SAT考试备考数学题目40. Circle Equation
Equations of circles(英文数学)
A circle is a set of points a given distance from one point called the center.The distance from the center is called the radius
x 32 +y 22 42
x 32 +y 22 16
Write an equation of a circle with center (-4, 0) and a diameter of 10.
x 42 +y 02 52
x 42 +y2 25
Write an equation of a circle with center (2, -9) and a radius of 11.
Graphing Circles
(x + 4)2 + (y – 1)2 = 25
Converting from general form to centre-radius form
1. Move the x terms together and the y terms together.
2. Move C to the other side. 3. Complete the square (as needed) for x. 4. Complete the square(as needed) for y. 5. Factor the left & simplify the right.
(x – h)2 + (y – k)2 = CP2
so:
(x – h)2 + (y – k)2 = r2
美国“高考”SAT考试的数学题
美国“高考”SAT考试的数学题数学第一部分时间(25分钟)16个问题说明:这部分包含有两种类型的问题。
你将有25分钟时间来完成他们.对于1-8,在所给选项中选出一个最佳答案,然后再答题卡上填上相应的圆圈,你可以使用任何可用的草稿纸空间。
注释:1、可以使用计算器。
2、所有使用的数字均为实数。
3、在测试中,问题中所提供的数字或图表都包含一定的信息,这对于解题很有帮助。
所有图表都是比较准确的,除非在某些具体问题中,图表没有按比例绘制。
所有数字都呈现于平面上,除非另有说明。
4、除非另有规定,对于任何函数f 的值域都是所有实数x 的集合,并使得f(x) 是实数。
可能用到的公式:1、If 4(t+u)+ 3 =19,then t+u=如果4(t+u)+ 3 =19, 那么t+u=A 3B 4C 5D 6E 72、如图,三条直线相交于一点。
如果f=85,e=25,那么a 的值是多少?A 60B 65C 70D 75E 853、如果玛丽开车行驶n 英里用了t 小时,那么下列哪个可以表示她行驶的平均速度,英里/小时?A n/tB t/nC 1/ntD ntE n²t4、如果a 是一个奇数,b 是一个偶数,那么选项中哪一个是奇数?A 3bB a+3C 2(a+b)D a+2bE 2a+b5、在平面坐标内,F(—2,1),G(1,4),H(4,1)在以P为圆心的圆上,那么点P的坐标是什么?A(0,0)B(1,1)C(1,2)D(1,—2)E(2.5,2.5)6、如图,如果-3≤x≤6,那么x 有几个值,使得f(x)=2?A 零B 一个C 两个D 三个E 三个以上7、如果t 和t+2 的算术平均值是x, t 和t-2的算术平均值是y,那么x 和y 的算术平均值是多少?A 1B 1/2C tD t+1/2E 2t8、对于任何数x 和y,假设x△y=x²+xy+y²,那么(3△1)△1等于多少?A 5B 13C 27D 170E 1839、摩根的植物在一年之内从42厘米长到57厘米。
sat数学试题
sat数学试题Introduction:The SAT is an important standardized test for college admissions in the United States. It assesses a student's knowledge and skills in various subjects, including mathematics. In this article, we will discuss and analyze several SAT math questions to help you better understand the exam format and improve your problem-solving abilities.Question 1:A triangle has side lengths of 5, 12, and x. If x is an integer, what is the range of possible values for x?Solution:To determine the range of possible values for x, we need to consider the triangle inequality theorem. According to this theorem, the sum of any two side lengths of a triangle must be greater than the third side length.In this case, we have sides of lengths 5, 12, and x. We can set up two inequalities to represent the triangle inequality theorem:5 + 12 > x and 5 + x > 12Simplifying these inequalities, we get:17 > x and x > 7Therefore, the range of possible values for x is 8, 9, 10, 11, 12, 13, 14, 15, 16.Question 2:If a rectangle has a length of 8 and a perimeter of 30, what is the width of the rectangle?Solution:The formula for perimeter of a rectangle is given by:Perimeter = 2 * (Length + Width)In this case, we have a perimeter of 30 and a length of 8. Plugging in these values into the formula, we get:30 = 2 * (8 + Width)Simplifying the equation, we have:15 = 8 + WidthSubtracting 8 from both sides, we find:Width = 7Therefore, the width of the rectangle is 7.Question 3:If f(x) = 2x + 5, what is the value of f(3) - f(-1)?Solution:To find the value of f(3) - f(-1), we need to evaluate each expression separately and then subtract.First, let's find the value of f(3):f(3) = 2(3) + 5= 6 + 5= 11Next, let's find the value of f(-1):f(-1) = 2(-1) + 5= -2 + 5= 3Finally, we subtract the two values:f(3) - f(-1) = 11 - 3= 8Therefore, the value of f(3) - f(-1) is 8.Conclusion:These sample SAT math questions demonstrate the types of problems you may encounter on the exam. By practicing and understanding these concepts, you can improve your performance and feel more confident on test day. Remember to review the relevant formulae and theorems and apply them accurately. Good luck with your SAT preparation!。
SAT考试2024数学历年真题研究
SAT考试2024数学历年真题研究随着全球教育水平的提高,越来越多的学生选择参加SAT考试,该考试是大多数美国大学招生的重要标准之一。
数学部分是SAT考试的重要组成部分,对考生的数学能力和解题能力进行考察。
为了更好地应对SAT数学考试,了解历年真题并进行研究是非常重要的。
本文将对SAT考试2024数学部分的历年真题进行研究,并分享一些备考建议。
第一部分:单选题单选题是SAT数学部分的常见题型,考察考生对数学概念和基本运算的理解能力。
以下是2024年SAT数学部分的一道单选题:题目:如图所示,一个正方形中有一个带有边缘的圆形。
如果正方形的周长是18,那么圆形的半径是多少?解析:根据题目描述,我们可以推断出正方形的边长是18/4=4.5。
根据正方形的对角线性质可知,对角线的长度等于边长的平方根的2倍,即对角线长度为4.5√2。
由于圆形的直径等于对角线的长度,因此圆形的直径为4.5√2。
而圆形的半径等于直径的一半,即(4.5√2)/2=2.25√2。
因此,圆形的半径是2.25√2。
备考建议:对于这类单选题,关键是理解题目并运用相应的数学知识进行推理和计算。
在备考过程中,建议多做一些类似的题目,并加强对基本概念和运算规则的理解与掌握。
第二部分:多选题多选题是SAT数学部分的另一种题型,相比于单选题更为复杂,考察考生的判断和综合分析能力。
以下是2024年SAT数学部分的一道多选题:题目:如图所示,一个直角梯形的上底、下底和高分别为a、b和h。
已知(a+b+h)^2的展开式中,二次项系数的和为15,三次项系数的和为12,四次项系数的和为4。
求a、b和h的值。
解析:首先,我们可以将(a+b+h)^2展开为a^2+b^2+h^2+2ab+2ah+2bh。
根据题目条件,我们可以得到以下等式:2ab+2ah+2bh=152a+2b+2h=12a^2+b^2+h^2+2ab+2ah+2bh=4将第一个等式除以2,我们得到ab+ah+bh=7.5;将第二个等式除以2,我们得到a+b+h=6。
2024 SAT考试必备数学历年真题练习
2024 SAT考试必备数学历年真题练习近年来,SAT考试已成为全球高中生都渴望通过的重要考试之一。
在数学部分,历年真题练习是提高成绩的重要途径之一。
本文将为大家提供2024 SAT考试必备的数学历年真题练习,帮助考生熟悉考试内容和题型,提高解题能力。
第一部分:选择题1. 题目:下列哪个数是无理数?A. 2B. -1C. πD. 0.5解析:正确答案是C。
无理数是指不能表示为两个整数的比的数,如π(圆周率)。
2. 题目:已知平面上AB为直线段,C为直线l上一点,且AC=2BC。
若直线l与x轴的交点为D,则AB与CD的交点为:A. EB. FC. GD. H解析:正确答案是A。
根据题目条件,由比例关系可得出交点E。
3. 题目:已知函数f(x) = 2x + 3, g(x) = x^2 - 1,求f(g(2))的值。
A. 9B. 10C. 11D. 12解析:首先计算g(2)的值,将x替换为2,得到g(2) = 4 - 1 = 3。
然后将g(2)的值代入f(x)的表达式中,得到f(3) = 2(3) + 3 = 9,因此正确答案是A。
第二部分:填空题4. 题目:已知函数f(x) = √(2x - 7),求f(5)的值。
解析:将x替换为5,得到f(5) = √(2(5) - 7) = √(10 - 7) = √3。
因此,f(5)的值为√3。
5. 题目:若a + b = 7,a - b = 1,则a的值为()。
解析:将两个方程相加,得到2a = 8,计算可得a = 4。
因此,a的值为4。
6. 题目:已知三角形ABC,∠ACB = 90°,AB = 5 cm,BC = 12 cm,求∠CAB的正弦值。
解析:根据勾股定理,AC^2 = AB^2 + BC^2,代入数值计算可得AC = 13 cm。
正弦值可由对边与斜边之比得出,即sin(∠CAB) = BC / AC = 12 / 13。
第三部分:解答题7. 题目:已知三角形ABC的周长为24 cm,AB = 8 cm,BC = 10 cm,求AC的长度。
sat数学考试试题
