2021年黑龙江省鸡西市中考数学考前最后一卷解析版

合集下载

黑龙江省鸡西市2021届中考数学综合测试试题

黑龙江省鸡西市2021届中考数学综合测试试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是()A.9 cm B.12 cm C.9 cm或12 cm D.14 cm2.不等式组12342xx+>⎧⎨-≤⎩的解集表示在数轴上正确的是()A.B.C.D.3.下列几何体中,俯视图为三角形的是( )A.B.C.D.4.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D5.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°6.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A.2 B.3 C.5 D.77.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>08.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙9.如图,四边形ABCD内接于⊙O,F是CD上一点,且DF BC=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°10.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)二、填空题(本题包括8个小题)11.关于x的不等式组3515-12xx a->⎧⎨≤⎩有2个整数解,则a的取值范围是____________.12.已知m=444153,n=44053,那么2016m﹣n=_____.13.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为_____.14.如图,这是一幅长为3m,宽为1m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m1.15.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为_____.16.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当△CEB'为直角三角形时,BE的长为.17.如图,在△ABC中,AB=AC,BE、AD分别是边AC、BC上的高,CD=2,AC=6,那么CE=________.18.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,则∠ADB′等于_____.三、解答题(本题包括8个小题)19.(6分)如图,∠BCD=90°,且BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ 于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.当α=125°时,∠ABC=°;求证:AC=CE;若△ABC的外心在其内部,直接写出α的取值范围.20.(6分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)21.(6分)在平面直角坐标系中,抛物线y=(x﹣h)2+k的对称轴是直线x=1.若抛物线与x轴交于原点,求k的值;当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求k的取值范围.22.(8分)如图,已知点C是∠AOB的边OB上的一点,求作⊙P,使它经过O、C两点,且圆心在∠AOB的平分线上.23.(8分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=1.在销售过程中,每天还要支付其他费用450元.求出y与x的函数关系式,并写出自变量x的取值范围.求该公司销售该原料日获利w(元)与销售单价x (元)之间的函数关系式.当销售单价为多少元时,该公司日获利最大?最大获利是多少元?24.(10分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.25.(10分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:125,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).26.(12分)如图,一次函数5y kx =+(k 为常数,且0k ≠)的图像与反比例函数8y x=-的图像交于()2,A b -,B 两点.求一次函数的表达式;若将直线AB 向下平移(0)m m >个单位长度后与反比例函数的图像有且只有一个公共点,求m 的值.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】当腰长是2 cm 时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm 时,因为5+5>2,符合三角形三边关系,此时周长是12 cm .故选B .2.C【解析】【详解】根据题意先解出12342x x +>⎧⎨-≤⎩的解集是,把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右; 表示时要注意方向向左,起始的标记为实心圆点,综上所述C 的表示符合这些条件.故应选C.3.C【解析】【分析】俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.【详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不符合题意,故选C.【点睛】此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.4.B【解析】【分析】≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.1.732【详解】≈-,1.732()---≈,1.7323 1.268()---≈,1.73220.268()1.73210.732---≈,因为0.268<0.732<1.268,所以表示的点与点B最接近,故选B.5.B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB ∥CD ,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B .点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.6.C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C .考点:众数;中位数.7.D【解析】【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【详解】由数轴可知:a <0<b ,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.8.B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.B【解析】【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【详解】∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵DF BC,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.10.A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.二、填空题(本题包括8个小题)11.8⩽a<13;【解析】【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式3x−5>1,得:x>2,解不等式5x−a⩽12,得:x⩽125a+,∵不等式组有2个整数解,∴其整数解为3和4,则4⩽125a+<5,解得:8⩽a<13,故答案为:8⩽a<13【点睛】此题考查一元一次不等式组的整数解,掌握运算法则是解题关键12.1【解析】【分析】根据积的乘方的性质将m的分子转化为以3和5为底数的幂的积,然后化简从而得到m=n,再根据任何非零数的零次幂等于1解答.【详解】解:∵m=444153=4?444353=44053,∴m=n,∴2016m-n=20160=1.故答案为:1【点睛】本题考查了同底数幂的除法,积的乘方的性质,难点在于转化m的分母并得到m=n.13.1;【解析】分析:根据辅助线做法得出CF⊥AB,然后根据含有30°角的直角三角形得出AB和BF的长度,从而得出AF的长度.详解:∵根据作图法则可得:CF⊥AB,∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,∵∠CFB=90°,∠B=10°,∴BF=12BC=2,∴AF=AB-BF=8-2=1.点睛:本题主要考查的是含有30°角的直角三角形的性质,属于基础题型.解题的关键就是根据作图法则得出直角三角形.14.1.4【解析】【分析】由概率估计图案在整副画中所占比例,再求出图案的面积.【详解】估计宣传画上世界杯图案的面积约为3×1×0.4=1.4m1.故答案为1.4【点睛】本题考核知识点:几何概率. 解题关键点:由几何概率估计图案在整副画中所占比例.15.1 2【解析】【分析】用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图展示所有12种等可能的结果数,再找出抽到卡片上印有图案都是轴对称图形的结果数,然后根据概率公式求解.【详解】解:用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图:共有12种等可能的结果数,其中抽到卡片上印有图案都是轴对称图形的结果数为6,所以抽到卡片上印有图案都是轴对称图形的概率61 122 ==.故答案为.1 2【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了轴对称图形.16.1或32.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=1,BC=4,∴2243,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=1,∴CB′=5-1=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得3x2=,∴BE=32;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=1.综上所述,BE的长为32或1.故答案为:32或1.17.4 3【解析】∵AB=AC,AD⊥BC,∴BD=CD=2,∵BE、AD分别是边AC、BC上的高,∴∠ADC=∠BEC=90°,∵∠C=∠C,∴△ACD∽△BCE,∴AC CDBC CE=,∴624CE=,∴CE=43,故答案为4 3 .18.40°.【解析】【详解】∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案为40°.三、解答题(本题包括8个小题)19.(1)125;(2)详见解析;(3)45°<α<90°.【解析】【分析】(1)利用四边形内角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;(2)证明△ABC≌△EDC(AAS)即可求解;(3)当∠ABC=α=90°时,△ABC的外心在其直角边上,∠ABC=α>90°时,△ABC的外心在其外部,即可求解.【详解】(1)在四边形BADC中,∠B+∠ADC=360°﹣∠BAD﹣∠DCB=180°,而∠ADC+∠EDC=180°,∴∠ABC=∠PDC=α=125°,故答案为125;(2)∠ECD+∠DCA=90°,∠DCA+∠ACB=90°,∴∠ACB=∠ECD,又BC=DC,由(1)知:∠ABC=∠PDC,∴△ABC≌△EDC(AAS),∴AC=CE;(3)当∠ABC=α=90°时,△ABC的外心在其斜边上;∠ABC=α>90°时,△ABC的外心在其外部,而45°<α<135°,故:45°<α<90°.【点睛】本题考查圆的综合运用,解题的关键是掌握三角形全等的判定和性质(AAS)、三角形外心.20.4 9【解析】【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】列表如下:由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为49.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(1)k=﹣1;(2)当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.【解析】【分析】(1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;(2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当﹣1<x<2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.【详解】解:(1)∵抛物线y=(x﹣h)2+k的对称轴是直线x=1,∴h=1,把原点坐标代入y=(x﹣1)2+k,得,(2﹣1)2+k=2,解得k=﹣1;(2)∵抛物线y=(x﹣1)2+k与x轴有公共点,∴对于方程(x﹣1)2+k=2,判别式b2﹣4ac=﹣4k≥2,∴k≤2.当x=﹣1时,y=4+k;当x=2时,y=1+k,∵抛物线的对称轴为x=1,且当﹣1<x<2时,抛物线与x轴有且只有一个公共点,∴4+k>2且1+k<2,解得﹣4<k<﹣1,综上,当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.【点睛】抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.22.答案见解析【解析】【分析】首先作出∠AOB的角平分线,再作出OC的垂直平分线,两线的交点就是圆心P,再以P为圆心,PC长为半径画圆即可.【详解】解:如图所示:.【点睛】本题考查基本作图,掌握垂直平分线及角平分线的做法是本题的解题关键..23.(1)y=-2x+200(30≤x≤60)(2)w=-2(x-65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【解析】【分析】(1)设出一次函数解析式,把相应数值代入即可.(2)根据利润计算公式列式即可;(3)进行配方求值即可.【详解】(1)设y=kx+b,根据题意得806010050k bk b=+⎧⎨=+⎩解得:k2b200=-⎧⎨=⎩∴y=-2x+200(30≤x≤60)(2)W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2 +2000)(3)W =-2(x-65)2 +2000∵30≤x≤60∴x=60时,w有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元考点:二次函数的应用.24.足球单价是60元,篮球单价是90元.【解析】【分析】设足球的单价分别为x元,篮球单价是1.5x元,列出分式方程解答即可.【详解】解:足球的单价分别为x元,篮球单价是1.5x元,可得:24002250151.5x x-=,解得:x=60,经检验x=60是原方程的解,且符合题意,1.5x=1.5×60=90,答:足球单价是60元,篮球单价是90元.【点睛】本题考查分式方程的应用,利用题目等量关系准确列方程求解是关键,注意分式方程结果要检验.25.(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米.【解析】试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:125,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度.试题解析:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:125,∴1512125DEEC==,设DE=5x米,则EC=12x米,∴(5x)2+(12x)2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,由题意可知∠BDH=45°,∴BH=DH=x,DE=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=ABAC,∴2=ABAC,解得,x=29,AB=x+5=34,即大楼AB的高度是34米.26.(1)152y x=+;(2)1或9.【解析】试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k 、b 的值,即可得一次函数的解析式;(2)直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m ,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m 的值. 试题解析:(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得2582b k b =-+⎧⎪⎨-=⎪-⎩,解得412b k =⎧⎪⎨=⎪⎩,所以一次函数的表达式为y =12x +5. (2)将直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m.由8152y x y x m ⎧=-⎪⎪⎨⎪=+-⎪⎩得, 12x 2+(5-m)x +8=0.Δ=(5-m)2-4×12×8=0, 解得m =1或9.点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若关于x 的一元二次方程x 2﹣2x+m =0没有实数根,则实数m 的取值是( ) A .m <1B .m >﹣1C .m >1D .m <﹣12.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣343.已知m =12+,n =12-,则代数式223m n mn +-的值为 ( ) A .±3B .3C .5D .94.如图,在网格中,小正方形的边长均为1,点A,B,C 都在格点上,则∠ABC 的正切值是( )A .12B .2C .55D .2555.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,∠ABC=90°,CA ⊥x 轴,点C 在函数y=kx(x >0)的图象上,若AB=2,则k 的值为( )A .4B .22C .2D .26.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38 C .40、42 D .42、40 7.如图,AB 是O 的直径,弦CD AB ⊥,CDB 30∠=,CD 23=,则阴影部分的面积为( )A.2πB.πC .π3D.2π38.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH 并延长交CD 于点F,连接DE 交BF于点O ,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个9.对于不为零的两个实数a,b,如果规定:a★b=()()a b a baa bb+<⎧⎪⎨-≥⎪⎩,那么函数y=2★x的图象大致是()A. B.C. D.10.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是()A.B.C.D.二、填空题(本题包括8个小题)11.如果点P1(2,y1)、P2(3,y2) 在抛物线22y x x=-+上,那么y1 ______ y2.(填“>”,“<”或“=”). 12..如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC 的长度是_______.13.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)品种第1年第2年第3年第4年第5年品种甲9.8 9.9 10.1 10 10.2 甲乙9.4 10.3 10.8 9.7 9.8 乙经计算,x10 x10==甲乙,,试根据这组数据估计_____中水稻品种的产量比较稳定.14.如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.15.边长分别为a和2a的两个正方形按如图的样式摆放,则图中阴影部分的面积为_________.16.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为______.17.将一个含45°角的三角板ABC,如图摆放在平面直角坐标系中,将其绕点C顺时针旋转75°,点B的对应点'B恰好落在轴上,若点C的坐标为(1,0),则点'B的坐标为____________.-+=231--++=56784---+++=1011121314159----++++=171819202122232416……根据以上规律可知第11行左起第一个数是__.三、解答题(本题包括8个小题)19.(6分)2019年1月,温州轨道交通1S线正式运营,1S线有以下4种购票方式:A.二维码过闸B.现金购票C.市名卡过闸D.银联闪付某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图). 20.(6分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。

