第六章 微生物

合集下载

第六章微生物的生长及其控制

第六章微生物的生长及其控制

第六章微生物的生长及其控制微生物不论其在自然条件下还是在人为条件下发生作用,都是通过“以数取胜”或“以量取胜”。

生长和繁殖就是保证微生物获得巨大数量的必要前提。

微生物生长是指由于细胞成分的增加导致微生物的个体大小、群体数量或两者的增长。

个体细胞生长:细胞内组分的增加,导致细胞总量(体积、质量、大小)扩个体繁殖:是微生物个体生长到一定阶段,由于细胞结构的复制与重建并通由于微生物个体微小,以个体为对象研究其生长和繁殖十分不便,常以群体数量的变化来研究微生物的生长。

在微生物学中,凡说“生长”一般均指群体生长,这与研究大型生物有所不同。

群体生长:指在一定时间和条件下,微生物细胞总量的增加。

既有量变也有质变。

三者之间的关系:个体生长→个体繁殖→群体生长群体生长=个体生长+个体繁殖第一节测定生长繁殖的方法测定生长的方法是以原生质含量的增加为基础,测定繁殖是建立在计算个体数目上。

一、测生长量直接方法:测菌体细胞(数)量、菌体体积、菌体质量等;间接方法:根据细胞内某种物质的含量或某种代谢活动强度间接测定。

(一)直接法1、测体积这是一种粗放的方法。

将待测培养液放在刻度离心管中作自然沉降或离心沉降,观察其体积。

污泥沉降比(SV):为含有污泥的混合液在量筒中静置30 min后所形成的沉淀污泥的容积占原混合液容积的百分数,以%表示。

又叫30 min沉淀率。

该参数是评定活性污泥质量的重要指标之一。

正常范围为15-30%。

2、称重此法的原理是根据每个细胞有一定的重量而设计的。

它可以用于单细胞、多细胞以及丝状体微生物生长的测定。

包括称干重(DCW)和湿重。

将一定体积的样品通过离心或过滤将菌体分离出来,经洗涤,再离心后直接称重,求出湿重。

如果是丝状体微生物,过滤后用滤纸吸去菌丝之间的自由水,再称重求出湿重。

不论是细菌样品还是丝状菌样品,可以将它们放在已知重量的平皿或烧杯内,于105℃烘干至恒重,取出放入干燥器内冷却,再称量,求出微生物干重。

微生物的生长繁殖及其控制

微生物的生长繁殖及其控制
每ml活菌数=同一稀释度平均数×稀释倍数×5
注意:要三个以上重复平板平均计数;不适合丝状菌
C,比浊法 在一定波长下,测定菌悬液的光密度,以光密度 (optical density, 即O.D.)表示菌量。 注意: 测量应在菌浓度与O.D.成正比的线性范围内,否则不准
2.重量法 测定多细胞及丝状真菌生长情况的有效方法。 以干重(105℃)、湿重直接衡量微生物群体
P146
1.个体计数法 A.直接法
利用血球 计数板, 在显微镜 下计算一 定容积里 样品中微 生物的数 量。
缺点:
不适于1对m运m动2 细菌2的5(计1数6);中格 需要相对高1的6(细2菌5浓)度小;格, 个体小的细共菌4在00显小微格镜下难以观察;
B.简接法
原理是每个活细菌在适宜的培养基和良好的生长条件下可 以通过生长形成菌落。
• 高密度培养常用于重组蛋白质药物的生产; • 主要的优势:节约成本.
六、微生物培养法概论
• 实验室培养法; • 生产实践中微生物培养法;
实验室培养法
固体培养法
好氧菌:斜面、琼脂平板等
厌氧菌:高层琼脂柱、、厌氧 培养皿、厌氧罐等
液体培养法
试管液体培养 三角瓶液体培养 摇瓶培养 台式发酵罐
生产实践中微生物培养法
μ :比生长速率,每单位数量细菌
在单位时间增加的量 t:培养时间
重要参数:
(1)繁殖代数(n)
x2=x1·2n 以对数表示: lgx2=lgx1+nlg2
n= 3.322 (lgx2-lgx1)
(2)比生长速率常数(μ)
lgNt - lgN0) μ=
t - t0
(3)代时(G):在群体生长里,细菌数量增加一

第六章 微生物的生长及其控制1

第六章  微生物的生长及其控制1

获得同步生长的方法: 获得同步生长的方法:
同步培养法
诱导法
筛选法
化化化化 物物化化
过过过 区区区区区区区区过 膜膜膜过
获得同步生长的方法主要有两类: 获得同步生长的方法主要有两类:
环境条件诱导法:变换温度、光线、培养基等。 环境条件诱导法:变换温度、光线、培养基等。造成与正常细 胞周期不同的周期变化。 胞周期不同的周期变化。 机械筛选法:选择性过滤、梯度离心。物理方法,随机选择, 机械筛选法:选择性过滤、梯度离心。物理方法,随机选择, 不影响细胞代谢。 不影响细胞代谢。
☆以细菌为例介绍无分支单细胞微生物群体生长规律,其结 以细菌为例介绍无分支单细胞微生物群体生长规律, 论也基本适用于酵母菌。 论也基本适用于酵母菌。 ☆生长曲线代表了细菌在新的环境中从开始生长、分裂直至 生长曲线代表了细菌在新的环境中从开始生长、 死亡的整个动态变化过程。 死亡的整个动态变化过程。 ☆每种细菌都有各自的典型生长曲线,但它们的生长过程却 每种细菌都有各自的典型生长曲线, 有着共同的规律性。一般可以将生长曲线划分为四个时期。 有着共同的规律性。一般可以将生长曲线划分为四个时期。
二、以数量变化对微生物生长情况进行测定 (一)直接法
将待测样品制成菌悬液,适当稀释, 将待测样品制成菌悬液,适当稀释,加入血球计数板方 格网的计数室内,在显微镜下直接计数; 格网的计数室内,在显微镜下直接计数;因为计数室的 体积一定, 体积一定,所以能够计算出每毫升待测样品中的细胞个 数; 特点:全菌计数,不区分死菌与活菌; 特点:全菌计数,不区分死菌与活菌; 适用于单细胞微生物:细菌、酵母菌; 适用于单细胞微生物:细菌、酵母菌; 要点:菌悬液浓度应在 个细胞/毫升左右 毫升左右; 要点:菌悬液浓度应在108个细胞 毫升左右;

