人教版七年级下《 相交线与平行线》能力提升练习题
人教版七年级数学下册《第五章 相交线与平行线》练习题-附带答案
人教版七年级数学下册《第五章相交线与平行线》练习题-附带答案一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.1.下列图形中∠1与∠2是对顶角的是A.B.C.D.【答案】C2.下列说法正确的是A.大小相等的两个角互为对顶角B.有公共顶点且相等的两个角是对顶角C.两角之和为180°则这两个角互为邻补角D.—个角的邻补角可能是锐角、钝角或直角【答案】D【解析】A.大小相等的两个角互为对顶角错误;B.有公共顶点且相等的两个角是对顶角;错误;C.两角之和为180°则这两个角互为邻补角错误;D.—个角的邻补角可能是锐角、钝角或直角正确.故选D.3.如图直线AB CD相交于点O所形成的∠1、∠2、∠3和∠4中一定相等的角有A.0对B.1对C.2对D.4对【答案】C4.如图直线AB CD相交于点O若∠1+80°=∠BOC则∠BOC等于A.130°B.140°C.150°D.160°【答案】A【解析】因为∠1+∠BOC=180°∠1+80°=∠BOC所以∠1+∠1+80°=180°解得:∠1=50°所以∠BOC=130°.故选A.二、填空题:请将答案填在题中横线上.5.如图所示AB与CD相交所成的四个角中∠1的邻补角是__________∠1的对顶角是__________.【答案】∠2和∠4;∠3【解析】根据对顶角和邻补角的定义解答注意两直线相交一个角的对顶角只有一个但邻补角有两个.由图形可知∠1的对顶角是∠3∠1的邻补角是∠2和∠4.6.如图是一把剪刀其中∠1=40°则∠2=_________其理由是_________.【答案】40°对顶角相等【解析】因为对顶角相等所以∠2=∠1=40°.故答案为:40°对顶角相等.三、解答题:解答应写出文字说明、证明过程或演算步骤.7.如图所示AB CD EF交于点O∠1=20°∠2=60°求∠BOC的度数.【解析】因为∠BOF=∠2=60°所以∠BOC=∠1+∠BOF=20°+60°=80°.8.如图直线AB CD相交于点O∠EOC=70°OA平分∠EOC求∠BOD的度数.9.探究题:(1)三条直线相交最少有_________个交点;最多有_________个交点画出图形并数出图形中的对顶角和邻补角的对数;(2)四条直线相交最少有_________个交点;最多有_________个交点画出图形并数出图形中的对顶角和邻补角的对数;(3)依次类推n条直线相交最少有_________个交点;最多有_________个交点对顶角有_________对邻补角有_________对.【解析】当直线同交于一点时只有一个交点;当直线两两相交且不过同一点时交点个数最多;根据对顶角与邻补角的定义找出即可.(1)三条直线相交最少有1个交点最多有3个交点如图:对顶角:6对邻补角:12对;。
完整版人教版七年级下册相交线与平行线培优50题含答案
人教版七年级下册相交线与平行线培优50题一.选择题(共20小题)1.如图:直线AB∥CD,直线EF分别与直线AB、CD相交于点G,H,若∠1=105°,则∠2的度数为()A.45°B.55°C.65°D.75°2.如图,直线AB∥CD,EG平分∠AEF,EH⊥EG,且平移EH恰好到GF,则下列结论:①EH 平分∠BEF;②EG=HF;③FH平分∠EFD;④∠GFH=90°.其中正确的结论个数是()A.1个B.2个C.3个D.4个3.如图,在△ABC中,已知∠1+∠2=180°,∠3=∠B=72°,∠AED=58°,则∠C=()A.32°B.58°C.72°D.108°4.将一副三角尺按如图的方式摆放,则∠α的度数是()第1页(共53页)105°°D.B.60°C.75A.45°,=4G,BG于点AC的方向平移到△DEF的位置,E交BC5.如图,将直角△ABC沿斜边;平移的距离是4②△ABC,下列结论:①∠A=∠BED;EF=10,△BEG的面积为4),正确的有(④CF;四边形GCFE的面积为16③BE=①②③④D.①②③C.①③④BA.②③.)b,c应满足的条件是(c为同一平面内不同的三条直线,要使a∥b,则a,,6.若ab,∥cc,b∥c D.a∥bc B c.a∥c,b⊥C.a ⊥c,ba A.⊥b,⊥)=(55°,则∠B+∠CAB7.如图,∥DE,∠E=45°°35D.B125°.55°C..A B、,按如图所示方式放置,其中°角的直角三角板ABCA.已知直线8m∥n,将一块含30)=35°,则∠2的度数是(上,若∠两点分别落在直线m、n1°55.D25C°.B°.A3530.°页)53页(共2第9.已知直线l∥l,∠1和∠2互余,∠4=149°,则∠3的度数()21A.121°B.120°C.59°D.149°10.将一副三角板按如图的所示放置,下列结论中不正确的是()A.若∠2=30°,则有AC∥DEB.∠BAE+∠CAD=180°C.若BC∥AD,则有∠2=30°D.如果∠CAD=150°,必有∠4=∠C11.如图,若直线MN∥PQ,∠ACB的顶点C在直线MN与PQ之间,若∠ACB=60°,∠CFQ=35°,则∠CEN的度数为()A.35°B.25°C.30°D.45°12.若∠A的两边与∠B的两边分别平行,且3∠A﹣∠B=80°,那么∠B的度数为()°140°或.°°或.B65115°°或.A80100C40D.°115°或4013.下列条件不能判定AB∥CD的是()第3页(共53页)A.∠3=∠4B.∠1=∠5C.∠1+∠2=180°D.∠3=∠514.如图,三角形ABC沿着由点B到点E的方向平移到三角形DEF的位置,已知BC=8,EC =5,那么平移的距离为()A.13B.8C.5D.315.如图,AB∥EF,则∠A、∠C、∠D、∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A﹣∠C+∠D+∠E=180°D.∠A+∠°C C.∠E﹣∠+∠D﹣∠A=90D=∠C+∠E16.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l∥l的有()21A.5个B.4个C.3个D.2个17.如图,b∥c,a⊥b,∠1=130°,则∠2等于()B.40°C.50°D.A30°.60°18.如图,AB∥CD,BE⊥EF于E,∠B=25°,则∠EFD的度数是()第4页(共53页)30°°D.°A.80°B.65C.45)D的关系是(CDAB∥,BF平分∠ABE,且BF∥DE,则∠ABE与∠19.如图,90°B ABE=3∠D.∠ABE+∠D=A.∠D D.∠∠C.∠ABE+3D=180°ABE=2∠)°,∠AED=70°,则∠A的大小是(=20.如图,BC∥DE,∠111040°D.60°.A25°B.35°C.13小题)二.填空题(共的、分别在MN的交点为.把一张长方形纸片21ABCD沿EF折叠后ED与BCG,D、C.2=49°,则∠﹣∠1=EFG位置上,若∠.、∠C、∠P的关系为,则∠.如图,已知22AB∥CDA.ADC,⊥且112A,平分∠BDBCAD如图,23.已知∥,ABC∠=°,BDCD则∠=535第页(共页)°,则∠2 =度.,若∠24.如图,直线a∥b1=60.∠则∠1、2、∠3、∠4间的数量关系是P25.如图,若过点P,作直线m的平行线,21.相交,如果∠1=60°,那么∠2的度数26.如图,CD直线AB∥,EF分别与AB、CD作O,过点和∠ACB的平分线,且交于点.如图,OB,OOC分别是△ABC的∠ABC27.BC =2008,则△OEF的周长是BCBCOE∥AB交于点O,OF∥AC交于点F,的位置关系.与AB1,∠=∠2,试判断CDBC28.如图,已知DG⊥BC,⊥AC,EF⊥AB AC⊥(已知)⊥BC,BC解:∵DG90°(垂直的定义)=∴∠DGB=∠DG∴∥∴∠2=∠)已知∵∠1=(=∠∴∠1536第页(共页)∴EF∥)(∴∠AEF=∠∵EF⊥AB=90°∴∠AEF)°(∴∠ADC=90AB.即:CD⊥,,,若ABCBC=29.如图,将等腰直角△ABC沿BC方向平移得到△111.则BB=1已知这种红色地毯的售价准备在大厅的主楼梯上铺上红色地毯..某宾馆在重新装修后,30 米,其侧面如图所示,则购买地毯至少需要元.为每平方米32元,主楼道宽231.已知∠AOB=22.5°,分别以射线OA,OB为始边,在∠AOB的外部作∠AOC=∠AOB,∠BOD=2∠AOB,则OC与OD的位置关系是.32.(1)如图1,在长方形ABCD中,AB=3cm,BC=2cm,则AB与CD之间的距离为cm;(2)如图2,若∠=∠,则AD∥BC;(3)如图3,DE∥BC,CD是∠ACB的平分线,∠ACB=50°,则∠EDC=度;第7页(共53页)度.=150°,∠D=145°,则∠C,∠33.如图,已知AB∥DEB=17小题)三.解答题(共90°.∠1=AFBC⊥于点C,∠A+34.如图1,;∥)求证:ABDE (1,ABPPE.则∠停止,连接AF运动到点FPB,,点(2)如图2P从点A出发,沿线段?C重合的情况)A与点,D,DEP∠,∠BPE三个角之间具有怎样的数量关系(不考虑点P并说明理由.有怎样的数量关系,并FA与∠D=110°,∠C=∠,试探索∠°,∠.如图,∠351=702说明理由.图中′,′CBABC在边长为如图,1个单位的正方形网格中,△经过平移后得到△A′.36′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的对应点B标出了点B:的问题(保留画图痕迹)538第页(共页)′(1)画出△A′BC′;(2)画出△ABC的高BD;,线段AC AA′与CC扫过的图形的面′的关系是′、(3)连接AACC′,那么积为.37.已知:∠MON=48°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°(1)如图1,若AB∥ON,则:①∠ABO的度数是°;②当∠BAD=∠ABD时,x=°;③当∠BAD=∠BDA时,x=°.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.38.如图,直线AB、CD相交于点O,OE⊥OD,OE平分∠AOF.(1)∠BOD与∠DOF相等吗?请说明理由.(2)若∠DOF=∠BOE,求∠AOD的度数.第9页(共53页)的延长线在DE∥AC,点F上的点,E分别是三角形ABC的边AB,BCDE,39.如图,D A.上,且∠DFC=∠CF;)求证:AB∥1(的度数.BDE大40°,求∠(2)若∠ACF比∠BDE上一点,且ODF是,OE是CD上一点,∥40.已知:如图,FEOC,AC和BD相交于点.=∠A∠1DC;1()求证:AB∥的度数.65=°,求∠OFE2()若∠B=30°,∠1个单位长度.所在的网格图中,每个小正方形的边长均为1.如图,四边形41ABCD ABCD的面积;)求出四边形(1个单位长度后所得的25个单位长度,再向左平移ABCD(2)请画出将四边形向上平移′.C′′DBA四边形′5310第页(共页),D,∠=∠2C=∠DF上,BD,CE均与AF相交,∠1,42.如图所示,点BE分别在AC,.求证:∠A=∠F2,∠1=∠⊥.已知:如图,AEBC,FG⊥BC43CD)求证:AB∥(1°,求∠C的度数.=∠3+50°,∠CBD=70(2)若∠D经过一,在方格纸中将△ABC44.画图并填空:如图,方格纸中每个小正方形的边长都为1′.′、点C和它的对应点C,点次平移后得到△A′B′C′,图中标出来点AB′BC′;(1)请画出平移前后的△ABC和△A′AD;中2)利用网格画出△ABCBC边上的中线(;中AB边上的高CE)利用网格画出△(3ABC.′的面积为′′)△(4ABC5311第页(共页)分别平分、NO2,MO相交于点M、N,且∠1=∠AB45.如图,直线EF分别与直线、CD的形状,并说明理由.END,试判断△MON∠BMF和∠°,114AOC=,OF⊥OE,且∠O46.如图所示,直线AB,CD相交于点,OE平分∠BOC的度数.求∠BOF90°.,∠COE=CD47.已知如图,直线AB、相交于点O的度数;36°,求∠BOE(1)若∠AOC=AOE的度数;1:5,求∠BOC2()若∠BOD:∠=的度数.EOFOF作⊥AB,请直接写出∠O23()在()的条件下,过点5312第页(共页)48.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.(1)求∠AOE的度数;(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.49.如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.50.如图,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON是直角,∠AOC=50°.(1)求∠AON的度数;(2)求∠DON的余角.第13页(共53页)人教版七年级下册相交线与平行线培优50题参考答案与试题解析一.选择题(共20小题)1.如图:直线AB∥CD,直线EF分别与直线AB、CD相交于点G,H,若∠1=105°,则∠2的度数为()A.45°B.55°C.65°D.75°【分析】利用平行线的性质求出∠DHF即可.【解答】解:∵AB∥CD,∴∠1=∠DHF,∵∠1=105°,∴∠DHF=105°,∴∠2=180°﹣∠DHF=75°,故选:D.【点评】本题考查平行线的性质,邻补角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.如图,直线AB∥CD,EG平分∠AEF,EH⊥EG,且平移EH恰好到GF,则下列结论:①EH 平分∠BEF;②EG=HF;③FH平分∠EFD;④∠GFH=90°.其中正确的结论个数是()第14页(共53页)A.1个B.2个C.3个D.4个=∠AEF=∠GEF,根据余角的性质得到∠【分析】根据角平分线的定义得到∠AEGBEH=∠FEH,于是得到EH平分∠BEF;故①正确,根据平移的性质得到四边形EGFH是平行四边形,根据平行四边形的性质得到EG∥FH,EG=HF;故②正确;根据平行线的性质得到∠AEF=∠DFE,于是得到FH平分∠EFD;故③正确;根据矩形的性质得到∠GFH=90°,故④正确.【解答】解:∵EG平分∠AEF,=∠AEF,∴∠AEG=∠GEF∵HE⊥GE于E,∴∠GEH=90°,∴∠GEF+∠HEF=90°,∴∠AEG+∠BEH=90°,∴∠BEH=∠FEH,∴EH平分∠BEF;故①正确,∵平移EH恰好到GF,∴四边形EGFH是平行四边形,∴EG∥FH,EG=HF;故②正确;∴∠GEF=∠EFH,∵AB∥CD,∴∠AEF=∠DFE,=∠AEF∵∠GEF,=∠EFDEFH,∴∠∴FH平分∠EFD;故③正确;∵四边形EGFH是平行四边形,∠GEH=90°,∴四边形EGFH是矩形,∴∠GFH=90°,故④正确,∴正确的结论有4个,故选:D.第15页(共53页)【点评】本题考查了平移的性质,平行线的性质,角平分线的定义,平行四边形的判定和性质,矩形的判定和性质,熟练掌握平移的性质是解题的关键.3.如图,在△ABC中,已知∠1+∠2=180°,∠3=∠B=72°,∠AED=58°,则∠C=()A.32°B.58°C.72°D.108°【分析】首先根据∠1+∠EFD=180°和∠1+∠2=180°可以证明∠EFD=∠2,再根据内错角相等,两直线平行可得AB∥EF,进而得到∠ADE=∠3,再结合条件∠3=∠B可得∠ADE=∠B,进而得到DE∥BC,再由平行线的性质可得∠AED=∠C.【解答】解:∵∠1+∠2=180°(已知),∠1+∠EFD=180°(邻补角定义),∴∠2=∠EFD(同角的补角相等)∴AB∥EF(内错角相等,两直线平行)∴∠ADE=∠3=72°(两直线平行内错角相等)∵∠3=∠B(已知),∴∠ADE=∠3=72°(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C=58°(两直线平行同位角相等).故选:B.【点评】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理和性质定理.4.将一副三角尺按如图的方式摆放,则∠α的度数是()第16页(共53页)A.45°B.60°C.75°D.105°【分析】根据平行线的性质和根据三角形的内角和计算即可.解:如图:【解答】90°,=∠ABE=∵∠DEC DE,∴AB∥30°,=∠D=∴∠AGD∴∠α=∠AHG=180°﹣∠A ﹣∠AGD=180°﹣45°﹣30°=105°,故选:D.【点评】本题考查的是平行线的判定和性质以及三角形的内角和的性质,掌握三角形的内角和是180°是解题的关键.5.如图,将直角△ABC沿斜边AC的方向平移到△DEF的位置,E交BC于点G,BG=4,EF=10,△BEG的面积为4,下列结论:①∠A=∠BED;②△ABC平移的距离是4;③BE=CF;④四边形GCFE的面积为16,正确的有()A.②③B.①②③C.①③④D.①②③④【分析】由平移的性质得到BE∥AC,AB∥DE,BC=EF,BE=CF,故③正确;根据平行四边形的性质得到∠A=∠BED,故①正确;根据直角三角形斜边大于直角边得到△ABC平移的距离>4,故②错误;根据三角形的面积公式得到GE=2,根据梯形的面积的面积=(6+10)×2=GCFE公式得到四边形16,故④正确.【解答】解:∵△DEF的是直角三角形ABC沿着斜边AC的方向平移后得到的,且A、D、C、F 四点在同一条直线上,∴BE∥AC,AB∥DE,BC=EF,BE=CF,故③正确;第17页(共53页)∴四边形ABED是平行四边形,∴∠A=∠BED,故①正确;∵BG=4,∴AD=BE>BG,∴△ABC平移的距离>4,故②正确;∵EF=10,∴CG=BC﹣BG=EF﹣BG=10﹣4=6,∵△BEG的面积等于4,∴BG?GE=4,∴GE=2,的面积=(6+10)×2=16,故④正确;∴四边形GCFE故选:C.【点评】本题考查了平移的性质,面积的计算,平行四边形的判定和性质,正确的识别图形是解题的关键.6.若a,b,c为同一平面内不同的三条直线,要使a∥b,则a,b,c应满足的条件是()A.a⊥b,b⊥c B.a∥c,b⊥c C.a⊥c,b∥c D.a∥c,b∥c【分析】根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行进行分析即可.【解答】解:A、a⊥b,a⊥c可判定b∥c,故此选项错误;B、a∥b,b⊥c可判定a⊥c,故此选项错误;C、a⊥c,b∥c可判定a⊥b,故此选项错误;D、根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行可得a∥b,故此选项正确;故选:D.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.7.如图,AB∥DE,∠E=55°,则∠B+∠C=()第18页(共53页)45°°D.B.55°C.35.A125°【分析】利用平行线的性质结合三角形的外角的性质解决问题即可.DE,【解答】解:∵AB∥55°,=∠BFE=∴∠E,+∠CB∵∠BFE=∠°,C =55∴∠B+∠.故选:B本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知【点评】识,属于中考常考题型.BA、,按如图所示方式放置,其中,将一块含30°角的直角三角板ABC.已知直线8m∥n)2的度数是(上,若∠m、n1=35°,则∠两点分别落在直线55°°D..30°A.35B.°C25即可解决问题.【分析】利用平行线的性质求出∠3解:如图,【解答】,m∵∥n5319第页(共页)∴∠1=∠3=35°,∵∠ABC=60°,∴∠2+∠3=60°,∴∠2=25°,故选:C.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9.已知直线l∥l,∠1和∠2互余,∠4=149°,则∠3的度数()21A.121°B.120°C.59°D.149°【分析】利用平行线的性质求出∠5即可解决问题.【解答】解:∵直线l∥l,21∴∠1+∠4=180°,∵∠4=149°,∴∠1=31°,∵∠1+∠2=90°,∴∠2=59°,∵直线l∥l,21∴∠5=∠2=59°,∴∠3=180°﹣∠5=121°,故选:A.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.10.将一副三角板按如图的所示放置,下列结论中不正确的是()第20页(共53页)DE30°,则有AC∥A.若∠2=°CAD=180B.∠BAE+∠°2=30C.若BC∥AD,则有∠C°,必有∠1504=∠D.如果∠CAD=1根据已知可求出∠首先要知道一幅三角板中各角的度数;对于①【分析】要解答此题,的位置关系,即可判断;根据角的关系判断E°,结合∠1与∠的度数,再根据∠E=60;①的结论和平行线的性质定理判断④②,根据平行线的性质定理判断③,结合°,=302【解答】解:∵∠°,=60∴∠1°,=60又∠E,=∠E∴∠1正确;,故A∴AC∥DE90°,2+∠3=1+∵∠∠2=90°,∠正确;°,故°=180B2+∠3=90°+90∠即∠BAE+CAD=∠1+∠2+∠,BC∥AD∵°.=180∠∠2+∠3+C∴∠1+°,=90,∠1+∠2=∵∠C4545°,∴∠3=不正确;,故°=45C∴∠2=90°﹣45°,=150°,∠∵∠D=30CAD 180°,+D∠CAD=∴∵∠,AC∴∥DE D正确.C∴∠4∠=∠,故.故选:C5321第页(共页)本题侧重考查对知识点的应用能力,两直线平行,同旁内角互补;两直线平行,【点评】同错角相等;内错角相等,两直线平行;同角(等角)的余角相等°,=60PQ之间,若∠ACB在直线PQ,∠ACB的顶点CMN与11.如图,若直线MN∥)CEN的度数为(∠CFQ=35°,则∠°D.45C°.30°A.35°B.25即可解决问题.+∠CFQ∥MN,证明基本结论:∠ACB=∠CEN【分析】如图作CK,CK∥MN【解答】解:如图作,∥CKMN∥PQ,MN∵,∥CK∴PQ,=∠CFQ=∠ACK,∠FCK∴∠CEN CFQ,∠ACB=∠CEN+∴∠+35°,∴60°=∠CEN25°,∴∠CEN=B.故选:本题考查平行线的性质和判定等知识,解题的关键是学会添加常用辅助线,构【点评】造平行线解决问题.)(=80°,那么∠B 的度数为且12.若∠A的两边与∠B的两边分别平行,3∠A﹣∠B°140°或40.C°115°或°°或.A8010065.B.D115°或°40°,和已知组成方程组,求出方程组+或∠B=∠根据已知得出∠【分析】AAB∠=180第页(共2253页)的解即可.【解答】解:∵∠A的两边与∠B的两边分别平行,∴∠A=∠B或∠A+∠B=180°,∵3∠A﹣∠B=80°,∴∠A=40°,∠B=40°或∠A=65°,∠B=115°故选:D.【点评】本题考查了平行线的性质的应用,注意:如果两个角的两边互相平行,那么这两个角相等或互补,题目比较好,难度适中.13.下列条件不能判定AB∥CD的是()A.∠3=∠4B.∠1=∠5C.∠1+∠2=180°D.∠3=∠5【分析】分别利用平行线的判定方法,定理1:两条直线被第三条所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.定理2:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.定理3:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行,分别判断得出即可.【解答】解:∵∠3=∠4,∴AB∥CD,∵∠1=∠5,∴AB∥CD,∵∠+∠2=180°,又∵∠2+∠5=180°,∴∠1=∠5,∴AB∥CD,∵∠3+∠5=180°,∴AB∥CD,故选:D.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.14.如图,三角形ABC沿着由点B到点E的方向平移到三角形DEF的位置,已知BC=8,EC =5,那么平移的距离为()第23页(共53页).3.5D.13B.8CA对应,根据平移的性质,易得平、FE对应,CB【分析】观察图形,发现平移前后,、3,进而可得答案.﹣5=移的距离=BE=8【解答】解:根据平移的性质,3,﹣5=易得平移的距离=BE=8.D故选:本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平【点评】行且相等,对应角相等,本题关键要找到平移的对应点.)满足的数量关系是(、∠C、∠D、∠E15.如图,AB∥EF,则∠A°∠E=180D B°.∠A﹣∠C+∠+360C A.∠A+∠+∠D+∠E=D﹣∠A=90°∠ED=∠C+D.∠A+∠+.∠C E﹣∠C∠AB,利用平行线的性质即可解问题.,DN∥【分析】作CM∥AB,DN∥AB【解答】解:作CM∥AB,,AB∥EF∵,∥EFAB∥CM∥DN∴180°,+∠EDN=ACMA=∠,∠MCD=∠CDN,∠E∴∠CDE)=∠﹣∠ACM=∠﹣∠DCMCDE﹣(∠ACD=∠=∠∵∠EDNCDE﹣∠CDNCDE),﹣(∠ACD﹣∠A180°,A﹣∠CDEACD+∠=∠E∴∠+.故选:B5324第页(共页)【点评】本题考查平行线的性质,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.16.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l∥l的有()21A.5个B.4个C.3个D.2个【分析】根据平行线的判定定理,对各小题进行逐一判断即可.