2021年黑龙江省鸡西市中考数学压轴题总复习(附答案解析)

2021年黑龙江省鸡西市中考数学压轴题总复习(附答案解析)

2021年黑龙江省鸡西市中考数学压轴题总复习
中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。

从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。

预计2021年中考数学压轴题依然主要考查这些知识点。

1.如图1,DE 是⊙O 的直径,点A 、C 是直径DE 上方半圆上的两点,且AO ⊥CO .连接AE ,CD 相交于点F ,点B 是直径DE 下方半圆上的任意一点,连接AB 交CD 于点G ,连接CB 交AE 于点H .
(1)∠ABC = ;
(2)证明:△CFH ∽△CBG ;
(3)若弧DB 为半圆的三分之一,把∠AOC 绕着点O 旋转,使点C 、O 、B 在一直线上时,如图2,求
FH BG 的值.
2.如图①,在锐角△ABC中,AB=5,tan C=3.BD⊥AC于点D,BD=3,点P从点A出发,以每秒1个单位长度的速度沿AB向终点B运动.过点P作PE∥AC,交BC于点E,以PE为边作Rt△PEF,使∠EPF=90°,点F在点P的下方,且EF∥AB,设△PEF与△ABD重叠部分图形的面积为S(平方单位)(S>0),点P的运动时间为t(秒)(t>0).(1)求线段AC的长.
(2)当△PEF与△ABD重叠部分图形为四边形时,求S与t之间的函数关系式.
(3)若边EF与边AC交于点Q,连接PQ,如图②.
①当PQ将△PEF的面积分成1:2两部分时,求AP的长.
②直接写出PQ的垂直平分线经过△ABC的顶点时t的值.。

【中考预测卷】2023年中考考前最后一卷-数学(全国通用)(含答案)

【中考预测卷】2023年中考考前最后一卷-数学(全国通用)(含答案)

2023年中考考前最后一卷数学(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)........A .10x −≤<或1x ≥ C .1x ≤−或1x ≥第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6个小题,每小题3分,共18分,直接填写答案.)甲、乙两组数据的方差分别为22,s s 甲乙,则2s 甲______________2s 乙(填“>”,“<”或“=”).14.点()()1122,,,A x y B x y 在一次函数(2)1y a x =−+的图像上,当12x x >时,12y y <,则a的取值范围是____________.15.如图,ABC∆中,D为BC的中点,E是AD上一点,连接BE并延长交AC于F,BE AC=,且9BF=,6CF=,那么AF的长度为__.16.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图)就是一例.这个三角形给出了(a+b)n(n=1,2,3,4,5,6)的展开式的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数,等等.有如下四个结论:①(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;②当a=-2,b=1时,代数式a3+3a2b+3ab2+b3的值是-1;③当代数式a4+4a3b+6a2b2+4ab3+b4的值是0时,一定是a=-1,b=1;④(a+b)n的展开式中的各项系数之和为2n.上述结论中,正确的有______(写出序号即可).三、解答题(本大题共个8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)解不等式组211 3.x xx≥−⎧⎨+≤⎩,①②请结合题意填空,完成本题的解答.(1)解不等式①,得___________;(2)解不等式②,得___________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为___________请结合上述信息,解答下列问题:(1)共有名学生参与了本次问卷调查;“陶艺”在扇形统计图中所对应的圆心角是(2)补全调查结果条形统计图;(3)小刚和小强分别从“礼仪”等五门校本课程中任选一门,请用列表法或画树状图法求出两人恰好选到同一门课程的概率.20.(10分)如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高α(1)求证:A ACF ∠=∠; (2)若8AC =,4cos 5ACF ∠=,求BF 及DE 22.(10分)某商店购进了一种消毒用品,进价为每件的销售量y (件)与每件售价x (元)之间存在一次函数关系(其中数).当每件消毒用品售价为9元时,每天的销售量为11元时,每天的销售量为95件.于点G,交直线CD于点F.(1)当矩形ABCD是正方形时,以点F为直角顶点在正方形ABCD的外部作等腰直角三角形CFH,连接EH.①如图1,若点E在线段BC上,则线段AE与EH之间的数量关系是________,位置关系是_________;②如图2,若点E在线段BC的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;(2)如图3,若点E在线段BC上,以BE和BF为邻边作BEHF,M是BH中点,连BC=,求GM的最小值.接GM,3AB=,22023年中考考前最后一卷数学·参考答案第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)二、填空题(本大题共6小题,每小题3分,共18分)17.(6分)【详解】(1)解:移项得:21x x −≥− 解得:1x ≥−…………….. 1 分 故答案为:1x ≥−; (2)移项得:31x ≤−, 解得:2x ≤,…………….. 2 分 故答案为:2x ≤;(3)把不等式①和②的解集在数轴上表示出来:……………..4 分(4)所以原不等式组的解集为:12x −≤≤,……………..6 分 故答案为:12x −≤≤. 18. (6分) (4)(3)解:把“礼仪”“陶艺”“园艺”“厨艺”及“编程画树状图如下:共有25种等可能的结果,其中小刚和小强两人恰好选到同一门课程的结果有∴小刚和小强两人恰好选到同一门课程的概率为51255=. (6)20.(10分)【详解】(1)解:过点D作DE BC⊥,交BC的延长线于点E,在Rt ADF 中,3DF x =Rt ABC △中,【详解】(1)解:∵Rt ABC △中,90ACB ∠=︒, ∴∠A +∠B =∠ACF +∠BCF =90°, ∵BE CD =, ∴∠B =∠BCF ,∴∠A =∠ACF ; ……………..2 分 (2)∵∠B =∠BCF ,∠A =∠ACF22.(10分)【详解】(1)解:设y 与x 之间的函数关系式为()0y kx b k =+≠,根据题意得: 91051195k b k b +=⎧⎨+=⎩,解得:5150k b =−⎧⎨=⎩,∴y 与x 之间的函数关系式为5150y x =−+;……………..2 分(2)解:(-5x +150)(x -8)=425,整理得:2383450x x −+=,解得:1213,25x x ==,……………..4 分∵8≤x ≤15,∴若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为13元;……………..6 分(3)解:根据题意得:()()()851508w y x x x =−=−+−251901200x x =−+−()2519605x =−−+……………..8 分∵8≤x ≤15,且x 为整数,当x <19时,w 随x 的增大而增大,∴当x =15时,w 有最大值,最大值为525.……………..10 分答:每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元. 23.(11分) 2212x x +=()43k ∴−∵x 1+x 2=4【详解】解:(1)①∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°,即∠BAE+∠AEB=90°,∵AE⊥BF,∴∠CBF+∠AEB=90°,∴∠CBF=∠BAE,又AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∵△FCH为等腰直角三角形,∴FC=FH=BE,FH⊥FC,而CD⊥BC,∴FH∥BC,∴四边形BEHF为平行四边形,∴BF∥EH且BF=EH,∴AE=EH,AE⊥EH,故答案为:相等;垂直;……………..2 分②成立,…………….. 3分理由是:当点E在线段BC的延长线上时,同理可得:△ABE≌△BCF(AAS),∴BE=CF,AE=BF,……………..4 分。