第六章微生物生长

第六章微生物生长
第六章
微生物的生长与环境条件
目的要求: 1、微生物生长量的测定方式。 2、细菌纯培养生长曲线各个时期的主要特点。 3、物理因子,化学药物对微生物生长的影响。 重 点:
细菌纯培养生长曲线。 难 点:
如何利用细菌纯培养生长曲线的对数生长期来 计算细菌的代时和代数。
第一节 微生物的个体与群体生长和繁殖
利用选择培养基法
适用于分离某些生理类型较特殊 的微生物
三. 微生物生长的测定方法
评价培养条件、营养物质

等对微生物生长的影响;


评价不同的抗菌物质对微生物

产生抑制(或杀死)作用的效果;

客观地反映微生物生长的规律。
(一) 细胞数量的测定
1. 细胞总数的测定
(1) 显微镜直接计数法: 计数板法(如:血球计数板法、细胞计数板) 改进:用染色剂可区别死活细胞,如酵母用美蓝, 细菌用吖叮橙(紫外光)
3. 连续培养优缺点
1) 优点:
高效:简化了操作; 自控:便于各种仪表进行自动控制; 产品质量稳定; 节约大量动力、人力、水和蒸汽。
3. 连续培养优缺点
2) 缺点:
菌种易于退化; 易于遭到杂菌污染; 营养物利用率低于单批培养。 连续发酵,一般只能维持数月~ 1年。
二第. 获一得节 纯测培定养生的长繁方殖法的方法
在中等浓度下,增加养料浓度只提高最大收获量。
在高等浓度下,增加养料浓度不能对菌体生长速度和 最大收获量起促进作用。
(二)二次生长
当培养液中同时存在两种均能被微生物所利用的主 要营养物质时,微生物将首先利用其中较易利用的营 养物质开始生长。当较易利用的营养物质被消耗完, 进入稳定期后,微生物经过短暂的适应,开始利用第 二种营养物质,再次开始新的对数生长,并进入新的 稳定期,表现为二阶式的双峰生长曲线,称为二次生 长曲线(diauxic growth curve).

第六章微生物的生长及其控制

第六章微生物的生长及其控制

t2 - t1
3.322(lgx2-lgx1) t2 - t1
3.322(lgx2-lgx1)
2020/12/8
25
一些细菌的代时
菌名
培养基 培养温度 代时
E. coli(大肠杆菌) 肉汤
37℃ 17min
E. coli
牛奶
37
12.5
Enterobacter aerogenes(产气肠细菌)
肉汤或牛奶 37
一般连续培养器 固定化细胞连续培养器
实验室科研用:连续培养器 发酵生产用:连续发酵罐
2020/12/8
40
(1)恒浊器 — 恒浊连续培养
Ø特点:基质过量,微生物始终以最高速率进行生长 ,并可在允许范围内控制不同的菌体密度;但工艺 复杂,烦琐。 Ø使用范围:用于生产大量菌体、生产与菌体生长相 平行的某些代谢产物,如乳酸、乙醇等。
2020/12/8
23
(二)指数期
1、特点: Ø 生长速率常数R最大,即代时最短; Ø细胞进行平衡生长,菌体大小、形态、生理特征等比较一致; Ø酶系活跃,代谢最旺盛。
2020/12/8
24
x2
2、指数期中的的
三个重要参数
x1
t1
t2
u繁殖代数 n=3.322(lgx2-lgx1)
u生长速率常数R= u代时G=
2020/12/8
29
(三)稳定期
1、特点: (1)R=0,即处于新繁殖的细胞数与衰亡的细胞数相等,或正生长与负生长相等的动态平衡之中。 (2)菌体产量达到了最高点。 (3)菌体产量与营养物质的消耗间呈现出有规律的比例关系。 (4)细胞内开始积聚糖原、异染颗粒和脂肪等内含物;芽孢杆菌一般在这时开始形成芽孢; (5)通过复杂的次生代谢途径合成各种次生代谢物。

第六章 微生物生长

第六章 微生物生长

恒化连续培养
随着细菌的生长,限制性因子的浓
度降低,致使细菌生长速率受限,但同 时通过自动控制系统来保持限制因子的 恒定流速,不断予以补充,就能使细菌 保持恒定的生长速率。 常见的限制性营养物质有作为氮源 的氨、氨基酸;作为碳源的葡萄糖、乳 酸及生长因子,无机盐等。
三、同步培养



微生物细胞极其微小,但它也有一个自小到大 的过程,即个体生长。要研究微生物的个体生 长,在技术上是极为困难的。 目前主要使用的方法是: 同步培养技术分析细胞各阶段的生物化学特性 变化。 电子显微镜观察细胞的超薄切片。
死亡原因? 营养短缺;代谢毒物增 多;pH、Eh改变;溶氧 不足。
t
时间
稳定期与生产实践

