2019-2020学年高三数学第一轮复习 11 常用逻辑用语(1)教案(学生版).doc

合集下载

常用逻辑用语讲义-高考数学一轮复习

常用逻辑用语讲义-高考数学一轮复习

常用逻辑用语充分条件与必要条件1、判断:当命题“若p则q”为真时,可表示为p⇒q,称p为q的充分条件,q是p的必要条件.事实上,与“p ⇒q”等价的逆否命题是“¬q⇒¬p”.它的意义是:若q不成立,则p一定不成立.这就是说,q对于p是必不可少的,所以说q是p的必要条件.例如:p:x>2;q:x>0.显然x∈p,则x∈q.等价于x∉q,则x∉p一定成立.2、充要条件:如果既有“p⇒q”,又有“q⇒p”,则称条件p是q成立的充要条件,或称条件q是p成立的充要条件,记作“p⇔q”.p与q互为充要条件.【练习】1.“x>1”是“x>2”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件2.已知a是实数,则“a<﹣1”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.若x,y∈R,则“x>y”的一个充分不必要条件可以是()A.|x|>|y| B.x2>y2C.D.2x﹣y>24.设x∈R,则“”是“x>3”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.设a,b∈R,则“”是“a>1且b>1”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件6.“x>1”是“x≥1”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件全称量词与特称量词、全称命题与特称命题【全称量词】:短语“对所有的”“对任意一个”在逻辑中通常叫做全称量词.符号:∀全称量词:对应日常语言中的“一切”、“任意的”、“所有的”、“凡是”、“任给”、“对每一个”等词,用符号“∀”表示.【全称命题】含有全称量词的命题.“对任意一个x∈M,有p(x)成立”简记成“∀x∈M,p(x)”.同一个全称命题、特称命题,由于自然语言的不同,可以有不同的表述方法,现列表如下命题全称命题∀x∈M,p(x)特称命题∃x0∈M,p(x0)表述方法①所有的x∈M,使p(x)成立①存在x0∈M,使p(x0)成立②对一切x∈M,使p(x)成立②至少有一个x0∈M,使p(x0)成立③对每一个x∈M,使p(x)成立③某些x∈M,使p(x)成立④对任给一个x∈M,使p(x)成立④存在某一个x0∈M,使p(x0)成立⑤若x∈M,则p(x)成立⑤有一个x0∈M,使p(x0)成立【存在量词】:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词.符号:∃特称命题:含有存在量词的命题.符号:“∃”.存在量词:对应日常语言中的“存在一个”、“至少有一个”、“有个”、“某个”、“有些”、“有的”等词,用符号“∃”表示.【特称命题】含有存在量词的命题.“∃x∈M,有p(x0)成立”简记成“∃x0∈M,p(x0)”.“存在一个”,“至少有一个”叫做存在量词.命题全称命题∀x∈M,p(x)特称命题∃x0∈M,p(x0)表述方法①所有的x∈M,使p(x)成立①存在x0∈M,使p(x0)成立②对一切x∈M,使p(x)成立②至少有一个x0∈M,使p(x0)成立③对每一个x∈M,使p(x)成立③某些x∈M,使p(x)成立④对任给一个x∈M,使p(x)成立④存在某一个x0∈M,使p(x0)成立⑤若x∈M,则p(x)成立⑤有一个x0∈M,使p(x0)成立【练习】1.下列语句不是全称量词命题的是()A.任何一个实数乘以零都等于零 B.自然数都是正整数C.高一(1)班绝大多数同学是团员 D.每一个实数都有大小2.下列命题含有全称量词的是()A.某些函数图象不过原点 B.实数的平方为正数C.方程x2+2x+5=0有实数解 D.素数中只有一个偶数3.已知命题“∀x∈[1,2],2x+x﹣a>0”为假命题,则实数a的取值范围是()A.x≤5 B.x≥6 C.x≤3 D.x≥34.若命题“∀x∈[﹣1,2],x2+1≥m”是真命题,则实数m的取值范围是()A.x≤0 B.x≤1 C.x≤2 D.x≤55.命题“∀x∈R,mx2﹣2mx+1>0”是假命题,则实数m的取值范围为()A.0≤m<1 B.m<0或m≥1 C.m≤0或m≥1 D.0<m<16.已知命题p:“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围为()A.x≤2 B.2<x<2C.x≤2或x≥2 D.2≤x≤27.已知命题p:∃x∈R,使得ax2+2x+1<0成立为真命题,则实数a的取值范围是()A.(﹣∞,0] B.(﹣∞,1)C.[0,1)D.(0,1]命题的否定全称命题的否定一般地,对于含有一个量词的全称命题的否定,有下面的结论:全称命题p:∀x∈M,p(x)它的否命题¬p:∃x0∈M,¬p(x0).写全称命题的否定的方法:(1)更换量词,将全称量词换为存在量词,即将“任意”改为“存在”;(2)将结论否定,比如将“>”改为“≤”.值得注意的是,全称命题的否定的特称命题.特称命题的否定一般地,对于含有一个量词的特称命题的否定,有下面的结论:特称命题p:∃x0∈M,p(x0)它的否命题¬p:∀x∈M,¬p(x).写特称命题的否定的方法:(1)更换量词,将存在量词换为全称量词,即将“存在”改为“任意”;(2)将结论否定,比如将“>”改为“≤”.值得注意的是,特称命题的否定的全称命题.【练习】1.命题p:∃n∈N,n2≥2n,则命题p的否定为()A.∀n∈N,n2≤2n B.∃n∈N,n2≤2n C.∀n∈N,n2<2n D.∃n∈N,n2<2n2.命题“∀x>1,x2﹣x>0”的否定是()A.∃x0≤1,B.∀x>1,x2﹣x≤0C.∃x0>1,D.∀x≤1,x2﹣x>03.命题“∃x0∈R,使得”的否定为()A.B.∃x0∈R,使得C.D.∃x0∈R,使得4.命题“∀x∈R,x2>1﹣2x”的否定是()A.∀x∈R,x2<1﹣2x B.∀x∈R,x2≤1﹣2xC.∃x∈R,x2≤1﹣2x D.∃x∈R,x2<1﹣2x5.命题“∃a∈R,ax2+1=0有实数解”的否定是()A.∀a∈R,ax2+1≠0有实数解B.∃a∈R,ax2+1=0无实数解C.∀a∈R,ax2+1=0无实数解D.∃a∈R,ax2+1≠0有实数解四种命题(原命题、否命题、逆命题、逆否命题)常见词语的否定如下表所示:词语是一定是都是大于小于词语的否定不是一定不是不都是小于或等于大于或等于词语且必有一个至少有n个至多有一个所有x成立词语的否定或一个也没有至多有n﹣1个至少有两个存在一个x不成立【练习】1.下列语句是命题的是()A.0是偶数吗?B.这个数学问题真难啊!C.你好烦,出去!D.关于x的方程x2=1无解2.下列语句是命题的是()A.空集是任何集合的子集B.指数函数是增函数吗?C.x>15 D.2x﹣1<03.设m∈R,命题“若m≥0,则方程x2=m有实根”的逆否命题是()A.若方程x2=m有实根,则m≥0 B.若方程x2=m有实根,则m<0C.若方程x2=m没有实根,则m≥0 D.若方程x2=m没有实根,则m<04.命题“若x2+y2>2,则|x|>1或|y|>1”的否命题是()A.若x2+y2>2,则|x|≤1且|y|≤1 B.若x2+y2≤2,则|x|≤1或|y|≤1C.若x2+y2≤2,则|x|≤1且|y|≤1 D.若x2+y2>2,则|x|≤1或|y|≤15.“红豆生南国,春来发几枝?愿君多采撷,此物最相思!”这首《相思》是唐代山水田园诗人王维的作品,王维字摩诘,号摩诘居士.苏轼有云:“味摩诘之诗,诗中有画;观摩诘之画,画中有诗.”这首《相思》中,在当时的条件下,其中可以作为命题的诗句是()A.红豆生南国B.春来发几枝C.愿君多采撷D.此物最相思6.在原命题及其逆命题、否命题、逆否命题中,真命题的个数可以是()A.1或2或3或4 B.0或2或4 C.1或3 D.07.命题“若x=﹣3,则x2+2x﹣3=0”的逆否命题是()A.若x≠﹣3,则x2+2x﹣3≠0 B.若x=﹣3,则x2+2x﹣3≠0C.若x2+2x﹣3≠0,则x≠﹣3 D.若x2+2x﹣3≠0,则x=﹣38.已知原命题“若a=1,则(a﹣1)(a﹣2)=0”,那么原命题与其逆命题的真假情况是()A.原命题为真,逆命题为假 B.原命题为假,逆命题为真C.原命题与逆命题均为真命题 D.原命题与逆命题均为假命题9.若命题p的否命题为r,命题r的逆命题为s,p的逆命题为t,则s是t的()A.逆否命题B.逆命题C.否命题D.原命题逻辑联结词“或”、“且”、“非”【或】一般地,用连接词“或”把命题和命题连接起来,就得到一个新命题,记作pⅤq,读作“p或q”.规定:当p,q两个命题中有一个命题是真命题时,pⅤq是真命题;当p,q两个命题都是假命题时,pⅤq是假命题.【且】一般地,用连接词“且”把命题p和命题q连接起来,就得到一个新命题,记作p∧q读作“p且q”.规定:当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p∧q是假命题.“且”作为逻辑连接词,与生活用语中“既…”相同,表示两者都要满足的意思,在日常生活中经常用“和”,“与”代替.【非】一般地,对一个命题p全盘否定,就得到一个新命题,记作¬p,读作“非p”或“p的否定.规定:若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题.“非p”形式复合命题的真假与p的真假相反;“非p”形式复合命题的真假可以用下表表示:p¬p真假假真“非”是否定的意思,必须是只否定结论.“p或q”、“p且q”的否定分别是“非p且非q”和“非p或非q”,“都”的否定是“不都”.“等于”的否定是“不等于”,“大(小)于”的否定是“不大(小)于”,“所有”的否定是“某些”,“任意”的否定是“某个”,“至多有一个”的否定是“至少有两个”等等.必须注意与否命题的区别.【复合命题及其真假】若原命题P为真,则¬P必定为假,但否命题可真可假,与原命题的真假无关,否命题与逆命题是等价命题,同真同假.【练习】1.在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“两位学员都没有降落在指定范围”可表示为()A.(¬p)∨(¬q)B.p∨(¬q)C.p∨q D.(¬p)∧(¬q)2.命题“12既是4的倍数,又是3的倍数”的形式是()A.p∨q B.p∧q C.¬p D.简单命题3.设p:4是素数,q:4是偶数,则“4既不是素数,也不是偶数”可符号化为()A.¬p∨¬q B.p∧q C.¬p∧¬q D.¬p→¬q4.对于命题p,q,若p∧q是假命题,p∨¬q是假命题,则下列判断正确的是()A.p,q都是真命题B.p,q都是假命题C.p是真命题,q是假命题D.p是假命题,q是真命题5.已知是无理数,命题q:∃x∈R,x2<0,则为真命题的是()A.p∧q B.p∧¬q C.¬p∨q D.¬(p∨q)6.已知命题p:“若b<a,则”;命题q:“a=x2﹣x,b=x﹣2,则a>b”.则下列命题是真命题的是()A.p∧q B.(¬p)∧(¬q) C.p∨(¬q)D.(¬p)∨q7.已知p:∀x>0,x2+3x>0;q:∃x∈R,x2+1=0.则下列命题中,真命题是()A.¬p∧q B.¬p∨q C.p∧¬q D.p∧q8.已知p:﹣2<a<2,q:关于x的方程x2﹣x+a=0有实数根.(1)若q为真命题,求实数a的取值范围;(2)若p∨q为真命题,¬q为真命题,求实数a的取值范围.9.设p:(3﹣k)(1+k2)>0;q:关于x的方程x2﹣2kx+k=0无实根.(1)若q为真命题,求实数k的取值范围;(2)若p∧q是假命题,且p∨q是真命题,求实数k的取值范围.10.命题p:∀x∈R,x2﹣2ax+3a>0;命题q:∃x∈R,x2﹣2x+a<0.(1)若命题p为真命题,求实数a的取值范围;(2)若命题p,q至少有一个为真命题,求实数a的取值范围.。

2019-2020年高考数学 常用逻辑用语(复习课)教案 苏教版

2019-2020年高考数学 常用逻辑用语(复习课)教案 苏教版

2019-2020年高考数学常用逻辑用语(复习课)教案苏教版一、学习目标:1、结合四种命题形式,理解和掌握充分条件、必要条件的判定方法,并进行一些简单的应用;2、理解简单逻辑连接词“或”“且”“非”的含义;3、理解全称量词与存在量词的意义,并能正确的对含有一个量词的命题进行否定;二、学习重点:整体理解逻辑用语,通过概念的整理和习题的讲解与练习,熟练逻辑用语的使用技巧。

三、学习难点:1、逻辑连接词“或”“且”“非”的含义;2、对一些真假命题的判断。

四、学法指导:1.整理本章概念,熟练逻辑用语的使用技巧。

2.合作讨论,解决难问题,形成学习成果。

3.成导展示与点评。

五、例题分析:请同学们根据我们已学过的知识,试着完成下列例1,并注重归纳、反思,加深对知识的理解,形成知识网络。

例1:写出命题“若x>1,则x-6>0”的逆命题、否命题、逆否命题,并判断它们的真假。

对于充分条件、必要条件、充要条件是每次考试(包括高考)的重要考点,请同学们试着完成例1的变式。

变式:已知P:x>1;q:,则:(1)p是q的什么条件(2)q是p的什么条件(3)┐p是┐q的什么条件【反思小结】请同学们继续探究例2,体会“或”“且”“非”的含义,理解存在一个量词的否定。

例2:已知命题p:对任意的角;命题q:存在实数;(1)命题“p且q”(2)命题“p或q”(3)命题“非p且非q”(4)命题“非p或非q”其中真命题的有【反思总结】六、课堂小结:1、通过本节课的复习,你能建构起本章的知识框架吗?2、通过本节课的复习,你感悟到了哪些思想方法?七、当堂检测:1. 有下列四个命题:①命题“若,则”的否命题②命题“a、b都是偶数,则a+b是偶数”的逆否命题是“a+b不是偶数,则a、b都不是偶数”③若有命题p:7≥7,q:lg2>0, 则p且q是真命题④若一个命题的否命题为真,则它的逆命题一定是真其中真命题为2、已知三角形ABC中,命题P:sinA>sinB ,命题q:A>B , 命题中p是q的条件3. 若不等式成立的充分条件是,则的取值范围是4. 已知实数,设命题p:函数在R上单调递减,命题q:函数的定义域为R;如果命题p 或q为真命题,命题p且q为假命题,求实数a的取值范围。