SAT数学真题精选1. If 2 x + 3 = 9, what is the value of 4 x – 3 ?(A) 5 (B) 9 (C) 15 (D) 18 (E) 212. If 4(t + u) + 3 = 19, then t + u = ?(A) 3 (B) 4 (C) 5 (D) 6 (E) 73. In the xy-coordinate (坐标) plane above, the line contains the points (0,0) and (1,2). If line M (not shown) contains the point (0,0) and is perpendicular (垂直)to L, what is an equation of M?(A) y = -1/2 x(B) y = -1/2 x + 1(C) y = - x(D) y = - x + 2(E) y = -2x4. If K is divisible by 2,3, and 15, which of the following is also divisible by these numbers?(A) K + 5 (B) K + 15 (C) K + 20 (D) K + 30 (E) K + 455. There are 8 sections of seats in an auditorium. Each section contains at least 150 seats but not more than 200 seats. Which of the following could be the number of seats in this auditorium?(A) 800 (B) 1,000 (C) 1,100 (D) 1,300 (E) 1,7006. If rsuv = 1 and rsum = 0, which of the following must be true?(A) r < 1 (B) s < 1 (C) u= 2 (D) r = 0 (E) m = 07. The least integer of a set of consecutive integers (连续整数) is –126. if the sum of these integers is 127, how many integers are in this set?(A) 126 (B) 127 (C) 252 (D) 253 (E) 2548. A special lottery is to be held to select the student who will live in the only deluxe room in a dormitory. There are 200 seniors, 300 juniors, and 400 sophomores who applied. Each senior’s name is placed in the lottery 3 times; each junior’s name, 2 time; and each sophomore’s name, 1 times. If a student’s name is chosen at random from the names in the lottery, what is the probability that a senior’s name will be chosen?(A)1/8 (B) 2/9 (C) 2/7 (D) 3/8 (E) 1/2Question #1: 50% of US college students live on campus. Out of all students living on campus, 40% are graduate students. What percentage of US students are graduate students living on campus?(A) 90% (B) 5% (C) 40% (D) 20% (E) 25% Question #2: In the figure below, MN is parallel with BC and AM/AB = 2/3. What is the ratio between the area of triangle AMN and the area of triangle ABC?(A) 5/9 (B) 2/3 (C) 4/9 (D) 1/2 (E) 2/9Question #3: If a2 + 3 is divisible by 7, which of the following values can be a?(A)7 (B)8 (C)9 (D)11 (E)4Question #4: What is the value of b, if x = 2 is a solution of equation x2 - b · x + 1 = 0?(A)1/2 (B)-1/2 (C)5/2 (D)-5/2 (E)2Question #5: Which value of x satisfies the inequality | 2x | < x + 1 ?(A)-1/2 (B)1/2 (C)1 (D)-1 (E)2Question #6: If integers m > 2 and n > 2, how many (m, n) pairs satisfy the inequality m n < 100?(A)2 (B)3 (C)4 (D)5 (E)7Question #7: The US deer population increase is 50% every 20 years. How may times larger will the deer population be in 60 years ?(A)2.275 (B)3.250 (C)2.250 (D)3.375 (E)2.500 Question #8: Find the value of x if x + y = 13 and x - y = 5.(A)2 (B)3 (C)6 (D)9 (E)4Question #9:The number of medals won at a track and field championship is shown in the table above. What is the percentage of bronze medals won by UK out of all medals won by the 2 teams?(A)20% (B)6.66% (C)26.6% (D)33.3% (E)10%Question #10: The edges of a cube are each 4 inches long. What is the surface area, in square inches, of this cube?(A)66 (B)60 (C)76 (D)96 (E)65Question #1: The sum of the two solutions of the quadratic equation f(x) = 0 is equal to 1 and the product of the solutions is equal to -20. What are the solutions of the equation f(x) = 16 - x ?(a) x1 = 3 and x2 = -3 (b) x1 = 6 and x2 = -6(c) x1 = 5 and x2 = -4 (d) x1 = -5 and x2 = 4(e) x1 = 6 and x2 = 0Question #2: In the (x, y) coordinate plane, three lines have the equations:l1: y = ax + 1l2: y = bx + 2l3: y = cx + 3Which of the following may be values of a, b and c, if line l3 is perpendicular to both lines l1 and l2?(a) a = -2, b = -2, c = .5 (b) a = -2, b = -2, c = 2(c) a = -2, b = -2, c = -2 (d) a = -2, b = 2, c = .5(e) a = 2, b = -2, c = 2Question #3: The management team of a company has 250 men and 125 women. If 200 of the managers have a master degree, and 100 of the managers with the master degree are women, how many of the managers are men without a master degree? (a) 125 (b) 150 (c) 175 (d) 200 (e) 225 Question #4: In the figure below, the area of square ABCD is equal to the sum of the areas of triangles ABE and DCE. If AB = 6, then CE =(a) 5 (b) 6 (c) 2 (d) 3 (e) 4Question #5:If α and β are the angles of the right triangle shown in the figure above, then sin2α + sin2β is equal to:(a) cos(β)(b) sin(β)(c) 1 (d) cos2(β)(e) -1 Question #6: The average of numbers (a + 9) and (a - 1) is equal to b, where a and b are integers. The product of the same two integers is equal to (b - 1)2. What is the value of a?(a) a = 9 (b) a = 1 (c) a = 0 (d) a = 5 (e) a = 11Question #1: If f(x) = x and g(x) = √x, x≥ 0, what are the solutions of f(x) = g(x)? (A) x = 1 (B)x1 = 1, x2 = -1(C)x1 = 1, x2 = 0 (D)x = 0(E)x = -1Question #2: What is the length of the arc AB in the figure below, if O is the center of the circle and triangle OAB is equilateral? The radius of the circle is 9(a) π(b) 2 ·π(c) 3 ·π(d) 4 ·π(e) π/2 Question #3: What is the probability that someone that throws 2 dice gets a 5 and a 6? Each dice has sides numbered from 1 to 6.(a)1/2 (b)1/6 (c)1/12 (d)1/18 (e)1/36 Question #4: A cyclist bikes from town A to town B and back to town A in 3 hours. He bikes from A to B at a speed of 15 miles/hour while his return speed is 10 miles/hour. What is the distance between the 2 towns?(a)11 miles (b)18 miles (c)15 miles (d)12 miles (e)10 miles Question #5: The volume of a cube-shaped glass C1 of edge a is equal to half the volume of a cylinder-shaped glass C2. The radius of C2 is equal to the edge of C1. What is the height of C2?(a)2·a /π(b)a / π(c)a / (2·π) (d)a / π(e)a + πQuestion #6: How many integers x are there such that 2x < 100, and at the same time the number 2x + 2 is an integer divisible by both 3 and 2?(a)1 (b)2 (c) 3 (d) 4 (e)5Question #7: sin(x)cos(x)(1 + tan2(x)) =(a)tan(x) + 1 (b)cos(x)(c)sin(x) (d)tan(x)(e)sin(x) + cos(x)Question #8: If 5xy = 210, and x and y are positive integers, each of the following could be the value of x + y except:(a)13 (b) 17 (c) 23 (d)15 (e)43Question #9: The average of the integers 24, 6, 12, x and y is 11. What is the value of the sum x + y?(a)11 (b)17 (c)13 (d)15 (e) 9Question #10: The inequality |2x - 1| > 5 must be true in which one of the following cases?I. x < -5 II. x > 7 III. x > 01.Three unit circles are arranged so that each touches the other two. Find the radii ofthe two circles which touch all three.2.Find all real numbers x such that x + 1 = |x + 3| - |x - 1|.3.(1) Given x = (1 + 1/n)n, y = (1 + 1/n)n+1, show that x y = y x.