指导思想:延长稳定期。 措施: 1.调节pH; 2.注意降温、通风; 3.中和排除有毒代谢产物; 4.稳定期是生产收获时期,注意把握好收获时机。
(4)衰亡期(老年)
死亡率>出生率 ? 细胞畸形 细胞死亡,出现自溶 有的微生物细胞产生或释放出一些产物。 如氨基酸、转化酶、抗生素等。现象。
单细胞微生物典型生长曲线
生 长 速 + 率 0 指 数 期
延滞期 指数期 稳定期 衰亡期
_
菌 数 目 的 对 数 值
延 滞 期
总菌数
稳定期
衰 亡 期
活菌数
0 时间t
微生物的数量很大,都是10的n次方,取对数作图时 方便,0-10代表1~1010
(1)延滞期-“万事开头难”

特征: 代谢活跃,个体体积、重量增加,
(2)指数期(青年)
快,平均代时(繁殖一代的时间)最短, 生长速率常数最大。 细胞的化学组成、形态、生理特性比较一致。

第六章 微生物的生理特性1

第六章 微生物的生理特性1

微生物利用废水营养的情况
细菌往往优先利用易被吸收的有机物质。 如果这种物质的量已经满足要求,它就不再利 用其它的物质了。在工业废水的生物处理中, 常加入生活污水补充工业废水中某些营养物质 的不足。加多少酌情而定,否则反而会把细菌 养“娇”,不利于工业废水的处理。因为生活 污水中的有机物比工业废水中的有机物易被吸 收利用。
4、光能异养(photorganotroph)
属于这一营养类型的细菌很少,如红 螺菌中的一些细菌以这种方式生长。一般 来说,光能营养型细菌生长时大多需要 生长因子。 碳源——有机物作供氢体和碳源,要有CO2存在。 能源——光
红螺菌
光能 CH3 [CH2O] +2CH3COCH3+H2O CHOH CO2 + 2 光合色素 CH3 红螺菌(Rhodospirillum sp.)属于光合细菌(Photosynthetic Bacteria,PSB)的一种,广泛分布于江河、湖泊、海洋等水域环境 中,尤其在有机物污染的积水处数量较多。
氧化还原电位又称氧化还原电势(redox potential),是度量 某氧化还原系统中的还原剂释放电子或氧化剂接受电子趋势 的一种指标,其单位是V(伏)或mV(毫伏)。
不同类型微生物生长对氧化还原电位的要求不同
好氧性微生物:+0.1伏以上时可正常生长,以+0.3~+0.4伏为宜; 厌氧性微生物:低于+0.1伏条件下生长; 兼性厌氧微生物:+0.1伏以上时进行好氧呼吸, +0.1伏以下时进行发酵。
α w=Pw/Pow 式中Pw代表溶液蒸汽压力, POw代表纯水蒸汽压力。
纯水α w为1.00,溶液中溶质越多, α w越小
微生物一般在α w为0.60~0.99的条件下生长, α w过低时, 微生物生长的迟缓期延长, 生长速率和总生长量减少。 微生物不同,其生长的最适α w不同。

第六章微生物代谢

第六章微生物代谢

TCA循环的重要特点
为糖类、脂类、蛋白质三大物质转化中心枢纽。 循环中的某些中间产物是一些重要物质生物合成的前体; 生物体提供能量的主要形式; 为人类利用生物发酵生产所需产品提供主要的代谢途径。如 柠檬酸发酵;Glu发酵等。
(二)递氢和受氢 经过上述4条途径脱氢后,通过呼吸链等方式 传递,最终可与氧、无机氧或有机物等氢受体相结
2、HMP途径
磷酸戊糖进一步代谢有两种结局:
①磷酸戊糖经转酮—转醛酶系催化,又生成磷酸己糖 和磷酸丙糖(3-磷酸甘油醛),磷酸丙糖借EMP途径 的一些酶,进一步转化为丙酮酸。称为不完全HMP途 径。
②由六个葡萄糖分子参加反应,经一系列反应,最后 回收五个葡萄糖分子,消耗了1分子葡萄糖(彻底氧化 成CO2 和水),称完全HMP途径。
CO2、H2O 还原型中间代谢 产物醇、酸 NO2、N2 次之 少
电子传递链
完整
不完整
无,底物水平磷 酸化
二、自养微生物产ATP和产还原力 按能量来源不同可分为:
化能自养型
光能自养型
(一)化能自养微生物 还原CO2所需要的ATP和[H]是通过氧化无机物而获得的
硝化细菌、铁细菌、硫细菌、氢细菌
自养微生物氧化磷酸化效率低
葡萄糖 磷酸二羟丙酮
②异型乳酸发酵
乙醇
ATP ADP NAD+ NADH
乙醛
乙酰CoA
NAD+ NADH
乙酰磷酸
葡萄糖
6-磷酸 葡萄糖
6-磷酸葡 5-磷酸 萄糖酸 -CO2 木酮糖 3-磷酸 -2H 甘油醛
2ADP 2ATP
乳酸
(3)Stickland反应
1934年Stickland发现Closterdium sporogenes(生孢梭菌)能 利用一些氨基酸同时作为碳源、氮源和能源, 以一种氨基酸作供氢体,以另一种氨基酸作为受氢体而实现 产能的独特发酵类型。 CH3 CHNH2 + 2 CH2NH2 COOH ADP+Pi