高中数学 第一单元 常用逻辑用语章末复习课教学案 新人教B版选修11

高中数学 第一单元 常用逻辑用语章末复习课教学案 新人教B版选修11

第一单元常用逻辑用语学习目标 1.理解命题及四种命题的概念,掌握四种命题间的相互关系.2.理解充分、必要条件的概念,掌握充分、必要条件的判定方法.3.理解逻辑联结词的含义,会判断含有逻辑联结词的命题的真假.4.理解全称量词、存在量词的含义,会判断全称命题、存在性命题的真假,会求含有一个量词的命题的否定.知识点一全称命题与存在性命题1.全称命题与存在性命题真假的判断方法(1)判断全称命题为真命题,需严格的逻辑推理证明,判断全称命题为假命题,只需举出反例.(2)判断存在性命题为真命题,需要举出正例,而判断存在性命题为假命题时,要有严格的逻辑证明.2.含有一个量词的命题否定的关注点全称命题的否定是存在性命题,存在性命题的否定是全称命题.否定时既要改写量词,又要否定结论.知识点二简易逻辑联结词“且、或、非”命题的真假判断可以概括为口诀:“p与綈p”一真一假,“p∨q”一真即真,“p∧q”一假就假.知识点三充分条件、必要条件的判断方法1.直接利用定义判断:即若p⇒q成立,则p是q的充分条件,q是p的必要条件.(条件与结论是相对的)2.利用等价命题的关系判断:p⇒q的等价命题是綈q⇒綈p,即若綈q⇒綈p成立,则p是q的充分条件,q是p的必要条件.3.从集合的角度判断充分条件、必要条件和充要条件若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件知识点四四种命题的关系原命题与逆否命题为等价命题,逆命题与否命题为等价命题.类型一命题的关系及真假的判断例1 将下列命题改写成“如果p,则q”的形式,并写出它的逆命题、否命题和逆否命题以及它们的真假.(1)垂直于同一平面的两条直线平行;(2)当mn<0时,方程mx2-x+n=0有实数根.反思与感悟(1)四种命题的改写步骤①确定原命题的条件和结论.②逆命题:把原命题的条件和结论交换.否命题:把原命题中条件和结论分别否定.逆否命题:把原命题中否定了的结论作条件、否定了的条件作结论.(2)命题真假的判断方法跟踪训练1 下列四个结论:①已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是“若a+b+c≠3,则a2+b2+c2<3”;②命题“若x-sin x=0,则x=0”的逆命题为“若x≠0,则x-sin x≠0”;③命题p的否命题和命题p的逆命题同真同假;④若|C|>0,则C>0.其中正确结论的个数是( )A.1 B.2C.3 D.4类型二逻辑联结词与量词的综合应用例2 已知p:∃x∈R,mx2+2≤0.q:∀x∈R,x2-2mx+1>0,若p∨q为假命题,则实数m 的取值范围是( )A.[1,+∞) B.(-∞,-1]C.(-∞,-2] D.[-1,1]反思与感悟解决此类问题首先理解逻辑联结词的含义,掌握简单命题与含有逻辑联结词的命题的真假关系.其次要善于利用等价关系,如:p真与綈p假等价,p假与綈p真等价,将问题转化,从而谋得最佳解决途径.跟踪训练2 已知命题p:方程2x2+ax-a2=0在[-1,1]上有解;命题q:只有一个实数x0满足不等式x20+2ax0+2a≤0.若命题“p或q”是假命题,求a的取值范围.类型三充分条件与必要条件命题角度1 充分条件与必要条件的判断例3 (1)设x∈R,则“x2-3x>0”是“x>4”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)已知a ,b 是实数,则“a >0且b >0”是“a +b >0且ab >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件反思与感悟 条件的充要关系的常用判断方法 (1)定义法:直接判断若p 则q ,若q 则p 的真假.(2)等价法:利用A ⇒B 与綈B ⇒綈A ,B ⇒A 与綈A ⇒綈B ,A ⇔B 与綈B ⇔綈A 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.跟踪训练3 使a >b >0成立的一个充分不必要条件是( ) A .a 2>b 2>0 B .12log a >12log b >0C .ln a >ln b >0D .x a>x b且x >0.5命题角度2 充分条件与必要条件的应用例4 设命题p :x 2-5x +6≤0;命题q :(x -m )(x -m -2)≤0,若綈p 是綈q 的必要不充分条件,求实数m 的取值范围.反思与感悟 利用条件的充要性求参数的范围(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式求解.(2)注意利用转化的方法理解充分必要条件:若綈p 是綈q 的充分不必要(必要不充分、充要)条件,则p 是q 的必要不充分(充分不必要、充要)条件.跟踪训练4 已知p :2x 2-9x +a <0,q :2<x <3且綈q 是綈p 的必要条件,求实数a 的取值范围.1.已知命题p:∀x>0,总有(x+1)e x>1,则綈p为( )A.∃x≤0,使得(x+1)e x≤1B.∃x>0,使得(x+1)e x≤1C.∀x>0,总有(x+1)e x≤1D.∀x≤0,总有(x+1)e x≤12.设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.“若x,y全为零,则xy=0”的否命题为______________.4.已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q中,真命题是________.5.对任意x∈[-1,2],x2-a≥0恒成立,则实数a的取值范围是________.1.否命题和命题的否定是两个不同的概念(1)否命题是将原命题的条件否定作为条件,将原命题的结论否定作为结论构造一个新的命题.(2)命题的否定只是否定命题的结论,常用于反证法.若命题为“如果p,则q”,则该命题的否命题是“如果綈p,则綈q”;命题的否定为“如果p,则綈q”.2.四种命题的三种关系,互否关系,互逆关系,互为逆否关系,只有互为逆否关系的命题是等价命题.3.判断p与q之间的关系时,要注意p与q之间关系的方向性,充分条件与必要条件方向正好相反,不要混淆.4.注意常见逻辑联结词的否定一些常见逻辑联结词的否定要记住,如:“都是”的否定“不都是”,“全是”的否定“不全是”,“至少有一个”的否定“一个也没有”,“至多有一个”的否定“至少有两个”.答案精析问题导学 知识点四如果p ,则q 如果q ,则p 如果綈p ,则綈q 如果綈q ,则綈p 题型探究例1 解 (1)将命题写成“如果p ,则q ”的形式为:如果两条直线垂直于同一个平面,则这两条直线平行.它的逆命题、否命题和逆否命题如下:逆命题:如果两条直线平行,则这两条直线垂直于同一个平面.(假) 否命题:如果两条直线不垂直于同一个平面,则这两条直线不平行.(假) 逆否命题:如果两条直线不平行,则这两条直线不垂直于同一个平面.(真)(2)将命题写成“如果p ,则q ”的形式为:如果mn <0,则方程mx 2-x +n =0有实数根. 它的逆命题、否命题和逆否命题如下:逆命题:如果方程mx 2-x +n =0有实数根,则mn <0.(假) 否命题:如果mn ≥0,则方程mx 2-x +n =0没有实数根.(假)逆否命题:如果方程mx 2-x +n =0没有实数根,则mn ≥0.(真) 跟踪训练1 B [正确的为①③.]例2 A [因为p ∨q 为假命题,所以p 和q 都是假命题. 由p :∃x ∈R ,mx 2+2≤0为假, 得∀x ∈R ,mx 2+2>0,所以m ≥0.① 由q :∀x ∈R ,x 2-2mx +1>0为假, 得∃x ∈R ,x 2-2mx +1≤0,所以Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.② 由①和②得m ≥1.]跟踪训练2 解 由2x 2+ax -a 2=0得(2x -a )(x +a )=0, ∴x =a2或x =-a ,∴当命题p 为真命题时,⎪⎪⎪⎪⎪⎪a 2≤1或|-a |≤1, ∴|a |≤2.又“只有一个实数x 0满足x 20+2ax 0+2a ≤0”,即函数y =x 2+2ax +2a 与x 轴只有一个交点, ∴Δ=4a 2-8a =0,∴a =0或a =2. ∴当命题q 为真命题时,a =0或a =2. ∴命题“p 或q ”为真命题时,|a |≤2. ∵命题“p 或q ”为假命题, ∴a >2或a <-2.即a 的取值范围为{a |a >2或a <-2}. 例3 (1)B (2)C解析 (1)∵x 2-3x >0⇒/ x >4,x >4⇒x 2-3x >0,故x 2-3x >0是x >4的必要不充分条件. (2)∵a >0且b >0⇔a +b >0且ab >0,∴a >0且b >0是a +b >0且ab >0的充要条件. 跟踪训练3 C例4 解 方法一 命题p :x 2-5x +6≤0, 解得2≤x ≤3;命题q :(x -m )(x -m -2)≤0, 解得m ≤x ≤m +2,∵綈p 是綈q 的必要不充分条件, ∴p 是q 的充分不必要条件.∴⎩⎪⎨⎪⎧m ≤2,m +2>3或⎩⎪⎨⎪⎧m <2,m +2≥3,解得1≤m ≤2.∴实数m 的取值范围是[1,2]. 方法二 命题p :2≤x ≤3, 命题q :m ≤x ≤m +2, 綈p :x <2或x >3, 綈q :x <m 或x >m +2,∵綈p 是綈q 的必要不充分条件, ∴{x |x <m 或x >m +x |x <2或x >3},故⎩⎪⎨⎪⎧m ≤2,m +2≥3,解得1≤m ≤2.∴实数m 的取值范围是[1,2].跟踪训练4 解 ∵綈q 是綈p 的必要条件,∴q 是p 的充分条件, 令f (x )=2x 2-9x +a ,则⎩⎪⎨⎪⎧f ,f,解得a ≤9,∴实数a 的取值范围是(-∞,9]. 当堂训练1.B 2.A 3.若x ,y 不全为零,则xy ≠0 4.②③ 5.(-∞,0]。

高三数学一轮复习 第1章 集合与常用逻辑用语第1课时 集合的概念与运算精品课件

高三数学一轮复习 第1章 集合与常用逻辑用语第1课时 集合的概念与运算精品课件
• (3)五个关系式A⊆B、A∩B=A,A∪B=B,∁UB⊆∁UA以及A∩(∁UB) =∅是两两等价的.
• 集合是高中数学的基础内容,也是高考数学的必考内容,难度 不大,一般是一道选择题或填空题.通过对近两年高考试题的统 计分析可以看出,对集合内容的考查一般以两种方式出现:一是 考查集合的概念、集合间的关系及集合的运算.
• (3){x|x2-ax-1=0}和{a|方程x2-ax-1=0有实根}的意义不 同.{x|x2-ax-1=0}表示由二次方程x2-ax-1=0的解构成的集 合,而集合{a|方程x2-ax-1=0有实根}表示方程x2-ax-1=0有 实数解时参数a的范围构成的集合.
【变式训练】 1.现有三个实数的集合,既可以表示为a,ba,1, 也可表示为{a2,a+b,0},则 a2 011+b2 011=________.
命题与量 词、 基本 逻辑 联结 词
1.了解命题的概念. 2.了解逻辑联结词“或”、“且”、“非”的含义. 3.理解全称量词与存在量词的含义. 4.能正确地对含有一个量词的命题进行否定.
充分条件、
必要
条件 1.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四
与命
种命题的相互关系.
题的 2.理解必要条件、充分条件与充要条件的意义.
①集合 S={a+b 3|a,b 为整数}为封闭集; ②若 S 为封闭集,则一定有 0∈S; ③封闭集一定是无限集; ④若 S 为封闭集,则满足 S⊆T⊆R 的任意集合 T 也是封闭集. 其中的真命题是________.(写出所有真命题的序号)
序号 结论
理由
• 【全解全析】对于任意整数 a1,b1,a2,b2,有 a1+b1 3+a2+b2 3
B.{a|a≤2或a≥4}