(2) Show that 12 - 22 + 32 - 42 + ... + (-1)n+1n2 = (-1)n+1(1 + 2 + ... + n).4.All coefficients of the polynomial p(x) are non-negative and none exceed p(0). Ifp(x) has degree n, show that the coefficient of x n+1 in p(x)2 is at most p(1)2/2.5.What is the maximum possible value for the sum of the absolute values of thedifferences between each pair of n non-negative real numbers which do not exceed 1?6.AB is a diameter of a circle. X is a point on the circle other than the midpoint of thearc AB. BX meets the tangent at A at P, and AX meets the tangent at B at Q. Show that the line PQ, the tangent at X and the line AB are concurrent.7.Four points on a circle divide it into four arcs. The four midpoints form aquadrilateral. Show that its diagonals are perpendicular.8.Find the smallest positive integer b for which 7 + 7b + 7b2 is a fourth power.9.Show that there are no positive integers m, n such that 4m(m+1) = n(n+1).10.ABCD is a convex quadrilateral with area 1. The lines AD, BC meet at X. Themidpoints of the diagonals AC and BD are Y and Z. Find the area of the triangle XYZ.11.A square has tens digit 7. What is the units digit?12.Find all ordered triples (x, y, z) of real numbers which satisfy the following systemof equations:xy = z - x - yxz = y - x - zyz = x - y - z。
SAT考试2024数学历年真题全视角
SAT考试2024数学历年真题全视角SAT考试是全球范围内备受关注的一项重要考试,对于申请美国高校的学生来说具有重要的意义。
而数学部分一直是考生们普遍关注的焦点。
本文将全面深入地探讨SAT考试2024年数学部分的历年真题,带您以全视角认识这一难点。
通过对历年真题的分析,希望能够为考生们提供一些有益的建议和解题思路,提高大家的数学水平。
1. Algebra(代数)代数部分是SAT数学部分的重头戏之一,其中包含了一系列高中数学的基本知识和概念。
历年真题中常涉及到的内容包括方程、不等式、函数以及图形等。
这些题目往往要求考生熟练掌握求解方程、图像分析和函数变化等技巧。
例题:给定一个二次方程 y = ax^2 + bx + c,已知该二次方程的图像经过点 P(1, 4) 和 Q(3, 16),求 a、b 和 c 的值。
解析:根据已知条件,我们可以列出两个方程:4 = a + b + c (代入点P的坐标)16 = 9a + 3b + c (代入点Q的坐标)通过联立这两个方程进行求解,我们可以得到 a、b 和 c 的值。
这类题目常涉及二次方程的性质和应用,需要考生熟练掌握解二次方程、理解二次函数图像等知识点。
2. Geometry(几何)几何部分是SAT数学部分的另一个重要内容,主要考察学生对几何概念、图形性质和几何推理的理解。
历年真题中的几何题目大多数是多步解题,需要考生利用几何知识进行推理和分析。
例题:在一个平面直角坐标系中,点 A(-3, 2) 和点 B(4, -1) 分别为线段 AB 的两个端点。
如果点 C(-1, -5) 在线段 AB 上,求点 C 的坐标。
解析:通过计算 AB 的斜率和 AC 的斜率可以判断点 C 是否在线段AB 上。
然后可以通过线段的中点公式来计算点 C 的坐标。
此类题目要求考生掌握直线和线段的性质、坐标点的计算等知识,能够熟练运用它们来解答几何问题。
3. Data Analysis(数据分析)数据分析部分是近年来SAT数学部分中新增的一部分内容,主要考察考生对数据收集、理解和分析的能力。
SAT考试2024数学历年题目精讲
SAT考试2024数学历年题目精讲在本篇文章中,我们将重点讲解SAT考试2024年数学部分的历年题目。
我们将按照题目类型进行分类,并为每个题型提供详细的解答和解题技巧,帮助考生更好地应对这些题目。
一、单选题1. 题目描述:某汽车展厅共展出了150辆汽车,其中的三分之一是SUV车型,四分之一是轿车车型,其余的是其他车型。
问展厅中轿车车型的数量是多少?解答与技巧:首先,计算出SUV车型的数量:150 * (1/3) = 50辆。
然后,计算出其他车型的数量:150 - 50 - 150 * (1/4) = 50辆。
所以,轿车车型的数量是50辆。
2. 题目描述:某商场举办了一次打折活动,原价100元的商品现在只需80元购买。
如果小明购买了3件该商品,他需要支付多少钱?解答与技巧:首先,计算出每件商品的折扣金额:100 - 80 = 20元。
然后,计算出小明需要支付的金额:3 * 20 = 60元。
所以,小明需要支付60元。
二、多选题1. 题目描述:以下哪些数是正整数?(A)-1(B)0(C)1(D)2解答与技巧:在SAT考试中,如果题目要求选择多个选项,我们需要仔细审题。
在这个题目中,需要选择正整数,所以选项B和A都不是正整数。
所以正确答案是(C)和(D)。
2. 题目描述:以下哪些图形具有对称性?(A)正方形(B)长方形(C)圆形(D)三角形解答与技巧:我们需要判断每个选项是否具有对称性。
在这个题目中,正方形和圆形都具有对称轴,所以正确答案是(A)和(C)。
三、填空题1. 题目描述:若a + a^-1 = 5,求a^2 + a^-2的值。
解答与技巧:首先,我们可以对等式两边进行平方操作,得到a^2+ 2 + a^(-2) = 25。
然后,我们需要解方程,将等式左边与右边的常数项进行抵消,得到a^2 + a^(-2) = 23。
2. 题目描述:某比赛共有10个选手参加,其中3个选手退出比赛,剩余的选手中将决出第一名、第二名和第三名。
sat数学试题及答案
sat数学试题及答案SAT数学试题及答案一、选择题1. 一个圆的半径是5,求这个圆的面积。
A. 25πB. 50πC. 75πD. 100π答案:B2. 如果一个数列的前三项是2, 4, 6,那么第10项是多少?A. 18B. 20C. 22D. 24答案:B3. 一个三角形的三边长分别为3, 4, 5,这个三角形是:A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形答案:C二、填空题4. 一个数的平方根等于它本身,这个数是________。
答案:0或15. 如果一个函数f(x) = 3x + 5,求f(-2)的值。
答案:-16. 一个长方形的长是10厘米,宽是5厘米,求它的周长。
答案:30厘米三、简答题7. 一个圆的周长是31.4厘米,求这个圆的直径。
解:根据圆的周长公式C = πd,我们有31.4 = πd。
解得d = 31.4 / π ≈ 10厘米。
8. 一个等差数列的首项是5,公差是3,求第20项的值。
解:等差数列的通项公式为an = a1 + (n - 1)d。
将首项a1 = 5和公差d = 3代入公式,得到a20 = 5 + (20 - 1) * 3 = 5 + 57 = 62。
9. 一个直角三角形的两条直角边分别是6和8,求斜边的长度。
解:根据勾股定理,斜边c的长度等于两直角边的平方和的平方根,即c = √(6² + 8²) = √(36 + 64) = √100 = 10。
四、解答题10. 一个工厂生产了1000个零件,其中5%是次品。
如果工厂决定只出售合格的零件,那么工厂将出售多少个零件?解:首先计算次品的数量,1000 * 5% = 50个。
然后从总数中减去次品的数量,得到出售的合格零件数量:1000 - 50 = 950个。
11. 一个投资项目预计在第一年结束时产生$10,000的利润,如果每年的增长率为5%,那么第三年结束时的利润是多少?解:使用复合利息公式计算,P = P0 * (1 + r)^n,其中P0是初始利润,r是增长率,n是年数。
SAT考试专题2024数学历年题目解析
SAT考试专题2024数学历年题目解析2024年的SAT考试将继续囊括数学科目,下面将对该年度的数学部分历年题目进行解析,帮助考生更好地准备SAT数学考试。
1. 第一题解析该题目是一道代数题,要求求解方程:3x + 5 = 20。
解题思路:将方程中的变量与常数项分离,得到:3x = 20 - 5。
计算得:3x = 15,再将等式两边同时除以3,得到:x = 5。
因此,方程的解为x = 5。
2. 第二题解析该题目是一道几何题,要求计算三角形的面积。
解题思路:已知三角形的底边长度为6,高为8。
直接使用三角形面积公式:面积 = 底边长度 ×高 ÷ 2。
代入已知的数值进行计算:面积 = 6 × 8 ÷ 2 = 24。
因此,该三角形的面积为24平方单位。
3. 第三题解析该题目是一道概率题,要求计算从一副标准扑克牌中随机抽取一张牌,该牌为红桃的概率。
解题思路:一副标准扑克牌中共有52张牌,其中有13张红桃牌。
因此,红桃牌的概率为:概率 = 红桃牌数目 ÷总牌数目。
代入已知数值进行计算:概率 = 13 ÷ 52 = 1 ÷ 4 = 0.25。
因此,从一副标准扑克牌中随机抽取一张牌,该牌为红桃的概率为0.25。
4. 第四题解析该题目是一道函数题,要求计算函数的值。
解题思路:已知函数 f(x) = 2x^2 + 3x + 1,需要计算当 x = 2 时的函数值。
将 x = 2 代入函数表达式中,得到:f(2) = 2 × 2^2 + 3 × 2 + 1。
计算得:f(2) = 8 + 6 + 1 = 15。
因此,当 x = 2 时,函数 f(x) 的值为15。
5. 第五题解析该题目是一道统计题,要求根据给定的数据计算平均数。
解题思路:已知一组数据为:10, 12, 15, 18, 20。
需要计算这组数据的平均数。
平均数的计算公式为:平均数 = 总和 ÷数据个数。
SAT数学试题及答案
SAT数学试题及答案本文收集了SAT数学部分的一些题目及其答案,旨在帮助考生更好地备考。
选择题1. 如果$0 \leq x \leq 3$,则不等式$|x-2| \leq 1$的解集为A) $0 \leq x \leq 3$B) $1 \leq x \leq 3$C) $1 \leq x \leq 4$D) $0 \leq x \leq 4$答案:B解析:不等式 $|x-2| \leq 1$ 表示 $x$ 到 $2$ 的距离小于等于$1$。
当 $x$ 在区间 $[1,3]$ 时,$x$ 到 $2$ 的距离都不超过 $1$,因此解集为 $1 \leq x \leq 3$。
2. 抛物线 $y=x^2-2x-3$ 的顶点坐标为A) $(0,-3)$B) $(1,-4)$C) $(2,-3)$D) $(3,0)$答案:C解析:抛物线的顶点坐标为$(\frac{-b}{2a},c-\frac{b^2}{4a})$,其中 $a$、$b$、$c$ 分别是二次项系数、一次项系数和常数项。
将$y=x^2-2x-3$ 化为标准形式,即 $y=(x-1)^2-4$,可知该抛物线的顶点坐标为 $(1,-4)$。
填空题3. 矩阵 $\begin{matrix}3 & 2 \\1 & 4\end{matrix}$ 的逆矩阵是$$\begin{pmatrix}\text{______} & \text{______} \\ \text{______} & \text{______} \end{pmatrix}$$**答案:$\begin{pmatrix}\frac{4}{5} & -\frac{2}{5} \\-\frac{1}{5} & \frac{3}{5}\end{pmatrix}$**解析:设 $\begin{pmatrix}a &b \\c & d\end{pmatrix}$ 表示该矩阵的逆矩阵,则有 $ \begin{pmatrix}3 & 2 \\1 & 4\end{pmatrix}\begin{pmatrix}a &b \\c & d\end{pmatrix}= \begin{pmatrix}1 & 0 \\0 & 1\end{pmatrix},$ 即 $\begin{cases}3a+2c=1, \\3b+2d=0, \\a+4c=0, \\b+4d=1. \\\end{cases}$ 解得逆矩阵为 $\begin{pmatrix}\frac{4}{5} & -\frac{2}{5} \\-\frac{1}{5} & \frac{3}{5}\end{pmatrix}$。
可汗学院数学题目-40CircleEquation
