【VIP专享】2016年海淀区初三二模数学试题及答案(word版)
[VIP专享]2016年海淀区初三二模数学试题及答案(word版)
海淀区九年级第二学期期末练习
9.随着“互联网+”时代的到来,一种新型的打车方式受 到
大众欢迎.该打车方式采用阶梯收费标准.打车费用 y(单
位:元)与行驶里程 x(单位:千米)的函数关系如图 所
示. 如果小明某次打车行驶里程为 20 千米,则他的打 车
费用为 A.32 元
九年级数学 第 2 页(共 15 页)
C. (a3 )2 a 6
B. a8 a4 a2
A. a 2 a 3 a 6
3.下列计算正确的是
C.
B.
A.
中抽象出来的,其中是轴对称图形的是
88.8918÷1.2990÷.1=4214÷3922=.0034=1÷15251371=8535.78.208÷023.2173c00÷1*m=29030.3922c=.1÷20m3=2÷120252.=3535=42314c)*523m240341*31.252=31*.1.535.*031342.*9205221.04.455=+213*05*2022.02.854850.3150.*+58c12*5m1*202+.050+0.014*85.20*051000+0+03/8T.+0÷+=55+1*011+010+91÷01454050*0010200+5+0+080+400*+4**1*1510.3910%*C%-*6+÷M(=*M=5÷50)*30*31(÷3110*5+**÷4*1m243.%71e=78%n0)8=8s.5=77.93c.6c0mmc.4*m1*31,0w199o.k2.m4c-cem.5mn2csp26m659*.0.34-50.60c5*pm.3c85m9,c05g.m.05i0rp-l.s.85p6/c50bcm0.om7py.c.6spm5c+mc;0m..7.cmk ; 1+1k+12+1+k2234=1c+m1++4+4+2
2015-2016年北京海淀区中考二模数学试题及答案图片版,一模试题及答案。共两套题
海淀区九年级第二学期期末练习数学试卷参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式31+42=--⨯……………………4分5=.………………………5分18.解:原不等式组为8(1)5171062x x x x ->-⎧⎪⎨--≤⎪⎩,①,② 解不等式①,得 3x >-. ………………………2分 解不等式②,得 2≤x . ………………………3分∴ 原不等式组的解集为32x -≤<.………………………4分 不等式组的解集在数轴上表示如下:………………………5分19. 解:(1)∵ 原方程有两个不相等的实数根,∴ 0Δ>.即 364(7)0k -+>.∴ 2k <..………………………2分 (2)∵2k <且k 为正整数,∴1=k ..………………………3分 ∴0862=+-x x .∴1224x x ==,..………………………5分20.证明:∵ AB DE BC BF ⊥⊥,,90ACB ∠=︒, ∴90DBF BEF ACB ∠=∠=∠=︒.∴ ︒=∠+∠︒=∠+∠9029021F ,. ∴ F ∠=∠1..………………………2分 在中和△△DFB ABC ,1F ACB DBF AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴ ABC △≌DFB △.………………………4分 ∴DF AB =..………………………5分21.解:设小静原来每分钟阅读x 个字.…………1分由题意,得300291003500+=x x . ………………………3分 解得 500=x . ………………………4分 经检验,500=x 是原方程的解,且符合题意. ∴130030050023002=+⨯=+x .答:小静现在每分钟阅读1300个字. ………………………5分22.(1)证明:∵ 90ACB ∠=︒, ∴AC BC ⊥. ∵DE BC ⊥, ∴AC ∥DE . 又∵ CF ∥AD ,∴ 四边形ACFD 为平行四边形. …………1分 ∴CF AD =.∵ CD AB 为边上的中线, ∴BD AD =. ∴CF BD =.∴四边形BDCF 为平行四边形. ∵ BC DE ⊥,∴四边形BDCF 为菱形. ………………………3分 (2)解:在Rt ACE △中,∵ 2tan 3EC EAC AC ∠==, ∴设 2,3CE x AC DF x ===. ∵菱形BDCF 的面积为24, ∴1242DF BC ⋅=.………………………4分 ∴ 24DF EC ⋅=. ∴ 3224x x ⋅=.∴ 12x =,22x =-(舍). ∴4CE =,12EF =3DF =. ∴5CF =. ………………………5分23. 解:(1)∵点)1,(m A 在双曲线xy 6=上, ∴6=m . ………………………1分F∵点)1,6(A 在直线b x y +=21上, ∴2-=b . ………………………2分 (2)当点B 在线段DE 上时,如图1,过点D 作DP ⊥y 轴于P ,过点B 作BQ ⊥y 轴于Q .可得EQB △∽EPD △. ∵BE BD 2=, ∴13BQ BE DP DE ==. ∵1BQ =, ∴3DP =. ∵点D 在直线1l 上,∴)213(-,的坐标为点D .………………4分 当点B 在线段DE 的延长线上时,如图2, 同理,由BE BD 2=,可得点D 的坐标为5(1)2--,.综上所述,点D 的坐标为)213(-,或5(1)2--,.…………… 5分24. (1)证明:连接OD .………………………1分∵⊙O 切BC 于点D , 90C ∠=︒, ∴90ODB C ∠=∠=︒. ∴OD ∥AC . ∴DAC ODA ∠=∠. ∵OD OA =, ∴OAD ODA ∠=∠. ∴DAC OAD ∠=∠.图1图2∴AD 平分BAC ∠.………………………2分(2)解:连接DE . ∵AE 为直径, ∴︒=∠90ADE .∵OAD DAC ∠=∠,sin DAC ∠=,∴sin OAD ∠=. ∵5OA =, ∴10AE =.∴AD =………………………3分 ∴4CD =,8AC =. ∵OD ∥AC ,∴BOD BAC △∽△.………………………4分∴OD BDAC BC =. 即584BD BD =+. ∴203BD =.………………………5分25.(1)m 16.5=;………………………2分(2)14;(估值在合理范围内即可) ………………………3分 (3)14000016.5%0.69.721000⨯⨯- 4.14=.答:2020年我国儿科医生需比2015年增加4.14万人,才能使每千名儿童拥有的儿科医 生数达到0.6. ………………………5分26. 第二步:6BD BC ==;………………………1分 第四步:如图,△ABC 即为所求. ………………3分 第五步: ② ,18.………………5分27. 解:(1)12n n =. ……………… 1 分理由如下:由题意可得抛物线的对称轴为2x =.∵1P (1,1n ),2P (3,2n )在抛物线24y ax ax b =-+上, ∴12n n =.………………3分 (2)当0a >时,抛物线的顶点为(2,1),且过点(4,4), ∴抛物线的解析式为23344y x x =-+.………………5分 当0a <时,抛物线的顶点为(2,4),且过点(4,1),∴抛物线的解析式为23314y x x =-++. 综上所述,抛物线的解析式为23344y x x =-+或23314y x x =-++.…………7 分28. 解:(1)①补全图形,如图1所示.…………1分②连接BE .∵AB BC =,,E C 关于直线BD 对称,∴AB BC BE ==.………………………2分 ∴C BEC ∠=∠, BAE BEA ∠=∠. ∵90ABC ∠=︒,∴270BAE AEC C ∠+∠+∠=︒.∴135AEC ∠=︒..………………………4分 (2)求解思路如下:a .连接AC ,过点A 作AF ⊥CE ,交CE 延长线于点F ,如图2所示;b .由(1)可求︒=∠135AEC ,由AE =可求1AF EF ==;c .由1CE =,可求2AC =,AB BC ==ABE 为等边三角形;d .由C ,E 两点关于直线BD 对称,AB AD =,可求15EBD ∠=︒,75ABD ∠=︒,30α=︒. ……………………7分29.解:(1)函数1y x =-没有不变值; ………………1分函数1y x=有1-和1两个不变值,其不变长度为2;………………2分 函数2y x =有0和1两个不变值,其不变长度为1;………………3分 (2)①∵函数22y x bx =-的不变长度为零, ∴方程22x bx x -=有两个相等的实数根. ∴1b =-. ………………4分②解方程22x bx x -=,得10x =,212b x +=.………………5分 ∵13b ≤≤, ∴212x ≤≤.∴函数22y x bx =-的不变长度q 的取值范围为12q ≤≤. ………………6分(3)m 的取值范围为13m ≤≤或18m <-. ………………8分2016海淀一模一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为A.96.5×107B.9.65×107 C.9.65×108 D.0.965×1092.如图是某个几何体的三视图,该几何体是A.长方体B.正方体C.圆柱D.三棱柱3.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为A.14B.34C.15D.454.下列图形中,是轴对称图形但不是中心对称图形的是A.B.C.D.5.如图,在 ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为A.5 B.4 C.3 D.2 6.如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,1=35∠︒,则2∠的度数为A.35︒B.15︒C.10︒D.5︒7.初三(8)班体委用划记法统计本班40名同学投掷实心D球的成绩,结果如下表所示:则这40名同学投掷实心球的成绩的众数和中位数分别是A.9,8 B.9,8.5 C.8,8 D.8,8.58.京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口(,)表示图中承德的位置,和石家庄为中心的区域.若“数对”19043︒(,)表示图中保定的位置,则与图中张家口的位置对“数对”160238︒应的“数对”为(,)A.176145︒(,)B.17635︒(,)C.100145︒(,)D.10035︒9.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少..为A.5 000 B.10 000 C.15 000 D.20 000 10.小明在暗室做小孔成像实验.如图1,固定光源(线段MN)发出的光经过小孔(动点K)成像(线段M'N')于足够长的固定挡板(直线l)上,其中MN// l. 已知点K匀速运动,其运动路径由AB,BC,CD,DA,AC,BD组成.记它的运动时间为x,M'N'的长度为y,若y关于x的函数图象大致如图2所示,则点K的运动路径可能为A.A→B→C→D→A B.B→C→D→A→BC.B→C→A→D→B D.D→A→B→C→D图1 图2二、填空题(本题共18分,每小题3分)11. 分解因式:a2b-2ab+b=________________.12. 如图,AB为⊙O的弦,OC⊥AB于点C.若AB=8,OC=3,则⊙O的半径长为________.13.埃及《纸草书》中记载:“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.”设这个数是x,可列方程为.14.在下列函数①21y x=+;②22y x x=+;③3yx=;④3y x=-中,与众不同的一个是_____(填序号),你的理由是________ .15.北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为________万人,你的预估理由是____________.16.阅读下面材料:在数学课上,老师提出如下问题:老师说:“小云的作法正确.”请回答:小云的作图依据是________________________________________.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:)2016tan3012π-⎛⎫--︒++⎪⎝⎭.18.解不等式组41)3(2),14,2x xxx-≤+⎧⎪⎨-<-⎪⎩(并写出它的所有整数解....19.已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.20.如图,在△ABC 中,90BAC ∠=︒,AD BC ⊥于点D ,DE 为AC 边上的中线.求证:BAD EDC ∠=∠.21.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小琼步行12 000步与小博步行9 000步消耗的能量相同.若每消耗1千卡能量小琼行走的步数比小博多10步,求小博每消耗1千卡能量需要行走多少步.22.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC 的平行线交DC 的延长线于点E . (1)求证:BD=BE ;(2)若BE =10,CE =6,连接OE ,求tan ∠OED 的值.D ABC23.在平面直角坐标系xOy 中,直线y x =-与双曲线ky x=(0k ≠)的一个交点为)P m . (1)求k 的值;(2)将直线y x =-向上平移b (b>0)个单位长度后,与x 轴,y 轴分别交于点A ,点B ,与双曲线ky x=(0k ≠)的一个交点记为Q .若2BQ AB =,求b 的值.24.如图,AB ,AD 是⊙O 的弦,AO 平分BAD ∠.过点B 作⊙O 的切线交AO 的延长线于点C ,连接CD ,BO .延长BO 交⊙O 于点E ,交AD 于点F ,连接AE ,DE .(1)求证:CD 是⊙O 的切线; (2)若3AE DE ==,求AF 的长.25.阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点,票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影,票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A梦之伴我同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入.2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015(2)右图为2015年国产..动画电影票房金字塔,则B= ;(3)选择统计表或.统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.26.有这样一个问题:探究函数(1)(2)(3)=---的图象与性质.y x x x小东对函数(1)(2)(3)=---的图象与性质进行了探究.y x x x下面是小东的探究过程,请补充完成:(1)函数(1)(2)(3)=---的自变量x的取值范围是全体实数;y x x x(2)下表是y与x的几组对应值.①m = ;②若M (7-,720-),N (n ,720)为该函数图象上的 两点,则n = ;(3)在平面直角坐标系xOy 中, A (,A A x y ),B (,B A x y -)为该函数图象上的两点,且A 为23x ≤≤范围内的最低点,A 点的位置如图所示.①标出点B 的位置;②画出函数(1)(2)(3)y x x x =---(04x ≤≤)的图象.27.在平面直角坐标系xOy 中,抛物线224y mx mx m =-+-(0m ≠)的顶点为A ,与 x 轴交于B ,C 两点(点B 在点C 左侧),与y 轴交于点D . (1)求点A 的坐标; (2)若BC =4,①求抛物线的解析式;②将抛物线在C,D之间的部分记为图象G(包含C,D两点).若过点A的直线+(0)=≠与图象G有两个交点,结合函数的图象,求k的y kx b k取值范围.28.在△ABC中,AB=AC,∠BAC=90︒,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB 则GE的长为_______,并简述求GE长的思路.29.在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的限距点的定义如下:若P '为直线PC 与⊙C 的一个交点,满足2r PP r '≤≤,则称P '为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限距点P '的示意图.(1) 当⊙O 的半径为1时.① 分别判断点M (3,4),N 5(,0)2,T (1 关于⊙O 的限距点是否存在?若存在,求其坐标;②点D 的坐标为(2,0),DE ,DF 分别切⊙O 于点E ,点F ,点P在△DEF 的边上.若点P 关于⊙O 的限距点P '存在,求点P '的横坐标的取值范围;(2) 保持(1)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E 的方向运动,⊙C 的圆心C 的坐标为(1,0),半径为r .请从下面两个问题中任选一个作答.温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.数学试卷参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 19.解:原式=1-6×……………………4分=4-.………………………5分18.解:原不等式组为解不等式①,得x≤10.………………………2分解不等式②,得x>7.………………………3分∴原不等式组的解集为7<x≤10.………………………4分∴原不等式组的所有整数解为8,9,10. (5)分Array 19.解:原式=x2-2x+1-x2+3x+x2-4………………………3分=x2+x-3.………………………4分∵x2+x-5=0,∴x2+x=5.∴原式=5-3=2..………………………5分20.证明:∵∠BAC=90o,∴∠BAD+∠DAC=90o.∵AD⊥BC,∴∠ADC=90o.∴∠DAC+∠C=90o.∴∠BAD=∠C .………………………2分∵DE为AC边上的中线,∴DE=EC.∴∠EDC=∠C ..………………………4分∴∠BAD=∠EDC.………………………5分21.解:设小博每消耗1千卡能量需要行走x步.………………………1分由题意,得. ………………………3分解得x=30 . ………………………4分经检验,x=30是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC=BD ,AB ∥DC. ∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC=BE.∴ BD=BE. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==.同理,可得132CF DF CD ===.∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分23. 解:(1)∵P()在直线y= -x 上,∴m=-. ………………………1分∵P()在双曲线y=上,∴k=. ………………………2分A图1 图2(2) ∵y= -x 向上平移b (b >0)个单位长度后,与x 轴,y 轴分别交于A ,B ,∴A (b ,0)B (0,b ). ………………………3分作QH ⊥x 轴于H ,可得△HAQ ∽△OAB .如图1,当点Q 在AB 的延长线上时,∵BQ=2AB , ∴3===ABAQ OA HA OB HQ . ∵OA OB b ==,∴,2HO b =.∴Q 的坐标为(-2b,3b).由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时,同理可得,Q 的坐标为(2b,-b).由点Q 在双曲线6y x =-上,可得b=.综上所述,b=1或b=. ………………………5分24. (1) 证明:如图,连接OD . ………………………1分∵BC 为⊙的切线,∴∠CBO=90o .∵AO 平分BAD ∠,∴∠1=∠2.∵OA OB OD ==,∴1=4=2=5∠∠∠∠.∴∠BOC=∠DOC .∴△BOC ≌△DOC .∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分(2) ∵AE=DE,∴.∴∠3=∠4. ………………………3分∵124∠=∠=∠,∴∠1=∠2=∠3.∵BE 为⊙O 的直径,∴∠BAE=90o .∴∠1=∠2=∠3=∠4=30o .………………………4分∴∠AFE=90o .在Rt △AFE 中,∵AE=3,︒=∠303,∴AF=. ………………………5分25. (1) 45;………………………2分(2) 21;………………………3分(3) 2.4×(1+20%)=2.88 .2015年中国内地动画电影市场票房收入前5名的票房成绩统计表………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分26. (2) ①m= -60;………………………1分②n=11;………………………2分(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1)y=mx2-2mx+m-4=m(x2-2x+1)-4=m(x-1)2-4 .∴ 点A 的坐标为(1,-4). ………………………2分(2)①由(1)得,抛物线的对称轴为x =1.∵ 抛物线与x 轴交于B ,C 两点(点B 在点C 左侧),BC =4,∴ 点B 的坐标为(-1,0) ,点C 的坐标为(3,0) .………………………3分∴ m+2m+m-4=0.∴ m=1.∴ 抛物线的解析式为y=x 2-2x-3.……4分② 由①可得点D 的坐标为(0,-3) .当直线过点A ,D 时,解得k=-1.………5分当直线过点A ,C 时,解得k=2. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. (7)分28. 解:(1) ①补全图形,如图1所示. ………………………1分②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………2分证明: 如图1.∵AB=AC ,∠BAC=90o∴∠B=∠ACB=45o , ∠1+∠2=90o ,.∵射线BA 、CF 的延长线相交于点G ,∴∠CAG=∠BAC=90o .∵四边形ADEF 为正方形,∴∠DAF=∠2+∠3=90o ,AD=AF .∴∠1=∠3.∴△ABD ≌△ACF .…………………3分∴∠B=∠ACF=45o .图1∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) GE=.…………………5分思路如下:a . 由G 为CF 中点画出图形,如图2所示.b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得AD =,即GE FE AD == ……7分29.解:(1)①点M ,点T 关于⊙的限距点不存在;点N 关于⊙的限距点存在,坐标为(1,0). (2)分②∵点D 的坐标为(2,0),⊙半径为1,DE ,DF 分别切⊙于点E ,点F ,∴切点坐标为1(2,1(2,.……………3分 如图所示,不妨设点E 的坐标为1(22,,点F 的坐标为1(22,,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则1'(2E -,,1'(2F -. 设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与的交点'P 满足2'1≤≤PP ,故点P关于⊙O 的限距点存在,其横坐标x 满足-1≤x≤ -.………5分Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P关于⊙的限距点存在,其横坐标=1.综上所述,点P 关于⊙O 的限距点的横坐标x 的范围为-1≤x≤ -或=1. ……………………6分(2)问题1: .………………8分 问题2:0 < r < 16.………………7分。