黑龙江鸡西地区四校2021年中考数学试题含答案解析

黑龙江鸡西地区四校2021年中考数学试题含答案解析

黑龙江鸡西地区四校2021年中考数学试题含答案解析一、单选题1、下列运算正确的是()A.a•a3=a3B.(2a)3=6a3C.a6÷a3=a2D.(a2)3﹣(﹣a3)2=0【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a4,不符合题意;B、原式=8a3,不符合题意;C、原式=a3,不符合题意;D、原式=0,符合题意,故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.2、如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图象判定则可.【解答】解:从上面看下来,上面一行是横放3个正方体,左下角一个正方体.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3、在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A.60 B.50 C.40 D.15【分析】根据中位数的定义求解可得.【解答】解:由条形图知,50个数据的中位数为第25、26个数据的平均数,即中位数为==40,故选:C.【点评】本题主要考查众数,熟练掌握众数的定义是解题的关键.4、已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)【分析】直接利用关于x轴上点的坐标特点得出m的值,进而得出答案.【解答】解:∵点P(m+2,2m﹣4)在x轴上,∴2m﹣4=0,解得:m=2,∴m+2=4,则点P的坐标是:(4,0).故选:A.【点评】此题主要考查了点的坐标,正确得出m的值是解题关键.5、﹣的绝对值是()A.﹣5 B.C.5 D.﹣【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|﹣|=,故选:B.【点评】本题考查了绝对值的定义,解题的关键是掌握绝对值的性质.6、某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故选:D.【点评】本题考查了概率,熟练掌握概率公式是解题的关键.7、某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分时间t 人数学生类型0≤t<10 10≤t<2020≤t<3030≤t<40t≥40性别男7 31 25 30 4女8 29 26 32 8 学段初中25 36 44 11高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5﹣25.5之间,正确;②这200名学生参加公益劳动时间的中位数在20﹣30之间,正确;③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间,正确;④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间,错误.故选:C.【点评】本题考查了中位数与平均数,正确理解中位数与平均数的意义是解题的关键.8、式子在实数范围内有意义,则x的取值范围是()A.x>0 B.x≥﹣1 C.x≥1 D.x≤1【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣1≥0,解得x≥1,故选:C.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式组是解题关键.9、《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685C.x+2x+2x=34685 D.x+x+x=34685【分析】设他第一天读x个字,根据题意列出方程解答即可.【解答】解:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.【点评】此题考查由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10、计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a4【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3•(﹣a)=﹣a3•a=﹣a4.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.二、填空题1、计算:20190+()﹣1= 4 .【分析】分别计算负整数指数幂、零指数幂,然后再进行实数的运算即可.【解答】解:原式=1+3=4.故答案为:4.【点评】此题考查了实数的运算,解答本题关键是掌握负整数指数幂及零指数幂的运算法则,难度一般.2、分式的值为0,则x的值是 1 .【分析】根据分式的值为零的条件得到x﹣1=0且x≠0,易得x=1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.【点评】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.3、一组数据1,7,8,5,4的中位数是a,则a的值是 5 .【分析】先把原数据按从小到大排列,然后根据中位数的定义求解即可.【解答】解:先把原数据按从小到大排列:1,4,5,7,8,正中间的数5,所以这组数据的中位数a的值是5.故答案为:5.【点评】本题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数.4、分解因式:ab2﹣a=a(b+1)(b﹣1).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5、如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.【分析】连接CO并延长交⊙O于E,连接BE,于是得到∠E=∠A=30°,∠EBC=90°,解直角三角形即可得到结论.【解答】解:连接CO并延长交⊙O于E,连接BE,则∠E=∠A=30°,∠EBC=90°,∵⊙O的半径为2,∴CE=4,∴BC=CE=2,∵CD⊥AB,∠CBA=45°,∴CD=BC=,故答案为:.【点评】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.三、解答题(难度:中等)1、已知△ABC和点A',如图.(1)以点A'为一个顶点作△A'B'C',使△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、C'A'的中点,求证:△DEF∽△D'E'F'.【分析】(1)分别作A'C'=2AC、A'B'=2AB、B'C'=2BC得△A'B'C'即可所求.(2)根据中位线定理易得∴△DEF∽△ABC,△D'E'F'∽△A'B'C',故△DEF∽△D'E'F'【解答】解:(1)作线段A'C'=2AC、A'B'=2AB、B'C'=2BC,得△A'B'C'即可所求.证明:∵A'C'=2AC、A'B'=2AB、B'C'=2BC,∴△ABC∽△A′B′C′,∴(2)证明:∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴DE=,,,∴△DEF∽△ABC同理:△D'E'F'∽△A'B'C',由(1)可知:△ABC∽△A′B′C′,∴△DEF∽△D'E'F'.【点评】本题考查了相似三角形的判定和性质及三角形的中位线定理,解答本题的关键是掌握相似三角形的判定方法,本题用到的是三边法.2、已知抛物线C1:y=(x﹣1)2﹣4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线y=﹣x+b经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标;②若PA=PQ,直接写出点P的横坐标.(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系.【分析】(1)y=(x﹣1)2﹣4向左评移1个单位长度,再向上平移4个单位长度即可得到y=x2;(2)易求点A(3,0),b=4,联立方程﹣x+4=(x﹣1)2﹣4,可得B(﹣,);设P(t,﹣t+4),Q(t,t2﹣2t﹣3),①当AP=AQ时,则有﹣4+t=t2﹣2t﹣3,求得t=;②当AP=PQ时,PQ=t2+t+7,PA=(3﹣t),则有t2+t+7=(3﹣t),求得t=﹣;(3)设经过M与N的直线解析式为y=k(x﹣m)+m2,∴,则可知△=k2﹣4km+4m2=(k﹣2m)2=0,求得k=2m,求出直线ME的解析式为y=2mx﹣m2,直线NE的解析式为y=2nx﹣n2,则可求E(,mn),再由面积[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,可得(m﹣n)3=8,即可求解;【解答】解:(1)y=(x﹣1)2﹣4向左评移1个单位长度,再向上平移4个单位长度即可得到y=x2;(2)y=(x﹣1)2﹣4与x轴正半轴的交点A(3,0),∵直线y=﹣x+b经过点A,∴b=4,∴y=﹣x+4,y=﹣x+4与y=(x﹣1)2﹣4的交点为﹣x+4=(x﹣1)2﹣4的解,∴x=3或x=﹣,∴B(﹣,),设P(t,﹣t+4),且﹣<t<3,∵PQ∥y轴,∴Q(t,t2﹣2t﹣3),①当AP=AQ时,|4﹣t|=|t2﹣2t﹣3|,则有﹣4+t=t2﹣2t﹣3,∴t=,∴P点横坐标为;②当AP=PQ时,PQ=﹣t2+t+7,PA=(3﹣t),∴﹣t2+t+7=(3﹣t),∴t=﹣;∴P点横坐标为﹣;(3)设经过M与N的直线解析式为y=k(x﹣m)+m2,∴,则有x2﹣kx+km﹣m2=0,△=k2﹣4km+4m2=(k﹣2m)2=0,∴k=2m,直线ME的解析式为y=2mx﹣m2,直线NE的解析式为y=2nx﹣n2,∴E(,mn),∴[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,∴(m﹣n)3﹣=4,∴(m﹣n)3=8,∴m﹣n=2;【点评】本题考查二次函数的图象及性质;是二次函数的综合题,熟练掌握直线与二次函数的交点求法,借助三角形面积列出等量关系是解决m与n的关系的关键.3、如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角为45°,再由D走到E处测量,DE∥AC,ED=500米,测得仰角为53°,求隧道BC长.(sin53°≈,cos53°≈,tan53°≈).【分析】作EM⊥AC于M,解直角三角形即可得到结论.【解答】解:在Rt△ABD中,AB=AD=600,作EM⊥AC于M,则AM﹣DE=500,∴BM=100,在Rt△CEM中,tan53°===,∴CM=800,∴BC=CM﹣BM=800﹣100=700(米)答:隧道BC长为700米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟知锐角三角函数的定义是解答此题的关键.4、某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?【分析】(1)设购买篮球x个,购买足球y个,根据总价=单价×购买数量结合购买篮球、足球共60个\购买这两类球的总金额为4600元,列出方程组,求解即可;(2)设购买了a个篮球,则购买(60﹣a)个足球,根据购买篮球的总金额不超过购买足球的总金额,列不等式求出x的最大整数解即可.【解答】解:(1)设购买篮球x个,购买足球y个,依题意得:.解得.答:购买篮球20个,购买足球40个;(2)设购买了a个篮球,依题意得:70a≤80(60﹣a)解得a≤32.答:最多可购买32个篮球.【点评】此题考查了一元一次不等式的应用和二元一次方程组的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.5、如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83PD/cm 3.44 2.69 2.00 1.36 0.96 1.13 2.00 2.83AD/cm0.00 0.78 1.54 2.30 3.01 4.00 5.11 6.00在PC,PD,AD的长度这三个量中,确定AD的长度是自变量,PD的长度和PC的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 1.59(答案不唯一)cm.【分析】(1)按照变量的定义,根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量故答案为:AD、PC、PD;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值约为1.59,故答案为1.59(答案不唯一).【点评】本题考查的是动点的函数图象,此类问题主要是通过描点画出函数图象,根据函数关系,在图象上查出相应的近似数值.6、解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=9,即x=3,把x=3代入①得:y=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7、如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F.【分析】根据平行线的性质可得∠ACE=∠D,又∠A=∠1,利用三角形内角和定理及等式的性质即可得出∠E =∠F.【解答】解:∵CE∥DF,∴∠ACE=∠D,∵∠A=∠1,∴180°﹣∠ACE﹣∠A=180°﹣∠D﹣∠1,又∵∠E=180°﹣∠ACE﹣∠A,∠F=180°﹣∠D﹣∠1,∴∠E=∠F.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形内角和定理.8、有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.【分析】(1)根据有理数的加减法可以解答本题;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.【点评】本题考查有理数的混合运算,解答本题得关键是明确有理数混合运算的计算方法.。

黑龙江省鸡西市2021年中考数学试卷(I)卷

黑龙江省鸡西市2021年中考数学试卷(I)卷

黑龙江省鸡西市2021年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八下·织金期中) =-1,则的取值为()A .B .C .D .2. (2分)计算a3•a4的结果是()A . a6B . a7C . a8D . a123. (2分)下面的图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分)由6个完全相同的小正方体搭成的几何体如图所示,它的主视图是()A .B .C .D .5. (2分)(2019·北仑模拟) 如图,半径为1的⊙O与正五边形ABCDE相切于点A,C,则劣弧AC的长度为()A .B .C .D .6. (2分) (2020九上·杨浦期末) 将抛物线向左平移1个单位,所得抛物线解析式是()A .B .C .D .7. (2分)分式方程﹣=0的解为()A . x=3B . x=﹣5C . x=5D . 无解8. (2分) (2020九上·泰兴月考) 如图,△ABC内接于⊙O,I是△ABC的内心,AI的延长线交⊙O于点D,连接DB、DC,若AB是⊙O的直径,OI⊥AD,则的值为()A .B .C .D .9. (2分)(2017·兴化模拟) 如图,矩形OABC的两边OA、OC在坐标轴上,且OC=2OA,M、N分别为OA、OC 的中点,BM与AN交于点E,若四边形EMON的面积为2,则经过点B的双曲线的解析式为()A . y=﹣B . y=﹣C . y=﹣D . y=﹣10. (2分) (2018九下·嘉兴竞赛) 如图,l1∥l2∥l3∥l4∥l5∥l6,每相邻两条直线之间的距离为1,点A,B,C分别在直线“l1,l3,l6上,AB交l2于点D,BC交l4于点E,CA交l2于点F.若△DEF的面积为2,则△ABC的面积为()A . 8B . 9C . 10D . 12二、填空题 (共10题;共11分)11. (1分)据统计,参加“崇左市2015年初中毕业升学考试”的人数用科学记数法表示为1.47×104人,则原来的人数是________人.12. (1分)在函数y=中,自变量x的取值范围是________13. (1分)(2016·巴彦) 分解因式:﹣2xy2+8xy﹣8x=________.14. (2分)(2018·青海) 分解因式: ________;不等式组的解集是________15. (1分)(2017·青山模拟) 计算: + ﹣2 =________.16. (1分) (2015九上·宝安期末) 抛物线y=﹣2(x+1)2﹣2的顶点坐标是________.17. (1分)在正方形ABCD内任取一点O,连接OA,OB得△ABO,如果正方形ABCD内每一点被取到的可能性都相同,则△ABO是钝角三角形的概率是________(结果保留π)18. (1分)(2017·宁城模拟) 如图,依次以三角形、四边形、…、n边形的各顶点为圆心画半径为1的圆,且圆与圆之间两两不相交.把三角形与各圆重叠部分面积之和记为S3 ,四边形与各圆重叠部分面积之和记为S4 ,….n边形与各圆重叠部分面积之和记为Sn .则S2017的值为________.(结果保留π)19. (1分)(2020·哈尔滨模拟) 如图,中,,,点在边上,,把线段绕着点逆时针旋转度后,如果点恰好落在的边上,那么 ________.20. (1分) (2020九下·吴江月考) 如图,在平行四边形ABCD中,E为CB延长线上一点,且BE:CE=2:5,连接DE交AB于F,则 =________三、解答题 (共7题;共66分)21. (5分) (2020八下·秦淮期末) 先化简,再求值:,其中x=-1.22. (10分) (2020九上·江西期中) 已知矩形,为边上靠近点的三等分点,请仅用无刻度的直尺完成以下作图(保留作图痕迹).(1)在图1中作出边上靠近点的三等分点.(2)在图2中作出点关于直线的对称点.23. (11分)(2017·河南模拟) 为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C (湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请解答下列问题:(1)本次调查的样本容量是________;(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.24. (10分) (2017七下·兴化期末) 如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2) AF=2CD.25. (10分) (2019八下·尚志期中) 某文教用品商店计划从厂家购买同一品牌的钢笔和笔记本,已知购买一支钢笔比购买一个笔记本多用15元,若用300元购买钢笔和用240元购买笔记本,则购买钢笔的数量是购买笔记本数量的一半.(1)求购买该品牌一支钢笔、一个笔记本各需要多少元?(2)经商谈,厂家给予该文教用品商店购买一支钢笔赠送一个该品牌笔记本的优惠,如果该文教用品商店需要笔记本的数量是钢笔数量的3倍还多6个,且该商店购买钢笔和笔记本的总费用不超过2760元,那么该文教用品商店最多可购买多少支该品牌的钢笔?26. (10分)如图,PA,PB是☉O的切线,切点分别为A,B,BC为☉O的直径,连结AB,AC,OP.求证:(1)∠APB=2∠ABC(2)AC∥OP.27. (10分)如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明:不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,探讨四边形AECF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共10题;共11分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共7题;共66分)答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、考点:解析:答案:27-1、答案:27-2、考点:解析:。

【试题猜想】2024年中考数学考前最后一卷+全解全析(全国通用)

【试题猜想】2024年中考数学考前最后一卷+全解全析(全国通用)

