人教A版高中数学必修一集合教案第课时(9)
高中数学人教A版(2019新教材) 必修(第一册)全册分章节分课时教学案
第一章集合与函数概念1.1集合1.1.1集合的含义与表示第1课时集合的含义[目标] 1.通过实例,能说出集合的含义,体会元素与集合的“属于”关系;2.记住集合元素的特性以及常用数集;3.会用集合元素的特性解决相关问题.[重点] 用元素与集合的“属于”关系判断元素与集合的关系;用集合元素的特性解答相关问题.[难点] 集合元素特性的应用.知识点一元素与集合的含义[填一填]1.定义(1)元素:一般地,把所研究的对象统称为元素,常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集),常用大写拉丁字母A,B,C,…表示.2.集合相等:指构成两个集合的元素是一样的.3.集合中元素的特性:确定性、互异性和无序性.[答一答]1.以下对象的全体能否构成集合?(1)河北《红对勾》书业的员工;(2)平昌冬奥会速滑比赛中滑得很快的选手;(3)一次函数y=kx+b(k≠0)的图象上的若干个点;(4)不超过2 019的非负数.提示:(1)能构成集合.河北《红对勾》书业的员工是确定的,因此有一个明确的标准,可以确定出来.所以能构成一个集合.(2)“滑得很快”无明确的标准,对于某位选手是否“滑得很快”无法客观地判断,因此,“平昌冬奥会速滑比赛中滑得很快的选手”不能构成一个集合.(3)“若干个点”是模糊的概念,因此与之对应的对象都是不确定的,自然它们不能构成集合,故“一次函数y=kx+b(k≠0)的图象上的若干个点”不能构成一个集合.(4)任给一个实数x,可以明确地判断x是不是“不超过 2 019的非负数”,即“0≤x≤2 019”与“x<0或x>2 019”,两者必居其一,且仅居其一,故“不超过2 019的非负数”能构成一个集合.2.若集合A由0,1与x三个元素组成,则x的取值有限制吗?为什么?提示:有限制,x≠0且x≠1.因为集合中的任意两个元素必须是互异的.知识点二元素与集合的关系[填一填]如果a是集合A中的元素,就说a属于(belong to)集合A,记作a∈A;如果a不是集合A中的元素,就说a不属于(not belong to)集合A,记作a∉A.[答一答]3.若集合A是由元素1,2,3,4所组成的集合,问1与A,5与A有什么关系?提示:1∈A,5∉A.知识点三常用数集及表示[填一填][答一答]4.常用的数集符号N,N*,N+有什么区别?提示:(1)N为非负整数集(即自然数集),而N*或N+表示正整数集,不同之处就是N 包括元素0,而N*或N+不包括元素0.(2)N*和N+的含义是一样的,初学者往往误记为N*或N+,为避免出错,对于N*和N 可形象地记为“星星(*)在天上,十字架(+)在地下”.+5.用符号“∈”或“∉”填空. (1)1∈N *;(2)-3∉N ;(3)13∈Q ;; (5)-12∈R.类型一 集合的概念[例1] 下列所给的对象能构成集合的是________. (1)所有的正三角形;(2)高一数学必修1课本上的所有难题; (3)比较接近1的正数全体;(4)某校高一年级的16岁以下的学生;(5)平面直角坐标系内到原点距离等于1的点的集合; (6)参加里约奥运会的年轻运动员. [答案] (1)(4)(5)[解析] (1)能构成集合.其中的元素需满足三条边相等;(2)不能构成集合.因“难题”的标准是模糊的,不确定的,故不能构成集合; (3)不能构成集合.因“比较接近1”的标准不明确,所以元素不确定,故不能构成集合;(4)能构成集合.其中的元素是“16岁以下的学生”;(5)能构成集合.其中的元素是“到坐标原点的距离等于1的点”;(6)不能构成集合.因为“年轻”的标准是模糊的,不确定的,故而不能构成集合.判断元素能否构成集合,关键是集合中元素的确定性,即能否找到一个明确的评判标准来衡量元素是否为集合中的元素,若标准明确则可以构成集合,否则不可以.[变式训练1] 下列对象能组成集合的是( D ) A .3的所有近似值B .某个班级中学习好的所有同学C .2018年全国高考数学试卷中所有难题D.屠呦呦实验室的全体工作人员解析:D中的对象都是确定的,而且是不同的.A中的“近似值”,B中的“学习好”,C中的“难题”标准不明确,不满足确定性,因此A,B,C都不能构成集合.类型二集合中元素的特性命题视角1:集合元素的互异性[例2]已知集合A中含有两个元素a和a2,若1∈A,求实数a的值.[分析]本题中已知集合A中有两个元素且1∈A,根据集合中元素的特点需分a=1或a2=1两种情况,另外还要注意集合中元素的互异性.根据集合中元素的确定性,可以解出字母的所有可能值,再根据集合中元素的互异性对集合中的元素进行检验.另外,利用集合中元素的特性解题时,要注意分类讨论思想的应用.[解]若1∈A,则a=1或a2=1,即a=±1.当a=1时,a=a2,集合A有一个元素,∴a≠1.当a=-1时,集合A含有两个元素1,-1,符合互异性.∴a=-1.当一个集合中的元素含字母时,可根据题意结合集合中元素的确定性求出集合中字母的所有取值,再根据集合中元素的互异性进行检验.[变式训练2](1)若集合M中的三个元素是△ABC的三边长,则△ABC一定不是(D)A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形(2)由a2,2-a,4组成一个集合A,且集合A中含有3个元素,则实数a的取值可以是(C)A.1B.-2C.6D.2解析:(1)集合中任何两个元素不相同.(2)由题意知a2≠4,2-a≠4,a2≠2-a,解得a≠±2,且a≠1.结合选项知C正确.故选C.命题视角2:集合元素的无序性[例3] 集合A 中含有三个元素0,ba ,b ,集合B 中含有三个元素1,a +b ,a ,若A ,B 两个集合相等,求a 2 019+b 2 019的值.[分析] 由两个集合相等,所含元素相同列出a ,b 的关系式,解出a 与b ,再求a 2 019+b 2 019的值.[解] 由两个集合相等易知a ≠0,a ≠1,故a +b =0,且b =1或ba =1.若b =1,由a +b =0得a =-1,经验证,符合题意;若ba =1,则a =b ,结合a +b =0,可知a =b =0,不符合题意.综上知a =-1,b =1. 所以a 2 019+b 2 019=(-1)2 019+12 019=0.两个集合相等,元素相同,因为集合元素无序,所以要进行讨论.同时还需要对集合求值问题代入验证,注意集合中元素的互异性.[变式训练3] 集合A 由1,3,5,7四个元素组成,已知实数a ,b ∈A ,那么ab 的不同值有( B )A .12个B .13个C .16个D .17个解析:a ,b 是集合A 的元素,ab 的值会因a ,b 的顺序不同而不同.a ,b 所取的值按顺序分别为:1,1;3,3;5,5;7,7;1,3;3,1;1,5;5,1;1,7;7,1;3,5;5,3;3,7;7,3;5,7;7,5,其对应的ab 有13个不同的值.类型三 元素与集合的关系[例4] (1)给出下列关系:①12∈R ;②2∉Q ;③|-3|∉N ;④|-3|∈Q ;⑤0∉N . 其中正确的个数为( ) A .1 B .2 C .3D .4(2)集合A 中的元素x 满足63-x ∈N ,x ∈N ,则集合A 中的元素为________.[答案] (1)B (2)0,1,2[解析] (1)12是实数;2是无理数;|-3|=3是自然数;|-3|=3是无理数;0是自然数.故①②正确,③④⑤不正确.(2)由63-x ∈N ,x ∈N 知x ≥0,63-x≥0,且x ≠3,故0≤x <3.又x ∈N ,故x =0,1,2. 当x =0时,63-0=2∈N ,当x =1时,63-1=3∈N ,当x =2时,63-2=6∈N .故集合A 中的元素为0,1,2.判断一个元素是否属于某一集合,就是判断这个元素是否满足该集合元素的条件.若满足,就是“属于”关系;若不满足,就是“不属于”关系.特别注意,符号“∈”与“∉”只表示元素与集合的关系.[变式训练4] 已知不等式3x +2>0的解集为M . (1)试判断元素-1,0与集合M 的关系;(2)若a -1是集合M 中的元素,求a 的取值范围. 解:(1)∵3×(-1)+2=-1<0, ∴-1不是集合M 中的元素,∴-1∉M . 又3×0+2=2>0,∴0是集合M 中的元素,∴0∈M . (2)∵a -1∈M ,∴3(a -1)+2>0. ∴3a >1,∴a >13.1.下列各组对象不能构成集合的是( B ) A .某中学所有身高超过1.8米的大个子 B .约等于0的实数 C .某市全体中学生D .北京大学建校以来的所有毕业生解析:由于“约等于0”没有一个明确的标准,因此B 中对象不能构成集合.2.下列命题中,正确命题的个数是( C )①集合N *中最小的数是1;②若-a ∉N *,则a ∈N *;③若a ∈N *,b ∈N *,则a +b 的最小值是2;④x 2+4=4x 的解集是{2,2}. A .0 B .1 C .2 D .3解析:N *是正整数集,最小的正整数是1,故①正确;当a =0时,-a ∉N *,a ∉N *,故②错误;若a ∈N *,则a 的最小值是1,同理,b ∈N *,b 的最小值也是1,∴当a 和b 都取最小值时,a +b 取最小值2,故③正确;由集合中元素的互异性,知④是错误的.3.已知a ,b 是非零实数,代数式|a |a +|b |b +|ab |ab 的值组成的集合是M ,则下列判断正确的是( B )A .0∈MB .-1∈MC .3∉MD .1∈M解析:当a ,b 全为正数时,代数式的值是3;当a ,b 全是负数时,代数式的值是-1;当a ,b 是一正一负时,代数式的值是-1.综上可知B 正确.4.集合A 由元素-1和2构成,集合B 是方程x 2+ax +b =0的解,若A =B ,则a +b =-3.解析:∵A =B ,∴方程x 2+ax +b =0的解是-1或2. ∴a =-1,b =-2,∴a +b =-3.5.已知集合A 由a 2-a +1,|a +1|两个元素构成,若3∈A ,求a 的值. 解:∵3∈A ,∴a 2-a +1=3或|a +1|=3. ①若a 2-a +1=3,则a =2或a =-1.当a =2时,|a +1|=3,此时集合A 中含有两个3,因此应舍去. 当a =-1时,|a +1|=0≠3,满足题意. ②若|a +1|=3,则a =-4或a =2(舍去). 当a =-4时,a 2-a +1=21≠3,满足题意. 综上可知a =-1或a =-4.——本课须掌握的三大问题1.理解集合的概念,关键是抓住集合中元素的三个特性:确定性、互异性和无序性.特别是处理含有参数的集合问题时,一定要注意集合中元素的互异性,即在求出参数的取值或取值范围后,一定要检验集合中元素的互异性.2.关于特定集合N ,N *(N +),Z ,Q ,R 等的意义是约定俗成的,解题时作为已知使用,不必重述它们的意义.3.对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两种结果,“∈”与“∉”具有方向性,左边是元素,右边是集合.学习至此,请完成课时作业1第2课时集合的表示[目标] 1.掌握集合的两种表示方法(列举法和描述法);2.能够运用集合的两种表示方法表示一些简单集合.[重点] 集合的两种表示方法及其运用.[难点] 对描述法表示集合的理解.知识点一列举法[填一填]把集合的元素一一列举出来,并用花括号“{__}”括起来表示集合的方法叫做列举法.{}表示“所有”的含义,不能省略,元素之间用“,”隔开,而不能用“、”;书写时不需要考虑元素的顺序.[答一答]1.实数集也可以写成{实数},那么能写成{实数集}或{全体实数}吗?提示:不能,因为花括号“{}”表示“所有、全部”的意思.2.列举法能表示元素个数很少的有限集,那么可以用列举法表示无限集吗?提示:对于所含元素有规律的无限集也可以用列举法表示,如正自然数集可以用列举法表示为{1,2,3,4,5,…}.3.集合{(1,2)}与{(2,1)}是否为相等集合?提示:不是.知识点二 描述法[填一填]1.用集合所含元素的共同特征表示集合的方法称为描述法. 2.具体方法在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.[答一答]4.集合{x |x >3}与集合{t |t >3}表示同一个集合吗?提示:虽然两个集合的代表元素的符号(字母)不同,但实质上它们均表示大于3的所有实数,故表示同一个集合.类型一 用列举法表示集合[例1] (1)若集合A ={(1,2),(3,4)},则集合A 中元素的个数是( ) A .1 B .2 C .3D .4(2)用列举法表示下列集合.①不大于10的非负偶数组成的集合; ②方程x 2=x 的所有实数解组成的集合; ③直线y =2x +1与y 轴的交点所组成的集合;④方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解.[答案] (1)B (2)见解析[解析] (1)集合A ={(1,2),(3,4)}中有两个元素(1,2)和(3,4).(2)解:①因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是{0,2,4,6,8,10}.②方程x 2=x 的解是x =0或x =1,所以方程的解组成的集合为{0,1}.③将x =0代入y =2x +1,得y =1,即交点是(0,1),故两直线的交点组成的集合是{(0,1)}.④解方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1,得⎩⎪⎨⎪⎧x =0,y =1.∴用列举法表示方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解集为{(0,1)}.用列举法表示集合应注意的三点,(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素;(2)集合中的元素一定要写全,但不能重复;(3)若集合中的元素是点时,则应将有序实数对用小括号括起来表示一个元素.[变式训练1] 用列举法表示下列集合: (1)15的正约数组成的集合; (2)所有正整数组成的集合;(3)直线y =x 与y =2x -1的交点组成的集合. 解:(1){1,3,5,15}.(2)正整数有1,2,3,…,所求集合用列举法表示为{1,2,3,…}.(3)方程组⎩⎪⎨⎪⎧ y =x ,y =2x -1的解是⎩⎪⎨⎪⎧x =1,y =1,所求集合用列举法表示为{(1,1)}.类型二 用描述法表示集合[例2] 用描述法表示下列集合: (1)不等式2x -7<3的解集A ;(2)二次函数y =x 2+1的函数值组成的集合B ; (3)被3除余2的正整数的集合C ;(4)平面直角坐标系内坐标轴上的点组成的集合D .