第6章-微生物的代谢

第6章-微生物的代谢

新陈代谢 = 分解代谢 + 合成代谢 分解代谢:指复杂的有机物分子通过分解代谢酶系 的催化,产生简单分子、腺苷三磷酸(ATP)形式 的能量和还原力的作用。
合成代谢:指在合成代谢酶系的催化下,由简单小 分子、ATP形式的能量和还原力一起合成复杂的大 分子的过程。
合成代谢按产物在机体中作用不同分: 初级代谢: 提供能量、前体、结构物质等生命活动所 必须的代谢物的代谢类型;产物:氨基酸、核苷酸等。 次级代谢: 在一定生长阶段出现非生命活动所必需的代 谢类型;产物:抗生素、色素、激素、生物碱等。
•反应步骤简单,产能效率低.
• 此途径可与EMP途径、HMP途径和TCA循环相连接, 可互相协调以满足微生物对能量、还原力和不同中间 代谢物的需要。好氧时与TCA循环相连,厌氧时进行 乙醇发酵.
相关的发酵生产:细菌酒精发酵
葡萄糖三条降解途径在不同微生物中的分布
菌名 酿酒酵母 产朊假丝酵母 灰色链霉菌 产黄青霉 大肠杆菌 铜绿假单胞菌 嗜糖假单胞菌 枯草杆菌 氧化葡萄糖杆菌 真养产碱菌 运动发酵单胞菌 藤黄八叠球菌
氧被消耗而造成局部的厌氧环境
硝酸盐还原细菌进行厌氧呼吸
土壤中植物能利用的氮 (硝酸盐NO3-)还原成 氮气而消失,从而降低 了土壤的肥力。
松土,排除过多的水分, 保证土壤中有良好的通 气条件。
反硝化作用在氮素循环中的重要作用
硝酸盐是一种容易溶解于水的物质, 通常通过水从土壤流入水域中。如果 没有反硝化作用,硝酸盐将在水中积 累,会导致水质变坏与地球上氮素循 环的中断。
2、 HMP途径 (戊糖磷酸途径)
(Hexose Monophophate Pathway)
葡萄糖经转化成6磷酸葡萄糖酸后, 在6-磷酸葡萄糖酸 脱氢酶的催化下, 裂解成5-磷酸戊糖 和CO2。

第六章微生物的生长繁殖及其控制

第六章微生物的生长繁殖及其控制

第六章微生物的生长生殖及其操纵一、微生物生长生殖的概念微生物的生长是指细胞物质有规律地、不可逆增加,导致个体体积扩大的生物学过程。

当细胞个体生长到一定时期,通过特定方式产生新的生命个体,即引起生命个体数量增加即生殖。

在高等生物里这两个过程能够明显分开,但对低等特别是单细胞的微生物,由于细胞小,这两个过程紧密联系、特别难划分,因此,微生物的生长生殖,一般指群体生长,这一点与研究动物、植物有所不同。

1、细菌一般没有有性生殖,多采纳二分裂方式。

2、真菌除了进行无性生殖,产生大量孢子如分生孢子、节孢子、厚垣孢子、孢囊孢子等外,还能进行有性生殖,产生有性孢子如卵孢子、接合孢子、孢囊孢子等。

二、微生物生长的测定微生物生长:单位时刻里微生物数量或生物量〔Biomass〕的变化个体计数微生物生长的测定:群体重量测定群体生理指标测定〔一〕以数量变化对微生物生长情况进行测定通常用来测定细菌、酵母菌等单细胞微生物的生长或样品中所含微生物个体的数量〔细菌、孢子、酵母菌〕。

1、培养平板计数法样品充分混匀后,取一定量的稀释液涂布或倾注在平板上,进行培养,统计平板上长出的菌落数。

注重:1)同一稀释度三个以上重复,取平均值;2)每个平板上的菌落数目适宜,便于正确计数;一个菌落可能是多个细胞一起形成,因此在科研中一般用菌落形成单位〔colonyformingunits,CFU〕来表示,而不是直截了当表示为细胞数。

2、膜过滤培养法当样品中菌数特别低时,能够将一定体积的湖水、海水或饮用水等样品通过膜过滤器,然后将膜转到相应的培养基上进行培养,对形成的菌落进行统计。

3、Themostprobablenumbermethod〔液体稀释法〕1〕未知样品进行十倍稀释;2〕取三个连续的稀释度平行接种多支试管并培养;3〕长菌的为阳性,未长菌的为阴性;4〕查表推算出样品中的微生物数目;4、显微镜直截了当计数法采纳细菌计数板或血球计数板,在显微镜下对微生物数量进行直截了当计数,计算一定容积里样品中微生物的总数量。

第六章微生物的生长及其控制

第六章微生物的生长及其控制

第六章微⽣物的⽣长及其控制第六章微⽣物的⽣长及其控制1.概述⽣长:细胞物质有规律地,不可逆地增加,导致细胞体积扩⼤的⽣物学过程.繁殖:微⽣物⽣长到⼀定阶段,由于细胞结构的复制与重建并通过特定的⽅式产⽣新的⽣命个体,即引起⽣命个体数量增加的⽣物学过程。

⽣长是⼀个量变的过程,繁殖是⼀个质变的过程2.细菌的个体⽣长1.染⾊体DNA的复制和分离细菌的染⾊体为环形双链DNA分⼦。

染⾊体⼀双向的⽅式进⾏连续的复制,在细胞分裂之前不仅完成了染⾊体的复制,⽽且也开始了2个⼦细胞DNA分⼦的复制。

当细胞的⼀个世代即将结束时,不仅为即将形成的2个⼦细胞各备有⼀份完整的遗传信息,⽽且也具有已经按亲本⽅式复制的基因组。

其复制点附着在细胞膜上,随膜的⽣长和细胞分裂,2个未来的⼦细胞基因组不断地分离,最后达到2个⼦细胞中。

细菌在个体⽣长中通过染⾊体DNA的复制,使其遗传特性能保持⾼度的连续性和稳定性。

2.细胞壁的扩增细胞在⽣长过程中,细胞壁只有通过扩增,才能使细胞体积扩⼤。

3.细菌分裂的调节细菌进⼊分裂时期,此时在细菌长度的中间位置,通过细胞质膜内陷并伴随新合成的肽聚糖插⼊,导致横隔壁向⼼⽣长,最后在中⼼回合,完成⼀次分裂,将细菌分裂成2个⼤⼩相等的⼦细菌。