circle equation1. (x−17)2+(y−19)2=49A circle in the xy-plane has the equation shown above. How long is the radius of the circle? Correct answer: 7 Difficulty level: 22. A circle in the xy-plane has the equation (x+17.5)2+(y−15.3)2=18.1Which of the following best describes the location of the center of the circle and the length of its radius?A. Center:(-17.5,15.3)Radius:√18.1B. Center:(-17.5,15.3)Radius:18.1C. Center:(17.5,-15.3)Radius: √18.1D. Center:(17.5,-15.3)Radius:18.1Correct answer: A Difficulty level: 23. A circle in the xy-plane has the equation: 3.5(x+2.2)2+3.5(y−11.1)2−21=0What is the radius of the circle? Round the answer to the nearest tenth.Correct answer:2.4 Difficulty level:24. (x+16)2+(y−25)2=36A circle in the xy-plane has the equation shown above. Which of the following correctly describes the location of the center of the circle and the length of its radius?A. Center:(16,-25)Radius:6B. Center:(-16,25)Radius:36C. Center:(-16,25)Radius:6D. Center:(16,-25)Radius:36Correct answer:C Difficulty level:25. (x+55)2+(y−11.5)2=121A circle in the xy-plane has the equation shown above. What is the length of the diameter of the circle?Correct answer:22 Difficulty level:2** circle in the xy-plane has its center at (44,-34) and radius√3. Which of the following is an equation of the circle?A. (x+34)2+(y−44)2=3C. (x −44)2+(y +34)2=3D. (x −44)2+(y +34)2=√3Correct answer: C Difficulty level:2** circle in the xy-plane has its center on the line y=1.If the point(2,3)lies on the circle and the radius is4, which of the following could be the center of the circle?A.(2,1)B.(2,-3)C.(4,1)D.(4,-1) Correct answer:A Difficulty level:28. A circle in the xy -plane has its center at(−23,−34) and radius 5. Which of the following is an equation of the circle?A. (x +23)2+(y +34)2=5 B. (x −23)2+(y +34)2=25 C. (x +23)2+(y −34)2=25D. (x +23)2+(y +34)2=25Correct answer:D Difficulty level:2** circle with center M is graphed in the xy-plane below.Which of the following is an equation of the circle?A. (x +8)2+y 2=100C. (x+8)2+(y−6)2=100D. (x+8)2+(y+6)2=100Correct answer:B Difficulty level:2** circle in the xy-plane has the equationx2+y2−14y−51= 0What is the center of the circle?A.(51,14)B.(7,10)C.(0,0)D.(0,7)Correct answer:D Difficulty level:2** circle in the xy-plane has its center at (11,12). If the point(13,14) lies on the circle, which of the following is an equation of the circle?A. x2+y2−22x+24y=−257B. x2+y2+22x−24y=−257C. x2+y2+22x+24y=−257D. x2+y2−22x−24y=−257Correct answer:D Difficulty level:212. A circle in the xy-plane has a center at (-32.7,-9.08) and a radius of√10 .Which of the following is an equation of the circle?A. (x+32.7)2+(y+9.08)2=√10B. (x+32.7)2+(y+9.08)2=√20C. (x+32.7)2+(y+9.08)2=10D. (x+32.7)2+(y+9.08)2=100Correct answer:C Difficulty level:313. (x+20)2+(y−30)2=225A circle in the xy-plane has the equation shown above. What is the y-coordinate of the center of the circle?Correct answer:30 Difficulty level:3** circle in the xy-plane has its center at the point(-6,1). If the point (7,12) lies on the circle, what is the radius of the circle? Round the answer to the nearest tenth.Correct answer:17 Difficulty level:315. A circle in the xy-plane has the equation: 36x2+36y2−12x-27y-8=0.How long is the radius of the circle?A.58B.2564C.29D.√23Correct answer:A Difficulty level:3** circle in the xy-plane has its center at (-2.8,6.1) and radius 4.2. Which of the following is an equation of the circle?A. (x−2.8)2+(y+6.1)2=17.64B. (x+2.8)2+(y+6.1)2=17.64C. (x+2.8)2+(y−6.1)2=17.64D. (x−2.8)2+(y−6.1)2=17.64Correct answer:C Difficulty level:3** circle in the xy-plane has the equation (x+18.5)2+y−3.12=71.What is the center of the circle?A.(-18.5,3.1)B.(18.5,-3.1)C.(-342.25,9.61)D.(342.25,-9.61)Correct answer:A Difficulty level:3** circle in the xy-plane has its center on the line x=3. If the point (4,5) lies on the circle and the radius is√2, which of the following could be the center of the circle?A.(3,3)B.(3,4)C.(3,5)D.(3,7)Correct answer:B Difficulty level:319. A circle in the xy-plane contains the points(−1,1),(1,1), and (−1,−1). Which of the following is an equation of the circle?A.x2+B.C.D.Correct answer:A Difficulty level:3** circle in the xy-plane has its center at the point (0.4,−0.3). If the point(6,5) lies on the circle, what is the diameter of the circle? Round the answer to the nearest tenth.A.7.7units******Correct answer:B Difficulty level:321. A circle in the xy-plane has a center at(-100,221) and a diameter of 17. Which of the following is an equation of the circle?A. (x+100) 2+(y−221)2=72.25B. (x+100) 2+(y−221)2=289C. (x−100) 2+(y+221)2=72.25D. (x−100) 2+(y+221)2=289Correct answer:A Difficulty level:3** circle in the xy-plane has the equation:(y−45)2+(x+710)2−30=0What is the radius of the circle? Round the answer to the nearest tenth.Correct answer:5.5 Difficulty level:3** circle in the xy-plane has the equation:x2+y2−22x +30y +90=0How long is the diameter of the circle? Correct answer:32 Difficulty level:4** circle in the xy-plane has a diameter with endpoints at(0,3) and(−4,0). Which of the following is an equation of the circle?A. (x +4)2+(y −3)2=54 B. (x −32)2+(y +2)2=252 C. (x +2)2+(y −32)2=52D. (x +2)2+(y −32)2=254Correct answer:D Difficulty level:4** circle in the xy-plane has the equation:x2+y2−10x +32y +272=0Which of the following best describes the location of the center of the circle and the length of its radius?A. Center:(10,-32)Radius:4√7B. Center:(-10,32)Radius: 4√17C. Center:(-5,16)Radius:3D. Center:(5,-16)Radius:3Correct answer:D Difficulty level:4** circle in the xy-plane has the equation 4x2+4y2circle? Correct answer:8 Difficulty level:4** circle in the xy-plane has a diameter with endpoints at(16,−25) and(4,13). Which of the following is an equation of the circle?A. (x +6)2+(y −10)2=397B. (x −10)2+(y −6)2=1588C. (x −10)2+(y +6)2=1588D. (x −10)2+(y +6)2=397Correct answer:D Difficulty level:4** circle in the xy-plane has its center at. If the point(0,56) lies on the circle, which of the following is an equation of the circle?A. (x −12)2+(y +23)2=52 B. (x −12)2+(y −23)2=52 C. (x −12)2+(y +23)2=5D. (x +23)2+(y −12)2=52Correct answer:A Difficulty level:4** circle in the xy-plane has a diameter with endpoints