[分析] 先确定集合元素的符号,再把元素的共同特征通过提炼加工后写在竖线后面. [解] (1)解2x -7<3得x <5, 所以A ={x |x <5}.(2)函数值组成的集合就是y 的取值集合,所以B ={y |y =x 2+1,x ∈R }.(3)被3除余2的正整数可以表示为3n +2(n ∈N ),所以集合C ={x |x =3n +2,n ∈N }. (4)平面直角坐标系中坐标轴上的点的共同特征是至少有一个坐标为0, 所以D ={(x ,y )|x ·y =0,x ∈R ,y ∈R }.(1)用描述法表示集合,应先弄清集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序实数对来代表其元素.(2)若描述部分出现元素记号以外的字母时,要对新字母说明其含义或指出其取值范围.[变式训练2] 用描述法表示下列集合: (1)函数y =-x 的图象上所有点组成的集合; (2)方程x 2+22x +121=0的解集;(3)数轴上离原点的距离大于3的点组成的集合;(4)⎩⎨⎧⎭⎬⎫13,12,35,23,57,…. 解:(1){(x ,y )|y =-x ,x ∈R ,y ∈R }. (2){x |x =-11}.(3)数轴上离原点的距离大于3的点组成的集合等于绝对值大于3的实数组成的集合,则数轴上离原点的距离大于3的点组成的集合可表示为{x ∈R ||x |>3}.(4)先统一形式13,24,35,46,57,…,找出规律,集合表示为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =n n +2,n ∈N *.类型三 两种方法的灵活应用[例3] 用适当的方法表示下列集合:(1)方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8的解组成的集合;(2)1 000以内被3除余2的正整数组成的集合; (3)所有的正方形组成的集合;(4)抛物线y =x 2上的所有点组成的集合.[分析] (1)中的元素个数很少,用列举法表示;(2)是有限集,但个数较多,用描述法;(3)(4)是无限集,用描述法表示.[解] (1)解方程组⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2,故该集合用列举法可表示为{(4,-2)}.该集合也可用描述法表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8.(2)设集合的代表元素是x ,则该集合用描述法可表示为{x |x =3k +2,k ∈N ,且k ≤332}.(3)集合用描述法表示为{x |x 是正方形}或{正方形}. (4)集合用描述法表示为{(x ,y )|y =x 2}.当集合的元素个数很少(很容易写出全部元素)时,常用列举法表示集合;当集合的元素个数较多(不易写出全部元素)时,常用描述法表示集合.对一些元素有规律的无限集,也可用列举法表示.如正奇数集也可写为{1,3,5,7,9,…}.但值得注意的是,并不是每一个集合都可以用两种方法表示出来.[变式训练3] 用适当的方法表示下列集合: (1)大于2且小于5的有理数组成的集合; (2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴距离相等的点的集合. 解:(1)用描述法表示为{x |2<x <5,且x ∈Q }. (2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |,所以该集合用描述法表示为{(x ,y )||y |=|x |}.1.集合{x ∈N |x <5}的另一种表示方法是( A ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}解析:由题x ∈N ,且x <5,∴x 的值为0,1,2,3,4,用列举法表示为{0,1,2,3,4}.2.方程组⎩⎪⎨⎪⎧x +y =2,x -2y =-1的解集是( C )A .{x =1,y =1}B .{1}C .{(1,1)}D .{(x ,y )|(1,1)}解析:方程组的解集中元素应是有序数对形式,排除A ,B ,而D 中的条件是点(1,1),不含x ,y ,排除D.3.集合{x |x =a ,a <36,x ∈N },用列举法表示为{0,1,2,3,4,5}. 解析:由a <36,可得a <6,即x <6,又x ∈N ,故x 只能取0,1,2,3,4,5. 4.能被2整除的正整数的集合,用描述法可表示为{x |x =2n ,n ∈N +}. 解析:正整数中所有的偶数均能被2整除. 5.用适当的方法表示下列集合:(1)已知集合P ={x |x =2n,0≤n ≤2,且n ∈N }; (2)能被3整除且大于4小于15的自然数组成的集合; (3)x 2-4的一次因式组成的集合;(4)由方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解所组成的集合.解:(1)用列举法表示为P ={0,2,4}.(2)可用列举法表示为{6,9,12};也可用描述法表示为{x |x =3n ,4<x <15,且n ∈N }. (3)用列举法表示为{x +2,x -2}.(4)可用列举法表示为{(1,2)},也可用描述法表示为{(x ,y )|x =1,y =2}.——本课须掌握的两大问题1.表示集合的要求:(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则. (2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式.(2)元素具有怎样的属性.当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.学习至此,请完成课时作业2 学科素养培优精品微课堂 “形似异质”的集合的表示开讲啦 集合的类型有多种形式,可以是数集、点集、图形集或是其他类型的集合,判断它是哪种类型的集合主要根据代表元素的类型来判断.[典例] 有下面三个集合:①A ={x ∈R |y =x 2+1};②B ={y ∈R |y =x 2+1};③C ={(x ,y )|y =x 2+1,x ∈R ,y ∈R }.它们是不是相同集合,为什么?[分析] 分析各集合中代表元素是哪种类型以及对各元素所具有的属性作出判断. [解] 对于集合A ,其代表元素为x ,x 属于实数,因此它表示数集,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1中自变量x 的取值范围,因为函数y =x 2+1中自变量x 的取值范围是R ,故A =R ;对于集合B ,其代表元素为y ,y 属于实数,因此它表示数集,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1的函数值y ,故B ={y |y ≥1};对于集合C ,其代表元素为(x ,y ),它表示坐标平面中的点的坐标,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1图象上的点.综上所述,集合A 、B 、C 是不同的集合.[名师点评] 理解描述法表示的集合,关键是对符号语言所表达的含义要正确理解.认识它时,一要看集合的代表元素是什么,它反映了集合元素的类型,以此确定集合的类型;二要看代表元素所具有的属性,即它要满足什么条件,以此确定集合中元素的组成部分.[对应训练] 判断下列说法是否正确,正确的打“√”,错误的打“×”. (1)整数集Z ={x |x =n +1,n ∈Z }.( √ ) (2){y |y =x 2}≠{x |y =x }.( × )(3)两条直线y =2x 与y =x -1的交点构成集合M ,集合N =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ y =2xy =x -1,则M =N .( √ )(4)M ={(x ,y )|x +y =4,x ,y ∈N *}={(0,4),(1,3),(2,2)}.( × )解析:(1)整数集是个无限集,x =n +1,n ∈Z 能表示任意一个整数,所有的整数也能写成这种形式,故(1)正确.{y |y =x 2}表示通过计算y =x 2得到的所有y 值的集合,也可以理解为二次函数y =x 2图象上所有点的纵坐标的取值集合,即{y |y =x 2}表示非负实数集;{x |y =x }表示满足y =x 的所有x 的取值集合,因此x 可以取任意非负实数,即{x |y =x }表示非负实数集.两者表示的数集完全一样,故(2)错误.集合N 是一个点集,描述集合M 采用的是自然语言,二者含义一样,故(3)正确.集合M 是由满足x +y =4,且x ,y 均为正整数的x ,y 构成的点集,易知M ={(1,3),(2,2),(3,1)},故(4)错误.1.1.2 集合间的基本关系[目标] 1.记住集合间的包含关系,会判断两个简单集合的关系;2.能写出给定集合的子集;3.记住集合相等与空集的含义以及空集与其他集合的关系.[重点] 集合间关系及集合间关系的判断;写出给定集合的子集;空集与其他集合的关系.[难点] 集合间的关系及应用.知识点一子集的有关概念[填一填]1.Venn图通常用平面上封闭曲线的内部代表集合.用Venn图表示集合的优点:形象直观.2.子集(1)自然语言:一般地,对于两个集合A,B,如果集合A的任何一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集.(2)符号语言:记作A⊆B(或B⊇A),读作“A含于B”(或“B包含A”).(3)图形语言:用Venn图表示.3.真子集如果集合A⊆B,但存在元素x∈B,且x∉A,我们称集合A是集合B的真子集,记作A B(B A).4.集合相等如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A 与集合B中的元素是一样的,因此集合A和集合B相等,记作A=B.[答一答]1.若A⊆B,则A中的元素是B中的元素的一部分,对吗?提示:不对,A中的元素是B的一部分或是B的全部.2.“∈”与“⊆”有什么区别?提示:“∈”表示元素与集合之间的关系,而“⊆”表示集合与集合之间的关系.3.“”与“<”一样吗?提示:不一样,“”表示集合与集合之间的关系;“<”表示两实数间的关系.4.如何判断两个集合是否相等?提示:方法一:根据两个集合中的元素是否完全相同进行判断;方法二:根据集合相等的定义,即是否同时满足A⊆B且B⊆A.知识点二空集[填一填]不含任何元素的集合叫做空集,记为∅,并规定:空集是任何集合的子集.[答一答]5.0,{0},∅,{∅}有何区别?提示:知识点三子集、真子集的性质[填一填]由子集、真子集和空集的概念可得:(1)空集是任何集合的子集,即∅⊆A;(2)任何一个集合是它自身的子集,即A⊆A;(3)空集只有一个子集,即它自身;(4)对于集合A,B,C,由A⊆B,B⊆C可得A⊆C;(5)对于集合A,B,C,由A B,B C可得A C.[答一答]6.(1)对于集合A、B、C,如果A⊆B,B⊆C,则A⊆C,若A B,B⊆C呢?(2)若∅A,则A≠∅对吗?提示:(1)A C.(2)对.类型一确定集合的子集、真子集[例1](1)已知集合M满足{1,2}M⊆{1,2,3,4,5},求所有满足条件的集合M.(2)填写下表,并回答问题:12n数及非空真子集的个数呢?[解](1)由题意可以确定集合M必含有元素1,2,且至少含有元素3,4,5中的一个,因此依据集合M的元素个数分类如下:含有3个元素:{1,2,3},{1,2,4},{1,2,5};含有4个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5};含有5个元素:{1,2,3,4,5}.故满足条件的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.(2)}的所有子集的个数是212n是2n-1,非空真子集的个数是2n-2.1.有限集子集的确定问题,求解关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出,一般按元素从少到多的顺序逐个写出满足条件的集合;,(3)注意两个特殊的集合,即空集和集合本身.2.若集合A中有n个元素,则集合A有2n个子集,(2n-1)个真子集,(2n-1)个非空子集,(2n-2)个非空真子集,该结论可在选择题或填空题中直接使用.[变式训练1]试写出满足条件∅M{0,1,2}的所有集合M.解:因为∅M{0,1,2}.所以M为{0,1,2}的非空真子集.所以M中的元素个数为1或2,当M中只有1个元素时,M可以是{0},{1},{2};当M中有2个元素时,M可以是{0,1},{0,2},{1,2};所以M可以是{0},{1},{2},{0,1},{0,2},{1,2}.类型二集合间关系的判断及应用命题视角1:利用子集的定义判断集合间的关系[例2](1)已知集合M={x|x2-3x+2=0},N={0,1,2},则集合M与N的关系是() A.M=N B.N MC.M N D.N⊆M(2)已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间最适合的关系是()A.A⊆B B.A⊇BC.A B D.A B[答案](1)C(2)D[解析](1)由已知得集合M={1,2}.由真子集的定义可知M N.(2)因为A中元素是3的整数倍,而B中的元素是3的偶数倍,所以集合B是集合A的真子集.判断两集合关系的步骤:(1)先对所给集合进行化简.(2)搞清两集合中元素的组成,也就是弄清楚集合由哪些元素组成,即把集合间关系的判断转化为相应集合元素之间的关系来判断.[变式训练2]指出下列各组集合之间的关系:(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A={x|x是等边三角形},B={x|x是等腰三角形};(3)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.解:(1)集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.(3)法1:两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.法2:由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.命题视角2:利用Venn图理解集合间的关系[例3]能正确表示集合M={x|0≤x≤2}和集合N={x|x2-x=0}关系的Venn图是下图中的()[答案] B[解析]N={0,1}M.用封闭的曲线的内部表示集合,这种图形称为Venn图,是描述集合关系的图形语言,它可以是圆、矩形、椭圆等.