2016-2017学年北京市海淀区九年级二模数学试卷(含答案)
()海 淀 区 九 年 级 第 二 学 期 期 末 练 习数 学2017.6 学校 班级 姓名 准考证号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项填涂在答题卡相应的位置.1.如图,用圆规比较两条线段A B ''和AB 的长短,其中正确的是 A .A B AB ''> B .A B AB ''= C .A B AB ''< D . 不确定2.如图,在正方体的一角截去一个小正方体,所得立体图形的主视图是A B CD 3.下列计算正确的是A .23a a a -=B .()236aa =C =D .632a a a =÷4.如图,Y ABCD 中,AD =5,AB =3,∠BAD 的平分线AE 交BC 于E 点,则EC 的长为 A .4 B .3C .2D .1B E CA D★★★★★765FED5.共享单车提供了便捷、环保的出行方式.小白同学在北京植物园打开某共享单车APP ,如图,“ ”为小白同学的位置,“★”为检索到的共享单车停放点.为了到达距离最近的共享单车停放点,下列四个区域中,小白同学应该前往的是 A .F 6 B .E 6 C .D 5D .F 76.在单词happy 中随机选择一个字母,选到字母为p 的概率是 A .15B .25C .35D .457.如图,OA 为⊙O 的半径,弦BC ⊥OA 于P 点.若OA =5,AP =2,则弦BC 的长为 A .10 B .8 C .6D .48.在下列函数中,其图象与x 轴没有交点的是 A .2y x = B .31y x =-+ C .2y x =D .1y x=9.如图,在等边三角形三个顶点和中心处的每个“○”中各填有一个式子,若图中任意三个“○”中的式子之和均相等,则a 的值为 A .3 B .2 C .1D .010.利用量角器可以制作“锐角正弦值速查卡”.制作方法如下:如图,设OA =1,以O 为圆心,分别以0.05,0.1,0.15,0.2,…,0.9,0.95长为半径作半圆,再以OA 为直径作⊙M .利用“锐角正弦值速查卡”可以读出相应锐角正弦的近似值.例如:sin600.87︒≈,sin 450.71︒=.下列角度中正弦值最接近0.94的是OM A 1020304050607080170160150140130120110100102030405060708017016015014013012011010000901801800.10.20.30.40.50.60.70.80.91A .70°B .50°C .40°D .30°二、填空题(本题共18分,每小题3分)2b2a3a P CB O11.若分式12x -有意义,则x 的取值范围是 .12.如图,在平面直角坐标系xOy 中,A (3,4)为⊙O 上一点,B 为⊙O内一点,请写出一个符合要求的点B 的坐标 . 13.计算:111mm m+--= .14.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y ℃与向上攀登的高度x km 的几组对应值如下表:若每向上攀登 1 km ,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为 2.5 km 时,登山队所在位置的气温约为℃.15.下图是测量玻璃管内径的示意图,点D 正对“10mm ”刻度线,点A 正对“30mm ”刻度线,DE ∥AB .若量得AB 的长为6mm ,则内径DE 的长为 mm .16.在一次飞镖比赛中,甲、乙两位选手各扔10次飞镖,下图记录了他们的比赛结果.你认为两人中技术更好的是 ,你的理由是 .三、解答题(本题共72分,第17~26题每小题5分,第27题7分,第28题7分,第29题8分)1722tan 60--°113-+⎛⎫ ⎪⎝⎭.18.解不等式组:()3221213x x x x +-≥+>-⎧⎪⎨⎪⎩,.甲 乙19.如图,在四边形ABCD 中,AB =AD ,CB =CD .请你添加一条线把它分成两个全等三角形,并给出证明.20.若关于x 的方程412m xx-=的根是2,求()2428m m --+的值.21.如图,在平面直角坐标系xOy 中,过点A (2,0)的直线l :3y mx =-与y 轴交于点B . (1)求直线l 的表达式; (2)若点C 是直线l 与双曲线ny x=的一个公共点,AB =2AC ,直接写出n 的值.22.为了让市民享受到更多的优惠,某市针对乘坐地铁的人群进行了调查.(1)为获得乘坐地铁人群的月均花费信息,下列调查方式中比较合理的是 ; A .对某小区的住户进行问卷调查DCDB E CA FB .对某班的全体同学进行问卷调查C .在市里的不同地铁站,对进出地铁的人进行问卷调查(2)调查小组随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示./元频数/① 根据图中信息,估计平均每人乘坐地铁的月均花费的范围是 元; A .20—60 B .60—120 C .120—180②为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使30%左右的人获得折扣优惠.根据图中信息,乘坐地铁的月均花费达到 元的人可以享受折扣.23.如图,在△ABC 中,∠BAC =90°,线段AC 的垂直平分线交AC 于D 点,交BC 于E点,过点A 作BC 的平行线交直线ED 于F 点,连接AE ,CF .(1)求证:四边形AECF 是菱形;(2)若AB =10,∠ACB =30°,求菱形AECF 的面积.24.阅读下列材料:2016年,北京市坚持创新、协调、绿色、开放、共享的发展理念,围绕首都城市战略定位,加快建设国际一流的和谐宜居之都,在教育、科技等方面保持平稳健康发展,实现了“十三五”良好开局.在教育方面,全市共有58所普通高校和81个科研机构培养研究生,全年研究生招生9.7万人,在校研究生29.2万人.全市91所普通高校全年招收本专科学生15.5万人,在校生58.8万人.全市成人本专科招生6.1万人,在校生17.2万人.在科技方面,2016年全年研究与试验发展(R&D)经费支出1479.8亿元,比2015年增长了6.9%,全市研究与试验发展(R&D)活动人员36.2万人,比上年增长1.1万人.2013年,2014年,2015年全年研究与试验发展(R&D)经费支出分别为1185.0亿元,1268.8亿元,1384.0亿元,分别比前一年度增长11.4%,7.1%,9.1%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)请用统计图或统计表将北京市2016年研究生、普通高校本专科学生、成人本专科学生的招生人数和在校生人数表示出来;(2)2015年北京市研究与试验发展(R&D)活动人员为万人;(3)根据材料中的信息,预估2017年北京市全年研究与试验发展(R&D)经费支出约亿元,你的预估理由是.»AC的中点,AC,BD相交于E点,过点A作25.如图,AB是⊙O的直径,BC为弦,D为⊙O 的切线交BD 的延长线于P 点. (1)求证:∠P AC =2∠CBE ;(2)若PD =m ,∠CBE =α,请写出求线段CE 长的思路.26.已知y 是x 的函数,该函数的图象经过A (1,6),B (3,2)两点. (1)请写出一个符合要求的函数表达式 ;(2)若该函数的图象还经过点C (4,3),自变量x 的取值范围是0x ≥,该函数无最小值.①如图,在给定的坐标系xOy 中,画出一.个.符合条件的函数的图象;②根据①中画出的函数图象,写出6x =对应的函数值y 约为 ; (3)写出(2)中函数的一条性质(题目中已给出的除外).27.抛物线2224y x mx m =-+-与x 轴交于A ,B 两点(A 点在B 点的左侧),与y 轴交于点C ,抛物线的对称轴为x =1.(1)求抛物线的表达式;(2)若CD∥x轴,点D在点C的左侧,12CD AB,求点D的坐标;(3)在(2)的条件下,将抛物线在直线x=t右侧的部分沿直线x=t翻折后的图形记为G,若图形G与线段CD有公共点,请直接写出t的取值范围.28.在锐角△ABC中,AB=AC,AD为BC边上的高,E为AC中点.(1)如图1,过点C作CF⊥AB于F点,连接EF.若∠BAD=20°,求∠AFE的度数;(2)若M为线段BD上的动点(点M与点D不重合),过点C作CN⊥AM于N点,射线EN ,AB 交于P 点. ①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M 运动的过程中,始终有∠APE =2∠MAD . 小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法: 想法1:连接DE ,要证∠APE =2∠MAD ,只需证∠PED =2∠MAD .想法2:设∠MAD =α,∠DAC =β,只需用α,β表示出∠PEC ,通过角度计算得∠APE =2α.想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,要证∠APE =2∠MAD ,只需证△NAQ ∽△APQ . ……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD .(一种方法即可)EFB D CA29.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到两坐标轴的距离之和等于点Q 到两坐标轴的距离之和,则称P ,Q 两点为同族点.下图中的P ,Q 两点即为同族点.图1 图2(1)已知点A 的坐标为(3-,1),①在点R (0,4),S (2,2),T (2,3-)中,为点A 的同族点的是 ; ②若点B 在x 轴上,且A ,B 两点为同族点,则点B 的坐标为 ; (2)直线l :3y x =-,与x轴交于点C ,与y 轴交于点D ,①M 为线段CD 上一点,若在直线x n =上存在点N ,使得M ,N 两点为同族点,求n 的取值范围;②M 为直线l 上的一个动点,若以(m ,0)为圆心,N ,使得M ,N 两点为同族点,直接写出m 的取值范围.海淀九年级第二学期期末练习数 学 答 案 2017.6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分) 11.2x ≠12.答案不唯一,例如(0,0)13.1 14.答案不唯一,在10.89.6t -≤≤-范围内即可15.216.乙;乙的平均成绩更高,成绩更稳定.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.原式 = 23 --------------------------------------------------------------------- 4分 = 5. ---------------------------------------------------- 5分18.解:原不等式组为()3221213x x x x +-≥+>-⎧⎪⎨⎪⎩, ①. ②由不等式①,得362x x +-≥, ------------------------------------------------- 1分解得2x ≥; ----------------------------------------- 2分由不等式①,得1233x x +>-, ------------------------------------------ 3分解得4x <; ----------------------------------------- 4分∴ 原不等式组的解集是24x ≤<. ----------------------------------------- 5分19.连接AC ,则△ABC ≌ △ADC . ----------------------------1分证明如下:在△ABC 与△ADC 中,AB AD AC AC CB CD ===⎧⎪⎨⎪⎩,,,---------------------------- 4分∴△ABC ≌ △ADC . ---------------------------- 5分20.解:∵关于x 的方程412m xx-=的根是2,∴4124m -=. --------------------------------------------1分DCBA∴ 4m =. ------------------------------------------2分∴()2428m m --+()244248=--⨯+ ---------------------------------------------- 4分0=. ------------------------------------------------------------ 5分21.解:(1)∵ 直线3l y mx =-:过点A (2,0),∴ 023m =-. ------------------------------------------------- 1分 ∴ 32m =. ------------------------------------------------- 2分 ∴ 直线l 的表达式为332y x =-. ----------------- 3分 (2)n =32-或92. -------------------------------------------- 5分22.(1)C ; ------------------------------------------------------------------- 2分 (2)① B ; --------------------------------------------------------------------- 4分 ② 100. ------------------------------------------------------------------ 5分 23.(1)证明:∵ EF 垂直平分AC ,∴ FA =FC ,EA =EC , ---------------------------------------------- 1分 ∵ AF ∥BC , ∴ ∠1=∠2. ∵ AE =CE ,∴ ∠2=∠3. ∴ ∠1=∠3. ∵ EF ⊥AC ,∴ ∠ADF =∠ADE =90°. ∵ ∠1+∠4=90°,∠3+∠5=90°. ∴ ∠4=∠5.∴ AF =AE . ------------------------------------------------ 2分 ∴ AF =FC =CE =EA .∴ 四边形AECF 是菱形. ---------------------------------------- 3分(2)解:∵∠BAC =∠ADF =90°, ∴AB ∥FE . ∵AF ∥BE ,∴四边形ABEF 为平行四边形.54321F E DCB A∵AB =10,∴FE =AB =10. -------------------------------------------------------- 4分 ∵∠ACB =30°,∴tan ABAC ACB==∠∴12AECF S AC FE ⋅==菱形 ------------------------------ 5分24.(1) 北京市2016年研究生、普通高校本专科学生、成人本专科学生招生人数和在校生人数统计表(单位:万人)北京市2016年研究生、普通高校本专科学生、成人本专科学生 招生人数和在校生人数统计图(单位:万人)---------------------------------- 2分(2)35.1 ; ---------------------------------------------------------------------------- 3分(3)答案不唯一,预估理由与预估结果相符即可. --------------------- 5分25.(1)证明:∵D 为»AC的中点,∴∠CBA =2∠CBE . ------------------------------------ 1分 ∵AB 是⊙O 的直径,A∴∠ACB =90°,∴∠1+∠CBA =90°. ∴∠1+2∠CBE =90°. ∵AP 是⊙O 的切线,∴∠PAB =∠1+∠PAC =90°. ----------------------------- 2分∴∠PAC =2∠CBE . --------------------------------------3分(2)思路:①连接AD ,由D 是»AC的中点,∠2=∠CBE , 由∠ACB =∠PAB =90°,得∠P =∠3=∠4,故AP =AE ; ②由AB 是⊙O 的直径,可得∠ADB =90°;由AP =AE ,得PE =2PD =2m ,∠5=12∠PAC =∠CBE =α -------- 4分③在Rt △PAD 中,由PD =m ,∠5=α,可求PA 的长; ④在Rt △PAB 中,由PA 的长和∠2=α,可求BP 的长; 由BE PB PE =-可求BE 的长;⑤在Rt △BCE 中,由BE 的长和CBE α∠=,可求CE 的长. ------------- 5分 26.(1)答案不唯一,例如6y x=,28y x =-+,2611y x x =-+等; ---------------------2分 (2)答案不唯一,符合题意即可; ---------------------------------------------------- 4分 (3)所写的性质与图象相符即可. ---------------------------------------- 5分 27.(1)解:∵抛物线()222244y x mx m x m =-+-=--,其对称轴为1x =,∴1m =.∴该抛物线的表达式为223y x x =--. ----------------------------- 2分 (2)解:当0y =时,2230x x --=,解得11x =-,23x =,∴抛物线与x 轴的交点为A (1-,0),B (3,0). ---------------- 3分 ∴4AB =.当0x =时,3y =-,∴抛物线与y 轴的交点为C (0,3-). -------------------- 4分 ∵12CD AB =, ∴CD =2.∵CD ∥x 轴,点D 在点C 的左侧,∴点D 的坐标为(2-,3-). ----------------------------- 5分(3)11t -≤≤. ------------------------------------------------------------- 7分28.(1)证明:∵AB =AC ,AD 为BC 边上的高,∠BAD =20°,∴∠BAC =2∠BAD =40°. -------------------------------------- 1分 ∵CF ⊥AB , ∴∠AFC =90°. ∵E 为AC 中点,∴EF =EA =12AC .∴∠AFE =∠BAC =40°. ---------------------------------------- 2分(2)①MPN ECDB A画出一种即可. -------------------------------------------------------- 3分 ②证明:想法1:连接DE .∵AB=AC ,AD 为BC 边上的高, ∴D 为BC 中点.∵E 为AC 中点, ∴ED ∥AB ,∴∠1=∠APE . --------------------------------- 4分∵∠ADC =90°,E 为AC 中点, ∴12AE DE CE AC ===.同理可证12AE NE CE AC ===. ∴AE =NE =CE =DE .∴A ,N ,D ,C 在以点E 为圆心,AC 为直径的圆上. ----- 5分 ∴∠1=2∠MAD . ------------------------------------------ 6分FEB D CAM PN ECDB A∴∠APE =2∠MAD . ------------------------------------------- 7分想法2:设∠MAD =α,∠DAC =β,∵CN ⊥AM , ∴∠ANC =90°. ∵E 为AC 中点,∴12AE NE AC ==.∴∠ANE =∠NAC =∠MAD +∠DAC =α+β. --------------------- 4分 ∴∠NEC =∠ANE +∠NAC =2α+2β. ------------------------ 5分 ∵AB =AC ,AD ⊥BC , ∴∠BAC =2∠DAC =2β.∴∠APE =∠PEC -∠BAC =2α. --------------------------------- 6分 ∴∠APE =2∠MAD . --------------------------------------------- 7分想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,连接AQ ,∴∠1=∠2. ∵AB =AC ,AD ⊥BC , ∴∠BAD =∠CAD .∴∠BAD -∠1=∠CAD -∠2,即∠3=∠4. ----------------------------------------- 4分 ∴∠3+∠NAQ =∠4+∠NAQ , 即∠PAQ =∠EAN . ∵CN ⊥AM , ∴∠ANC =90°. ∵E 为AC 中点, ∴12AE NE AC ==. ∴∠ANE =∠EAN . ------------------------------------ 5分 ∴∠PAQ =∠ANE . ∵∠AQP =∠AQP ,∴△PAQ ∽ △ANQ . -------------------------------------- 6分 ∴∠APE =∠NAQ =2∠MAD . ------------------------------------ 7分29.(1)①R ,S ; --------------------------------------------------------------------- 2分 ②(4-,0)或(4,0); --------------------------------------------- 4分 (2)①由题意,直线3y x =-与x 轴交于C (3,0),与y 轴交于D (0,3-).EDCBAP MN 4321QN MPAB CDE点M 在线段CD 上,设其坐标为(x ,y ),则有: 0x ≥,0y ≤,且3y x =-.点M 到x 轴的距离为y ,点M 到y 轴的距离为x , 则3x y x y +=-=.∴点M 的同族点N 满足横纵坐标的绝对值之和为3. 即点N 在右图中所示的正方形CDEF 上.∵点E 的坐标为(3-,0),点N 在直线x n =上,∴33n -≤≤. ---------------------------------------------------------------------------------- 6分 ②m ≤1-或m ≥1. ------------------------------------------------------- 8分更多初中数学资料,初中数学试题精解请微信扫一扫,关注周老师工作室公众号y x–1–2–3–41234–1–2–3–41234EF D C OM。
【VIP专享】2016年海淀区初三二模数学试题及答案(word版)
一、选择题(本题共 30 分,每小题 3 分)
下面各题均有四个选项,其中只有一个是符合题意的.