【解答】解:①∵∠1=∠2不能得到l∥l,故本条件不合题意;21②∵∠4=∠5,∴l∥l,故本条件符合题意;21③∵∠2+∠5=180°不能得到l∥l,故本条件不合题意;21④∵∠1=∠3,∴l∥l,故本条件符合题意;21⑤∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l∥l,故本条件符合题意.21故选:C.【点评】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.17.如图,b∥c,a⊥b,∠1=130°,则∠2等于()B.40°C.50°D°A.30.60°【分析】证明∠3=90°,利用三角形的外角的性质求出∠4即可解决问题.【解答】解:∵b∥c,a⊥b,第25页(共53页)∴a⊥c,∴∠3=90°,∵∠1=90°+∠4,∴130°=90°+∠4,∴∠4=40°,∴∠2=∠4=40°,故选:B.【点评】本题考查平行线的性质,垂线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.如图,AB∥CD,BE⊥EF于E,∠B=25°,则∠EFD的度数是()A.80°B.65°C.45°D.30°【分析】利用三角形的内角和定理求出∠1,再利用平行线的性质求出∠EFD即可.【解答】解:如图,∵BE⊥EF,∴∠E=90°,∵∠B=25°,∴∠1=65°,∵AB∥CD,∴∠EFD=∠1=65°,故选:B.【点评】本题考查平行线的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.第26页(共53页)19.如图,AB∥CD,BF平分∠ABE,且BF∥DE,则∠ABE与∠D的关系是()A.∠ABE=3∠D B.∠ABE+∠D=90°D=180°D=2∠D.∠ABE C.∠ABE+3∠【分析】延长DE交AB的延长线于G,根据两直线平行,内错角相等可得∠D=∠G,再根据两直线平行,同位角相等可得∠G=∠ABF,然后根据角平分线的定义解答.【解答】证明:如图,延长DE交AB的延长线于G,∵AB∥CD,∴∠D=∠G,∵BF∥DE,∴∠G=∠ABF,∴∠D=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF=2∠D,即∠ABE=2∠D.故选:D.【点评】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.20.如图,BC∥DE,∠1=110°,∠AED=70°,则∠A的大小是()A.25°B.35°C.40°D.60°【分析】由DE∥BC,推出∠EDB=∠1=110°,根据∠EDB=∠A+∠AED,求出∠A即可.第27页(共53页)DE∥BC,【解答】解:∵=110°,∴∠EDB=∠1∠AED,∵∠EDB=∠A+A+70°,∴110°=∠=40°,∴∠A故选:C.本题考查平行线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握【点评】基本知识,属于中考常考题型.13小题)二.填空题(共的、ND、C分别在MED21.把一张长方形纸片ABCD沿EF折叠后与BC的交点为G,.°=16=位置上,若∠EFG49°,则∠2﹣∠1°,再根据折叠的性49DEG=DEG,∠EFG=∠【分析】先利用平行线的性质得∠2=∠﹣,然后计算∠2=98°,接着利用互补计算出∠1GEF质得∠DEF=∠=49°,所以∠21.∠BC,解:∵AD∥【解答】°,49=∠DEG=∴∠2=∠DEG,∠EFG,BC的交点为GABCD沿EF折叠后ED与∵长方形纸片°,=49DEF∴∠=∠GEF°,°=98=2×492∴∠82°,180°﹣98°=∴∠1=°.82°=1698∴∠2﹣∠1=°﹣°.故答案为16本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角【点评】互补;两直线平行,内错角相等.也考查了折叠的性质.﹣∠P=180°.C+∠的关系为、∠、∠,则∠∥.如图,已知22ABCDACP A ∠第28页(共53页)AB=180°,而CD,根据两直线平行同旁内角互补可知∠C+∠CPE【分析】先作PE∥,再根据两直线平行内错角相∥AB∥CD,利用平行于同一直线的两条直线平行可得PE180°.∠C﹣∠P =+=∠APD,于是有∠A=∠APC∠CPE,即可求∠A+等可知∠A,PE【解答】解:如右图所示,作∥CD,∵PE∥CD°,+∠CPE=180∴∠C,又∵AB∥CD,∴PE∥AB A=∠APD,∴∠P=180°,∴∠A+∠C﹣∠=180°.故答案为:∠A+∠C﹣∠P【点评】本题考查了平行线的判定和性质.平行于同一直线的两条直线平行..°=则∠=A112°,且BD⊥CD,ADC124ABC,已知23.如图,AD∥BCBD平分∠,∠ABC112°,根据两直线平行,同旁内角互补,即可求得∠,∠A=∥【分析】由ADBC的度数,继而求得答案.,求得∠CCD平分∠ABC,BD⊥的度数,又由BD112°,BC,∠A=∥【解答】解:∵AD°,=68°﹣∠∴∠ABC=180A,BD平分∠ABC∵5329第页(共页)=∠ABCCBD=34°,∴∠∵BD⊥CD,=9056°,°﹣∠CBD=∴∠C124°.180°﹣∠C=∴∠ADC=124°.故答案为:此题考查了平行线的性质以及三角形内角和定理.注意掌握两直线平行,同旁【点评】内角互补定理的应用是解此题的关键.60度.=6024.如图,直线a ∥b,若∠1=°,则∠2【分析】根据两直线平行,同位角相等即可求解.【解答】解:∵a∥b,∴∠2=∠1,∵∠1=60°,∴∠2=60°.故答案为60.【点评】本题考查了平行线的性质,掌握两直线平行,同位角相等是解题的关键.25.如图,若过点P,P作直线m的平行线,则∠1、∠2、∠3、∠4间的数量关系是∠212+∠4=∠1+∠3.【分析】分别过点P1、P2作PC∥m,PD∥m,由平行线的性质可知,∠1=∠APC,121CPP=∠PPD,∠DPB=∠4,22112所以∠1+∠PPD+∠DPB=∠APC+∠CPP+∠4,即∠2+∠4=∠1+∠3.221112【解答】解:分别过点P、P作PC∥m,PD∥m,2121第30页(共53页)n,∵m∥,∥C∥PDm∥n∴P21,D,∠DPB=∠4=∠∴∠1=∠APC,CPPPP221112=∠1+∠.3+C∠CPP+∠4,即∠2+∠4∠1+∴∠∠PPD+DPB=∠AP212211.1+∠3故答案为:∠2+∠4=∠本题考查的是平行线的性质,即两直线平行,内错角相等.【点评】120°60°,那么∠2的度数.如果∠CD26.如图,直线AB∥,EF分别与AB、CD相交,1=【分析】先根据对顶角相等求出∠3的度数,再根据平行线的性质即可得出∠2的度数.【解答】解:∵∠1=60°,∠1与∠3是对顶角,∴∠3=∠1=60°,∵AB∥CD,∴∠2=180°﹣∠3=180°﹣60°=120°.故答案为:120°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.27.如图,OB,OC分别是△ABC的∠ABC和∠ACB的平分线,且交于点O,过点O作OE∥AB 交于BC点O,OF∥AC交BC于点F,BC=2008,则△OEF的周长是2008.第31页(共53页)可ACAB和∠ACB的平分线和OE∥、OF∥ABC【分析】由OB,OC分别是△的∠ABC OF=CF,显然△OEF的长度.的周长即为BC=推出BEOE,ACB的平分线,ABC的∠ABC和∠OC【解答】解:OB,分别是△OCF,∠ACO=∠.∴∠ABO=∠OBF,ACOF∥∵OE∥AB=∠COF,∠∴∠ABO=∠BOEACO为等腰三角形OCF∴△BOE和△OF∴BE=EO,=CF∴△OEF的周长=BE.BC=2008+EF+CF=此题运用了平行线性质,和角平分线性质以及等腰三角形的性质,较为灵活,【点评】难度中等.,试判断的位置关系.CD与ABEFBC,⊥AC,⊥AB,∠1=∠2DG28.如图,已知⊥BC AC(已知)BC解:∵DG⊥,BC⊥=DGB∴∠BCA°(垂直的定义)=∠90DG∥AC∴∴∠2=∠DCA∵∠1=∠2(已知)∴∠1=∠DCA∴EF∥DC∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)即:CD⊥AB.第32页(共53页),求出∠DCA,根据平行线的性质得出∠2=∠【分析】根据平行线的判定推出DG∥AC即ADC,根据平行线的性质得出∠AEF=∠1=∠DCA,根据平行线的判定得出EF∥DC可.⊥AC(已知)BC【解答】解:∵DG⊥,BC=90°(垂直的定义)∴∠DGB=∠BCA∥AC,∴DG=∠DCA,∴∠2),=∠2(已知∵∠1DCA,∴∠1=∠DC,∴EF∥(两直线平行,同位角相等),∴∠AEF=∠ADC(已知),∵EF⊥AB,AEF=90°(垂直定义)∴∠,ADC=90°(等量代换)∴∠,即:CD⊥AB,两直线平行,同位角相等,(已知)DC,DCA,,ADC,,故答案为:BCA,ACDCA,∠2(垂直定义),等量代换.本题考查了平行线的性质和判定,垂直定义的应用,能灵活运用平行线的性质【点评】和判定定理进行推理是解此题的关键.,,若BC,=C.如图,将等腰直角△29ABC沿BC方向平移得到△AB111.=则BB1【分析】先判断出△PBC是等腰直角三角形,再根据等腰直角三角形的性质利用面积列1式求出BC,然后根据BB=BC﹣BC代入数据计算即可得解.111【解答】解:∵△ABC是等腰直角三角形,∴平移后∠PBC=∠CB=45°,1∴△PBC是等腰直角三角形,1第33页(共53页))=2C?,(BC∴SB=11C1PB△2C解得B=,13=BB=BC﹣﹣B2C=.∴11故答案为:.本题考查了平移的性质,等腰直角三角形的判定与性质,利用等腰直角三角形【点评】的长度是解题的关键.B求出C1已知这种红色地毯的售价准备在大厅的主楼梯上铺上红色地毯.30.某宾馆在重新装修后,元.2512米,其侧面如图所示,则购买地毯至少需要为每平方米32元,主楼道宽根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得【分析】其面积,则购买地毯的钱数可求.解:利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为【解答】2.5米,米,5.516平方米,8×2=∴地毯的长度为2.5+5.5=8米,地毯的面积为512元.×32=16∴买地毯至少需要512.故答案为:本题考查平移性质的实际运用,难度不大.解决此题的关键是要利用平移的知【点评】识,把要求的所有线段平移到一条直线上进行计算.,AOB的外部作∠AOC=∠OA,OB为始边,在∠AOB.31已知∠AOB=22.5°,分别以射线OD的位置关系是垂直与.,则∠BOD=2∠AOBOC【分析】根据题意,结合图形,利用已知条件及角的和差关系,求∠COD度数.【解答】解:∵∠AOB=22.5°,∠AOC=∠AOB=22.5°,∠BOD=2∠AOB=45°,∴∠COD=∠AOC+∠AOB+∠BOD=22.5°+22.5°+45°=90°,∴OC与OD的位置关系是垂直.故填垂直.第34页(共53页)先利用角的和差关系求得这个角是90°,再由垂线的定义可得,两直线垂直.【点评】之间的距离为3cm,BC=2cm,则AB与CD2AB.32(1)如图1,在长方形ABCD中,=;cm;∥BC2,则AD2(2)如图,若∠1=∠度;EDC°,则∠=25BC,CD是∠ACB的平分线,∠ACB=503()如图3,DE∥1)夹在两条平行线间的垂线段的长度即为两平行线的距离.【分析】(2)运用的是平行线判定定理.(3)运用的是角平分线的定义和平行线的性质.(°.B=90C∥CD,∠=90°,∠1【解答】解:()已知四边形ABCD为长方形,则AB.2cm与cm,故ABCD之间的距离为又BC=2.故填22.BC,根据平行线的判定定理可得∠1=∠∥(2)要使AD2.故填∠1;∠,DE∥BC3()已知,=∠DCBEDC根据平行线判定定理可得∠ACB是∠的平分线,又CD DCB,∴∠ECD=∠°,ACB=50∵∠25°.EDC∴∠=.故填255335第页(共页)此类题考查的是平行线的性质以及平行线的判定定理,考生一定要熟记.【点评】=65=145°,则∠C度.D33.如图,已知AB∥DE,∠B=150°,∠【分析】过点C作CF平行于AB,再根据平行线的性质解答即可.【解答】解:过点C作CF平行于AB,如图:∵AB∥DE,∴AB∥CF∥ED.AB∥CF?∠1=180°﹣∠B=30°,CF∥ED?∠2=180°﹣∠D=35°,∴∠BCD=∠1+∠2=65°.故填65°.【点评】结合题意和图形作出正确的辅助线是解决本题的关键.三.解答题(共17小题)34.如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.【分析】(1)根据∠A+∠B=90°,∠A+∠1=90°,即可得到∠B=∠1,进而得出AB第36页(共53页)∥DE.(2)分三种情况讨论:点P在A,D之间;点P在C,D之间;点P在C,F之间;分别过P 作PG∥AB,利用平行线的性质,即可得到∠ABP,∠DEP,∠BPE三个角之间的数量关系.【解答】解:(1)如图1,∵BC⊥AF于点C,∴∠A+∠B=90°,又∵∠A+∠1=90°,∴∠B=∠1,∴AB∥DE.(2)如图2,当点P在A,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;如图所示,当点P在C,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,第37页(共53页)∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;如图所示,当点P在C,F之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.【点评】本题主要考查了平行线的性质与判断的运用,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.35.如图,∠1=70°,∠2=110°,∠C=∠D,试探索∠A与∠F有怎样的数量关系,并说明理由.【分析】要找∠A与∠F的数量关系,根据平行线的判定,由已知可得∠1+∠2=180°,则CE ∥BD;根据平行线的性质,可得∠C=∠ABD,结合已知条件,得∠ABD=∠D,根据平行线的判定,得AC∥DF,从而求得结论.【解答】解:∠A=∠F.理由:∵∠1=70°,∠2=110°,∴∠1+∠2=180°,∴CE∥DB,∴∠C=∠ABD,∵∠C=∠D,第38页(共53页)ABD,=∠D∴∠,∥DF∴AC.=∠F∴∠A本题主要考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错【点评】角、同旁内角是正确答题的关键.图中′,′ABC经过平移后得到△A′BC136.如图,在边长为个单位的正方形网格中,△′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关B标出了点B的对应点:的问题(保留画图痕迹)′AB′C′;(1)画出△ABC的高BD;)画出△(2平行且相等,线段CC′,那么AA′与CCAC扫过的′的关系是)连接(3AA′、图形的面积为10.【分析】(1)根据平移的定义和性质作出点A、C平移后的对应点,顺次连接即可得;(2)根据三角形高的定义作图即可得;(3)根据平移变换的性质可得,再利用割补法求出平行四边形的面积.【解答】解:(1)如图所示,△A′B′C′即为所求;第39页(共53页)BD即为所求;(2)如图所示,′的关系是平行且相等,)如图所示,(3AA′与CC,××6×1=线段AC扫过的图形的面积为10×2﹣2××4×1﹣210故答案为:平行且相等、10.此题主要考查了平移变换以及平行四边形面积求法等知识,根据题意正确把握【点评】平移的性质是解题关键.上的分别是射线OM、OE、ONMON.已知:∠MON=48°,OE平分∠,点A、B、C37°x.设∠OAC=B、C不与点O重合),连接AC交射线OE于点D、动点(A24°;的度数是)如图1,若AB∥ON,则:①∠ABO(1②当∠BAD=∠ABD时,x=108°;③当∠BAD=∠BDA时,x=54°.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.【分析】(1)①运用平行线的性质以及角平分线的定义,可得①∠ABO的度数;②根据∠ABO、∠BAD的度数以及△AOB的内角和,可得x的值;。
第5章相交线与平行线提升练习2022--2023学年人教版七年级数学下册
第5章相交线与平行线(提升练习)-人教版七年级下册一.选择题1.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3的度数等于()A.20°B.25°C.30°D.35°2.如图,AB∥CD,一副三角尺按如图所示放置,∠AEG=20°,则∠HFD的度数为()A.40°B.35°C.30°D.25°3.下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.4.如图,点E在CD的延长线上,下列条件中能判定BC∥AD的是()A.∠1=∠2B.∠3=∠4C.∠5=∠A D.∠A+∠ADC=180°5.如图1是一个由齿轮、轴承、托架等元件构成的手动变速箱托架,其主要作用是动力传输.如图2是乎动变速箱托架工作时某一时刻的示意图,已知AB∥CD,CG∥EF,∠BAG=150°,∠AGC=80°,则∠DEF的度数为()A.110°B.120°C.130°D.140°6.如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是()A.3.5B.4.1C.5D.5.57.平面内两两相交的4条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.6B.11C.7D.178.如图,BC⊥AE,垂足为C,过C作CD∥AB.若∠ECD=43°,则∠B的度数是()A.43°B.45°C.47°D.57°9.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是()A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行10.如图,∠1=60°,下列推理正确的是()①若∠2=60°,则AB∥CD;②若∠5=60°,则AB∥CD;③若∠3=120°,则AB∥CD;④若∠4=120°,则AB∥CD.A.①②B.②④C.②③④D.②③二.填空题11.如图,直线AB、CD相交于点O,过点O作EO⊥AB.若∠1=55°,则∠2的大小为度.12.如图,将△ABO沿着射线AD的方向平移5cm得到△DCE,连接OE,则OE=cm.13.如图,将一张长方形纸片ABCD沿EF折叠,点C、D分别到C′、D′的位置,D′E与BC相交于G,若∠1=40°,则∠2=°.14.如图,把△ABC沿AC方向平移1cm得到△FDE,AE=6cm,则FC的长是cm.15.如图,长方形纸片ABCD,M为AD边的中点,将纸片沿BM、CM折叠,使A点落在A1处,D点落在D1处,若∠BMC=110°,则∠1的度数为.三.解答题16.如图,已知直线AB∥CD,直线MN分别交AB、CD于点G、E,EF平分∠GED,交直线AB于点F,且GE平分∠BGI,GH平分∠AGE.(1)求证:GH∥FE;(2)若∠FED=68°,求∠HGI的度数.17.判断下列命题是真命题还是假命题.如果是假命题,请举出一个反例.(1)两个钝角的和一定大于180°;(2)异号两数相加和为零;(3)若a2=b2,则a=b.18.如图,在平面直角坐标系中,点A(﹣1,4),B(﹣2,1),C(﹣4,1),将△ABC向右平移3个单位再向下平移2个单位得到△A1B1C1,点A、B、C的对应点分别为点A1、B1、C1.(1)在图上画出△A1B1C1,并写出点A1,B1,C1的坐标;(2)设点P(m,n)为△ABC内一点,经过平移后,请写出点P在△A1B1C1内的对应点P1的坐标.19.如图,已知直线AB、CD相交于点O,射线OD平分∠BOF,OE⊥CD于点O,∠AOC =35°.(1)求∠EOF的度数;(2)试判断射线OE是否平分∠AOF,并说明理由.20.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.(1)填空:∠1=°,∠2=°(2)如图2,现把三角板绕B点逆时针旋转n°,当0<n<90,且点C恰好落在DG边上时,①请直接写出∠1=°,∠2=°(结果用含n的代数式表示);②若∠2恰好是∠1的倍,求n的值.(3)如图1三角板ABC的放置,现将射线BF绕点B以每秒2°的转速逆时针旋转得到射线BM,同时射线QA绕点Q以每秒3°的转速顺时针旋转得到射线QN,当射线QN旋转至与QB重合时,则射线BM、QN均停止转动,设旋转时间为t(s).①在旋转过程中,若射线BM与射线QN相交,设交点为P.当t=20(s)时,则∠QPB =°②在旋转过程中,是否存在BM∥QN.若存在,求出此时t的值;若不存在,请说明理由.。
【数学】人教版七年级下册第5章相交线与平行线能力水平测试卷
人教版七年级下册第5章相交线与平行线能力水平测试卷一.选择题(共10小题)1.如图,直线AB,CD相交于点O,OE,OF,OG分别是∠AOC,∠BOD,∠BOC的平分线,以下说法不正确的是()A.∠DOF与∠COG互为余角B.∠COG与∠AOG互为补角C.射线OE,OF不一定在同一条直线上D.射线OE,OG互相垂直2.如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,∠EOC=35°15′.则∠AOD的度数为()A.55°15′B.65°15′C.125°15′D.165°15′3.如图,∠ACB=90°,CD⊥AB,垂足为D,则点B到直线CD的距离是指()A.线段BC的长度B.线段CD的长度C.线段AD的长度D.线段BD的长度4.在下列图形中,由∠1=∠2一定能得到AB∥CD的是()A.B.C.D.5.如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4-∠1=180°中能判断直线a∥b的有()A.3个B.4个C.5个D.6个6.下列命题中是假命题的是()A.过一点有且只有一条直线与已知直线平行B.同角(或等角)的余角相等C.两点确定一条直线D.两点之间的所有连线中,线段最短7.如图,直线EF分别交AB、CD于点E、F,EG平分∠BEF,AB∥CD.若∠1=72°,则∠2的度数为()A.54°B.59°C.72°D.108°8.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.55°9.如图,将三角板与直尺贴在一起,使三角板的直角顶点C(∠ACB=90°)在直尺的一边上,若∠2=56°,则∠1的度数等于()A.54°B.44°C.24°D.34°10.如图在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m)则空白部分表示的草地面积是()A.70 B.60 C.48 D.18二.填空题(共6小题)11.如图,∠1=15°,∠AOC=90°,点B、O、D在同一直线上,则∠2的度数为.12.命题“同位角相等”的逆命题是13.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是(填序号)14.如图,∠A=70°,O是AB上一点,直线OD与AB所夹的∠AOD=100°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转.15.将一块60°的直角三角板DEF放置在45°的直角三角板ABC上,移动三角板DEF使两条直角边DE、DF恰分别经过B、C两点,若EF∥BC,则∠ABD= °.16.在长为a(m),宽为b(m)一块长方形的草坪上修了一条宽2(m)的笔直小路,则余下草坪的面积可表示为m2;先为了增加美感,把这条小路改为宽恒为2(m)的弯曲小路(如图),则此时余下草坪的面积为m2.三.解答题(共7小题)17.如图,直线AB和直线CD相交于点O,已知∠AOC=30°,作OE平分∠BOD.(1)求∠AOE的度数;(2)作OF⊥OE,请说明OF平分∠AOD的理由.18.如图,AB、CD交于点O,∠AOE=4∠DOE,∠AOE的余角比∠DOE小10°(题中所说的角均是小于平角的角).(1)求∠AOE的度数;(2)请写出∠AOC在图中的所有补角;(3)从点O向直线AB的右侧引出一条射线OP,当∠COP=∠AOE+∠DOP时,求∠BOP的度数.19.如图,OD是∠AOB的平分线,∠AOC=2∠BOC.(1)若AO⊥CO,求∠BOD的度数;(2)若∠COD=21°,求∠AOB的度数.20.填空或批注理由:如图,已知∠1=∠2,∠A=∠D,试说明:AE∥BD证明:∵∠1=∠2(已知)∴AB∥CD()∴∠A= ()()∵∠A=∠D(已知)∴=∠D()∴AE∥BD()21.如图,已知点D、E、B、C分别是直线m、n上的点,且m∥n,延长BD、CE交于点A,DF 平分∠ADE,若∠A=40°,∠ACB=80°.求:∠DFE的度数.22.如图,直线AB∥CD,并且被直线MN所截,MN分别交AB和CD于点E、F,点Q在PM 上,且∠AEP=∠CFQ.求证:∠EPM=∠FQM.23.如图,在6×6的正方形网格中,每个小正方形的边长为1,点A、B、C、D、E、F、M、N、P均为格点(格点是指每个小正方形的顶点).(1)利用图①中的网格,过P点画直线MN的平行线和垂线.