通过图形可直观看出两个集合是否有公共元素,甚至还可以解决集合内元素的个数问题,在后续课的学习中Venn图的图解功能再进一步体会.[变式训练3] 已知集合A ={x |x 2=x ,x ∈R },集合A 与非空集合B 的关系如图所示,则满足条件的集合B 的个数为( B )A .1B .2C .3D .4 解析:∵A ={x |x 2=x ,x ∈R }={0,1},又B A ,且B 为非空集合,∴B 可以为{0}或{1}.故选B.命题视角3:利用数轴理解集合间的关系[例4] 已知A ={x |x <-2或x >3},B ={x |4x +m <0},当A ⊇B 时,求实数m 的取值范围.[分析] 解决本题可用数形结合的方法画出数轴来分析. [解] 集合A 在数轴上表示如图.要使A ⊇B ,则集合B 中的元素必须都是A 中的元素, 即B 中元素必须都位于阴影部分内,那么由4x +m <0,即x <-m 4知,-m4≤-2,即m ≥8,故实数m 的取值范围是m ≥8.在数轴上表示集合A 与B 时要注意,端点处都是空心点,所以当-m4=-2时,集合B 为{x |x <-2},仍满足A ⊇B .这种利用子集关系求参数的问题,借助数轴分析时,要验证参数能否取到端点值.[变式训练4] 已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若AB ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围. 解:(1)若A B ,则集合A 中的元素都在集合B 中,且B 中有不在A 中的元素,则a >2.(2)若B ⊆A ,则集合B 中的元素都在集合A 中,则a ≤2.因为a ≥1,所以1≤a ≤2.1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则有( B )A .A ⊆B B .C ⊆B C .D ⊆CD .A ⊆D解析:正方形是邻边相等的矩形.2.已知集合M ={-1,0,1},N ={y |y =x 2,x ∈M },则( B ) A .MNB .NMC .M =ND .M ,N 的关系不确定解析:由题意,得N ={0,1},故N M .3.已知集合A {1,2,3},且A 中至少含有一个奇数,则这样的集合A 有5个.解析:∵A{1,2,3},∴A 中至多含有2个元素.∵A 中至少有一个奇数,∴A 可能为{1},{3},{1,2},{1,3},{2,3},共5个.4.已知∅{x |x 2-x +a =0},则实数a 的取值范围是a ≤14.解析:∵∅{x |x 2-x +a =0}.∴{x |x 2-x +a =0}≠∅,即方程x 2-x +a =0有解,∴Δ=1-4a ≥0,∴a ≤14.5.已知集合B ={-1,0,1},若A ⊆B ,试写出所有满足条件的集合A . 解:当A =∅时,满足条件;当A 是单元素集合时,满足条件的集合A 有{-1},{0},{1};当A 是含两个元素的集合时,满足条件的集合A 有{-1,0},{-1,1},{0,1}; 当A 是含三个元素的集合时,满足条件的集合A 为{-1,0,1}.故满足条件的集合A 有∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},{-1,0,1}.——本课须掌握的三大问题1.写出一个集合的所有子集,首先要注意两个特殊子集:∅和自身;其次依次按含有一个元素的子集、含有两个元素的子集、含有三个元素的子集……写出子集.2.空集是任何集合的子集,是任何非空集合的真子集,在解决形如A ⊆B 类问题时, 需分类讨论A =∅与A ≠∅两种情况.3.要证明A =B ,只需要证明A ⊆B 且B ⊆A 成立即可.即可设任意x 0∈A ,证明x 0∈B 从而得出A ⊆B .又设任意y 0∈B ,证明y 0∈A ,从而得到B ⊆A ,进而证明得到A =B .。
高中数学人教版集合教案
高中数学人教版集合教案
教学目标:
1. 熟练掌握集合的概念和表示方法;
2. 能够进行集合的基本运算;
3. 能够解决与集合相关的问题。
教学重点和难点:
重点:集合的定义和表示方法,集合的基本运算
难点:集合的应用题目解答
教学准备:教材《人教版高中数学》,课件,黑板,彩色粉笔
教学过程:
一、导入(5分钟)
通过举例的方式引出问题:在日常生活中,我们经常听到“集合”的说法,你们知道集合是什么吗?集合有哪些表示方法?
二、讲解与示范(15分钟)
1. 集合的概念:集合是由一些对象组成的总体,这些对象称为集合的元素,用大括号{}表示。
2. 集合的表示方法:列举几个例子,让学生理解集合的表示方法。
3. 集合的基本运算:并集、交集、差集的概念及表示方法。
三、练习与讨论(20分钟)
1. 让学生做一些与集合相关的练习题,巩固集合的概念和基本运算。
2. 引导学生讨论集合的应用题目,如排列组合等。
四、小结与展示(10分钟)
总结本节课的学习内容,强调集合的重要性和应用价值。
五、作业布置(5分钟)
布置相关的练习题,巩固学生的学习成果。
教学反思:
本节课主要是介绍集合的概念和表示方法,以及集合的基本运算。
通过示范和练习,学生能够更好地理解集合的相关知识,并能够在实际问题中灵活运用。
在教学过程中,可以引导学生进行讨论和合作,提高他们的思维能力和解决问题的能力。
高中必修一数学集合教案
高中必修一数学集合教案教学目标:1. 了解集合的概念,掌握集合的基本运算。
2. 掌握集合的常见表示方法,能够用Venn图表示集合之间的关系。
3. 熟练运用集合的交集、并集、差集等运算方法解决实际问题。
教学重点:1. 集合的概念和基本运算。
2. 集合的常见表示方法。
3. 集合的交集、并集、差集等运算方法。
教学难点:1. 针对不同情况使用集合的运算方法进行解题。
2. 理解集合运算的概念,并能够正确运用。
教学内容:一、集合的概念1. 集合的定义和表示方法。
2. 集合的元素和子集。
3. 集合的基本运算:交集、并集、差集。
4. 集合的运算律和运算规则。
二、集合的表示方法1. 列举法表示集合。
2. 描述法表示集合。
3. Venn图表示集合之间的关系。
三、集合的运算1. 集合的交集运算。
2. 集合的并集运算。
3. 集合的差集运算。
4. 集合的补集运算。
教学过程:一、导入环节通过提出一个实际问题,引导学生认识到集合的概念,并探讨集合的基本运算方法。
二、讲解与示范1. 介绍集合的定义和表示方法。
2. 讲解集合的基本运算方法,引导学生理解并运用。
3. 示范几个例题,让学生掌握集合的交集、并集、差集等运算方法。
三、练习与讨论1. 学生个别练习。
2. 学生小组讨论,解决实际问题。
3. 教师引导学生总结解题方法,巩固所学内容。
四、作业布置布置练习题,巩固学生对集合的理解和运用。
五、课堂总结引导学生归纳集合的概念和运算方法,做一个小结。
教学评价:通过课堂练习和作业完成情况来评价学生对集合概念和运算方法的掌握情况。
同时,教师也要及时给予学生反馈,提供必要的指导和帮助。
教学点评:本节课主要介绍了集合的概念和基本运算方法,通过讲解、示范、练习等环节,帮助学生理解和掌握集合运算的基本原理和方法。
在教学过程中,要注重理论和实践相结合,培养学生的逻辑思维能力和解决问题的能力。
新人教A版高中数学(必修1)1.1《集合》(集合间基本关系)word教案
B
写出集合{a,b,c}的所有子集并指出,
后附:1.教师评课,2.板书设计
1.教师评课:
1)优点:i教态自然、语言表达较清楚;
ii讲练结合、课堂、课件思路比较连贯,有条不紊;
iii运用了类比的数学思想。
2)不足:i老师讲的过多,学生自己思考的少,练习不够;
ii进度有些慢,对子集真子集强调的不够;
A = B
A
B
A B
iii口头语较多、课件速度有些快,师生互动,让学生多
写。
举例应更具体;
iv子集、真子集、非空真子集,让学生说更好,例子引
入更好一些;
v有老师一言堂的感觉,多让学生回答问题。
该让学生
答的教案中应该有体现,例题不应该让学生答;
vi学生老师需要磨合,初中学生对课程深度广度理解不
够,课堂容量大。
对学生的了解不够,课堂容量大。
2.高一年级数学人教(A版)1.1.2集合间的基本关系板书设计
B。
高中数学 第一章《集合》教案 新人教A版必修1
课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(或a A)(举例)∈6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
集合第一课时教案数学必修第一章集合与函数概念11人教A版
第一章集合与函数的概念1.1 集合第一课时 1.1.1 集合的含义与表示1 教学目标[1]通过实例,使学生初步理解集合的概念,知道常用数集的概念及其记法[2]使学生体会元素与集合的“属于”关系[3]能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2 教学重点/难点教学重点:集合的基本概念与表示方法理解元素与集合之间的从属关系教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合掌握集合中元素的特性的应用3 专家建议这是高中数学的第一节课。
虽说在小学、初中都已渗透了这方面的内容,但集合这个概念还是很抽象。
在本节中,新的符号会比较多,对学生而言是一个难点,应让学生知道在某种意义上数学是一门研究符号的科学,在第一堂课就对数学符号有一个正确的认识。
要适当穿插学习数学的方法,让学生知道数学要自己摸索自己的学习方法。
在教学中尽可能创设一些情境,让学生自然、快乐、自觉地学习数学。
本节课要记的东西多,可让学生自己阅读,然后在老师的引导下思考问题,进一步解决问题。
在本节课的学习过程中,教师一方面让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想.在教学过程中通过恰当的应用信息技术,从而突破难点4 教学方法启发式讲授法5 教学过程5.1 复习引入【师】我们初中学过的实数自然数都还记得吗?它们之间有什么关系呢?【板演/PPT】5.2 实例引入【师】我们来看下下面这些实例【板演/PPT】⑴ 1~20以内的所有整数;⑵我国从1991~2015的25年内所发射的所有人造卫星;⑶某汽车厂2015年生产的所有汽车;⑷所有的正方形;⑸某中学2015年9月入学的高一学生全体.5.3 新知介绍[1]元素与集合的相关概念【师】我们试着总结下这些事例它们有什么共同点?【生】思考交流【师】我们生活中的很多东西都能构成集合,你能举出一些例子吗?通过以上分析,能给出集合的含义吗【板书\PPT】一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)集合常用大写字母A,B,C,D,…表示,元素常用小写字母a,b,c,d…表示[2]元素与集合的关系【师】如果用A表示我们学校全体高一学生组成的集合,用a表示高一学生中的一位同学,b 是高二年级的一位同学,那么a、b与集合A分别有什么关系?由此可见元素与集合之间有什么关系?我们怎样才能简单明了地表示它们的关系呢?【生】讨论交流【板书\PPT】如果a是集合A的元素,就说a属于集合A,记作a∈A如果b不是集合A的元素,就说b属于集合A,记作b?A[3]集合的表示方法【师】我们用什么方法来表示我们的集合呢【生】讨论与理解【师】归纳总结【板书/PPT】列举法:把集合中的元素一个一个地写在一对大括号内表示集合的方法描述法:把集合中元素共有的,也只有该集合中元素才有的属性描述出来,已确定集合的方法【师】同学们请看题【板书\PPT】用适当的方法表示下列集合(1)方程 -4=0的解组成的集合{-2,2}或{x| -4=0}(2)大于3小于9的实数组成的集合{x|3<x<9,x∈R}(3)所有奇数组成的集合{y|y=2n-1,n∈Z}[4]集合元素的性质【师】我们观察一下实例中的数据它们能不能构成组合它们都有什么特征呢?【生】理解与交流【师】总结【板书/PPT】(1)确定性:集合中的元素必须是确定的,任何一个元素都能明确它是或不是某个集合的元素(2)互异性:集合中的元素必须是互不相同的(3)无序性:集合中的元素是无先后顺序的。
人教课标版高中数学必修1第一章集合与函数概念集合教案
⼈教课标版⾼中数学必修1第⼀章集合与函数概念集合教案课题:1.1集合-集合的概念(1)教学⽬的:(1)使学⽣初步理解集合的概念,知道常⽤数集的概念及记法(2)使学⽣初步了解“属于”关系的意义(3)使学⽣初步了解有限集、⽆限集、空集的意义教学重点:集合的基本概念及表⽰⽅法教学难点:运⽤集合的两种常⽤表⽰⽅法——列举法与描述法,正确表⽰⼀些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的⼀个重要的基本概念在⼩学数学中,就渗透了集合的初步概念,到了初中,更进⼀步应⽤集合的语⾔表述⼀些问题在⼏何中⽤到的有点集⾄于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运⽤,基本的逻辑知识在⽇常⽣活、学习、⼯作中,也是认识问题、研究问题不可缺少的⼯具这些可以帮助学⽣认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在⾼中数学的最开始,是因为在⾼中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使⽤数学语⾔的基础例如,下⼀章讲函数的概念与性质,就离不开集合与逻辑本节⾸先从初中代数与⼏何涉及的集合实例⼊⼿,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常⽤表⽰⽅法,包括列举法、描述法,还给出了画图表⽰集合的例⼦这节课主要学习全章的引⾔和集合的基本概念学习引⾔是引发学⽣的学习兴趣,使学⽣认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有⼀个初步认识教科书给出的“⼀般地,某些指定的对象集在⼀起就成为⼀个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:⼀、复习引⼊:1.简介数集的发展,复习最⼤公约数和最⼩公倍数,质数与和数;2.教材中的章头引⾔;3.集合论的创始⼈——康托尔(德国数学家)(见附录);4.“物以类聚”,“⼈以群分”;5.教材中例⼦(P4)⼆、讲解新课:阅读教材第⼀部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表⽰的?(3)集合中元素的特性是什么?(⼀)集合的有关概念:由⼀些数、⼀些点、⼀些图形、⼀些整式、⼀些物体、⼀些⼈组成的.