高考数学一轮复习 常用逻辑用语讲义

高考数学一轮复习 常用逻辑用语讲义

高考数学一轮复习专题1.2 常用逻辑用语1.与函数、不等式、解析几何等知识结合考查充分条件与必要条件的判断及应用,凸显逻辑推理的核心素养;2.以函数、不等式为载体考查全称命题、特称命题的否定及真假判断的应用,凸显逻辑推理、数学运算的核心素养.1. 充分条件、必要条件与充要条件的概念A B B A A B 2.全称量词与存在量词 1.全称量词与全称命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“ ”表示. (2)含有全称量词的命题,叫做全称命题.(3)全称命题“对M 中任意一个x ,有p (x )成立”可用符号简记为,()x M p x ∀∈,读作“对任意x 属于M ,有p (x )成立”. 2.存在量词与特称命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做特称命题.(3)特称命题“存在M 中的一个x 0,使p (x 0)成立”可用符号简记为00,()x M p x ∃∈,读作“存在M 中的元素x 0,使p (x 0)成立”. 3.全称命题与特称命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题. (2)含有一个量词的命题的否定充分条件、必要条件的判断【方法储备】充要关系的几种判断方法:(1)定义法:①若p ⇒q,q ⇏p ,则p 是q 的充分而不必要条件; ②若p ⇏q,q ⇒p ,则p 是q 的必要而不充分条件; ③若p ⇒q,q ⇒p ,则p 是q 的充要条件;④若p ⇏q,q ⇏p ,则p 是q 的既不充分也不必要条件.(2)等价转化法:即利用p ⇒q 与¬q ⇒¬p ;q ⟹p 与¬p ⇒¬q ;p ⟺q 与¬q⇒¬p的等价关系,对于条件或结论是否定形式的命题,一般运用等价转化法. (3)集合关系法:从集合的观点理解,根据使p,q成立的对象的集合之间的包含关系.【精研题型】1.已知a∈R,则“a>1”是“<1”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件2.(多选)下列命题中为真命题的是A.“a-b=0”的充要条件是“=1”B.“a>b”是“<”的既不充分也不必要条件C.命题“x R,-<0”的否定是x R,-0”D.“a>2,b>2”是“ab>4”的必要条件3.某班从A,B,C,D四位同学中选拔一人参加校艺术节展演,在选拔结果公布前,甲、乙、丙、丁四位教师预测如下:甲说:“C或D被选中,”乙说:“B被选中,”丙说:“A,D均未被选中,”丁说:“C被选中.”若这四位教师中只有两位说的话是对的,则被选中的是A.AB.BC.CD.D【思维升华】4.满足“闭合开关K1”是“灯泡R亮”的充要条件的电路图是A. B.C. D.5.设a,b∈R,则“a>b”是“a|a|>b|b|”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件充分条件、必要条件的应用【方法储备】1.求参数的取值范围:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,由集合之间的关系列不等式(或不等式组)求解;(2)要注意区间端点值的检验........,不等式是否能够取等号决定端点值得取舍,处理不当容易出现漏解或增解的现象.2.探求某结论成立的充分、必要条件:(1)准确化简条件,即求出每个条件对应的充要条件;(2)问题的形式:①“p是q的……”,②“p的……是q”,②要转化为①,再求解;(3)准确判断两个条件之间的关系:①转化为两个命题关系的判断;②借助两个集合之间的关系来判断.【精研题型】6.设p:2x2-3x+1≤0,q:x2-(2a+1)x+a(a+1)≤0,若q是p的必要不充分条件,则实数a的取值范围是A. B.C. D.7.“,”为真命题的一个充分不必要条件是A. B. C. D.【思维升华】8.“关于的方程有解”的一个必要不充分条件是A. B.C. D.9.已知函数的定义域是,不等式的解集是.(1)若,求实数的取值范围;(2)若,且是的充分不必要条件,求的取值范围.【特别提醒】对于不等式问题:小范围可以推出大范围,大范围推不出小范围全称命题与特称命题【方法储备】1.全称(或特称)命题的否定:①将全称(或存在)量词改为存在 (或全称) 量词; ②结论否定;即全称命题的否定是特称命题;特称命题的否定是全称命题. 2. 全称命题与特称命题真假的判断:3.常见词语的否定形式有:【精研题型】10.命题“∃x∈R,”的否定是A.∀x∈R,B.∃x∈R,C.∀x∈R,D.∃x∈R,11.(多选)若“∀x∈M,|x|>x”为真命题,“∃x∈M,x>3”为假命题,则集合M可以是A.{x|x<-5}B.{x|-3<x<-1}C.{x|x>3}D.{x|0≤x≤3}12.公元1637年前后,法国学者费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的”.被提出后,经历许多著名数学家猜想论证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯彻底证明.其中“一般地,将一个高于二次的幂分成两个同次幂之和,这是不可能的”,这句话用数学语言可以表示为A.∀x,y,z,n,m,p∈Z且n≥2,x n+y m≠z p恒成立B.∀x,y,z,n,p∈Z且n>2,x n+y n≠z p恒成立C.∀x,y,z,n∈Z且n>2,x n+y n≠z n恒成立D.∀x ,y ,z ,n ∈Z 且n≥2,x n +y n ≠z n 恒成立【思维升华】13. (多选)下列四个关于三角函数的全称量词命题与存在量词命题,其中真命题为 A., B.,C.,D.,14. 在①∃x ∈R ,x 2+2x +2-a =0,②存在集合A ={x |2<x <4},非空集合B ={x |a <x <3a },使得A ∩B =∅这两个条件中任选一个,补充在下面问题中,并求解问题中的实数a .问题:求解实数a ,使得命题p :∀x ∈{x |1≤x ≤2},x 2-a ≥0,命题q :_______都是真命题.注:如果选择多个条件分别解答,按第一个解答计分.全称(存在)量词命题的综合应用【方法储备】含有量词的命题求参数的问题是恒成立或有解问题:(1)全称量词命题()x M a f x ∀∈>,(或()a f x <)为真:不等式恒.成立问题,通常转化为求()f x 的最大值(或最小值),即max ()a f x >(或min ()a f x <);(2)存在量词命题()x M a f x ∃∈>,(或()a f x <)为真:不等式能.成立问题,通常转化为求()f x 的最小值(或最大值),即min ()a f x >(或max ()a f x <).【精研题型】15. 若“,使得成立”是假命题,则实数的取值范围是 .16.已知定义在R上的函数f(x)满足f(x)+f(−x)=2,且在[0,+∞)上单调递减,若对任意的x∈R,f(x2−a)+f(x)<2恒成立,则实数a的取值范围为A. B.(-∞,-1) C. D.(1,+∞)17.若∃x0∈R,为假,则实数a的取值范围为.【思维升华】18.已知函数f(x)=x,g(x)=-x2+2x+b,若对任意的x1∈[1,2],总存在x2∈[1,9],19.(多选)已知p:,q:,则下列说法正确的是A.p的否定是:B.q的否定是:C.p为真命题时,D.q为真命题时,。