(2)把图②网格中的三条线段AB、CD、EF通过平移使之首尾顺次相接组成一个三角形(在图②中画出三角形).(3)第(2)小题中线段AB、CD、EF首尾顺次相接组成一个三角形的面积是.答案:1-5 CCDAC6-10 AACDB11.105012. 相等的角是同位角13. ①③④⑤14.10°15. 1516. (ab-2a), (ab-2a)17. 解:(1)∵∠AOC=30°,∴∠BOD=∠AOC=30°,∵OE平分∠BOD,∴∠EOB=15°,∴∠AOE=180°-15°=165°,(2)∵∠AOC=30°,∴∠AOD180°-30°=150°,∵∠DOE=∠EOB=15°,∵OF⊥OE,∴∠EOF=90°,∴∠DOF=90°-15°=75°,∴∠DOF=∠AOF=150°-75°=75°,∴OF平分∠AOD18. 解:(1)设∠DOE=x,则∠AOE=4x,∵∠AOE的余角比∠DOE小10°,∴90°-4x=x-10°,∴x=20°,∴∠AOE=80°;(2)∠AOC在图中的所有补角是∠AOD和∠BOC;(3)∵∠AOE=80°,∠DOE=20°,∴∠AOD=100°,∴∠AOC=80°,如图,当OP在CD的上方时,设∠AOP=x,∴∠DOP=100°-x,∵∠COP=∠AOE+∠DOP,∴80°+x=80°+100°-x,∴x=50°,∴∠AOP=∠DOP=50°,∵∠BOD=∠AOC=80°,∴∠BOP=80°+50°=130°;当OP在CD的下方时,设∠DOP=x,∴∠BOP=80°-x,∵∠COP=∠AOE+∠DOP,∴100°+x=80°+80°-x,∴x=30°,∴∠BOP=30°,综上所述,∠BOP的度数为130°或30°.19. 解:(1)∵AO⊥CO,∴∠AOC=90°,∵∠AOC=2∠BOC,∴∠BOC=45°,∴∠AOB=∠AOC+∠BOC=135°,∵OD是∠AOB的平分线,∴∠BOD=∠AOB=67.5°;(2)∵∠AOC=2∠BOC,∴∠AOB=3∠BOC,∵OD是∠AOB的平分线,∴∠BOD=∠AOB=∠BOC,∵∠COD=21°,∴21°+∠BOC=∠BOC,∴∠BOC=42°,∴∠AOB=3∠BOC=126°.20. 故答案为:内错角相等,两直线平行;∠AEC;两直线平行,内错角相等;∠AEC;等量代换;同位角相等,两直线平行.21. 解:∵m∥n,∠ACB=80°∴∠AED=∠ACB=80°,∵∠A=40°,∴△ADE中,∠ADE=180°-(∠A+∠AED)=180°-(40°+80°)=60°,人教版七年级数学下册第五章相交线与平行线压轴题专项练习人教版七下第五章相交线与平行线单元能力提升卷压轴题专项培优1.(1)如图1,a∥b,则∠1+∠2=(2)如图2,AB∥CD,则∠1+∠2+∠3= ,并说明理由;(3)如图3,a∥b,则∠1+∠2+∠3+∠4=(4)如图4,a∥b,根据以上结论,试探究∠1+∠2+∠3+∠4+…+∠n= (直接写出你的结论,无需说明理由)2.探究:如图,已知直线l∥l2,直线l3和直线l1、l2交于点C和点D,直线l3有一点P1(1)若点P在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生,并说明理由.(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD 之间的关系又是如何?并说明理由.3.(1)已知:如图1,直线AC∥BD,求证:∠APB=∠PAC+∠PBD;(2)如图2,如果点P在AC与BD之内,线段AB的左侧,其它条件不变,那么会有什么结果?并加以证明;(3)如图3,如果点P在AC与BD之外,其他条件不变,你发现的结果是_______(只写结果,不要证明).4.如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED 的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.5.如图(1),E是直线AB,CD内部一点,AB//CD,连接EA,ED.(1)探究猜想:①若∠A=300, ∠D=400,则∠AED等于多少度?②若∠A=200,∠D=600,则∠AED等于多少度?③猜想图(1)中∠AED, ∠EAB, ∠EDC的关系,并证明你的结论.(2)拓展应用:如图(2),射线FE与长方形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③④位于直线AB上方),P是位于以上四个区域中的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).6.如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC =70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.7.已知AB∥CD.如图1,你能得出∠A+∠E+∠C=360°吗?如图2,猜想出∠A、∠C、∠E的关系式并说明理由.如图3,∠A、∠C、∠E的关系式又是什么?8.如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是 .9.如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA 度数;若不存在,说明理由.10.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE 平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.11.已知BC∥OA,∠B=∠A=100°.试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值。
人教版七年级数学下册《第五章相交线与平行线》能力提升卷-附答案
人教版七年级数学下册《第五章相交线与平行线》能力提升卷-附答案班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分试题共23题其中选择10道、填空6道、解答7道.答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题每小题3分共30分)在每小题所给出的四个选项中只有一项是符合题目要求的.1.(2022秋•唐河县期末)如图下列图形中的∠1和∠2不是同位角的是()A.B.C.D.【分析】根据同位角的意义逐项进行判断即可.【解答】解:选项A中的∠1与∠2 是直线AB、BC被直线EF所截的同位角因此选项A不符合题意;选项B中的∠1与∠2 是直线AB、MG被直线EM所截的同位角因此选项B不符合题意;选项C中的∠1与∠2 没有公共的截线因此不是同位角所以选项C符合题意;选项D中的∠1与∠2 是直线CD、EF被直线AB所截的同位角因此选项D不符合题意;故选:C.2.(2022秋•长春期末)如图测量运动员跳远成绩选取的是AB的长度其依据是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短【分析】利用垂线段最短求解.【解答】解:该运动员跳远成绩的依据是:垂线段最短;故选:D.3.(2020秋•射洪市期末)如图所示下列结论中正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是内错角D.∠3和∠4是对顶角【分析】根据同位角内错角同旁内角以及对顶角的定义进行解答.【解答】解:A、∠1和∠2是同旁内角故本选项错误;B、∠2和∠3是同旁内角故本选项正确;C、∠1和∠4是同位角故本选项错误;D、∠3和∠4是邻补角故本选项错误;故选:B.4.(2018秋•龙岗区期末)下列四个命题中真命题是()A.两条直线被第三条直线所截内错角相等B.如果∠1和∠2是对顶角那么∠1=∠2C.三角形的一个外角大于任何一个内角D.如果x2>0 那么x>0【分析】利用平行线的性质、对顶角的性质、三角形的外角的性质分别判断后即可确定正确的选项.【解答】解:A、两条直线被第三条直线所截内错角相等错误为假命题;B、如果∠1和∠2是对顶角那么∠1=∠2 正确为真命题;C、三角形的一个外角大于任何一个内角错误为假命题;D、如果x2>0 那么x>0 错误为假命题故选:B.5.(2022秋•玉泉区期末)如图直线AB、CD相交于点O OA平分∠EOC∠EOC:∠EOD=1:2 则∠BOD等于()A.30°B.36°C.45°D.72°【分析】根据邻补角的定义求出∠EOC再根据角平分线的定义求出∠AOC然后根据对顶角相等解答.【解答】解:∵∠EOC:∠EOD=1:2∴∠EOC=180°×=60°∵OA平分∠EOC∴∠AOC=∠EOC=×60°=30°∴∠BOD=∠AOC=30°.故选:A.6.(2022秋•宛城区期末)如图下列能判定AB∥CD的条件有()个(1)∠1=∠2;(2)∠3=∠4;(3)∠B=∠5;(4)∠B+∠BCD=180°.A.1B.2C.3D.4【分析】根据平行线的判定方法对四个条件分别进行判断即可.【解答】解:(1)∵∠1=∠2∴AD∥BC;(2)∵∠3=∠4∴AB∥CD;(3)∵∠B=∠5∴AB∥CD;(4)∵∠B+∠BCD=180°∴AB∥CD.故选:C.7.(2022秋•卧龙区校级期末)如图所示下列推理正确的个数有()①若∠1=∠2 则AB∥CD②若AD∥BC则∠3+∠A=180°③若∠C+∠CDA=180°则AD∥BC④若AB∥CD则∠3=∠4.A.0个B.1个C.2个D.3个【分析】根据平行线的判定(内错角相等两直线平行同位角相等两直线平行同旁内角互补两直线平行)和平行线的性质(两直线平行内错角相等两直线平行同位角相等两直线平行同旁内角互补)判断即可.【解答】解:∵∠1=∠2∴AB∥DC∴①正确;∵AD∥BC∴∠CBA+∠A=180°∠3+∠A<180°∴②错误;∵∠C+∠CDA=180°∴AD∥BC∴③正确;由AD∥BC才能推出∠3=∠4 而由AB∥CD不能推出∠3=∠4 ∴④错误;正确的个数有2个故选:C.8.(2022秋•市中区校级期末)如图在下列给出的条件中不能判定AB∥CD的是()A.∠BAD+∠ADC=180°B.∠ABD=∠BDCC.∠ADB=∠DBC D.∠ABE=∠DCE【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、正确∵∠BAD+∠ADC=180°∴AB∥CD(同旁内角互补两直线平行);B、正确∵∠ABD=∠BDC∴AB∥CD(内错角相等两直线平行);C、∠ADB=∠DBC判定的是AD∥BC所以不符合要求;D、正确∵∠ABE=∠DCE∴AB∥CD(同位角相等两直线平行);故选:C.9.(2022秋•兴宁区校级期中)如图某校区2号楼楼梯的示意图现在要在楼梯上铺一条地毯如果楼梯的宽度是1.8米那么地毯的面积为()A.(a+1.8)h m2B.(h+1.8)a m2C.1.8(h+a)m2D.1.8ah m2【分析】根据图形可得地毯长度为(a+h)米再根据长方形的面积公式解答即可.【解答】解:由题意得地毯的长度为(a+h)米故地毯的面积为:1.8(h+a)m2.故选:C.10.(2022秋•南岗区校级期中)如图AB∥CD∥EF则下列各式中正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3C.∠1+∠3=180°+∠2D.∠2+∠3=180°+∠1【分析】根据两直线平行同旁内角互补可得∠2+∠BDC=180°再根据两直线平行内错角相等可得∠3=∠CDE而∠CDE=∠1+∠BDC整理可得∠2+∠3﹣∠1=180°.【解答】解:∵AB∥CD∥EF∴∠2+∠BDC=180°∠3=∠CDE又∠BDC=∠CDE﹣∠1∴∠2+∠3﹣∠1=180°.故选:D.二、填空题(本大题共6小题每小题4分共24分)请把答案直接填写在横线上11.(2022•东阳市校级开学)如图所示图中用数字标出的角中∠2的内错角是∠6.【分析】两条直线被第三条直线所截形成的角中若两个角都在两直线的之间并且在第三条直线(截线)的两旁则这样一对角叫做内错角由此即可判断.【解答】解:图中用数字标出的角中∠2的内错角是∠6.故答案为:∠6.12.(2022秋•姜堰区期中)如图△ABC经过平移得到△A'B'C' 连接BB'、CC' 若BB'=1.2cm则CC'= 1.2cm.【分析】根据平移的性质即可得到结论.【解答】解:∵△ABC经过平移得到△A'B'C' 连接BB'、CC' BB'=1.2cm∴CC'=BB′=1.2cm故答案为:1.2.13.(2022春•和平区校级月考)如图CD⊥AD BE⊥AC AF⊥CF CD=2cm BE=1.5cm AF=4cm则点A到直线BC的距离是4cm点B到直线AC的距离是 1.5cm点C到直线AB的距离是2 cm.【分析】根据点到直线的距离:直线外一点到直线的垂线段的长度叫做点到直线的距离解答即可.【解答】解:∵CD⊥AD BE⊥AC AF⊥CF CD=2cm BE=1.5cm AF=4cm∴点A到直线BC的距离是4cm点B到直线AC的距离是1.5cm点C到直线AB的距离是2cm.故答案为:4、1.5、2.14.(2022春•新乐市校级月考)如图直线EF CD相交于点O OA⊥OB垂足为O且OC平分∠AOF.(1)若∠AOE=40°则∠DOE的度数为70°;(2)∠AOE与∠BOD的数量关系为∠AOE=2∠BOD.【分析】(1)利用邻补角的定义进行计算即可;(2)利用第一步的步骤和思路推理即可.【解答】解:(1)∵OA⊥OB∴∠AOB=90°∵∠AOF+∠AOE=180°∠AOE=40°∴∠AOF=140°∵OC平分∠AOF∴∠AOC=∠COF=70°∵∠BOD+∠AOB+∠AOC=180°∴∠DOE=∠COF=70°.故答案为:70°;(2)∵∠AOE+∠AOF=180°∠AOC=∠COF∴∠AOC=(180°﹣∠AOE)=90°﹣∠AOE∵∠BOD+∠AOB+∠AOC=180°∴∠BOD=180°﹣90°﹣∠AOC=90°﹣(90°﹣∠AOE)=﹣∠AOE∴∠AOE=2∠BOD.故答案为:∠AOE=2∠BOD.15.(2022秋•南岗区校级期中)已知两个角的两边分别互相平行其中一个角的度数比另一个角度数的多15°则这个角为20°或48°.【分析】由两个角的两边都平行可得此两角互补或相等然后设其中一个角为x°分别从两角相等或互补去分析由其中一个角的度数是另一个角的3倍少20°列方程求解即可求得答案.【解答】解:∵两个角的两边都平行∴此两角互补或相等设其中一个角为x°∵其中一个角的度数比另一个角度数的多15°∴①若两角相等则x=x+15 解得:x=20②若两角互补则x=(180﹣x)+15 解得:x=48∴两个角的度数分别是20°或48°.故答案为:20°或48.16.(2022秋•香坊区校级期中)如图已知AB∥CD∠P AQ=2∠BAQ∠PCD=3∠QCD∠P=75°则∠AQC=95°.【分析】先根据平行线的性质求出∠APC+∠P AB+∠PCD=360°由∠APC=75°求出∠P AB+∠PCD=285°根据∠P AQ=2∠BAQ可得∠P AB=3∠BAQ由∠PCD=3∠QCD可得∠BAQ+∠QCD=95°最后证∠AQC=∠BAQ+∠QCD即可得出答案.【解答】解:过点P作PE∥AB过点Q作QF∥AB如图:∵AB∥CD QF∥AB∴AB∥QF∥CD∴∠BAQ=∠AQF∠QCD=∠CQF∴∠BAQ+∠QCD=∠AQF+∠CQF即∠BAQ+∠QCD=∠AQC∵AB∥CD PE∥AB∴AB∥PE∥CD∴∠APE+∠P AB=180°∠CPE+∠PCD=180°∴∠APE+∠CPE+∠P AB+∠PCD=360°即∠APC+∠P AB+∠PCD=360°∵∠APC=75°∴∠P AB+∠PCD=285°∵∠P AQ=2∠BAQ∴∠P AB=3∠BAQ∵∠PCD=3∠QCD∴3∠BAQ+3∠QCD=285°∴∠BAQ+∠QCD=95°∴∠AQC=95°.故答案为:95°.三、解答题(本大题共7小题共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•金东区期末)如图△ABC△A1B1C1的顶点都在边长为1个单位长度的小正方形组成的网格线交点上.(1)将△ABC向右平移4个单位得到△A2B2C2请画出△A2B2C2.(2)试描述△A1B1C1经过怎样的平移可得到△A2B2C2.【分析】(1)利用平移的性质可画出△A2B2C2;(2)根据平移的特征可得答案.【解答】解:(1)如图△A2B2C2即为所求;(2)将△A1B1C1向左平移2个单位再向下平移4个单位可得到△A2B2C2.18.(2021春•新市区校级期末)如图点G在CD上已知∠BAG+∠AGD=180°EA平分∠BAG FG 平分∠AGC请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(已知)∠AGC+∠AGD=180°(邻补角的定义)所以∠BAG=∠AGC(同角的补角相等).因为EA平分∠BAG所以∠1=∠BAG(角平分线的定义).因为FG平分∠AGC所以∠2=∠AGC得∠1=∠2(等量代换)所以AE∥GF(内错角相等两直线平行).【分析】根据邻补角的定义及题意得出∠BAG=∠AGC再根据角平分线的定义得到∠1=∠2 即可判定AE∥GF.【解答】解:因为∠BAG+∠AGD=180°(已知)∠AGC+∠AGD=180°(邻补角的定义)所以∠BAG=∠AGC(同角的补角相等)因为EA平分∠BAG所以∠1=∠BAG(角平分线的定义)因为FG平分∠AGC所以∠2=∠AGC得∠1=∠2(等量代换)所以AE∥GF(内错角相等两直线平行).故答案为:已知;邻补角的定义;同角的补角相等;∠BAG;角平分线的定义;∠AGC;等量代换;内错角相等两直线平行.19.判断下列命题是真命题还是假命题;如果是假命题举一个反例.(1)同旁内角互补;(2)如果a>b那么ac>bc;(3)两个锐角的和是钝角.【分析】(1)根据平行线的性质判断即可;(2)根据不等式的性质判断即可;(3)根据角的分类判断即可.【解答】解:(1)同旁内角互补是假命题如两直线不平行同旁内角不能互补;(2)如果a>b那么ac>bc是假命题如c=0时ac=bc;(3)两个锐角的和是钝角是假命题如30°+30°=60°.20.(2022秋•中山市期末)如图已知直线AB CD相交于点O OE平分∠BOD OF平分∠COB∠BOE =36°求∠AOF的度数.【分析】根据角平分线可得∠BOE=∠DOE根据邻补角可得∠BOC的度数根据角平分线的定义可得∠COF再根据对顶角及角的和差可得答案.【解答】解:∵直线AB CD相交于点O OE平分∠BOD OF平分∠COB∴∠BOE=∠DOE=36°∠BOF=∠COF∴∠BOD=∠AOC=2∠BOE=72°∴∠BOC=180°﹣∠BOD=108°∴∠COF==54°∴∠AOF=∠AOC+∠COF=72°+54°=126°.21.(2022秋•皇姑区校级期末)如图已知直线AB∥DF∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=70°求∠AGC的度数.【分析】(1)根据平行线的性质得出∠D+∠BHD=180°求出∠B=∠DHB根据平行线的判定得出即可;(2)根据平行线的性质求出∠AGB=∠AMD=75°根据邻补角的定义求出即可.【解答】(1)证明:∵AB∥DF∴∠D+∠BHD=180°∵∠D+∠B=180°∴∠B=∠DHB∴DE∥BC;(2)解:∵DE∥BC∠AMD=70°∴∠AGB=∠AMD=70°∴∠AGC=180°﹣∠AGB=180°﹣70°=110°.22.(2022秋•二道区校级期末)如图点O在直线AB上OC⊥OD∠D与∠1互余.(1)求证:ED∥AB;(2)OF平分∠AOD交DE于点F若∠OFD=65°补全图形并求∠1的度数.【分析】(1)根据垂直的定义、余角的概念推出∠D=∠DOB即可判定ED∥AB;(2)根据平行线的性质、角平分线的定义求出∠AOD=2∠AOF=130°根据角的和差即可求解.【解答】(1)证明:∵OC⊥OD∴∠COD=90°∴∠1+∠DOB=90°∵∠D与∠1互余∴∠D+∠1=90°∴∠D=∠DOB∴ED∥AB;(2)解:如图∵ED∥AB∠OFD=65°∴∠AOF=∠OFD=65°∵OF平分∠AOD∴∠AOD=2∠AOF=130°∵∠COD=90°∠AOD=∠1+∠COD∴∠1=40°.23.(2022秋•朝阳区校级期末)(1)问题发现:如图①直线AB∥CD连接BE CE可以发现∠B+∠C =∠BEC.请把下面的证明过程补充完整:证明:过点E作EF∥AB∵AB∥DC(已知)EF∥AB(辅助线的作法)∴EF∥DC(平行于同一直线的两直线平行).∴∠C=∠CEF.(两直线平行内错角相等).∵EF∥AB∴∠B=∠BEF(同理).∴∠B+∠C=∠BEF+∠CEF.即∠B+∠C=∠BEC.(2)拓展探究:如果点E运动到图②所示的位置其他条件不变说明:∠B+∠BEC+∠C=360°.(3)解决问题:如图③AB∥DC E、F、G是AB与CD之间的点直接写出∠1 ∠2 ∠3 ∠4 ∠5之间的数量关系∠1+∠3+∠5=∠2+∠4.【分析】(1)过点E作EF∥AB根据平行线的性质及角的和差求解即可;(2)过点E作EF∥AB根据平行线的性质及角的和差求解即可;(3)过点F作FM∥AB根据(1)求解即可.【解答】(1)证明:如图①过点E作EF∥AB∵AB∥DC(已知)EF∥AB(辅助线的作法)∴EF∥DC(平行于同一直线的两直线平行)∴∠C=∠CEF(两直线平行内错角相等)∵EF∥AB∴∠B=∠BEF(同理)∴∠B+∠C=∠BEF+∠CEF(等量代换)即∠B+∠C=∠BEC故答案为:平行于同一直线的两直线平行;两直线平行内错角相等;∠BEF+∠CEF;(2)解:如图②过点E作EF∥AB∵AB∥CD EF∥AB∴EF∥CD∴∠C+∠CEF=180°∠B+∠BEF=180°∴∠B+∠C+∠AEC=360°∴∠B+∠C=360°﹣(∠BEF+∠CEF)即∠B+∠C=360°﹣∠BEC;∠B+∠BEC+∠C=360°.(3)解:∠1+∠3+∠5=∠2+∠4 理由如下:如图过点F作FM∥AB则AB∥FM∥CD由(1)得∠1+∠3+∠5=∠2+∠4.故答案为:∠1+∠3+∠5=∠2+∠4.。
初一数学下册相交线与平行线专项提升训练(含答案详解)