2024年中考数学考前最后一卷【全国通用】全解全析的.)1.(3分)2024年代表着希望,自然,生机,则2024的相反数是()A.2024B.﹣2024C.D.﹣【答案】B【分析】符号不同,并且绝对值相等的两个数互为相反数,据此即可求得答案.【解析】解:2024的相反数是﹣2024,故选:B.2.(3分)2024年3月5日上午9时,第十四届全国人民代表大会第二次会议开幕会在人民大会堂举行.国务院总理李强作政府工作报告时指出,强化义务教育薄弱环节建设,做好“双减”工作,国家助学贷款提标降息惠及超1100万学生,数据11000000用科学记数法表示为()A.0.11×109B.1.1×108C.1.1×107D.11×106【答案】C【解析】解:11000000=1.1×,故选:C.3.(3分)为了节能减排,国家积极倡导使用新能源汽车,新能源汽车发展也取得了巨大成就.下列新能源汽车的车标既是中心对称图形又是轴对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解析】解:A.该图是轴对称图形,不是中心对称图形,不符合题意;B.该图既是轴对称图形,又是中心对称图形,符合题意;C.该图是中心对称图形,不是轴对称图形,不符合题意;D.该图是轴对称图形,不是中心对称图形,不符合题意.故选:B.4.(3分)sin30°+tan60°cos45°的值是()A.B.C.D.【答案】C【分析】先用特殊角的三角函数值化简,然后再运用二次根式混合运算法则计算即可.【解析】解:sin30°+tan60°cos45°=+×=+=.故选:C.5.(3分)将长方体截去一部分后的几何体如图所示,它的俯视图是()A.B.C.D.【答案】C【分析】找到长方体截去一部分后的几何体从上面看所得到的图形即可.【解析】解:从上面看可得到两个小长方形的组合图形,中间连线是实线.故选:C.6.(3分)在平面直角坐标系内,若点P(3﹣m,m﹣1)在第二象限,那么m的取值范围是()A.m>1B.m>3C.m<1D.1<m<3【答案】B【分析】由第二象限点的横坐标为负数、纵坐标为正数得出关于m的不等式组,解之可得答案.【解析】解:∵点P(3﹣m,m﹣1)在第二象限,∴,解不等式①,得:m>3,解不等式②,得:m>1,则m>3,故选:B.7.(3分)某班有40名学生,一次体能测试后,老师对测试成绩进行了统计,由于小滨没有参加本次测试,算得39人测试成绩数据的平均数,中位数m1=28.后来小滨进行了补测,成绩为29分,得到40人测试成绩数据的平均数,中位数m 2,则()A.,m 1=m2B.,m1<m2C.,m 1≤m2D.,m1=m2【答案】B【分析】根据平均数的计算公式和中位数的定义即可得出答案.【解析】解:∵39人测试成绩数据的平均数是28,第40个学生的成绩是29分,∴平均数比原先大,即<,∵中位数m1=28,当小滨的成绩为29分时,所得的中位数比28要大,∴m1<m2.故选:B.8.(3分)已知10x=m,10y=n,则102x+3y等于()A.2m+3n B.m2+n2C.6mn D.m2n3【答案】D【分析】根据同底数幂相乘,底数不变指数相加,幂的乘方,底数不变指数相乘的性质的逆用,计算后直接选取答案.【解析】解:102x+3y=102x•103y=(10x)2•(10y)3=m2n3.故选:D.9.(3分)如图,一次函数y=ax+b与反比例函数y=(k>0)的图象交于点A(1,2),B(m,﹣1).则关于x的不等式ax+b>的解集是()A.x<﹣2或0<x<1B.x<﹣1或0<x<2C.﹣2<x<0或x>1D.﹣1<x<0或x>2【答案】C【分析】先求出反比例函数解析式,进而求出点B的坐标,然后直接利用图象法求解即可.【解析】解:∵A(1,2)在反比例函数图象上,∴k=1×2=2,∴反比例函数解析式为,∵B(m,﹣1)在反比例函数图象上,∴,∴B(﹣2,﹣1),由题意得关于x的不等式的解集即为一次函数图象在反比例函数图象上方时自变量的取值范围,∴关于x的不等式2<x<0或x>1,故选:C.10.(3分)已知二次函数y=ax2+bx+c(a<0)的图象与x轴的一个交点坐标为(﹣2,0),对称轴为直线x=1,下列结论中:①a﹣b+c>0;②若点(﹣3,y1),(2,y2),(6,y3)均在该二次函数图象上,则y1<y3<y2;③方程ax2+bx+c+1=0的两个实数根为x1,x2,且x1<x2,则x1<﹣2,x2>4;④若m为任意实数,则am2+bm+c≤﹣9a.正确结论的序号为()A.①②④B.①③④C.②③④D.①③【答案】B【分析】依据题意,由抛物线经过(﹣2,0),再结合二次函数的性质可判断①,由各点到抛物线对称轴的距离大小可判断从而判断②,由抛物线的对称性可得抛物线与x轴交点坐标,从而判断③,由x=1时y取最大值可判断④.【解析】解:由题意,∵对称轴是直线x=1,a<0,∴当x<1时,y随x的增大而增大.∵﹣2<﹣1,抛物线过点(﹣2,0),∴当x=﹣1时y=a﹣b+c>0,故①正确.∵a<0,∴抛物线开口向下.又点(﹣3,y1),(2,y2),(6,y3)均在该二次函数图象上,且点(6,y3)到对称轴的距离最大,点(2,y2)到对称轴的距离最小,∴y3<y1<y2,②错误.∵方程ax2+bx+c+1=0的两实数根为x1,x2,∴抛物线与直线y=﹣1的交点的横坐标为x1,x2.由抛物线对称性可得抛物线与x轴另一交点坐标为(4,0),∴抛物线与x轴交点坐标为(﹣2,0),(4,0),∵抛物线开口向下,x1<x2,∴x1<﹣2,x2>4,故③正确.∵﹣=1,∴b=﹣2a.∵4a﹣2b+c=0,∴c=2b﹣4a=﹣8a,∵抛物线的最大值为a+b+c,∴若m为任意实数,则am2+bm+c⩽a+b+c=a﹣2a﹣8a=﹣9a,∴am2+bm+c⩽﹣9a,故④正确.故选:B.二、填空题(本大题包括5小题,每小题3分,共15分。

2021年黑龙江省牡丹江鸡西地区朝鲜族学校中考数学真题解析版.docx

2021年黑龙江省牡丹江鸡西地区朝鲜族学校中考数学真题解析版.docx

2021年黑龙江省牡丹江市、鸡西市朝鲜族学校联合体中考数学试卷一、选择题(每小题3分,共30分。

)1.下列运算正确的是()A.- 3 - 2= - 1B. 3X ( - A)2= - A3 3C. x3*x5=x15D. Va,Vab=tz Vb2.下列图形中,既是轴对称图形,又是中心对称图形的是()3.由若干个完全相同的小立方块搭成的几何体的左视图和俯视图如图所示,则搭成该几何体所用的小立方块的个数可能是()左视图俯视图A. 4个B. 5个C. 7个D. 8个4.从小到大的一组数据-1, 1, 2, x, 6, 8的中位数为2,则这组数据的众数和平均数分别是()A. 2, 4B. 2, 3C. 1, 4D. 1, 35.关于x的一元二次方程顷-3) x2+m2x=9x+5化为一般形式后不含一次项,则m的值为()A. 0B. ±3C. 3D. - 36.如图,在平面直角坐标系中,矩形的顶点A在双曲线 >=-旦(x<0)上,点C,x 。

在y轴的正半轴上,点E在上,CE=2BE,连接DE并延长,交x轴于点F,连接CF,则的面积为()2 27.若关于x的分式方程丝立=3的解是非负数,则。

的取值范围是()x-2A. b乂4B. DW6 且力夭4C. b<6且力尹4D. b<68.如图,在△ABC中,ZACB=90°,点。

在AB的延长线上,连接CZ),若AB=2BD,tanZBCD=-2,则匹的值为()2 29.大课间,12人跳绳队为尊重每个队员的意愿,准备把队员分成跳大绳组或跳小绳组,大绳组3人一组,小绳组2人一组,在全队同学能同时参加活动且符合小组规定人数的前提下,则不同的分组方法有()A. 1种B. 2种C. 3种D. 4种10.如图,矩形ABCD的边CD上有一点E, ZDAE=22.5° , EF±AB,垂足为F,将绕着点F顺时针旋转,使得点A的对应点M落在EF上,点E恰好落在点B处,连接BE.下列结论:®BM±AE;②四边形EFBC是正方形;③NEBM=30°;④S四边形BCEM:S^BFM=(2行+1): 1.其中结论正确的序号是()二、填空题:(每小题3分,共30分。

黑龙江省鸡西市中考数学最后一卷

黑龙江省鸡西市中考数学最后一卷

黑龙江省鸡西市中考数学最后一卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七上·滨湖期中) 2的相反数是()A . 2B . -2C . 0.5D . -0.52. (2分) (2015四下·宜兴期末) 未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为()A . 亿元B . 亿元C . 亿元D . 亿元3. (2分)如果等腰三角形的两边长分别为2和5,则它的周长为()A . 9B . 7C . 12D . 9或124. (2分)(2018·宜宾模拟) 如图所示的几何体的俯视图是()A .B .C .D .5. (2分) (2017九上·哈尔滨期中) 下列运算正确的是()A .B .C .D .6. (2分) (2015八下·深圳期中) 下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .7. (2分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A . CM=DMB .C . ∠ACD=∠ADCD . OM=MD8. (2分) (2019七下·交城期中) 在平面直角坐标系中,已知点A(﹣4,0)和B(0,2),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是()A . (0,﹣2)B . (4,6)C . (4,4)D . (2,4)9. (2分) (2017八下·汶上期末) 如图,直线y=kx+b经过A(3,1)和B(6,0)两点,则不等式组0<kx+b < x的解集为()A . 3<x<6B . x>3C . x<6D . x>3或x<610. (2分) (2017八上·双柏期末) 某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)4647484950人数(人)12124下列说法正确的是()A . 这10名同学的体育成绩的众数为50B . 这10名同学的体育成绩的中位数为48C . 这10名同学的体育成绩的方差为50D . 这10名同学的体育成绩的平均数为4811. (2分) (2018九上·乌鲁木齐期末) 关于的一元二次方程有实数根,则的取值范围是()A .B .C .D .12. (2分)(2018·市中区模拟) 如图,在Rt△ABC中,BC 2,∠BAC 30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:①若C,O两点关于AB对称,则OA ;②C,O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为 .其中正确的是()A . ①②B . ①②③C . ①③④D . ①②④二、填空题 (共9题;共9分)13. (1分)写出一个以3和1为根的一元二次方程是________.14. (1分)已知反比例函数的解析式为,则最小整数k=________.15. (1分)(2017·荆州) 若关于x的分式方程 =2的解为负数,则k的取值范围为________.16. (1分) (2015七下·绍兴期中) 计算:(﹣2)2+(2011﹣)0﹣(﹣2)3=________.17. (1分) (2019八上·大洼月考) 因式分解: =________.18. (1分)已知一组数据:97,98,99,100,101,则这组数据的标准差是________.19. (1分)方程﹣3=0的解是________ .20. (1分)在平面直角坐标系的第一象限内,边长为l的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线y=(x>0)与此正方形的边有交点,则a的取值范围是________ .21. (1分)(2017·嘉兴模拟) 如图,在等边三角形ABC中,BC=8,点D是边AB点,且BD=3,点P是边BC 上一动点,作°,PE交边AC于点E,当CE=________时,满足条件的点P有且只有一个。