at (-41,69) and(31,-85).Which of the following is an equation of the circle?A. (x +41)2+(y −69)2=28900B. (x +5)2+(y +8)2=7225C. (x −31)2+(y +85)2=28900D. (x +10)2+(y +16)2=7225Correct answer:B Difficulty level:4** circle in the xy-plane has the equation:2x2+2y2−8x −5y −558=0Correct answer:6 Difficulty level:4** circle in thex2+y2-6x-10y=2.What is the diameter of the circle?Correct answer:12 Difficulty level:4** circle in the xy-plane has a center at (58 ,−65) and a diameter of710 ,Which of the following is an equation of the circle?A. (x +58)2+(y −65)2=49100B. (x +58)2+(y −65)2=49400 C. (x −58)2+(y +65)2=49100D. (x −58)2+(y +65)2=49400Correct answer:D Difficulty level:4** diameter of a circle graphed in the xy-plane has endpoints at(−23,15) and(1,−55). Which of the following is an equation of the circle?A. (x +23)2+(y −15)2=1369B. (x +23)2+(y −15)2=5476C. (x +11)2+(y +20)2=5476D. (x +11)2+(y +20)2=1369Correct answer:C Difficulty level:4** circle in the xy-plane has the equation:x2+y2-10x+34y-527=0.If the y-coordinate of a point on the circle is−38, what is a possible x-coordinate?Correct answer:25 or -15Difficulty level:4。
SAT数学题型全解析
SAT数学题型全解析SAT(Scholastic Assessment Test)是美国大学入学考试,其中数学部分是SAT数学考试。
SAT数学考试主要测试学生在数学领域的基本知识和解决问题的能力。
本文将全面解析SAT数学考试的各种题型,并给出相应解题策略和技巧。
一、选择题SAT数学考试中的选择题分为两种:无计算器部分和有计算器部分。
无计算器部分包括多项式、代数、几何和数据分析等题型,而有计算器部分包括数据分析和统计、概率和二次方程等题型。
1. 多项式题型多项式题型主要考察学生对多项式的理解和运算能力。
解题技巧包括:- 将多项式展开,化简,合并同类项;- 利用因式分解;- 利用韦达定理求根等。
2. 代数题型代数题型主要考察学生的代数运算和方程组的解题能力。
解题技巧包括:- 利用等式的性质进行等式推导;- 运用代数运算规则,如消元法、合并同类项等;- 运用代数方程的求解方法,如变量替换、联立方程等。
3. 几何题型几何题型主要考察学生对几何形状和关系的理解和分析能力。
解题技巧包括:- 运用几何形状的性质和定理,如角度的性质、平行线的性质等;- 利用图形的特点进行推理和证明;- 运用三角形的性质和相似三角形的判定等。
4. 数据分析题型数据分析题型主要考察学生对数据的理解和分析能力。
解题技巧包括:- 对数据进行图表分析,如线图、柱状图、饼图等;- 运用统计学的相关概念和方法,如平均值、中位数、标准差等;- 运用概率的知识进行问题求解。
二、解答题解答题在SAT数学考试中占比较小,主要考察学生的解决实际问题的能力和应用数学知识的能力。
解答题的解题步骤和策略如下:- 仔细阅读问题,理解问题的要求和条件;- 找到解题思路,确定解题方法和公式;- 进行计算或推导,得到解答并进行合理的估算;- 检查答案是否符合问题的要求,并对解题过程进行合理的陈述。
总之,SAT数学考试是对学生数学知识和解决问题能力的综合考察,掌握相应的解题技巧和策略对于考试的成功至关重要。
sat最难的数学题
在回答SAT 数学题时,需要注意解题的方法和步骤。
虽然一些题目可能会被认为是难一些,但这通常是因为它们比较新颖或者涉及到了某些特定的概念或技巧。
首先,需要明确的是,SAT数学考试的目的是为了测试学生的数学知识和技能,而不是为了为难他们。
因此,即使某些题目看起来很难,只要学生掌握了必要的数学知识,并能够灵活运用,就一定能够解决它们。
接下来,让我们来看一个具体的例子。
假设有一道SAT数学题是这样的:题目:一个圆和一个球共有多少个表面?这道题目可能会让一些学生感到困惑,因为他们可能不知道如何计算一个球的表面面积。
但是,如果我们知道球和圆的性质,这个问题就会变得很简单。
首先,我们需要知道球和圆都是三维形状,而圆是二维的。
这意味着球有一个三维的表面,而圆只有一个二维的表面。
因此,要回答这个问题,我们只需要将球的表面面积除以2即可。
接下来,我们需要计算球的表面面积。
球是由一个半径为r的球体构成的,因此球的表面积公式为:4πr2。
如果我们知道球的半径r,就可以很容易地计算出球的表面面积。
现在,我们可以回到题目中来回答它。
这个圆和一个球共享一个表面,因此它们的表面之和就是球表面积的两倍。
我们可以通过将球表面积乘以2来得到答案。
那么这个答案是多少呢?通过上面的推理,我们可以得到这个问题的答案为:4πr2*2=8πr2。
这意味着圆和球的表面共有8πr2个表面。
最后,我们来总结一下这个题目的关键点和方法。
首先,我们了解球和圆的性质以及它们的表面积公式。
然后,我们利用这些知识来解决问题并得出答案。
这个方法的关键是灵活运用数学知识并理解题目中的信息。
当然,SAT数学考试中可能还会出现其他类型的难题,例如涉及复杂概念或技巧的问题。
但是只要学生掌握了必要的数学知识并能够灵活运用,就一定能够解决这些问题。
在解决SAT数学难题时,学生还需要注意一些其他事项。
首先,他们需要仔细阅读题目并理解其中的信息。
其次,他们需要使用正确的数学术语来描述问题并得出答案。
sat数学考试试题
SAT数学真题精选1. If 2 x + 3 = 9, what is the value of 4 x – 3(A) 5 (B) 9 (C) 15 (D) 18 (E) 212. If 4(t + u) + 3 = 19, then t + u =(A) 3 (B) 4 (C) 5 (D) 6 (E) 73. In the xy-coordinate (坐标) plane above, the line contains the points (0,0) and (1,2). If line M (not shown) contains the point (0,0) and is perpendicular (垂直)to L, what is an equation of M(A) y = -1/2 x(B) y = -1/2 x + 1(C) y = - x(D) y = - x + 2(E) y = -2x4. If K is divisible by 2,3, and 15, which of the following is also divisible by these numbers(A) K + 5 (B) K + 15 (C) K + 20 (D) K + 30 (E) K + 455. There are 8 sections of seats in an auditorium. Each section contains at least 150 seats but not more than 200 seats. Which of the following could be the number of seats in this auditorium(A) 800 (B) 1,000 (C) 1,100 (D) 1,300 (E) 1,7006. If rsuv = 1 and rsum = 0, which of the following must be true(A) r < 1 (B) s < 1 (C) u= 2 (D) r = 0 (E) m = 07. The least integer of a set of consecutive integers (连续整数) is –126. if the sum of these integers is 127, how many integers are in this set(A) 126 (B) 127 (C) 252 (D) 253 (E) 2548. A special lottery is to be held to select the student who will live in the only deluxe room in a dormitory. There are 200 seniors, 300 juniors, and 400 sophomores who applied. Each senior’s name is placed in the lottery 3 times; each junior’s name, 2 time; and each sophomore’s name, 1 times. If a student’s name is chosen at random from the names in the lottery, what is the probability that a senior’s name will be chosen (A)1/8 (B) 2/9 (C) 2/7 (D) 3/8 (E) 1/2Question #1: 50% of US college students live on campus. Out of all students living on campus, 40% are graduate students. What percentage of US students are graduate students living on campus(A) 90% (B) 5% (C) 40% (D) 20% (E) 25%Question #2: In the figure below, MN is parallel with BC and AM/AB = 2/3. What is the ratio between the area of triangle AMN and the area of triangle ABC(A) 5/9 (B) 2/3 (C) 4/9 (D) 1/2 (E) 2/9Question #3: If a2 + 3 is divisible by 7, which of the following values can be a(A)7 (B)8 (C)9 (D)11 (E)4Question #4: What is the value of b, if x = 2 is a solution of equation x2 - b · x + 1 = 0(A)1/2 (B)-1/2 (C)5/2 (D)-5/2 (E)2Question #5: Which value of x satisfies the inequality | 2x | < x + 1(A)-1/2 (B)1/2 (C)1 (D)-1 (E)2Question #6: If integers m > 2 and n > 2, how many (m, n) pairs satisfy the inequality m n < 100(A)2 (B)3 (C)4 (D)5 (E)7Question #7: The US deer population increase is 50% every 20 years. How may times larger will the deer population be in 60 years(A) (B) (C) (D) (E)Question #8: Find the value of x if x + y = 13 and x - y = 5.