一.选择题(共20 小题)相交线与平行线专题提升训练1.如图,直线AB 与CD 相交于点O,射线OE 平分∠BOC,且∠BOC=70°,则∠AOE的度数为()A.145°B.155°C.110°D.135°2.如图,直线AB 与直线CD 相交于点O,OE⊥AB,垂足为O,若∠EOD=∠AOC,则∠BOC=()A.112.5°B.135°C.140°D.157.5°3.如图所示,直线AB、CD 交于点O,OE、OF 为过点O 的射线,则对顶角有()A.1 对B.2 对C.3 对D.4 对4.如图,直线AB、CD、EF 相交于O,图中对顶角共有()A.3 对B.4 对C.5 对D.6 对5.4 条直线交于一点,则对顶角有()A.4 对B.6 对C.8 对D.12 对6.如图所示,直线AB,CD,EF,MN,GH 相交于点O,则图中对顶角共有()A.3对B.6 对C.12 对D.20 对7.如图,直线AB、CD 相交于点O,作射线OE,则图中邻补角有()A.4对B.6 对C.7 对D.8 对8.某城市有四条直线型主干道分别为l1,l2,l3,l4,l3 和l4 相交,l1 和l2 相互平行且与l3、l4 相交成如图所示的图形,则共可得同旁内角()对.A.4 B.8 C.12 D.169.如图,下列四个条件中,能判断DE∥AC 的是()A.∠2=∠4 B.∠3=∠4 C.∠AFE=∠ACB D.∠BED=∠C10.如图,若∠3=∠4,则下列条件中,不能判定AB∥CD 的是()A.∠1=∠2 B.∠1=∠3 且∠2=∠4C.∠1+∠3=90°且∠2+∠4=90°D.∠1+∠2=90°11.如图,能够证明a∥b 的是()A.∠1=∠2 B.∠4=∠5 C.∠4=∠3 D.∠1=∠5 12.如图,已知:∠1=∠2,∠3=∠4,那么下列结论成立的是()A.∠l=∠3 B.∠2=∠3 C.AB∥CD D.AE∥DF 13.如图,∠1 与∠2 互补,∠2 与∠3 互补,那么()A.L1∥L2 B.L1⊥L5 C.L3∥L4 D.L3∥L514.将AD 与BC 两边平行的纸条ABCD 按如图所示折叠,则∠1 的度数为()A.72°B.45°C.56°D.60°15.如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2 的度数为()A.68°B.58°C.48°D.32°16.如图,把一张长方形的纸片ABCD沿EF折叠,若∠AED'=40°,则∠EFB的度数为()A.40°B.50°C.60°D.70°17.如图,将一张矩形纸片折叠,若∠1=80°,则∠2 的度数是()A.50°B.60°C.70°D.80°18.如图,将长方形纸条ABCD 沿EF 折叠后,ED 与BF 交于G 点,若∠EFC=130°,则∠AED 的度数为()A.55°B.70°C.75°D.80°19.如图,将一张对边互相平行的纸条沿EF 折叠,若∠EFB=32°,则①∠C′EF=32°;②∠AEC=148°;③∠BGE=64°;④∠BFD=116°,则下列结论正确的有()11.1个B.2 个C.3 个D.4 个20.如图,将矩形ABCD 沿EF 折叠,点C 落在点H 处,点D 落在AB 边上的点G 处,若∠AEG=30°,则∠EFC 等于()A.115°B.75°C.105°D.150°二.填空题(共13 小题)21.如图,P 是直线l 外一点,从点P 向直线l 引PA,PB,PC,PD 几条线段,其中只有PA 与l 垂直.这几条线段中,最短的是,依据是.22.如图,为了把河中的水引到C 处,可过点C 作CD⊥AB 于D,然后沿CD 开渠,这样做可使所开的渠道最短,这种设计的依据是.23.如图,将直尺一边与量角器的零刻度线对齐,则图中线段OA,OB、OC 中最短的线段是,你的依据是和.24.(1)两条直线相交于一点有2组不同的对顶角;(2)三条直线相交于一点有6 组不同的对顶角;(3)四条直线相交于一点有12 组不同的对顶角;(4)n条直线相交于同一点有组不同对顶角.(如图所示)25.如图,直线l1、l2、l3 相交于一点O,对顶角一共有对.26.如图,直线a,b,c 两两相交于A,B,C 三点,则图中有对对顶角;有对同位角;有对内错角;有对同旁内角.27.图中,与∠1 成同位角的角的个数是.28.四条直线,每一条都与另外三条相交,且四条直线不相交于同一点,每条直线交另外两条直线,都能组成组同位角,这个图形中共有组同位角.29.平面内5 条直线两两相交,且没有3 条直线交于一点,那么图中共有对同旁内角.30.如图,将一张长方形纸条沿某条直线折叠,若∠1=116°,则∠2 等于.31.有一条长方形纸带,按如图所示沿AB 折叠,若∠1=40°,则纸带重叠部分中∠CAB=°.32.如图(1)是长方形纸条,∠DEF=20°,将纸条沿EF折叠成如图(2),则图(2)中的∠CFG 的度数是.33.将一条两边互相平行的纸带沿EF折叠,如图(1),AD∥BC,ED'∥FC',设∠AED'=x°(1)∠EFB=.(用含x的代数式表示)(2)若将图1继续沿BF折叠成图(2),∠EFC″=.(用含x的代数式表示).三.解答题(共10 小题)34.如图,直线AB、CD 相交于O,OE⊥CD,且∠BOD 的度数是∠AOD 的5倍.求:(1)∠AOD、∠BOD的度数;(2)∠BOE 的度数.35.如图,直线AB 和CD 相交于点O,OE 把∠AOC 分成两部分,且∠AOE:∠EOC=2:5(1)如图1,若∠BOD=70°,求∠BOE;(2)如图2,若OF 平分∠BOE,∠BOF=∠AOC+10°,求∠EOF.36.如图,直线AB、CD 相交于点O,OE 平分∠BOC,∠COF=90°.(1)若∠AOF=70°,求∠BOE 的度数;(2)若∠BOE:∠BOD=3:2,求∠AOF 的度数.37.如图,已知∠A=∠C,∠1+∠2=180°,试猜想AB 与CD 之间有怎样的位置关系?并说明理由.38.(1)如图,已知∠ABC,画一个角∠DEF,使DE∥AB,EF∥BC,且DE交BC于点P.探究:∠ABC 与∠DEF 分别有怎样的数量关系?并选择一种情况说明理由.图1 中∠ABC 与∠DEF 数量关系为;图2 中∠ABC 与∠DEF 数量关系为.选择一种情况说明理由:(2)由(1)你得出的结论是.(3)若两个角的两边互相平行,且一个角比另一个角的2 倍少30°,直接写出这两个角的度数.39.如图,已知∠AED=∠ACB,CD⊥AB,HF⊥AB,猜想∠1 与∠2 的数量关系并说明的理由.40.如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG 是∠ADC 的平分线,∠2=150°,求∠B 的度数.41.如图,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB 与∠DEB 的大小关系,并证明.42.如图,在△ABC 中,CD⊥AB,垂足为D,点E 在BC 上,EF⊥AB,垂足为F.∠1=∠2,试判断DG 与BC 的位置关系,并说明理由.43.综合与探究如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合).BC,BD 别平分∠ABP 和∠PBN,分别交射线AM 于点C,D.(1)求∠ABN、∠CBD 的度数;根据下列求解过程填空.解:∵AM∥BN,∴∠ABN+∠A=180°∵∠A=60°,∴∠ABN=,∴∠ABP+∠PBN=120°,∵BC 平分∠ABP,BD 平分∠PBN,∴∠ABP=2∠CBP、∠PBN=,()∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=.(2)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P 运动到使∠ACB=∠ABD 时,直接写出∠ABC 的度数.相交线与平行线必备参考答案与试卷解析一.选择题(共20 小题)1.如图,直线AB 与CD 相交于点O,射线OE 平分∠BOC,且∠BOC=70°,则∠AOE的度数为()A.145°B.155°C.110°D.135°【分析】依据∠BOC=70°,OE 平分∠BOC,即可得到∠COE=35°,∠AOC=180°﹣70°=110°,进而得出∠AOE 的度数.【解答】解:∵∠BOC=70°,OE 平分∠BOC,∴∠COE=35°,∠AOC=180°﹣70°=110°,∴∠AOE=∠AOC+∠COE=110°+35°=145°.故选:A.【点评】本题主要考查了对顶角与邻补角,解题时注意:对顶角相等,邻补角互补,即和为180°.2.如图,直线AB 与直线CD 相交于点O,OE⊥AB,垂足为O,若∠EOD=∠AOC,则∠BOC=()A.112.5°B.135°C.140°D.157.5°【分析】根据平角、直角及角的和差关系可求出∠AOC+∠EOD=90°,再与已知∠EOD =∠AOC 联立,求出∠AOC,利用互补关系求∠BOC.【解答】解:∵∠COD=180°,OE⊥AB,∴∠AOC+∠AOE+∠EOD=180°,∠AOE=90°,∴∠AOC+∠EOD=90°,①又∵∠EOD=∠AOC,②由①、②得,∠AOC=67.5°,∵∠BOC 与∠AOC 是邻补角,∴∠BOC=180°﹣∠AOC=112.5°.故选:A.【点评】此题主要考查了对顶角、余角、补角的关系.解题时注意运用邻补角的性质:邻补角互补,即和为180°.3.如图所示,直线AB、CD 交于点O,OE、OF 为过点O 的射线,则对顶角有()A.1 对B.2 对C.3 对D.4 对【分析】据对顶角的定义对各图形判断即可.【解答】解:图中的对顶角有:∠AOC 与∠BOD,∠AOD 与∠BOC 共2对.故选:B.【点评】本题考查了对顶角的定义,是基础题,熟记概念并准确识图是解题的关键.4.如图,直线AB、CD、EF 相交于O,图中对顶角共有()A.3 对B.4 对C.5 对D.6 对【分析】根据对顶角的定义,对顶角的两边互为反向延长线,可以判断.【解答】解:图中对顶角有:∠AOF 与∠BOE、∠AOD 与∠BOC、∠FOD 与∠EOC、∠FOB 与∠AOE、∠DOB 与∠AOC、∠DOE 与∠COF,共6对.故选:D.【点评】本题考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的两个角.5.4 条直线交于一点,则对顶角有()A.4 对B.6 对C.8 对D.12 对【分析】每两条直线交于一点,形成两对对顶角,4 条直线交于一点,则有6 条直线形成两对对顶角,那么对顶角的个数有12 对.【解答】解:根据对顶角的定义可知:4 条直线交于一点,则对顶角有12 对.故选D.【点评】本题考查对顶角的概念,两直线相交形成两对对顶角.6.如图所示,直线AB,CD,EF,MN,GH 相交于点O,则图中对顶角共有()A.3对B.6 对C.12 对D.20 对【分析】n 条不同直线相交于一点,可以得到n(n﹣1)对对顶角,依据规律可得结果.【解答】解:2 条直线交于一点,对顶角有 2 对,2=2×1;3条直线交于一点,对顶角有6 对,6=3×2;4条直线交于一点,对顶角有12 对,12=4×3;由规律可得,n 条不同直线相交于一点,可以得到n(n﹣1)对对顶角,∴直线AB,CD,EF,MN,GH 相交于点O,对顶角共有5×4=20 对,故选:D.【点评】本题考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的两个角.7.如图,直线AB、CD 相交于点O,作射线OE,则图中邻补角有()A.4对B.6 对C.7 对D.8 对【分析】根据邻补角定义,两个角的和等于180°,并且有一条边是公共边的两个角互为邻补角,进行解答.【解答】解:如图,邻补角有:∠AOC 与∠AOD,∠AOD 与∠BOD,∠BOD 与∠BOC,∠BOE 与∠AOE,∠BOC 与∠AOC,∠COE 与∠DOE.所以共 6 对.故选:B.【点评】本题主要考查邻补角的定义,注意按一定顺序寻找方能做到不重不漏.8.某城市有四条直线型主干道分别为l1,l2,l3,l4,l3 和l4 相交,l1 和l2 相互平行且与l3、l4 相交成如图所示的图形,则共可得同旁内角()对.A.4 B.8 C.12 D.16【分析】观察图形,确定不同的截线分类讨论,如分l1、l2 被l3 所截,l1、l2 被l4 所截,l1、l3 被l4 所截,l2、l3 被l4 所截,l3、l4 被l1 所截,l3、l4 被l2 所截l1、l4 被l3 所截、l2、l4 被l3 所截来讨论.【解答】解:l1、l2 被l3 所截,有两对同旁内角,其它同理,故一共有同旁内角2×8=16 对.故选:D.【点评】在较复杂图形中确定“三线八角”可从截线入手,分类讨论,做到不重复不遗漏.9.如图,下列四个条件中,能判断DE∥AC 的是()A.∠2=∠4 B.∠3=∠4 C.∠AFE=∠ACB D.∠BED=∠C 【分析】根据平行线的判定方法一一判断即可.【解答】解:∵∠3=∠4,∴DE∥AC,故选:B.【点评】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.10.如图,若∠3=∠4,则下列条件中,不能判定AB∥CD 的是()A.∠1=∠2 B.∠1=∠3 且∠2=∠4C.∠1+∠3=90°且∠2+∠4=90°D.∠1+∠2=90°【分析】利用平行线的判定方法一一判断即可.【解答】解:A、由∠1=∠2,∠3=∠4,可以推出∠ABC=∠DCB,推出AB∥CD,故本选项不符合题意.B、由∠1=∠3,∠2=∠4,可以推出∠ABC=∠DCB,推出AB∥CD,故本选项不符合题意.C、由∠1+∠3=90°,∠2+∠4=90°,可以推出∠ABC=∠DCB,推出AB∥CD,故本选项不符合题意.D、由∠1+∠2=90°无法推出∠ABC=∠DCB,故本选项符合题意.故选:D.【点评】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.11.如图,能够证明a∥b 的是()第18 页(共41 页)A.∠1=∠2 B.∠4=∠5 C.∠4=∠3 D.∠1=∠5【分析】根据平行线的判定一一判断即可.【解答】解:∵∠4=∠5,∴a∥b(内错角相等两直线平行).故选:B.【点评】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.12.如图,已知:∠1=∠2,∠3=∠4,那么下列结论成立的是()A.∠l=∠3 B.∠2=∠3 C.AB∥CD D.AE∥DF【分析】证明∠BAD=∠CDA 即可判断.【解答】解:∵∠1=∠2,∠3=∠4,∴∠BAD=∠CDA,∴AB∥CD,故选:C.【点评】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,∠1 与∠2 互补,∠2 与∠3 互补,那么()A.L1∥L2 B.L1⊥L5 C.L3∥L4 D.L3∥L5【分析】因为∠1 与∠2 互补,∠2 与∠3 互补,根据同一个角的补角相等,得∠1=∠3;所以根据内错角相等,两直线平行,可知L3∥L5.【解答】解:∵∠1 与∠2 互补,∠2 与∠3 互补,∴∠1=∠3(同角的补角相等).∴L3∥L5(内错角相等,两直线平行).故选:D.【点评】本题要会运用补角的性质:“同一个角的补角相等”,找到内错角的相等关系,从而证明出两直线平行.14.将AD 与BC 两边平行的纸条ABCD 按如图所示折叠,则∠1 的度数为()A.72°B.45°C.56°D.60°【分析】根据折叠的性质得出∠C'EF=62°,利用平行线的性质进行解答即可.【解答】解:∵一张长方形纸条ABCD 折叠,∴∠C'EF=∠FEC=62°,∵AD∥BC,∴∠1=∠C'FB=180°﹣62°﹣62°=56°,故选:C.【点评】本题考查了平行线的性质、翻折变换(折叠问题).正确观察图形,熟练掌握平行线的性质是解题的关键.15.如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2 的度数为()A.68°B.58°C.48°D.32°【分析】因直尺和三角板得AD∥FE,∠BAC=90°;再由AD∥FE 得∠2=∠3;平角构建∠1+∠BAC+∠3=180°得∠1+∠3=90°,已知∠1=32°可求出∠3=58°,即∠2=58°.【解答】解:如图所示:∵AD∥FE,∴∠2=∠3,又∵∠1+∠BAC+∠3=180°,∠BAC=90°,∴∠1+∠3=90°,又∵∠1=32°,∴∠3=58°,∴∠2=58°,故选:B.【点评】本题综合考查了平行线的性质,直角,平角和角的和差相关知识的应用,重点是平行线的性质.16.如图,把一张长方形的纸片ABCD沿EF折叠,若∠AED'=40°,则∠EFB的度数为()A.40°B.50°C.60°D.70°【分析】根据折叠性质得出∠DED′=2∠DEF,根据∠AED′的度数求出∠DED′,即可求出∠DEF 的度数,进而得到答案.【解答】解:由翻折的性质得:∠DED′=2∠DEF,∵∠AED′=40°,∴∠DED′=180°﹣∠AED′=140°,∴∠DEF=70°,又∵AD∥BC,∴∠EFB=∠DEF=70°.故选:D.【点评】本题考查平行线的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.如图,将一张矩形纸片折叠,若∠1=80°,则∠2 的度数是()A.50°B.60°C.70°D.80°【分析】利用平行线的性质解决问题即可.【解答】解:∵a∥b,∴∠1=∠3=80°,由翻折不变性可知:∠2=∠4=(180°﹣80°)=50°,故选:A.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.18.如图,将长方形纸条ABCD 沿EF 折叠后,ED 与BF 交于G 点,若∠EFC=130°,则∠AED 的度数为()A.55°B.70°C.75°D.80°【分析】求出∠DEF,根据∠AED=180°﹣2∠AED 即可解决问题.【解答】解:∵DE∥CF,∴∠EFC+∠DEF=180°,∵∠EFC=130°,∴∠DEF=50°,∴∠AED=180°﹣2×50°=80°,故选:D.【点评】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.19.如图,将一张对边互相平行的纸条沿EF 折叠,若∠EFB=32°,则①∠C′EF=32°;②∠AEC=148°;③∠BGE=64°;④∠BFD=116°,则下列结论正确的有()11.1个B.2 个C.3 个D.4 个【分析】根据平行线的性质及翻折变换的性质对各小题进行逐一分析即可.【解答】解:①∵AE∥BG,∠EFB=32°,∴∠C′EF=∠EFB=32°,故本小题正确;②∵AE∥BG,∠EFB=32°,∴∠AEF=180°﹣∠EFB=180°﹣32°=148°,∵∠AEF=∠AEC+∠GEF,∴∠AEC<148°,故本小题错误;③∵∠C′EF=32°,∴∠GEF=∠C′EF=32°,∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°,∵AC′∥BD′,∴∠BGE=∠C′EG=64°,故本小题正确;④∵∠BGE=64°,∴∠CGF=∠BGE=64°,∵DF∥CG,∴∠BFD=180°﹣∠CGF=180°﹣64°=116°,故本小题正确.故选:C.【点评】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.20.如图,将矩形ABCD 沿EF 折叠,点C 落在点H 处,点D 落在AB 边上的点G 处,若∠AEG=30°,则∠EFC 等于()A.115°B.75°C.105°D.150°【分析】利用翻折变换的性质求出∠DEF,再利用平行线的性质解决问题即可.【解答】解:∵∠AEG=30°,∴∠DEG=150°,由翻折的性质可知:∠DEF=∠FEG=∠DEG=75°,∵AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=105°,故选:C.【点评】本题考查平行线的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二.填空题(共13 小题)21.如图,P 是直线l 外一点,从点P 向直线l 引PA,PB,PC,PD 几条线段,其中只有PA 与l 垂直.这几条线段中,最短的是PA ,依据是垂线段最短.【分析】根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答.【解答】解:直线外一点与直线上各点连接的所有线段中,最短的是PA,依据是垂线段最短,故答案为:PA,垂线段最短.【点评】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.22.如图,为了把河中的水引到C 处,可过点C 作CD⊥AB 于D,然后沿CD 开渠,这样做可使所开的渠道最短,这种设计的依据是垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答.【解答】解:过D 点引CD⊥AB 于D,然后沿CD 开渠,可使所开渠道最短,这种设计的依据是垂线段最短.故答案为:垂线段最短.【点评】本题考查了垂线的性质在实际生活中的运用,属于基础题.23.如图,将直尺一边与量角器的零刻度线对齐,则图中线段OA,OB、OC 中最短的线段是OB ,你的依据是垂线段最短和平行线的性质.【分析】依据垂线段最短,即可得到图中线段OA,OB、OC 中最短的线段;依据平行线的性质,即可得到∠OBC=90°,进而得出OB⊥AC.【解答】解:由题可得,图中线段OA,OB、OC 中最短的线段是OB,依据为垂线段最短和平行线的性质.故答案为:OB,垂线段最短,平行线的性质.【点评】本题主要考查了垂线段最短,垂线段最短指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.24.(1)两条直线相交于一点有2组不同的对顶角;(2)三条直线相交于一点有6 组不同的对顶角;(3)四条直线相交于一点有12 组不同的对顶角;(4)n条直线相交于同一点有n(n﹣1)组不同对顶角.(如图所示)【分析】根据(1)(2)(3)得出规律,可求n条直线相交于同一点有多少组不同对顶角.【解答】解:观察图形可知,n 条直线相交于同一点有(1+2+…+n﹣1)×2=×2=n(n﹣1)组不同对顶角.故答案为:n(n﹣1).【点评】考查了对顶角的定义,关键是熟悉对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.25.如图,直线l1、l2、l3 相交于一点O,对顶角一共有6 对.【分析】识别图中的对顶角应从这个较复杂的图形中分解出三个基本图形(即定义图形)即直线AB、CD 相交于O;直线AB,EF 相交于O;直线CD,EF 相交于O.由于两条直线相交组成对顶角,所以上述图中共有6 对对顶角.【解答】解:如图,图中共有 6 对对顶角:∠AOC 和∠BOD,∠AOD 和∠BOC;∠AOF 和∠BOE,∠AOE 和∠BOF;∠COF 和∠DOE,∠COE 和∠DOF.故答案为:6【点评】本题考查了对顶角的定义,有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.26.如图,直线a,b,c 两两相交于A,B,C 三点,则图中有 6 对对顶角;有12 对同位角;有6 对内错角;有6 对同旁内角.【分析】根据3 条直线两两相交,共有3 个点,每个点有两对对顶角,得出对顶角、内错角、同旁内角的对数.【解答】解:3 条直线两两相交,共有3 个点,每个点有两对对顶角,任意两条直接被第三条截有12 对同位角,6 对内错角,6 对同旁内角,所以对顶角有6 对,12 对同位角,6 对内错角,6 对同旁内角;故答案为:6 12 6 6【点评】本题考查了同位角、内错角、同旁内角的定义.注意在截线的同旁找同位角,在被截直线之间找内错角、同旁内角.要结合图形,熟记同位角、内错角、同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有4 组同位角.27.图中,与∠1 成同位角的角的个数是3 .【分析】据五条直线相交关系分别讨论:l1、l2 被b 所截,与∠1 成同位角的角的有1 个;a、b 被l2 所截,与∠1 成同位角的角的有1 个;c、b 被l2 所截,与∠1 成同位角的角的有1 个.共计3 个.【解答】解:据同位角定义,l1l2 被 b 所截,与∠1 成同位角的角的有 1 个;a、b 被l2 所截,与∠1 成同位角的角的有1 个;c、b 被l2 所截,与∠1 成同位角的角的有1 个.一共有3 个,故填3.【点评】本题考查了同位角的定义,注意不要漏解.28.四条直线,每一条都与另外三条相交,且四条直线不相交于同一点,每条直线交另外两条直线,都能组成4 组同位角,这个图形中共有48 组同位角.【分析】每条直线都与另3 条直线相交,有3 个交点.每2 个交点决定一条线段,共有3条线段.4 条直线两两相交且无三线共点,共有3×4=12 条线段.每条线段各有4 组同位角,可知同位角的总组数.【解答】解:∵平面上4 条直线两两相交且无三线共点,∴共有3×4=12 条线段.又∵每条线段各有 4 组同位角,∴共有同位角12×4=48 组.故每条直线交另外两条直线,都能组成4 组同位角.这个图形中共有48 组同位角.故答案为:4,48.【点评】本题考查了同位角的定义.注意在截线的同旁找同位角.要结合图形,熟记同位角的位置特点.两条直线被第三条直线所截所形成的八个角中,有4 组同位角.29.平面内5 条直线两两相交,且没有3 条直线交于一点,那么图中共有60 对同旁内角.【分析】每条直线都与另4 条直线相交,且没有3 条直线交于一点,共有30 条线段.每条线段两侧各有一对同旁内角内角,可知同旁内角的总对数.【解答】解:如图所示:∵平面上5 条直线两两相交且无三线共点,∴共有30 条线段.又∵每条线段两侧各有一对同旁内角,∴共有同旁内角30×2=60对.故答案为:60.【点评】本题考查了同旁内角的定义.注意在截线的同旁找同旁内角.要结合图形,熟记同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有两对同旁内角.注意按顺序一个点一个点的数,不要重复也不要遗漏.30.如图,将一张长方形纸条沿某条直线折叠,若∠1=116°,则∠2 等于58°.【分析】依据平行线的性质以及折叠的性质,即可得到∠2 的度数.【解答】解:如图,∵AB∥CD,∴∠1=∠BAC=116°,由折叠可得,∠BAD=∠BAC=58°,∵AB∥CD,∴∠2=∠BAD=58°,故答案为:58°.【点评】本题考查平行线的性质,翻折变换知识,解题的关键是熟练掌握基本知识,属于中考常考题型.31.有一条长方形纸带,按如图所示沿AB 折叠,若∠1=40°,则纸带重叠部分中∠CAB=70 °.【分析】可利用平行线的性质求出∠FAC 的大小,进而可求∠CAB 的大小.【解答】解:∵长方形纸带,∴BE∥AF,∴∠1=∠CAF=40°,由于折叠可得:∠CAB=,故答案为:70【点评】此题考查平行线的性质,熟练掌握平行线的性质,会求解一些简单的计算问题.32.如图(1)是长方形纸条,∠DEF=20°,将纸条沿EF折叠成如图(2),则图(2)中的∠CFG 的度数是140°.【分析】先根据平行线的性质得出∠DEF=∠EFB,根据图形折叠的性质得出∠EFC 的度数,进而得出∠CFG 即可.【解答】解:∵AD∥BC,∴∠DEF=∠EFB=20°,由折叠可得:∠EFC=180°﹣20°=160°,∴∠CFG=160°﹣20°=140°,故答案为:140°.【点评】本题考查了平行线的性质,图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.33.将一条两边互相平行的纸带沿EF折叠,如图(1),AD∥BC,ED'∥FC',设∠AED'=x°(1)∠EFB=90°﹣x° .(用含x的代数式表示)(2)若将图1继续沿BF折叠成图(2),∠EFC″=﹣90° .(用含x的代数式表示).【分析】(1)由平行线的性质得∠DEF=∠EFB,∠AEH+∠EHB=180°,折叠和三角形的外角得∠D'EF=∠EFB,∠EFB=∠EHB,最后计算出∠EFB=90°﹣x°;(2)由折叠和平角的定义求出∠EFC'=90°+ ,再次折叠经计算求出∠EFC''=.【解答】解:(1)如图1所示:∵AD∥BC,∴∠DEF=∠EFB,∠AEH+∠EHB=180°,又∵∠DEF=∠D'EF,∴∠D'EF=∠EFB,又∵∠EHB=∠D'EF+∠EFB,∴∠EFB=∠EHB,又∵∠AED'=x°,∴∠EHB=180°﹣x°∴∠EFB==90°﹣x°(2)如图2 所示:∵∠EFB+∠EFC'=180°,∴∠EFC'=180°﹣(90°﹣°)=90°+ ,又∵∠EFC'=2∠EFB+∠EFC'',∴∠EFC''=∠EFC'﹣2∠EFB=90°+ ﹣2(90°﹣°)=,故答案为.【点评】本题综合考查了平行线的性质,折叠问题,等腰三角形的性质,三角形的外角定理,平角的定义和角的和差等相关知识,重点掌握平行线的性质,难点是折叠前后的变及不变的问题,二次折叠角的前后大小等量关系.