细胞在⽣长和分裂伴随细胞壁的裂解和闭合2个过程。

前者将细胞壁打开,有利于细胞壁物质插⼊;后者在新合成的细胞壁物质插⼊后的开⼝处重新闭合形成完整的细胞壁,以利于机体⽣存。

影响细菌的⽣长和分裂的主要因素是:转肽酶(催化2个肽聚糖的短肽链的链接);D-Ala-D-Ala-梭肽酶(催化五肽转变为四肽)青霉素竞争性抑制转肽酶。

3. 细菌的群体⽣长繁殖1.⽣长的规律细菌以⼆分裂繁殖,即细胞核⾸先进⾏有丝分裂,然后细胞质通过胞质分裂⽽分开,形成2个相同的个体.分批培养:在封闭系统中对微⽣物进⾏的培养,既不补充营养也不移去培养物质,保持整个培养液体积不变的培养⽅式。

培养曲线:以时间为横坐标,以菌数为纵坐标,依据不同培养时间⾥细菌数量变化,作出培养期间菌数变化规律的曲线。

沈萍微生物学第六章

沈萍微生物学第六章
微生物个体生长表现为个体质量和体积的增加。 微生物个体生长表现为个体质量和体积的增加。 表现为个体质量和体积的增加 微生物群体生长是以微生物细胞的数量或微生物 微生物群体生长是以微生物细胞的数量或微生物 群体细胞物质量的增加作为生长的指标。 群体细胞物质量的增加作为生长的指标。 因而要了解微生物的生长规律,就要了解微生物 因而要了解微生物的生长规律, 的个体生长和群体生长两个方面。 的个体生长和群体生长两个方面。
丝状真菌细胞的顶端生长
图 4
丝状真菌菌丝细胞顶端生长模型
图 示 Allomyces macrogynus 菌丝的顶端生长
第四节
环境对生长的影响及 生长的测定
一.环境对微生物生长的影响
1.营养物质 1.营养物质 (nutrient) 2.水的活性 2.水的活性 (water activity) 微生物aw 微生物aw范围 aw= 0.6 --- 0.99 aw范围 细菌要求 aw 较高 霉菌要求 aw 较低
图示 丝状真菌的沉淀生长
起始培养时菌丝体
培养18小时后的菌丝体 培养18小时后的菌丝体
影响因素: 影响因素: 接种体积的大小、接种物是否凝集、 接种体积的大小、接种物是否凝集、以及菌丝体是 否易于断裂等因素的综合作用决定着丝状微生物是 丝状生长还是沉淀生长。 丝状生长还是沉淀生长。 工业发酵意义: 工业发酵意义: 丝状微生物在液体培养中的生长方式在工业生产中 很重要,因为它影响发酵过程的通气性、 很重要,因为它影响发酵过程的通气性、生长速率 搅拌能耗及菌丝体与发酵液的分离难易等。 、搅拌能耗及菌丝体与发酵液的分离难易等。
2)对数生长期
特点 • 生长速率最快,细胞呈指数增长 生长速率最快, • 生长速率恒定,代时最短 生长速率恒定, • 代谢旺盛,细胞成分平衡发展 代谢旺盛,细胞成分平衡发展, • 群体的生理特性较一致

第六章 微生物生长及其控制

第六章 微生物生长及其控制

第五节 有害微生物生长繁殖的控制
一、基本概念
防腐(antisepsis):在某些化学物质或物理因子作用下,能防止 或抑制霉腐微生物生长的一种措施 。比如:低温、缺氧、干燥、 高渗、高酸度、高醇度、加防腐剂等等。 消毒(disinfection):利用某种方法杀死或灭活物质或物体中所 有病原微生物的一种措施。比如:巴氏消毒法 灭菌(sterilization):指利用某种方法杀死物体中包括芽孢在内 的所有微生物的一种措施。包括杀菌和溶菌。比如:高压蒸汽 灭菌法 化疗(chemotherapy):利用具有选择毒性的化学物质如磺胺、 抗生素等对生物体内部被微生物感染的组织、病变细胞进行治 疗,以杀死组织内的病原微生物或病变细胞,但对机体本身无 毒害作用的治疗措施。以达到治疗传染病的目地。 四个概念的比较:p174表6-8
G = t1 - t0 /3.32(lgy - lgx) 特点:1)细菌个体形态、化学组成和生理特性等均 较一致2)代谢旺盛3)生长迅速、代时最短。 应用:研究微生物基本代谢、生理的良好材料。也常 在生产上用作种子
3.稳定期
表现: 新增殖细胞数与老细胞的死亡数几乎相等,活菌数动态 平衡。 特点: 1)生长速率为0---动态平衡,细胞总数最高. 2)细胞内开始积累内含物 3)开始形成芽孢、次生代谢物 原因: 养分减少;有毒代谢物产生。 延长: 补料,调pH、温度等。
嗜冷微生物 兼性嗜冷微生物 嗜温微生物 嗜热微生物 超嗜热或嗜高温微生物
最适生长温度:某菌分裂代时最短或生长速率最高时的培养温度
(二) PH
微生物生长过程中机体内发生的绝大多数的反 应是酶促反应,而酶促反应都有一个最适pH范围, 在此范围内只要条件适合,酶促反应速率最高,微 生物生长速率最大,因此微生物生长也有一个最适 生长的pH范围。