我们说,每⼀组对象的全体形成⼀个集合,或者说,某些指定的对象集在⼀起就成为⼀个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:⼀般地,某些指定的对象集在⼀起就成为⼀个集合. 1、集合的概念(1)集合:某些指定的对象集在⼀起就形成⼀个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素 2、常⽤数集及记法(1)⾮负整数集(⾃然数集):全体⾮负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:⾮负整数集内排除0的集记作N *或N +{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q ,{}整数与分数=Q (5)实数集:全体实数的集合记作R{}数数轴上所有点所对应的=R 注:(1)⾃然数集与⾮负整数集是相同的,也就是说,⾃然数集包括数0(2)⾮负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表⽰,例如,整数集内排除0 的集,表⽰成Z *3、元素对于集合的⾪属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ? 4、集合中元素的特性(1)确定性:按照明确的判断标准给定⼀个元素或者在这个集合⾥,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)⽆序性:集合中的元素没有⼀定的顺序(通常⽤正常的顺序写出) 5、⑴集合通常⽤⼤写的拉丁字母表⽰,如A 、B 、C 、P 、Q ……元素通常⽤⼩写的拉丁字母表⽰,如a 、b 、c 、p 、q …… ⑵“∈”的开⼝⽅向,不能把a ∈A 颠倒过来写三、练习题:1、教材P 5练习1、22、下列各组对象能确定⼀个集合吗?(1)所有很⼤的实数(不确定)(2)好⼼的⼈(不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b 是⾮零实数,那么bb aa +可能取的值组成集合的元素是_-2,0,2__4、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素(B )3个元素(C )4个元素(D )5个元素5、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证: (1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,⽽x1不⼀定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2 ∵a ∈Z, b ∈Z,c ∈Z, d ∈Z ∴(a+c) ∈Z, (b+d) ∈Z ∴x+y =(a+c)+(b+d)2 ∈G ,⼜∵211b a x +==2222222b a b b a a --+-且22222,2ba bb a a ---不⼀定都是整数,∴211b a x +==2222222b a b b a a --+-不⼀定属于集合G四、⼩结:本节课学习了以下内容:1.集合的有关概念:(集合、元素、属于、不属于) 2.集合元素的性质:确定性,互异性,⽆序性 3.常⽤数集的定义及记法五、课后作业:六、板书设计(略)七、课后记:⼋、附录:康托尔简介发疯了的数学家康托尔(Georg Cantor ,1845-1918)是德国数学家,集合论的创始者1845年3⽉3⽇⽣于圣彼得堡,1918年1⽉6⽇病逝于哈雷康托尔11岁时移居德国,在德国读中学1862年17岁时⼊瑞⼠苏黎世⼤学,翌年⼊柏林⼤学,主修数学,1866年曾去格丁根学习⼀学期1867年以数论⽅⾯的论⽂获博⼠学位年在哈雷⼤学通过讲师资格考试,后在该⼤学任讲师,1872年任副教授,1879年任教授由于研究⽆穷时往往推出⼀些合乎逻辑的但⼜荒谬的结果(称为“悖论”),许多⼤数学家唯恐陷进去⽽采取退避三舍的态度在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的⽆穷宣战他靠着⾟勤的汗⽔,成功地证明了⼀条直线上的点能够和⼀个平⾯上的点⼀⼀对应,也能和空间中的点⼀⼀对应这样看起来,1厘⽶长的线段内的点与太平洋⾯上的点,以及整个地球内部的点都“⼀样多”,后来⼏年,康托尔对这类“⽆穷集合”问题发表了⼀系列⽂章,通过严格证明得出了许多惊⼈的结论康托尔的创造性⼯作与传统的数学观念发⽣了尖锐冲突,遭到⼀些⼈的反对、攻击甚⾄谩骂有⼈说,康托尔的集合论是⼀种“疾病”,康托尔的概念是“雾中之雾”,甚⾄说康托尔是“疯⼦”来⾃数学权威们的巨⼤精神压⼒终于摧垮了康托尔,使他⼼⼒交瘁,患了精神分裂症,被送进精神病医院真⾦不怕⽕炼,康托尔的思想终于⼤放光彩1897年举⾏的第⼀次国际数学家会议上,他的成就得到承认,伟⼤的哲学家、数学家罗素称赞康托尔的⼯作“可能是这个时代所能夸耀的最巨⼤的⼯作”可是这时康托尔仍然神志恍惚,不能从⼈们的崇敬中得到安慰和喜悦1918年1⽉6⽇,康托尔在⼀家精神病院去世集合论是现代数学的基础,康托尔在研究函数论时产⽣了探索⽆穷集和超穷数的兴趣康托尔肯定了⽆穷数的存在,并对⽆穷问题进⾏了哲学的讨论,最终建⽴了较完善的集合理论,为现代数学的发展打下了坚实的基础康托尔创⽴了集合论作为实数理论,以⾄整个微积分理论体系的基础17世纪⽜顿(I.Newton,1642-1727)与莱布尼茨(G.W.Leibniz,1646-1716)创⽴微积分理论体系之后,在近⼀⼆百年时间⾥,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.Cauchy,1789-1857)、魏尔斯特拉斯(K.Weierstrass,1815-1897)等⼈进⾏的微积分理论严格化所建⽴的极限理论克隆尼克(L.Kronecker,1823-1891),康托尔的⽼师,对康托尔表现了⽆微不⾄的关怀他⽤各种⽤得上的尖刻语⾔,粗暴地、连续不断地攻击康托尔达⼗年之久他甚⾄在柏林⼤学的学⽣⾯前公开攻击康托尔⼀个薪⾦较⾼、声望更⼤的教授职位使得康托尔想在柏林得到职位⽽改善其地位的任何努⼒都遭到挫折法国数学家彭加勒(H.Poi-ncare,1854-1912):我个⼈,⽽且还不只我⼀⼈,认为重要之点在于,切勿引进⼀些不能⽤有限个⽂字去完全定义好的东西集合论是⼀个有趣的“病理学的情形”,后⼀代将把(Cantor)集合论当作⼀种疾病,⽽⼈们已经从中恢复过来了德国数学家魏尔(C.H.Her-mann Wey1,1885-1955)认为,康托尔关于基数的等级观点是雾上之雾菲利克斯.克莱因(F.Klein,1849-1925)不赞成集合论的思想H.A.施⽡兹,康托尔的好友,由于反对集合论⽽同康托尔断交从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去变得很⾃卑,甚⾄怀疑⾃⼰的⼯作是否可靠他请求哈勒⼤学当局把他的数学教授职位改为哲学教授职位健康状况逐渐恶化,1918年,他在哈勒⼤学附属精神病院去世流星埃.伽罗华(E.Galois,1811-1832),法国数学家伽罗华17岁时,就着⼿研究数学中最困难的问题之⼀⼀般π次⽅程求解问题许多数学家为之耗去许多精⼒,但都失败了直到1770年,法国数学家拉格朗⽇对上述问题的研究才算迈出重要的⼀步伽罗华在前⼈研究成果的基础上,利⽤群论的⽅法从系统结构的整体上彻底解决了根式解的难题他从拉格朗⽇那⾥学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进⼀步发展了他的思想,把全部问题转化成或者归结为置换群及其⼦群结构的分析上同时创⽴了具有划时代意义的数学分⽀——群论,数学发展史上作出了重⼤贡献1829年,他把关于群论研究所初步结果的第⼀批论⽂提交给法国科学院科学院委托当时法国最杰出的数学家柯西作为这些论⽂的鉴定⼈在1830年1⽉18⽇柯西曾计划对伽罗华的研究成果在科学院举⾏⼀次全⾯的意见听取会然⽽,第⼆周当柯西向科学院宣读他⾃⼰的⼀篇论⽂时,并未介绍伽罗华的著作1830年2⽉,伽罗华将他的研究成果⽐较详细地写成论⽂交上去了以参加科学院的数学⼤奖评选,论⽂寄给当时科学院终⾝秘书J .B .傅⽴叶,但傅⽴叶在当年5⽉就去世了,在他的遗物中未能发现伽罗华的⼿稿1831年1⽉伽罗华在寻求确定⽅程的可解性这个问题上,⼜得到⼀个结论,他写成论⽂提交给法国科学院于群论的重要著作当时的数学家S .K .泊松为了理解这篇论⽂绞尽了脑汁尽管借助于拉格朗⽇已证明的⼀个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它1832年5⽉30⽇,临死的前⼀夜,他把他的重⼤科研成果匆忙写成后,委托他的朋友薛伐⾥叶保存下来,从⽽使他的劳动结晶流传后世,造福⼈类年5⽉31⽇离开了⼈间死因参加⽆意义的决⽃受重伤1846年,他死后14年,法国数学家刘维尔着⼿整理伽罗华的重⼤创作后,⾸次发表于刘维尔主编的《数学杂志》上课题:1.1集合-集合的概念(2)教学⽬的:(1)进⼀步理解集合的有关概念,熟记常⽤数集的概念及记法(2)使学⽣初步了解有限集、⽆限集、空集的意义(3)会运⽤集合的两种常⽤表⽰⽅法教学重点:集合的表⽰⽅法教学难点:运⽤集合的列举法与描述法,正确表⽰⼀些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:⼀、复习引⼊:上节所学集合的有关概念1、集合的概念(1)集合:某些指定的对象集在⼀起就形成⼀个集合(2)元素:集合中每个对象叫做这个集合的元素 2、常⽤数集及记法(1)⾃然数集:全体⾮负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:⾮负整数集内排除0的集记作N *或N + ,{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q , {}所有整数与分数=Q (5)实数集:全体实数的集合记作R ,{}数数轴上所有点所对应的=R3、元素对于集合的⾪属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ?4、集合中元素的特性(1)确定性:按照明确的判断标准给定⼀个元素或者在这个集合⾥,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)⽆序性:集合中的元素没有⼀定的顺序(通常⽤正常的顺序写出) 5、(1)集合通常⽤⼤写的拉丁字母表⽰,如A 、B 、C 、P 、Q ……元素通常⽤⼩写的拉丁字母表⽰,如a 、b 、c 、p 、q …… (2)“∈”的开⼝⽅向,不能把a ∈A 颠倒过来写⼆、讲解新课:(⼆)集合的表⽰⽅法1、列举法:把集合中的元素⼀⼀列举出来,写在⼤括号内表⽰集合例如,由⽅程012=-x 的所有解组成的集合,可以表⽰为{-1,1} 注:(1)有些集合亦可如下表⽰:从51到100的所有整数组成的集合:{51,52,53,…,100} 所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表⽰⼀个元素,{a}表⽰⼀个集合,该集合只有⼀个元素2、描述法:⽤确定的条件表⽰某些对象是否属于这个集合,并把这个条件写在⼤括号内表⽰集合的⽅法格式:{x ∈A| P (x )}含义:在集合A 中满⾜条件P (x )的x 的集合例如,不等式23>-x 的解集可以表⽰为:}23|{>-∈x R x 或23|{>-x x所有直⾓三⾓形的集合可以表⽰为:}|{是直⾓三⾓形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直⾓三⾓形};{⼤于104的实数} (2)错误表⽰法:{实数集};{全体实数}3、⽂⽒图:⽤⼀条封闭的曲线的内部来表⽰⼀个集合的⽅法4、何时⽤列举法?何时⽤描述法?⑴有些集合的公共属性不明显,难以概括,不便⽤描述法表⽰,只能⽤列举法如:集合},5,23,{2232y x x y x x +-+⑵有些集合的元素不能⽆遗漏地⼀⼀列举出来,或者不便于、不需要⼀⼀列举出来,常⽤描述法如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同⼀个集合吗?答:不是}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集(三)有限集与⽆限集1、有限集:含有有限个元素的集合2、⽆限集:含有⽆限个元素的集合3、空集:不含任何元素的集合Φ,如:}01|{2=+∈x R x三、练习题:1、⽤描述法表⽰下列集合①{1,4,7,10,13} }5,23|{≤∈-=+n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=+n N n n x x 且 2、⽤列举法表⽰下列集合①{x ∈N|x 是15的约数} {1,3,5,15} ②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防⽌把{(1,2)}写成{1,2}或{x=1,y=2}③=-=+}422|),{(y x y x y x )}32,38{(-④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)} ⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的⽅程ax +b=0,当a,b 满⾜条件____时,解集是有限集;当a,b 满⾜条件_____时,解集是⽆限集4、⽤描述法表⽰下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 四、⼩结:本节课学习了以下内容:1.集合的有关概念:有限集、⽆限集、空集2.集合的表⽰⽅法:列举法、描述法、⽂⽒图五、课后作业:六、板书设计(略)七、课后记:1.2 ⼦集、全集、补集教学⽬标:(1)理解⼦集、真⼦集、补集、两个集合相等概念;(2)了解全集、空集的意义,(3)掌握有关⼦集、全集、补集的符号及表⽰⽅法,会⽤它们正确表⽰⼀些简单的集合,培养学⽣的符号表⽰的能⼒;(4)会求已知集合的⼦集、真⼦集,会求全集中⼦集在全集中的补集;(5)能判断两集合间的包含、相等关系,并会⽤符号及图形(⽂⽒图)准确地表⽰出来,培养学⽣的数学结合的数学思想;(6)培养学⽣⽤集合的观点分析问题、解决问题的能⼒.教学重点:⼦集、补集的概念教学难点:弄清元素与⼦集、属于与包含之间的区别教学⽤具:幻灯机教学过程设计(⼀)导⼊新课上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.【提出问题】(投影打出)已知,,,问:1.哪些集合表⽰⽅法是列举法.2.哪些集合表⽰⽅法是描述法.3.将集M、集从集P⽤图⽰法表⽰.4.分别说出各集合中的元素.5.将每个集合中的元素与该集合的关系⽤符号表⽰出来.将集N中元素3与集M的关系⽤符号表⽰出来.6.集M中元素与集N有何关系.集M中元素与集P有何关系.【找学⽣回答】1.集合M和集合N;(⼝答)2.集合P;(⼝答)3.(笔练结合板演)4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(⼝答)5.,,,,,,,(笔练结合板演)6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(⼝答)【引⼊】在上⾯见到的集M与集N;集M与集P通过元素建⽴了某种关系,⽽具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.(⼆)新授知识1.⼦集(1)⼦集定义:⼀般地,对于两个集合A与B,如果集合A的任何⼀个元素都是集合B 的元素,我们就说集合A包含于集合B,或集合B包含集合A。