三.解答题(共10 小题)34.如图,直线AB、CD 相交于O,OE⊥CD,且∠BOD 的度数是∠AOD 的5倍.求:(1)∠AOD、∠BOD的度数;(2)∠BOE 的度数.【分析】(1)根据∠BOD+∠AOD=180°和∠BOD=5∠AOD 求出即可;(2)求出∠BOC,∠EOC,代入∠BOE=∠EOC﹣∠BOC 求出即可.【解答】解:(1)∵AB是直线(已知),∴∠BOD+∠AOD=180°,∵∠BOD 的度数是∠AOD 的 5 倍,∴∠AOD=×180°=30°,∠BOD=×180°=150°.(2)∵∠BOC=∠AOD=30°,OE⊥DC,∴∠EOC=90°,∴∠BOE=∠EOC﹣∠BOC=90°﹣30°=60°.【点评】本题考查了垂直定义,邻补角,对顶角,角的有关计算的应用,主要考查学生的计算能力.35.如图,直线AB 和CD 相交于点O,OE 把∠AOC 分成两部分,且∠AOE:∠EOC=2:5(1)如图1,若∠BOD=70°,求∠BOE;(2)如图2,若OF 平分∠BOE,∠BOF=∠AOC+10°,求∠EOF.【分析】(1)依据对顶角相等以及邻补角,即可得到∠AOC=70°,∠BOC=110°,再根据∠AOE:∠EOC=2:5,即可得到∠COE 的度数,进而得出∠BOE 的度数;(2)设∠AOE=2α,∠EOC=5α,则∠BOF=7α+10°,∠BOF=∠BOE=(180°﹣∠AOE)=(180°﹣2α),根据7α+10°=(180°﹣2α),即可得到α的值,进而得到∠EOF 的度数.【解答】解:(1)∵∠BOD=70°,直线AB和CD相交于点O,∴∠AOC=70°,∠BOC=110°,又∵∠AOE:∠EOC=2:5,∴∠COE=70°×=50°,∴∠BOE=50°+110°=160°;(2)设∠AOE=2α,∠EOC=5α,则∠BOF=7α+10°,∵OF 平分∠BOE,∴∠BOF=∠BOE=(180°﹣∠AOE)=(180°﹣2α),∴7α+10°=(180°﹣2α),解得α=10°,∴∠EOF=∠BOF=70°+10°=80°.【点评】本题考查了对顶角、邻补角以及角平分线的定义,解决问题的关键是利用了对顶角相等,邻补角互补的关系.36.如图,直线AB、CD 相交于点O,OE 平分∠BOC,∠COF=90°.(1)若∠AOF=70°,求∠BOE 的度数;(2)若∠BOE:∠BOD=3:2,求∠AOF 的度数.【分析】(1)先根据余角的概念求出∠AOC 的度数,再根据邻补角的性质求出∠BOC 的度数,最后根据角平分线的定义计算即可;(2)根据角平分线的定义和邻补角的性质计算即可.【解答】解:(1)∵∠COF=90°,∠AOF=70°,∴∠AOC=90°﹣70°=20°,∴∠BOC=180°﹣20°=160°,∵OE 平分∠BOC,∴∠BOE=∠BOC=80°;(2)∵∠BOE:∠BOD=3:2,OE 平分∠BOC,∴∠EOC:∠BOE:∠BOD=3:3:2,∵∠EOC+∠BOE+∠BOD=180°,∴∠BOD=45°,∴∠AOC=∠BOD=45°,又∵∠COF=90°,∴∠AOF=90°﹣45°=45°.【点评】本题考查的是对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.37.如图,已知∠A=∠C,∠1+∠2=180°,试猜想AB 与CD 之间有怎样的位置关系?并说明理由.【分析】由∠1+∠2=180°可证得AD∥BC,得∠ADE=∠C,已知∠A=∠C,等量代换后可得∠ADE=∠A,即AB、CD 被直线AD 所截形成的内错角相等,由此可证得AB 与CD 平行.【解答】证明:AB∥CD,理由如下:∵∠1+∠2=180°(已知)∴AD∥BC(同旁内角互补,两直线平行)(2分)∴∠EDA=∠C(两直线平行,同位角相等)(3分)又∵∠A=∠C(已知)∴∠A=∠EDA(等量代换)(5分)∴AB∥CD.(内错角相等,两直线平行)(6分)【点评】此题主要考查平行线的判定和性质.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.38.(1)如图,已知∠ABC,画一个角∠DEF,使DE∥AB,EF∥BC,且DE交BC于点P.探究:∠ABC 与∠DEF 分别有怎样的数量关系?并选择一种情况说明理由.图1 中∠ABC 与∠DEF 数量关系为∠ABC+∠DEF=180°;图2 中∠ABC 与∠DEF 数量关系为∠ABC=∠DEF .选择一种情况说明理由:(2)由(1)你得出的结论是如果两个角的两边互相平行,那么这两个角相等或互补.(3)若两个角的两边互相平行,且一个角比另一个角的2 倍少30°,直接写出这两个角的度数.【分析】(1)利用平行线的性质即可判断.(2)根据平行线的性质解决问题即可.(3)设两个角分别为x 和2x﹣30°,由题意x=2x﹣30°或x+2x﹣30°=180°,解方程即可解决问题.【解答】解:(1)如图1中,∠ABC+∠DEF=180°.如图2中,∠ABC=∠DEF,故答案为∠ABC+∠DEF=180°,∠ABC=∠DEF.理由:①如图1 中,∵BC∥EF,∴∠DPB=∠DEF,∵AB∥DE,∴∠ABC+∠DPB=180°,∴∠ABC+∠DEF=180°.②如图2 中,∵BC∥EF,∴∠DPC=∠DEF,∵AB∥DE,∴∠ABC=∠DPC,∴∠ABC=∠DEF.(2)结论:如果两个角的两边互相平行,那么这两个角相等或互补.故答案为如果两个角的两边互相平行,那么这两个角相等或互补.(3)设两个角分别为x 和2x﹣30°,由题意x=2x﹣30°或x+2x﹣30°=180°,解得x=30°或x=70°,∴这两个角的度数为30°,30°或70°和110°.【点评】本题考查平行线的判定和性质,一元一次方程的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.39.如图,已知∠AED=∠ACB,CD⊥AB,HF⊥AB,猜想∠1 与∠2 的数量关系并说明的理由.。
人教版初中七年级数学下册第五章《相交线与平行线》提高卷(含答案解析)(1)
一、选择题1.如图,若1234//,//l l l l ,则图中与1 互补的角有( )A .1个B .2个C .3个D .4个D解析:D【分析】 直接利用平行线的性质得出相等的角以及互补的角进而得出答案.【详解】解:解:∵1234//,//l l l l ,∴∠1+∠2=180°,∠2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D .【点睛】本题主要考查了平行线的性质,注意不要漏角是解题的关键.2.在下列命题中,为真命题的是( )A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相平行B解析:B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、平行于同一条直线的两条直线互相平行,此项是真命题;C 、两直线平行,同旁内角互补,此项是假命题;D 、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题; 故选:B .【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.3.下列语句中不是命题的有()(1)两点之间,线段最短;(2)连接A、B两点;(3)鸟是动物;(4)不相交的两条直线叫做平行线;(5)无论a为怎样的有理数,式子a2+1的值都是正数吗?A.1个B.2个C.3个D.4个C解析:C【分析】根据命题的定义对各语句进行判断.【详解】两点之间,线段最短,所以(1)为命题;连接A、B两点,它为描述性语言,所以(2)不是命题;鸟是动物,所以(3)为命题;不相交的两条直线叫做平行线,所以(4)为命题;无论a为怎样的有理数,式子a2+1的值都是正数吗?它为疑问句,所以(5)不是命题.故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.如图,将周长为7的△ABC沿BC方向向右平移2个单位得到△DEF,则四边形ABFD的周长为()A.8 B.9 C.10 D.11D解析:D【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.【详解】解:根据题意,将周长为7的△ABC沿BC方向向右平移2个单位得到△DEF,∴AD=2,BF=BC+CF=BC+2,DF=AC;又∵AB+BC+AC=7,∴四边形ABFD 的周长=AD+AB+BF+DF=2+AB+BC+2+AC=11.故选:D .【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD ,DF=AC 是解题的关键.5.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( ) A .∠1=50°,∠2=40°B .∠1=50°,∠2=50°C .∠1=∠2=45°D .∠1=40°,∠2=40°C 解析:C【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】A 、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A 选项错误;B 、不满足条件,故B 选项错误;C 、满足条件,不满足结论,故C 选项正确;D 、不满足条件,也不满足结论,故D 选项错误.故选:C .【点睛】此题考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键. 6.下列命题中,属于真命题的是( )A .相等的角是对顶角B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b C 解析:C【分析】根据对顶角、补角、绝对值的定义与性质逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、一个角的补角不一定大于这个角,如这个角为130︒,其补角为50︒,小于这个角,此项是假命题;C 、由绝对值的非负性得:绝对值最小的数是0,此项是真命题;D 、如果a b =,那么a b =或=-a b ,此项是假命题;故选:C .【点睛】本题考查了对顶角、补角、绝对值、真命题与假命题,熟练掌握各定义与性质是解题关键.7.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.5C解析:C【分析】 根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.8.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④D解析:D【分析】 根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB ∥CD ,不符合题意;②∵∠3=∠4,∴BC ∥AD ,符合题意;③∵AB ∥CD ,∴∠B+∠BCD =180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.9.如图,△ABC经平移得到△EFB,则下列说法正确的有()①线段AC的对应线段是线段EB;②点C的对应点是点B;③AC∥EB;④平移的距离等于线段BF的长度.A.1 B.2 C.3 D.4D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.10.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是()A.75︒B.120︒C.135︒D.无法确定A解析:A【解析】分析:根据两直线平行,内错角相等,得到∠BFD的度数,进而得出∠CFD的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED交BC于F.∵DE∥AB,∴∠DFB=∠ABF=120°,∴∠CFD=60°.∵∠CDE=∠C+∠CFD,∴∠C=∠CDE-∠CFD=135°-60°=75°.故选A.点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.二、填空题11.如图,点A在直线m上,点B在直线l上,点A到直线l的距离为a,点B到直线m 的距离为b,线段AB的长度为c,通过测量等方法可以判断在a,b,c三个数据中,最大的是_____________.【分析】过点A作AD垂直于垂足为D过点B作BH垂直于垂足为H连接AB根据点到直线垂线段最短可知AB >ADAB>BH可得最大【详解】过点A作AD垂直于垂足为D过点B作BH垂直于垂足为H连接AB由题意得解析:c【分析】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,根据点到直线垂线段最短,可知AB>AD,AB>BH,可得c最大.【详解】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,由题意得:AD=a, BH=b,AB=c;根据点到直线垂线段最短,可知AB>AD,AB>BH∴c>a,c>b;∴c最大故答案:c【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.∠=∠=∠=︒,则∠4的度数是___________.12.已知:如图,12354126°【分析】由∠1=∠2及对顶角相等可得出∠1=∠5利用同位角相等两直线平行可得出l1∥l2利用两直线平行同旁内角互补可求出∠6的度数再利用对顶角相等可得出∠4的度数【详解】解:给各角标上序号如解析:126°.【分析】由∠1=∠2及对顶角相等可得出∠1=∠5,利用“同位角相等,两直线平行”可得出l1∥l2,利用“两直线平行,同旁内角互补”可求出∠6的度数,再利用对顶角相等可得出∠4的度数.【详解】解:给各角标上序号,如图所示.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴l1∥l2,∴∠3+∠6=180°.∵∠3=54°,∴∠6=180°-54°=126°,∴∠4=∠6=126°.故答案为:126°.【点睛】本题考查了平行线的判定与性质,牢记平行线的各判定与性质定理是解题的关键.13.阅读下面材料:在数学课上,老师提出如下问题:如图,需要在A、B两地和公路l之间修地下管道.请你设计一种最节省材料的修路方案:小丽设计的方案如下:如图,(1)连接AB;(2)过点A画线段AC⊥直线l于点C,所以线段BA和线段AC即为所求.老师说:“小丽的画法正确”请回答:小丽的画图依据是___.两点之间线段最短;直线外一点到这条直线上所有点连结的线段中垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解【详解】由垂线段最短可知点A到直线l的最短距离为AC由两点之间线段最短可解析:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解.【详解】由垂线段最短可知,点A 到直线l 的最短距离为AC ,由两点之间线段最短可知,点B 到点A 的最短距离为AB .故答案为:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短);【点睛】本题考察线段的概念和垂线的性质,熟练掌握其概念和性质是解题的关键.14.如图,长8米宽6米的草坪上有一条弯折的小路(小路进出口的宽度相等,且每段小路均为平行四边形),小路进出口的宽度均为1米,则绿地的面积为__平方米.42【分析】利用平移表示出草坪的长和宽然后根据长方形的面积公式列式计算即可得解【详解】解:由平移的性质得:草坪的长为8﹣1=7(米)宽为6米草坪的面积=7×6=42(平方米)故答案为:42【点睛】本 解析:42【分析】利用平移表示出草坪的长和宽,然后根据长方形的面积公式列式计算即可得解.【详解】解:由平移的性质,得:草坪的长为8﹣1=7(米),宽为6米,草坪的面积=7×6=42(平方米).故答案为:42.【点睛】本题考查了平移的性质,熟记性质并理解求出与草坪的面积相当的长方形的长和宽是解题的关键.15.如图,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,28HG cm =,5MG cm =,4MC cm =,则阴影部分的面积是___ 130cm2【分析】根据平移的性质可知梯形EFGH ≌梯形ABCD 那么GH=CDBC=FG 观察可知梯形EFMD 是两个梯形的公共部分那么阴影部分的面积就等于梯形MGHD 再根据梯形的面积计算公式计算即可【解析:130cm 2.【分析】根据平移的性质可知梯形EFGH≌梯形ABCD,那么GH=CD,BC=FG,观察可知梯形EFMD 是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD,再根据梯形的面积计算公式计算即可.【详解】解:∵直角梯形EFGH是由直角梯形ABCD平移得到的,∴梯形EFGH≌梯形ABCD,∴GH=CD,BC=FG,∵梯形EFMD是两个梯形的公共部分,∴S梯形ABCD-S梯形EFMD=S梯形EFGH-S梯形EFMD,∴S阴影=S梯形MGHD=12(DM+GH)•GM=12(28-4+28)×5=130(cm2).故答案是130cm2.【点睛】本题考查了图形的平移,解题的关键是知道平移前后的两个图形全等.16.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.如果两个角相等那么这两个角的余角相等【分析】把命题的题设写在如果的后面把命题的结论部分写在那么的后面即可【详解】解:命题等角的余角相等写成如果…那么…的形式为:如果两个角是相等角的余角那么这两个角相解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.17.用反证法证明“三角形中至少有一个内角不大于60°,应先假设这个三角形中____________________.三角形的三个内角都大于60°【分析】根据反证法的步骤先假设结论不成立即否定命题即可【详解】根据反证法的步骤第一步应假设结论的反面成立即三角形的三个内角都大于60°故答案为:三角形的三个内角都大于60解析:三角形的三个内角都大于60°【分析】根据反证法的步骤,先假设结论不成立,即否定命题即可.【详解】根据反证法的步骤,第一步应假设结论的反面成立,即三角形的三个内角都大于60°.故答案为:三角形的三个内角都大于60°.【点睛】本题考查了反证法的知识,掌握反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立是解题的关键.18.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为______米.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB 铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50解析:98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB ,铅直距离等于(AD -1)×2,又∵长AB =50米,宽BC =25米,∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为98.19.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.65【分析】利用平行线的判定定理和性质定理等量代换可得∠CBD=∠EBC 可得结果【详解】∵∠1=50°∴∠DBE=180°-∠1=180°-50°=130°∵∠2=130°∴∠DBE=∠2∴AE ∥C解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC ,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.20.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到三角形DEF的位置,AB=10,DH=4,平移距离为8,则阴影部分的面积是_______________.64【分析】根据平移变化只改变图形的位置不改变图形的形状可得出两个三角形大小一样阴影部分面积等于梯形ABEH的面积;DE=AB根据线段的和差关系可求出HE的长度再根据梯形的面积公式即可得答案【详解】解析:64【分析】根据平移变化只改变图形的位置,不改变图形的形状,可得出两个三角形大小一样,阴影部分面积等于梯形ABEH的面积;DE=AB,根据线段的和差关系可求出HE的长度,再根据梯形的面积公式即可得答案.【详解】∵两个三角形大小一样,∴S△ABC=S△DEF,∴S△ABC-S△HEC=S△DEF-S△HEC,∴S阴影=S梯形ABEH,∵其中一个三角形沿着点B到点C的方向平移到三角形DEF的位置,AB=10,∴DE=AB=10,∵DH=4,∴HE=DE-DH=6,∵平移距离是8,∴BE=8,∴S阴影=S梯形ABEH=12(HE+AB)·BE=12×(10+6)×8=64,故答案为:64【点睛】本题主要考查了平移的性质,通过观察图形把阴影部分的面积转化为熟知图形的面积是关键的一步.三、解答题21.在一张地图上有、、A B C三地,但地图被墨迹污染,C地具体位置看不清楚,但知道C地在A地的北偏东30°方向,在B地南偏东45°方向.(1)根据以上条件,在地图上画出C地的位置;(2)直接写出ACB的度数.解析:(1)见详解;(2)105°.【分析】(1)过点A、B作正北方向,再据方位角的含义画射线BX和AY,两射线之交点即是C 地;(2)记过点A的正北方向线与射线BX之交点为D,先求得∠CDA的度数,最后由三角形内角和为180°计算得∠ACB的度数.【详解】(1)如下图,第一步过B作m的平行线BS,以B为顶点作射线BX,使∠SBX=45°;第二步过A作m的平行线AN交BX于点D,以A为顶点作射线AY,使∠NAY=30°;则射线BX与射线AY的交点就是C地.(2)如上图,由C 地在B 地南偏东45°方向得∠SBX=45°∵SB ∥m ,AN ∥m∴SB ∥AN∴∠ADC=∠SBX=45°由C 地在A 地的北偏东30°方向得∠NAY=30°,∴∠ACB=180°-∠ADC-∠NAY=180°-45°-30°=105°.【点睛】此题考查方位角、平行线等知识,其中理解方位角正确画出图形是关键.22.如图,有三个论断:①12∠=∠;②B C ∠=∠;③A D ∠=∠,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.解析:答案见解析【分析】先从①②③中任选两个作为条件,另一个作为结论构成一个命题,然后根据平行线的判定和性质及对顶角相等进行证明即可.【详解】已知:12∠=∠,B C ∠=∠求证:A D ∠=∠证明:如图:13∠=∠ 又12∠=∠32∴∠=∠//EC BF ∴AEC B ∴∠=∠又B C ∠=∠AEC C ∴∠=∠//AB CD ∴A D ∴∠=∠.【点睛】本题主要考查了平行线的判定与性质以及命题与定理的证明问题,证明的一般步骤包括写出已知、求证、画出图形和证明.23.如图,DE 平分∠ADF ,DF ∥BC ,点E ,F 在线段AC 上,点A ,D ,B 在一直线上,连接BF .(1)若∠ADF =70°,∠ABF =25°,求∠CBF 的度数;(2)若BF 平分∠ABC 时,求证:BF ∥DE .解析:(1)∠CBF =45°;(2)见解析.【分析】(1)根据平行线的性质和已知条件即可求出∠CBF 的度数;(2)根据平行线的性质可得∠ABC =∠ADF ,再根据BF 平分∠ABC ,DE 平分∠ADF ,可得∠ADE =∠ABF ,再根据同位角相等,两直线平行即可证明BF ∥DE .【详解】解:(1)∵DF ∥BC ,∴∠ABC =∠ADF =70°,∵∠ABF =25°,∴∠CBF =70°﹣25°=45°;(2)证明:∵DF ∥BC ,∴∠ABC =∠ADF ,∵BF 平分∠ABC ,DE 平分∠ADF ,∴∠ADE 12=∠ADF ,∠ABF 12=∠ABC , ∴∠ADE =∠ABF ,∴BF ∥DE .【点睛】 本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.24.如图,//,//DE BC EF AB ,图中与∠BFE 互补的角有几个,请分别写出来.解析:∠EFC 、∠DEF 、∠ADE 、∠B .【分析】根据平行的性质得EFC DEF ADE B ∠=∠=∠=∠,由180BFE EFC ∠+∠=︒,可知这些角与BFE ∠都互补.【详解】解:180BFE EFC ∠+∠=︒,∵//DE BC ,∴DEF EFC ∠=∠,∴180BFE DEF ∠+∠=︒,∵//EF AB ,∴DEF ADE ∠=∠,∴180BFE ADE ∠+∠=︒,∵//DE BC ,∴ADE B ∠=∠,∴180BFE B ∠+∠=︒,与∠BFE 互补的角有4个,分别为:∠EFC 、∠DEF 、∠ADE 、∠B .【点睛】本题考查平行线的性质,解题的关键利用平行线的性质找相等的角.25.如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥AB ,垂足为F . (1)CD 与EF 平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,∠A=30°,求∠B 的度数.