第六章 微生物的生长及控制

第六章 微生物的生长及控制
2
第一节
生长 (量变) 繁殖 (质变)
微生物的培养
生物个体由小到大的增长,即表现为细胞组分 与量方面结构在的增加 指生物个体数目的增加
群体生长 = 个体生长 + 个体繁殖
在单细胞微生物中,生长繁殖的速度很快,而且两者 始终交替进行,个体生长与繁殖的界限难以划清,因此实
际上常以群体生长作为衡量微生物生长的指标。
或密度梯度离心的方法,选择同一生长阶段的细 胞。
18
第二节
微生物的生长规律
离 心 沉 降 分 离 法
19
膜 洗 脱 法
第二节
2.诱导法
微生物的生长规律
诱导法:采用物理、化学因子使微生物细胞生长进
行到某个阶段而停下来,使先到达该阶段的微生物
细胞不能进入下一个生长阶段,以达到诱导微生物
细胞同步生长的目的。
第二节
微生物的生长规律
延滞原因:适应新的环境条件,合成新的酶,
积累必要的中间产物。
影响延迟期长短的因素: ①菌种 : 繁殖速度较快的菌种的延迟期一般 较短; ②接种物菌龄 : 用对数生长期的菌种接种时, 其延迟期较短,甚至检查不到延迟期; ③接种量:一般来说, 接种量增大可缩短甚至 消除延迟期(发酵工业上一般采用1/10的接种 量);
最高菌体产量。
应用范围:实验室科学研究
35
第二节
微生物的生长规律
恒 化 培 养 器
36
第二节
微生物的生长规律
连续培养技术——恒浊培养
概念:通过调节培养基流速,使培养液浊度保持恒定的连 续培养方法。 原理:通过调节新鲜培养基流入的速度和培养物流出的速 度来维持菌浓度不变,即浊度不变。主要采用恒浊器, 当浊度高时,使新鲜培养基的流速加快,浊度降低,则 减慢培养基的流速。 特点:基质过量,微生物始终以最高速率进行生长,并可 在允许范围内控制不同的菌体密度;但工艺复杂,烦琐。 使用范围:用于生产大量菌体、生产与菌体生长相平行的 某些代谢产物,如乳酸、乙醇等。

6第六章 微生物的代谢

6第六章 微生物的代谢

发酵的类型
1.由EMP途径中丙酮酸出发的发酵
丙酮酸EMP途径的关键产物,由丙酮酸出发,在 不同微生物中可进入不同的发酵途径,如:同型酒 精发酵、同型乳酸发酵、丙酸发酵、混合酸发酵、 丁酸发酵等。
2.通过HMP途径的发酵——异型乳酸发酵 (heterolactic fermentation)凡葡萄糖发酵后产生乳 酸、乙醇(乙酸)和CO2等多种产物的发酵即异型 乳酸发酵;相对的如只产生2分子乳酸的发酵则称 同型乳酸发酵(homolactic fermentation)
第六章 微生物的代谢
Microbial metabolism
概述
新陈代谢(metabolism)简称代谢,是指发生在活细胞 中的各种分解代谢(catabolism)和合成代谢 (anabolism)的总和。
分解代谢又称异化作用,指复杂的有机分子在分解代谢 酶系的催化下产生简单分子、能量和还原力的作用。
TCA循环在微生物生命活动中的意义:
(1)彻底氧化,为微生物生长提供大量的能 量。 (2) 位于一切分解代谢与合成代谢的中枢地 位,为有机物的合成提供大量的原料。 (3)工业生产中可利用这一途径生产柠檬酸、 苹果酸、琥珀酸、谷氨酸等工业原料。
6.1.1.2 递氢和受氢
在生物体中,贮存在葡萄糖等有机物中 的化学能,经上述的多种途径脱氢后, 经过呼吸链等方式递氢,最终与受氢体 (氧、无机物或有机物)结合,以释放 其化学潜能。
1.EMP途径(Embdem-Meyerhof-Parnas pathway)或糖酵解途径(Glycolysis Pathway )
是绝大多数生物所共有的一条主流代谢途径。
1分子葡萄糖,经10步反应,产生2分子丙酮 酸 苷、酸)2分和子2N分A子DAHT2(P。还原型烟酰胺腺嘌呤二核

微生物第六章

微生物第六章

体型效应(体型与增长率、体型与寿命)
体型大小与内禀增长率的关系
生殖对策
r-选择和K-选择理论
(1)MacArthur&Wilson(1967) 将 生物按栖息环境和进化对策分为 r-对策者和K-对策者两大类: r-选择种类是在不稳定环境 中进化的,因而使种群增长率r 最大。 K-选择种类是在接近环境容 量K的稳定环境中进化的,因而 适应竞争。
Grime的 CSR生境
C:竞争型
Hale Waihona Puke 植物生活史策略的三型理论 S:耐忍型
R:杂草型
滞育和休眠
• 休眠 • 滞育 • 潜生现象 • 蛰伏 • 冬眠和夏眠