数学必修一集合教案
数学必修一集合教案一、教学目标1、知识与技能目标理解集合的概念,掌握集合中元素的特性。
能够熟练区分集合与元素的关系,能用符号表示。
掌握常用数集的符号表示。
2、过程与方法目标通过实例感受集合的含义,提高学生的观察和分析能力。
经历集合表示方法的探究过程,培养学生的数学思维能力和创新意识。
3、情感态度与价值观目标让学生感受数学与实际生活的紧密联系,激发学生学习数学的兴趣。
培养学生的合作交流意识和严谨的治学态度。
二、教学重难点1、教学重点集合的概念。
集合中元素的特性。
集合与元素的关系及表示方法。
2、教学难点对集合中元素的确定性、互异性、无序性的理解。
选择合适的方法表示集合。
三、教学方法讲授法、讨论法、练习法相结合四、教学过程1、导入新课通过展示一些生活中的例子,如学校的班级、图书馆的书籍、超市的商品等,引导学生思考这些对象的共同特点,从而引出集合的概念。
2、讲解集合的概念集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体。
这些对象称为集合的元素。
例如,“所有小于 10 的自然数”就构成一个集合,其中 0、1、2、3、4、5、6、7、8、9 是这个集合的元素。
强调集合是一个整体,而元素是构成集合的个体。
3、讲解集合中元素的特性(1)确定性:给定一个集合,任何一个对象是不是这个集合的元素是确定的。
例如,“身高较高的同学”不能构成一个集合,因为“较高”没有明确的标准,无法确定一个同学是否属于这个集合。
(2)互异性:一个集合中的元素是互不相同的。
例如,集合{1, 2, 2}是不正确的,应该写成{1, 2}。
(3)无序性:集合中的元素排列顺序是无关紧要的。
例如,集合{1, 2, 3}和{3, 2, 1}表示的是同一个集合。
通过具体的例子帮助学生理解这三个特性。
4、集合与元素的关系及表示方法(1)集合与元素的关系属于:如果 a 是集合 A 的元素,就说 a 属于 A,记作 a ∈ A。
不属于:如果 a 不是集合 A 的元素,就说 a 不属于 A,记作 a ∉ A。
集合教案数学必修一
集合教案数学必修一教学目标:1. 知识目标:学生能够正确理解和运用集合的概念,能够正确使用集合的基本运算规则。
2. 能力目标:培养学生分析和解决问题的能力,培养学生的逻辑思维能力。
3. 情感目标:培养学生的学习兴趣和学习动力,培养学生的团队合作精神。
教学重点:1. 理解集合的概念。
2. 学习集合的基本运算法则。
教学难点:1. 学会正确应用集合的基本运算法则。
2. 在解决问题时能够正确运用集合的概念和基本运算法则。
教学方法:1. 课堂教学法:通过讲解、举例、讨论等方式讲解集合的概念和基本运算法则。
2. 合作学习法:通过小组讨论、合作探究等形式,培养学生的合作精神和解决问题的能力。
3. 情景教学法:通过真实的生活情境和案例引导学生理解和运用集合的概念和运算法则。
教学过程:第一步:导入(10分钟)1. 利用生活中的例子引导学生理解集合的概念。
比如,将课堂中的学生分为男生和女生两个集合,让学生分析男生和女生各自拥有的特点,并形成集合的概念。
2. 提问:集合的定义是什么?集合有哪些特点?第二步:学习集合的基本运算法则(30分钟)1. 定义并讲解集合的基本运算法则:并集、交集、差集和补集。
2. 通过举例子的方式帮助学生理解集合的基本运算法则,并通过画图的方式展示集合的运算过程。
3. 练习:让学生自己试着解决一些集合的运算问题,并让他们在小组内交流和讨论答案。
第三步:拓展运用(30分钟)1. 在生活中继续寻找集合的例子,让学生能够将所学的知识灵活运用到实际生活中。
2. 分组讨论:将学生分为小组,让每个小组选择一个自己感兴趣的话题,通过集合的概念和运算法则进行讨论和总结,最后由每个小组代表进行汇报。
第四步:总结(10分钟)1. 回顾本节课所学的知识点和解题方法,并进行总结。
2. 提问:学会了集合的概念和基本运算法则之后,你觉得对你有什么帮助?板书设计:集合的概念1. 定义:集合是由一些个体组成的整体。
2. 特点:没有重复元素,没有次序。
人教课标版高中数学必修1第一章 集合与函数概念集合教案
课题:1.1集合-集合的概念(1)教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N +{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q ,{}整数与分数=Q (5)实数集:全体实数的集合记作R{}数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *3、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里, 或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……⑵“∈”的开口方向,不能把a ∈A 颠倒过来写三、练习题:1、教材P 5练习1、22、下列各组对象能确定一个集合吗?(1)所有很大的实数 (不确定)(2)好心的人 (不确定)(3)1,2,2,3,4,5.(有重复) 3、设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是_-2,0,2__4、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素5、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证:(1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,而x1不一定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2∵a ∈Z, b ∈Z,c ∈Z, d ∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d)2 ∈G ,又∵211b a x +==2222222b a b b a a --+- 且22222,2ba b b a a ---不一定都是整数, ∴211b a x +==2222222b a b b a a --+-不一定属于集合G 四、小结:本节课学习了以下内容:1.集合的有关概念:(集合、元素、属于、不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法五、课后作业:六、板书设计(略)七、课后记:八、附录:康托尔简介发疯了的数学家康托尔(Georg Cantor ,1845-1918)是德国数学家,集合论的创始者1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷康托尔11岁时移居德国,在德国读中学1862年17岁时入瑞士苏黎世大学,翌年入柏林大学,主修数学,1866年曾去格丁根学习一学期1867年以数论方面的论文获博士学位年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教授,1879年任教授由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院真金不怕火炼,康托尔的思想终于大放光彩1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦1918年1月6日,康托尔在一家精神病院去世集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的兴趣康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较完善的集合理论,为现代数学的发展打下了坚实的基础康托尔创立了集合论作为实数理论,以至整个微积分理论体系的基础17世纪牛顿(I.Newton,1642-1727)与莱布尼茨(G.W.Leibniz,1646-1716)创立微积分理论体系之后,在近一二百年时间里,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.Cauchy,1789-1857)、魏尔斯特拉斯(K.Weierstrass,1815-1897)等人进行的微积分理论严格化所建立的极限理论克隆尼克(L.Kronecker,1823-1891),康托尔的老师,对康托尔表现了无微不至的关怀他用各种用得上的尖刻语言,粗暴地、连续不断地攻击康托尔达十年之久他甚至在柏林大学的学生面前公开攻击康托尔一个薪金较高、声望更大的教授职位使得康托尔想在柏林得到职位而改善其地位的任何努力都遭到挫折法国数学家彭加勒(H.Poi-ncare,1854-1912):我个人,而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个文字去完全定义好的东西集合论是一个有趣的“病理学的情形”,后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了德国数学家魏尔(C.H.Her-mann Wey1,1885-1955)认为,康托尔关于基数的等级观点是雾上之雾菲利克斯.克莱因(F.Klein,1849-1925)不赞成集合论的思想H.A.施瓦兹,康托尔的好友,由于反对集合论而同康托尔断交从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去变得很自卑,甚至怀疑自己的工作是否可靠他请求哈勒大学当局把他的数学教授职位改为哲学教授职位健康状况逐渐恶化,1918年,他在哈勒大学附属精神病院去世流星埃.伽罗华(E.Galois,1811-1832),法国数学家伽罗华17岁时,就着手研究数学中最困难的问题之一一般π次方程求解问题许多数学家为之耗去许多精力,但都失败了直到1770年,法国数学家拉格朗日对上述问题的研究才算迈出重要的一步伽罗华在前人研究成果的基础上,利用群论的方法从系统结构的整体上彻底解决了根式解的难题他从拉格朗日那里学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化成或者归结为置换群及其子群结构的分析上同时创立了具有划时代意义的数学分支——群论,数学发展史上作出了重大贡献1829年,他把关于群论研究所初步结果的第一批论文提交给法国科学院科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了以参加科学院的数学大奖评选,论文寄给当时科学院终身秘书J .B .傅立叶,但傅立叶在当年5月就去世了,在他的遗物中未能发现伽罗华的手稿1831年1月伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院于群论的重要著作当时的数学家S .K .泊松为了理解这篇论文绞尽了脑汁尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它1832年5月30日,临死的前一夜,他把他的重大科研成果匆忙写成后,委托他的朋友薛伐里叶保存下来,从而使他的劳动结晶流传后世,造福人类年5月31日离开了人间死因参加无意义的决斗受重伤1846年,他死后14年,法国数学家刘维尔着手整理伽罗华的重大创作后,首次发表于刘维尔主编的《数学杂志》上课 题:1.1集合-集合的概念(2)教学目的:(1)进一步理解集合的有关概念,熟记常用数集的概念及记法(2)使学生初步了解有限集、无限集、空集的意义(3)会运用集合的两种常用表示方法教学重点:集合的表示方法教学难点:运用集合的列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:上节所学集合的有关概念1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)自然数集:全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + ,{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q , {}所有整数与分数=Q (5)实数集:全体实数的集合记作R ,{}数数轴上所有点所对应的=R3、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里, 或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、(1)集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……(2)“∈”的开口方向,不能把a ∈A 颠倒过来写二、讲解新课: (二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只 有一个元素2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条 件写在大括号内表示集合的方法格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合 例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或 23|{>-x x所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法 如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例 集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?