解析:(1)CD 与EF 平行.理由见解析;(2)∠B=35°【分析】(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF ∥CD ;(2)由EF ∥CD ,根据平行线的性质得∠2=∠BCD ,而∠1=∠2,所以∠1=∠BCD ,根据内错角相等,两直线平行得到DG ∥BC ,所以∠ACB=∠3=115°,根据三角形的内角和即可得到结论.【详解】(1)CD 与EF 平行.理由如下:∵CD ⊥AB ,EF ⊥AB ,∴∠CDB=∠EFB=90°,∴EF ∥CD ;(2)∵EF ∥CD ,∴∠2=∠BCD ,∵∠1=∠2,∴∠1=∠BCD ,∴DG ∥BC ,∴∠ACB=∠3=115°,∵∠A=30°,∴∠B=35°.【点评】本题考查了平行线的判定与性质,注意:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.26.把一块含60°角的直角三角尺()0090,60EFG EFG EGF ∠=∠=放在两条平行线,AB CD 之间.(1)如图1,若三角形的60°角的顶点G 放在CD 上,且221∠=∠,求1∠的度数; (2)如图2,若把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,若把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上,请直接写出AEG ∠与CFG ∠的数量关系.解析:(1)40°;(2)∠AEF+∠FGC=90°;(3)AEG ∠+CFG ∠=300°【分析】(1)根据平行线的性质得:1=∠EGD ,结合∠2=2∠1和平角的定义,即可求解; (2)过点F 作FP ∥AB ,根据平行线的性质和直角的意义,即可求解;(3)根据平行线的性质得∠AEF+∠CFE=180°,结合条件,即可求解.【详解】(1)∵AB ∥CD ,∴∠1=∠EGD ,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F 作FP ∥AB ,∵CD ∥AB ,∴FP ∥AB ∥CD ,∴∠AEF=∠EFP ,∠FGC=∠GFP .∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG ,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3) AEG ∠+CFG ∠=300°,理由如下:∵AB ∥CD ,∴∠AEF+∠CFE=180°,即AEG ∠−30°+CFG ∠−90°=180°,整理得:AEG ∠+CFG ∠=300°.【点睛】本题主要考查平行线的性质,添加辅助线,构造相等的角,是解题的关键27.如图所示,在平面直角坐标系中,已知A (0,1)、B (2,0)、C (4,3).(1)在平面直角坐标系中画出△ABC ,作出△ABC 向下平移3格后的△A 1B 1C 1; (2)求△ABC 的面积;(3)已知点Q 为y 轴上一点,若△ACQ 的面积为8,求点Q 的坐标.解析:(1)见解析;(2)4;(3)(0,5)或(0,-3).【分析】(1)先在平面直角坐标系中描点,再连接,然后分别作出平移后的对应点,再顺次连接即可得;(2)利用割补法求解可得;(3)根据三角形面积公式求出AQ 的长,即可确定点Q 的坐标.【详解】解:(1)如图所示,(2)△ABC 的面积=111342421234222⨯-⨯⨯-⨯⨯-⨯⨯= (3)∵Q 为y 轴上一点,△ACQ 的面积为8, ∴1||482AQ ⨯⨯=, ∴AQ=4 ∴点Q 的纵坐标为:4+1=5或1-4=-3,故Q 点坐标为:(0,5)或(0,-3).【点睛】本题主要考查的是作图-平移变换、点的坐标与图形的性质,明确△ABC 的面积=四边形的面积-3个直角三角形的面积是解题的关键.28.如图,直线AB ,CD 相交于点O ,OE 平分∠BOC ,FO ⊥CD 于点O ,若∠BOD ∶∠EOB=2∶3,求∠AOF 的度数.解析:45︒.【分析】设2BOD x ∠=,从而可得3EOB x ∠=,先根据角平分线的定义3EOC EOB x ∠=∠=,再根据平角的定义可得求出x 的值,然后根据垂直的定义可得90DOF ∠=︒,最后根据平角的定义即可得.【详解】设2BOD x ∠=,则3EOB x ∠=,∵OE 平分BOC ∠,∴3EOC EOB x ∠=∠=,180BOD EOB EOC ∠+∠+∠=︒,233180x x x ∴++=︒,解得22.5x =︒,45BOD ∴∠=︒,FO CD ⊥,90DOF ∴∠=︒,又180BOD DOF AOF ∠+∠+∠=︒,4590180AOF ∴︒+︒+∠=︒,解得45AOF ∠=︒.【点睛】本题考查了角平分线的定义、平角的定义、垂直的定义等知识点,熟练掌握并理解各定义是解题关键.。
第5章《相交线与平行线》 大题专项提升训练:平行线的判定和性质(含答案)
人教版七年级下册第5章《相交线与平行线》大题专项提升训练平行线的判定和性质1.如图,AE平分∠BAD,DF平分∠CDA,且AE∥DF,求证:AB∥CD.2.如图,AD⊥CB于D,EF⊥CB于F,∠1=∠2,∠BAC=70°,求∠AGD的度数.3.如图,已知∠1+∠2=180°,∠3=108°.求∠4的度数.4.如图,已知AB=CD,∠1=∠2.求证:BC=DA.5.如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.6.如图,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并对结论进行说明.7.已知:如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF∥AB,(1)求证:CE∥DF;(2)若∠DCE=130°,求∠DEF的度数.8.如图,D,E分别是三角形ABC的边AB,BC上的点,DE∥AC,点F在DE的延长线上,且∠DFC=∠A.(1)求证:AB∥CF;(2)若∠ACF比∠BDE大40°,求∠BDE的度数.9.如图,在△ABC中,EF⊥AB,CD⊥AB.(1)求证:EF∥CD;(2)若点G在AC边上,∠1=∠2,求证:∠DGC+∠GCB=180°.10.如图,在三角形ABC中,AD⊥BC于点D,点E是AB上一点,EF⊥BC于点F,点G是AC上一点,连接DG,且∠1=∠2.求证:AB∥DG.11.如图,在三角形ABC中,AD⊥BC,EF⊥BC,垂足分别为D、F.G为AC上一点,E为AB上一点,∠1=∠2.求证:DG∥AB.12.如图,在三角形ABC中,EF⊥AB,∠ADG=∠B,若点G在AC边上,∠1=∠2,判断CD与AB的位置关系,并说明理由.13.如图,在三角形ABC中,∠1=∠2,点E,F,G分别在BC,AB,AC上,且EF⊥AB,GD∥BC交AB于点D.请判断CD与AB的位置关系,并说明理由.14.如图,在三角形ABC中,点D、F在边BC上,点E在边AB上,点G在边AC上,AD∥EF,∠1+∠FEA=180°.求证:∠CDG=∠B.15.如图,在三角形ABC中,CD⊥AB,垂足为点D,F为BC上的点,FG⊥AB,垂足为点G,点E在AC上,连接DE,若∠EDC=∠BFG.求证:∠B=∠ADE.16.如图,在三角形ABC中,点D、F在BC边上,点E在AB边上,点G在AC边上,EF与GD的延长线交于点H,∠CDG=∠B,∠1+∠FEA=180°.(1)EH与AD平行吗?请说明理由;(2)若∠BAD=30°,求∠H的度数.17.如图,在三角形ABC中,点D,F在边BC上,点E在边AB上,点G在边AC上,EF与GD的延长线交于点H,∠1=∠B,∠2+∠3=180°.(1)判断EH与AD的位置关系,并说明理由.(2)若∠DGC=58°,且∠H=∠4+10°,求∠H的度数.参考答案1.【解答】证明:∵AE平分∠BAD,DF平分∠CDA,∴∠DAE=∠BAD,∠ADF=∠CDA又∵AE∥DF,∴∠DAE=∠ADF,∴∠BAD=∠CDA,∴AB∥CD.2.【解答】解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等);∵∠1=∠2(已知),∴∠1=∠3(等量代换);∴DG∥AB(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=70°,∴∠AGD=110°.3.【解答】解:给图中各角标上序号,如图所示.∵∠1+∠2=180°,∠2+∠5=180°,∴∠1=∠5,∴AB∥CD,∴∠3=∠6.∵∠4+∠6=180°,∠3=108°,∴∠4=180°﹣108°=72°.4.【解答】证明:在△ABC与△CDA中,,∴△ABC≌△CDA(SAS),∴BC=DA.5.【解答】证明:∵∠1=∠2,∠2=∠3,∴∠1=∠3.∴BD∥CE.∴∠ABD=∠C.又∠C=∠D,∴∠D=∠ABD.∴DF∥AC.∴∠A=∠F.6.【解答】解:∠ACB与∠DEB相等,理由如下:证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),∴∠2=∠DFE(同角的补角相等),∴AB∥EF(内错角相等两直线平行),∴∠BDE=∠DEF(两直线平行,内错角相等),∵∠DEF=∠A(已知),∴∠BDE=∠A(等量代换),∴DE∥AC(同位角相等两直线平行),∴∠ACB=∠DEB(两直线平行,同位角相等).7.【解答】(1)证明:∵∠1+∠2=180°,C,D是直线AB上两点,∴∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF;(2)解:∵CE∥DF,∠DCE=130°,∴∠CDF=180°﹣∠DCE=180°﹣130°=50°,∵DE平分∠CDF,∴∠CDE=∠CDF=25°,∵EF∥AB,∴∠DEF=∠CDE=25°.8.【解答】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DFC=∠A,∴∠DFC=∠BDE,∴AB∥CF.(2)解:∵DE∥AC,∴∠ACF+∠DFC=180°,由(1)中已证∠DFC=∠BDE,∴∠ACF+∠BDE=180°,又∵∠ACF比∠BDE大40°,∴∠BDE+40°+∠BDE=180°,∴∠BDE=70°.9.【解答】证明:(1)∵EF⊥AB,CD⊥AB,∴∠BFE=∠CDB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠DGC+∠GCB=180°.10.【解答】证明:∵EF⊥BC,AD⊥BC,∴EF∥AD,∴∠1=∠BAD,∵∠1=∠2,∴∠BAD=∠2,∴AB∥DG.11.【解答】证明:∵AD⊥BC,EF⊥BC,∴∠ADB=∠EFB=90°,∴AD∥EF,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DG∥AB.12.【解答】解:CD⊥AB.理由如下:∵∠ADG=∠B,∴DG∥BC,∴∠1=∠DCB,∵∠1=∠2,∴∠2=∠DCB,∴CD∥EF,∴∠CDB=∠EFB,∵EF⊥AB,∴∠EFB=90°,∴∠CDB=90°,∴CD⊥AB.13.【解答】解:CD⊥AB.理由如下:∵DG∥BC,∴∠1=∠DCB.∵∠1=∠2,∴∠2=∠DCB.∴CD∥EF.∴∠CDB=∠EFB.∵EF⊥AB,∴∠EFB=90°.∴∠CDB=90°.∴CD⊥AB.14.【解答】证明:∵AD∥EF,(已知),∴∠2=∠3,(两直线平行,同位角相等),∵∠1+∠FEA=180°,∠2+∠FEA=180°,∴∠1=∠2(同角的补角相等),∴∠1=∠3(等量代换),∴DG∥AB(内错角相等,两直线平行),∴∠CDG=∠B.(两直线平行,同位角相等).15.【解答】证明:如图所示:∵FG⊥AB,CD⊥AB,∴∠FGB=∠CDB=90°,∴FG∥CD,∴∠BFG=∠BCD,又∵∠EDC=∠BFG,∴∠BCD=∠EDC,∴DE∥BC,∴∠B=∠ADE.16.【解答】解:(1)平行,理由如下:∵∠CDG=∠B,∴AB∥DG,∴∠BAD=∠1,∵∠1+∠FEA=180°,∴∠BAD+∠FEA=180°,∴EH//AD;(2)由(1)得EH//AD,∠1=∠BAD,∴∠H=∠1,∴∠BAD=∠H,∵∠BAD=30°,∴∠H=30°.17.【解答】解:(1)EH∥AD,理由如下:∵∠1=∠B,∴AB∥GD,∴∠2=∠BAD,∵∠2+∠3=180°,∴∠BAD+∠3=180°,∴EH∥AD;(2)由(1)得AB∥GD,∴∠2=∠BAD,∠DGC=∠BAC,∵∠DGC=58°,∴∠BAC=58°,∵EH∥AD,∴∠2=∠H,∴∠H=∠BAD,∴∠BAC=∠BAD+∠4=∠H+∠4=58°,∵∠H=∠4+10°,∴∠4+10°+∠4=58°,解得:∠4=24°,∴∠H=34°.。
七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)
七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.2.下列说法正确的是()A.直线AB和直线BA是同一条直线 B.直线是射线的2倍C.射线AB与射线BA是同一条射线 D.三条直线两两相交,有三个交点3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.4.如图,直线BC,DE相交于点O,AO⊥BC于点O.OM平分∠BOD,如果∠AOE =50°,那么∠BOM的度数()A.20°B.25°C.40°D.50°5.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点6.如图,点P在直线L外,点A,B在直线l上,PA=3,PB=7,点P到直线l 的距离可能是()A.2 B.4 C.7 D.87.如图所示,∠1和∠2不是同位角的是()A.①B.②C.③D.④8.如图所示,同位角共有()A.6对B.8对C.10对D.12对9.下列说法正确的有()个.①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④如果一条直线与两条平行线中的一条平行,那么它与另一条直线也互相平行.A.1 B.2 C.3 D.410.如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A .180°B .360°C .270°D .540°二、填空题(每题3分,共24分)11.把命题“等角的补角相等”改写成“如果…那么…”的形式是______. 12.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD =︒∠,那么AEC ∠=___________.13.把一个直角三角板(90GEF ∠=︒,30GFE ∠=︒)如图放置,已知AB ∥CD ,AF 平分BAE ∠,则AEG ∠=_____________14.如图,点E 在BC 延长线上,四个条件中:①13∠=∠;②25180+=︒∠∠,③4∠=∠B ;④B D ∠=∠;⑤180D BCD ∠+∠=︒,能判断//AB CD 的是______.(填序号).15.如图,已知12//l l ,直线l 分别与12,l l 相交于,C D 两点,现把一块含30角的直角三角中尺按如图所示的位置摆放.若1130∠=︒,则2∠=___________.16.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).17.如图所示,将△ABC沿BC边平移得到△A1B1C1,若BC1=8,B1C=2,则平移距离为.18.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a<4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.三.解答题(共46分)19.(7分)如图,直线l1,l2,l3相交于点O,∠1=40°,∠2=50°,求∠3的度数.20.(7分)已知:如图,AB∥CD,CD∥EF.求证:∠B+∠BDF+∠F=360°.21.(8分)如图,直线DE与∠ABC的边BC相交于点P,现直线AB,DE被直线BC所截,∠1与∠2.∠1与∠3,∠1与∠4分别是什么角?22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.(8分)图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFG存在怎样的数量关系?并说明理由;(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFG的数量关系.24.(8分)已知,E、F分别是直线AB和CD上的点,AB∥CD,G、H在两条直线之间,且∠G=∠H.(1)如图1,试说明:∠AEG=∠HFD;(2)如图2,将一45°角∠ROS如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,若∠BEO=∠KEO,EG∥OS,判断∠AEG,∠GEK的数量关系,并说明理由;(3)如图3,将∠ROS=(n为大于1的整数)如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,连接EK,若∠AEK=n∠CFS,则=.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CACAAACCDB二、填空题:11.如果两个角是等角的补角,那么它们相等. 12.146° 13.30°解:∵AB ∥CD ,AF 平分∠BAE , ∴∠BAF=∠EAF=∠AFE , 又∵∠GFE=30°,∴∠BAF=∠EAF=30°,即∠BAE=60°, ∴∠AEF=180°-60°=120°, 又∵∠GEF=90°,∴∠AEG=120°-90°=30°, 14.②③解:①∵∠1=∠3,∴AD ∥BC ;②∵∠2+∠5=180°,∵∠5=∠AGC ,∴∠2+∠AGC=180°,∴AB ∥DC ; ③∵∠4=∠B ,∴AB ∥DC ; ④∠B=∠D 无法判断出AD ∥BC ; ⑤∵∠D+∠BCD=180°,∴AD ∥BC . 15.20︒如图,∵121130,l l ∠=︒∥, ∴50CDB ∠=︒, ∵30ADB ∠=︒,∴2503020CDB ADB ∠=∠-∠=︒-︒=︒.16.如图1,ABCD是长方形纸带(AD∥BC),∠DEF=18°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是126°.【分析】在图1中,由AD∥BC,利用“两直线平行,内错角相等”可得出∠BFE的度数,由折叠的性质可知,在图3中∠BFE处重叠了三次,进而可得出∠CFE+3∠BFE=180°,再代入∠BFE的度数即可求出结论.【解答】解:在图1中,AD∥BC,∴∠BFE=∠DEF=18°.由折叠的性质可知,在图3中,∠BFE处重叠了三次,∴∠CFE+3∠BFE=180°,∴∠CFE=180°﹣3×18°=126°.故答案为:126°.17.解:∵△ABC沿BC边平移得到△A1B1C1,∴BC=B1C1,BB1=CC1,∵BC1=8,B1C=2,∴BB1=CC1=,即平移距离为3,故答案为:3.18.180;3;内错角相等,两直线平行;两直线平行,同位角相等三.解答题:19.解:∵∠1=40°,∠2=50°,∴∠5=∠1=40°,∠4=∠2=50°,∴∠3=180°﹣∠5﹣∠4=180°﹣40°﹣50°=90°.20.证明:∵AB∥CD(已知)∴∠B+∠BDC=180°(两直线平行,同旁内角互补)∵CD∥EF(已知)∴∠CDF+∠F=180°(两直线平行,同旁内角互补)∴∠B+∠BDC+∠CDF+∠F=360°,∵∠BDF=∠BDC+∠CDF(已知)∴∠B+∠BDF+∠F=360°.21.解:∵直线AB,DE被直线BC所截,∴∠1与∠2是同旁内角,∠1与∠3是内错角,∠1与∠4是同位角.22.解:(1)如图1,作直线GH交AB于M,交CD于Q,∵AB∥CD,∴∠BMG=∠FQH,∵∠EGH=∠GHF,∴∠AEG=∠EGH﹣∠BMG=∠FHG﹣∠FQH=∠HFD;(2)∠GEK﹣2∠AEG=45°,如图2,延长KO交AB于M,∵EG∥MS,∴∠AEG=∠EMF,∠GEK=∠OKE,设∠OEM=α,则∠OEK=2α,∠OME=45°﹣α,∴∠OKE=180°﹣∠MEK﹣∠OME=135°﹣2α,∵EG∥OS,∴∠GEK=∠OKE=135°﹣2α,∴∠AEG=180°﹣∠GEK﹣∠MEK=180°﹣135°+2α﹣3α=45°﹣α,即∠GEK﹣2∠AEG=45°.(3)作OH∥AB,∵AB∥CD,∴OH∥CD,如图3,∵AB∥OH,∴∠OEB=∠EOH,又∵OH∥CD,∴∠FOH=∠OFD,又∵∠OFD=∠CFS=∠AEK,而∠EOH+∠HOF=,∴∠EOH =﹣∠AEK,即180°﹣n∠EOH=∠AEK,又∵∠OEK+∠AEK+∠EOH=180°,∴∠OEK+180°﹣n∠EOH+∠EOH=180°,∴∠OEK=(n﹣1)∠EOH,∴,又∵∠EOH=∠BEO,∴.故答案为:.。
七年级下数学《相交线与平行线》单元能力提升测试卷
七年级下数学《相交线与平行线》单元能力提升测试卷一.选择题(共10小题)1.如图所示,给出下列条件:①∠1=∠B;②∠EFD+∠B=180°;③∠B=∠D;④∠E =∠B;⑤∠BFD=∠B.其中,一定能判断AB∥CD的条件的个数为()A.2个B.3个C.4个D.5个2.两个同学在课堂上互相命题挑战,小明画了这样一个图,你帮对手判断下列选项中正确的是()A.如果∠3+∠2=180°,那么AB∥CDB.如果∠1=∠5,那么AB∥CDC.如果∠2=∠4,那么AB∥CDD.如果∠1+∠3=180°,那么AB∥CD3.下列命题为假命题的是()A.三角形的三个内角的和等于180度B.三角形的任意两边之和大于第三边C.三角形的角平分线是一条射线D.三角形的面积等于一条边上的长与该条边上的高的乘积的一半4.一把直尺与一块直角三角板按如图方式摆放,若∠2=37°,则∠1=()A.52°B.53°C.54°D.63°5.能说明命题“如果a是任意实数,那么=a”是假命题的反例是()A.a=﹣1B.a=0C.a=D.a=26.下列命题:①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形的面积相等;④全等三角形的高相等.其中正确的命题个数是()A.4个B.3个C.2个D.1个7.直线l1、l2、l3的位置关系如图,下列说法错误的是()A.∠2与∠1互为邻补角,若∠1=111°54',则∠2=68.1°B.∠1与∠3互为对顶角,若∠1=111.9°,则∠3=111.9°C.若l2⊥l3,则∠1=∠2=90°;若∠1=90°,则l2⊥l3D.若∠3+∠4=180°或∠4+∠6=180°,则l1∥l2.8.命题是能够判断真假的语句,命题一般都有题设与结论.命题“垂直于同一条直线的两条直线互相平行”的题设是()A.垂直B.两条直线C.同一条直线D.两条直线垂直于同一条直线9.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=78°,则∠BOM=()A.39°B.102°C.141°D.143°10.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B,C两点,连结AC,BC.若∠1=40°,则∠ABC的大小为()A.20°B.40°C.70°D.80°二.填空题(共6小题)11.命题“两个全等三角形的周长相等”的逆命题是.12.如图,直线a、b被c所截,∠1=130°,当∠2=°时,a∥b.13.小明用两张完全相同的长方形纸片按如图所示的方式摆放,一张纸片压住射线OB,另一张纸片压住射线OA且与第一张纸片交于点P,若∠BOP=25°,则∠AOB=.14.把一块直尺与一块直角三角板如图放置,若∠1=38°,则∠2的度数为.15.如图,某酒店重新装修后,准备在大厅主楼梯上铺设红色地毯.已知这种地毯每平方米售价160元,主楼梯道宽2.5m,其侧面如图所示,则购买地毯至少需要元.16.如图所示,要在竖直高AC为3米,水平宽BC为12米的楼梯表面铺地毯,地毯的长度至少需要米.三.解答题(共6小题)17.如图是由相同边长的小正方形组成的网格图形,每个小正方形的边长为1个单位长度,每个小正方形的顶点都叫做格点,三角形ABC的三个顶点都在格点上,利用网格画图.(1)画出三角形ABC向右平移8个单位长度后三角形A′B′C′的位置;(2)过点A画BC的平行线,并标出平行线所过格点Q;(3)过点A画BC的垂线,并标出垂线所过格点P;(4)三角形A′B′C′的面积为.18.如图,∠ENC+∠CMG=180°,AB∥CD.(1)求证:∠2=∠3.(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为.19.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由;(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,若∠F AD=60°,∠ABC=40°,求∠BED的度数;(3)如图3,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,若∠F AD=α,∠ABC=β,请你求出∠BED的度数(用含α,β的式子表示).20.如图1,AB∥CD,点E、F分别在直线AB、CD上,点O在直线AB、CD之间.(1)若∠AEO=40°,∠CFO=60°,求∠EOF的度数;(2)若∠AEO=α,∠CFO=β,直接写出∠EOF的度数为;(3)如图2,∠BEO、∠DFO的角平分线交于点M,∠EOF的角平分线交EM于点N,试探索∠NOF、∠NMF之间的数量关系,并说明理由.21.如图,已知MN∥BF,AB∥DE,AC∥DF,点E在点C右侧.(1)如图1,求证:∠ABC=∠ADE;(2)如图2,点G是DE上一点,连接AG,已知AC⊥BF,AG⊥DE.①若AD=EG,且DE=7,AG=3,求线段DG的长;②若AD=20,点E到AD的距离与线段AG的长度之比为5:4,求线段DE的长.22.如图1,T,Z为直线UV同侧的两点,W为直线UV上的一点,连接WT,WZ.若∠UWT=∠VWZ,则称点W为T,Z两点关于直线UV的反射点.(1)如图2,点O是A,B两点关于CD的反射点.若∠BOD=35°,直接写出射线OA 的方向;(2)如图3,A,B为CD同侧的两点,点O为CD上的一点,AC∥BO,AO∥BD.若∠C=∠D,求证:点O是A,B两点关于CD的反射点;(3)如图4,点G是M,N两点关于EF的反射点,GP,GQ分别平分∠FGN,∠FGM.若∠PGQ=50°,请补全图形并求∠EGQ的度数.。