黑龙江省鸡西市2021版数学中考模拟试卷A卷

黑龙江省鸡西市2021版数学中考模拟试卷A卷

黑龙江省鸡西市2021版数学中考模拟试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·个旧模拟) 9的相反数是()A .B . 9C . ﹣9D . ﹣2. (2分)(2019·长春模拟) 据统计,全国每小时约有510000000吨污水排入江海,510000000用科学记数法表示为()A . 5.1×109B . 510×106C . 5.1×106D . 5.1×1083. (2分)(2016·慈溪模拟) 如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是()A .B .C .D .4. (2分)股票有风险,入市须谨慎、我国A股股票市场指数从2007年10月份6100多点跌到2008年10月份2000点以下,小明的爸爸在2008年7月1日买入10手某股票(股票交易的最小单位是一手,一手等于100股),如图,是该股票2008年7﹣11月的每月1号的收盘价折线图,已知8,9月该股票的月平均跌幅达8.2%,10月跌幅为5.4%,已知股民买卖股票时,国家要收千分之二的股票交易税即成交金额的2‰,下列结论中正确的个数是()①小明的爸爸若在8月1日收盘时将股票全部抛出,则他所获纯利润是(41.5﹣37.5)×1000×(1﹣2‰)元;②由题可知:10月1日该股票的收盘价为41.5×(1﹣8.2%)2元/股;③若小明的爸爸的股票一直没有抛出,则由题可知:7月1日﹣11月1日小明的爸爸炒股票的账面亏损为37.5×1000×(1﹣2‰)﹣41.5×1000×(1﹣8.2%)2×(1﹣5.4%)元.A . 0个B . 1个C . 2个D . 3个5. (2分) (2019七上·惠山期中) 根据如图所示的计算程序,若输出的值y=-1,则输入的值x为()A . 2B . -4或1或-1C . -4或1D . -4或-16. (2分)(2011·台州) 不等式组的解集是()A . x≥3B . x≤6C . 3≤x≤6D . x≥67. (2分)如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=20°,则∠C的度数是()A . 70°B . 50°C . 45°D . 20°8. (2分)(2016·来宾) 一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组()A .B .C .D .9. (2分)在平面直角坐标系中,点A(2013,2014)关于原点O对称的点A′的坐标为()A . (﹣2013,﹣2014)B . (2013,﹣2014)C . (2014,2013)D . (﹣2014,﹣2013)10. (2分)如图所示的抛物线是二次函数y=ax2-3x+a2-1的图像,那么下列结论错误的是()A . 当y<0时,x>0B . 当-3<x<0时,y>0C . 当x<时,y随x的增大而增大D . 抛物线可由抛物线y=-x2平移得到二、填空题 (共6题;共8分)11. (1分) 6m(x2﹣9)与9mx﹣27m的公因式为________12. (1分) (2016九上·萧山期中) 在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子________颗.13. (2分) (2017七下·肇源期末) p在数轴上的位置如图所示,化简|p+1|-|p-2|=________.14. (1分)若关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根,则m的值可能是________(写出一个即可).15. (1分)(2018·吉林模拟) ,则sinA+cosA= ________.16. (2分) (2017九上·萧山月考) 在平面直角坐标系中,已知点A ,点B ,点C是y 轴上的一个动点,当∠BCA=30°时,点C的坐标为________.三、解答题 (共8题;共71分)17. (5分)(1)计算:|﹣2|+2cos45°﹣+()﹣1(2)先化简,再求值:(1﹣)÷,其中x=﹣2.18. (5分)如图,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O,BO=CO.求证:AO平分∠BAC.19. (10分)(2016·定州模拟) 如图,在平面直角坐标系中,点A(,1)、B(2,0)、O(0,0),反比例函数y= 图象过点A.(1)求k的值;(2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,试判断点D是否在该反比例函数的图象上?20. (2分)(2016·漳州) 如图,BD是▱ABCD的对角线,过点A作AE⊥BD,垂足为E,过点C作CF⊥BD,垂足为F.(1)补全图形,并标上相应的字母;(2)求证:AE=CF.21. (8分) (2019九上·上街期末) 某校对七年级300名学生进行了教学质量监测(满分100分),现从中随机抽取部分学生的成绩进行整理,并绘制成如图不完整的统计表和统计图:注:60分以下为“不及格”,60~69分为“及格”,70~79分为“良好”,80分及以上为“优秀”请根据以上信息回答下列问题:(1)补全统计表和统计图;(2)若用扇形统计图表示统计结果,则“良好”所对应扇形的圆心角为多少度?(3)请估计该校七年级本次监测成绩为70分及以上的学生共有多少人?22. (10分)(2017·埇桥模拟) 如图,某生在旗杆EF与实验楼CD之间的A处,测得∠EAF=60°,然后向左移动12米到B处,测得∠EBF=30°,∠CBD=45°,sin∠CAD= .(1)求旗杆EF的高;(2)求旗杆EF与实验楼CD之间的水平距离DF的长.23. (15分)(2018·洪泽模拟) 如图,已知抛物线y = x2 + bx + c的图象经过点A(l ,0),B(﹣3 ,0),与y轴交于点C ,抛物线的顶点为D ,对称轴与x轴相交于点E ,连接BD .(1)求抛物线的解析式(2)若点P在直线BD上,当PE = PC时,求点P的坐标.(3)在(2)的条件下,作PF⊥x轴于F ,点M为x轴上一动点,N为直线PF上一动点,G为抛物线上一动点,当以点F ,N ,G ,M 四点为顶点的四边形为正方形时,求点M的坐标.24. (16分)(2019·许昌模拟) 如图,是 ABC的外接圆,AB为直径,∠BAC的平分线交于点D,过点D作DE AC分别交AC、AB的延长线于点E、F.(1)求证:EF是的切线;(2)若AC=4,CE=2,求的长度.(结果保留)参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共71分)17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。