答:不是}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集(三) 有限集与无限集1、 有限集:含有有限个元素的集合2、 无限集:含有无限个元素的集合3、 空集:不含任何元素的集合Φ,如:}01|{2=+∈x R x 三、练习题:1、用描述法表示下列集合①{1,4,7,10,13} }5,23|{≤∈-=+n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=+n N n n x x 且2、用列举法表示下列集合①{x ∈N|x 是15的约数} {1,3,5,15}②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}③⎩⎨⎧=-=+}422|),{(y x y x y x )}32,38{(- ④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)}⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集4、用描述法表示下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 四、小结:本节课学习了以下内容:1.集合的有关概念:有限集、无限集、空集2.集合的表示方法:列举法、描述法、文氏图五、课后作业:六、板书设计(略)七、课后记:1.2 子集、全集、补集教学目标:(1)理解子集、真子集、补集、两个集合相等概念;(2)了解全集、空集的意义,(3)掌握有关子集、全集、补集的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;(6)培养学生用集合的观点分析问题、解决问题的能力.教学重点:子集、补集的概念教学难点:弄清元素与子集、属于与包含之间的区别教学用具:幻灯机教学过程设计(一)导入新课上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.【提出问题】(投影打出)已知,,,问:1.哪些集合表示方法是列举法.2.哪些集合表示方法是描述法.3.将集M、集从集P用图示法表示.4.分别说出各集合中的元素.5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.6.集M中元素与集N有何关系.集M中元素与集P有何关系.【找学生回答】1.集合M和集合N;(口答)2.集合P;(口答)3.(笔练结合板演)4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)5.,,,,,,,(笔练结合板演)6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.(二)新授知识1.子集(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B 的元素,我们就说集合A包含于集合B,或集合B包含集合A。
人教A版高中数学必修1教案完整版
第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn 图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
人教A版高中数学必修1教案完整版
第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
高中数学子集、全集、补集教案 新课标 人教版 必修1(A)
子集、全集、补集(一)三维目标一、知识与技能1.了解集合间包含关系的意义.2.理解子集、真子集的概念和意义.3.会判断简单集合的相等关系.二、过程与方法1.观察、分析、归纳.2.数学化表示日常问题.3.提高学生的逻辑思维能力,培养学生等价和化归的思想方法.三、情感态度与价值观1.培养数学来源于生活,又为生活服务的思维方式.2.个体与集体之间,小集体构成大社会的依存关系.3.发展学生抽象、归纳事物的能力,培养学生辩证的观点.教学重点子集、真子集的概念.教学难点元素与子集,属于与包含间的区别;空集是任何非空集合的真子集的理解.教具准备中国地图、多媒体、胶片.教学过程一、创设情景,引入新课师:今天我们先来看一看中国地图,先看江苏省区域在什么地方?再看一看中国的区域.请问:江苏省的区域与中国的区域有何关系?生:江苏省的区域在中国区域的内部.师:如果我们把江苏省的区域用集合A来表示,中国的区域用集合B来表示,则会发现集合A在集合B内,即集合A中的每一个元素都在集合B内.再看一看下面两个集合之间的关系(投影胶片,胶片上可以用一组人群表示)A={x|x为江苏人},B={x|x为中国人},生:江苏人是中国人.师:我说的是从集合的角度看是什么关系?生:集合A中的元素都是集合B中的元素.师:说得对,再来看一看下面给出的集合A中的元素与集合B中的元素有什么关系?(1)A={1,2,3},B={1,2,3,4,5};(2)设A为启东中学高一(2)班女生的全体组成的集合,B为这个班学生的全体组成的集合;(3)设C={x|x是两条边相等的三角形},D={x|x是等腰三角形}.生:均有集合A中的元素都是集合B中的元素.由此引出子集的概念.二、讲解新课1.子集对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B(或B ⊇A).读作“A含于B”(或“B包含A”).其数学语言的表示形式为:若对任意的x∈A,有x∈B,则A⊆B.——为判别A是B的子集的方法之一.很明显:N⊆Z,N⊆Q,R⊇Z,R⊇Q.若A不是B的子集,则记作A B(或B A).读作“A不包含于B”(或“B不包含A”).例如,A={2,4},B={3,5,7},则A B.2.图示法表示集合(1)Venn图在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn图(必要时还可以用小写字母分别定出集合中的某些元素).由此,A⊆B的图形语言如下图.BA(2)数轴在数学中,表示实数取值范围的集合,我们往往借助于数轴直观地表示.例如{x|x>3}可表示为345x21又如{x|x≤2}可表示为-1123x还比如{x|-1≤x<3=可表示为-21123x-3.集合相等对于C={x|x是两条边相等的三角形},D={x|x是等腰三角形},由于“两条边相等的三角形”是等腰三角形,因此,集合C、D都是由所有等腰三角形组成的集合,即集合C中任何一个元素都是集合D中的元素.同时,集合D中任何一个元素也都是集合C中的元素.这样,集合D的元素与集合C的元素是一样的.我们可以用子集概念对两个集合的相等作进一步的数学描述.如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A与集合B 中的元素是一样的,因此,集合A与集合B相等,记作A=B.事实上,A⊆B,B⊆A⇔A=B.上述结论与实数中的结论“若a≥b,且b≥a,则a=b”相类比,同学们有什么体会?4.真子集如果集合A⊆B,但存在元素x∈B,且x∉A,我们称集合A是集合B的真子集,记作A B(或B A).例如,A={1,2},B={1,2,3},则有A B.子集与真子集的区别就在于“A B”允许A=B或A B,而“A B”是不允许“A=B”的,所以若“A⊆B”,则“A B”不一定成立.5.空集我们把不含有任何元素的集合叫做空集,记为∅,并规定:空集是任何集合的子集,即∅⊆A.例如{x|x2+1=0,x∈R},{边长为3,5,9的三角形}等都是空集.可以让同学们列举多个生活中空集的例子.空集是任何非空集合的真子集,即若A≠∅,则∅A.6.子集的有关性质(1)A⊆A;(2)A⊆B,B⊆C⇒A⊆C;A B,B C⇒A C.7.例题讲解【例1】写出集合{a,b}的子集.解:∅,{a},{b},{a,b}.方法引导:写子集时先写零个元素构成的集合,即∅,然后写出一个元素构成的集合,再写两个元素构成的集合,依此类推.师:请写出{a,b,c}的所有子集.生:∅,{a},{b},{c},{a,b},{a,c}{b,c},{a,b,c}.师:写出{a}的子集.生:∅,{a}.师:∅的子集是什么?生:∅.师:我们可以列一个表格(板演),先猜一猜4个元素集合的子集个数是多少?集合集合元素个数集合子集个数∅0 1{a} 1 2{a,b} 2 4{a,b,c} 3 8{a,b,c,d} 4…………n个元素生:16个.师:从上面写出的集合子集我们可以看出集合的子集个数与集合的元素个数之间有什么关系?换句话:你能否猜想n个元素集合的子集共有多少个子集?生:2n个.师:猜得很好.因为我们所学知识还不能证明这个结论,要等到高二学过排列、组合知识后就可以证明了,有兴趣的同学可以自己先学.【例2】写出不等式x-3>2的解集并进行化简(即化成直接表明未知数本身的取值范围的解集).解:不等式x-3>2的解集是{x|x-3>2}={x|x>5}.【例3】在以下六个写法中,错误写法的个数是①{0}∈{0,1}②∅{0}③{0,-1,1}⊆{-1,0,1}④0∈∅⑤Z={全体整数}⑥{(0,0)}={0}A.3B.4C.5D.6思路分析:①中是两个集合的关系,不能用“∈”;④表示空集,空集中无任何元素,所以应是0∉∅;⑤集合符号“{}”本身就表示全体元素之意,故此“全体”不应写;⑥等式左边集合的元素是平面上的原点,而右边集合的元素是数零,故不相等.只有②和③正确.故选B.【例4】已知A={x|x=8m+14n,m、n∈Z},B={x|x=2k,k∈Z},问:(1)数2与集合A的关系如何?(2)集合A与集合B的关系如何?师:元素与集合之间、集合与集合之间分别用什么符号连接?生:元素与集合之间用“∈”或“∉”连接,集合与集合之间用“⊆”“”“=”或“”等连接.师:本问题的第(1)问给了我们什么启示?生:要判别2是否属于A,只需考虑2能否表示成8m+14n的形式,若能写成8m+14n的形式,则说明2∈A ,否则2∉A.师:很好.现在的问题是2能否写成8m +14n 的形式?生:能,并且可以有多种写法,比如:2=8×2+14×(-1),且2∈Z ,-1∈Z , 2=8×(-5)+14×3,且-5∈Z ,3∈Z 等.所以2∈A .师:我们从第(2)问中读到了什么?生:判定两个集合A 、B 的关系,应优先考察它们的包含关系.对于本题,我们的思考是A ⊆B 成立吗?B ⊆A 成立吗?如果两个方面都成立,则A =B ;如果只有一个方面成立,则应考虑是否是真子集;如果两个方面都不成立,则两集合不具备包含关系.师:回答得很好,问题是如何判别A ⊆B ?生:用定义法.任取x ∈A ,只要能够证明x ∈B ,则A ⊆B 就成立了. 师:好,现在我们一起解决问题(2).生:任取x 0∈B ,则x 0=2k ,k ∈Z .∵2k =8×(-5k )+14×3k ,且-5k ∈Z ,3k ∈Z ,∴2k ∈A ,即B ⊆A . 任取y 0∈A ,则y 0=8m +14n ,m 、n ∈Z , ∴y 0=8m +14n =2(4m +7n ),且4m +7n ∈Z .∴8m +14n ∈B ,即A ⊆B . 由B ⊆A 且A ⊆B ,∴A =B .师:对于本题我们能够得到A =B ,现在的问题是在集合有关问题中如何证明两个集合相等? 生1:欲证A =B ,根据定义,只需证A ⊆B ,且B ⊆A 即可.生2:如果A 、B 是元素较少的有限集合,也可用穷举法判别它们相等.师:很好,两位同学的方法加以组合,判别两个集合相等的方法就完美了.由此,平时的学习中,只要敢于探究,善于探究,我们一定能挖掘出自身的潜能,使自己的学习永远立于不败之地,这对我们今后的学习和工作将十分有益.三、课堂练习 教科书P 8练习题2答案:(1)∈ (2)∈ (3)= (4) (5) (6)= 四、课堂小结1.本节学习的数学知识:子集、集合相等、真子集、子集的性质. 2.本节学习的数学方法: 归纳的思想、定义法、穷举法.五、布置作业1.满足条件{1,2} M ⊆{1,2,3,4,5}的集合M 的个数是 A.3B.6C.7D.82.已知集合A ={x ,xy ,1-xy },B ={0,|x |,y },A =B ,求实数x 、y 的值.3.已知M ⊆{1,2,3,4,5},且a ∈M 时,也有6-a ∈M ,试求集合M 所有可能的结果.4.若a 、x ∈R ,A ={2,4,x 2-5x +9},B ={3,x 2+ax +a },C ={x 2+(a +1)x -3,1},求: (1)使A ={2,3,4}的x 的值; (2)使2∈B ,B A 的a 、x 的值; (3)使B =C 的a 、x 的值. 板书设计1.1.2 集合间的基本关系子集Venn图集合相等真子集空集子集的性质例1例2例3例4课堂练习课堂小结。
人教版高一数学必修1集合的教案
高一数学必修1的教案人教版高一数学必修1集合的教案作为一名优秀的教育工作者,就有可能用到教案,教案是备课向课堂教学转化的关节点。
那么优秀的教案是什么样的呢?下面是小编收集整理的人教版高一数学必修1集合的教案,仅供参考,大家一起来看看吧。
人教版高一数学必修1集合的教案1教学目标:1、理解集合的概念和性质。
2、了解元素与集合的表示方法。
3、熟记有关数集。
4、培养学生认识事物的能力。
教学重点:集合概念、性质教学难点:集合概念的理解教学过程:1、定义:集合:一般地,某些指定的对象集在一起就成为一个集合(集)。
元素:集合中每个对象叫做这个集合的元素。
由此上述例中集合的元素是什么?例(1)的元素为1、3、5、7,例(2)的元素为到两定点距离等于两定点间距离的点,例(3)的元素为满足不等式3x—2> x+3的实数x,例(4)的元素为所有直角三角形,例(5)为高一·六班全体男同学。
一般用大括号表示集合,{?}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。
则上几例可表示为??为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(1)确定性;(2)互异性;(3)无序性。
3、元素与集合的'关系:隶属关系元素与集合的关系有“属于∈”及“不属于?(?也可表示为)两种。
如A={2,4,8,16},则4∈A,8∈A,32?A。
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作a?A,相反,a不属于集A记作a?A(或)注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q??元素通常用小写的拉丁字母表示,如a、b、c、p、q??2、“∈”的开口方向,不能把a∈A颠倒过来写。
4注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。
(2)非负整数集内排除0的集。
记作NXX或N+ 。
Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成ZXX请回答:已知a+b+c=m,A={x|ax2+bx+c=m},判断1与A的关系。
人教A版高中数学必修一集合的含义与表示示范教案新