(A)2 (B)3 (C)6 (D)9 (E)4The number of medals won at a track and field championship is shown in the table above. What is the percentage of bronze medals won by UK out of all medals won by the 2 teams(A)20% (B)% (C)% (D)% (E)10%Question #10: The edges of a cube are each 4 inches long. What is the surface area, in square inches, of this cube(A)66 (B)60 (C)76 (D)96 (E)65Question #1: The sum of the two solutions of the quadratic equation f(x) = 0 is equal to 1 and the product of the solutions is equal to -20. What are the solutions of the equation f(x) = 16 - x(a) x1 = 3 and x2 = -3 (b) x1 = 6 and x2 = -6(c) x1 = 5 and x2 = -4 (d) x1 = -5 and x2 = 4(e) x1 = 6 and x2 = 0Question #2: In the (x, y) coordinate plane, three lines have the equations:l1: y = ax + 1l2: y = bx + 2l3: y = cx + 3Which of the following may be values of a, b and c, if line l3 is perpendicular to both lines l1 and l2(a) a = -2, b = -2, c = .5 (b) a = -2, b = -2, c = 2(c) a = -2, b = -2, c = -2 (d) a = -2, b = 2, c = .5(e) a = 2, b = -2, c = 2Question #3: The management team of a company has 250 men and 125 women. If 200 of the managershave a master degree, and 100 of the managers with the master degree are women, how many of the managers are men without a master degree(a) 125 (b) 150 (c) 175 (d) 200 (e) 225Question #4: In the figure below, the area of square ABCD is equal to the sum of the areas of triangles ABE and DCE. If AB = 6, then CE =(a) 5 (b) 6 (c) 2 (d) 3 (e) 4Question #5:If α and β are the angles of the right triangle shown in the figure above, then sin2α + sin2β is equal to:(a) cos(β)(b) sin(β)(c) 1 (d) cos2(β)(e) -1Question #6: The average of numbers (a + 9) and (a - 1) is equal to b, where a and b are integers. The product of the same two integers is equal to (b - 1)2. What is the value of a(a) a = 9 (b) a = 1 (c) a = 0 (d) a = 5 (e) a = 11Question #1: If f(x) = x and g(x) = √x, x≥ 0, what are the solutions of f(x) = g(x)(A) x = 1 (B)x1 = 1, x2 = -1(C)x1 = 1, x2 = 0 (D)x = 0(E)x = -1Question #2: What is the length of the arc AB in the figure below, if O is the center of the circle and triangle OAB is equilateral The radius of the circle is 9(a) π(b) 2 ·π(c) 3 ·π(d) 4 ·π(e) π/2Question #3: What is the probability that someone that throws 2 dice gets a 5 and a 6 Each dice has sides numbered from 1 to 6.(a)1/2 (b)1/6 (c)1/12 (d)1/18 (e)1/36Question #4: A cyclist bikes from town A to town B and back to town A in 3 hours. He bikes from A to B at a speed of 15 miles/hour while his return speed is 10 miles/hour. What is the distance between the 2 towns(a)11 miles (b)18 miles (c)15 miles (d)12 miles (e)10 miles Question #5: The volume of a cube-shaped glass C1 of edge a is equal to half the volume of a cylinder-shaped glass C2. The radius of C2 is equal to the edge of C1. What is the height of C2(a)2·a /π(b)a / π(c)a / (2·π) (d)a / π(e)a + πQuestion #6: How many integers x are there such that 2x < 100, and at the same time the number 2x + 2 is an integer divisible by both 3 and 2(a)1 (b)2 (c) 3 (d) 4 (e)5Question #7: sin(x)cos(x)(1 + tan2(x)) =(a)tan(x) + 1 (b)cos(x)(c)sin(x) (d)tan(x)(e)sin(x) + cos(x)Question #8: If 5xy = 210, and x and y are positive integers, each of the following could be the value of x + y except:(a)13 (b) 17 (c) 23 (d)15 (e)43Question #9: The average of the integers 24, 6, 12, x and y is 11. What is the value of the sum x + y (a)11 (b)17 (c)13 (d)15 (e) 9Question #10: The inequality |2x - 1| > 5 must be true in which one of the following casesI. x < -5 II. x > 7 III. x > 0Three unit circles are arranged so that each touches the other two. Find the radii of the two circles which touch all three.Find all real numbers x such that x + 1 = |x + 3| - |x - 1|.(1) Given x = (1 + 1/n)n, y = (1 + 1/n)n+1, show that x y = y x.(2) Show that 12 - 22 + 32 - 42 + ... + (-1)n+1n2 = (-1)n+1(1 + 2 + ... + n).All coefficients of the polynomial p(x) are non-negative and none exceed p(0). If p(x) has degree n, show that the coefficient of x n+1 in p(x)2 is at most p(1)2/2.What is the maximum possible value for the sum of the absolute values of the differences between each pair of n non-negative real numbers which do not exceed 1AB is a diameter of a circle. X is a point on the circle other than the midpoint of the arc AB. BX meets the tangent at A at P, and AX meets the tangent at B at Q. Show that the line PQ, the tangent at X and the line AB are concurrent.Four points on a circle divide it into four arcs. The four midpoints form a quadrilateral. Show that its diagonals are perpendicular.Find the smallest positive integer b for which 7 + 7b + 7b2 is a fourth power.Show that there are no positive integers m, n such that 4m(m+1) = n(n+1).ABCD is a convex quadrilateral with area 1. The lines AD, BC meet at X. The midpoints of the diagonals AC and BD are Y and Z. Find the area of the triangle XYZ.A square has tens digit 7. What is the units digitFind all ordered triples (x, y, z) of real numbers which satisfy the following system of equations: xy = z - x - yxz = y - x - zyz = x - y - z。
SAT数学试题及答案x
SAT数学试题及答案x1. 题目:一个矩形的长是宽的两倍,如果矩形的面积是48平方单位,那么矩形的宽是多少?答案:设矩形的宽为 \( w \) ,则长为 \( 2w \) 。
根据面积公式 \( \text{面积} = \text{长} \times \text{宽} \) ,我们有\( 2w \times w = 48 \) 。
解这个方程得到 \( w^2 = 24 \) ,所以\( w = \sqrt{24} = 2\sqrt{6} \) 。
因此,矩形的宽是\( 2\sqrt{6} \) 单位。
2. 题目:一个圆的半径是5单位,求这个圆的周长。
答案:圆的周长公式是 \( C = 2\pi r \) ,其中 \( r \) 是半径。
将 \( r = 5 \) 代入公式,得到 \( C = 2\pi \times 5 =10\pi \) 。
所以,这个圆的周长是 \( 10\pi \) 单位。
3. 题目:如果一个数 \( x \) 的三倍加上5等于20,求 \( x \) 的值。
答案:根据题目,我们有方程 \( 3x + 5 = 20 \) 。
解这个方程,首先从两边减去5得到 \( 3x = 15 \) ,然后除以3得到 \( x = 5 \) 。
因此,\( x \) 的值是5。
4. 题目:一个三角形的底边长为8单位,高为6单位,求这个三角形的面积。
答案:三角形的面积公式是 \( \text{面积} = \frac{1}{2}\times \text{底} \times \text{高} \) 。
将底边长8单位和高6单位代入公式,得到 \( \text{面积} = \frac{1}{2} \times 8 \times 6 = 24 \) 。
所以,这个三角形的面积是24平方单位。
5. 题目:如果一个函数 \( f(x) \) 满足 \( f(x+2) = 2f(x) \) ,并且 \( f(1) = 3 \) ,求 \( f(5) \) 的值。
sat数学考试试题