人教版数学七年级下册第五章相交线与平行线测试卷(含答案)
人教版七年级下册第五章相交线与平行线测试卷(含答案)一、选择题(每小题3分,共24分)1.如图,直线a,b相交于点O,若∠1等于35°,则∠2等于( )A.35°B.55°C.135°D.145°2.下列各组角中,∠1与∠2是对顶角的为( )3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=( )A.110°B.50°C.60°D.70°4.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a户最长B.b户最长C.c户最长D.三户一样长5.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角6.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于( )A.18°B.36°C.45°D.54°7.下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.4B.3C.2D.18.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为( )A.①②B.③④C.②④D.①③④二、填空题(每小题4分,共16分)9.命题“同旁内角互补,两直线平行”写成“如果……,那么……”的形式是______________________________.它是__________命题(填“真”或“假”).10.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段__________的长度.11.如图,已知∠1=∠2,∠B=40°,则∠3=__________.12.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=__________.三、解答题(共60分)13.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF=∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(____________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(____________________).∴∠A=∠EDF(____________________).14.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.15.(10分)如图所示,△ABC平移得△DEF,写出图中所有相等的线段、角以及平行的线段.16.(10分)已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)直线AB与CD有怎样的位置关系?说明理由;(2)∠KOH的度数是多少?17.(12分)如图所示,已知∠1+∠2=180°,∠B=∠3,你能判断∠ACB与∠AED的大小关系吗?说明理由.18.(12分)如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?参考答案1.D2.D3.D4.D5.D6.B7.D8.C9.如果同旁内角互补,那么这两条直线平行真10.AP 11.40°12.70°13.两直线平行,同旁内角互补两直线平行,同旁内角互补同角的补角相等14.(1)图略.(2)图略.(3)∠PQC=60°.理由如下:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=60°.15.相等的线段:AB=DE,BC=EF,AC=DF;相等的角:∠BAC=∠EDF,∠ABC=∠DEF,∠BCA=∠EFD;平行的线段:AB∥DE,BC∥EF,AC∥DF.16.(1)AB∥CD.理由:∵∠1+∠2=180°,∴AB∥CD.(2)∵AB∥CD,∠3=100°,∴∠GOD=∠3=100°.∵∠GOD+∠DOH=180°,∴∠DOH=80°.∵OK平分∠DOH,∴∠KOH=12∠DOH=40°.17.∠AED=∠ACB.理由如下:∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4.∴BD∥FE.∴∠3=∠ADE.∵∠3=∠B,∴∠B=∠ADE.∴DE∥BC.∴∠AED=∠ACB.18.(1)∠DOE的补角为:∠COE,∠AOD,∠BOC.(2)∵OD是∠BOE的平分线,∠BOE=62°,∴∠BOD=12∠BOE=31°.∴∠AOD=180°-∠BOD=149°. ∴∠AOE=180°-∠BOE=118°. 又∵OF是∠AOE的平分线,∴∠EOF=12∠AOE=59°.(3)射线OD与OF互相垂直. 理由如下:∵OF,OD分别是∠AOE,∠BOE的平分线,∴∠DOF=∠DOE+∠EOF=12∠BOE+12∠EOA=12(∠BOE+∠EOA)=12×180°=90°.∴OD⊥OF.。
人教版 七年级数学下册 第五章相交线与平行线 压轴题专项练习
人教版七年级数学下册第五章相交线与平行线压轴题专项练习人教版七下第五章相交线与平行线单元能力提升卷压轴题专项培优1.(1)如图1,a∥b,则∠1+∠2=(2)如图2,AB∥CD,则∠1+∠2+∠3= ,并说明理由;(3)如图3,a∥b,则∠1+∠2+∠3+∠4=(4)如图4,a∥b,根据以上结论,试探究∠1+∠2+∠3+∠4+…+∠n= (直接写出你的结论,无需说明理由)2.探究:如图,已知直线l∥l2,直线l3和直线l1、l2交于点C和点D,直线l3有一点P1(1)若点P在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生,并说明理由.(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD 之间的关系又是如何?并说明理由.3.(1)已知:如图1,直线AC∥BD,求证:∠APB=∠PAC+∠PBD;(2)如图2,如果点P在AC与BD之内,线段AB的左侧,其它条件不变,那么会有什么结果?并加以证明;(3)如图3,如果点P在AC与BD之外,其他条件不变,你发现的结果是_______(只写结果,不要证明).4.如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED 的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.5.如图(1),E是直线AB,CD内部一点,AB//CD,连接EA,ED.(1)探究猜想:①若∠A=300, ∠D=400,则∠AED等于多少度?②若∠A=200,∠D=600,则∠AED等于多少度?③猜想图(1)中∠AED, ∠EAB, ∠EDC的关系,并证明你的结论.(2)拓展应用:如图(2),射线FE与长方形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③④位于直线AB上方),P是位于以上四个区域中的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).6.如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC =70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.7.已知AB∥CD.如图1,你能得出∠A+∠E+∠C=360°吗?如图2,猜想出∠A、∠C、∠E的关系式并说明理由.如图3,∠A、∠C、∠E的关系式又是什么?8.如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是 .9.如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA 度数;若不存在,说明理由.10.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE 平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.11.已知BC∥OA,∠B=∠A=100°.试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值。
人教版七年级数学2019-2020学年第二学期相交线与平行线能力提升训练
B. H = 2F
C. 2H − F = 180
D. 3H − 2F = 180
4.如图, AD // BC, D = ABC ,点 E 是边 DC 上一点,连接 AE 交 BC 的延长线于点 H,点 F 是边 AB
1/6
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
上一点,使得 FBE = FEB ,作 FEH 的角平分线 EG 交 BH 于点 G,若 DEH = 100 ,则 BEG 的
(3)若 DCF = CFB 时,将线段 BC 沿直线 AB 方向平移,记平移后的线段为 PQ( B ,C 分别对应 P , Q ,当 PQD − QDC = 20 时,请直接写出 DQP 的度数______.
5/6
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
参考答案 1.C2.D3.D4.B5.A6.C7.A8.B9.D10.B 11.35 或 75
1/6
②EG=4.5;③AD∥CF;④四边形 ADFC 的面积为 6.其中正确的结论是
A.①② C.③④
B.②③ D.②④
二、填空题
11.已知∠ABC=70 ,点 D 为 BC 边上一点,过点 D 作 DP//AB,若∠PBD= 1 ∠ABC,则∠DPB=_____ . 2
12.如果∠α 与∠β 的两边分别平行,∠α 比∠β 的 3 倍少 40°,则∠α 的度数为_______.
3/6
知识像烛光,能照亮一个人,也能照亮无数的人。--培根 若 En = 1 度,那 BEC 等于__________度.
14.观察下列图形:已知 a b,在第一个图中,可得∠1+∠2=180°,则按照以上规律: 1+ 2 + P1 + …+ Pn = _________度.
人教版七年级数学下册 第五章 相交线与平行线 单元综合能力提升测试卷含
人教版七年级数学下册第五章相交线与平行线单元综合能力提升测试卷含答案一、选择题(每小题3分,共36分)1、如图,直线AB,CD相交于点O,若∠1+∠2=100°,则∠BOC等于()A.130°B.140°C.150°D.160°2、若α和β是同旁内角,且α=50°时,则β的度数为()A.50°B.130°C.50°或130°D.无法确定3、如图,已知AB∥CD,直线MN分别交AB、CD于点M、N,NG平分MND∠,若170∠=°,则2∠的度数为()A.10°B.15°C.20°D.35°4、将命题“对顶角相等”写成“如果……,那么……”的形式,正确的是()A.如果两个角相等,那么它们是对顶角B.如果两个角是对顶角,那么它们相等C.如果对顶角,那么相等D.如果两个角不是对顶角,那么这两个角不相等5、如图,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠56、如图,AB//CD,∠AGE=1280,HM平分∠EHD,则∠MHD的度数是()A.460B.230C.260D.2407、如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠4=∠5C.∠2=∠3D.∠2+∠4=180°8、如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.60°B.65°C.70°D.80°9、如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°10、如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°11、如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN 翻折,得△FMN,若MF∥AD,FN∥DC,则∠B的度数是()A.80°B.100°C.90°D.95°12、如图,已知AB∥DE,∠ABC=70º,∠CDE=140º,则∠BCD的值为( )A.70ºB.50ºC.40ºD.30º二、填空题(每小题4分,共24分)13、如图,将△ABC沿B C′方向平移4cm,得到△A′B′C′,那么CC′= cm.14、将一个直角三角板和一把矩形直尺按如图放置,若∠α=54°,则∠β的度数是______.15、如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=40°,则∠AEF=.16、如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直线分别交直线b于B、C两点.若∠1=42°,则∠2的度数是.17、如图,AB∥CD,∠B=160°,∠D=120°,则∠E=_________18、如图①:MA1∥NA2,图②:MA1∥NA3,图③:MA1∥NA4,图④:MA1∥NA5,…,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1= °(用含n的代数式表示).三、解答题(60分)19、(7分)完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD求证:∠EGF=90°证明:∵HG∥AB(已知)∴∠1=∠3______又∵HG∥CD(已知)∴∠2=∠4∵AB∥CD(已知)∴∠BEF+______=180°______又∵EG平分∠BEF(已知)∴∠1=∠______又∵FG平分∠EFD(已知)∴∠2=∠______∴∠1+∠2=(______)∴∠1+∠2=90°∴∠3+∠4=90°______即∠EGF=90°.20、(8分)如图是一个汉字“互”字,其中,∥,∠1=∠2,∠=∠.求证:∠=∠.21、(10分)如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.(1)试证明∠B=∠ADG;(2)求∠BCA的度数.22、(10分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.23、(12分)如图,已知DC∥FP,∠1=∠2,∠FED=28º,∠AGF=80º,FH平分∠EFG.(1)说明:DC∥AB;(2)求∠PFH的度数.24、(13分)如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC =70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.参考答案1、A;2、D.3、D.4、B5、A.6、C7、C8、C9、B.10、B11、D12、D13、4;14、36°.15、答案为:110°;16、480 ;17、400;18、180°n;19、答案分别为:两直线平行、内错角相等,∠EFD,两直线平行、同旁内角互补,∠BEF,∠EFD,∠BEF+∠EFD,等量代换.20、证明:延长交于点∵∥∴∠1=∠3又∵∠1=∠2∴∠2=∠3∴∥∴∠=∠又∵∠=∠∴∠=∠21、(1)证明:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴BC∥DG,∴∠B=∠ADG;(2)解:∵DG∥BC,∴∠3=∠BCG,∵∠3=80°,∴∠BCA=80°.22、解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.23、 (1) DC∥AB;(2)求∠PFH=26 º。
【3套试卷】人教版七下第五章相交线与平行线单元能力提升卷
人教版七下第五章相交线与平行线单元能力提升卷人教版七下第五章相交线与平行线单元能力提升卷一、选择题1.下列说法中,正确的是( )A.过直线外一点可以画无数条直线与这条直线垂直B.过直线外一定点不可以画这条直线的垂线C.过直线外一点可以画这条直线的一条垂线D.如果两条直线不相交,那么这两条直线有可能互相垂直2.如图,用两个相同的三角板按照如图方式作平行线,能解释其中道理的依据是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.平行于同一条直线的两直线平行3.如图,,则的度数等于()A.B.C.D.4.如图,过点P作直线l的垂线和斜线,叙述正确的是( )A.都能作且只能作一条B.垂线能作且只能作一条,斜线可作无数条C.垂线能作两条,斜线可作无数条D.均可作无数条5.下列各图中,能画出AB∥CD的是( )A.①②③B.①②④C.③④D.①②③④6.下列说法不正确的是( )A.证实命题正确与否的推理过程叫做证明B.定理是命题,而且是真命题C.“对顶角相等”是命题,但不是定理D.要证明一个命题是假命题只要举出一个反例即可7.如图,在立定跳远中,体育老师是这样测量运动员的成绩的,用一块直角三角板的一边附在起跳线上,另一边与拉直的皮尺重合,这样做的理由是( )A.两点之间线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线8.如图,能判定AD∥BC的条件是( )A.∠3=∠2B.∠1=∠2C.∠B=∠DD.∠B=∠19.如图,将三角形ABC沿BC方向平移得到三角形DEF,若BC=4,EC=1,则平移的距离为( )A.7B.6C.4D.310.如图,点A在直线BG上,AD∥BC,AE平分∠GAD,若∠CBA=80°,则( )A.60°B.50°C.40°D.30°二、填空题11.如图,一张白色正方形纸片的边长是10cm,被两个宽为2cm的红色纸条氛围四个白色的长方形部分,则图中白色部分的面积.12..如图,已知直线AB、CD相交于O,如果∠AOC=2x°,∠BOD=(7x-100)°,则∠AOD的度数为13.长方形ABCD中,∠ADB=20°,现将这一长方形纸片沿AF折叠,若使AB′∥BD,则折痕AF与AB的夹角∠BAF应为______.14.把命题“对顶角相等”改写成“如果……那么……”的形式: .15.如图所示,FE⊥CD,∠2=25°,猜想当∠1=______时,AB∥C D.16.如图,点D,E分别在AB,BC上,DE∥AC,AF∥BC,∠1=70°,则∠2= °.三、解答题''';17.(1)如图,平移三角形ABC,使点A平移到点A',画出平移后的三角形A B C(2)在(1)的条件下,指出点A,B,C 的对应点,并指出AB,BC,AC的对应线段和∠A,∠B, ∠C的对应角.18.如图所示,已知AO⊥BC于O,DO⊥OE,∠1=65°,求∠2的度数.19.已知,如图,BD平分∠ABC,∠1=25°,∠2=50°.试判断ED与BC的位置关系并说明理由.20.如图,现有以下三个条件:①AB∥CD,②∠B=∠C,③∠E=∠F.请你以其中两个作为题设,另一个作为结论构造命题.(1)你构造的是哪几个命题?(2)你构造的命题是真命题还是假命题?若是真命题,请给予证明;若是假命题,请举出反例.22.如图,在四边形ABCD,若AB∥CD,点P为BC上一点,设∠CDP=∠α,∠DPC=∠3,当点P在BC 上运动时,∠α,∠β的和与∠B 之间有何关系?请证明你的结论.23. 如图,CB ∥OA ,∠C =∠A =100°,点E ,F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF.(1)求∠EOB 的度数;(2)若平行移动AB ,那么∠OBC ∶∠OFC 的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB 的过程中,是否存在某种情况,使∠OEC =∠OBA ?若存在, 求出其度数;若不存在,说明理由.参考答案1-10 CBBBDCCDDC11.【答案】642cm .12.【答案】140°13.【答案】55°14.【答案】如果两个角是对顶角,那么这两个角相等15.【答案】65°16.【答案】1017.(1)如图所示.(2)点A ,B ,C 的对应点分别是点A B C ''',,,线段AB,BC ,AC 的对应线段分别是A B B C A C '''''',,,∠A,∠B ,∠ACB 的对应角分别A A B C A C B '''''''∠∠∠,,.18.解:∵AO ⊥BC 于O , ∴∠AOC=90°,又∠1=65°,∴∠AOE=90°﹣65°=25°.∵DO ⊥OE ,∴∠DOE=90°,∴∠2=∠DOE ﹣∠AOE=90°﹣25°=65°19.【答案】ED 与BC 平行.理由:∵BD 平分∠ABC ,∠1=25°,∴∠ABC =2∠1=50°,又∵∠2=50°,∴∠2=∠ABC ,∴DE ∥B C.20.解析:(1)如果①②,那么③;如果①③,那么②;如果②③,那么①.(2)“如果①②,那么③”是真命题.证明如下:AB CD,B CDF.BC C=CDF,CE BF,E= F.,.AB CD,:. B CDF.E F,CE BF, C CDF,AB CD.∴∠=∠∠=∠∴∠∠∴∴∠∠∠=∠∠=∠∴∴∠=∠∴∥又,∥“如果①③那么②”是真命题证明如下:∥∥∥E=F CE BF C=CDF.B= C B=CDF AB CD∠∠∴∴∠∠∠∠∴∠∠∴“如果②③,那么①”是真命题.证明如下:, ∥,又,,∥22.解析:B.P PQ CD AD Q,DPQ=(.AB CD(PQ AB(B=CPQ CPQ DPQ ,a B(αβαββ∠+∠=∠∠∠∠∠∠=∠+∠∠+∠=∠证明如下:过点作∥交于点则两直线平行,内错角相等)因为∥已知),所以∥平行公理的推论),所以(两直线平行,同位角相等).又所以等量代换).23.解:(1)∵CB ∥OA ,∴∠AOC =180°-∠C =180°-100°=80°.∵OE 平分∠COF , ∴∠COE =∠EOF.∵∠FOB =∠AOB ,∴∠EOB =∠EOF +∠FOB =∠AOC =×80°=40°.(2)∠OBC ∶∠OFC 的值不变.理由如下:∵CB ∥OA ,∴∠AOB =∠OBC.∵∠FOB =∠AOB ,∴∠FOB =∠OBC.∴∠BFO =180°-∠OBC -∠FOB =180°-2∠OBC ,∴∠OFC =180°-∠BFO =2∠OBC ,∴∠OBC ∶∠OFC =1∶2.(3)在三角形COE 和三角形AOB 中,∵∠OEC =∠OBA ,∠C =∠A ,∴∠COE =∠AOB ,∴OB ,OE ,OF 是∠AOC 的四等分线,∴∠COE =∠AOC =×80°=20°,∴∠OEC =180°-∠C -∠COE =180°-100°-20°=60°,故存在某种情况,使∠OEC =∠OBA ,此时∠OEC =∠OBA =60°.人教版版七年级下册第五章《相交线与平行线》单元提优测试卷一、单选题1. 如图,直线AB,CD相交于点O,下列描述:①∠1和∠2互为对顶角②∠1和∠3互为对顶角③∠1=∠2④∠1=∠3其中,正确的是()A.①③B.①④C.②③D.②④2. 如图,直线AB,CD相交于点O,∠EOD=90°,若∠AOE=2∠AOC,则∠DOB的度数为()A.25°B.30°C.45°D.60°3. 如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠44. 如图,下列推理中正确的是()A.若∠1=∠2,则AD∥BCB.若∠1=∠2,则AB∥DCC.若∠A=∠3,则AD∥BCD.若∠3=∠4,则AB∥DC5. 如图,已知 = ,那么()A.AB//CD,理由是内错角相等,两直线平行.B.AD//BC,理由是内错角相等,两直线平行.C.AB//CD,理由是两直线平行,内错角相等.D.AD//BC,理由是两直线平行,内错角相等.6. 如图,直线a//b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50° C .60° D.70°7. 已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°8. 在如图的图案中可以看出由图案自身的部分经过平移而得到的()A. B. C. D.9. 下列命题中,属于真命题的是()A.互补的角是邻补角B.在同一平面内,如果a⊥b,b⊥c,则a⊥c。