高中数学《常用逻辑用语》教案

高中数学《常用逻辑用语》教案

高中数学《常用逻辑用语》教案一、教学目标1. 让学生理解并掌握常用的逻辑用语,如且、或、非、逆、逆否等。

2. 培养学生运用逻辑用语进行判断和推理的能力。

3. 让学生能够识别和分析实际问题中的逻辑关系,提高解决问题的能力。

二、教学内容1. 常用的逻辑用语:且、或、非、逆、逆否等。

2. 逻辑运算的规律:分配律、结合律、De Morgan 定律等。

3. 逻辑判断:充分必要条件、充要条件、逆否命题等。

三、教学方法1. 采用讲授法,讲解逻辑用语的定义和运用。

2. 利用案例分析法,分析实际问题中的逻辑关系。

3. 采用小组讨论法,让学生合作探讨逻辑运算的规律。

四、教学准备1. PPT课件:包含逻辑用语的定义、例题和练习题。

2. 案例材料:涉及实际问题中的逻辑关系。

3. 练习题:包括选择题、填空题和解答题。

五、教学过程1. 导入:通过一个实际问题引入逻辑用语的学习,激发学生的兴趣。

2. 新课讲解:讲解常用的逻辑用语,如且、或、非、逆、逆否等,并通过例题演示其运用。

3. 逻辑运算规律:介绍分配律、结合律、De Morgan 定律等,并通过练习题巩固。

4. 逻辑判断:讲解充分必要条件、充要条件、逆否命题等,并通过例题演示其运用。

5. 案例分析:分析实际问题中的逻辑关系,让学生运用所学知识解决问题。

6. 小组讨论:让学生合作探讨逻辑运算的规律,培养学生的合作能力。

8. 课后作业:布置练习题,巩固所学知识。

9. 课后反思:教师反思教学效果,针对学生的掌握情况调整教学策略。

10. 教学评价:对学生的学习情况进行评价,包括逻辑用语的掌握和运用能力。

六、教学评价1. 评价方式:采用课堂练习、课后作业和小测验等方式进行评价。

2. 评价内容:评价学生对常用逻辑用语的理解和运用能力,以及逻辑运算规律的掌握情况。

3. 评价标准:根据学生的答案准确性、解题思路清晰程度以及运用逻辑用语的恰当性进行评分。

七、课后作业1. 练习题:包括选择题、填空题和解答题,涵盖本节课所学的常用逻辑用语和逻辑运算规律。

2020版高考数学一轮总复习 第一单元集合与常用逻辑用语 教案全集 含解析

2020版高考数学一轮总复习  第一单元集合与常用逻辑用语  教案全集  含解析

集合的概念与运算1.了解集合的含义、体会元素与集合的属于关系,了解空集、全集的意义.2.理解集合之间的包含与相等关系,能识别给定集合的子集.3.理解交集、并集、补集的概念,会求两个简单集合的交集与并集,会求给定子集的补集.知识梳理1.集合的含义与表示(1)一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).集合中的元素具有确定性、互异性和无序性三个特征.(2)如果a是集合A的元素,就说a属于集合A,记作a∈A,如果a不是集合A 的元素,就说a不属于集合A,记作a∉A.(3)常见数集的记法(4)常用的集合表示法有:列举法、描述法和图示法.2.集合间的基本关系(1)如果集合A中任何一个元素都是集合B的元素,则称集合A是集合B的子集,记作:A⊆B(或B⊇A) .(2)如果集合A⊆B,但存在x∈B,且x∉A,则称集合A是集合B的真子集,记作:A B(或B A) .(3)若A⊆B且B⊆A,则集合A与集合B中的元素是一样的,则称集合A与集合B相等.3.集合的基本运算(1)交集:由所有属于集合A且属于集合B的元素组成的集合,叫做A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B} .(2)并集:由所有属于集合A或属于集合B的元素组成的集合,叫做A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B} .(3)补集:集合A是集合U的子集,由U中所有不属于A的元素组成的集合,叫做U 中子集A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A} .1.空集是任何集合的子集,空集是任何非空集合的真子集.2.若有限集A中有n个元素,则A的子集有2n个,非空子集有2n-1 个,真子集有2n-1 个.3.A⊆B⇔A∩B=A⇔A∪B=B.热身练习1.已知集合A={x|x<2},a=3,则下列关系正确的是(D)A.a⊆A B.a∉AC.{a}∈A D.{a}⊆A由于3<2,所以a∈A,即{a}⊆A.2.(2018·达州模拟)已知集合A={1,2,3},B={2,3},则(D)A.A∩B=∅ B.∁A B=BC.A B D.B AA={1,2,3},B={2,3},所以B⊆A,1∈A但1∉B,所以B A.3.(2017·天津卷)设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=(B) A.{2} B.{1,2,4}C.{1,2,4,6} D.{1,2,3,4,6}因为A∪B={1,2,6}∪{2,4}={1,2,4,6},所以(A∪B)∩C={1,2,4,6}∩{1,2,3,4}={1,2,4}.4.(2018·石家庄二模)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是(C) A.A∪B={x|x<0} B.(∁R A)∩B={x|x<-1}C.A∩B={x|-1<x<0} D.A∪(∁R B)={x|x≥0}因为A={x|-1<x≤2}=(-1,2],B={x|x<0}=(-∞,0),所以A∪B=(-∞,2],A错误;(∁R A)∩B=(-∞,-1],B错误;A∩B=(-1,0),C正确;A∪(∁R B)=(-1,+∞),D错误.5.(2018·湖南长郡中学联考)集合{y∈N|y=-x2+6,x∈N}的真子集的个数是(C) A.3 B.4C.7 D.8由{y∈N|y=-x2+6,x∈N}知,y≥0,所以-x2+6≥0,又x∈N,所以x=0,1,2.所以集合为{2,5,6},其真子集的个数为23-1=7.集合的基本概念(1)(经典真题)已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B中元素的个数为A .5B .4C .3D .2(2)设a ,b ∈R ,集合⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2019+b 2019=__________.(1)求解本题,关键是理解集合A 的意义,将集合A 进行化简,可以采用特殊化的方法.A ={x |x =3n +2,n ∈N }={2,5,8,11,14,…},所以A 与B 的共同元素只有8,14两个,故选D.(2)考虑集合{a ,b a,1}中哪一个元素为0入手,利用集合中的元素的确定性和互异性进行分析.若a =0,则b a无意义,所以a ≠0,所以b a =0,从而b =0,所以{a ,b a,1}={a,0,1}. 由{a,0,1}={a 2,a,0},得a 2=1,即a =1或a =-1. 又根据集合中元素的互异性a =1应舍去, 所以a =-1.故a2019+b2019=(-1)2019=-1.(1)D (2)-1(1)用描述法表示集合,首先要搞清集合中代表元素的含义,再看元素的限制条件,分清是数集、点集还是其他类型的集合.(2)解决含有参数的集合问题时,要注意集合中元素的特征,并注意用互异性进行检验. (3)分类讨论的思想方法常用于解决集合问题.1.(1)若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a 等于(A) A .4 B .2C .0D .0或2(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为 -32.(1)当a =0时,方程化为1=0,无解,集合A 为空集,不符合题意; 当a ≠0时,由Δ=a 2-4a =0,解得a =4. (2)因为3∈A ,所以m +2=3或2m 2+m =3,若m +2=3,解得m =1,此时A ={3,3}与集合中元素的互异性矛盾,所以m =1,不符合题意;若2m 2+m =3,解得m =1(舍去)或m =-32.检验知m =-32满足题意.故所求m 的值为-32.集合间的基本关系已知集合A ={x |x 2-3x -10≤0},若集合B ={x |p +1≤x ≤2p -1},且B ⊆A ,则实数p 的取值范围为________.欲求实数p 的取值范围,只需找出关于p 的不等式,可由已知条件,结合数轴找到.由x 2-3x -10≤0,解得-2≤x ≤5, 所以A ={x |-2≤x ≤5}.B ⊆A ,则有①当B ≠∅时,利用数轴可知:⎩⎪⎨⎪⎧p +1≤2p -1,-2≤p +1,2p -1≤5,解得2≤p ≤3.②当B =∅时,有p +1>2p -1,即p <2. 综合①②得实数p 的取值范围是(-∞,3].(-∞,3]解决有关集合的包含关系的问题时,要注意: (1)所给集合若能化简,则先化简; (2)充分利用数轴、韦恩图等辅助解题;(3)注意空集的特殊性,一般地,若B ⊆A ,则应分B =∅与B ≠∅两种情况进行讨论.2.已知集合A ={x |x 2-3x -10≤0},若集合B ={x |p -6≤x ≤2p -1},且A ∩B =A ,则实数p 的取值范围为 [3,4] .由例2知,A ={x |-2≤x ≤5}.A ∩B =A ,所以A ⊆B ,画出示意图(如下图),所以⎩⎪⎨⎪⎧2p -1>p -6,p -6≤-2,2p -1≥5,解得⎩⎪⎨⎪⎧p >-5,p ≤4,p ≥3.所以3≤p ≤4.故p 的取值范围为[3,4].集合的基本运算(1)(2017·全国卷Ⅰ)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B =⎩⎨⎧⎭⎬⎫x |x <32 B .A ∩B =∅C .A ∪B =⎩⎨⎧⎭⎬⎫x |x <32 D .A ∪B =R(2)(2018·宝鸡二模)已知全集U ={1,2,3,4,5,6},集合M ={2,3,5},N ={4,5},则集合{1,6}可以表示为( )A .M ∩NB .M ∪N C. ∁U (M ∪N ) D .∁U (M ∩N )(1)首先化简集合A ,B ,再利用数轴得到A ∩B 和A ∪B .因为B ={x |3-2x >0}=⎩⎨⎧⎭⎬⎫x |x <32,A ={x |x <2},所以A ∩B =⎩⎨⎧⎭⎬⎫x |x <32,A ∪B ={x |x <2}.(2)画出韦恩图,如图,所以∁U (M ∪N )={1,6},故选C.(1)A (2)C进行集合的运算时,要注意:①明确集合中元素的意义;②注意将所给集合化简,使之明确化;③注意数形结合,利用韦恩图、数轴等辅助解题.3.(1)(2018·天津卷)设集合A ={1,2,3,4},B ={-1,0,2,3},C ={x ∈R |-1≤x <2}, 则(A ∪B )∩C =(C) A .{-1,1} B .{0,1} C .{-1,0,1} D .{2,3,4} (2)(2018·广州一模)设集合A ={x |x +3x -1<0},B ={x |x ≤-3},则集合{x |x ≥1}=(D) A .A ∩B B .A ∪BC .(∁R A )∪(∁R B )D .(∁R A )∩(∁R B )(1)因为A ={1,2,3,4},B ={-1,0,2,3}, 所以A ∪B ={-1,0,1,2,3,4}. 又C ={x ∈R |-1≤x <2},所以(A ∪B )∩C ={-1,0,1},故选C. (2)因为A ={x |x +3x -1<0}={x |-3<x <1},B ={x |x ≤-3}, 所以∁R A ={x |x ≥1,或x ≤-3},∁R B ={x |x >-3}. 易知(∁R A )∩(∁R B )={x |x ≥1},故选D.1.研究集合的有关问题,首先要理解集合的概念,其次要注意集合中元素的三个特征:确定性、无序性和互异性,尤其要注意集合中元素的互异性,当集合中的元素含有参数时,要根据互异性进行检验.2.处理集合问题时,首先要理解用描述法表示的集合的意义,关键是抓住集合的代表元素.首先看“{ | }”的左边元素的代表形式,然后看右边元素满足的性质,这是认清集合元素的关键.例如,{y |y =f (x )}是数集,表示函数y =f (x )的值域;{x |y =f (x )}是数集,表示函数y =f (x )的定义域;{(x ,y )|y =f (x )}是点集,表示函数y =f (x )图象上的点构成的集合.3.注意空集∅的特殊性,在解题时,若未能指明集合非空时,要考虑空集的可能性,如A B ,则有A =∅或A ≠∅两种可能,解题时常常遗漏对空集的讨论,这一点应引起重视.4.研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.解题时,首先要把集合进行化简,使之明确化,尽可能地借助数轴、韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,这实质是数形结合思想在集合中的具体应用.5.处理含参数的集合的包含关系及集合的运算时,端点值的取舍也是一个难点和重点,其解决办法是对端点值进行单独考虑.命题及其关系、充分条件与必要条件1.了解命题的概念.2.了解四种命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的含义,能初步判断给定的两个命题的关系.知识梳理1.命题及其真假(1)命题:在数学上,用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.(2)真命题:判断为真的语句叫做真命题.(3)假命题:判断为假的语句叫做假命题.2.四种命题的形式(1)原命题:“若p,则q”,其中p为命题的条件,q为命题的结论.(2)逆命题:“若q,则p”,即交换原命题的条件和结论.(3)否命题:“若﹁p,则﹁q”,即同时否定原命题的条件和结论.(4)逆否命题:“若﹁q,则﹁p”,即交换原命题的条件和结论后,再同时加以否定.3.四种命题的关系4.四种命题的真假关系(1)互为逆否的两个命题的真假性相同.(2)互逆或互否的两个命题的真假性没有关系.(3)四种命题的真假成对出现,即原命题与逆否命题的真假性相同,逆命题与否命题的真假性相同.5.充分条件与必要条件(1)如果p ⇒q ,则p 是q 的 充分 条件,同时q 是p 的 必要 条件. (2)如果p ⇒q ,但q ≠> p ,则p 是q 的 充分必要 条件. (3)如果p ⇒q ,且q ⇒p ,则称p 是q 的 充要 条件. (4)如果q ⇒p ,且p ≠> q ,则p 是q 的 必要不充分 条件. (5)如果p ≠> q ,但q ≠> p ,则p 是q 的既不充分也不必要条件.1.若p 是q 的充分不必要条件,则﹁p 是﹁q 的 必要不充分 条件.2.若p ,q 以集合的形式出现,记条件p 、q 对应的集合分别为P ,Q ,一般地有, 若P ⊆Q ,则p 是q 的 充分 条件; 若Q ⊆P ,则p 是q 的 必要 条件; 若P Q ,则p 是q 的 充分不必要 条件; 若P Q ,则p 是q 的 必要不充分 条件; 若P =Q ,则p 是q 的 充要 条件.热身练习1.下列语句中,不能构成命题的是(C) A .5>12 B .若1x =1y,则x =yC .x >0D .若x <y ,则x 2<y 2一个语句是不是命题,关键是看能否判断真假,因为x >0无法判断真假,因此不能构成命题.2.设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是(D) A .若方程x 2+x -m =0有实根,则m >0 B .若方程x 2+x -m =0有实根,则m ≤0 C .若方程x 2+x -m =0没有实根,则m >0 D .若方程x 2+x -m =0没有实根,则m ≤0根据逆否命题的定义,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”.故选D.3.已知命题p :若x =-1,则向量a =(1,x )与b =(x +2,x )共线,则在命题p 的原命题,逆命题,否命题,逆否命题中,真命题的个数为(B)A .0B .2C .3D .4原命题:若x =-1,向量a =(1,-1),b =(1,-1),a 与b 共线,所以原命题为真,故逆否命题也为真.逆命题为:若向量a =(1,x )与b =(x +2,x )共线,则x =-1.当a 与b 共线时,x (x +2)=x ,解得x =0或-1.所以逆命题为假命题,从而否命题也为假命题.故真命题的个数为2.4.(2016·四川卷)设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的(A)A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件因为⎩⎪⎨⎪⎧x >1,y >1,所以x +y >2,即p ⇒q .而当x =0,y =3时,有x +y =3>2,但不满足x >1且y >1,即q ≠>p .故p 是q 的充分不必要条件.5.设p :x <3,q :-1<x <3,则p 是q 成立的(C) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件根据充分、必要条件的定义直接利用数轴求解即可.将p ,q 对应的集合在数轴上表示出来如图所示,易知,当p 成立时,q 不一定成立;当q 成立时,p 一定成立,故p 是q 成立的必要不充分条件.四种命题及其真假判断原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是A .真,假,真B .假,假,真C .真,真,假D .假,假,假“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,由共轭复数的定义可知为真命题,所以逆否命题也为真命题,逆命题为:“复数|z1|=|z2|,则z1,z2互为共轭复数”,由1和i的模相等,但它不是共轭复数,可知逆命题为假命题,所以否命题也为假命题.故选B.B(1)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例即可;(2)四种命题的真假成对出现.即原命题与逆否命题的真假性相同,逆命题与否命题的真假性相同.当一个命题直接判断不易进行时,可转化判断其等价命题的真假.1.在下列4个结论中:①命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”;②命题“若m2+n2=0,则m,n全为0”的否命题是“若m2+n2≠0,则m,n全不为0”;③命题“若m>0,则方程x2+x-m=0有实根”的逆否命题为真命题;④“若x>1,则x2>1”的否命题为真命题.其中正确结论的序号是①③.①正确.②不正确,否命题为“若m2+n2≠0,则m,n不全为0”.③m>0时,Δ=1+4m>0,所以原命题为真命题,所以逆否命题为真命题.④逆命题“若x2>1,则x>1”为假命题,所以否命题为假命题.故正确结论的序号为①③.充要条件的判断(1)(2017·天津卷)设x∈R,则“2-x≥0”是“|x-1|≤1”的( )A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件(2)如果x,y是实数,那么“x≠y”是“cos x≠cos y”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件(1)(方法一)因为2-x≥0⇔x≤2.因为|x-1|≤1⇔-1≤x-1≤1⇔0≤x≤2.因为x≤2≠>0≤x≤2,而0≤x≤2⇒x≤2,所以“2-x≥0”是“|x-1|≤1”的必要而不充分条件.(方法二)记“2-x≥0”与“|x-1|≤1”表示的集合分别为A,B.则A={x|x≤2},B={x|0≤x≤2}.因为B A,所以“2-x≥0”是“|x-1|≤1”的必要而不充分条件.(2)x=y⇒cos x=cos y,而cos x=cos y≠>x=y,利用四种命题的等价关系得:cos x≠cos y⇒x≠y,x≠y≠> cos x≠cos y.所以“x≠y”是“cos x≠cos y”必要而不充分条件.(1)B (2)B(1)判断充要条件的方法:①定义法(这是基本方法);②集合法(根据p,q成立的对象的集合之间的包含关系进行判断);③转换法.(2)判断充要条件时,要注意如下技巧:①等价化简:先将条件和结论等价化简,然后根据定义进行判断;②等价转化:根据“四种命题”中互为逆否的两个命题是等价的,把判断命题的正确性,转化为判断其逆否命题的正确性.这种方法特别适合以否定形式给出的命题.2.(1)“x<0”是“ln(x+1)<0”的(B)A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件(2)如果a,b是实数,那么“a≠0”是“ab≠0”的(B)A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件(1)ln(x+1)<0⇔0<x+1<1⇔-1<x<0,x<0≠>-1<x<0,-1<x<0⇒x<0,所以“x<0”是“ln(x+1)<0”的必要而不充分条件.(2)a=0⇒ab=0,但ab=0≠>a=0,其逆否命题为ab≠0⇒a≠0,a≠0≠>ab≠0,故“a ≠0”是“ab ≠0”的必要而不充分条件.根据充要条件求解参数的取值范围已知p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0),若﹁p 是﹁q 的必要不充分条件,则实数m 的取值范围为____________.p 对应的集合为A ={x |-2≤x ≤10},q 对应的集合为B ={x |1-m ≤x ≤1+m }, 因为﹁p 是﹁q 的必要不充分条件, 所以﹁q ⇒﹁p 但﹁p ≠>﹁q由互为逆否的两个命题的等价关系可知,p ⇒q ,但q ≠>p ,所以A B .所以⎩⎪⎨⎪⎧1-m ≤-2,1+m ≥10,解得m ≥9.检验m =9时,满足A B .因此,实数m 的取值范围是[9,+∞).[9,+∞)(1)充分条件、必要条件或充要条件的应用,一般表现在参数问题的求解上,求解一般步骤为:①首先要将p ,q 等价化简;②将充分条件、必要条件或充要条件转化为集合之间的包含关系; ③列出关于参数的等式或不等式组,求出参数的值或取值范围. (2)解此类问题要注意:①注意命题等价转化,如将﹁p 与﹁q 的关系转化为p 与q 的关系; ②注意区间端点值的检验.3.已知p :2x +m <0,q :x 2-x -2>0,若p 是q 的一个充分不必要条件,则实数m 的取值范围为 [2,+∞) .因为q :x 2-x -2>0,所以x <-1或x >2, 记A ={x |x <-1或x >2}. 又因为p :2x +m <0,所以x <-m2,记B ={x |x <-m2},因为p 是q 的充分不必要条件,所以B A . 所以-m2≤-1,解得m ≥2.所以实数m 的取值范围是[2,+∞).1.判断一个语句是否为命题,关键是看能否判断真假.数学中的定义、公理、定理都是命题,但命题与定理是有区别的:命题有真假之分,而定理都是真命题.2.一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律,判断一个命题为真必须经过证明,而判定一个命题为假只需举一个反例就行.3.判断充分条件和必要条件时,常用以下几种方法:(1)定义法:判断A 是B 的什么条件,实际上就是判断A B 或B A 是否成立,只要把题目中所给条件按逻辑关系画出箭头示意图,再利用定义即可判断.(2)转换法:当所给命题的充要条件不易判断时,可对命题进行等价转换,如利用其逆否命题进行判断.(3)集合法:当条件和结论以集合形式出现时,可利用集合间的包含关系进行判断.简单的逻辑联结词、全称量词与存在量词1.了解逻辑联结词“或”“且”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.知识梳理1.简单的逻辑联结词(1) “或”“且”“非”叫做逻辑联结词.(2)用逻辑联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.(3)用逻辑联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.(4)真值表:表示命题真假的表叫做真值表.由命题p,q及逻辑联结词形成的新命题的真假可以通过下面的真值表来加以判断.2.量词(1)短语“对所有的、对任意一个”在逻辑中通常叫做全称量词;常见的全称量词还有“对一切、对每个、任给、所有的”等.(2)含有全称量词的命题叫做全称命题.(3)短语“存在一个、至少有一个”在逻辑中通常叫做存在量词;常见的存在量词还有“有些、有一个、对某个、有的”等.(4)含有存在量词的命题叫做特称命题.(5)全称命题p:∀x∈M,P(x)的否定﹁p:∃x0∈M,﹁P(x0) ;全称命题的否定是特称命题.(6)特称命题p:∃x∈M,P(x)的否定﹁p:∀x∈M,﹁P(x) ;特称命题的否定是全称命题.1.含有逻辑联结词的命题的真假的判断规律(1)p∨q:p,q中一个为真,则p∨q为真,即有真即真;(2)p∧q:p,q中一个为假,则p∧q为假,即有假即假;(3) ﹁p:与p的真假相反,即一真一假,真假相反.2.含有一个量词的命题的否定规律是“改量词,否结论”.热身练习1.命题“平行四边形的对角线相等且互相平分”是(C)A.简单命题 B.“p∨q”形式的复合命题C.“p∧q”形式的复合命题 D.“﹁p”形式的复合命题考查逻辑联结词的意义,选C.2.已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是(A)A. p∧(﹁q )B.(﹁p )∧qC.(﹁p )∧(﹁q)D.p∧q命题p为真命题,命题q为假命题,故﹁q为真命题, p∧(﹁q )为真命题.3.(2017·中牟县校级月考)下列命题中的假命题是(B)A.∀x∈R,2x-1>0 B.∀x∈N*,(x-1)2>0C.∃x0∈R,lg x0<1 D.∃x0∈R,tan x0=2对于A,∀x∈R,都有2x-1>0,为真命题;对于B,当x=1时,(x-1)2=0,为假命题;对于C,如x0=110,lg x0=-1<1,为真命题;对于D,因为tan x的值域为R,故x 0∈R,使tan x0=2,为真命题.4.设命题p:∃n∈N,n2>2n,则﹁p为(C)A.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n特称命题的否定是全称命题.修改原命题中的两个地方即可得其否定,∃改为∀,否定结论,即∀n∈N,n2≤2n,故选C.5.(2018·长春二模)设命题p:x∈(0,+∞),ln x≤x-1,则﹁p是(C)A.∀x∈(0,+∞),ln x>x-1B.∀x∈(-∞,0],ln x>x-1C.∃x0∈(0,+∞),ln x0>x0-1D.∃x0∈(0,+∞),ln x0≤x0-1含量词的命题的否定方法为先换量词,再否定结论.含有逻辑联结词命题的真假判断设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是A.p∨q B.p∧qC.(﹁p)∧(﹁q) D.p∨(﹁q)命题p:若a·b=0,b·c=0,则a∥c,所以p为假命题;命题q:若a∥b,b∥c,则a∥c,所以q为真命题.所以p∨q为真命题.A(1)判断含有逻辑联结词“或”“且”“非”的命题的真假,①弄清构成它的命题p,q的真假;②弄清结构形式;③据真值表来判断新命题的真假.(2)判断复合命题的真假,关键是准确判断p,q的真假,本单元内容可和其他章节内容建立广泛的联系,因此,要注意相关知识的熟练掌握.1.(2017·山东卷)已知命题p:∃x∈R,x2-x+1≥0;命题q:若a2<b2,则a<b.下列命题为真命题的是(B)A.p∧q B.p∧﹁qC.﹁p∧q D.﹁p∧﹁q因为一元二次方程x2-x+1=0的判别式Δ=(-1)2-4×1×1<0,所以x2-x+1>0恒成立,所以p为真命题,﹁p为假命题.因为当a=-1,b=-2时,(-1)2<(-2)2,但-1>-2,所以q为假命题,﹁q为真命题.根据真值表可知p∧﹁q为真命题,p∧q,﹁p∧q,﹁p∧﹁q为假命题.含一个量词的命题的真假判定与否定(1)(经典真题) 已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1-x2,则下列命题中为真命题的是A.p∧q B.(﹁p)∧qC.p∧(﹁q) D.(﹁p)∧(﹁q)(2)已知命题p:“∃x∈R,e x-x-1≤0”,则﹁p为A.∃x∈R,e x-x-1≥0 B.∃x∈R,e x-x-1>0C.∀x∈R,e x-x-1>0 D.∀x∈R,e x-x-1≥0(1)当x=0时,有2x=3x,不满足2x<3x,所以p是假命题.画图可知函数y=x3与y=1-x2的图象有交点,即方程x3=1-x2有解,所以q是真命题.故p∧q是假命题,排除A.因为﹁p为真命题,所以(﹁p)∧q是真命题.(2)命题的否定是先改变量词,再否定结论.“∃x∈R,e x-x-1≤0”的否定为“∀x∈R,e x-x-1>0”.(1)B (2)C(1)要判定一个全称命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立;但要判定全称命题是假命题,只要能举出集合M中一个x=x0,使得p(x0)不成立即可.要判定一个特称命题成立,只要在限定集合M中,至少能找到一个x=x0,使p(x0)成立即可,否则,这一特称命题就是假命题.(2)全(特)称命题的否定,是将其全称量词改为存在量词(存在量词改为全称量词),并把结论否定.从命题的形式看,全称命题的否定是特称命题,特称命题的否定是全称命题.2.(1)(2018·赤峰一模)已知命题p:∀x∈(0,+∞),2x>1,命题q:∃x0∈R, sin x0=cos x0,则下列命题中为真命题的是(A)A .p ∧qB .(﹁p )∧qC .p ∧(﹁q )D .(﹁p )∧(﹁q )(2)(2018·邯郸期末) 命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是(D) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0(1)对于命题p :当x ∈(0,+∞)时,2x>1成立,故命题p 是真命题; 对于命题q :当x 0=π4时,sin x 0=cos x 0,所以命题q 是真命题,所以p ∧q 为真.(2) 写全称命题的否定时,要把量词∀改为∃,并且否定结论,注意把“且”改为“或”.逻辑联结词命题真假的应用(2018·长沙月考)已知命题p :存在实数m ,使方程x 2+mx +1=0有两个不等的负根;命题q :存在实数m ,使方程4x 2+4(m -2)x +1=0无实根.若“p ∧q ”为假命题,“p ∨q ”为真命题,则m 的取值范围为A .[3,+∞) B.(1,2]C .(1,2]∪[3,+∞) D.[1,2)∪(3,+∞)p :方程x 2+mx +1=0有两个不相等的负根⇔⎩⎪⎨⎪⎧Δ=m 2-4>0,-m <0⇔m >2,q :方程4x 2+4(m -2)x +1=0无实根⇔Δ<0⇔1<m <3.因为“p ∧q ”为假命题,“p ∨q ”为真命题, 所以p 与q 一真一假.所以⎩⎪⎨⎪⎧m >2,m ≤1或m ≥3,或⎩⎪⎨⎪⎧m ≤2,1<m <3.所以m 的取值范围{m |m ≥3或1<m ≤2}.C以命题真假为依据求参数的取值范围时,可按如下步骤实施: (1)运用相关知识等价化简所给命题p ,q ; (2)由复合命题的真假分析p ,q 的真假关系;(3)列相应方程(组)或不等式(组); (4)解方程(组)或不等式(组)得出结论.3.(2018·汕头模拟)已知命题p :关于x 的方程x 2+ax +1=0没有实根;命题q :∀x >0,2x-a >0.若“﹁p ”和“p ∧q ”都是假命题,则实数a 的取值范围是(C)A .(-∞,-2)B .(-2,1]C .(1,2)D .(1,+∞)若方程x 2+ax +1=0没有实根,则判别式Δ=a 2-4<0,即-2<a <2,即p :-2<a <2; ∀x >0,2x-a >0,则a <2x,当x >0时,2x>1,则a ≤1,即q :a ≤1, 因为﹁p 是假命题,则p 是真命题, 因为p ∧q 是假命题,则q 是假命题,即⎩⎪⎨⎪⎧-2<a <2,a >1,得1<a <2.1.逻辑联结词——或、且、非与集合中的并集、交集、补集有着密切的关系,要注意类比.p ∨q 为真命题,只需p ,q 有一个为真即可; p ∧q 为真命题,必须p ,q 同时为真.写出“﹁p ”形式的命题时常用到以下表格中的否定词语:2.注意一个命题的否定与否命题的区别,否命题与命题的否定不是同一个概念,否命题是对原命题“若p ,则q ”既否定其条件,又否定其结论;而命题p 的否定即非p ,只需否定命题的结论.命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.3.要写一个命题的否定,需先分清是全称命题还是特称命题,再对照否定结构去写.否定的规律是“改量词,否结论”.全称命题的否定是一个特称命题;特称命题的否定是一个全称命题.21。