SAT数学真题精选1. If 2 x + 3 = 9, what is the value of 4 x – 3 ?(A) 5 (B) 9 (C) 15 (D) 18 (E) 212. If 4(t + u) + 3 = 19, then t + u = ?(A) 3 (B) 4 (C) 5 (D) 6 (E) 73. In the xy-coordinate (坐标) plane above, the line contains the points (0,0) and (1,2). If line M (not shown) contains the point (0,0) and is perpendicular (垂直)to L, what is an equation of M?(A) y = -1/2 x(B) y = -1/2 x + 1(C) y = - x(D) y = - x + 2(E) y = -2x4. If K is divisible by 2,3, and 15, which of the following is also divisible by these numbers?(A) K + 5 (B) K + 15 (C) K + 20 (D) K + 30 (E) K + 455. There are 8 sections of seats in an auditorium. Each section contains at least 150 seats but not more than 200 seats. Which of the following could be the number of seats in this auditorium?(A) 800 (B) 1,000 (C) 1,100 (D) 1,300 (E) 1,7006. If rsuv = 1 and rsum = 0, which of the following must be true?(A) r < 1 (B) s < 1 (C) u= 2 (D) r = 0 (E) m = 07. The least integer of a set of consecutive integers (连续整数) is –126. if the sum of these integers is 127, how many integers are in this set?(A) 126 (B) 127 (C) 252 (D) 253 (E) 2548. A special lottery is to be held to select the student who will live in the only deluxe room in a dormitory. There are 200 seniors, 300 juniors, and 400 sophomores who applied. Each senior’s name is placed in the lottery 3 times; each junior’s name, 2 time; and each sophomore’s name, 1 times. If a student’s name is chosen at random from the names in the lottery, what is the probability that a senior’s name will be chosen?(A)1/8 (B) 2/9 (C) 2/7 (D) 3/8 (E) 1/2Question #1: 50% of US college students live on campus. Out of all students living on campus, 40% are graduate students. What percentage of US students are graduate students living on campus?(A) 90% (B) 5% (C) 40% (D) 20% (E) 25%Question #2: In the figure below, MN is parallel with BC and AM/AB = 2/3. What is the ratio between the area of triangle AMN and the area of triangle ABC?(A) 5/9 (B) 2/3 (C) 4/9 (D) 1/2 (E) 2/9Question #3: If a2 + 3 is divisible by 7, which of the following values can be a?(A)7 (B)8 (C)9 (D)11 (E)4Question #4: What is the value of b, if x = 2 is a solution of equation x2 - b · x + 1 = 0?(A)1/2 (B)-1/2 (C)5/2 (D)-5/2 (E)2Question #5: Which value of x satisfies the inequality | 2x | < x + 1 ?(A)-1/2 (B)1/2 (C)1 (D)-1 (E)2Question #6: If integers m > 2 and n > 2, how many (m, n) pairs satisfy the inequality m n < 100?(A)2 (B)3 (C)4 (D)5 (E)7Question #7: The US deer population increase is 50% every 20 years. How may times larger will the deer population be in 60 years ?(A)2.275 (B)3.250 (C)2.250 (D)3.375 (E)2.500Question #8: Find the value of x if x + y = 13 and x - y = 5.(A)2 (B)3 (C)6 (D)9 (E)4Question #9:US UK Medals3 2 gold1 4 silver4 1 bronzeThe number of medals won at a track and field championship is shown in the table above. What is the percentage of bronze medals won by UK out of all medals won by the 2 teams?(A)20% (B)6.66% (C)26.6% (D)33.3% (E)10%Question #10: The edges of a cube are each 4 inches long. What is the surface area, in square inches, of this cube?(A)66 (B)60 (C)76 (D)96 (E)65Question #1: The sum of the two solutions of the quadratic equation f(x) = 0 is equal to 1 and the product of the solutions is equal to -20. What are the solutions of the equation f(x) = 16 - x ? (a) x1 = 3 and x2 = -3 (b) x1 = 6 and x2 = -6(c) x1 = 5 and x2 = -4 (d) x1 = -5 and x2 = 4(e) x1 = 6 and x2 = 0Question #2: In the (x, y) coordinate plane, three lines have the equations:l1: y = ax + 1l2: y = bx + 2l3: y = cx + 3Which of the following may be values of a, b and c, if line l3 is perpendicular to both lines l1 and l2?(a) a = -2, b = -2, c = .5 (b) a = -2, b = -2, c = 2(c) a = -2, b = -2, c = -2 (d) a = -2, b = 2, c = .5(e) a = 2, b = -2, c = 2Question #3: The management team of a company has 250 men and 125 women. If 200 of the managers have a master degree, and 100 of the managers with the master degree are women, how many of the managers are men without a master degree?(a) 125 (b) 150 (c) 175 (d) 200 (e) 225Question #4: In the figure below, the area of square ABCD is equal to the sum of the areas of triangles ABE and DCE. If AB = 6, then CE =(a) 5 (b) 6 (c) 2 (d) 3 (e) 4Question #5:If α and β are the angles of the right triangle shown in the figure above, then sin2α + sin2β is equal to:(a) cos(β) (b) sin(β) (c) 1 (d) cos2(β) (e) -1Question #6: The average of numbers (a + 9) and (a - 1) is equal to b, where a and b are integers. The product of the same two integers is equal to (b - 1)2. What is the value of a?(a) a = 9 (b) a = 1 (c) a = 0 (d) a = 5 (e) a = 11Question #1: If f(x) = x and g(x) = √x, x≥ 0, what are the solutions of f(x) = g(x)?(A) x = 1 (B)x1 = 1, x2 = -1(C)x1 = 1, x2 = 0 (D)x = 0(E)x = -1Question #2: What is the length of the arc AB in the figure below, if O is the center of the circle and triangle OAB is equilateral? The radius of the circle is 9(a) π(b) 2 ·π(c) 3 ·π(d) 4 ·π(e) π/2Question #3: What is the probability that someone that throws 2 dice gets a 5 and a 6? Each dice has sides numbered from 1 to 6.(a)1/2 (b)1/6 (c)1/12 (d)1/18 (e)1/36Question #4: A cyclist bikes from town A to town B and back to town A in 3 hours. He bikes from A to B at a speed of 15 miles/hour while his return speed is 10 miles/hour. What is the distance between the 2 towns?(a)11 miles (b)18 miles (c)15 miles (d)12 miles (e)10 miles Question #5: The volume of a cube-shaped glass C1 of edge a is equal to half the volume of a cylinder-shaped glass C2. The radius of C2 is equal to the edge of C1. What is the height of C2?(a)2·a /π(b)a / π(c)a / (2·π) (d)a / π(e)a + πQuestion #6: How many integers x are there such that 2x < 100, and at the same time the number 2x + 2 is an integer divisible by both 3 and 2?(a)1 (b)2 (c) 3 (d) 4 (e)5Question #7: sin(x)cos(x)(1 + tan2(x)) =(a)tan(x) + 1 (b)cos(x)(c)sin(x) (d)tan(x)(e)sin(x) + cos(x)Question #8: If 5xy = 210, and x and y are positive integers, each of the following could be the value of x + y except:(a)13 (b) 17 (c) 23 (d)15 (e)43Question #9: The average of the integers 24, 6, 12, x and y is 11. What is the value of the sum x + y?(a)11 (b)17 (c)13 (d)15 (e) 9Question #10: The inequality |2x - 1| > 5 must be true in which one of the following cases?I. x < -5 II. x > 7 III. x > 01.Three unit circles are arranged so that each touches the other two. Find the radii of the twocircles which touch all three.2.Find all real numbers x such that x + 1 = |x + 3| - |x - 1|.3.(1) Given x = (1 + 1/n)n, y = (1 + 1/n)n+1, show that x y = y x.