人教版七年级下册第五章平行线与相交线单元能力提升测试卷
人教版七年级下册第五章平行线与相交线单元能力提升测试卷一.选择题(共11小题)1.下面四个命题中,真命题是( )A.相等的角是对顶角B.和为180°的两个角互为邻补角C.两条直线被第三条直线所截,内错角相等D.两条直线相交形成的四个角相等,则这两条直线互相垂直2.如图,要测量两堵围墙形成的∠AOB的度数,先分别延长AO、BO得到∠COD,然后通过测量∠COD的度数从而得到∠AOB的度数,其中运用的原理是()A.对顶角相等B.同角的余角相等C.等角的余角相等D.垂线段最短3.如图所示,下列结论中不正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是同位角D.∠2和∠4是内错角4.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.55°5.如图所示,直线a、b、c、d的位置如图所示,若∠1=115°,∠2=115°,∠3=124°,则∠4的度数为()A.56°B.60°C.65°D.66°6.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是()A.α+β=180°B.α+β=90°C.β=3αD.α-β=90°7.如图,已知AB∥DE,∠ABC=80°,∠CDE=150°,则∠BCD=()A.30°B.40°C.50°D.60°8.如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4-∠1=180°中能判断直线a∥b的有()A.3个B.4个C.5个D.6个9.如图图形中,把△ABC平移后能得到△DEF的是()A.B.C.D.10.根据图中数据可求阴影部分的面积和为()A.12 B.10 C.8 D.7二.填空题(共5小题)11.如图,射线OA⊥OC,射线OB⊥OD,若∠AOB=40°,则∠COD= °.12.命题“正数的平方根的和为零”.写成“如果……,那么……”是13.如图,已知直线EF⊥MN垂足为F,且∠1=140°,则当∠2等于时,AB∥CD.14.对于同一平面内的直线a、b、c,如果a与b平行,c与a平行,那么c与b的位置关系是.15.把一张对边互相平行的纸条(AC′∥BD′)折成如图所示,EF是折痕,若折痕EF与一边的夹角∠EFB=32°,则∠AEG= .三.解答题(共7小题)16.直线AB 、CD 相交于点O,OE 平分∠BOD .OF ⊥CD,垂足为O ,若∠EOF=54°. (1)求∠AOC 的度数;(2)作射线OG ⊥OE,试求出∠AOG 的度数.17.如图,AB 和CD 相交于点O,∠DOE=90°,若∠BOE=13∠AOC,(1)指出与∠BOD 相等的角,并说明理由.(2)求∠BOD,∠AOD 的度数.18.如图,∠ABC=∠C,∠A=∠E .求证:∠DBE=∠BDA .19.如图,在△ABC 中,∠A=∠B,D 、E 是边AB 上的点,DG ∥AC,EF ∥BC,DG 、EF 相交于点H .(1)∠HDE与∠HED是否相等?并说明理由.解:∠HDE=∠HED.理由如下:∵DG∥AC(已知)∴=()∵EF∥BC(已知)∴=()又∵∠A=∠B(已知)∴=().(2)如果∠C=90°,DG、EF有何位置关系?并仿照(1)中的解答方法说明理由.20.如图,点D、E在AB上,点F、G分别在BC、CA上,且DG∥BC,∠1=∠2.(1)求证:DC∥EF;(2)若EF⊥AB,∠1=55°,求∠ADG的度数.21.如图,在边长为1个单位长度的小正方形组成的8×8网格中,三角形ABC的三个均在格点上,将三角形ABC向左平移3个单位长度、再向下平移2个单位长度得到三角形DEF.(1)画出平移后的三角形DEF;(2)若点A向左平移n个单位长度在三角形DEF的内部,请直接写出所有符合条件的整数n的值.22.如图,将△ABC沿射线AB的方向平移2个单位到△DEF的位置,点A、B、C的对应点分别点D、E、F.(1)直接写出图中与AD相等的线段.(2)若AB=3,则AE=.(3)若∠ABC=75°,求∠CFE的度数.23.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.答案:1-5 DAACA6-10 DCCAC11.4012.如果两个数是一个正数的平方根,那么这两个数的和为零13. 50°14. 平行15. 116°16. 解:(1)∵OF⊥CD,∠EOF=54°,∴∠DOE=90°-54°=36°,又∵OE平分∠BOD,∴∠BOD=2∠DOE=72°,∴∠AOC=72°;(2)如图,若OG在∠AOD内部,则由(1)可得,∠BOE=∠DOE=36°,又∵∠GOE=90°,∴∠AOG=180°-90°-36°=54°;如图,若OG在∠COF内部,则由(1)可得,∠BOE=∠DOE=36°,∴∠AOE=180°-36°=144°,又∵∠GOE=90°,∴∠AOG=360°-90°-144°=126°.综上所述,∠AOG的度数为54°或126°.17. 解:(1)∠AOC,对顶角相等;(2)∵∠BOD=∠AOC,又∵∠BOE=∠AOC,∴∠BOE=∠BOD,∵∠DOE=90°,∴∠DOE=∠BOE+∠BOD=∠BOD+∠BOD=90°,解得:∠BOD=67.5°;∴∠AOD=180°-∠BOD=180°-67.5°=112.5°.18. 证明:∵∠ABC=∠C,∴AB∥CD,∴∠A=∠ADC,又∵∠A=∠E,∴∠ADC=∠E,∴AD∥BE,∴∠DBE=∠BDA.19. :∠A,∠HDE,两直线平行,同位角相等;∠B,∠HED,两直线平行,同位角相等;∠HDE,∠HED,等量代换.DG⊥EF.20.(1)证明:∵DG∥BC,∴∠1=∠DCB,∵∠1=∠2,∴∠2=∠DCB,∴DC∥EF.(2)解:∵EF⊥AB,∴∠FEB=90°,∵∠1=∠2=55°,∴∠B=90°﹣55°=35°,∵DG∥BC,∴∠ADG=∠B=35°.21. 解:(1)如图所示,△ABC即为所求;(2)由图知,n=3或4.22. 解:(1)与AD相等的线段有:BE,CF;(2)∵AB=3,将△ABC沿射线AB的方向平移2个单位到△DEF的位置,∴BE=2,则AE=BE+AB=5.故答案为:5;(3)∵由平移变换的性质得:BC∥EF,AE∥CF,∴∠E=∠ABC=75°,∴∠CFE+∠E=180°,∴∠CFE=105°.23. (1)∵∠CED=∠GHD,∴CE∥GF;(2)∠AED+∠D=180°理由如下:∵∠CED=∠GHD,∴CM∥GF,∴∠DGF=∠C;∵∠C=∠EFG;∴∠DGF=∠EFG,∴AB∥CD;∴∠D+∠AED=180°(3)∵∠DHG=∠EHF=80°,且∠DHG+∠D+∠DGH=180°,∴∠DGH=180°-∠DHG-∠D=70°;∵CE∥GF,∴∠C=∠DGH=70°∵AB∥CD,∴∠BEC=180°-∠C=110°;∴∠AEM=∠BEC=110°,人教版七年级数学下册第五章相交线与平行线质量评估试卷一、选择题(每小题3分,共30分)1.下列图形可以由一个图形经过平移变换得到的是()2.如图1,已知直线AB与CD相交于点O,EO⊥CD,垂足为点O,则图中∠AOE和∠DOB的关系是()A.同位角B.对顶角C.互为补角D.互为余角图13.如图2,AB∥CD,∠1=50°,则∠2的度数是()A.50°B.100°C.130°D.140°图24.如图3,下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是()图3A.①②③B.①②④C.②③④D.①②③④5.如图4,直线l1∥l2∥l3,点A,B,C分别在直线l1,l2,l3 上.若∠1=60°,∠2=30°,则∠ABC=()A.24°B.120°C.90°D.132°图46.如图5所示,∠BAC=90°,AD⊥BC于D,则下列结论中:①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD的长度;⑤线段AB的长度是点B到AC的距离;⑥线段AB是点B 到AC的距离.其中正确的有()图5A.3个B.4个C.5个D.6个7.如图6,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()图6A.50°B.60°C.70°D.80°8.含30°角的直角三角板与直线l1,l2的位置关系如图7所示,已知l1∥l2,∠ACD=∠A,则∠1=()A.70°B.60°C.40°D.30°图79.如图8,已知∠1=∠2,有下列结论:①∠3=∠D;②AB∥CD;③AD ∥BC;④∠A+∠D=180°.其中正确的有()图8A.1个B.2个C.3个D.4个10.如图9,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射(∠ADC=∠ODE),反射光线DC恰好与OB平行,则∠DEB的度数是()图9A.75°36′B.75°12′C.74°36′D.74°12′二、填空题(每小题4分,共24分)11.如图10,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为.图1012.如图11,点P是∠NOM的边OM上一点,PD⊥ON于点D,∠OPD=30°,PQ∥ON,则∠MPQ的度数是.图1113 .如图12,AB∥CD,点E在AB上,点F在CD上,如果∠CFE∶∠EFB =3∶4,∠ABF=40°,那么∠BEF的度数为.图1214.如图13,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于90°.图1315.如图14,直线AB∥CD∥EF,则∠α+∠β-∠γ=.图1416.一副直角三角尺叠放如图15①所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图②,当∠BAD=15°时,BC∥DE,则∠BAD(0°<∠BAD<180°,其他所有可能符合条件)的度数为.图15三、解答题(共66分)17.(8分)如图16,补充下列结论和依据.图16∵∠ACE=∠D(已知),∴∥().∵∠ACE=∠FEC(已知),∴∥().∵∠AEC=∠BOC(已知),∴∥().∵∠BFD+∠FOC=180°(已知),∴∥().18.(8分)如图17,直线AB与CD相交于点O,OP是∠BOC的平分线,OE⊥AB, OF⊥C D.图17(1)图中除直角和平角外,还有相等的角吗?请写出两对:①;②(2)如果∠AOD=40°,求∠COP和∠BOF的度数.19.(8分)如图18,已知∠ABC=180°-∠A,BD⊥CD于点D,EF⊥CD于点F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.图1820.(10分)如图19,已知AF分别与BD,CE交于点G,H,∠1=52°,∠2=128°.(1)求证:BD∥CE;(2)若∠A=∠F,探索∠C与∠D的数量关系,并证明你的结论.图1921.(10分)如图20,A,B,C三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF的位置关系,并说明理由.图2022.(10分)是大众汽车的标志图案,其中蕴涵着许多几何知识.根据下面的条件完成证明.已知:如图21,BC∥AD,BE∥AF.(1)求证:∠A=∠B;(2)若∠DOB=135°,求∠A的度数.图2123.(12分)问题情境:如图22①,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:如图22②,过点P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图22③,AD∥BC,点P在射线OM上运动,当点P在A,B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD,∠α,∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A,M两点之间和B,O两点之间运动时(点P与点A,B,O三点不重合),请分别写出∠CPD,∠α,∠β之间的数量关系.图22参考答案第五章质量评估试卷1.B 2.D 3.C 4.A 5.C 6.A7.A8.B9.B10.B11.50°12.60°13.60°14.90°15.180°16.45°,60°,105°,135°17.CE DF同位角相等,两直线平行EF AD内错角相等,两直线平行AE BF同位角相等,两直线平行EC DF同旁内角互补,两直线平行18.(1)∠COE=∠BOF∠COP=∠BOP、∠COB=∠AOD(写出任意两个即可)(2)∠COP=20°,∠BOF=50°.19.(1)略(2)∠2=36°.20.(1)略(2)∠C=∠D,理由略.21.BD∥CF,理由略.22.(1)略(2)∠A=45°.23.(1)∠CPD=∠α+∠β,理由略.(2)当点P在A,M两点之间时,∠CPD=∠β-∠α.当点P在B,O两点之间时,∠CPD=∠α-∠β.理由略.人教版七年级数学下册第五章相交线平行线单元检测题一、选择题。
人教版七年级下册_相交线与平行线_提高题
①2121②12③12④七年级下册《相交线与平行线》提高练习题一、选择题:1.下列所示的四个图形中,1∠和2∠是同位角...的是( )A. ②③B. ①②③C. ①②④D. ①④2.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( )A. 43∠=∠B. 21∠=∠C. DCE D ∠=∠D. 180=∠+∠ACD D3.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A. 第一次向左拐 30,第二次向右拐 30B. 第一次向右拐 50,第二次向左拐130 C. 第一次向右拐50,第二次向右拐130 D. 第一次向左拐50,第二次向左拐130 4.两条平行直线被第三条直线所截,下列命题中正确..的是( ) A. 同位角相等,但内错角不相等 B. 同位角不相等,但同旁内角互补 C. 内错角相等,且同旁内角不互补 D. 同位角相等,且同旁内角互补 5.下列说法中错误..的个数是( ) (1)过一点有且只有一条直线与已知直线平行。
(2)过一点有且只有一条直线与已知直线垂直。
(3)在同一平面内,两条直线的位置关系只有相交、平行两种。
(4)不相交的两条直线叫做平行线。
(5)有公共顶点且有一条公共边的两个角互为邻补角。
A. 1个 B. 2个 C. 3个 D. 4个 6.下列说法中,正确..的是( ) A. 图形的平移是指把图形沿水平方向移动。
B. 平移前后图形的形状和大小都没有发生改变。
C. “相等的角是对顶角”是一个真命题。
D. “直角都相等”是一个假命题。
7.如右图,CD AB //,且 25=∠A ,45=∠C ,则E ∠的度数是( ) A.60 B.70 C.110 D.80EDC BA4321EDCBA8.如右图所示,已知BC AC ⊥ ,AB CD ⊥,垂足分别是C 、D ,那 么以下线段大小的比较必定成立....的是( ) A. AD CD > B. BC AC < C. BD BC > D. BD CD <9.在一个平面内,任意四条直线相交,交点的个数最多有( )A. 7个B. 6个C. 5个D. 4个10. 如右图所示,BE 平分ABC ∠,BC DE //,图中相等的角共有( )A. 3对B. 4对C. 5对D. 6对二、填空题1.把命题“等角的余角相等”写成“如果……,那么……。
【多套试卷】人教版七年级数学下册 第五章 相交线与平行线 单元综合能力提升测试卷
人教版七年级数学下册 第五章 相交线与平行线 单元综合能力提升测试卷一、选择题。
(每小题3分,共36分) 1.如图,下列说法不正确的是( )A .∠1和∠3是对顶角B .∠1和∠4是内错角C .∠3和∠4是同位角D .∠1和∠2是同旁内角2有下列几种说法:①两条直线相交所成的四个角中有一个是直角; ②两条直线相交所成的四个角相等;③两条直线相交所成的四个角中有一组相邻补角相等; ④两条直线相交对顶角互补其中,能两条直线互相垂直的是( )A.①③B.①②③C.②③④D.①②③④ 3.如图,下列条件中,不能判定直线a 平行于直线b 的是( )A .∠3=∠5B .∠2=∠6C .∠1=∠2D .∠4+∠6=180°4.如图,己知AB ∥CD ,∠1=70°,则∠2的度数是( )A .60°B .70°C .80°D .110°5.如图,直线AB ∥CD ,∠C=44°,∠E 为直角,则∠1等于( )A CA.132°B.134°C.136°D.138°6.如图,三角形ABC沿直线m向右平移a厘米,得到三角形DEF,下列说法中错误的是()A.AC∥DFB.CF∥ABC.CF=a厘米D.BD=a厘米7.下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个8.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F;三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0B.1C.2D.39.如图,已知DE∥BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,那么∠BDC等于( )A.78°B.90°C.88°D.92°10.如图,若两条平行线EF,MN与直线AB,CD相交,则图中共有同旁内角的对数为()A.4B.8C.12D.1611.如图:AB∥DE,∠B=30°,∠C=110°,∠D的度数为()A.115°B.120°C.100°D.80°12.下列条件中能得到平行线的是()①邻补角的角平分线;②平行线内错角的角平分线;③平行线同旁内角的角平分线.A.①②B.②③C.②D.③二、填空题(每小题4分,共24分)13.如图,矩形ABCD对角线AC=10,BC=6,则图中四个小矩形的周长和为14.如图,∠C=90°,将直角三角形ABC沿着射线BC方向平移5cm,得△A/B/C/,已知BC=3cm,AC=4cm,则阴影部分的面积为cm².15.如图,已知三条直线AB、CD、EF两两相交于点P、Q、R,则图中邻补角共有对,对顶角共有对(平角除外).16.如图,在俄罗斯方块游戏中,已拼成的图案如图所示,现又出现一小方块拼图向下运动,为了使所有图案消失,你必须进行向平移格的操作,才能拼成一个完整的图案,使其自动消失.17.如图,∠A=700,O是AB上一点,直线CO与AB所夹的∠BOC=820.当直线OC绕点O按逆时针方向旋转时,OC//AD.18.如图,BE平分∠ABC,DE∥BC,如果∠2=22°,那么∠ADE= .三、解答题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《相交线与平行线》综合练习题
一、选择题
1、下列说法中,正确的个数是()
①连接两点的线中,线段最短;②两条直线相交,有且只有一个交点;③若两条直线有两个公共点,则这两条直线重合;④若AB+BC=AC,则A、B、C三点共线。
A、 1
B、2
C、3
D、4
2、下列语句不是命题的是()
A. 若a∥b,c与a相交,则b与c也相交
B. 过直线l外一点P,作直线a∥l
C. 在同一平面内的两条直线不平行就相交
D. 邻补角的平分线互相垂直
3、如图,直线l1∥l2,∠A=0
85,则∠1+∠2=( )
125,∠B=0
A.300
B. 350
C. 360
D. 400
4、如图,若AB∥EF,AB∥CD.则下列各式成立的是()
A.∠2+∠3﹣∠1=180°B.∠1﹣∠2+∠3=90°
C.∠1+∠2+∠3=180°D.∠1+∠2﹣∠3=180°
5、下列关于平移的特征叙述中,正确的是()
A. 平移后的图形与原来的图形的对应线段必定互相平行
B. 平移后对应点连线段必定互相平行
C. 平移前线段的中点经过平移之后可能不是线段的中点
D. 平移前后图形的形状与大小都没有发生变化
6、一条公路修到湖边时,需拐弯绕道而过,第一次拐弯∠A的度数为α,第二次拐弯∠B 的度数为β,到了点C后需要继续拐弯,拐弯后与第一次拐弯之前的道路平行,则∠C的度数为()
A .α﹣β
B .180﹣β+α
C .360﹣β﹣α
D .β﹣α
7、如图,已知直线EF ⊥MN 垂足为F ,且∠1=140∘,如果AB ∥CD ,那么∠2等于( )
A. 500
B. 400
C. 300
D. 600
8、如图,下列条件中,不能判定直线l1∥l2的是()
A. ∠1=∠3
B. ∠2+∠4=180∘
C. ∠4=∠5
D. ∠2=∠3
9、如图,AB ∥CD ,则下列等式成立的是( )
A. ∠B+∠F+∠D=∠E+∠G
B. ∠E+∠F+∠G=∠B+∠D
C. ∠F+∠G+∠D=∠B+∠E
D. ∠B+∠E+∠F=∠G+∠D
10、如图所示,'''C B A ∆是由△ ABC 平移得到的,下列说法错误的是( )
A. 将△ ABC 先向右平移 9 个单位长度,再向上平移 5 个单位长度就得到'''C B A ∆
B. 将△ ABC 先向上平移 5 个单位长度,再向右平移 9 个单位长度就得到 '''C B A ∆
C. 将△ ABC 沿着 CC ′的方向,平移的距离等于线段 CC ′的长,就得到'''C B A ∆
D. 将△ ABC 沿着 C C '的方向,平移的距离等于线段C C '的长,就得到'''C B A ∆
二、填空题:
1、已知直线a ∥b ,一块直角三角板如图所示放置,若∠1=37°,则∠2=( ).
2、如图,将一张四边形形纸条沿某条直线折叠,若∠1=116°,则∠2等于 .
3、如图(1)是长方形纸条,∠DEF =20°,将纸条沿EF 折叠成如图(2),则图(2)中的∠CFG 的度数是 .
4、如图,l1∥l2,AB ⊥l1,∠ABC=120°,则∠α=___.
5、如图所示,已知AC ⊥BC ,CD ⊥AB 于点D ,AC=6,BC=8,AB=10,则A 、C 两点间的距离是 ,点B 到AC 的距离是 ,AC >CD 的依据是 .
6、如图,将△ABC 沿着直线向右平移后到达三角形BDE 的位置,若∠CAB=500,∠ABC=1000,则∠CBE 的度数是
7、如图,直线321////l l l ,点A. B. C 分别在直线321l l l 、、上。
若∠1=700,∠2=500,则∠ABC=___度。
8、如图所示∠ACB=600,∠ABC=500,BO ,CO 分别是∠ABC ,∠ACB 的平分线,EF 经过O 点且平行于BC ,则∠BOC= _________度.
9、对于下列假命题,各举出一个反例写在横线上。
(1)“如果ac=bc ,那么a=b ”是一个假命题。
反例:
(2)“如果a 2=b 2,则a=b ”是一个假命题
反例:
三、解答题:
1、已知,如图,AB ∥CD ∥GH ,EG 平分∠BEF ,FG 平分∠EFD 。
求证:∠EGF=900.
(1)把下列证明过程及理由补充完整。
(2)请你用精炼准确的文字将上述结论总结出来。
证明:∵HG ∥AB(已知)
∴∠1=∠3(__ _)
又∵HG ∥CD(已知)
∴∠2=∠4( )
∵AB ∥CD(已知)
∴∠BEF + =1800( )
又∵EG 平分∠BEF(已知)
∴∠1=2
1∠___ ( ) 又∵FG 平分∠EFD(已知)
∴∠2=2
1∠ ( ) ∴∠1+∠2=2
1(_ __+__ _) ∴∠1+∠2=90∘
∴∠3+∠4=90∘( )
即∠EGF=90∘.
2、如图,在直角三角形ABC 中,∠ACB=90∘,AC=4cm ,BC=3cm ,△ABC 沿AB 方向平移至△DEF ,若AE=8cm.DB=2cm.
(1)求△ABC 沿AB 方向平移的距离;
(2)求四边形AEFC 的周长。
3、如图,已知AB ∥CD ,试再添上一个条件,使∠1=∠2成立(要求给出两个以上答案),并选择一个写出证明过程。
4、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60∘,∠CBD=70∘.
(1)求证:AB∥CD;
(2)求∠C的度数。
5、如图所示,已知BD⊥CD于点D,EF⊥CD于点F,∠A=100°-∠α,∠ABC=80°+∠α,其中∠α为锐角,求证:∠1=∠2.
6、如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么。
7、如图,四边形ABCD中,∠A=∠C=90∘,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由。
8、如图,直线AB和CD被直线MN所截。
(1)如图①,EG平分∠BEF,FH平分∠DFE(平分的是一对同旁内角),则∠1与∠2满足_ __时,AB∥CD.
(2)如图②,EG平分∠MEB,FH平分∠DFE(平分的是一对同位角),则∠1与∠2满足___ 时,AB∥CD.
(3)如图③,EG平分∠AEF,FH平分∠DFE(平分的是一对内错角),则∠1与∠2满足什么条件时,AB∥CD.为什么?
9、如图所示,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分
规定:线上各点不属于任何部分,点动点P若在某个部分时,连接PA、PB、构成∠PAC,∠APB、∠PBD三个角.(提示:有公共端点的两条重合的射线组成的角是0∘角)
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立,若不成立,请写出∠APB、∠PAC、∠PBD之间存在的一个关系式。