1.2022 年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为 196 000
米.196 000 用科学记数法表示应为
A.1.96×105
B.19.6×104 C.1.96×106 D.0.196×106
B.25°
D.35°
P 所表示的数为 a,则数 3a 所对应的点可能是
A.M
B.N
B.
C.P
九年级数学 第 1 页(共 15 页)
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。
2016-2017学年北京市海淀区初三二模数学试卷(含答案)
2017年北京市海淀区九年级中考二模数学试卷一、选择题(本题共30分,每小题3分)1.如图,用圆规比较两条线段A B ''和AB 的长短,其中正确的是()A .AB AB ''> B .A B AB ''=C .A B AB ''<D . 不确定2.如图,在正方体的一角截去一个小正方体,所得立体图形的主视图是()3.下列计算正确的是() A .23a a a -=B .()236aa =C= D .632a a a =÷4.如图,□ABCD 中,AD =5,AB =3,∠BAD 的平分线AE 交BC 于E 点,则EC 的长为()A .4B .3C .2D .15.共享单车提供了便捷、环保的出行方式.小白同学在北京植物园打开某共享单车APP ,如图,― ‖为小白同学的位置,―★‖为检索到的共享单车停放点.为了到达距离最近的共享单车停放点,下列四个区域中,小白同学应该前往的是()A .F 6B .E 6C .D 5D .F 76.在单词happy 中随机选择一个字母,选到字母为p 的概率是()A .15B .25C .35D .45()B E CA D★★★★★765FED7.如图,OA 为⊙O 的半径,弦BC ⊥OA 于P 点.若OA =5,AP =2,则弦BC 的长为()A .10B .8C .6D .4 8.在下列函数中,其图象与x 轴没有交点的是()A .2y x =B .31y x =-+C .2y x =D .1y x=9.如图,在等边三角形三个顶点和中心处的每个―○‖中各填有一个式子,若图中任意三个―○‖中的式子之和均相等,则a 的值为()A .3B .2C .1D .0 10.利用量角器可以制作―锐角正弦值速查卡‖.制作方法如下:如图,设OA =1,以O 为圆心,分别以0.05,0.1,0.15,0.2,…,0.9,0.95长为半径作半圆,再以OA 为直径作⊙M .利用―锐角正弦值速查卡‖可以读出相应锐角正弦的近似值.例如:sin 600.87︒≈,sin 450.71︒=.下列角度中正弦值最接近0.94的是()A .70°B .50°C .40°D .30°二、填空题(本题共18分,每小题3分)11.若分式12x -有意义,则x 的取值范围是.12.如图,在平面直角坐标系xOy 中,A (3,4)为⊙O 上一点,B 为⊙O 内一点,请写出一个符合要求的点B 的坐标.13.计算:111mm m+--=.14.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y℃与向上攀登的高度x km的几组对应值如下表:若每向上攀登1 km,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.5km时,登山队所在位置的气温约为℃.15.下图是测量玻璃管内径的示意图,点D正对―10mm‖刻度线,点A正对―30mm‖刻度线,DE∥AB.若量得AB的长为6mm,则内径DE的长为mm.16.在一次飞镖比赛中,甲、乙两位选手各扔10次飞镖,下图记录了他们的比赛结果.你认为两人中技术更好的是,你的理由是.三、解答题(本题共72分,第17~26题每小题5分,第27题7分,第28题7分,第29题8分)1722tan60-°113-+⎛⎫⎪⎝⎭.18.解不等式组:()3221213x xxx+-≥+>-⎧⎪⎨⎪⎩,.19.如图,在四边形ABCD 中,AB =AD ,CB =CD .请你添加一条线把它分成两个全等三角形,并给出证明.20.若关于x 的方程412m xx-=的根是2,求()2428m m --+的值.21.如图,在平面直角坐标系xOy 中,过点A (2,0)的直线l :3y mx =-与y 轴交于点B . (1)求直线l 的表达式; (2)若点C 是直线l 与双曲线ny x=的一个公共点,AB =2AC ,直接写出n 的值.DC22.为了让市民享受到更多的优惠,某市针对乘坐地铁的人群进行了调查. (1)为获得乘坐地铁人群的月均花费信息,下列调查方式中比较合理的是; A .对某小区的住户进行问卷调查 B .对某班的全体同学进行问卷调查C .在市里的不同地铁站,对进出地铁的人进行问卷调查 (2)调查小组随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.① 根据图中信息,估计平均每人乘坐地铁的月均花费的范围是元; A .20—60 B .60—120 C .120—180②为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使30%左右的人获得折扣优惠.根据图中信息,乘坐地铁的月均花费达到元的人可以享受折扣.23.如图,在△ABC 中,∠BAC =90°,线段AC 的垂直平分线交AC 于D 点,交BC 于E 点,过点A 作BC 的平行线交直线ED 于F 点,连接AE ,CF .(1)求证:四边形AECF 是菱形; (2)若AB =10,∠ACB =30°,求菱形AECF 的面积./元频数/DB E CA F24.阅读下列材料:2016年,北京市坚持创新、协调、绿色、开放、共享的发展理念,围绕首都城市战略定位,加快建设国际一流的和谐宜居之都,在教育、科技等方面保持平稳健康发展,实现了―十三五‖良好开局.在教育方面,全市共有58所普通高校和81个科研机构培养研究生,全年研究生招生9.7万人,在校研究生29.2万人.全市91所普通高校全年招收本专科学生15.5万人,在校生58.8万人.全市成人本专科招生6.1万人,在校生17.2万人.在科技方面,2016年全年研究与试验发展(R&D)经费支出1479.8亿元,比2015年增长了6.9%,全市研究与试验发展(R&D)活动人员36.2万人,比上年增长1.1万人.2013年,2014年,2015年全年研究与试验发展(R&D)经费支出分别为1185.0亿元,1268.8亿元,1384.0亿元,分别比前一年度增长11.4%,7.1%,9.1%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)请用统计图或统计表将北京市2016年研究生、普通高校本专科学生、成人本专科学生的招生人数和在校生人数表示出来;(2)2015年北京市研究与试验发展(R&D)活动人员为万人;(3)根据材料中的信息,预估2017年北京市全年研究与试验发展(R&D)经费支出约亿元,你的预估理由是.25.如图,AB是⊙O的直径,BC为弦,D为弧AC的中点,AC,BD相交于E点,过点A作⊙O的切线交BD的延长线于P点.(1)求证:∠P AC=2∠CBE;(2)若PD=m,∠CBE=α,请写出求线段CE长的思路.A26.已知y 是x 的函数,该函数的图象经过A (1,6),B (3,2)两点. (1)请写出一个符合要求的函数表达式; (2)若该函数的图象还经过点C (4,3),自变量x 的取值范围是0x ≥,该函数无最小值.①如图,在给定的坐标系xOy 中,画出一个..符合条件的函数的图象;②根据①中画出的函数图象,写出6x =对应的函数值y 约为; (3)写出(2)中函数的一条性质(题目中已给出的除外).27.抛物线2224y x mx m =-+-与x 轴交于A ,B 两点(A 点在B 点的左侧),与y 轴交于点C ,抛物线的对称轴为x =1.(1)求抛物线的表达式;(2)若CD ∥x 轴,点D 在点C 的左侧,12CD AB =,求点D 的坐标; (3)在(2)的条件下,将抛物线在直线x =t 右侧的部分沿直线x =t 翻折后的图形记为G ,若图形G与线段CD 有公共点,请直接写出t 的取值范围.28.在锐角△ABC中,AB=AC,AD为BC边上的高,E为AC中点.(1)如图1,过点C作CF⊥AB于F点,连接EF.若∠BAD=20°,求∠AFE的度数;(2)若M为线段BD上的动点(点M与点D不重合),过点C作CN⊥AM于N点,射线EN,AB交于P点.①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M运动的过程中,始终有∠APE=2∠MAD.小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法:想法1:连接DE,要证∠APE=2∠MAD,只需证∠PED=2∠MAD.想法2:设∠MAD=α,∠DAC=β,只需用α,β表示出∠PEC,通过角度计算得∠APE=2α.想法3:在NE上取点Q,使∠NAQ=2∠MAD,要证∠APE=2∠MAD,只需证△NAQ∽△APQ.……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD.(一种方法即可)29.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P ,Q 两点为同族点.下图中的P ,Q 两点即为同族点.(1)已知点A 的坐标为(3-,1),①在点R (0,4),S (2,2),T (2,3-)中,为点A 的同族点的是; ②若点B 在x 轴上,且A ,B 两点为同族点,则点B 的坐标为; (2)直线l :3y x =-,与x 轴交于点C ,与y 轴交于点D ,①M 为线段CD 上一点,若在直线x n =上存在点N ,使得M ,N 两点为同族点,求n 的取值范围;②M 为直线l 上的一个动点,若以(m ,0N ,使得M ,N 两点为同族点,直接写出m 的取值范围.海淀九年级第二学期期末练习数 学 答 案2017.6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分) 11.2x ≠ 12.答案不唯一,例如(0,0) 13.1 14.答案不唯一,在10.89.6t -≤≤-范围内即可15.216.乙;乙的平均成绩更高,成绩更稳定.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.原式 =23-----------------------------------------------4分 =5 ---------------------------------------------- 5分18.解:原不等式组为()3221213x x x x +-≥+>-⎧⎪⎨⎪⎩, ①. ②由不等式①,得362x x +-≥, ----------------------------------- 1分解得2x ≥; ----------------------------------------- 2分由不等式①,得1233x x +>-,-------------------------------------- 3分解得4x <;---------------------------------- 4分∴ 原不等式组的解集是24x ≤<. ------------------------- 5分 19.连接AC ,则△ABC ≌ △ADC .----------------------------1分证明如下:在△ABC 与△ADC 中,AB AD AC AC CB CD ===⎧⎪⎨⎪⎩,,,------------4分 ∴△ABC ≌ △ADC .--------------5分20.解:∵关于x 的方程412m xx-=的根是2,∴4124m -=.-------------------------------------1分∴ 4m =.-------------------------------------2分∴()2428m m --+DCBA()244248=--⨯+ ------------------------------------ 4分 0=.-------------------------------------- 5分21.解:(1)∵ 直线3l y mx =-:过点A (2,0), ∴ 023m =-. ----------------------------------- 1分∴ 32m =. ---------------------------------- 2分∴ 直线l 的表达式为332y x =-. --------------- 3分 (2)n =32-或92. ------------------------------------- 5分22.(1)C ; --------------------------------------------- 2分 (2)① B ; ---------------------------------------------- 4分 ② 100. ----------------------------------------------- 5分23.(1)证明:∵EF 垂直平分AC ,∴F A =FC ,EA =EC , ---------------------------- 1分 ∵ AF ∥BC , ∴∠1=∠2. ∵AE =CE , ∴∠2=∠3. ∴ ∠1=∠3. ∵ EF ⊥AC , ∴ ∠ADF =∠ADE =90°. ∵ ∠1+∠4=90°,∠3+∠5=90°. ∴∠4=∠5.∴ AF =AE .-------------------------- 2分 ∴ AF =FC =CE =EA .∴ 四边形AECF 是菱形.---------------------- 3分 (2)解:∵∠BAC =∠ADF =90°, ∴AB ∥FE . ∵AF ∥BE , ∴四边形ABEF 为平行四边形. ∵AB =10, ∴FE =AB =10.---------------------------------------- 4分 ∵∠ACB =30°,∴tan ABAC ACB==∠∴12AECF S AC FE ⋅==菱形-------------------- 5分54321FE DCB A24.(1) 北京市2016年研究生、普通高校本专科学生、成人本专科学生北京市2016年研究生、普通高校本专科学生、成人本专科学生---------------------------------- 2分 (2)35.1;----------------------------------------------------- 3分(3)答案不唯一,预估理由与预估结果相符即可.--------------------- 5分25.(1)证明:∵D 为 AC的中点, ∴∠CBA =2∠CBE .----------------- 1分∵AB 是⊙O 的直径,∴∠ACB =90°, ∴∠1+∠CBA =90°.∴∠1+2∠CBE =90°.∵AP 是⊙O 的切线,∴∠P AB =∠1+∠P AC =90°.----------------------------- 2分 ∴∠P AC =2∠CBE .--------------------------------------3分(2)思路:①连接AD ,由D 是 AC 的中点,∠2=∠CBE , 由∠ACB =∠P AB =90°,得∠P =∠3=∠4,故AP =AE ; ②由AB 是⊙O 的直径,可得∠ADB =90°;由AP =AE ,得PE =2PD =2m ,∠5=12∠P AC =∠CBE =α -------- 4分 ③在Rt △P AD 中,由PD =m ,∠5=α,可求P A 的长;④在Rt △P AB 中,由P A 的长和∠2=α,可求BP 的长; 由BE PB PE =-可求BE 的长;⑤在Rt △BCE 中,由BE 的长和CBE α∠=,可求CE 的长. ------- 5分26.(1)答案不唯一,例如6y x=,28y x =-+,2611y x x =-+等; -------------------2分(2)答案不唯一,符合题意即可; -------------------------------------4分 (3)所写的性质与图象相符即可.------------------------- 5分A A27.(1)解:∵抛物线()222244y x mx m x m =-+-=--,其对称轴为1x =,∴1m =.∴该抛物线的表达式为223y x x =--.----------------------------- 2分 (2)解:当0y =时,2230x x --=,解得11x =-,23x =,∴抛物线与x 轴的交点为A (1-,0),B (3,0). ----------- 3分 ∴4AB =.当0x =时,3y =-,∴抛物线与y 轴的交点为C (0,3-). -------------------- 4分 ∵12CD AB =,∴CD =2. ∵CD ∥x 轴,点D 在点C 的左侧,∴点D 的坐标为(2-,3-). ----------------------5分(3)11t -≤≤.-------------------------------------------- 7分28.(1)证明:∵AB =AC ,AD 为BC 边上的高,∠BAD =20°, ∴∠BAC =2∠BAD =40°. ----------------1分 ∵CF ⊥AB , ∴∠AFC =90°. ∵E 为AC 中点,∴EF =EA =12AC .∴∠AFE =∠BAC =40°. ----------------2分(2)①画出一种即可. ------------------------------------------3分 ②证明:想法1:连接DE .∵AB=AC ,AD 为BC 边上的高, ∴D 为BC 中点.∵E 为AC 中点, ∴ED ∥AB ,∴∠1=∠APE .--------- 4分∵∠ADC =90°,E 为AC 中点,MN ECDB AFEAM PN ECDBA∴12AE DE CE AC ===. 同理可证12AE NE CE AC ===. ∴AE =NE =CE =DE .∴A ,N ,D ,C 在以点E 为圆心,AC 为直径的圆上. ----- 5分 ∴∠1=2∠MAD .---------------- 6分∴∠APE =2∠MAD .----------- 7分想法2:设∠MAD =α,∠DAC =β,∵CN ⊥AM ,∴∠ANC =90°. ∵E 为AC 中点, ∴12AE NE AC ==. ∴∠ANE =∠NAC =∠MAD +∠DAC =α+β.--------------------- 4分 ∴∠NEC =∠ANE +∠NAC =2α+2β.------------------------ 5分 ∵AB =AC ,AD ⊥BC , ∴∠BAC =2∠DAC =2β.∴∠APE =∠PEC -∠BAC =2α. --------------------------------- 6分 ∴∠APE =2∠MAD .--------------------------------------------- 7分想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,连接AQ ,∴∠1=∠2.∵AB =AC ,AD ⊥BC , ∴∠BAD =∠CAD .∴∠BAD -∠1=∠CAD -∠2, 即∠3=∠4. -------------- 4分 ∴∠3+∠NAQ =∠4+∠NAQ , 即∠P AQ =∠EAN .∵CN ⊥AM ,∴∠ANC =90°. ∵E 为AC 中点, ∴12AE NE AC ==. ∴∠ANE =∠EAN .--------------------------------------------- 5分 ∴∠P AQ =∠ANE . ∵∠AQP =∠AQP ,∴△P AQ ∽△ANQ .----------------------------------- 6分∴∠APE =∠NAQ =2∠MAD .---------------------------------- 7分E D CB A PM N4321QN MPAB CD E29.(1)①R ,S ;----------------------------------------------------------------------- 2分 ②(4-,0)或(4,0); --------------------------------------------------- 4分 (2)①由题意,直线3y x =-与x 轴交于C (3,0),与y 轴交于D (0,3-). 点M 在线段CD 上,设其坐标为(x ,y ),则有: 0x ≥,0y ≤,且3y x =-.点M 到x 轴的距离为y ,点M 到y 轴的距离为x , 则3x y x y +=-=.∴点M 的同族点N 满足横纵坐标的绝对值之和为3. 即点N 在右图中所示的正方形CDEF 上. ∵点E 的坐标为(3-,0),点N 在直线x n =上,∴33n -≤≤. ----------------------------- 6分 ②m ≤1-或m ≥1.----------------------------- 8分x。