2020版高考数学一轮复习第1章集合与常用逻辑用语第1节集合教学案含解析理

2020版高考数学一轮复习第1章集合与常用逻辑用语第1节集合教学案含解析理

第一节集合[考纲传真] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn图表达集合间的基本关系及集合的基本运算.1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系:属于或不属于,分别记为∈和∉.(3)集合的三种表示方法:列举法、描述法、Venn图法.(4)常见数集的记法2.A B或B A1.若有限集A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1.2.A⊆B⇔A∩B=A⇔A∪B=B.3.A∩∁U A=∅;A∪∁U A=U;∁U(∁U A)=A.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)任何集合都至少有两个子集.( )(2)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C.( )(3)若{x2,x}={-1,1},则x=-1. ( )(4)若A∩B=A∩C,则B=C. ( )[解析](1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.集合A是函数y=x2的定义域,即A=(-∞,+∞);集合B是函数y=x2的值域,即B=[0,+∞);集合C是抛物线y=x2上的点集.因此A,B,C不相等.(3)正确.(4)错误.当A=∅时,B,C可为任意集合.[答案](1)×(2)×(3)√(4)×2.(教材改编)若集合A={x∈N|x≤10},a=22,则下列结论正确的是( )A.{a}⊆A B.a⊆AC.{a}∈A D.a∉AD[由题意知A={0,1,2,3},由a=22知,a∉A.]3.设集合A={1,2,3},B={2,3,4},则A∪B=( )A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}A[A∪B={1,2,3,4}.]4.(2018·浙江高考)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.∅B.{1,3}C.{2,4,5} D.{1,2,3,4,5}C [∵U ={1,2,3,4,5},A ={1,3}, ∴∁U A ={2,4,5}. 故选C.]5.若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( ) A .{x |-2<x <-1} B .{x |-2<x <3} C .{x |-1<x <1}D .{x |1<x <3}A [∵A ={x |-2<x <1},B ={x |x <-1或x >3}, ∴A ∩B ={x |-2<x <-1}.]1为( )A .3B .4C .5D .6B [因为集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以当b =4,a =1,2,3时,x =5,6,7. 当b =5,a =1,2,3时,x =6,7,8. 由集合元素的互异性,可知x =5,6,7,8. 即M ={5,6,7,8},共有4个元素.]2.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A.92 B.98C .0D .0或98D [若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根. 当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的取值为0或98.]3.已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2 019+b 2 019为()A .1B .0C .-1D .±1C [由已知得a ≠0,则ba=0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 019+b2 019=(-1)2 019+02 019=-1.]4.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________. 1 [由A ∩B ={3}知a +2=3或a 2+4=3. 解得a =1.]确定集合中的元素是什么,即集合是数集还是点集看这些元素满足什么限制条件根据限制条件列式求参数的值或确定集合中元素的个数,元素的互异性A .B ⊆A B .A =B C .AB D .B A(2)(2019·大庆模拟)集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪⎪x +1x -3≤0,B ={y |y =x 2+1,x ∈A },则集合B的子集个数为( )A .5B .8C .3D .2(3)已知集合A ={x ∈R |x 2+x -6=0},B ={x ∈R |ax -1=0},若B ⊆A ,则实数a 的取值集合为________.(1)C (2)B (3)⎩⎨⎧⎭⎬⎫-13,12,0 [(1)A ={1,2},B ={1,2,3,4},则AB ,故选C.(2)由x +1x -3≤0得-1≤x <3,则A ={-1,0,1,2},B ={y |y =x 2+1,x ∈A }={1,2,5},其子集的个数为23=8个.(3)A ={-3,2},若a =0,则B =∅,满足B ⊆A ,若a ≠0,则B =⎩⎨⎧⎭⎬⎫1a ,由B ⊆A 知,1a =-3或1a =2,故a =-13或a =12,因此a 的取值集合为⎩⎨⎧⎭⎬⎫-13,12,0.] 化简集合,从表达式中寻找两集合的关系用列举法或图示法等表示各个集合,从元素或图形中寻找关系2.根据集合间的关系求参数的方法已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合A A≠,应分(1)(2018·长沙模拟合条件的集合C的个数为( )A.1 B.2 C.4 D.8(2)已知集合A={x|x2-2x≤0},B={x|x≤a},若A⊆B,则实数a的取值范围是________.(1)C(2)[2,+∞)[(1)由A⊆C⊆B得C={0}或{0,-1}或{0,1}或{0,-1,1},故选C.(2)A={x|0≤x≤2},要使A⊆B,则a≥2.]►考法1【例2】(1)(2018·全国卷Ⅲ)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( ) A.{0} B.{1}C.{1,2} D.{0,1,2}(2)(2018·全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}(3)(2019·桂林模拟)已知集合M={x|-1<x<3},N={-1,1},则下列关系正确的是( )A.M∪N={-1,1,3} B.M∪N={x|-1≤x<3}C.M∩N={-1} D.M∩N={x|-1<x<1}(1)C(2)B(3)B[(1)由题意知,A={x|x≥1},则A∩B={1,2}.(2)法一:A={x|(x-2)(x+1)>0}={x|x<-1或x>2},所以∁R A={x|-1≤x≤2},故选B.法二:因为A={x|x2-x-2>0},所以∁R A={x|x2-x-2≤0}={x|-1≤x≤2},故选B.(3)M∪N={x|-1≤x<3},M∩N={1},故选B.]►考法2 利用集合的运算求参数【例3】(1)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是( )A.-1<a≤2 B.a>2C.a≥-1 D.a>-1(2)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( )A.0 B.1 C.2 D.4(3)(2019·厦门模拟)已知集合A={x|x<a},B={x|x2-3x+2<0},若A∩B=B,则实数a的取值范围是( )A.a≤1 B.a<1C.a≥2 D.a>2(1)D(2)D(3)C[(1)由A∩B≠∅知,集合A,B有公共元素,作出数轴,如图所示:易知a>-1,故选D.(2)由题意可知{a,a2}={4,16},所以a=4,故选D.(3)B={x|1<x<2},由A∩B=B知B⊆A,则a≥2,故选C.]看元素组成,问题的前提.看集合能否化简,集合能化简的先化简,再研究其关系并进行运算,可使问题简单明了,易于求解要借助集合元素连续时用数轴表示,并注意端点值的取舍则A∪B=( )A.(-1,0) B.(0,1)C.(-1,3) D.(1,3)(2)(2019·西安模拟)设集合A={x|x2-3x+2≥0},B={x|x≤2,x∈Z},则(∁R A)∩B=( )A.{1} B.{2} C.{1,2} D.∅(3)(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B =( )A.{1,-3} B.{1,0}C.{1,3} D.{1,5}(4)(2019·长沙模拟)已知集合A={1,3,9,27},B={y|y=log3x,x∈A},则A∩B=( )A.{1,3} B.{1,3,9}C.{3,9,27} D.{1,3,9,27)(1)C(2)D(3)C(4)A[(1)A={x|-1<x<1},B={x|0<x<3},所以A∪B={x|-1<x<3},故选C.(2)A={x|x≤1或x≥2},则∁R A={x|1<x<2}.又集合B={x|x≤2,x∈Z},所以(∁R A)∩B=∅,故选D.(3)∵A∩B={1},∴1∈B.∴1-4+m =0,即m =3.∴B ={x |x 2-4x +3=0}={1,3}.故选C.(4)因为A ={1,3,9,27},B ={y |y =log 3x ,x ∈A }={0,1,2,3}, 所以A ∩B ={1,3}.]1.(2018·全国卷Ⅰ)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( ) A .{0,2} B .{1,2}C .{0}D .{-2,-1,0,1,2}A [由题意知A ∩B ={0,2}.]2.(2018·全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4A [由x 2+y 2≤3知,-3≤x ≤3,-3≤y ≤ 3.又x ∈Z ,y ∈Z ,所以x ∈{-1,0,1},y ∈{-1,0,1},所以A 中元素的个数为9,故选A.]3.(2017·全国卷Ⅰ)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <32 B .A ∩B =∅ C .A ∪B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32 D .A ∪B =RA [因为B ={x |3-2x >0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32,A ={x |x <2},所以A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32,A ∪B ={x |x <2}.故选A.]4.(2015·全国卷Ⅰ)已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( )A .5B .4C .3D .2D [分析集合A 中元素的特点,然后找出集合B 中满足集合A 中条件的元素个数即可. 集合A 中元素满足x =3n +2,n ∈N ,即被3除余2,而集合B 中满足这一要求的元素只有8和14.故选D.]自我感悟:______________________________________________________ ________________________________________________________________ ________________________________________________________________。