黑龙江鸡西地区四校2021年中考数学重点题集合含答案解析

黑龙江鸡西地区四校2021年中考数学重点题集合含答案解析

黑龙江鸡西地区四校2021年中考数学重点题集合含答案解析一、单选题1、使得式子有意义的x的取值范围是()A.x≥4 B.x>4 C.x≤4 D.x<4【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:使得式子有意义,则:4﹣x>0,解得:x<4,即x的取值范围是:x<4.故选:D.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2、在0,2,﹣3,﹣这四个数中,最小的数是()A.0 B.2 C.﹣3 D.﹣【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3<﹣<0<2,所以最小的数是﹣3.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3、将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.【点评】主要考查了一副三角板所对应的角度是60°,45°,30°,90°和三角形外角的性质.本题容易,解法很灵活.4、“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.【分析】画树状图(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率==.故选:A.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.5、下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6、如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC【分析】根据仰角的定义进行解答便可.【解答】解:∵从点C观测点D的视线是CD,水平线是CE,∴从点C观测点D的仰角是∠DCE,故选:B.【点评】本题主要考查了仰角的识别,熟记仰角的定义是解题的关键.仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.7、若x1,x2是一元二次方程x2﹣4x﹣5=0的两根,则x1•x2的值为()A.﹣5 B.5 C.﹣4 D.4【分析】利用根与系数的关系可得出x1•x2=﹣5,此题得解.【解答】解:∵x1,x2是一元二次方程x2﹣4x﹣5=0的两根,∴x1•x2==﹣5.故选:A.【点评】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.8、“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()A.B.C.D.【分析】根据题意,可知y随的增大而减小,符合一次函数图象,从而可以解答本题.【解答】解:∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,t表示漏水时间,y表示壶底到水面的高度,∴y随t的增大而减小,符合一次函数图象,故选:A.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.9、计算22+(﹣1)0的结果是()A.5 B.4 C.3 D.2【分析】分别计算平方、零指数幂,然后再进行实数的运算即可.【解答】解:原式=4+1=5故选:A.【点评】此题考查了实数的运算,解答本题关键是掌握零指数幂的运算法则,难度一般.10、下列四个图案中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A.此图案是中心对称图形,符合题意;B.此图案不是中心对称图形,不合题意;C.此图案不是中心对称图形,不合题意;D.此图案不是中心对称图形,不合题意;故选:A.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题1、如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为21°.【分析】设∠ADE=x,由等腰三角形的性质和直角三角形得出∠DAE=∠ADE=x,DE=AF=AE=EF,得出DE =CD,证出∠DCE=∠DEC=2x,由平行四边形的性质得出∠DCE=∠BCD﹣∠BCA=63°﹣x,得出方程,解方程即可.【解答】解:设∠ADE=x,∵AE=EF,∠ADF=90°,∴∠DAE=∠ADE=x,DE=AF=AE=EF,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD﹣∠BCA=63°﹣x,∴2x=63°﹣x,解得:x=21°,即∠ADE=21°;故答案为:21°.【点评】本题考查了平行四边形的性质、直角三角形的性质、等腰三角形的性质等知识;根据角的关系得出方程是解题的关键.2、如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C所表示的数是﹣1 .【分析】根据A、B两点所表示的数分别为﹣4和2,利用中点公式求出线段AB的中点所表示的数即可.【解答】解:∵数轴上A,B两点所表示的数分别是﹣4和2,∴线段AB的中点所表示的数=(﹣4+2)=﹣1.即点C所表示的数是﹣1.故答案为:﹣1【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.3、在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x﹣a+1和y=x2﹣2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是a>1或a<﹣1 .【分析】由y=x﹣a+1与x轴的交点为(a﹣1,0),可知当P,Q都在x轴的下方时,直线l与x轴的交点要在(a﹣1,0)的左侧,即可求解;【解答】解:y=x﹣a+1与x轴的交点为(a﹣1,0),∵平移直线l,可以使P,Q都在x轴的下方,∴当x=a﹣1时,y=(1﹣a)2﹣2a(a﹣1)<0,∴a2﹣1>0,∴a>1或a<﹣1;故答案为a>1或a<﹣1;【点评】本题考查二次函数图象及性质,一次函数图象及性质;数形结合的分析问题,将问题转化为当x=1﹣a时,二次函数y<0是解题的关键.4、已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为3cm2.【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【解答】解:该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其左视图的面积为3×=3(cm2),故答案为3cm2.【点评】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.5、分解因式3x2﹣27y2=3(x+3y)(x﹣3y).【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(x2﹣9y2)=3(x+3y)(x﹣3y),故答案为:3(x+3y)(x﹣3y)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题(难度:中等)1、如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,连接OE.(1)求证:△DBE是等腰三角形;(2)求证:△COE∽△CAB.【分析】(1)连接OD,由DE是⊙O的切线,得出∠ODE=90°,∠ADO+∠BDE=90°,由∠ACB=90°,得出∠CAB+∠CBA=90°,证出∠CAB=∠ADO,得出∠BDE=∠CBA,即可得出结论;(2)证出CB是⊙O的切线,得出DE=EC,推出EC=EB,再由OA=OC,得出OE∥AB,即可得出结论.【解答】证明:(1)连接OD,如图所示:∵DE是⊙O的切线,∴∠ODE=90°,∴∠ADO+∠BDE=90°,∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵OA=OD,∴∠CAB=∠ADO,∴∠BDE=∠CBA,∴EB=ED,∴△DBE是等腰三角形;(2)∵∠ACB=90°,AC是⊙O的直径,∴CB是⊙O的切线,∵DE是⊙O的切线,∴DE=EC,∵EB=ED,∴EC=EB,∵OA=OC,∴OE∥AB,∴△COE∽△CAB.【点评】本题考查了切线的判定与性质、相似三角形的判定、等腰三角形的判定与性质、平行线的判定与性质等知识,熟练掌握切线的判定与性质是解题的关键.2、(1)计算:9×3﹣2+(﹣1)3﹣;(2)解不等式组,并求出它的整数解.【分析】(1)先计算负整数指数幂、乘方及算术平方根,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=9×﹣1﹣2=3﹣1﹣2=0;(2)解不等式x+1>0,得:x>﹣1,解不等式x+4>3x,得:x<2,则不等式组的解集为﹣1<x<2,所以不等式组的整数解为0、1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取50 名学生进行统计调查,扇形统计图中,D类所对应的扇形圆心角的大小为72°;(2)将条形统计图补充完整;(3)该校共有1500名学生,估计该校表示“喜欢”的B类的学生大约有多少人?【分析】(1)这次共抽取:12÷24%=50(人),D类所对应的扇形圆心角的大小360°×=72°;(2)A类学生:50﹣23﹣12﹣10=5(人),据此补充条形统计图;(3)该校表示“喜欢”的B类的学生大约有1500×=690(人).【解答】解:(1)这次共抽取:12÷24%=50(人),D类所对应的扇形圆心角的大小360°×=72°,故答案为50,72°;(2)A类学生:50﹣23﹣12﹣10=5(人),条形统计图补充如下该校表示“喜欢”的B类的学生大约有1500×=690(人),答:该校表示“喜欢”的B类的学生大约有690人;【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.4、如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.【分析】(1)根据点P的坐标,利用待定系数法可求出m,n的值,联立正、反比例函数解析式成方程组,通过解方程组可求出点A的坐标(利用正、反比例函数图象的对称性结合点P的坐标找出点A的坐标亦可);(2)由菱形的性质可得出AC⊥BD,AB∥CD,利用平行线的性质可得出∠DCP=∠OAE,结合AB⊥x轴可得出∠AEO=∠CPD=90°,进而即可证出△CPD∽△AEO;(3)由点A的坐标可得出AE,OE,AO的长,由相似三角形的性质可得出∠CDP=∠AOE,再利用正弦的定义即可求出sin∠CDB的值.【解答】(1)解:将点P(﹣1,2)代入y=mx,得:2=﹣m,解得:m=﹣2,∴正比例函数解析式为y=﹣2x;将点P(﹣1,2)代入y=,得:2=﹣(n﹣3),解得:n=1,∴反比例函数解析式为y=﹣.联立正、反比例函数解析式成方程组,得:,解得:,,∴点A的坐标为(1,﹣2).(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)解:∵点A的坐标为(1,﹣2),∴AE=2,OE=1,AO==.∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOE===.【点评】本题考查了待定系数法求一次函数解析式、待定系数法反比例函数解析式、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、菱形的性质、相似三角形的判定与性质以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出m,n的值;(2)利用菱形的性质,找出∠DCP=∠OAE,∠AEO=∠CPD =90°;(3)利用相似三角形的性质,找出∠CDP=∠AOE.5、计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.【分析】分别运算每一项然后再求解即可;【解答】解:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2=1+6+9﹣3=13.【点评】本题考查实数的运算;熟练掌握实数的运算法则是解题的关键.6、如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.【分析】根据正方形的性质可得AB=AD,再利用同角的余角相等求出∠BAF=∠ADG,再利用“角角边”证明△BAF和△ADG全等,根据全等三角形对应边相等可得BF=AG,根据线段的和与差可得结论.【解答】证明:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∵BF⊥AE,DG⊥AE,∴∠AFB=∠AGD=∠ADG+∠DAG=90°,∵∠DAG+∠BAF=90°,∴∠ADG=∠BAF,在△BAF和△ADG中,∵,∴△BAF≌△ADG(AAS),∴BF=AG,AF=DG,∵AG=AF+FG,∴BF=AG=DG+FG,∴BF﹣DG=FG.【点评】本题考查了正方形的性质,全等三角形的判定与性质,证明△BAF≌△ADG是解题的关键.7、如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=4,求tan∠BAD的值.【分析】(1)根据等腰三角形的性质得出∠ABC=∠ACB,根据圆心角、弧、弦的关系得到=,即可得到∠ABC=∠ADB,根据三角形内角和定理得到∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∠ADB=90°﹣∠CAD,从而得到∠BAC=∠CAD,即可证得结论;(2)易证得BC=CF=4,即可证得AC垂直平分BF,证得AB=AF=10,根据勾股定理求得AE、CE、BE,根据相交弦定理求得DE,即可求得BD,然后根据三角形面积公式求得DH,进而求得AH,解直角三角函数求得tan∠BAD的值.【解答】解:(1)∵AB=AC,∴=,∠ABC=∠ACB,∴∠ABC=∠ADB,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∵BD⊥AC,∴∠ADB=90°﹣∠CAD,∴∠BAC=∠CAD,∴∠BAC=2∠CAD;(2)解:∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=∠BDC=∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=4,设AE=x,CE=10﹣x,由AB2﹣AE2=BC2﹣CE2,得100﹣x2=80﹣(10﹣x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE===3,∴BD=BE+DE=3+8=11,作DH⊥AB,垂足为H,∵AB•DH=BD•AE,∴DH===,∴BH==,∴AH=AB﹣BH=10﹣=,∴tan∠BAD===.【点评】本题属于圆综合题,考查了圆周角定理,勾股定理,锐角三角函数,圆心角、弧、弦的关系,相交弦定理,等腰三角形的判定和性质等知识,解题的关键是熟练掌握并灵活运用性质定理,属于中考压轴题.8、解不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:,解①得:x>﹣1,解②得:x≤2,则不等式组的解集是:﹣1<x≤2.【点评】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).。

二一一年鸡西市初中毕业学业考试数学试卷

二一一年鸡西市初中毕业学业考试数学试卷

二○一一年鸡西市初中毕业学业考试数学试卷考生注意: .考试时间分钟.全卷共三道大题,总分分.使用答题卡的考生,请将答案填写在答题卡的指定位置 一、单项选择题〔每题分,总分值分〕.以下各式:①a ②a ·a a ③ – –41④ –(-)+(–)÷×(–) ⑤, 其中正确的选项是 ( ) ①②③ ①③⑤ ②③④ ②④⑤.以下图形中既是..轴对称图形又是..中心对称图形的是 ( ).向最大容量为升的热水器内注水,每分钟注水升,注水分钟后停顿分钟,然后继续注水,直至注满.那么能反映注水量及注水时间函数关系的图象是 ().以下图是一个由多个一样小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,那么这个几何体的左视图是 ( ).假设(,),(,〕,(,)是反比例函数x3图象上的点,且<<<,那么、、的大小关系正确的选项是 ( ) >> >>3 C >> >>.某工厂为了选拔名车工参加直径为㎜精细零件的加工技术比赛,随机抽取甲、乙两名车工加工的个零件,现测得的结果如下表,平均数依次为 甲x 、乙x ,方差依次为2甲s 、2乙s ,那么以下关系中完全正确的选项是 〔 〕甲x <乙x , 2甲s <2乙s 甲x =乙x , 2甲s <2乙s 甲x =乙x , 2甲s >2乙s 甲x >乙x , 2甲s >2乙s.分式方程有增根,那么的值为〔 〕和和-.如图,、、、是⊙上的四个点,,交于点,,,那么的长为 〔 〕第题图第题图 23 21 5.二次函数(≠)的图象如下图,现有以下结论:① -4ac > ② > ③ > ④ > ⑤9a <,那么其 中结论正确的个数是 〔 〕个 个 个 个 .如图,在△中,,⊥,把△折叠,使落在上,点及上的点重合,展开后,折痕交 于点,连结、.以下结论:①∠ ②图中有对全 等三角形 ③假设将△沿折叠,那么点不一定落在上 ④ ⑤四边形△,上述结论中正确的个数是〔 〕 个 个 个 个二、填空题〔每题分,总分值分〕.年月日,创造了世博会历史上新的 人次. 〔结果保存两个有效数字〕 .函数中,自变量的取值范围是 ..如图,点、、、在同一条直线上,点、在直线 的 两侧,∥,,请添加一个适当的条件: , 使得..因式分解:-- ..中国象棋红方棋子按兵种不同分布如下:个帅,个兵,“士、 象、马、车、炮〞各两个,将所有棋子反面朝上放在棋盘中,任取一个不是..士、象、帅的概率是 . .将一个半径为㎝,母线长为㎝的圆锥形纸筒沿一条母线 剪开并展平,所得的侧面展开图的第题图第题图第题图圆心角是 度..一元二次方程a -a -的解为 ..某班级为筹备运动会,准备用元购置两种运动服,其中甲种运动服元套,乙种运动服元套,在钱都用尽的条件下,有 种购置方案..三角形相邻两边长分别为㎝和㎝,第三边上的高为㎝,那么此三角形的面积为 ㎝²..如图,△是边长为的等边三角形.取边中点,作∥,∥,得到四边形,它的面积记作;取中点,作∥,1F ∥,得到四边形,它的面积记作.照此规律作下去,那么 . 三、解答题〔总分值分〕 .〔本小题总分值分〕先化简,再求值:〔-11a 〕÷,其中a °..〔本小题总分值分〕如图,每个小方格都是边长为个单位长度的小正方形. 〔〕将△向右平移个单位长度,画出平移后的△. 〔〕将△绕点旋转°,画出旋转后的△2C .〔〕画出一条直线将△的面积分成相等的两局部.第题图.〔本小题总分值分〕:二次函数43²,其图象对称轴为直线,且经过点〔,–49〕.〔〕求此二次函数的解析式.〔〕设该图象及轴交于、两点〔点在点的左侧〕,请在此二次函数轴下方的图象上确定一点,使△的面积最大,并求出最大面积.注:二次函数a 〔a ≠〕的对称轴是直线-ab2..〔本小题总分值分〕为增强学生体质,教育行政部门规定学生每天在校参加户外体育活动的平均时间不少于小时.某区为了解学生参加户外体育活动的情况,对局部学生参加户外体育活动的时间进展了抽样调查,并将调查结果绘制成如下的统计图表〔不完整〕.请你根据图中提供的信息解答以下问题:〔〕求、的值.〔〕求表示参加户外体育活动时间为 小时的扇形圆心角的度数. 〔〕该区万名学生参加户外体育活动 时间达标的约有多少人?.〔本小题总分值分〕某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两局部,乙厂直接按印刷数量收取印刷费.甲乙两厂的印刷费用〔千元〕及证书数量〔千个〕的函数关系图象分别如图中甲、乙所示. () 请你直接写出甲厂的制版费及甲及的函数解析式,并求出其证书印刷单价. () 当印制证书千个时,应选择哪个印刷厂节省费用,节省费用多少元?() 如果甲厂想把千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?第题图.〔本小题总分值分〕在正方形的边上任取一点,作⊥交于点,取的中点,连结、,如图〔〕,易证且⊥.〔〕将△绕点逆时针旋转°,如图〔〕,那么线段和有怎样的数量关系和位置关系?请直接写出你的猜测.〔〕将△绕点逆时针旋转°,如图〔〕,那么线段和又有怎样的数量关系和位置关系?请写出你的猜测,并加以证明.第题图图〔〕图〔〕图〔〕.〔本小题总分值分〕建华小区准备新建个停车位,以解决小区停车难的问题.新建个地上停车位和个地下停车位需万元;新建个地上停车位和个地下停车位需万元.〔〕该小区新建个地上停车位和个地下停车位各需多少万元?〔〕假设该小区预计投资金额超过万元而不超过万元,那么共有几种建造方案?〔〕每个地上停车位月租金元,每个地下停车位月租金元. 在〔〕的条件下,新建停车位全部租出.假设该小区将第一个月租金收入中的元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?.〔本小题总分值分〕直线3+3及轴,轴分别交于、两点,∠°,及轴交于点.〔〕试确定直线的解析式.〔〕假设动点从点出发沿向点运动〔不及、重合〕,同时动点从点出发沿向点运动(不及、重合) ,动点的运动速度是每秒个单位长度,动点的运动速度是每秒个单位长度.设△的面积为,点的运动时间为秒,求及的函数关系式,并写出自变量的取值范围.〔〕在〔〕的条件下,当△的面积最大时,轴上有一点,平面内是否存在一点,使以、、、为顶点的四边形为菱形?假设存在,请直接写出点的坐标;假设不存在,请说明理由.二○一一年鸡西市初中毕业学业考试数学试题参考答案及评分说明一、单项选择题〔每题分,总分值分〕二、填空题〔每题分,总分值分〕11×≥-且≠ 或∠∠等 . -(-) .1611 . . a 11 ,a -11.〔23〕或〔2-3〕〔答案不全或含错解,此题不得分〕.83•〔表示为•3亦可〕三、解答题〔总分值分〕 .〔本小题总分值分〕 解:原式〔11++a a -11+a 〕· 1+a a·a (分) 把a °23代入 (分)原式〔分〕.〔本小题总分值分〕〔〕平移正确给分;〔〕旋转正确给分;〔〕面积等分正确给分(答案不唯一)..〔本小题总分值分〕 解:〔〕 由条件得 (分)解得 -23, -49∴此二次函数的解析式为 43-23-49(分) () ∵43-23-49 ∴-, ∴(-,),〔,〕∴ (分) ∵点在轴下方,且△面积最大∴点是抛物线的顶点,其坐标为〔,—〕 〔分〕 ∴△的面积21××= 〔分〕 .〔本小题总分值分〕 解:〔〕 , 〔分〕 〔〕20060×%×°° 〔分〕 () ×% (分)200140×%× (分) .〔本小题总分值分〕解:〔〕制版费千元, 甲21,证书单价元. (分) 〔〕把代入甲21中得 当≥时由图像可设 乙及的函数关系式为 乙,由得解得 〔分〕 得乙当时,甲21×+, 乙41×+2529 〔分〕 -29〔千元〕 即,当印制千张证书时,选择乙厂,节省费用元〔分〕〔〕设甲厂每个证书的印刷费用应降低元 8000a 所以答:甲厂每个证书印刷费最少降低元〔分〕.(本小题总分值分)解〔〕⊥(分)〔〕⊥(分)证明:延长交延长线于,连∵∠°,∠°,∠°∴四边形是矩形.∴,∠°又∵∴∵∠°,1∴2∵,∴∵ ∴ ∴∠° 又 ∵∠21∠° ∴∠∠ ∴△≌△ ∴ ,∠∠(分) ∵∠°,, ∴⊥ ∴∠∠° ∴∠∠° 即∠° ∴⊥ (分).〔本小题总分值分〕解:〔〕解:设新建一个地上停车位需万元,新建一个地下停车位需万元,由题意得 解得 答:新建一个地上停车位需万元,新建一个地下停车位需万元〔分〕 ﹙﹚设新建个地上停车位,那么 <m +(-) ≤解得 ≤<3100, 因为为整数,所以=或=或=或=,对应的-=或-=或-=或-=所以,有四种建造方案。