2016年度海淀初三数学一模试题及答案解析(整编)
海淀区九年级第二学期期中练习数 学 2016.5学校__________班级___________姓名___________成绩___________考生须知1.本试卷共8页,共三道大题,29道小题,满分120分,考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、画图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日 在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为 A .96.5×107 B .9.65×107 C .9.65×108 D .0.965×109 2.如图是某个几何体的三视图,该几何体是A .长方体B .正方体C .圆柱D .三棱柱3.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色 外,无其他差别,从中随机摸出一个球,恰好是红球的概率为 A .B .C .D .4.下列图形中,是轴对称图形但不是中心对称图形的是A .B .C .D .143415455.如图,在ABCD 中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为A.5 B.4C.3 D.26.如图,等腰直角三角板的顶点A,C分别在直线,b上.若∥b,,则的度数为A.B.C.D.7.初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:则这40名同学投掷实心球的成绩的众数和中位数分别是A.9,8 B.9,8.5 C.8,8 D.8,8.58.京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数对”19043︒(,)表示图中承德的位置,“数对”160238︒(,)表示图中保定的位置,则与图中张家口aa1=35∠︒2∠35︒15︒10︒5︒DBA的位置对应的“数对”为(,)A.176145︒(,)B.17635︒(,)C.100145︒(,)D.10035︒9.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少为..A.5 000 B.10 000 C.15 000 D.20 00010.小明在暗室做小孔成像实验.如图1,固定光源(线段MN )发出的光经过小孔(动点K ) 成像(线段M'N')于足够长的固定挡板(直线l )上,其中MN// l .已知点K 匀速运动, 其运动路径由AB ,BC ,CD ,DA ,AC ,BD 组成.记它的运动时间为x ,M'N'的长度为y ,若y 关于x 的函数图象大致如图2所示,则点K 的运动路径可能为A .A →B →C →D →A B .B →C →D →A →B C .B →C →A →D →B D .D →A →B →C →D图1 图2二、填空题(本题共18分,每小题3分) 11. 分解因式:a 2b -2ab +b =________________.12. 如图,AB 为⊙O 的弦,OC ⊥AB 于点C .若AB=8,OC =3,则⊙O 的半径长为________.13.埃及《纸草书》中记载:“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.”设这个数是x ,可列方程为. 14.在下列函数①;②;③;④中,与众不同的一 个是_____(填序号),你的理由是________.21y x =+22y x x =+3y x=3y x =-15.北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为________万人,你的预估理由是____________.16.阅读下面材料:在数学课上,老师提出如下问题:小云的作法如下:老师说:“小云的作法正确.”请回答:小云的作图依据是________________________________________.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.计算:.18.解不等式组并写出它的所有整数解.... 19.已知,求代数式的值.20.如图,在△ABC 中,,AD BC ⊥于点D ,DE 为AC 边上的中线.求证:.21.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的)216tan 3012π-⎛⎫-︒++ ⎪⎝⎭41)3(2),14,2x x x x -≤+⎧⎪⎨-<-⎪⎩(250x x +-=2(1)(3)(2)(2)x x x x x ---++-90BAC ∠=︒BAD EDC ∠=∠能量消耗.对比手机数据发现小琼步行12 000步与小博步行9 000步消耗的能量相同.若每消耗1千卡能量小琼行走的步数比小博多10步,求小博每消耗1千卡能量需要行走多 少步.22.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC的平行线交DC 的延长线于点E . (1)求证:BD=BE ;(2)若BE =10,CE =6,连接OE ,求tan ∠OED 的值.23.在平面直角坐标系xOy 中,直线与双曲线ky x=(0k ≠)的一个交点为.(1)求k 的值;(2)将直线向上平移b (b>0)个单位长度后,与x 轴,y 轴分别交于点A ,点B ,与双曲线ky x =(0k ≠)的一个交点记为Q .若,求b 的值.y x =-)P m y x =-2BQ AB =ED ABC* *24.如图,AB ,AD 是⊙O 的弦,AO 平分.过点B作⊙O 的切线交AO 的延长线于点C ,连接CD ,BO . 延长BO 交⊙O 于点E ,交AD 于点F ,连接AE ,DE . (1)求证:是⊙O 的切线; (2)若,求的长.BAD ∠CD 3AE DE ==AF25.阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点,票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影,票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3 部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55 亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A梦之伴我同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入.2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015年中国内地动画电影票房收入为亿元;(2)右图为2015年国产动画电影票房金字塔,则B=;..(3)选择统计表或.统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.26.有这样一个问题:探究函数的图象与性质.小东对函数的图象与性质进行了探究. 下面是小东的探究过程,请补充完成:(1)函数的自变量x 的取值范围是全体实数; (2)下表是y 与x 的几组对应值.(1)(2)(3)y x x x =---(1)(2)(3)y x x x =---(1)(2)(3)y x x x =---①m =;②若M (7-,720-),N (,720)为该函数图象上的 两点,则;(3)在平面直角坐标系中, A (),B ()为该函数图象上的两点,且A 为范围内的最低点,A 点的位置如图所示.①标出点B 的位置;②画出函数()的图象.27.在平面直角坐标系中,抛物线(0m ≠)的顶点为A ,与x 轴交于B ,C 两点(点B 在点C 左侧),与y 轴交于点D . (1)求点A 的坐标; (2)若BC =4,①求抛物线的解析式;②将抛物线在C ,D 之间的部分记为图象G (包含C ,D 两点).若过点A 的直线与图象G 有两个交点,结合函数的图象,求k 的取值范围.n n =xOy ,A A x y ,B A x y -23x ≤≤(1)(2)(3)y x x x =---04x ≤≤xOy 224y mx mx m =-+-+(0)y kx b k =≠28.在△ABC中,AB=AC,∠BAC=,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB =,则GE的长为_______,并简述求GE长的思路.图1 备用图29.在平面直角坐标系中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的限距点的定义如下:若为直线PC与⊙C的一个交点,满足,则称为点P关于⊙C的限距点,右图为点P及其关于⊙C的限距点的示意图.(1)当⊙O的半径为1时.①分别判断点M ,N,T 关于⊙O的限距点是否存在?若存在,求其坐标;90︒2xOyP'2r PP r'≤≤P'P'(3,4)5(,0)2(1,2)②点D的坐标为(2,0),DE,DF分别切⊙O于点E,点F,点P在△DEF的边上.若点P关于⊙O的限距点存在,求点的横坐标的取值范围;P'P'(2)保持(1)中D,E,F三点不变,点P在△DEF的边上沿E→F→D→E的方向运动,⊙C的圆心C的坐标为(1,0),半径为r.请从下面两个问题中任选一个作答.温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.2015-2016年海淀区初三数学一模参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式1641=-+ ……………………4分4=5分解不等式①,得 10≤x .………………………2分 解不等式②,得7>x . ………………………3分∴ 原不等式组的解集为107≤<x .………………………4分 ∴ 原不等式组的所有整数解为8,9,10.………………………5分19. 解:原式4312222-++-+-=x x x x x ………………………3分 32-+=x x .………………………4分∵ 250x x +-=, ∴ 52=+x x .∴ 原式=532-=. .………………………5分20.证明:∵ 90BAC ∠=︒,∴ 90BAD DAC ∠+∠=︒. ∵ AD BC ⊥, ∴ 90ADC ∠=︒. ∴ 90DAC C ∠+∠=︒.∴ BAD C ∠=∠. ………………………2分 ∵ DE 为AC 边上的中线, ∴ DE EC =.∴ EDC C ∠=∠. .………………………4分∴ BAD EDC ∠=∠. ………………………5分21.解:设小博每消耗1千卡能量需要行走x 步.………………………1分由题意,得xx 90001012000=+ . ………………………3分 解得 30=x . ………………………4分 经检验,30=x 是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC BD =,AB ∥DC . ∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC BE =.∴ BD BE =. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形ABCD 为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==. 同理,可得132CF DF CD ===. ∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =.F ED AC∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分23. 解:(1)∵)P m 在直线y x =-上,∴m = ………………………1分∵P 在双曲线ky x=上,∴(6k ==-. ………………………2分图1 图2(2) ∵y x =-向上平移b (0b >)个单位长度后,与x 轴,y 轴分别交于A ,B ,∴(,0),(0,)A b B b . ………………………3分 作QH ⊥x 轴于H ,可得△HAQ ∽△OAB . 如图1,当点Q 在AB 的延长线上时, ∵2BQ AB =, ∴3===ABAQOA HA OB HQ . ∵OA OB b ==,∴3HQ b =,2HO b =. ∴Q 的坐标为(2,3)b b -. 由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时, 同理可得,Q 的坐标为(2,)b b -. 由点Q 在双曲线6y x=-上,可得3b =. 综上所述,1b =或3b =. ………………………5分24. (1) 证明:如图,连接OD . ………………………1分∵BC 为⊙O 的切线, ∴90CBO ∠=︒. ∵AO 平分BAD ∠, ∴12∠=∠. ∵OA OB OD ==, ∴1=4=2=5∠∠∠∠. ∴BOC DOC ∠=∠. ∴△BOC ≌△DOC . ∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分(2) ∵AE DE =, ∴AE DE =.∴34∠=∠. ………………………3分∵124∠=∠=∠, ∴123∠=∠=∠. ∵BE 为⊙O 的直径, ∴90BAE ∠=︒.∴123430∠=∠=∠=∠=︒.………………………4分 ∴90AFE ∠=︒ . 在Rt △AFE 中, ∵3AE =,︒=∠303, ∴AF =………………………5分25. (1) 45;………………………2分 (2) 21;………………………3分 (3) 2.4(120%) 2.88⨯+=.2015年中国内地动画电影市场票房收入前5名的票房成绩统计表………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分m=-;………………………1分26. (2) ①60n=;………………………2分②11(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1)224=-+-y mx mx m2(21)4m x x =-+-2(1)4m x =--.∴ 点A 的坐标为(1,4)-. ………………………2分(2)①由(1)得,抛物线的对称轴为x =1.∵ 抛物线与x 轴交于B ,C 两点(点B 在点C 左侧),BC =4,∴ 点B 的坐标为 (1,0)-,点C 的坐标为 (3,0).………………………3分∴ 240m m m ++-=.∴ 1m =.∴ 抛物线的解析式为223y x x =--.……4分② 由①可得点D 的坐标为 (0,3)-.当直线过点A ,D 时,解得1k =-.………5分当直线过点A ,C 时,解得2k =. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. …………7分28. 解:(1) ①补全图形,如图1所示. ………………………1分图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………………2分证明: 如图1.∵︒=∠=90,BAC AC AB ,∴︒=∠=∠45ACB B ,︒=∠+∠9021.∵射线BA 、CF 的延长线相交于点G ,∴︒=∠=∠90BAC CAG .∵四边形ADEF 为正方形,∴︒=∠+∠=∠9032DAF ,AF AD =.∴31∠=∠.∴△ABD ≌△ACF .…………………3分∴︒=∠=∠45ACF B .∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) 10GE =.…………………5分思路如下:a . 由G 为CF 中点画出图形,如图2所示.b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由2=AB ,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =; e . 在Rt △AMD 中,1AM =,3MD =,可得10AD =,即10GE FE AD ===. ……7分29.解:(1)①点M ,点T 关于⊙O 的限距点不存在;点N 关于⊙O 的限距点存在,坐标为(1,0).………………………2分②∵点D 的坐标为(2,0),⊙O 半径为1,DE ,DF 分别切⊙O 于点E ,点F , ∴切点坐标为13()2,,13()2,-.……………3分 如图所示,不妨设点E 的坐标为13()22,,点F 的坐标为13()22,-,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则13'()22E --,,13'()22F -,. 设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与''E F 的交点'P 满足2'1≤≤PP ,故点P 关于⊙O 的限距点存在,其横坐标x 满足112x -≤≤-.………5分 Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙O 的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P 关于⊙O 的限距点存在,其横坐标x =1.综上所述,点P 关于⊙O 的限距点的横坐标x 的范围为112x -≤≤-或x =1. ……………………6分(2)问题1: 9.………………8分 问题2:0 < r < 16.………………7分。