• 迁徙 • 扩散 • 迁移模式
– 反复往返旅行 – 单次往返旅行 – 单程旅行
复杂的生活史周期
• 变态:个体生活史中形态学的变化 • 世代间变化:包括形态转换 • 扩散与生长间平衡 • 生境利用最优化
生活史进化对策中r- 选择和K- 选择的某些相关特征
r-选 择 气候 死亡 存活 数量 种内, 种间竞争 多变, 不确定, 难以预测 灾 变 性 ,无 规 律 ; 非 密 度 制 约 (幼 体 存 活 率 )低 时间上变动大, 不稳定; 远低于环境承载力 多变, 通常不紧张 1. 发 育 快 2. 增 长 力 高 选择倾向 3. 提 高 生 育 4. 体 型 小 5. 一 次 繁 殖 寿命 最终结果 短, 通常少于一年 高繁殖力 K -选 择 稳定, 较确定, 可预测 比较有规律; 密度制约 (幼 体 存 活 率 )高 时间上变动小, 稳定; 通常临近 K 值 经常保持紧张 1. 发 育 缓 慢 2. 竞 争 力 高 3. 延 迟 生 育 4. 体 型 大 5. 多 次 繁 殖 长, 通常大于一年 高存活力
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章微生物的遗传变异和育种
第一节 微生物遗传变异的物质基础
第二节 基因突变和微生物育种
第三节 基因重组和杂交育种 第四节 基因工程
第五节 菌种的衰退、复壮和保藏
第六章微生物的遗传变异和育种
第一节 微生物遗传变异的物质基础
一、三个经典实验 二、遗传物质在微生物细胞内存在的部位和方式
第六章微生物的遗传变异和育种
Ri质粒在功能上与Ti质粒有广泛的同源性,发生转化的TDNA在宿主细胞中稳定遗传。 在实践上,Ri质粒已成为外源基因的良好载体,也可用于 次生代谢产物的生产。
第一节 微生物遗传变异的物质基础 第六章微生物的遗传变异和育种 二、遗传物质在微生物细胞内存在的部位和方式 2、原核生物的质粒
(2)质粒的种类
例如R1质粒(94kb)可使宿主对下列五种药物具有抗性:氯霉素、 链霉素、磺胺、氨苄青霉素和卡那霉素,并且负责这些抗性的 基因是成簇地存在于R1抗性质粒上。
许多R质粒能使宿主细胞对许多金属离子呈现抗性,包括砷、汞、 镍、钴、银、镉等。在肠道细菌中发现的R质粒,约有25%为抗 汞离子,而铜绿假单胞菌中约占75%。
2、原核生物的质粒
(2)质粒的种类 根据质粒所编码的功能和赋予宿主的表型效应,分为 以下几类: ① F 质粒 ;②抗性因子 ;③Col 质粒 ;④Ti 质粒 ;⑤代谢质 粒;⑥Ri质粒;⑦固氮质粒;⑧隐秘质粒。
其中研究较多的细菌质粒有:F质粒决定大肠杆菌的致 育性;抗性因子决定细菌的耐药性;Col质粒决定产生 大肠杆菌素。
提取所有胞内DNA后电镜观察;
超速离心或琼脂糖凝胶电泳后观察; 特定的质粒提取方法和 后处理使染色体和RNA 对于实验室常用菌,可用质粒所带的某些特点, 均被除掉。 如抗药性初步判断。
第一节 微生物遗传变异的物质基础 第六章微生物的遗传变异和育种 二、遗传物质在微生物细胞内存在的部位和方式
橘生淮南则为橘,生于淮北则为枳。
遗传型变异(基因变异、基因突变):
遗传物质改变,导致表型改变 特点:遗传性、群体中极少数个体的行为
(自发突变频率通常为10-6-10-9)
微生物是遗传学研究中的明星:
微生物细胞结构简单,营养体一般为单倍体,方便建立纯系。
很多常见微生物都易于人工培养,快速、大量生长繁殖。 对环境因素的作用敏感,易于获得各类突变株,操作性强。