2021届黑龙江省鸡西市中考数学综合测试试题

2021届黑龙江省鸡西市中考数学综合测试试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于( )A.2﹣2B.1 C.2D.2﹣l2.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为()A.(2,23)B.(﹣2,4)C.(﹣2,22)D.(﹣2,23)3.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣84.如图,AB切⊙O于点B,OA=23,AB=3,弦BC∥OA,则劣弧BC的弧长为()A.3πB.3πC.πD.32π5.△ABC在正方形网格中的位置如图所示,则cosB的值为( )A 5B25C.12D.26.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,BD 的长为43π,则图中阴影部分的面积为( )A .4633π-B .8933π-C .33223π-D .8633π- 7.如图,点A ,B 为定点,定直线l//AB ,P 是l 上一动点.点M ,N 分别为PA ,PB 的中点,对于下列各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离;⑤∠APB 的大小.其中会随点P 的移动而变化的是( )A .②③B .②⑤C .①③④D .④⑤8.如图,在△ABC 中,∠C=90°,∠B=30°,AD 是△ABC 的角平分线,DE ⊥AB,垂足为点E,DE=1,则BC= ( )A .3B .2C .3D .3+29.如图,圆弧形拱桥的跨径12AB =米,拱高4CD =米,则拱桥的半径为( )米A .6.5B .9C .13D .1510.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A .24B .18C .12D .9二、填空题(本题包括8个小题)11.已知抛物线y=ax 2+bx+c=0(a≠0) 与 x 轴交于 A ,B 两点,若点 A 的坐标为 ()2,0-,线段 AB 的长为8,则抛物线的对称轴为直线 ________________.12.如果某数的一个平方根是﹣5,那么这个数是_____.13.如图,直线y =k 1x +b 与双曲线2k y=x交于A 、B 两点,其横坐标分别为1和5,则不等式k 1x <2k x +b 的解集是 ▲ .14.如图1,AB 是半圆O 的直径,正方形OPNM 的对角线ON 与AB 垂直且相等,Q 是OP 的中点.一只机器甲虫从点A 出发匀速爬行,它先沿直径爬到点B ,再沿半圆爬回到点A ,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t ,甲虫与微型记录仪之间的距离为y ,表示y 与t 的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的( )A .点MB .点NC .点PD .点Q15.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 .16.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。

黑龙江鸡西市第一中学2021年中考数学复习题含答案(附解析)

黑龙江鸡西市第一中学2021年中考数学复习题含答案(附解析)