北京市海淀区九年级第二学期期末练习(二模)数学试卷及答案(word版)【含答案及解析】
北京市海淀区九年级第二学期期末练习(二模)数学试卷及答案(word版)【含答案及解析】姓名___________ 班级____________ 分数__________一、填空题1. 下图是测量玻璃管内径的示意图,点D正对“10mm”刻度线,点A正对“30mm”刻度线,DE∥AB.若量得AB的长为6mm,则内径DE的长为__________mm.2. 在一次飞镖比赛中,甲、乙两位选手各扔10次飞镖,下图记录了他们的比赛结果.你认为两人中技术更好的是__________,你的理由是_____________________________.二、解答题3. 计算:°.4. 解不等式组:5. 如图,在四边形ABCD中,AB=AD,CB=CD.请你添加一条线把它分成两个全等三角形,并给出证明.6. 若关于x的方程的根是2,求的值.7. 如图,在平面直角坐标系xOy中,过点A(2,0)的直线l:与y轴交于点B.(1)求直线l的表达式;(2)若点C是直线l与双曲线的一个公共点,AB=2AC,直接写出的值.8. 为了让市民享受到更多的优惠,某市针对乘坐地铁的人群进行了调查.(1)为获得乘坐地铁人群的月均花费信息,下列调查方式中比较合理的是;A.对某小区的住户进行问卷调查B.对某班的全体同学进行问卷调查C.在市里的不同地铁站,对进出地铁的人进行问卷调查(2)调查小组随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.① 根据图中信息,估计平均每人乘坐地铁的月均花费的范围是元;A.20—60 B.60—120 C.120—180②为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使30%左右的人获得折扣优惠.根据图中信息,乘坐地铁的月均花费达到元的人可以享受折扣.9. 如图,在△ABC中,∠BAC=90°,线段AC的垂直平分线交AC于D点,交BC于E点,过点A作BC的平行线交直线ED于F点,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=10,∠ACB=30°,求菱形AECF的面积.10. 阅读下列材料:2016年,北京市坚持创新、协调、绿色、开放、共享的发展理念,围绕首都城市战略定位,加快建设国际一流的和谐宜居之都,在教育、科技等方面保持平稳健康发展,实现了“十三五”良好开局.在教育方面,全市共有58所普通高校和81个科研机构培养研究生,全年研究生招生9.7万人,在校研究生29.2万人.全市91所普通高校全年招收本专科学生15.5万人,在校生58.8万人.全市成人本专科招生6.1万人,在校生17.2万人.在科技方面,2016年全年研究与试验发展(R&D)经费支出1479.8亿元,比2015年增长了6.9%,全市研究与试验发展(R&D)活动人员36.2万人,比上年增长1.1万人.2013年,2014年,2015年全年研究与试验发展(R&D)经费支出分别为1185.0亿元,1268.8亿元,1384.0亿元,分别比前一年度增长11.4%,7.1%,9.1%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)请用统计图或统计表将北京市2016年研究生、普通高校本专科学生、成人本专科学生的招生人数和在校生人数表示出来;(2)2015年北京市研究与试验发展(R&D)活动人员为万人;(3)根据材料中的信息,预估2017年北京市全年研究与试验发展(R&D)经费支出约亿元,你的预估理由是.11. 如图,AB是⊙O的直径,BC为弦,D为的中点,AC,BD相交于E点,过点A作⊙O的切线交BD的延长线于P点.(1)求证:∠PAC=2∠CBE;(2)若PD=m,∠CBE=α,请写出求线段CE长的思路.12. 已知y是x的函数,该函数的图象经过A(1,6),B(3,2)两点.(1)请写出一个符合要求的函数表达式;(2)若该函数的图象还经过点C(4,3),自变量x的取值范围是,该函数无最小值.①如图,在给定的坐标系xOy中,画出一个符合条件的函数的图象;②根据①中画出的函数图象,写出对应的函数值y约为;(3)写出(2)中函数的一条性质(题目中已给出的除外).13. 抛物线与轴交于A,B两点(A点在B点的左侧),与y轴交于点C,抛物线的对称轴为x=1.(1)求抛物线的表达式;(2)若CD∥x轴,点D在点C的左侧,,求点D的坐标;(3)在(2)的条件下,将抛物线在直线x=t右侧的部分沿直线x=t翻折后的图形记为G,若图形G与线段CD有公共点,请直接写出t的取值范围.14. 在锐角△ABC中,AB=AC,AD为BC边上的高,E为AC中点.(1)如图1,过点C作CF⊥AB于F点,连接EF.若∠BAD=20°,求∠AFE的度数;(2)若M为线段BD上的动点(点M与点D不重合),过点C作CN⊥AM于N点,射线EN,AB交于P点.①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M运动的过程中,始终有∠APE=2∠MAD.小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法:想法1:连接DE,要证∠APE=2∠MAD,只需证∠PED=2∠MAD.想法2:设∠MAD=α,∠DAC=β,只需用α,β表示出∠PEC,通过角度计算得∠APE=2α.想法3:在NE上取点Q,使∠NAQ=2∠MA D,要证∠APE=2∠MAD,只需证△NAQ∽△APQ.……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD.(一种方法即可)15. 在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点.下图中的P,Q两点即为同族点.(1)已知点A的坐标为(,1),①在点R(0,4),S(2,2),T(2,)中,为点A的同族点的是;②若点B在x轴上,且A,B两点为同族点,则点B的坐标为;(2)直线l:,与x轴交于点C,与y轴交于点D,①M为线段CD上一点,若在直线上存在点N,使得M,N两点为同族点,求n的取值范围;②M为直线l上的一个动点,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围.三、单选题16. 如图,用圆规比较两条线段和AB的长短,其中正确的是()A. B. C. D. 不确定17. 如图,在正方体的一角截去一个小正方体,所得立体图形的主视图是()A. B. C. D.18. 下列计算正确的是()A. B. C. D.19. 如图,ABCD中,AD=5,AB=3,∠BAD的平分线AE交BC于E点,则EC的长为()A. 4B. 3C. 2D. 120. 共享单车提供了便捷、环保的出行方式.小白同学在北京植物园打开某共享单车APP,如图,“”为小白同学的位置,“★”为检索到的共享单车停放点.为了到达距离最近的共享单车停放点,下列四个区域中,小白同学应该前往的是()A. F6B. E6C. D5D. F721. 在单词happy中随机选择一个字母,选到字母为p的概率是( )A. B. C. D.22. 如图,OA为⊙O的半径,弦BC⊥OA于P点.若OA=5,AP=2,则弦BC的长为()A. 10B. 8C. 6D. 423. 在下列函数中,其图象与x轴没有交点的是()A. B. C. D.24. 如图,在等边三角形三个顶点和中心处的每个“○”中各填有一个式子,若图中任意三个“○”中的式子之和均相等,则a的值为()A. 3B. 2C. 1D. 025. 利用量角器可以制作“锐角正弦值速查卡”.制作方法如下:如图,设OA=1,以O为圆心,分别以0.05,0.1,0.15,0.2,…,0.9,0.95长为半径作半圆,再以OA为直径作⊙M.利用“锐角正弦值速查卡”可以读出相应锐角正弦的近似值.例如:,.下列角度中正弦值最接近的是()A. 70°B. 50°C. 40°D. 30°四、填空题26. 若分式有意义,则x的取值范围是__________.27. 如图,在平面直角坐标系xOy中,A(3,4)为⊙O上一点,B为⊙O内一点,请写出一个符合要求的点B的坐标__________.28. 计算:=__________.29. 某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y ℃与向上攀登的高度x km的几组对应值如下表:30. 向上攀登的高度x/km0.51.01.52.0气温y/℃2.0td参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】第29题【答案】。
2016年北京市海淀区中考数学二模试卷及解析答案word版
2016年北京市海淀区中考数学二模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196 000米.196 000用科学记数法表示应为()A.1.96×105B.19.6×104C.1.96×106D.0.196×1062.(3分)中华文化底蕴深厚,地方文化活动丰富多彩.下面的四幅简笔画是从我国地方文化活动中抽象出来的,其中是轴对称图形的是()A.B.C.D.3.(3分)下列计算正确的是()A.a2•a3=a6 B.a8÷a4=a2C.(a3)2=a6D.2a+3a=6a4.(3分)如图,边长相等的正方形、正六边形的一边重合,则∠1的度数为()A.20°B.25°C.30°D.35°5.(3分)如图,数轴上有M,N,P,Q四个点,其中点P所表示的数为a,则数﹣3a所对应的点可能是()A.M B.N C.P D.Q6.(3分)在一次中学生趣味数学竞赛中,参加比赛的10名学生的成绩如下表所示:这10名学生所得分数的平均数是()A.86 B.88 C.90 D.92OA=2,则AB 的长为( )A .B .2 C .2 D .48.(3分)某通信公司自2016年2月1日起实行新的4G 飞享套餐,部分套餐资费标准如下:小明每月大约使用国内数据流量200MB ,国内主叫200分钟,若想使每月付费最少,则他应预定的套餐是( )A .套餐1B .套餐2C .套餐3D .套餐49.(3分)随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.该打车方式采用阶梯收费标准.打车费用y (单位:元)与行驶里程x (单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为20千米,则他的打车费用为( )A .32元B .34元C .36元D .40元10.(3分)如图1,抛物线y=﹣x2+bx+c的顶点为P,与x轴交于A,B两点.若A,B两点间的距离为m,n是m的函数,且表示n与m的函数关系的图象大致如图2所示,则n可能为()A.PA+AB B.PA﹣AB C.D.二、填空题(本题共18分,每小题3分)11.(3分)当分式的值为0时,x的值为.12.(3分)分解因式:3x2﹣12=.13.(3分)据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.如图所示,木杆EF的长为2m,它的影长FD为3m,测得OA为201m,则金字塔的高度BO为m.14.(3分)请写出一个图象过(2,3)和(3,2)两点的函数解析式.15.(3分)在某次试验数据整理过程中,某个事件发生的频率情况如下表所示.估计这个事件发生的概率是(精确到0.01),试举出一个随机事件的例子,使它发生的概率与上述事件发生的概率大致相同:.16.(3分)阅读下面材料:实际生活中,有时会遇到一些“不能接近的角”,如图中的∠P,我们可以采用下面的方法作一条直线平分∠P.如图,(1)作直线l与∠P的两边分别交于点A,B,分别作∠PAB和∠PBA的角平分线,两条角平分线相交于点M;(2)作直线k与∠P的两边分别交于点C,D,分别作∠PCD和∠PDC的角平分线,两条角平分线相交于点N;(3)作直线MN.所以,直线MN平分∠P.请回答:上面作图方法的依据是.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:(﹣)﹣1﹣(﹣2)0+|1﹣|+4cos45°.18.(5分)解不等式组并将解集在数轴上表示出来.19.(5分)已知关于x的方程x2﹣6x+k+7=0有两个不相等的实数根.(1)求k的取值范围;(2)当k为正整数时,求方程的根.20.(5分)已知:如图,在△ABC中,∠ACB=90°,点D在BC上,且BD=AC,过点D作DE⊥AB于点E,过点B作CB的垂线,交DE的延长线于点F.求证:AB=DF.21.(5分)为了提升阅读速度,某中学开设了“高效阅读”课.小静经过2个月的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500字的文章所用的时间相同.求小静现在每分钟阅读的字数.22.(5分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:四边形BDCF为菱形;(2)若四边形BDCF的面积为24,tan∠EAC=,求CF的长.23.(5分)在平面直角坐标系xOy中,直线l1:y=x+b与双曲线y=的一个交点为A(m,1).(1)求m和b的值;(2)过,B(1,3)的直线交l1于点D,交y轴于点E.若BD=2BE,求点D的坐标.24.(5分)如图,在△ABC中,∠C=90°,点E在AB上,以AE为直径的⊙O切BC于点D,连接AD.(1)求证:AD平分∠BAC;(2)若⊙O的半径为5,sin∠DAC=,求BD的长.25.(5分)据报道,2015年我国每千名儿童所拥有的儿科医生数为0.43(将0~14岁的人群定义为儿童),远低于世界主要发达国家,儿科医生存在较大缺口.根据2000﹣2015年报道的相关数据,绘制统计图表如下:全国人口、儿童人口、儿科医生及每千名儿童拥有的儿科医生数统计表根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)根据统计表估计2020年我国人口数约为亿人;(3)若2020年我国儿童占总人口的百分比与2015年相同,请你估算到2020年我国儿科医生需比2015年增加多少万人,才能使每千名儿童拥有的儿科医生数达到0.6.26.(5分)小明在做数学练习时,遇到下面的题目:题目:如图1,在△ABC中,D为AC边上一点,AB=AC,∠DBA=∠A,BD=BC.若CD=2,△BDC的周长为14,求AB的长.参考答案:AB=8.小明的计算结果与参考答案不同,因此他对参考答案产生了质疑.下面是他的分析、探究过程,请你补充完整.第一步,读题,并标记题目条件如下:在△ABC中,D为AC边上一点,①;②∠DBA=∠A;③;④;⑤.第二步,依据条件③、④、⑤,可以求得BD=BC=;第三步,作出△BCD,如图2所示;第四步,依据条件①,在图2中作出△ABC;(尺规作图,保留作图痕迹)第五步,对所作图形进行观察、测量,发现与标记的条件不符(填序号),去掉这个条件,题目中其他部分保持不变,求得AB的长为.27.(7分)已知:点P(m,n)为抛物线y=ax2﹣4ax+b(a≠0)上一动点.(1)P1(1,n1),P2(3,n2)为P点运动所经过的两个位置,判断n1,n2的大小,并说明理由;(2)当1≤m≤4时,n的取值范围是1≤n≤4,求抛物线的解析式.28.(7分)已知:AB=BC,∠ABC=90°.将线段AB绕点A逆时针旋转α(0°<α<90°)得到线段AD.点C关于直线BD的对称点为E,连接AE,CE.(1)如图,①补全图形;②求∠AEC的度数;(2)若AE=,CE=﹣1,请写出求α度数的思路.(可以不写出计算结果)29.(8分)对于某一函数给出如下定义:若存在实数p,当其自变量的值为p 时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如,下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x﹣1,y=,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2﹣bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3)记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2.函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为.2016年北京市海淀区中考数学二模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196 000米.196 000用科学记数法表示应为()A.1.96×105B.19.6×104C.1.96×106D.0.196×106【解答】解:196 000=1.96×105,故选:A.2.(3分)中华文化底蕴深厚,地方文化活动丰富多彩.下面的四幅简笔画是从我国地方文化活动中抽象出来的,其中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选C.3.(3分)下列计算正确的是()A.a2•a3=a6 B.a8÷a4=a2C.(a3)2=a6D.2a+3a=6a【解答】解:A、a2•a3=a5,原式计算错误,故本选项错误;B、a8÷a4=a4,原式计算错误,故本选项错误;C、(a3)2=a6,原式计算正确,故本选项正确;D、2a+3a=5a,原式计算错误,故本选项错误;故选C.4.(3分)如图,边长相等的正方形、正六边形的一边重合,则∠1的度数为()A.20°B.25°C.30°D.35°【解答】解:正方形的内角和为360°,每一个内角为90°;正六边形的内角和为720°,每一个内角为120°,则∠1=120°﹣90°=30°,故选C5.(3分)如图,数轴上有M,N,P,Q四个点,其中点P所表示的数为a,则数﹣3a所对应的点可能是()A.M B.N C.P D.Q【解答】解:∵点P所表示的数为a,点P在数轴的右边,∴﹣3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数﹣3a所对应的点可能是M,故选:A.6.