(2) Show that 12 - 22 + 32 - 42 + ... + (-1)n+1n2 = (-1)n+1(1 + 2 + ... + n).4.All coefficients of the polynomial p(x) are non-negative and none exceed p(0). If p(x) hasdegree n, show that the coefficient of x n+1 in p(x)2 is at most p(1)2/2.5.What is the maximum possible value for the sum of the absolute values of the differencesbetween each pair of n non-negative real numbers which do not exceed 1?6.AB is a diameter of a circle. X is a point on the circle other than the midpoint of the arc AB. BXmeets the tangent at A at P, and AX meets the tangent at B at Q. Show that the line PQ, the tangent at X and the line AB are concurrent.7.Four points on a circle divide it into four arcs. The four midpoints form a quadrilateral. Showthat its diagonals are perpendicular.8.Find the smallest positive integer b for which 7 + 7b + 7b2 is a fourth power.9.Show that there are no positive integers m, n such that 4m(m+1) = n(n+1).10.ABCD is a convex quadrilateral with area 1. The lines AD, BC meet at X. The midpoints of thediagonals AC and BD are Y and Z. Find the area of the triangle XYZ.11.A square has tens digit 7. What is the units digit?12.Find all ordered triples (x, y, z) of real numbers which satisfy the following system ofequations:13.xy = z - x - y14.xz = y - x - z15.yz = x - y - z16.。
sat最难数学题
sat最难数学题【原创版】目录1.SAT 数学考试简介2.SAT 数学中最难的题目类型3.如何应对 SAT 数学难题正文【SAT 数学考试简介】SAT(Scholastic Assessment Test)是美国大学入学考试,其中的数学部分对于很多学生来说是一大挑战。
SAT 数学主要包括三个部分:问题解决、数据分析和数学知识。
这些问题涉及到代数、几何、统计学、概率、三角学等多个数学领域。
【SAT 数学中最难的题目类型】在 SAT 数学中,最难的题目类型通常包括以下几种:1.复杂几何问题:这类问题涉及到多边形、圆形等几何图形的计算,需要掌握复杂的几何知识。
2.代数问题:这类问题涉及到方程、不等式、函数等代数知识,需要具备较强的代数运算能力。
3.数据分析和概率问题:这类问题需要学生对数据进行分析、解释和推理,涉及到图表解读、概率计算等技能。
4.混合题型:这类问题通常会结合多个数学领域的知识,需要学生具备较强的综合运用能力。
【如何应对 SAT 数学难题】面对 SAT 数学难题,学生可以采取以下策略:1.扎实掌握基础知识:要想在 SAT 数学中取得好成绩,首先要扎实掌握基础知识,这样才能在遇到难题时游刃有余。
2.提高解题技巧:通过大量练习,学生可以总结出适合自己的解题方法和技巧,提高解题效率。
3.增强阅读理解能力:SAT 数学题目通常包含较长的题干,学生需要具备较强的阅读理解能力,才能准确把握题目要求。
4.保持冷静:遇到难题时,学生要保持冷静,分析题目的关键信息,尝试从不同角度去解决。
5.合理安排时间:在考试中,要合理安排时间,遇到难题时可以先跳过,等其他题目完成后再回来解决。
总之,要想在 SAT 数学考试中应对难题,需要扎实的基础知识、良好的解题技巧和阅读理解能力,以及冷静应对的心态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. A circle in the xy-plane has the equation x 17.5
15.3 18.1
Which of the following best describes the location of the center of the circle and the length of its
A. x
22 24
257
B. x
22 24
257
C. x
22 24
257
ቤተ መጻሕፍቲ ባይዱ
D. x
22 24
257
Correct answer:D Difficulty level:2
12. A circle in the xy-plane has a center at (-32.7,-9.08) and a radius of√10 .Which of the
2
C. x 2
D. x 2 Correct answer:D Difficulty level:4
25.A circle in the xy-plane has the equation: x
10 32 272 0
Which of the following best describes the location of the center of the circle and the length of its
16.A circle in the xy-plane has its center at (-2.8,6.1) and radius 4.2. Which of the following is an
equation of the circle?
A. x 2.8
6.1 17.64
B. x 2.8
6.1 17.64
What is the radius of the circle? Round the answer to the nearest tenth. Correct answer:5.5 Difficulty level:3
23.A circle in the xy-plane has the equation: x How long is the diameter of the circle? Correct answer:32 Difficulty level:4
. Which of the following is an equation of the circle?
A. x 34
44 3
B. x 34
44 √3
C. x 44
34 3
D. x 44
34 √3
Correct answer: C Difficulty level:2
7.A circle in the xy-plane has its center on the line y=1.If the point(2,3)lies on the circle and the radius is4, which of the following could be the center of the circle? A.(2,1) B.(2,-3) C.(4,1) D.(4,-1) Correct answer:A Difficulty level:2
A circle in the xy-plane has the equation shown above. What is the length of the diameter of the
circle?
Correct answer:22 Difficulty level:2
6.A circle in the xy-plane has its center at (44,-34) and radius√3
A circle in the xy-plane has the equation shown above. What is the y-coordinate of the center of
the circle?
Correct answer:30 Difficulty level:3
14.A circle in the xy-plane has its center at the point(-6,1). If the point (7,12) lies on the circle, what is the radius of the circle? Round the answer to the nearest tenth. Correct answer:17 Difficulty level:3
Correct answer:B Difficulty level:3
21. A circle in the xy-plane has a center at(-100,221) and a diameter of 17. Which of the following
is an equation of the circle?
22 30 90 0
24.A circle in the xy-plane has a diameter with endpoints at(0,3) and(−4,0). Which of the following is an equation of the circle?
A. x 4
3
B. x
radius?
A. Center:(-17.5,15.3)
Radius:√18.1
B. Center:(-17.5,15.3)
Radius:18.1
C. Center:(17.5,-15.3)
Radius: √18.1
D. Center:(17.5,-15.3)
Radius:18.1
Correct answer: A Difficulty level: 2
19. A circle in the xy-plane contains the points(−1,1),(1,1), and (−1,−1). Which of the following is an equation of the circle? A.x + B. C. D. Correct answer:A Difficulty level:3
following is an equation of the circle?
A. x 32.7
9.08 √10
B. x 32.7
9.08 √20
C. x 32.7
9.08 10
D. x 32.7
9.08 100
Correct answer:C Difficulty level:3
13. x 20
30 225
3. A circle in the xy-plane has the equation: 3.5 x 2.2 3.5 11.1 What is the radius of the circle? Round the answer to the nearest tenth. Correct answer:2.4 Difficulty level:2
8. A circle in the xy-plane has its center at( , ) and radius 5. Which of the following is an
equation of the circle?
A. x
5
B. x
25
C. x
25
D. x
34 25
Correct answer:D Difficulty level:2
14 51 0
11.A circle in the xy-plane has its center at (11,12). If the point(13,14) lies on the circle, which of
the following is an equation of the circle?
21 0
4. x 16
25 36
A circle in the xy-plane has the equation shown above. Which of the following correctly describes
the location of the center of the circle and the length of its radius?
C. x 2.8
6.1 17.64
D. x 2.8
6.1 17.64
Correct answer:C Difficulty level:3
17.A circle in the xy-plane has the equation of the circle? A.(-18.5,3.1) B.(18.5,-3.1) C.(-342.25,9.61) D.(342.25,-9.61) Correct answer:A Difficulty level:3
8 100 6 100 6 100 Difficulty level:2
10.A circle in the xy-plane has the equation x What is the center of the circle? A.(51,14) B.(7,10) C.(0,0) D.(0,7) Correct answer:D Difficulty level:2
x 18.5
y 3.1 71.What is the center
18.A circle in the xy-plane has its center on the line x=3. If the point (4,5) lies on the circle and the radius is√2, which of the following could be the center of the circle? A.(3,3) B.(3,4) C.(3,5) D.(3,7) Correct answer:B Difficulty level:3