著名的肺炎球菌实验
结果说明:加热杀死的S型肺炎球菌中一定有某种 特殊的生物分子或遗传物质,可以使无害的R型肺 炎球菌转化为有害的S型肺炎球菌。 这种生物分子或遗传物质是什么呢?
纽约洛克非勒研究所 Avery
从加热杀死的 S 型肺炎球菌将蛋白质、核酸、 多糖、脂类分离出来,分别加入到无害的 R 型 肺炎球菌中, 结果发现,惟独只有核酸可以使无害的 R 型肺 炎球菌转化为有害的S型肺炎球菌。 1944年 结论:DNA是生命的遗传物质
第六章微生物的遗传变异和育种
第二节 基因突变和微生物育种
一、基因突变
二、自发突变与定向培育
三、诱变育种
第六章微生物的遗传变异和育种
第二节 基因突变和微生物育种
一、基因突变
基因突变泛指细胞内(或病毒粒子内)遗传物质的分子结构或数量 突然发生了可遗传的变化。 基因突变可自发或诱导产生。 狭义的突变指基因突变(点突变),包括一对或几对碱基的缺
⑤ 代谢质粒(降解性质粒) 这类质粒含有编码降解一系列复杂有机物的酶的基因。
如假单胞菌能将复杂有机化合物,尤其是有毒化合物降解成 能被其作为碳源和能源利用的简单形式,故在污水处理、环 境保护等方面发挥特殊作用。 每一种具体的质粒常以其降解的底物而命名。如 CAM( 樟脑 ) 质粒, OCT( 辛烷 ) 质粒, XYL( 二甲苯 ) 质粒, SAL( 水杨酸 ) 质 粒,MDL(扁桃酸)质粒,NAP(萘)质粒和TOL(甲苯)质粒等。 曾有人通过遗传工程手段构建具有数种代谢质粒的菌株,此 种具有广谱降解能力的工程菌被称为“超级菌”。 此外,代谢质粒中还包括一些能编码固氮功能的基因。例如 根瘤菌中与结瘤和固氮有关的基因均位于代谢质粒中.
许多致病菌的致病性是由其所携带的质粒引起的,这些质粒 具有编码毒素的基因,其产物对宿主(动物、植物)造成伤害。
根癌土壤杆菌所含Ti质粒是引起双子叶植物冠瘿瘤的 致病因子
第一节 微生物遗传变异的物质基础 第六章微生物的遗传变异和育种 二、遗传物质在微生物细胞内存在的部位和方式 2、原核生物的质粒
(2)质粒的种类
3、植物病毒的拆分和重建试验
烟 草 花 叶 病 毒 感 染 试 验
朊病毒的发现与思考
亚病毒的一种:具有传染性的蛋白质致病因子,迄今为止尚为 发现该蛋白内含有核酸。
其致病作用是由于动物体内正常的蛋白质PrP c改变折叠状态为 PrP sc所致,而这二种蛋白质的一级结构并没有改变。
羊搔痒症(scrapie)
分类: F+菌株:携带F质粒的菌株。 (相当于雄性) F―菌株:无F质粒的菌株。 (相当于雌性)
高频重组菌株:F质粒整合到宿主细胞染色体上的菌株 (Hfr)。(相当于附加体)。
F′因子:Hfr菌株上的F因子变成自由状态时携带某一
染色体基因的F因子。
第一节 微生物遗传变异的物质基础 第六章微生物的遗传变异和育种 二、遗传物质在微生物细胞内存在的部位和方式 2、原核生物的质粒
⑦ 固氮质粒 该质粒存在于根瘤菌属 (Rhizobium) 中含有编码一系列与共 生固氮相关的基因。因其相对分子质量比一般质粒大几十倍 至几百倍,故又名巨大质粒。它与根瘤菌属细菌的固氮作用 有关。
⑧隐秘质粒 不显示任何表型效应,它们的存在只有通过物理方法,例如 用凝胶电泳检测细胞抽提液等方法才能发现。目前对其生物 学意义尚不甚了解。
第一节 微生物遗传变异的物质基础 第六章微生物的遗传变异和育种 二、遗传物质在微生物细胞内存在的部位和方式 2、原核生物的质粒
(2)质粒的种类
⑥ Ri质粒 发根土壤杆菌可侵染双子叶植物的根部诱生大量毛根瘤。 Ri质粒一段T-DNA整合到寄主根部细胞的核基因组中,根部 并不形成瘤,仅生出可再生新植株的毛状根。若将毛状根 离体培养,还能合成次生代谢物。
遗传: 亲代与子代相似 变异: 亲代与子代、子代间不同个体不完全相同
遗传和变异是生命的最本质特性之一
遗传型: 生物的全部遗传因子及基因
表型(表现型):
具有一定遗传型的个体,在特定环境条件 下通过生长发育所表现出来的形态等生物 学特征的总和。
表型是由遗传型所决定,但也和环境有关。
表型饰变:
表型的差异只与环境有关 特点:暂时性、不可遗传性、表现为全部个体的行为
第一节 微生物遗传变异的物质基础 第六章微生物的遗传变异和育种 二、遗传物质在微生物细胞内存在的部位和方式 2、原核生物的质粒
(2)质粒的种类
①F质粒(接合质粒、F因子、致育因子或性因子) 大小:仅100kb,为cccDNA。 功能:决定细菌的性别和转移能力。 F质粒在大肠杆菌的有性接合作用中起主要作用。
(2)质粒的种类
F因子能以游离状态(F+)和
以与染色体相结合的状态 (Hfr)存在于细胞中,所以 又称之为附加体(episome)。
第一节 微生物遗传变异的物质基础 第六章微生物的遗传变异和育种 二、遗传物质在微生物细胞内存在的部位和方式 2、原核生物的质粒
(2)质粒的种类
② 抗性因子(R因子) 抗药性 分类: 抗重金属
一般都位于质粒或转座子上,因此,细菌素可以杀死 同种但不携带该质粒的菌株。
第一节 微生物遗传变异的物质基础 第六章微生物的遗传变异和育种 二、遗传物质在微生物细胞内存在的部位和方式 2、原核生物的质粒
(2)质粒的种类
④ Ti质粒(诱瘤质粒) 存在于根癌土壤杆菌中引起双子叶植物冠瘿瘤的致病因子。
200kb的环状质粒,包括毒性区、接合转移区、复制起始区和 T-DNA区4部分。其中的毒性区和T-DNA区与冠瘿瘤生成有关。 致病机制:Ti质粒上的T-DNA可携带外源基因整合到植物细 胞的核染色体上,合成正常植株所没有的冠瘿碱类化合物,破 坏控制细胞分裂的激素调节系统,导致细胞无控制的瘤状增生 广泛应用于转基因植物载体的是一种经过人工改造后的Ti质粒 。已有200多种转基因植物中,约有80%由Ti质粒介导。
第一节 微生物遗传变异的物质服力的噬菌体感染实验
3、植物病毒的拆分和重建试验

著名的肺炎球菌转化实验
1928年,英国 Griffith S型肺炎球菌:有荚 膜,菌落表面光滑, 有毒性 R型肺炎球菌:没有 荚膜,菌落表面粗糙, 无毒性 结果说明?
二、遗传物质在微生物细胞内存在的部位和方式
1、七个水平
(1)细胞水平
(2)细胞核水平
(3)染色体水平
(4)核酸水平
(5)基因水平 (6)密码子水平 (7)核苷酸水平
第六章微生物的遗传变异和育种
第一节 微生物遗传变异的物质基础
二、遗传物质在微生物细胞内存在的部位和方式
2、原核生物的质粒 (1)定义和特点: 定义:游离并独立存在于染色体以外的能进行自主复制的细胞质 遗传因子,通常以小型共价闭合环状的超螺旋双链DNA分 子,即cccDNA 存在于各种微生物细胞中。 大小:1~1000kb 构型:超螺旋、线状、环状
1997年,Stanley B. Prusiner荣获诺贝尔奖
朊病毒的发现与思考
1)蛋白质是否可以作为遗传物质? prion是生命的一个特例?还是仅仅为表达调控的一种形式?
2)蛋白质折叠与功能的关系,是否存在折叠密码?
DNA→RNA→肽链→蛋白质
第六章微生物的遗传变异和育种
第一节 微生物遗传变异的物质基础

2、更有说服力的噬菌体感染实验
1952 年 , Hershey 和 Chase 病毒(噬菌体) 放射性同位素 35S 标记病毒 的蛋白质外壳, 32P 标记病 毒的DNA内核,感染细菌。 新复制的病毒,检测到了 32P标记的DNA,没有检测到 35S标记的蛋白质, DNA在病毒和生物体复制或 繁殖中的关键作用。 8年的时间
相关文档
最新文档