高考第一轮复习集合与常用逻辑用语

高考第一轮复习集合与常用逻辑用语

年级高三学科数学版本通用版课程标题高考第一轮复习——集合与常用逻辑用语编稿老师孙丕训一校林卉二校黄楠审核王百玲一、考点突破考纲解读:1. 集合的概念、集合间的关系及运算是高考重点考查的内容,正确理解概念是解决此类问题的关键。

2.对命题及充要条件这部分内容,重点关注两个方面内容:一是命题的四种形式及原命题与逆否命题的等价;二是充要条件的判定。

这些内容大多是以其他数学知识为载体,具有较强的综合性。

3. 常用逻辑用语高考以考查四种命题、逻辑联结词和全称命题、特称命题的否定为主。

命题预测:1. 根据考试大纲的要求,结合近几年高考的命题情况,可以预测集合这部分内容在选择、填空和解答题中都有可能涉及.高考命题热点有以下两个方面:一是对集合的运算、集合的有关陈述语和符号、集合的简单应用等作基础性的考查,题型常以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现. 2. 作为高中数学的基础知识,命题、量词与逻辑联结词、四种命题及充要条件是每年高考的必考内容,题量一般为1~2道,多以选择题或填空题的形式出现,难度不大,重点考查命题真假的判断,全称命题与特称命题的否定, 与函数、直线与平面、圆锥曲线等知识联系很紧密,要求考生理解命题的四种形式、充分条件、必要条件、充要条件的意义,能够判断给定的两个命题的逻辑关系.题目内容和思想方法涉及或渗透到高中数学的各个章节,有一定的综合性.二、重难点提示重点:理解集合的表示,能准确进行集合间的交、并、补的运算;正确地对含有一个量词的命题进行否定。

难点:集合的表示及充分必要条件的判定。

一、知识脉络图二、知识点拨1. 集合与元素(1)集合元素具有三个特征:、、。

(2)元素与集合的关系是属于或不属于的关系,用符号∈或∉表示。

(3)集合的表示法:、、、。

(4)常用数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R;复数集C。

高考数学一轮复习 第一章 集合与常用逻辑用语 第1节 集合教学案(含解析)新人教A版-新人教A版高三

高考数学一轮复习 第一章 集合与常用逻辑用语 第1节 集合教学案(含解析)新人教A版-新人教A版高三

五年高考考点统计精准分析高效备考证明直线过定点证明直线过定点线问题线与椭圆的位置关系位置关系轨迹方程义、直线与抛物线质,直线与椭圆位置关系21导数与不等式,证明函数极值点的存在性导数与函数的单调性及函数的零点导数与不等式的综合运用导数与函数的单调性、零点、证不等式导数与函数的单调性、不等式、最值函数与导数的最值、不等式导数的几何意义与函数的零点问题导数与函数的单调性与求最值22极坐标方程与直角坐标参数方程的应用参数方程、极坐标的应用参数方程与极坐标方程互化极坐标方程与参数方程互化参数方程,极坐标方程极坐标方程的应用极坐标方程与求距离23不等式证明解含绝对值的不等式,不等式的综合运用含绝对值不等式的解法及不等式的综合运用解含绝对值的不等式解与证明含绝对值的不等式解含绝对值的不等式,求参数解绝对值不等式及函数的图象不等式的证明与充要条件的判断第1节集合考试要求 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;5.能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.知识梳理1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系(1)子集:假设对任意x∈A,都有x∈B,那么A⊆B或B⊇A.(2)真子集:假设A⊆B,且集合B中至少有一个元素不属于集合A,那么A B或B A.(3)相等:假设A⊆B,且B⊆A,那么A=B.(4)空集的性质:是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B假设全集为U,那么集合A的补集为∁U A图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}4.集合的运算性质(1)A∩A=A,A∩=,A∩B=B∩A.(2)A∪A=A,A∪=A,A∪B=B∪A.(3)A∩(∁U A)=,A∪(∁U A)=U,∁U(∁U A)=A.[常用结论与微点提醒]1.假设有限集A中有n个元素,那么A的子集有2n个,真子集有2n-1个,非空子集有2n-1个,非空真子集有2n-2个.2.子集的传递性:A ⊆B ,B ⊆C ⇒A ⊆C .3.注意空集:空集是任何集合的子集,是非空集合的真子集,应时刻关注对于空集的讨论.4.A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B .5.∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).诊 断 自 测1.判断以下结论正误(在括号内打“√〞或“×〞) (1)任何一个集合都至少有两个子集.( )(2){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( ) (3)假设{x 2,1}={0,1},那么x =0,1.( )(4)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立.( ) 解析 (1)错误.空集只有一个子集.(2)错误.{x |y =x 2+1}=R ,{y |y =x 2+1}=[1,+∞),{(x ,y )|y =x 2+1}是抛物线y =x 2+1上的点集.(3)错误.当x =1时,不满足集合中元素的互异性. 答案 (1)× (2)× (3)× (4)√2.(新教材必修第一册P9T1(1)改编)假设集合P ={x ∈N |x ≤ 2 021},a =22,那么( ) A.a ∈P B.{a }∈P C.{a }⊆P D.a ∉P解析 因为a =22不是自然数,而集合P 是不大于 2 021的自然数构成的集合,所以a ∉P ,只有D 正确. 答案 D3.(老教材必修1P44A 组T5改编)集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|x ,y ∈R 且y =x },那么A ∩B 中元素的个数为________.解析 集合A 表示以(0,0)为圆心,1为半径的单位圆上的点,集合B 表示直线y =x 上的点,圆x 2+y 2=1与直线y =x 相交于两点⎝ ⎛⎭⎪⎫22,22,⎝ ⎛⎭⎪⎫-22,-22,那么A ∩B 中有两个元素. 答案 24.(2019·全国Ⅲ卷)集合A ={-1,0,1,2},B ={x |x 2≤1},那么A ∩B =( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}解析 因为B ={x |x 2≤1|}={x |-1≤x ≤1},又A ={-1,0,1,2},所以A ∩B ={-1,0,1}. 答案 A5.(2019·全国Ⅱ卷改编)集合A ={x |x 2-5x +6>0},B ={x |x -1≥0},全集U =R ,那么A ∩(∁UB )=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)解析 由题意A ={x |x <2或x >3}.又B ={x |x ≥1},知∁U B ={x |x <1},∴A ∩(∁U B )={x |x <1}. 答案 A6.(2020·某某模拟)设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |1<2x<4},Q ={y |y =2+sin x ,x ∈R },那么P -Q =( ) A.{x |0<x ≤1} B.{x |0≤x <2} C.{x |1≤x <2} D.{x |0<x <1}解析 由题意得P ={x |0<x <2},Q ={y |1≤y ≤3}, ∴P -Q ={x |0<x <1}. 答案 D考点一 集合的基本概念[例1] (1)定义P ⊙Q =⎩⎨⎧⎭⎬⎫z |z =y x+xy,x ∈P ,y ∈Q ,P ={0,-2},Q ={1,2},那么P ⊙Q =( )A.{1,-1}B.{1,-1,0}C.⎩⎨⎧⎭⎬⎫1,-1,-34D.⎩⎨⎧⎭⎬⎫-1,-34(2)设集合A ={x |(x -a )2<1},且2∈A ,3∉A ,那么实数a 的取值X 围为________. 解析 (1)由定义,当x =0时,z =1,当x =-2时,z =1-2+-21=-1或z =2-2-1=-34.因此P ⊙Q =⎩⎨⎧⎭⎬⎫1,-1,-34.(2)由题意得⎩⎪⎨⎪⎧〔2-a 〕2<1,〔3-a 〕2≥1,解得⎩⎪⎨⎪⎧1<a <3,a ≤2或a ≥4. 所以1<a ≤2.答案 (1)C (2)(1,2]规律方法1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合中的元素是否满足互异性.[训练1] (1)(2018·全国Ⅱ卷)集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },那么A 中元素的个数为( ) A.9 B.8 C.5 D.4(2)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元〞.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元〞的集合共有________个.解析 (1)由题意知A ={(-1,0),(0,0),(1,0),(0,-1),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)},故集合A 中共有9个元素.(2)依题意可知,由S 的3个元素构成的所有集合中,不含“孤立元〞时,这三个元素一定是连续的三个整数.∴所求的集合为{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个. 答案 (1)A (2)6 考点二 集合间的基本关系[例2] (1)(2019·某某六校联考)集合A ={-1,1},B ={x |ax +1=0}.假设B ⊆A ,那么实数a 的所有可能取值的集合为( )A.{-1}B.{1}C.{-1,1}D.{-1,0,1}(2)(2020·某某长郡中学模拟)集合A ={x |y =log 2(x 2-3x -4)},B ={x |x 2-3mx +2m 2<0(m >0)},假设B ⊆A ,那么实数m 的取值X 围为( ) A.(4,+∞) B.[4,+∞) C.(2,+∞) D.[2,+∞)解析 (1)当B =时,a =0,此时,B ⊆A .当B ≠时,那么a ≠0,∴B =⎩⎨⎧⎭⎬⎫x |x =-1a .又B ⊆A ,∴-1a∈A ,∴a =±1.综上可知,实数a 所有取值的集合为{-1,0,1}. (2)由x 2-3x -4>0得x <-1或x >4, 所以集合A ={x |x <-1或x >4}. 由x 2-3mx +2m 2<0(m >0)得m <x <2m . 又B ⊆A ,所以2m ≤-1(舍去)或m ≥4. 答案 (1)D (2)B规律方法 1.假设B ⊆A ,应分B =∅和B ≠∅两种情况讨论.2.两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利用数轴、Venn 图,化抽象为直观进行求解.确定参数所满足的条件时,一定要把端点值代入进行验证,否那么易增解或漏解. [训练2] (1)假设集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},那么( ) A.M =N B.M ⊆N C.M ∩N =D.N ⊆M(2)(2020·武昌调研)集合A ={x |log 2(x -1)<1},B ={x ||x -a |<2},假设A ⊆B ,那么实数a 的取值X 围为( ) A.(1,3) B.[1,3] C.[1,+∞) D.(-∞,3]解析 (1)易知M ={x |-1≤x ≤1},N ={y |y =x 2,|x |≤1}={y |0≤y ≤1},∴N ⊆M . (2)由log 2(x -1)<1,得0<x -1<2,所以A =(1,3). 由|x -a |<2得a -2<x <a +2,即B =(a -2,a +2).因为A ⊆B ,所以⎩⎪⎨⎪⎧a -2≤1,a +2≥3,解得1≤a ≤3.所以实数a 的取值X 围为[1,3]. 答案 (1)D (2)B 考点三 集合的运算 多维探究角度1 集合的基本运算[例3-1] (1)(2019·全国Ⅰ卷)集合U ={1,2,3,4,5,6,7},A ={2,3,4,5},B ={2,3,6,7},那么B ∩(∁U A )=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}(2)(2020·某某模拟)全集U=R,集合A={x|x-4≤0},B={x|ln x<2},那么∁U(A∩B)=( )A.{x|x>4}B.{x|x≤0或x>4}C.{x|0<x≤4}D.{x|x<4或x≥e2}解析(1)由题意知∁U A={1,6,7}.又B={2,3,6,7},∴B∩(∁U A)={6,7}.(2)易知A={x|x≤4},B={x|0<x<e2},那么A∩B={x|0<x≤4},故∁U(A∩B)={x|x≤0或x>4}. 答案(1)C (2)B角度2 抽象集合的运算[例3-2] 设U为全集,A,B是其两个子集,那么“存在集合C,使得A⊆C,B⊆∁U C〞是“A∩B =〞的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由图可知,假设“存在集合C,使得A⊆C,B⊆∁U C〞,那么一定有“A∩B=〞;反过来,假设“A∩B=〞,那么一定能找到集合C,使A⊆C且B⊆∁U C.答案 C规律方法 1.进行集合运算时,首先看集合能否化简,能化简的先化简,再研究其关系并进行运算.2.数形结合思想的应用:(1)离散型数集或抽象集合间的运算,常借助Venn图求解;(2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.[训练3] (1)(角度1)(2018·某某卷)设全集为R,集合A={x|0<x<2},B={x|x≥1},那么A∩(∁R B)=( )A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}(2)(角度1)集合A={x|x2-x≤0},B={x|a-1≤x<a},假设A∩B只有一个元素,那么a=( )A.0B.1C.2D.1或2(3)(角度2)假设全集U={-2,-1,0,1,2},A={-2,2},B={x|x2-1=0},那么图中阴影部分所表示的集合为( )A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}解析(1)因为B={x|x≥1},所以∁R B={x|x<1},又A={x|0<x<2},所以A∩(∁R B)={x|0<x<1}.(2)易知A=[0,1],且A∩B只有一个元素,因此a-1=1,解得a=2.(3)B={x|x2-1=0}={-1,1},阴影部分所表示的集合为∁U(A∪B).又A∪B={-2,-1,1,2},全集U={-2,-1,0,1,2},所以∁U(A∪B)={0}.答案(1)B (2)C (3)DA级基础巩固一、选择题1.(2019·全国Ⅰ卷)集合M={x|-4<x<2},N={x|x2-x-6<0},那么M∩N=( )A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}解析M={x|-4<x<2},N={x|-2<x<3},∴M∩N={x|-2<x<2}.答案 C2.(2019·某某卷)全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},那么(∁U A)∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}解析由题意,得∁U A={-1,3},∴(∁U A)∩B={-1}.答案 A3.(2020·某某测试)集合A={1,2,3,4},B={y|y=2x-3,x∈A},那么集合A∩B的子集个数为( ) A.1 B.2 C.4 D.8解析 由题意,得B ={-1,1,3,5},∴A ∩B ={1,3}. 故集合A ∩B 的子集个数为22=4. 答案 C4.设集合M ={x |x 2-x >0},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x<1,那么( )A.M NB.N MC.M =ND.M ∪N =R解析 集合M ={x |x 2-x >0}={x |x >1或x <0},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x<1={x |x >1或x <0},所以M =N .答案 C5.设集合A ={x |-1<x ≤2},B ={x |x <0},那么以下结论正确的选项是( ) A.(∁R A )∩B ={x |x <-1} B.A ∩B ={x |-1<x <0} C.A ∪(∁R B )={x |x ≥0} D.A ∪B ={x |x <0}解析 易求∁R A ={x |x ≤-1或x >2},∁R B ={x |x ≥0}, ∴(∁R A )∩B ={x |x ≤-1},A 项不正确.A ∩B ={x |-1<x <0},B 项正确,检验C 、D 错误.答案 B6.集合M ={x |y =x -1},N ={x |y =log 2(2-x )},那么∁R (M ∩N )=( ) A.[1,2) B.(-∞,1)∪[2,+∞) C.[0,1] D.(-∞,0)∪[2,+∞)解析 由题意可得M ={x |x ≥1},N ={x |x <2},∴M ∩N ={x |1≤x <2},∴∁R (M ∩N )={x |x <1或x ≥2}.答案 B7.(2020·日照一中月考)A =[1,+∞),B =[0,3a -1],假设A ∩B ≠∅,那么实数a 的取值X 围是( )A.[1,+∞)B.⎣⎢⎡⎦⎥⎤12,1C.⎣⎢⎡⎭⎪⎫23,+∞D.(1,+∞) 解析 由题意可得3a -1≥1,解得a ≥23,∴实数a 的取值X 围是⎣⎢⎡⎭⎪⎫23,+∞.答案 C8.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},那么满足M ⊆(A ∩B )的集合M 的个数是( )A.0B.1C.2D.3 解析 由⎩⎪⎨⎪⎧x +y =1,x -y =3,得⎩⎪⎨⎪⎧x =2,y =-1,∴A ∩B ={(2,-1)}.由M ⊆(A ∩B ),知M =∅或M ={(2,-1)}. 答案 C 二、填空题9.(2019·某某卷)集合A ={-1,0,1,6},B ={x |x >0,x ∈R },那么A ∩B =________. 解析 由交集定义可得A ∩B ={1,6}. 答案 {1,6}10.集合A ={1,3,4,7},B ={x |x =2k +1,k ∈A },那么集合A ∪B 中元素的个数为________. 解析 由得B ={3,7,9,15}, 所以A ∪B ={1,3,4,7,9,15}, 故集合A ∪B 中元素的个数为6. 答案 611.集合A ={x |x 2-5x -14≤0},集合B ={x |m +1<x <2m -1},假设B ⊆A ,那么实数m 的取值X 围为________.解析 A ={x |x 2-5x -14≤0}={x |-2≤x ≤7}. 当B =∅时,有m +1≥2m -1,那么m ≤2. 当B ≠∅时,假设B ⊆A ,如图.那么⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值X 围为(-∞,4]. 答案 (-∞,4]12.假设全集U =R ,集合A ={x |x 2-x -2≥0},B ={x |log 3(2-x )≤1},那么A ∩(∁U B )=________.解析 由题意,得集合A ={x |x 2-x -2≥0}={x |x ≤-1或x ≥2}, 因为log 3(2-x )≤1=log 33,所以0<2-x ≤3, 解得-1≤x <2,所以B ={x |-1≤x <2}, 从而∁U B ={x |x <-1或x ≥2}, 故A ∩(∁U B )={x |x <-1或x ≥2}. 答案 {x |x <-1或x ≥2}B 级 能力提升13.(2020·某某检测)集合A ={x |x 2-16<0},B ={x |3x 2+6x =1},那么( ) A.A ∪B =B.B ⊆AC.A ∩B ={0}D.A ⊆B解析 由题意,得A ={x |x 2-16<0}={x |-4<x <4},B ={x |3x 2+6x =1}={0,-6},A ∪B ={x |x =-6或-4<x <4},A ∩B ={0},故A 错误,显然B 、D 错误,故C 正确. 答案 C14.集合A ={x |y =4-x 2},B ={x |a ≤x ≤a +1},假设A ∪B =A ,那么实数a 的取值X 围为( )A.(-∞,-3]∪[2,+∞)B.[-1,2]C.[-2,1]D.[2,+∞)解析 集合A ={x |y =4-x 2}={x |-2≤x ≤2}, 因A ∪B =A ,那么B ⊆A . 又B ≠,所以有⎩⎪⎨⎪⎧a ≥-2,a +1≤2,所以-2≤a ≤1.答案C15.(多填题)集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),那么m =________,n =________.解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1}, 由A ∩B =(-1,n ),可知m <1,那么B={x|m<x<2},画出数轴,可得m=-1,n=1.答案-1 116.集合U=R,A={x|x2-x-2<0},B={x|y=ln(1-x)},那么图中阴影部分所表示的集合是________.解析易知A=(-1,2),B=(-∞,1),∴∁U B=[1,+∞),A∩(∁U B)=[1,2).因此阴影部分表示的集合为A∩(∁U B)={x|1≤x<2}.答案[1,2)C级创新猜想17.(多填题)对于任意两集合A,B,定义A-B={x|x∈A且x∉B},A*B=(A-B)∪(B-A),记A={y|y≥0},B={x|y=lg(9-x2)},那么B-A=________,A*B=________.解析由题意,得A={y|y≥0},B={x|-3<x<3},∴A-B={x|x≥3},B-A={x|-3<x<0}.因此A*B={x|x≥3}∪{x|-3<x<0}={x|-3<x<0或x≥3}.答案{x|-3<x<0} {x|-3<x<0或x≥3}。