(3分)在一次中学生趣味数学竞赛中,参加比赛的10名学生的成绩如下表所示:这10名学生所得分数的平均数是()A.86 B.88 C.90 D.92【解答】解:由题意和表格可得,这10名学生所得分数的平均数是:=88,故选B.7.(3分)如图,A,B,C,D为⊙O上的点,OC⊥AB于点E,若∠CDB=30°,OA=2,则AB的长为()A .B.2 C.2 D.4【解答】解:∵∠CDB=30°,∴∠COA=60°,∠A=30°,∴OE=OA=1,在Rt△AEO中,AE===,∵OC⊥AB∴AB=2AE=2.故选B.8.(3分)某通信公司自2016年2月1日起实行新的4G飞享套餐,部分套餐资费标准如下:小明每月大约使用国内数据流量200MB,国内主叫200分钟,若想使每月付费最少,则他应预定的套餐是()A.套餐1 B.套餐2 C.套餐3 D.套餐4【解答】解:套餐1:18+0.29×(200﹣100)+0.19×200=18+29+38=85(元);套餐2:28+0.29×(200﹣100)+0.19×(200﹣50)=28+29+28.5=85.5(元);套餐3:38+0.19×(200﹣50)=38+28.5=66.5(元);套餐4:48+0.19×(200﹣50)=48+28.5=76.5(元);∵85.5>85>76.5>66.5,∴套餐3付费最少,故选:C.9.(3分)随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.该打车方式采用阶梯收费标准.打车费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为20千米,则他的打车费用为()A.32元B.34元C.36元D.40元【解答】解:当行驶里程x≥12时,设y=kx+b,将(12,18)、(15,24)代入,得:,解得:,∴y=2x﹣6,当x=20时,y=2×20﹣6=34,∴如果小明某次打车行驶里程为20千米,则他的打车费用为34元;故选:B.10.(3分)如图1,抛物线y=﹣x2+bx+c的顶点为P,与x轴交于A,B两点.若A,B两点间的距离为m,n是m的函数,且表示n与m的函数关系的图象大致如图2所示,则n可能为()A.PA+AB B.PA﹣AB C.D.【解答】解;设A(x1,0),B(x2,0),则m=|x1﹣x2|==,∵顶点P(,)∴顶点P纵坐标为,∴PA==•,∵PA+AB=•+m,PA﹣AB=•﹣m,=,=.由图2可知,n可能是.故选C.二、填空题(本题共18分,每小题3分)11.(3分)当分式的值为0时,x的值为2.【解答】解:∵分式的值为0,∴x﹣2=0且2x+1≠0.解得:x=2.故答案为:2.12.(3分)分解因式:3x2﹣12=3(x﹣2)(x+2).【解答】解:原式=3(x2﹣4)=3(x+2)(x﹣2).故答案为:3(x+2)(x﹣2).13.(3分)据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.如图所示,木杆EF的长为2m,它的影长FD为3m,测得OA为201m,则金字塔的高度BO为134m.【解答】解:据相同时刻的物高与影长成比例,设金字塔的高度BO为xm,则可列比例为,,解得:x=134米,故答案为:134米.14.(3分)请写出一个图象过(2,3)和(3,2)两点的函数解析式y=(答案不唯一).【解答】解:设反比例函数解析式为y=(k≠0),∵图象经过点(3,2),∴3×2=k,k=6,∴反比例函数解析式为y=,故答案为:y=.15.(3分)在某次试验数据整理过程中,某个事件发生的频率情况如下表所示.估计这个事件发生的概率是0.25(精确到0.01),试举出一个随机事件的例子,使它发生的概率与上述事件发生的概率大致相同:从红桃A、黑桃A、梅花A、方块A四张牌中,随机抽取一张,则抽到方块A的概率为0.25.【解答】解:这个事件发生的概率是0.25,试举出一个随机事件的例子,使它发生的概率与上述事件发生的概率大致相同:从红桃A、黑桃A、梅花A、方块A四张牌中,随机抽取一张,则抽到方块A的概率为0.25.故答案为:0.25;从红桃A、黑桃A、梅花A、方块A四张牌中,随机抽取一张,则抽到方块A的概率为0.25.16.(3分)阅读下面材料:实际生活中,有时会遇到一些“不能接近的角”,如图中的∠P,我们可以采用下面的方法作一条直线平分∠P.如图,(1)作直线l与∠P的两边分别交于点A,B,分别作∠PAB和∠PBA的角平分线,两条角平分线相交于点M;(2)作直线k与∠P的两边分别交于点C,D,分别作∠PCD和∠PDC的角平分线,两条角平分线相交于点N;(3)作直线MN.所以,直线MN平分∠P.请回答:上面作图方法的依据是三角形三个内角的平分线相交于一点;两点确定一条直线.【解答】解:由作法得点M为△PAB的角平分线的交点,根据三角形三个内角的平分线相交于一点,则∠P的平分线必过点M,同样,点N为△PCD的角平分线的交点,则∠P的平分线必过点N,所以直线MN平分∠P.故答案为三角形三个内角的平分线相交于一点;两点确定一条直线.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:(﹣)﹣1﹣(﹣2)0+|1﹣|+4cos45°.【解答】解:原式=﹣3﹣1+﹣1+2=3﹣5.18.(5分)解不等式组并将解集在数轴上表示出来.【解答】解:解不等式8(x﹣1)>5x﹣17,得:x>﹣3,解不等式x﹣6≤,得:x≤2,∴不等式组的解集为:﹣3<x≤2,将不等式解集表示在数轴上如图:19.(5分)已知关于x的方程x2﹣6x+k+7=0有两个不相等的实数根.(1)求k的取值范围;(2)当k为正整数时,求方程的根.【解答】解:(1)由已知得:△=b2﹣4ac=(﹣6)2﹣4(k+7)=8﹣4k>0,解得:k<2.(2)∵k<2,且k为正整数,∴k=1.将k=1代入到方程x2﹣6x+k+7=0中,得x2﹣6x+8=0,∵x2﹣6x+8=(x﹣4)(x﹣2)=0,解得:x1=4,x2=2.20.(5分)已知:如图,在△ABC中,∠ACB=90°,点D在BC上,且BD=AC,过点D作DE⊥AB于点E,过点B作CB的垂线,交DE的延长线于点F.求证:AB=DF.【解答】证明:∵∠ACB=∠FBD=∠90°,∵DE⊥AB,∴∠A+∠ABC=∠ABC+∠BDE=90°,∴∠A=∠BDE.在△ABC与△BDF中,,∴△ABC≌△BDF,∴AB=DF.21.(5分)为了提升阅读速度,某中学开设了“高效阅读”课.小静经过2个月的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500字的文章所用的时间相同.求小静现在每分钟阅读的字数.【解答】解:设小静原来每分钟阅读的字数是x字,可得:,解得:x=500,经检验x=500是原方程的解,2×500+300=1300,答:小静现在每分钟阅读的字数是1300字.22.(5分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:四边形BDCF为菱形;(2)若四边形BDCF的面积为24,tan∠EAC=,求CF的长.【解答】(1)证明:DE⊥BC,∠ACB=90°,∴∠BED=∠ACB,∴DF∥AC,∵CF∥AB,∴四边形ADFC是平行四边形,∴AD=CF,∵D为AB的中点,∴AD=BD,∴BD=CF,∵BD∥CF,∴四边形BDCF是平行四边形,∵∠ACB=90°,D为AB的中点,∴DC=BD,∴四边形BDCF是菱形;(2)解:∵tan∠EAC==,∴设CE=2x,AC=3x,∵四边形BDCF是菱形,∴BE=CE=2x,∴BC=4x,∵四边形ADFC是平行四边形,∴DF=AC=3x,∵四边形BDCF的面积为24,∴=24,∴,解得:x=2(负数舍去),∴CE=4,DF=6,∴DE=EF=×6=3,∵DE⊥BC,∴∠CEF=90°,∴由勾股定理得:CF===5.23.(5分)在平面直角坐标系xOy中,直线l1:y=x+b与双曲线y=的一个交点为A(m,1).(1)求m和b的值;(2)过,B(1,3)的直线交l1于点D,交y轴于点E.若BD=2BE,求点D的坐标.【解答】解:(1)∵点A(m,1)在双曲线y=的图象上,∴1=,解得:m=6,∴点A的坐标为(6,1).又∵点A(6,1)在直线l1:y=x+b的图象上,∴1=×6+b,解得:b=﹣2.(2)依照题意画出图象,如图所示.∵b=﹣2,∴直线l1:y=x﹣2.设点E的坐标为(0,c),直线BE的解析式为y=kx+c,联立直线BE和l1得:,解得:.∴点D的坐标为(﹣,﹣).又∵BD=2BE,且点B(1,3)在直线y=kx+c上,∴,解得:或.故点D的坐标为(﹣1,﹣)或(3,﹣).24.(5分)如图,在△ABC中,∠C=90°,点E在AB上,以AE为直径的⊙O切BC于点D,连接AD.(1)求证:AD平分∠BAC;(2)若⊙O的半径为5,sin∠DAC=,求BD的长.【解答】解:(1)如图1所示:连接OD.∵BC与圆O相切,∴OD⊥BC.∴∠ODB=90°.∵∠C=90°,∴∠C=∠ODB.∴OD∥AC.∴∠ODA=∠DAC.∵OD=OA,∴∠OAD=∠ODA.∴∠OAD=∠DAC.∴AD平分∠BAC.(2)如图2所示:连接ED.∵⊙O的半径为5,AE是圆O的直径,∴AE=10,∠EDA=90°.∵∠EAD=∠CAD,sin∠DAC=,∴AD=×10=4.∴DC=×4=4,AC=×4=8.∵OD∥AC,∴△BOD∽△BAC.∴,即,解得:BD=.25.(5分)据报道,2015年我国每千名儿童所拥有的儿科医生数为0.43(将0~14岁的人群定义为儿童),远低于世界主要发达国家,儿科医生存在较大缺口.根据2000﹣2015年报道的相关数据,绘制统计图表如下:全国人口、儿童人口、儿科医生及每千名儿童拥有的儿科医生数统计表根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)根据统计表估计2020年我国人口数约为14亿人;(3)若2020年我国儿童占总人口的百分比与2015年相同,请你估算到2020年我国儿科医生需比2015年增加多少万人,才能使每千名儿童拥有的儿科医生数达到0.6.【解答】解:(1)m%=1﹣15.5%﹣68%=16.5%,即扇形统计图中m的值是16.5;(2)2000年至2005年人口增加13.06﹣12.67=0.39亿人,2005至2010年人口增加13.4﹣13.06=0.34亿人,2010年至2015年人口增加13.7﹣13.4=0.3亿人,由此可知每5年人口的增加数量逐渐稳定到0.3亿左右,故预测2015﹣2020增加的人口数为0.3亿,即14亿,故答案为:14;(3)设到2020年我国儿科医生需比2015年增加x万人,才能使每千名儿童拥有的儿科医生数达到0.6,(9.72+x)÷[14××10000÷1000]=0.6,解得,x≈4.14即到2020年我国儿科医生需比2015年增加4.14万人,才能使每千名儿童拥有的儿科医生数达到0.6.26.(5分)小明在做数学练习时,遇到下面的题目:题目:如图1,在△ABC中,D为AC边上一点,AB=AC,∠DBA=∠A,BD=BC.若CD=2,△BDC的周长为14,求AB的长.参考答案:AB=8.小明的计算结果与参考答案不同,因此他对参考答案产生了质疑.下面是他的分析、探究过程,请你补充完整.第一步,读题,并标记题目条件如下:在△ABC中,D为AC边上一点,①AB=AC;②∠DBA=∠A;③BD=BC;④CD=2;⑤△BDC的周长为14.第二步,依据条件③、④、⑤,可以求得BD=BC=6;第三步,作出△BCD,如图2所示;第四步,依据条件①,在图2中作出△ABC;(尺规作图,保留作图痕迹)第五步,对所作图形进行观察、测量,发现与标记的条件②不符(填序号),去掉这个条件,题目中其他部分保持不变,求得AB的长为18.【解答】解:第一步,由题意可知:①AB=AC,②∠DBA=∠A,③BD=BC,④CD=2,⑤△BDC周长为14.故答案分别为AB=AC,∠DBA=∠A,BD=BC,CD=2,△BDC周长为14.第二步,∵BD=BC,CD=2,△BDC周长为14,∴BD=BC=(14﹣2)=6.故答案为6.第三步,作线段BC的垂直平分线交CD的延长线于A,连接AB,△ABC就是所求的三角形.第五步,通过测量发现∠DBA≠∠A,所以②不符合.∵AB=AC,∴∠C=∠ABC,∵BD=BC,∴∠C=∠BDC,∴∠C=∠ABC=∠BDC,∴△ABC∽△BDC,∴=,∴=,∴AB=18,故答案分别为②,18.27.(7分)已知:点P(m,n)为抛物线y=ax2﹣4ax+b(a≠0)上一动点.(1)P1(1,n1),P2(3,n2)为P点运动所经过的两个位置,判断n1,n2的大小,并说明理由;(2)当1≤m≤4时,n的取值范围是1≤n≤4,求抛物线的解析式.【解答】解:(1)n1=n2.理由如下:∵y=ax2﹣4ax+b=a(x﹣2)2+b﹣4a,∴该抛物线的对称轴为x=2,∴P1(1,n1)、P2(3,n2)两点关于对称轴对称,∴n1=n2.(2)①当a<0时,有,解得:,此时抛物线的解析式为y=﹣x2+3x+1;②当a>0时,有,解得:,此时抛物线的解析式为y=x2﹣3x+4.综上可知:抛物线的解析式为y=﹣x2+3x+1或y=x2﹣3x+4.28.(7分)已知:AB=BC,∠ABC=90°.将线段AB绕点A逆时针旋转α(0°<α<90°)得到线段AD.点C关于直线BD的对称点为E,连接AE,CE.(1)如图,①补全图形;②求∠AEC的度数;(2)若AE=,CE=﹣1,请写出求α度数的思路.(可以不写出计算结果)【解答】解:(1)①如图,②连结BE,如图,∵点C关于直线BD的对称点为E,∴BE=BC,∴∠BEC=∠C,∴∠BEC=(180°﹣∠EBC)=90°﹣∠EBC,∵BA=BC,∴BA=BE,∴∠BAE=∠BEA,∴∠BEA=(180°﹣∠ABE)=90°﹣∠ABE,∴∠AEC=∠BEC+∠BEA=90°﹣∠EBC+90°﹣∠ABE=180°﹣(∠EBC+∠ABE)=180°﹣×90°=135°;(2)作AH⊥CE于H,AG⊥BD于G,如图,∵∠AEC=135°,∴∠AEH=45°,∴△AHE为等腰直角三角形,∴AH=HE=AE=1,∵点C关于直线BD的对称点为E,∴CF=EF=CE=,∴HF=HE+EF=1+=,易得四边形AGFH为矩形,∴AG=HF=,∵线段AB绕点A逆时针旋转α(0°<α<90°)得到线段AD,∴AB=AD,∠BAD=α,∵∠ABD+∠CBF=90°,∠CBF+∠C=90°,∴∠ABD=∠C,∴△ABD≌△BCE,∴∠CBE=∠BAD=α,AG=BF=,在Rt△BFE中,BE===,∴BE=AB=AE=,∴△ABE为等边三角形,∴∠ABE=60°,∴∠CBE=30°,∴∠α=30°.29.(8分)对于某一函数给出如下定义:若存在实数p,当其自变量的值为p 时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如,下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x﹣1,y=,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2﹣bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3)记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2.函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为.【解答】解:(1)∵函数y=x﹣1,令y=x,则x﹣1=x,无解;∴函数y=x﹣1没有不变值;∵函数y=,令y=x,则x=,解得:x=±1,∴函数y=的不变值为±1,q=1﹣(﹣1)=2,∵函数y=x2,令y=x,则x=x2,解得:x1=0,x2=1,∴函数y=x2的不变值为:0或1,q=1﹣0=1;(2)①函数y=2x2﹣bx,令y=x,则x=2x2﹣bx,整理得:x(2x﹣b﹣1)=0,∵q=0,∴x=0且2x﹣b﹣1=0,解得:b=﹣1;②由①知:x(2x﹣b﹣1)=0,∴x=0或2x﹣b﹣1=0,解得:x1=0,x2=,∵1≤b≤3,∴1≤x2≤2,∴1﹣0≤q≤2﹣0,∴1≤q≤2;(3)∵记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2.∴函数G的图象关于x=m对称,∴G:y=,∵当x2﹣2x=x时,x3=0,x4=3;当(2m﹣x)2﹣2(2m﹣x)=x时,△=1+8m,当△<0,即m<﹣时,q=x4﹣x3=3;当△≥0,即m≥﹣时,x5=,x6=,①当﹣≤m≤0时,x3=0,x4=3,∴x6<0,∴x4﹣x6>3(不符合题意,舍去);②∵当x5=x4时,m=1,当x6=x3时,m=3;当0<m<1时,x3=0(舍去),x4=3,此时0<x5<x4,x6<0,q=x4﹣x6>3(舍去);当1≤m≤3时,x3=0(舍去),x4=3,此时0<x5<x4,x6>0,q=x4﹣x6<3;当m>3时,x3=0(舍去),x4=3(舍去),此时x5>3,x6<0,q=x5﹣x6>3(舍去);综上所述:m的取值范围为1≤m≤3或m<﹣.赠送:初中数学几何模型【模型一】半角型:图形特征:F AB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-aa B E挖掘图形特征:x-aa-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.。
中考试题北京市海淀区二模试卷.docx
2016年北京市海淀区中考二模数学试卷一、单选题(共10小题)1.2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196 000米.196 000用科学记数法表示应为()A.1.96×105B.19.6×104C.1.96×106D.0.196×106考点:科学记数法和近似数、有效数字答案:A试题解析:科学记数法是把一个数表示成 a×的形式,其中1≤|a|<10,n为整数.所以196000=1.96 .故本题选A.2.中华文化底蕴深厚,地方文化活动丰富多彩.下面的四幅简笔画是从我国地方文化活动中抽象出来的,其中是轴对称图形的是()A.B.C.D.考点:轴对称与轴对称图形答案:C试题解析:轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形。
所以是轴对称图形的是C图形。
故本题选C.3.下列计算正确的是()A.B.C.D.考点:幂的运算答案:C试题解析:故A错误;故B错误;故D错误。
故本题选C. 4.如图,边长相等的正方形、正六边形的一边重合,则的度数为()A.20°B.25°C.30°D.35°考点:多边形及其性质答案:C试题解析:正六边形的内角为,正方形内角为,所以。
故本题选C. 5.如图,数轴上有M,N,P,Q四个点,其中点P所表示的数为a,则数所对应的点可能是()A.M B.N C.P D.Q考点:实数的相关概念答案:A试题解析:因为点P所表示的数为a,在原点的右侧,则,数所对应的点应在原点左侧,且与原点距离是点P与原点距离的3倍,所以数所对应的点可能是点M。