高中数学(1.1集合的含义与表示)示范教案新人教A版必修1课标要求1.知识与技能认识和理解集合、映射、函数、幂函数、指数函数、对数函数等概念,认识和理解它们的有关性质和运算.具有一定的把函数应用于实际的能力.2.过程与方法通过背景的给出,通过经历、体验和实践探索过程的展现,通过数学思想方法的渗透,让学生体会过程的重要,并在过程中学习知识,同时领会一定的数学思想和方法.3.情感、态度与价值观教育的根本目的是育人.通过对本模块内容的教学,使学生在学习和运用知识的过程中提高对数学学习的兴趣,并在初中函数的学习基础上,对数学有更深刻的感受,提高说理、批判和质疑精神,形成锲而不舍追求真理的科学态度和习惯,树立良好的情感态度和价值观.内容概述本模块共三章:第一章集合与函数概念;第二章基本初等函数(Ⅰ);第三章函数的应用.本模块为了用集合与对应的语言刻画函数概念,先在第一章给出集合的有关概念、表示、关系和运算等;然后从函数实例出发深化函数概念及其表示,并研究映射概念;进而又给出了函数的性质:单调性、最值、奇偶性,这也是对函数的深化;接下来再回到特殊的函数——几个基本初等函数,继续认识函数,本模块重点涉及了指数函数、对数函数、幂函数;最后专门给出了函数在数学和实际中的一些应用实例,使函数的价值得到体现,也是进一步巩固函数的概念,更加强了数学应用.概括地说,本模块的核心内容是“函数”.函数是描述现实世界最重要、最常用的数学模型,是贯穿整个高中数学的纽带,是学生进一步学习的准备,是未来公民的必需,因此,整个模块以函数作为中心,以函数思想作为指导思想.本模块无论是数还是形都用函数观点来研究,研究它们的变化及其规律.对方程的认识和研究,也是从函数出发,把它与两个函数相结合,把它的解看成两个函数图象的交点的横坐标.这里把函数作为整体来认识,方程则被看成是包含于函数的局部.教学建议教师,对数学应该有自己深入的想法,只有教师深入了才能有教学的浅出;教师,对于教学也应该有自己的想法,唯其有自己的想法,才能发挥自己的特长,教出具有独到想法的学生.1.抓住核心,重点突破由于函数是本模块的重点和核心,因此教师要重视函数的教学,向学生贯彻函数的数学思想,逐步让学生掌握学会函数,更会用函数的思想去解决数学和实际问题.函数概念的教学要从实际背景和定义两个方面帮助学生理解函数的本质,教学中可引导学生联系生活常识,尝试列举具体函数,构建函数的一般定义.要注意:①构成函数的要素和相同函数的含义,②函数的三种表示法的联系、区别与适用性,③分段函数的意义,④映射的概念和判断.教学中应强调对函数概念本质的理解,在求函数定义域、值域时,要控制难度.2.用课本教,而非教课本《普通高中数学课程标准》是在《基础教育课程改革纲要(试行)》的指导下编写的,是数学学科教育目标的具体化,体现数学学科对学生最起码的要求,是编制高考大纲的依据,是数学教学和培养学生数学素质的主要依据,具有指导性.《普通高中数学课程标准》的目标是包含“双基”在内的三维发展目标:知识与技能,过程与方法,情感、态度与价值观.在这种教学过程中,课本仅仅是一种学习工具,是课程标准的具体化,课本内容仅仅是帮助学生实现三维发展目标的一种载体,并不要求学生将课本内容全部掌握.由于高中数学课本版本的多样化,高考数学只能依据高中数学课程标准而不是某个版本的课本来命题.因此在处理新课标课本时,首先要考虑高中数学课程标准的培养目标和具体要求.就课本来说,版本不同,对课程标准的理解就有不同,其处理的方式也就不同,因此,在教学中,要深入钻研课程标准、课本、学生,找准三者的连接点.这样在新课程改革的形势下,课本仅仅是教学的素材,在教学过程中,以课本为依托,把课本当作指导教学的素材和蓝本,创造性地使用、改造课本,最终突破课本,即变“教课本”为“用课本教”,树立“用课本教”的课本观.同时这也要求提醒学生,不要把课本看得过于神圣.3.把学生当成学习的主人独立自主地思考是学习数学的需要,但是合作交流更不能少.在课堂上,教师尽量不要大包大揽,以先知先觉出现,把结论告诉学生,而是推出判断,引导学生独立思考,并在此基础上进行合作和交流,努力实现师生的互动,这是课标的要求也是时代发展的必然.4.强调应用,突出提出、分析和解决问题的能力数学是美的,这正是数学使人兴趣盎然、乐此不疲之处.数学的美,有两个方面:一是其中的思维之美,内在的逻辑和运用逻辑的机智,外在的形式,莫不充满着思维之美;另一方面则是它的作用,它在方方面面的应用.新课标要求强化数学应用,在应用中,应该特别重视实践能力和创造能力的培养;在教学中,要重视动手和一题多解的能力.第一章集合与函数概念本章教材分析通过本章的学习,使学生会使用最基本的集合语言表示有关的数学对象,并能在自然语言、图形语言、集合语言之间进行转换,体会用集合语言表达数学内容的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.通过本章的学习,使学生不仅把函数看成变量之间的依赖关系,同时还会用集合与对应的语言刻画函数,为后续学习奠定基础.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识,培养学生的抽象概括能力,增强学生应用数学的意识.课本力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,强调从实例出发,让学生对集合和函数概念有充分的感性认知基础,再用集合与对应语言抽象出函数概念.课本突出了集合和函数概念的背景教学,这样比较符合学生的认识规律.教学中要高度重视数学概念的背景教学.课本尽量创设使学生运用集合语言和数学符号进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,用图象表示函数,帮助学生借助直观图示认识抽象概念.课本在例题、习题的教学中注重运用集合和函数的观点研究、处理数学问题,这一观点,一直贯穿到以后的数学学习中.在例题和习题的编排中,渗透了分类讨论思想,让学生体会到分类讨论思想在生活中和数学中的广泛运用,这是学生在初中阶段所缺少的.函数的表示是本章的主要内容之一,课本重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念.在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.课本将函数推广到了映射,体现了由特殊到一般的思维规律,有利于学生对函数概念学习的连续性.在教学中,要坚持循序渐进,逐步渗透数形结合、分类讨论这方面的训练.对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不作提倡,要准确把握这方面的要求,防止拔高教学.重视函数与信息技术整合的要求,通过电脑绘制简单函数动态图象,使学生初步感受到信息技术在函数学习中的重要作用.为了体现课本的选择性,在练习题安排上加大了弹性,教师应根据学生实际情况,合理地取舍.本章教学时间约需13课时,具体分配如下(仅供参考):1.1.1 集合的含义与表示整体设计教学分析集合论是现代数学的一个重要的基础.在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础.课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,结合实例给出元素、集合的含义,课本注重体现逻辑思考的方法,如抽象、概括等.值得注意的问题:由于本小节的新概念、新符号较多,建议教学时先引导学生阅读课本,然后进行交流,让学生在阅读与交流中理解概念并熟悉新符号的使用.在信息技术条件较好的学校,可以利用网络平台让学生交流学习概念后的认识;也可以由教师给出问题,让学生读后回答问题,再由教师给出评价.这样做的目的是培养学生主动学习的习惯,提高阅读与理解、合作与交流的能力.在处理集合问题时,根据需要,及时提示学生运用集合语言进行表述.三维目标1.通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.2.了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.重点难点教学重点:集合的基本概念与表示方法.教学难点:选择恰当的方法表示一些简单的集合.课时安排1课时设计方案(一)教学过程导入新课思路1.军训前学校通知:8月15日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合.思路2.首先教师提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆、举例和互相交流自己举的例子.与此同时,教师对学生的活动给予评价.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.推进新课新知探究提出问题①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?讨论结果:①能.②能.③我们把研究的对象统称为“元素”,那么把一些元素组成的总体叫“集合”.④a是集合A的元素,b不是集合A的元素.学生得出元素与集合的关系有两种:属于和不属于.⑤能,是珠穆朗玛峰.⑥不能.⑦确定性.给定的集合,它的元素必须是明确的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合的确定性.⑧3个.⑨互异性.一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的,这就是集合的互异性.⑩集合M和N相同.这说明集合中的元素具有无序性,即集合中的元素是没有顺序的.可以发现:如果两个集合中的元素完全相同,那么这两个集合是相等的.提出问题阅读课本P3中:数学中一些常用的数集及其记法.快速写出常见数集的记号.活动:先让学生阅读课本,教师指定学生展示结果.学生写出常用数集的记号后,教师强调:通常情况下,大写的英文字母N、Z、Q、R不能再表示其他的集合,这是专用集合表示符号,类似于110、119等专用电话号码一样.以后,我们会经常用到这些常见的数集,要求熟练掌握.讨论结果:常见数集的专用符号.N:非负整数集(或自然数集)(全体非负整数的集合);N*或N+:正整数集(非负整数集N内排除0的集合);Z:整数集(全体整数的集合);Q:有理数集(全体有理数的集合);R:实数集(全体实数的集合).提出问题①前面所说的集合是如何表示的?②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?③集合共有几种表示法?活动:①学生回顾所学的集合并作出总结.教师提示可以用字母或自然语言来表示.②教师可以举例帮助引导:例如,24的所有正约数构成的集合,把24的所有正约数写在大括号“{}”内,即写出为{1,2,3,4,6,8,12,24}的形式,这种表示集合的方法是列举法.注意:大括号不能缺失;有些集合所含元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可用列举法表示,如:从1到100的所有整数组成的集合:{1,2,3,…,100},自然数集N:{0,1,2,3,4,…,n,…};区分a 与{a}:{a}表示一个集合,该集合只有一个元素,a 表示这个集合的一个元素;用列举法表示集合时不必考虑元素的前后次序;相同的元素不能出现两次. 又例如,不等式x-3>2的解集,这个集合中的元素有无数个,不适合用列举法表示.可以表示为{x∈R |x-3>2}或{x|x-3>2},这种表示集合的方法是描述法.③让学生思考总结已经学习了的集合表示法.讨论结果:①方法一(字母表示法):大写的英文字母表示集合,例如常见的数集N 、Q,所有的正方形组成的集合记为A 等等;方法二(自然语言):用文字语言来描述出的集合,例如“所有的正方形”组成的集合等等. ②列举法:把集合中的全部元素一一列举出来,并用大括号“{}”括起来表示集合,这种表示集合的方法叫做列举法;描述法:在大括号内先写上表示这个集合元素的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简写成列举法的形式,只是去掉竖线和元素代表符号,例如:所有直角三角形的集合可以表示为{x|x 是直角三角形},也可以写成{直角三角形}.③表示一个集合共有四种方法:字母表示法、自然语言、列举法、描述法.应用示例思路11.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点 活动:学生先思考、讨论集合元素的性质,教师指导学生此类选择题要逐项判断.判断一组对象能否构成集合,关键是看是否满足集合元素的确定性.在选项A 、C 、D 中的元素符合集合的确定性;而选项B 中,难题没有标准,不符合集合元素的确定性,不能构成集合.答案:B变式训练1.下列条件能形成集合的是( )A.充分小的负数全体B.爱好足球的人C.中国的富翁D.某公司的全体员工答案:D2.2007浙江宁波高三第一次“十校联考”,理1在数集{2x,x 2-x}中,实数x 的取值范围是.分析:实数x 的取值满足集合元素的互异性,则2x≠x 2-x,解得x≠0且x≠3,∴实数x 的取值范围是{x|x<0或0<x<3或x>3}.答案:{x|x<0或0<x<3或x>3}点评:本题主要考查集合的含义和元素的性质.当所指的对象非常明确时就能构成集合,若元素不明确,没有判断的标准就不能构成集合.2.用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.活动:学生先思考或讨论列举法的形式,展示解答过程.当学生出现错误时,教师及时加以纠正.利用相关的知识先明确集合中的元素,再把元素写入大括号“{}”内,并用逗号隔开.所给的集合均是用自然语言给出的.提示学生注意以下方面:(1)自然数中包含零;(2)解一元二次方程有公式法和分解因式法,方程x2=x的根是x=0,x=1;(3)除去1和本身外没有其他约数的正整数是质数,1~20以内的所有质数是2、3、5、7、11、13、17、19.解:(1)设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9}.(2)设方程x2=x的所有实数根组成的集合为B,那么A={0,1}.(3)设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.点评:本题主要考查集合表示法中的列举法.通过本题可以体会利用集合表示数学内容的简洁性和严谨性,以后我们尽量用集合来表示数学内容.如果一个集合是有限集,并且元素的个数较少时,通常选择列举法表示,其特点是非常显明地表示出了集合中的元素,是常用的表示法;列举法表示集合的步骤:(1)用字母表示集合;(2)明确集合中的元素;(3)把集合中所有元素写在大括号“{}”内,并写成A={……}的形式.变式训练用列举法表示下列集合:(1)所有绝对值等于8的数的集合A;(2)所有绝对值小于8的整数的集合B.