常用逻辑用语课件高三数学一轮复习

常用逻辑用语课件高三数学一轮复习

主干知识·回顾
核心题型·突破
课时分层检测
AC [由题设知 4m-1=1,可得 m=12 ,故 f(x)= x ,
所以,要使 f(a)>f(b),则 a > b ,即 a>b≥0.
1 0<a
1 <b
⇔a>b>0,A 符合题意;
ln a>ln b⇔a>b>0,C 符合题意;
B,D 选项中 a,b 均有可能为负数,B,D 不符合题意.]
第一章 集合、常用逻辑用语、不等式
主干知识·回顾
核心题型·突破
课时分层检测
解析 若{an}为等差数列,设其公差为 d,则 an=a1+(n-1)d,所以 Sn=na1+n(n- 2 1) d,所以Snn =a1+(n-1)·d2 ,所以nS+n+11 -Snn =a1+(n +1-1)·d2 -[a1+(n-1)·d2 ]=d2 ,为常数,所以{Snn }为等差数列,即甲⇒ 乙;若{Snn }为等差数列,设其公差为 t,则Snn =S11 +(n-1)t=a1+(n-1)t, 所以 Sn=na1+n(n-1)t,所以当 n≥2 时,an=Sn-Sn-1=na1+n(n-1)t-[(n -1)a1+(n-1)(n-2)t]=a1+2(n-1)t,当 n=1 时,S1=a1 也满足上式,所
主干知识·回顾
核心题型·突破
课时分层检测
跟踪训练 1 (1)(2023·全国甲卷·理,5 分)设甲:sin2α+sin2β=1,乙: sinα+cos β=0,则( )
A.甲是乙的充分条件但不是必要条件 B.甲是乙的必要条件但不是充分条件 C.甲是乙的充要条件 D.甲既不是乙的充分条件也不是乙的必要条件
第一章 集合、常用逻辑用语、不等式

2020版高考数学大一轮复习 第一章集合与常用逻辑用语 教案(含解析)

2020版高考数学大一轮复习 第一章集合与常用逻辑用语  教案(含解析)