故本题选A.6.在一次中学生趣味数学竞赛中,参加比赛的10名学生的成绩如下表所示:这10名学生所得分数的平均数是()A.86B.88C.90D.92考点:平均数、众数、中位数答案:B试题解析:这10名学生所得分数的平均数= .故本题选B7.如图,,,,为⊙上的点,于点,若,,则的长为()A.B.C.2D.4考点:垂径定理及推论答案:B试题解析:因为,所以,则,在中,OA=2,,则AE= ,AB=2.故本题选B.8.某通信公司自2016年2月1日起实行新的4G飞享套餐,部分套餐资费标准如下:小明每月大约使用国内数据流量200MB,国内主叫200分钟,若想使每月付费最少,则他应预定的套餐是()A.套餐1B.套餐2C.套餐3D.套餐4考点:统计图的分析答案:C试题解析:若选套餐1则每月付费=18+0.29 =85(元).若选套餐2则每月付费=28+0.29 =85.5(元).若选套餐3则每月付费=38+=66.5(元).若选套餐4则每月付费=48+ =76.5(元).故选套餐3,本题选C.9.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.该打车方式采用阶梯收费标准.打车费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为20千米,则他的打车费用为()A.32元B.34元C.36元D.40元考点:一次函数的图像及其性质答案:B试题解析:当时,设,过点(12,18),(15,24),所以,解得,所以,当求得y=34。
2016北京海淀区中考二模数学试题(word答案)
海淀区九年级第二学期期末练习数学试卷参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式31+4=-- ……………………4分5=.………………………5分18.解:原不等式组为8(1)5171062x x x x ->-⎧⎪⎨--≤⎪⎩,①,② 解不等式①,得 3x >-. ………………………2分 解不等式②,得 2≤x . ………………………3分∴ 原不等式组的解集为32x -≤<.………………………4分 不等式组的解集在数轴上表示如下:………………………5分19. 解:(1)∵ 原方程有两个不相等的实数根,∴ 0Δ>.即 364(7)0k -+>.∴ 2k <..………………………2分 (2)∵2k <且k 为正整数,∴1=k ..………………………3分 ∴0862=+-x x .∴1224x x ==,..………………………5分20.证明:∵ AB DE BC BF ⊥⊥,,90ACB ∠=︒, ∴90DBF BEF ACB ∠=∠=∠=︒.∴ ︒=∠+∠︒=∠+∠9029021F ,. ∴ F ∠=∠1..………………………2分 在中和△△DFB ABC ,1F ACB DBF AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴ ABC △≌DFB △.………………………4分 ∴DF AB =..………………………5分21.解:设小静原来每分钟阅读x 个字.…………1分由题意,得300291003500+=x x . ………………………3分 解得 500=x . ………………………4分 经检验,500=x 是原方程的解,且符合题意. ∴130030050023002=+⨯=+x .答:小静现在每分钟阅读1300个字. ………………………5分22.(1)证明:∵ 90ACB ∠=︒, ∴AC BC ⊥.∵DE BC ⊥,∴AC ∥DE .又∵ CF ∥AD ,∴ 四边形ACFD 为平行四边形. …………1分∴CF AD =.∵ CD AB 为边上的中线,∴BD AD =.∴CF BD =.∴四边形BDCF 为平行四边形.∵ BC DE ⊥,∴四边形BDCF 为菱形. ………………………3分(2)解:在Rt ACE △中,∵ 2tan 3EC EAC AC ∠==, ∴设 2,3CE x AC DF x ===.∵菱形BDCF 的面积为24,∴ 1242DF BC ⋅=.………………………4分 ∴ 24DF EC ⋅=.∴ 3224x x ⋅=.∴ 12x =,22x =-(舍).∴4CE =,12EF =3DF =. ∴5CF =. ………………………5分23. 解:(1)∵点)1,(m A 在双曲线xy 6=上, ∴6=m . ………………………1分∵点)1,6(A 在直线b x y +=21上, ∴2-=b . ………………………2分(2)当点B 在线段DE 上时,如图1,F过点D 作DP ⊥y 轴于P ,过点B 作BQ ⊥y 轴于Q . 可得EQB △∽EPD △.∵BE BD 2=, ∴13BQBEDP DE ==.∵1BQ =,∴3DP =.∵点D 在直线1l 上, ∴)213(-,的坐标为点D .………………4分当点B 在线段DE 的延长线上时,如图2,5(1)2--,.同理,由BE BD 2=,可得点D 的坐标为综上所述,点D 的坐标为)213(-,或5(1)2--,.…………… 5分24. (1)证明:连接OD .………………………1分 ∵⊙O 切BC 于点D , 90C ∠=︒,∴90ODB C ∠=∠=︒.∴OD ∥AC .∴DAC ODA ∠=∠.∵OD OA =, ∴OAD ODA ∠=∠.∴DAC OAD ∠=∠. ∴AD 平分BAC ∠.………………………2分 (2)解:连接DE .∵AE 为直径,∴︒=∠90ADE .图1图2∵OAD DAC ∠=∠,sin 5DAC ∠=,∴sin 5OAD ∠=. ∵5OA =,∴10AE =.∴AD =………………………3分∴4CD =,8AC =.∵OD ∥AC ,∴BOD BAC △∽△.………………………4分 ∴OD BD AC BC=. 即584BD BD =+. ∴203BD =.………………………5分25.(1)m 16.5=;………………………2分(2)14;(估值在合理范围内即可) ………………………3分(3)14000016.5%0.69.721000⨯⨯- 4.14=. 答:2020年我国儿科医生需比2015年增加4.14万人,才能使每千名儿童拥有的儿科医 生数达到0.6. ………………………5分26. 第二步:6BD BC ==;………………………1分第四步:如图,△ABC 即为所求. ………………3分第五步: ② ,18.………………5分27. 解:(1)12n n =. ……………… 1 分理由如下:由题意可得抛物线的对称轴为2x =.∵1P (1,1n ),2P (3,2n )在抛物线24y ax ax b =-+上,∴12n n =.………………3分(2)当0a >时,抛物线的顶点为(2,1),且过点(4,4), ∴抛物线的解析式为23344y x x =-+.………………5分 当0a <时,抛物线的顶点为(2,4),且过点(4,1), ∴抛物线的解析式为23314y x x =-++. 综上所述,抛物线的解析式为23344y x x =-+或23314y x x =-++.…………7 分28. 解:(1)①补全图形,如图1所示.…………1分②连接BE .∵AB BC =,,E C 关于直线BD 对称,∴AB BC BE ==.………………………2分∴C BEC ∠=∠, BAE BEA ∠=∠.∵90ABC ∠=︒,∴270BAE AEC C ∠+∠+∠=︒.∴135AEC ∠=︒..………………………4分(2)求解思路如下:a .连接AC ,过点A 作AF ⊥CE ,交CE 延长线于点F ,如图2所示;b .由(1)可求︒=∠135AEC ,由AE =可求1AF EF ==;c .由1CE =,可求2AC =, AB BC ==ABE 为等边三角形;d .由C ,E 两点关于直线BD 对称,A B A D =,可求15EBD ∠=︒,75ABD ∠=︒,30α=︒. ……………………7分29.解:(1)函数1y x =-没有不变值; ………………1分 函数1y x=有1-和1两个不变值,其不变长度为2;………………2分 函数2y x =有0和1两个不变值,其不变长度为1;………………3分(2)①∵函数22y x bx =-的不变长度为零,∴方程22x bx x -=有两个相等的实数根.∴1b =-. ………………4分②解方程22x bx x -=,得10x =,212b x +=.………………5分 ∵13b ≤≤,∴212x ≤≤.∴函数22y x bx =-的不变长度q 的取值范围为12q ≤≤. ………………6分(3)m 的取值范围为13m ≤≤或18m <-. ………………8分。
2016年北京市海淀区普通中学中考数学模拟试卷(二)(1月份)(解析版)
2016年北京市海淀区普通中学中考数学模拟试卷(二)(1月份)一.选择题1.(3分)如果a与﹣2互为倒数,那么a是()A.﹣2 B.﹣ C.D.22.(3分)长城总长约为6700010米,用科学记数法表示为(保留两位有效数字)()A.6.7×105米B.6.7×106米C.6.7×107米D.6.7×108米3.(3分)在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为()A.60米B.40米C.30米D.25米4.(3分)如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF5.(3分)图中∠BOD的度数是()A.75°B.80°C.135° D.150°6.(3分)甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个 B.3个 C.4个 D.5个7.(3分)如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.8.(3分)如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15°的圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面()A.5﹣6箱B.6﹣7箱C.7﹣8箱D.8﹣9箱二.填空题9.(3分)如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.10.(3分)汽车刹车距离S(m)与速度v(km/h)之间的函数关系是S=v2,在一辆车速为100km/h的汽车前方80m处,发现停放一辆故障车,此时刹车有危险.11.(3分)如下图,直线a∥b,则∠A=度.12.(3分)如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为.三.解答题13.计算:.14.化简求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=2.15.解方程:.16.一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2.求x的取值范围.17.如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(2)将(1)中补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,画出这个梯形.18.如图所示,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.求证:AB是⊙O的切线.19.已知二次函数的图象经过(0,0)、(1,﹣1)、(﹣2,14)三点,(1)求这个二次函数的解析式及顶点坐标;(2)设这个二次函数的图象与直线y=x+t(t≤1),相交于(x1,y1),(x2,y2)两点(x1≠x2),求:t的取值范围.20.某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌的电脑中各选购一种型号的电脑.XX电脑公司电脑单价单位(元)A型:6000B型:4000C型:2500D型:5000E型:2000(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌的电脑共36台(价格如表所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有多少台?2016年北京市海淀区普通中学中考数学模拟试卷(二)(1月份)参考答案与试题解析一.选择题1.(3分)如果a与﹣2互为倒数,那么a是()A.﹣2 B.﹣ C.D.2【解答】解:∵a与﹣2互为倒数,∴a是﹣.故选:B.2.(3分)长城总长约为6700010米,用科学记数法表示为(保留两位有效数字)()A.6.7×105米B.6.7×106米C.6.7×107米D.6.7×108米【解答】解:6700 010=6.70001×106≈6.7×106,故选B.3.(3分)在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为()A.60米B.40米C.30米D.25米【解答】解:据相同时刻的物高与影长成比例,设旗杆的高度为xm,则可列比例式,,解得x=30.故选C.4.(3分)如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.5.(3分)图中∠BOD的度数是()A.75°B.80°C.135° D.150°【解答】解:连接OC,由圆周角定理知,∠BOD=2(∠A+∠E)=2×(35°+40°)=150°,故选D.6.(3分)甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个 B.3个 C.4个 D.5个【解答】解:根据题意和图象可知:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了1﹣0.5=0.5小时.④相遇后甲的速度<乙的速度.⑤乙先到达目的地.故只有⑤不正确.故选C.7.(3分)如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.【解答】解:从正面可看到,左边2个正方形,中间1个正方形,右边1个正方形.故选D.8.(3分)如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15°的圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面()A.5﹣6箱B.6﹣7箱C.7﹣8箱D.8﹣9箱【解答】解:设需要x箱马赛克片.由题意:×34=125x,∴x≈6.5.∴需要马赛克片6﹣7箱.故选B.二.填空题9.(3分)如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣b2=(a+b)(a﹣b).10.(3分)汽车刹车距离S(m)与速度v(km/h)之间的函数关系是S=v2,在一辆车速为100km/h的汽车前方80m处,发现停放一辆故障车,此时刹车会有危险.【解答】解:把v=100代入S=v2得:汽车刹车距离s=100>80,因此会有危险.故答案为:会.11.(3分)如下图,直线a∥b,则∠A=25度.【解答】解:∵直线a∥b,∴∠1=∠ECD=55°,∵∠1是△ABD的外角,∴∠1=∠ABD+∠A,即55°=30°+∠A,∠A=55°﹣30°=25°.故∠A=25°.12.(3分)如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为7.【解答】解:设DF=x,FC=y,∵▱ABCD,∴AD=BC,CD=AB,∵BE为折痕,∴AE=EF,AB=BF,∵△FDE的周长为8,△FCB的周长为22,∴BC=AD=8﹣x,AB=CD=x+y,∴y+x+y+8﹣x=22,解得y=7.故答案为7.三.解答题13.计算:.【解答】解:=﹣8×+2÷(﹣)=﹣4+2÷=﹣4﹣2(2)=﹣4﹣12﹣6=﹣16﹣614.化简求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=2.【解答】解:(a+b)2﹣2a(b+1)﹣a2b÷b,=a2+2ab+b2﹣2ab﹣2a﹣a2b÷b,=b2﹣2a,当a=,b=2时,原式=22﹣2×=3.15.解方程:.【解答】解:去分母得:3(x﹣1)=5(x+1),(2分)3x﹣3=5x+5,(3分)3x﹣5x=5+3,(4分)﹣2x=8,(5分)x=﹣4.(6分)经检验:x=﹣4是原方程的解.故原方程的解是:x=﹣4.16.一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2.求x的取值范围.【解答】解:矩形的周长是2(x+10)cm,面积是10xcm2,(2分)根据题意,得,(4分)解这个不等式组得.(2分)所以x的取值范围是10<x<30.(2分)17.如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(2)将(1)中补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,画出这个梯形.【解答】解:如图:18.如图所示,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.求证:AB是⊙O的切线.【解答】证明:连接OC,∵OA=OB,C为AB中点,∴OC⊥AB,∵OC为半径,∴AB是⊙O的切线.19.已知二次函数的图象经过(0,0)、(1,﹣1)、(﹣2,14)三点,(1)求这个二次函数的解析式及顶点坐标;(2)设这个二次函数的图象与直线y=x+t(t≤1),相交于(x1,y1),(x2,y2)两点(x1≠x2),求:t的取值范围.【解答】解:(1)设抛物线y=ax2+bx+c∵二次函数y=ax2+bx+c的图象经过(0,0)、(1,﹣1)、(﹣2,14)三点,∴,解得:.则这个二次函数的表达式为y=2x2﹣3x;(2)①当t=1时,直线y=x+t(t≤1)可化为y=x+1,代入二次函数解析式y=2x2﹣3x得,2x2﹣4x﹣1=0,△=(﹣4)2﹣4×2×(﹣1)=24>0,故直线与抛物线有两个不同的交点.②当直线与抛物线相切时t取得最小值,把y=x+t代入抛物线y=2x2﹣3x得,2x2﹣4x﹣t=0.△=(﹣4)2﹣4×2×(﹣t)=0,即t=﹣2,故t的取值范围是﹣2<t≤1.20.某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌的电脑中各选购一种型号的电脑.XX电脑公司电脑单价单位(元)A型:6000B型:4000C型:2500D型:5000E型:2000(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌的电脑共36台(价格如表所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有多少台?【解答】解:(1)列表如图:A B C甲乙D(D,A)(D,B)(D ,C)E(E,A)(E,B)(E,C)有6种可能结果:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E);(2)因为选中A型号电脑有2种方案,即(A,D)(A,E),所以A型号电脑被选中的概率是;(3)由(2)可知,当选用方案(A,D)时,设购买A型号、D型号电脑分别为x,y台,根据题意,得解得,经检验不符合实际,舍去;当选用方案(A,E)时,设购买A型号、E型号电脑分别为a,b台,根据题意,得解得.所以希望中学购买了7台A型号电脑.。