答案:(1)A={-8,8};(2)B={-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7}.3.试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.活动:先让学生回顾列举法表示集合的步骤,思考描述法的形式,再找学生到黑板上书写.当学生出现错误时,教师指导学生书写过程.用描述法表示集合时,要用数学符号表示集合元素的特征.大于10小于20的所有整数用数学符号可以表示为10<x<20,x∈Z.(重点引导用描述法表示集合)用描述法表示集合时,用一个小写英文字母表示集合中的元素,作为集合中元素的代表符号,找到集合中元素的共同特征,并把共同特征用数学符号来表达,然后写在大括号“{}”内,在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.在(1)中利用条件中现有元素代表符号x,集合中元素的共同特征就是满足方程x2-2=0.在(2)的条件中没有元素代表符号,故要先设出,用一个小写英文字母表示即可;集合中元素的共同特征有两个:一是大于10小于20(用不等式表示),二是整数(用元素与集合的关系符号“∈”来表示).解:(1)设方程x 2-2=0的实根为x,它满足条件x 2-2=0,因此,用描述法表示为A={x∈R |x 2-2=0}.方程x 2-2=0的两个实数根为2,2-,因此,用列举法表示为 A={2,2-}.(2)设大于10小于20的整数为x,它满足条件x∈Z ,且10<x<20,因此,用描述法表示为 B={x∈Z |10<x<20}.大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为B={11,12,13,14,15,16,17,18,19}.描述法表示集合的步骤:(1)用字母分别表示集合和元素;(2)用数学符号表达集合元素的共同特征;(3)在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.并写成A={…|…}的形式.描述法适合表示有无数个元素的集合.注意:当集合中的元素个数较少时,通常用列举法表示,否则用描述法表示.思路21.(1)A={1,3},判断元素3,5和集合A 的关系,并用符号表示.(2)所有素质好的人能否表示为集合?(3)A={2,2,4}表示是否准确?(4)A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一集合?活动:如果学生没有解题思路,让学生思考以下知识:(1)元素与集合的关系及其符号表示;(2)集合元素的性质;(3)两个集合相同的定义.解:(1)根据元素与集合的关系有两种:属于(∈)和不属于(∉),知3属于集合A,即3∈A,5不属于集合A,即5∉A.(2)由于素质好的人标准不可量化,不符合集合元素的确定性,故A 不能表示为集合.(3)表示不准确,不符合集合元素的互异性,应表示为A={2,4}.(4)因其元素相同,A 与B 表示同一集合.变式训练1.数集{3,x,x 2-2x}中,实数x 满足什么条件?解:集合元素的特征说明{3,x,x 2-2x}中元素应满足⎪⎩⎪⎨⎧-≠-≠≠,23,2,322x x x x x x 即⎪⎩⎪⎨⎧≠--≠≠,032,3,322x x x x x 也就是⎪⎩⎪⎨⎧-≠≠≠,1,0,3x x x 即满足x≠-1,0,3. 2.方程ax 2+5x+c=0的解集是{21,31},则a=________,c=_______. 分析:方程ax 2+5x+c=0的解集是{21,31},那么21、31是方程的两根,即有⎪⎪⎩⎪⎪⎨⎧=•-=+,3121,53121ac a 得⎩⎨⎧==-1,c -6,a 那么a=-6,c=-1.答案:6 -13.集合A 中的元素由关于x 的方程kx 2-3x+2=0的解构成,其中k∈R,若A 中仅有一个元素,求k的值.解:由于A 中元素是关于x 的方程kx 2-3x+2=0(k∈R)的解,若k=0,则x=32,知A 中有一个元素,符合题设; 若k≠0,则方程为一元二次方程,当Δ=9-8k=0即k=89时,kx 2-3x+2=0有两相等的实数根,此时A 中有一个元素. 综上所述k=0或k=89. 4.2006山东高考,理1定义集合运算:A⊙B={z|z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B 的所有元素之和为…( )A.0B.6C.12D.18分析:∵x∈A,∴x=0或x=1.当x=0,y∈B 时,总有z=0;当x=1时,若x=1,y=2时,有z=6;当x=1,y=3时,有z=12.综上所得,集合A⊙B 的所有元素之和为0+6+12=18.答案:D注意:①判断元素与此集合的关系时,用列举法表示的集合,只需观察这个元素是否在集合中即可.用符号∈,表示,注意这两个符号的左边写元素,右边写集合,不能互换它们的位置,否则没有意义.②如果有明确的标准来判断元素在集合中,那么这些元素就能构成集合,否则不能构成集合. ③用列举法表示的集合,直接观察它们的元素是否完全相同,如果完全相同,那么这两个集合就相等,否则不相等.2.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程x 2-9=0的解组成的集合;(4){15以内的质数};(5){x|x-36∈Z ,x∈Z }. 活动:教师指导学生思考列举法的书写格式,并讨论各个集合中的元素.明确各个集合中的元素,写在大括号内即可.提示学生注意:(2)中满足条件的数按从小到大排列时,从第二个数起,每个数比前一个数大3;(4)中除去1和本身外没有其他的约数的正整数是质数;(5)中3-x 是6的约数,6的约数有±1,±2,±3,±6.解:(1)满足题设条件小于5的正奇数有1、3,故用列举法表示为{1,3};(2)能被3整除且大于4小于15的自然数有6、9、12,故用列举法表示为{6,9,12};(3)方程x 2-9=0的解为-3、3,故用列举法表示为{-3,3};(4)15以内的质数有2、3、5、7、11、13,故该集合用列举法表示为{2,3,5,7,11,13};(5)满足x36∈Z 的x 有3-x=±1、±2、±3、±6,解之,得x=2、4、1、5、0、6、-3、9,故用列举法表示为{2,4,1,5,0,6,-3,9}.变式训练用列举法表示下列集合:(1)x 2-4的一次因式组成的集合;(2){y|y=-x 2-2x+3,x∈R ,y∈N };(3)方程x 2+6x+9=0的解集;(4){20以内的质数};(5){(x,y)|x 2+y 2=1,x∈Z ,y∈Z };(6){大于0小于3的整数};(7){x∈R |x 2+5x-14=0};(8){(x,y)|x∈N 且1≤x<4,y -2x=0};(9){(x,y)|x+y=6,x∈N ,y∈N }.思路分析:用列举法表示集合的关键是找出集合中的所有元素,要注意不重不漏,不计次序地用“,”隔开放在大括号内.解:(1)因x 2-4=(x-2)(x+2),故符合题意的集合为{x-2,x+2};(2)y=-x 2-2x+3=-(x+1)2+4,即y≤4.又y∈N,∴y=0、1、2、3、4,故{y|y=-x 2-2x+3,x∈R ,y∈N }={0,1,2,3,4};(3)由x 2+6x+9=0得x 1=x 2=-3,∴方程x 2+6x+9=0的解集为{-3};(4){20以内的质数}={2,3,5,7,11,13,17,19};(5)因x∈Z ,y∈Z ,则x=-1、0、1时,y=0、1、-1,那么{(x,y)|x 2+y 2=1,x∈Z ,y∈Z }={(-1,0),(0,1),(0,-1),(1,0)};(6){大于0小于3的整数}={1,2};(7)因x 2+5x-14=0的解为x 1=-7,x 2=2,则{x∈R |x 2+5x-14=0}={-7,2};(8)当x∈N 且1≤x<4时,x=1、2、3,此时y=2x,即y=2、4、6,那么{(x,y)|x∈N 且1≤x<4,y -2x=0}={(1,2),(2,4),(3,6)};(9){(x,y)|x+y=6,x∈N ,y∈N }={(0,6)(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.点评:本题主要考查集合的列举法表示.列举法适用于元素个数有限个并且较少的集合.用列举法表示集合:先明确集合中的元素,再把元素写在大括号内并用逗号隔开,相同的元素写成一个.3.用描述法分别表示下列集合:(1)二次函数y=x 2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式x-7<3的解集.活动:让学生思考用描述法的形式如何表示平面直角坐标系中的点?如何表示数轴上的点?如何表示不等式的解?学生板书,教师在其他学生中间巡视,及时帮助思维遇到障碍的同学.必要时,教师可提示学生:(1)集合中的元素是点,它是坐标平面内的点,集合元素代表符号用有序实数对(x,y)来表示,其特征是满足y=x 2;。
高中数学必修第一册人教A版 高一 集合的概念 教学设计
{|1020}B x x =∈<<Z .
大
于
10
且
小
于
20
的
整
数
有
11,12,13,14,15,16,17,18,19,因此,用列举法表示为
{}B =11,12,13,14,15,16,17,18,19.
本节课在小学和初中数学学习的基础上引入集合的含义及其表示,通过本节学习,我们在了解集合含义的基础上,会用符号语言刻画集合,
并能判断元素与集合之间的关系.
本节的新概念,新符号较多,我们要明确符号代表的意义,熟悉不同的符号的表示形式,多用、多回归到概念,建立起符号和数学对象之间的关系.
高中数学内容的抽象程度提高了,我们要以更加积极主动的态度,刻苦钻研的精神,采取多样化学习方式,注重基础,拾级而上,按学习
规律办事,逐步总结高中数学学习方法,尽早适应高中学习. 1. 认真阅读本节教材,完成课后练习;
2.查阅“集合论”创立相关资料,与同学分享.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.1.3 集合的基本运算
一. 教学目标:
1. 知识与技能
(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.
(3)能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.
2. 过程与方法
学生通过观察和类比,借助Venn 图理解集合的基本运算.
3.情感.态度与价值观
(1)进一步树立数形结合的思想.
(2)进一步体会类比的作用.
(3)感受集合作为一种语言,在表示数学内容时的简洁和准确.
二.教学重点.难点
重点:交集与并集,全集与补集的概念.
难点:理解交集与并集的概念.符号之间的区别与联系.
三.学法与教学用具
1.学法:学生借助Venn 图,通过观察.类比.思考.交流和讨论等,理解集合的基本运算.
2.教学用具:投影仪.
四. 教学思路
(一)创设情景,揭示课题
问题1:我们知道,实数有加法运算。
类比实数的加法运算,集合是否也可以“相加”呢?
请同学们考察下列各个集合,你能说出集合C 与集合A .B 之间的关系吗?
(1){1,3,5},{2,4,6},{1,2,3,4,5,6};A B C ===
(2){|},{|},{|}A x x B x x C x x ===是理数是无理数是实数
引导学生通过观察,类比.思考和交流,得出结论。
教师强调集合也有运算,这就是我们本节课所要学习的内容。
(二)研探新知
l.并集
—般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集. 记作:A ∪B.
读作:A 并B.
其含义用符号表示为:
{|,}A B x x A x B =∈∈或
用Venn 图表示如下:
请同学们用并集运算符号表示问题1中A ,B ,C 三者之间的关系.
练习.检查和反馈
(1)设A={4,5,6,8),B={3,5,7,8),求A ∪B.
(2)设集合A {|12},{|13},.A x x B x x A B =-<<=<<集合求
让学生独立完成后,教师通过检查,进行反馈,并强调:
(1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次.
(2)对于表示不等式解集的集合的运算,可借助数轴解题.
2.交集
(1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?
请同学们考察下面的问题,集合A .B 与集合C 之间有什么关系?
①{2,4,6,8,10},{3,5,8,12},{8};A B C ===
②{|20049}.A x x =是国兴中学年月入学的高一年级女同学B={x |x 是国兴中学2004年9月入学的高一年级同学},C={x |x 是国兴中学2004年9月入学的高一年级女同学}.
教师组织学生思考.讨论和交流,得出结论,从而得出交集的定义;
一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集. 记作:A ∩B.
读作:A 交B
其含义用符号表示为:
{|,}.A B x x A x B =∈∈且
接着教师要求学生用Venn 图表示交集运算.
(2)练习.检查和反馈
①设平面内直线1l 上点的集合为1L ,直线1l 上点的集合为2L ,试用集合的运算表示1l 的位置关系.
②学校里开运动会,设A={x |x 是参加一百米跑的同学},B={x |x 是参加二百米跑的同学},C={x |x 是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算A ∩B 与A ∩C 的含义.
学生独立练习,教师检查,作个别指导.并对学生中存在的问题进行反馈和纠正.
(三)学生自主学习,阅读理解
1.教师引导学生阅读教材第11~12页中有关补集的内容,并思考回答下例问题:
(1)什么叫全集?
(2)补集的含义是什么?用符号如何表示它的含义?用Venn 图又表示?
(3)已知集合{|38},R A x x A =≤<求ð.
(4)设S={x |x 是至少有一组对边平行的四边形},A={x |x 是平行四边形},B={x |x 是菱形},C={x |x 是矩形},求,,A S B C B A 痧.
在学生阅读.思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学生回答上述问题,并及时给予评价.
(四)归纳整理,整体认识
1.通过对集合的学习,同学对集合这种语言有什么感受?
2.并集.交集和补集这三种集合运算有什么区别?
(五)作业
1.课外思考:对于集合的基本运算,你能得出哪些运算规律?
2.请你举出现实生活中的一个实例,并说明其并集.交集和补集的现实含义.
3.书面作业:教材第14页习题1.1A 组第7题和B 组第4题.。