―1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,……,依此规律跳动下去,点P 第100次跳动至点P100的坐标是。
PME ABCD12.如图,若把边长为1的正方形ABCD的四个角(阴影部分)剪掉,得一四边形A1B1C1D1。
若使剩下的图形仍为正方形,且剩下图形的面积为原正方形面积的5/9,则AA1= AD。
(第12题)(第13题)13.如图,P为边长为2的正三角形中任意一点,连接PA、PB、PC,过P点分别做三边的垂线,垂足分别为D、E、F,则PD+PE+PF=__________;阴影部分的面积为__________.中考数学易错题解析一、选择题【1.解析】B如图所示,连接AC ,∠BAC=∠BECAB=BC=CD , ∴ ∠DAB=∠ADC= 60°, ∴∠ABC=120°∠CAB=∠ACB=30°【2.解析】C 【3.解析】Bc=7,或11【4.解析】D 【5.解析】A 。
(方法1,估计法,猜)△MDN ∽△ANB,故S △MDN :S △ANB =1/4,S △ANB <S 四边形ABCD /2的面积,故C 、D 错,又S △ANB > S 四边形ABCD /4,所以S △ANB 估计应该为平行四边形的1/3,于是S △MDN =1/4S 四边形ABCD /3,即S △MDN :S △ANB =1/12(方法2,特例计算)假设ABCD 为正方形且边长为2a ,如图5-2所示建立坐标系(正方形也是平行四边形,所以这个假设并不违背题意)A(0,2a)、B (2a ,2a )、C (2a ,0)AN 方程:y=-2(x-a )=-2x+2a OB 方程:y=x于是N (2/3a ,2/3a )∴S △MDN = 1/2×a×2a/3 = a 2/3 S ABCD = 4 a 2∴S △MDN :S △ANB =1/12图5-2(方法3,严格计算)如图5-2建立坐标系,设AB=2a ,∠ADC=βE (a/2,0),AE=atg β/2,AD= a/2/cos β∴A(a/2, atg β/2),B(5a/2, atg β/2) ∴OB 方程:y = x tg β/5 AM 方程:y= - tg β(x-a )于是N (5a/6,atg β/6)∴S △MDN = 1/2×a×atg β/6 =a 2 tg β/12S ABCD = 2a×atg β/2= a 2tg βADA BCD 2a c aa 2a+a=12c+a=152a+a=12c+a=15或∴S△MDN:S△ANB=1/12【6.解析】C。
如图所示,圆Q和圆Q1都经过D且与x轴相切,分别切于H、H1点,其中DH为圆Q的直径,DH1为圆Q1的弦∵∠EDF=∠E1DF1 = 90°∴ EF、E1F1分别为圆Q、圆Q1的直径可见:EF=DH,DH< DH1,DH1<E1F1∴DH< E1F1故过D点且与AC相切的园中,圆Q是直径d最小d最小= DH = 8×cos∠DAC=24/5=4.8∴EF最小= 4.8同理,GH最小= 4.8∴ GH+EF的最小值为9.6【7.解析】D。
设AB=a,BC=h当P点运行到C点以前时,S△ABP = 0.5ax当P点在C、D之间时,S△ABP = 0.5ah=常数由右图可以知道,h=6,CD=2而∠CAB=60°,故AE=h/√3=2√3梯形面积=矩形EBCD面积+△AED面积【8.解析】B。
设AB=2a,BE=2b,如图建立坐标系∵∠CBA=∠FEB = 60°∴ D(0,√3a),C(2a,√3a)F(3a+b,√3b) ,G(3a-b,√3b)又P为DF中点∴P((3a+b)/2,√3(a+b)/2)∴ PC2 = [(3a+b)/2-2a]2 +[√3(a+b)/2-√3a]2= (a-b)2/4 + 3(a-b)2/4=(a-b)2PG2 = [(3a+b)/2-(3a-b)]2 +[√3(a+b)/2-√3b]2 = 9(a-b)2/4 + 3(a-b)2/4=3(a-b)2∴ PG /PC = √3【9.解析】C。
ACA△DBK ∽△AHK(x+a)/(√3+√3a)=√3a/(a+1)x=2a△AHD 为等腰直角三角形x+a+1=√3+√3a a=√3/3x=2√3/3【10.解析】B 。