中考试题北京市海淀区二模试卷.docx
2016年北京市海淀区中考二模数学试卷一、单选题(共10小题)1.2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196 000米.196 000用科学记数法表示应为()A.1.96×105B.19.6×104C.1.96×106D.0.196×106考点:科学记数法和近似数、有效数字答案:A试题解析:科学记数法是把一个数表示成 a×的形式,其中1≤|a|<10,n为整数.所以196 000=1.96 .故本题选A.2.中华文化底蕴深厚,地方文化活动丰富多彩.下面的四幅简笔画是从我国地方文化活动中抽象出来的,其中是轴对称图形的是()A.B.C.D.考点:轴对称与轴对称图形答案:C试题解析:轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形。
所以是轴对称图形的是C图形。
故本题选C.3.下列计算正确的是()A.B.C.D.考点:幂的运算答案:C试题解析:故A错误;故B错误;故D错误。
故本题选C.4.如图,边长相等的正方形、正六边形的一边重合,则的度数为()A.20°B.25°C.30°D.35°考点:多边形及其性质答案:C试题解析:正六边形的内角为,正方形内角为,所以。
故本题选C.5.如图,数轴上有M,N,P,Q四个点,其中点P所表示的数为a,则数所对应的点可能是()A.M B.N C.P D.Q考点:实数的相关概念答案:A试题解析:因为点P所表示的数为a,在原点的右侧,则,数所对应的点应在原点左侧,且与原点距离是点P与原点距离的3倍,所以数所对应的点可能是点M。
故本题选A.6.在一次中学生趣味数学竞赛中,参加比赛的10名学生的成绩如下表所示:这10名学生所得分数的平均数是()A.86B.88C.90D.92考点:平均数、众数、中位数答案:B试题解析:这10名学生所得分数的平均数= .故本题选B 7.如图,,,,为⊙上的点,于点,若,,则的长为()A.B.C.2D.4考点:垂径定理及推论答案:B试题解析:因为,所以,则,在中,OA=2,,则AE= ,AB=2.故本题选B.8.某通信公司自2016年2月1日起实行新的4G飞享套餐,部分套餐资费标准如下:小明每月大约使用国内数据流量200MB,国内主叫200分钟,若想使每月付费最少,则他应预定的套餐是()A.套餐1B.套餐2C.套餐3D.套餐4考点:统计图的分析答案:C试题解析:若选套餐1则每月付费=18+0.29 =85(元).若选套餐2则每月付费=28+0.29 =85.5(元).若选套餐3则每月付费=38+ =66.5(元).若选套餐4则每月付费=48+ =76.5(元).故选套餐3,本题选C.9.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.该打车方式采用阶梯收费标准.打车费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为20千米,则他的打车费用为()A.32元B.34元C.36元D.40元考点:一次函数的图像及其性质答案:B试题解析:当时,设,过点(12,18),(15,24),所以,解得,所以,当求得y=34。
2016年北京市海淀区普通中学中考数学模拟试卷(二)(1月份)-含详细解析
2016年北京市海淀区普通中学中考数学模拟试卷(二)(1月份)副标题一、选择题(本大题共8小题,共24.0分)1.如果a与-2互为倒数,那么a是()A. B. C. D. 22.长城总长约为6700010米,用科学记数法表示为(保留两位有效数字)()A. 米B. 米C. 米D. 米3.在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为()A. 60米B. 40米C. 30米D. 25米4.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A. CD、EF、GHB. AB、EF、GHC. AB、CD、GHD. AB、CD、EF5.图中∠BOD的度数是()A.B.C.D.6.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A. 2个B. 3个C. 4个D. 5个7.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A. B. C. D.8.如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15°的圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面()A. 箱B. 箱C. 箱D. 箱二、填空题(本大题共5小题,共15.0分)9.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式______.10.汽车刹车距离S(m)与速度v(km/h)之间的函数关系是S=v2,在一辆车速为100km/h的汽车前方80m处,发现停放一辆故障车,此时刹车______ 有危险.11.如下图,直线a∥b,则∠A= ______ 度.12.如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为______ .13.一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2.则x的取值范围是__________.三、计算题(本大题共1小题,共6.0分)14.计算:.四、解答题(本大题共6小题,共48.0分)15.化简求值:(a+b)2-2a(b+1)-a2b÷b,其中a=,b=2.16.解方程:.17.如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(2)将(1)中补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,画出这个梯形.18.如图所示,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.求证:AB是⊙O的切线.19.已知二次函数的图象经过(0,0)、(1,-1)、(-2,14)三点,(1)求这个二次函数的解析式及顶点坐标;(2)设这个二次函数的图象与直线y=x+t(t≤1),相交于(x1,y1),(x2,y2)两点(x1≠x2),求:t的取值范围.20.某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌的电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌的电脑共36台(价格如表所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有多少台?答案和解析1.【答案】B【解析】解:∵a与-2互为倒数,∴a是-.故选:B.根据乘积是1的两个数叫做互为倒数解答.本题考查了倒数的定义,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.是基础题,熟记概念是解题的关键.2.【答案】B【解析】解:6700010=6.70001×106≈6.7×106,故选B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定a×10n (1≤|a|<10,n为整数)中n的值是易错点;有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.本题考查了对科学记数法的掌握和有效数字的运用.用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.3.【答案】C【解析】解:据相同时刻的物高与影长成比例,设旗杆的高度为xm,则可列比例式,,解得x=30.故选C.在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似本题考查同学们利用所学知识解决实际问题的能力,属于基础题.4.【答案】B【解析】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.考查了勾股定理逆定理的应用.5.【答案】D【解析】解:连接OC,由圆周角定理知,∠BOD=2(∠A+∠E)=2×(35°+40°)=150°,故选D.连接OC,根据圆周角定理求解即可.本题利用了圆周角定理求解.6.【答案】C【解析】解:根据题意和图象可知:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了1-0.5=0.5小时.④相遇后甲的速度<乙的速度.⑤乙先到达目的地.故只有⑤不正确.故选C.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.主要考查了函数图象的读图能力.7.【答案】D【解析】解:从正面可看到,左边2个正方形,中间1个正方形,右边1个正方形.故选D.找到从正面看所得到的图形即可.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8.【答案】B【解析】解:设需要x箱马赛克片.由题意:×34=125x,∴x≈6.5.∴需要马赛克片6-7箱.故选B.设需要x箱马赛克片,由题意:×34=125x,解方程即可.本题考查圆心角、弧弦之间的关系,一元一次方程等知识,解题的关键是学会设未知数列方程解决问题,属于中考常考题型.9.【答案】a2-b2=(a+b)(a-b)【解析】解:a2-b2=(a+b)(a-b).左图中阴影部分的面积是a2-b2,右图中梯形的面积是(2a+2b)(a-b)=(a+b)(a-b),根据面积相等即可解答.此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.10.【答案】会【解析】解:把v=100代入S=v2得:汽车刹车距离s=100>80,因此会有危险.故答案为:会.把v值代入解析式求出S,即刹车距离,和80进行比较即可.本题利用求二次函数的值,判断实际问题.11.【答案】25【解析】解:∵直线a∥b,∴∠1=∠ECD=55°,∵∠1是△ABD的外角,∴∠1=∠ABD+∠A,即55°=30°+∠A,∠A=55°-30°=25°.故∠A=25°.本题主要利用平行线的性质以及三角形内角与外角之间的关系解题.本题应用的知识点为:两直线平行,内错角相等及三角形的外角等于与它不相邻的两个内角的和.12.【答案】7【解析】解:设DF=x,FC=y,∵▱ABCD,∴AD=BC,CD=AB,∵BE为折痕,∴AE=EF,AB=BF,∵△FDE的周长为8,△FCB的周长为22,∴BC=AD=8-x,AB=CD=x+y,∴y+x+y+8-x=22,解得y=7.故答案为7.由平行四边形可得对边相等,由折叠,可得AE=EF,AB=BF,结合两个三角形的周长,通过列方程可求得FC的长,本题可解.本题考查了平行四边形的性质及图形的翻折问题;解决翻折问题的关键是找着相等的边,利用等量关系列出方程求得答案.13.【答案】10<x<30解:矩形的周长是2(x+10)cm,面积是10xcm2,根据题意,得<>,解这个不等式组得<>.所以x的取值范围是10<x<30.【解析】已知矩形的周长为2(x+10)cm,面积为10xcm2,列出不等式方程组即可解.解决问题的关键是读懂题意,找到关键描述语,根据矩形的周长<80cm,面积>100cm2列不等式组解答.14.【答案】解:=-8×+2÷(-)=-4+2÷=-4-2(2)=-4-12-6=-16-6【解析】根据实数的运算顺序,首先计算乘方、开方,然后计算乘法、除法,最后计算加法,求出算式的值是多少即可.(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a-p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.15.【答案】解:(a+b)2-2a(b+1)-a2b÷b,=a2+2ab+b2-2ab-2a-a2b÷b,=b2-2a,当a=,b=2时,原式=22-2×=3.【解析】本题应将代数式去括号,合并同类项,从而将整式化为最简形式,然后把a、b 的值代入即可.本题主要利用完全平方公式,单项式乘多项式的法则,单项式除单项式的法则,熟练掌握运算法则是化简的关键.16.【答案】解:去分母得:3(x-1)=5(x+1),(2分)3x-3=5x+5,(3分)3x-5x=5+3,(4分)-2x=8,(5分)x=-4.(6分)经检验:x=-4是原方程的解.故原方程的解是:x=-4.【解析】观察可得最简公分母是(x-1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.本题主要考查了分式方程的解法,解方程时要主要:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.17.【答案】解:如图:【解析】(1)画出梯形关于MN的轴对称图形即可;(2)再将梯形各点与点M的连线,并逆时针方向旋转180°,找到对应点,顺次连接画出这个梯形.本题综合考查了轴对称图形,及旋转变换图形,注意在做这类题时,找对应点是关键.18.【答案】证明:连接OC,∵OA=OB,C为AB中点,∴OC⊥AB,∵OC为半径,∴AB是⊙O的切线.【解析】连接OC,根据等腰三角形性质推出OC⊥AB,根据切线判定推出即可.本题考查了等腰三角形性质和切线的判定的应用,关键是推出OC⊥AB.19.【答案】解:(1)设抛物线y=ax2+bx+c∵二次函数y=ax2+bx+c的图象经过(0,0)、(1,-1)、(-2,14)三点,∴ ,解得:.则这个二次函数的表达式为y=2x2-3x;(2)①当t=1时,直线y=x+t(t≤1)可化为y=x+1,代入二次函数解析式y=2x2-3x得,2x2-4x-1=0,△=(-4)2-4×2×(-1)=24>0,故直线与抛物线有两个不同的交点.②当直线与抛物线相切时t取得最小值,把y=x+t代入抛物线y=2x2-3x得,2x2-4x-t=0.△=(-4)2-4×2×(-t)=0,即t=-2,故t的取值范围是-2<t≤1.【解析】(1)设抛物线y=ax2+bx+c,把三点坐标代入二次函数解析式求出a,b,c的值,即可确定出二次函数解析式;(2)因为二次函数与直线有两个交点,根据函数图象的交点个数与它们组成的方程组的解的个数的关系,可以利用根的判别式解答.此题将用待定系数法求函数解析式、函数图象的交点个数与它们组成的方程组的解的个数的关系以及根的判别式结合起来,综合性较强,有一定的难度.有种可能结果:(,),(,),(B,D),(B,E),(C,D),(C,E);(2)因为选中A型号电脑有2种方案,即(A,D)(A,E),所以A型号电脑被选中的概率是;(3)由(2)可知,当选用方案(A,D)时,设购买A型号、D型号电脑分别为x,y台,根据题意,得解得,经检验不符合实际,舍去;当选用方案(A,E)时,设购买A型号、E型号电脑分别为a,b台,根据题意,得解得.所以希望中学购买了7台A型号电脑.【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得A型号电脑被选中的情况,然后利用概率公式求解即可求得答案;(3)分别从选用方案AD时,与选用方案AE时,去分析求解即可求得答案.本题考查的是用列表法或画树状图法求概率,同时考查了二元一次方程组的应用,综合性比较强.用到的知识点为:概率=所求情况数与总情况数之比.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
套餐内包含内容
小明每月大约使用国内数据流量 200MB,国内主叫 200 分钟,若想使每月付费最少,则
他应预定的套餐是
A.套餐 1
B.套餐 2
9.随着“互联网+”时代的到来,一种新型的打车方式受 到
大众欢迎.该打车方式采用阶梯收费标准.打车费用 y(单
学校
海淀区九年级第二学期期末练习
班级___________ 姓名
数学
1.本试卷共 8 页,共三道大题,29 道小题,满分 120 分,考试时间 120 分钟。 考
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。 生 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 须 4.在答题卡上,选择题、画图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
B.25°
D.35°
P 所表示的数为 a,则数 3a 所对应的点可能是
A.M
B.NLeabharlann B.C.P九年级数学 第 1 页(共 15 页)
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。
C. (a3 )2 a 6
D.Q
成绩
C.
M
2016.6
D. D. 2a 3a 6a
1
N
0
P
Q
6.在一次中学生趣味数学竞赛中,参加比赛的 10 名学生的成绩如下表所示:
分数
人数
这 10 名学生所得分数的平均数是
A.86
B.88
80
1
7.如图, A , B , C , D 为⊙ O 上的点, OC AB 于点 E ,若 CDB=30 ,
OA 2 ,则 AB 的长为 A. 3
B. 2 3 C. 2 D. 4
8.某通信公司自 2016 年 2 月 1 日起实行新的 4G 飞享套餐,部分套餐资费标准如下:
套餐 类型
套餐 1
套餐 2
套餐 3
套餐 4
月费 (元/月)
18
28
38
48
国内数据流量 (MB)
100
100
300
500
85
4
C.90
知 5.考试结束,将本试卷、答题卡一并交回。
一、选择题(本题共 30 分,每小题 3 分)
下面各题均有四个选项,其中只有一个是符合题意的.
1.2022 年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为 196 000
米.196 000 用科学记数法表示应为
A.1.96×105
B.19.6×104 C.1.96×106 D.0.196×106
2.中华文化底蕴深厚,地方文化活动丰富多彩.下面的四幅简笔画是从我国地方文化活动
中抽象出来的,其中是轴对称图形的是
A.
3.下列计算正确的是
A. a 2 a 3 a 6
B. a8 a4 a2
4.如图,边长相等的正方形、正六边形的一边重合, 则 1 的
度数为
A.20°
C.30°
5.如图,数轴上有 M,N,P,Q 四个点,其中点