黑龙江鸡西市第一中学2021年中考数学复习题含答案(附解析)一、单选题1、﹣3的绝对值是()A.﹣3 B.C.3 D.±3【分析】利用绝对值的定义求解即可.【解答】解:﹣3的绝对值是3.故选:C.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2、如图,▱ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC⊥BDD.△ABO的面积是△EFO的面积的2倍【分析】根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决.【解答】解:∵E,F,G,H分别是AO,BO,CO,DO的中点,在▱ABCD中,AB=2,AD=4,∴EH=AD=2,HG=AB=1,∴EH≠HG,故选项A错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=,EF∥AB,∴△OEF∽△OAB,∴,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选:B.【点评】本题考查平行四边形的面积、三角形的相似、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.3、海口市首条越江隧道﹣﹣文明东越江通道项目将于2020年4月份完工,该项目总投资3710000000元.数据3710000000用科学记数法表示为()A.371×107B.37.1×108C.3.71×108D.3.71×109【分析】根据科学记数法的表示方法a×10n(1≤a<9)即可求解;【解答】解:由科学记数法可得3710000000=3.17×109,故选:D.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.4、不等式组的整数解是()A.0 B.﹣1 C.﹣2 D.1【分析】先求出不等式组的解集,再求出整数解,即可得出选项.【解答】解:解不等式①得:x<0,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x<0,∴不等式组的整数解是﹣1,故选:B.【点评】本题考查了解一元一次不等式的应用,能灵活运用不等式的性质进行变形是解此题的关键.5、如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是()A.48°B.78°C.92°D.102°【分析】直接利用已知角的度数结合平行线的性质得出答案.【解答】解:∵将一块含有30°的直角三角板的顶点放在直尺的一边上,∠1=48°,∴∠2=∠3=180°﹣48°﹣30°=102°.故选:D.【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.6、下列整数中,与最接近的整数是()A.3 B.4 C.5 D.6【分析】由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.【解答】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.7、这组数据20,21,22,23,23的中位数和众数分别是()A.20,23 B.21,23 C.21,22 D.22,23【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.【解答】解:这组数据排序后为20,21,22,23,23,∴中位数和众数分别是22,23,故选:D.【点评】本题主要考查了中位数以及众数,中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现.8、已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0 C.x1+x2=2 D.x1•x2=2【分析】由根的判别式△=4>0,可得出x1≠x2,选项A不符合题意;将x1代入一元二次方程x2﹣2x=0中可得出x12﹣2x1=0,选项B不符合题意;利用根与系数的关系,可得出x1+x2=2,x1•x2=0,进而可得出选项C 不符合题意,选项D符合题意.【解答】解:∵△=(﹣2)2﹣4×1×0=4>0,∴x1≠x2,选项A不符合题意;∵x1是一元二次方程x2﹣2x=0的实数根,∴x12﹣2x1=0,选项B不符合题意;∵x1,x2是一元二次方程x2﹣2x=0的两个实数根,∴x1+x2=2,x1•x2=0,选项C不符合题意,选项D符合题意.故选:D.【点评】本题考查了根与系数的关系以及根的判别式,逐一分析四个选项的正误是解题的关键.9、如图,已知l1∥AB,AC为角平分线,下列说法错误的是()A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3【分析】利用平行线的性质得到∠2=∠4,∠3=∠2,∠5=∠1+∠2,再根据角平分线的定义得到∠1=∠2=∠4=∠3,∠5=2∠1,从而可对各选项进行判断.【解答】解:∵l1∥AB,∴∠2=∠4,∠3=∠2,∠5=∠1+∠2,∵AC为角平分线,∴∠1=∠2=∠4=∠3,∠5=2∠1.故选:B.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.10、海口市首条越江隧道﹣﹣文明东越江通道项目将于2020年4月份完工,该项目总投资3710000000元.数据3710000000用科学记数法表示为()A.371×107B.37.1×108C.3.71×108D.3.71×109【分析】根据科学记数法的表示方法a×10n(1≤a<9)即可求解;【解答】解:由科学记数法可得3710000000=3.17×109,故选:D.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.二、填空题1、“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入20000元,到2018年人均年收入达到39200元.则该地区居民年人均收入平均增长率为40% .(用百分数表示)【分析】根据题意可以列出相应的方程,从而可以求得该地区居民年人均收入平均增长率,本题得以解决.【解答】解:设该地区居民年人均收入平均增长率为x,20000(1+x)2=39200,解得,x1=0.4,x2=﹣2.4(舍去),∴该地区居民年人均收入平均增长率为40%,故答案为:40%.【点评】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出相应的增长率.2、如图所示的网格是正方形网格,则∠PAB+∠PBA=45 °(点A,B,P是网格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.【点评】本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.3、计算﹣的结果是.【分析】异分母分式相加减,先通分变为同分母分式,然后再加减.【解答】解:原式====.故答案为:【点评】此题考查了分式的加减运算,分式的加减运算关键是通分,通分的关键是找最简公分母.4、如图,在Rt△ABC中,∠C=90°,AC=BC=2,点D是AB的中点,以A、B为圆心,AD、BD长为半径画弧,分别交AC、BC于点E、F,则图中阴影部分的面积为2﹣.【分析】根据S阴=S△ABC﹣2•S扇形ADE,计算即可.【解答】解:在Rt△ABC中,∵∠ACB=90°,CA=CB=2,∴AB=2,∠A=∠B=45°,∵D是AB的中点,∴AD=DB=,∴S阴=S△ABC﹣2•S扇形ADE=×2×2﹣2×=2﹣,故答案为:2﹣.【点评】本题考查扇形的面积,等腰直角三角形的性质等知识,解题的关键是学会用分割法求面积,属于中考常考题型.5、二次函数y=ax2+bx+c的图象如图所示,若M=4a+2b,N=a﹣b.则M、N的大小关系为M<N.(填“>”、“=”或“<”)【分析】根据二次函数的图象与性质即可求出答案.【解答】解:当x=﹣1时,y=a﹣b+c>0,当x=2时,y=4a+2b+c<0,M﹣N=4a+2b﹣(a﹣b)=4a+2b+c﹣(a﹣b+c)<0,即M<N,故答案为:<【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.6、如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是①④.(填写所有正确结论的序号)【分析】①正确.如图1中,在BC上截取BH=BE,连接EH.证明△FAE≌△EHC(SAS),即可解决问题.②③错误.如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),再证明△GCE≌△GCH(SAS),即可解决问题.④正确.设BE=x,则AE=a﹣x,AF=x,构建二次函数,利用二次函数的性质解决最值问题.【解答】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=BE,∵AF=BE,∴AF=EH,∵∠DAM=∠EHB=45°,∠BAD=90°,∴∠FAE=∠EHC=135°,∵BA=BC,BE=BH,∴AE=HC,∴△FAE≌△EHC(SAS),∴EF=EC,∠AEF=∠ECH,∵∠ECH+∠CEB=90°,∴∠AEF+∠CEB=90°,∴∠FEC=90°,∴∠ECF=∠EFC=45°,故①正确,如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),∴∠ECB=∠DCH,∴∠ECH=∠BCD=90°,∴∠ECG=∠GCH=45°,∵CG=CG,CE=CH,∴△GCE≌△GCH(SAS),∴EG=GH,∵GH=DG+DH,DH=BE,∴EG=BE+DG,故③错误,∴△AEG的周长=AE+EG+AG=AG+GH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故②错误,设BE=x,则AE=a﹣x,AF=x,∴S△AEF=•(a﹣x)×x=﹣x2+ax=﹣(x2﹣ax+a2﹣a2)=﹣(x﹣a)2+a2,∵﹣<0,∴x=a时,△AEF的面积的最大值为a2.故④正确,故答案为①④.【点评】本题考查正方形的性质,全等三角形的判定和性质,二次函数的应用等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考填空题中的压轴题.三、解答题(难度:中等)1、计算:(2x2)3﹣x2•x4.【分析】先算乘方与乘法,再合并同类项即可.【解答】解:(2x2)3﹣x2•x4=8x6﹣x6=7x6.【点评】本题考查了整式的混合运算,掌握运算性质和法则是解题的关键.2、如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83PD/cm 3.44 2.69 2.00 1.36 0.96 1.13 2.00 2.83AD/cm0.00 0.78 1.54 2.30 3.01 4.00 5.11 6.00在PC,PD,AD的长度这三个量中,确定AD的长度是自变量,PD的长度和PC的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 1.59(答案不唯一)cm.【分析】(1)按照变量的定义,根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量故答案为:AD、PC、PD;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值约为1.59,故答案为1.59(答案不唯一).【点评】本题考查的是动点的函数图象,此类问题主要是通过描点画出函数图象,根据函数关系,在图象上查出相应的近似数值.3、解不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:,解①得:x>﹣1,解②得:x≤2,则不等式组的解集是:﹣1<x≤2.【点评】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).4、先化简,再求值:(x﹣1)÷(x﹣),其中x=+1.【分析】先化简分式,然后将x的值代入计算即可.【解答】解:原式=(x﹣1)÷=(x﹣1)•=,当x=+1,原式==1+.【点评】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.5、某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?【分析】(1)设每袋国旗图案贴纸为x元,则有,解得x=15,检验后即可求解;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a;(3)如果没有折扣,W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【解答】解:(1)设每袋国旗图案贴纸为x元,则有,解得x=15,经检验x=15时方程的解,∴每袋小红旗为15+5=20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a,答:购买小红旗a袋恰好配套;(3)如果没有折扣,则W=15a+20×a=40a,依题意得40a≤800,解得a≤20,当a>20时,则W=800+0.8(40a﹣800)=32a+160,即W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【点评】本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.6、慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.【分析】(1)根据正切的定义用a表示出AH,根据等腰直角三角形的性质计算;(2)根据题意列方程求出a,结合图形计算,得到答案.【解答】解:(1)由题意得,四边形CDBG、HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt△AHE中,tan∠AEH=,则AH=HE•tan∠AEH≈1.9a,∴AG=AH﹣GH=1.9a﹣0.2,在Rt△ACG中,∠ACG=45°,∴CG=AG=1.9a﹣0.2,∴BD=1.9a﹣0.2,答:小亮与塔底中心的距离BD(1.9a﹣0.2)米;(2)由题意得,1.9a﹣0.2+a=52,解得,a=18,则AG=1.9a﹣0.2=34.4,∴AB=AG+GB=36.1,答:慈氏塔的高度AB为36.1米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.7、一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.【分析】(1)由交点为(1,2),代入y=kx+4,可求得k,由y=ax2+c可知,二次函数的顶点在y轴上,即x =0,则可求得顶点的坐标,从而可求c值,最后可求a的值(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0,可求x的值,再利用根与系数的关系式,即可求解.【解答】解:(1)由题意得,k+4=2,解得k=﹣2,又∵二次函数顶点为(0,4),∴c=4把(1,2)带入二次函数表达式得a+c=2,解得a=﹣2(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0∴,设B,C两点的坐标分别为(x1,m)(x2,m),则,∴W=OA2+BC2=∴当m=1时,W取得最小值7【点评】此题主要考查二次函数的性质及一次函数与二次函数图象的交点问题,此类问题,通常转化为一元二次方程,再利用根的判别式,根与系数的关系进行解答即可.8、天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?【分析】(1)利用待定系数法求解可得y关于x的函数解析式;(2)根据“总利润=每件的利润×销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.【解答】解:(1)设y与x的函数解析式为y=kx+b,将(10,30)、(16,24)代入,得:,解得:,所以y与x的函数解析式为y=﹣x+40(10≤x≤16);(2)根据题意知,W=(x﹣10)y=(x﹣10)(﹣x+40)=﹣x2+50x﹣400=﹣(x﹣25)2+225,∵a=﹣1<0,∴当x<25时,W随x的增大而增大,∵10≤x≤16,∴当x=16时,W取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.9、如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.【分析】(1)利用等式的性质判断出∠PBC=∠PAB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△PAB∽△PBC,判断出,即可得出结论.【解答】解:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠PAB+∠PBA=45°∴∠PBC=∠PAB又∵∠APB=∠BPC=135°,∴△PAB∽△PBC(2)∵△PAB∽△PBC∴在Rt△ABC中,AB=AC,∴∴∴PA=2PC(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,∴PF=h1,PD=h2,PE=h3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴h3=2h2∵△PAB∽△PBC,∴,∴∴.即:h12=h2•h3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD是解本题的关键.。

黑龙江省鸡西市2021版中考数学试卷(I)卷

黑龙江省鸡西市2021版中考数学试卷(I)卷

黑龙江省鸡西市2021版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给 (共10题;共20分)1. (2分) (2019八上·陕西期末) 在实数0.2 ,,,π-3,,,1.050050005……(相邻两个5之间0的个数逐次加1)中,无理数有()A . 2个B . 3个C . 4个D . 5个2. (2分) (2016七下·费县期中) 在平面直角坐标系中,点P(﹣2,﹣3)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分) (2020九下·镇江月考) Rt△ABC中,如果各边长度都扩大倍,则锐角A的各个三角函数值()A . 不变化B . 扩大2倍C . 缩小D . 不能确定4. (2分)不等式组的解集为()A .B .C .D .5. (2分)(2018·桂林) 一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A . 10和7B . 5和7C . 6和7D . 5和66. (2分) (2017八下·西华期末) 如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF ,连接DE、DF、EF ,在此运动变化的过程中,有下列结论:①∠DEF是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生改变;④点C到线段EF的最大距离为.其中正确结论的个数是()A . 1B . 2C . 3D . 47. (2分)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之差的绝对值为2或4的概率是()A .B .C .D .8. (2分)图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A . 5B . 6C . 7D . 89. (2分)如图所示,一块钉板上水平方向和垂直方向相邻两钉的距离都是一个单位,用橡皮筋构成如图的一个四边形,那么这个四边形的面积为()A . 2.5B . 5C . 7.5D . 910. (2分)如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为()A . 231πB . 210πC . 190πD . 171π二、填空题(每题4分,满分24分,将答案填在答题纸上) (共6题;共6分)11. (1分)(2019·越秀模拟) 分解因式: ________.12. (1分) (2017八上·哈尔滨月考) 当x________时,分式有意义.13. (1分)十边形的外角和等于________ 度.14. (1分)(2018·遵义模拟) 如图,直线y=﹣x+4与两坐标轴交A、B两点,点P为线段OA上的动点,连接BP,过点A作AM垂直于直线BP,垂足为M,当点P从点O运动到点A时,则点M运动路径的长为________.15. (1分)(2017·临泽模拟) 如图,已知等腰Rt△ABC的直角边为1,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边.画第三个Rt△ADE,…,依此类推直到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为________.16. (1分)(2017·莱芜) 二次函数y=ax2+bx+c(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣ c;④若△ABC是等腰三角形,则b=﹣.其中正确的有________(请将结论正确的序号全部填上)三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明 (共8题;共45分)17. (5分)(2016·青海) 计算:.18. (5分)(2017·金华) (本题6分) 解分式方程: .19. (5分) (2017七下·城关期末) 解不等式5x﹣12≤2(4x﹣3),并把它的解集在数轴上表示出来.20. (5分)某校八年级一班有学生50人,八年级二班有学生45人,期末数学测试中,一班学生的平均分为81.5分,二班学生的平均分为83.4分,这两个班95名学生的平均分是多少?21. (5分) (2018·驻马店模拟) 如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)22. (5分)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y.请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.23. (5分) (2017九上·东丽期末) 如图,抛物线与轴交于、两点(点在点的左侧),点的坐标为,与轴交于点,作直线.动点在轴上运动,过点作轴,交抛物线于点,交直线于点,设点的横坐标为.(Ⅰ)求抛物线的解析式和直线的解析式;(Ⅱ)当点在线段上运动时,求线段的最大值;(Ⅲ)当以、、、为顶点的四边形是平行四边形时,直接写出的值.24. (10分) (2017八下·黑龙江期末) 如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C 重合),满足∠DEF=∠B,且点D.F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.参考答案一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给 (共10题;共20分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(每题4分,满分24分,将答案填在答题纸上) (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明 (共8题;共45分) 17-1、18-1、19-1、20-1、21-1、23-1、24-1、24-2、第11 页共11 页。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年黑龙江省鸡西市中考数学考前最后一卷解析版一.选择题(共10小题,满分30分,每小题3分)
1.(3分)下列计算正确的是()
A.3x×2x2=6x2B.8x2y÷2x2y=4
C.(x﹣y)2=x2﹣y2D.(−1
2x
3y2)2=1
4x
5y4
【解答】解:∵3x×2x2=6x3,故选项A错误;∵8x2y÷2x2y=4,故选项B正确;
∵(x﹣y)2=x2﹣2xy+y2,故选项C错误;
∵(−1
2x
3y2)2=1
4x
6y4,故选项D错误;
故选:B.
2.(3分)下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是()A.B.
C.D.
【解答】解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、不是中心对称图形,故此选项错误;
D、是中心对称图形,故此选项正确;
故选:D.
3.(3分)如图,由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则所需的小正方体的个数最多是()
A.6B.7C.8D.9
【解答】解:综合主视图与左视图,第一行第1列最多有2个,第一行第2列最多有1个;
第1 页共24 页。

相关文档
最新文档