2020版高考数学大一轮复习第一章集合与常用逻辑用语§1.1集合的概念及运算最新考纲1.通过实例,了解集合的含义,体会元素与集合的“属于”关系.2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3.理解集合之间包含与相等的含义,能识别给定集合的子集.4.在具体情境中,了解全集与空集的含义.5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法2.集合间的基本关系A B(或B A)3.集合的基本运算概念方法微思考1.若一个集合A有n个元素,则集合A有几个子集,几个真子集.提示2n,2n-1.2.从A∩B=A,A∪B=A可以得到集合A,B有什么关系?提示A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)任何一个集合都至少有两个子集.( ×)(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.( ×)(3)若{x2,1}={0,1},则x=0,1.( ×)(4){x|x≤1}={t|t≤1}.( √)(5)若A∩B=A∩C,则B=C.( ×)题组二教材改编2.若集合A={x∈N|x≤2020},a=22,则下列结论正确的是( )A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A答案 D3.已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为________.答案 2解析 集合A 表示以(0,0)为圆心,1为半径的单位圆上的点,集合B 表示直线y =x 上的点,圆x 2+y 2=1与直线y =x 相交于两点⎝ ⎛⎭⎪⎫22,22,⎝ ⎛⎭⎪⎫-22,-22,则A ∩B 中有两个元素. 题组三 易错自纠4.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m 等于( ) A .0或 3 B .0或3 C .1或 3 D .1或3或0答案 B解析 A ={1,3,m },B ={1,m },A ∪B =A ,故B ⊆A ,所以m =3或m =m ,即m =3或m =0或m =1,其中m =1不符合题意,所以m =0或m =3,故选B.5.已知集合A ={x |x 2-4x +3<0},B ={x |2<x <4},则(∁R A )∪B =______________. 答案 {x |x ≤1或x >2}解析 由已知可得集合A ={x |1<x <3}, 又因为B ={x |2<x <4},∁R A ={x |x ≤1或x ≥3}, 所以(∁R A )∪B ={x |x ≤1或x >2}.6.若集合A ={x ∈R |ax 2-4x +2=0}中只有一个元素,则a =________. 答案 0或2解析 若a =0,则A =⎩⎨⎧⎭⎬⎫12,符合题意;若a ≠0,则由题意得Δ=16-8a =0,解得a =2. 综上,a 的值为0或2.题型一 集合的含义1.已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( ) A .1B .3C .6D .9 答案 C解析 当x =0时,y =0;当x =1时,y =0或y =1; 当x =2时,y =0,1,2.故集合B ={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合B 中有6个元素.2.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( ) A .2B .3C .4D .5答案 C 解析 因为32-x∈Z ,所以2-x 的取值有-3,-1,1,3,又因为x ∈Z ,所以x 的值分别为5,3,1,-1,故集合A 中的元素个数为4.3.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 答案 -32解析 由题意得m +2=3或2m 2+m =3, 则m =1或m =-32,当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意; 当m =-32时,m +2=12,而2m 2+m =3,故m =-32.思维升华 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合.(2)如果是根据已知列方程求参数值,一定要将参数值代入集合中检验是否满足元素的互异性.题型二 集合间的基本关系例1 (1)集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =n2+1,n ∈Z, N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =m +12,m ∈Z,则两集合M ,N 的关系为( ) A .M ∩N =∅ B .M =N C .M ⊆N D .N ⊆M答案 D解析 由题意,对于集合M ,当n 为偶数时,设n =2k (k ∈Z ),则x =k +1(k ∈Z ),当n 为奇数时,设n =2k +1(k ∈Z ),则x =k +1+12(k ∈Z ),∴N ⊆M ,故选D.(2)已知集合A ={x |x 2-2019x +2019<0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是________________________________________________________________________. 答案 [2019,+∞)解析 由x 2-2019x +2019<0,解得1<x <2019,故A ={x |1<x <2019}.又B ={x |x <a },A ⊆B ,如图所示,可得a ≥2019. 引申探究本例(2)中,若将集合B 改为{x |x ≥a },其他条件不变,则实数a 的取值范围是____________. 答案 (-∞,1]解析 A ={x |1<x <2019},B ={x |x ≥a },A ⊆B ,如图所示,可得a ≤1.思维升华 (1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.跟踪训练1 (1)已知集合A ={y |0≤y <a ,y ∈N },B ={x |x 2-2x -3≤0,x ∈N },若A B ,则满足条件的正整数a 所构成集合的子集的个数为________. 答案 8解析 B ={x |x 2-2x -3≤0,x ∈N }={x |-1≤x ≤3,x ∈N }={0,1,2,3},当a 分别取1,2,3时,所得集合A 分别为{0},{0,1},{0,1,2},均满足A B ,当a =4时,A ={0,1,2,3},不满足AB ,同理,当a ≥5时均不满足A B .所以满足条件的正整数a 所构成的集合为{1,2,3},其子集有8个.(2)已知集合A ={x |-1<x <3},B ={x |-m <x <m }.若B ⊆A ,则m 的取值范围为__________. 答案 (-∞,1]解析 当m ≤0时,B =∅,显然B ⊆A . 当m >0时,因为A ={x |-1<x <3},B ⊆A , 所以在数轴上标出两集合,如图,所以⎩⎪⎨⎪⎧m >0,-m ≥-1,所以0<m ≤1.综上所述,m 的取值范围为(-∞,1].题型三 集合的基本运算命题点1 集合的运算例2 (1)(2019·全国Ⅰ)已知集合A ={}x |x 2-x -2>0,则∁R A 等于( )A .{x |-1<x <2}B .{x |-1≤x ≤2}C .{x |x <-1}∪{x |x >2}D .{x |x ≤-1}∪{x |x ≥2} 答案 B解析 ∵x 2-x -2>0,∴(x -2)(x +1)>0,∴x >2或x <-1,即A ={x |x >2或x <-1}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={x |-1≤x ≤2}. 故选B.(2)(2019·海南联考)已知集合A ={x |3x 2+x -2≤0},B ={x |log 2(2x -1)≤0},则A ∩B 等于( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤23 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 23≤x ≤1 C.{}x | -1≤x ≤1 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x ≤23 答案 D解析 由题意得A =⎣⎢⎡⎦⎥⎤-1,23,B =⎝ ⎛⎦⎥⎤12,1,∴A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x ≤23,故选D. 命题点2 利用集合的运算求参数例3 (1)(2019·惠州模拟)已知集合A ={x |x <a },B ={x |x 2-3x +2<0},若A ∩B =B ,则实数a 的取值范围是( ) A .a <1 B .a ≤1 C .a >2 D .a ≥2答案 D解析 集合B ={x |x 2-3x +2<0}={x |1<x <2}, 由A ∩B =B 可得B ⊆A ,作出数轴如图.可知a ≥2.(2)设集合A ={-1,0,1},B =⎩⎨⎧⎭⎬⎫a -1,a +1a ,A ∩B ={0},则实数a 的值为________. 答案 1解析 0∈⎩⎨⎧⎭⎬⎫a -1,a +1a ,由a +1a≠0,则a -1=0,则实数a 的值为1.经检验,当a =1时满足题意.(3)设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若A ∩B =B ,则实数a 的取值范围是______. 答案 (-∞,-1]∪{1} 解析 因为A ∩B =B ,所以B ⊆A ,因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此可知,0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根, 由根与系数的关系,得 ⎩⎪⎨⎪⎧Δ=4(a +1)2-4(a 2-1)>0,-2(a +1)=-4,a 2-1=0,解得a =1;②当B ≠∅且B A 时,B ={0}或B ={-4}, 并且Δ=4(a +1)2-4(a 2-1)=0, 解得a =-1,此时B ={0}满足题意; ③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0, 解得a <-1.综上所述,所求实数a 的取值范围是(-∞,-1]∪{1}.思维升华 (1)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化. 跟踪训练2 (1)(2019·烟台模拟)已知集合A ={x |x 2+x -2≤0},B ={x |y =log 2x ,x ∈R },则A ∩B 等于( ) A .∅ B .[1,+∞) C .(0,2] D .(0,1]答案 D解析 由集合A ={x |x 2+x -2≤0}={x |-2≤x ≤1},B ={x |y =log 2x ,x ∈R }={x |x >0},所以A ∩B ={x |0<x ≤1}=(0,1],故选D.(2)已知集合A ={x |x 2-x -12≤0},B ={x |2m -1<x <m +1},且A ∩B =B ,则实数m 的取值范围为( ) A .[-1,2) B .[-1,3] C .[2,+∞) D .[-1,+∞)答案 D解析 由x 2-x -12≤0,得(x +3)(x -4)≤0, 即-3≤x ≤4,所以A ={x |-3≤x ≤4}. 又A ∩B =B ,所以B ⊆A .①当B =∅时,有m +1≤2m -1,解得m ≥2; ②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上,m 的取值范围为[-1,+∞). 题型四 集合的新定义问题例4(1)(2019·沈阳模拟)已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( ) A .15B .16C .20D .21 答案 D解析 由x 2-2x -3≤0,得(x +1)(x -3)≤0,得A ={0,1,2,3}.因为A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },所以A *B 中的元素有:0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,所以A *B ={1,2,3,4,5,6},所以A *B 中的所有元素数字之和为21.(2)设数集M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m ≤x ≤m +34,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪n -13≤x ≤n,且M ,N 都是集合U ={x |0≤x ≤1}的子集,定义b -a 为集合{x |a ≤x ≤b }的“长度”,则集合M ∩N 的长度的最小值为________. 答案112解析 在数轴上表示出集合M 与N (图略),可知当m =0且n =1或n -13=0且m +34=1时,M ∩N 的“长度”最小.当m =0且n =1时,M ∩N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23≤x ≤34, 长度为34-23=112;当n =13且m =14时,M ∩N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪14≤x ≤13, 长度为13-14=112.综上,M ∩N 的长度的最小值为112.思维升华 解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,应用到具体的解题过程之中.(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素.跟踪训练3 用C (A )表示非空集合A 中元素的个数,定义A *B =⎩⎪⎨⎪⎧C (A )-C (B ),C (A )≥C (B ),C (B )-C (A ),C (A )<C (B ).若A ={1,2},B ={x |(x 2+ax )(x 2+ax +2)=0},且A *B =1,设实数a 的所有可能取值组成的集合是S ,则C (S )=________. 答案 3解析 因为C (A )=2,A *B =1,所以C (B )=1或C (B )=3.由x 2+ax =0,得x 1=0,x 2=-a .关于x 的方程x 2+ax +2=0,当Δ=0,即a =±22时,易知C (B )=3,符合题意;当Δ>0,即a <-22或a >22时,易知0,-a 均不是方程x 2+ax +2=0的根,故C (B )=4,不符合题意;当Δ<0,即-22<a <22时,方程x 2+ax +2=0无实数解,当a =0时,B ={0},C (B )=1,符合题意,当-22<a <0或0<a <22时,C (B )=2,不符合题意.综上,S ={0,-22,22},故C (S )=3.1.已知集合A ={y |y =|x |-1,x ∈R },B ={x |x ≥2},则下列结论正确的是( ) A .-3∈A B .3∉B C .A ∩B =B D .A ∪B =B答案 C解析 由题意知A ={y |y ≥-1},因此A ∩B ={x |x ≥2}=B ,故选C.2.设集合M ={-1,1},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x<2,则下列结论中正确的是( ) A .N M B .M N C .N ∩M =∅ D .M ∪N =R答案 B解析 由题意得,集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x <2=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <0或x >12,所以M N .故选B.3.设集合A ={x ∈Z |x 2-3x -4<0},B ={x |2x≥4},则A ∩B 等于( ) A .[2,4)B .{2,4}C .{3}D .{2,3}答案 D解析 由x 2-3x -4<0,得-1<x <4,因为x ∈Z ,所以A ={0,1,2,3},由2x≥4,得x ≥2,即B ={x |x ≥2},所以A ∩B ={2,3}.4.(2019·全国Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A .9B .8C .5D .4 答案 A解析 将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个. 故选A.5.(2019·济南模拟)设全集U =R ,集合A ={x |x -1≤0},集合B ={x |x 2-x -6<0},则右图中阴影部分表示的集合为( )A .{x |x <3}B .{x |-3<x ≤1}C .{x |x <2}D .{x |-2<x ≤1}答案 D解析 由题意可得A ={x |x ≤1},B ={x |-2<x <3}, ∴A ∩B ={x |-2<x ≤1},故选D.6.(2019·潍坊模拟)设集合A =N ,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪xx -3≤0,则A ∩B 等于( ) A .[0,3) B .{1,2} C .{0,1,2} D .{0,1,2,3}答案 C解析 由集合A =N 和B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪xx -3≤0={x |0≤x <3},所以A ∩B ={0,1,2},故选C. 7.(2017·全国Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B 等于( ) A .{1,-3}B .{1,0}C .{1,3}D .{1,5} 答案 C解析 ∵A ∩B ={1},∴1∈B .∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.故选C.8.已知集合A ={x |-1<x <0},B ={x |x ≤a },若A ⊆B ,则a 的取值范围为( ) A .(-∞,0]B .[0,+∞)C .(-∞,0)D .(0,+∞)答案 B解析 用数轴表示集合A ,B (如图),由A ⊆B ,得a ≥0.9.(2019·郑州模拟)已知集合P ={x |y =-x 2+x +2,x ∈N },Q ={x |ln x <1},则P ∩Q =________. 答案 {1,2}解析 由-x 2+x +2≥0,得-1≤x ≤2,因为x ∈N , 所以P ={0,1,2}.因为ln x <1,所以0<x <e , 所以Q =(0,e),则P ∩Q ={1,2}.10.若全集U =R ,集合A ={x |x 2-x -2≥0},B ={x |log 3(2-x )≤1},则A ∩(∁U B )=________________. 答案 {x |x <-1或x ≥2}解析 集合A ={x |x 2-x -2≥0}={x |x ≤-1或x ≥2}, ∵log 3(2-x )≤1=log 33,∴0<2-x ≤3, ∴-1≤x <2,∴B ={x |-1≤x <2}, ∴∁U B ={x |x <-1或x ≥2}, ∴A ∩(∁U B )={x |x <-1或x ≥2}.11.设集合A ={-1,1,2},B ={a +1,a 2-2},若A ∩B ={-1,2},则a 的值为________. 答案 -2或1解析 ∵集合A ={-1,1,2},B ={a +1,a 2-2},A ∩B ={-1,2},∴⎩⎪⎨⎪⎧a +1=-1,a 2-2=2或⎩⎪⎨⎪⎧a +1=2,a 2-2=-1,解得a =-2或a =1.经检验,a =-2和a =1均满足题意.12.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________. 答案 [1,+∞)解析 由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).由A ⊆B ,画出数轴,如图所示,得c ≥1.13.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =______,n =________. 答案 -1 1解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1}, 由A ∩B =(-1,n ),可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.14.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个. 答案 6解析 依题意可知,由S 的3个元素构成的所有集合中,不含“孤立元”时,这三个元素一定是连续的三个自然数.故这样的集合共有6个.15.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪x 24+y 22=1,B ={(x ,y )|y =kx +m ,k ∈R ,m ∈R },若对任意实数k ,A ∩B ≠∅,则实数m 的取值范围是____________. 答案 [-2,2]解析 由已知,无论k 取何值,椭圆x 24+y 22=1和直线y =kx +m 均有交点,故点(0,m )在椭圆x 24+y 22=1上或在其内部,∴m 2≤2,∴-2≤m ≤ 2. 16.已知A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪y =log 36-xx -2,B ={x |x 2-2x +1-a 2≤0}(a >0),若A ∪B =B ,则实数a的取值范围是______. 答案 [5,+∞)解析 由6-xx -2>0可得(x -2)(x -6)<0,∴2<x <6,∴A =(2,6).又x 2-2x +1-a 2≤0可化为[x -(1-a )][x -(1+a )]≤0. 又a >0,∴B =[1-a,1+a ]. 由A ∪B =B ,得A ⊆B ,∴⎩⎪⎨⎪⎧2≥1-a ,6≤1+a ,∴a ≥5.∴实数a的取值范围是[5,+∞).2020版高考数学大一轮复习第一章集合与常用逻辑用语§1.2充要条件、全称量词与存在量词最新考纲1.理解必要条件、充分条件与充要条件的意义.2.通过生活和数学中的丰富实例,理解全称量词和存在量词的意义,能正确地对含有一个量词的命题进行否定.1.充分条件、必要条件与充要条件的概念2.全称量词和存在量词(1)全称量词:短语“所有的”“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.(2)存在量词:短语“存在一个”“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.3.全称命题、特称命题及含一个量词的命题的否定概念方法微思考若条件p,q以集合的形式出现,即A={x|p(x)},B={x|q(x)},则由A⊆B可得,p是q 的充分条件,请写出集合A,B的其他关系对应的条件p,q的关系.提示若A B,则p是q的充分不必要条件;若A⊇B,则p是q的必要条件;若A B,则p是q的必要不充分条件;若A=B,则p是q的充要条件;若A⊈B且A⊉B,则p是q的既不充分也不必要条件.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)q是p的必要条件时,p是q的充分条件.( √)(2)若p是q的充要条件,则命题p和q是两个等价命题.( √)(3)全称命题一定含有全称量词.( ×)(4)∃x0∈M,p(x0)与∀x∈M,綈p(x)的真假性相反.( √)题组二教材改编2.命题“正方形都是矩形”的否定是___________________________.答案存在一个正方形,这个正方形不是矩形3.“x-3=0”是“(x-3)(x-4)=0”的______条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)答案充分不必要题组三易错自纠4.(2019·郑州质检)命题“∃x0∈R,x20-x0-1>0”的否定是( )A.∀x∈R,x2-x-1≤0B.∀x∈R,x2-x-1>0C.∃x0∈R,x20-x0-1≤0D.∃x0∈R,x20-x0-1≥0答案 A5.已知p:x>a是q:2<x<3的必要不充分条件,则实数a的取值范围是________.答案(-∞,2]解析由已知,可得{x|2<x<3}{x|x>a},∴a≤2.6.若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.答案 1解析 ∵函数y =tan x 在⎣⎢⎡⎦⎥⎤0,π4上是增函数,∴y max =tan π4=1.依题意知,m ≥y max ,即m ≥1.∴m 的最小值为1.题型一 充分、必要条件的判定例1 (1)已知α,β均为第一象限角,那么“α>β”是“sin α>sin β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 D解析 取α=7π3,β=π3,α>β成立,而sin α=sin β,sin α>sin β不成立.∴充分性不成立;取α=π3,β=13π6,sin α>sin β,但α<β,必要性不成立.故“α>β”是“sin α>sin β”的既不充分也不必要条件.(2)已知条件p :x >1或x <-3,条件q :5x -6>x 2,则q 是p 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 由5x -6>x 2,得2<x <3,即q :2<x <3. 所以q ⇒p ,p ⇏q ,所以q 是p 的充分不必要条件,故选A. 思维升华 充分条件、必要条件的三种判定方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断,适用于定义、定理判断性问题.(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母范围的推断问题.跟踪训练1 (1)(2019·福建省莆田一中月考)王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的( ) A .充要条件 B .既不充分也不必要条件 C .充分不必要条件 D .必要不充分条件答案 D解析 非有志者不能至,是必要条件;但“有志”也不一定“能至”,不是充分条件. (2)(2019·济南模拟)若集合A ={x |1<x <2},B ={x |x >b ,b ∈R },则A ⊆B 的一个充分不必要条件是( ) A .b ≥2 B .1<b ≤2 C .b ≤1 D .b <1答案 D解析 ∵A ={x |1<x <2},B ={x |x >b ,b ∈R },∴A ⊆B 的充要条件是b ≤1,∴b <1是A ⊆B 的充分不必要条件,故选D.题型二 含有一个量词的命题命题点1 全称命题、特称命题的真假例2 (1)(2019·沈阳模拟)下列四个命题中真命题是( ) A .∀n ∈R ,n 2≥nB .∃n 0∈R ,∀m ∈R ,m ·n 0=mC .∀n ∈R ,∃m 0∈R ,m 20<n D .∀n ∈R ,n 2<n 答案 B解析 对于选项A ,令n =12,即可验证其不正确;对于选项C ,D ,可令n =-1加以验证,均不正确,故选B.(2)下列命题中的假命题是( ) A .∀x ∈R,2x -1>0 B .∀x ∈N *,(x -1)2>0 C .∃x 0∈R ,lg x 0<1 D .∃x 0∈R ,tan x 0=2答案 B解析 当x ∈N *时,x -1∈N ,可得(x -1)2≥0,当且仅当x =1时取等号,故B 不正确;易知A ,C ,D 正确,故选B.命题点2 含一个量词的命题的否定例3 (1)已知命题p :“∃x 0∈R ,0e x-x 0-1≤0”,则綈p 为( ) A .∃x 0∈R ,0e x-x 0-1≥0e x-x0-1>0B.∃x0∈R,0C.∀x∈R,e x-x-1>0D.∀x∈R,e x-x-1≥0答案 C解析根据全称命题与特称命题的否定关系,可得綈p为“∀x∈R,e x-x-1>0”,故选C.(2)(2019·福州质检)已知命题p:∀x1,x2∈R,[f(x2)-f(x1)](x2-x1)≥0,则綈p是( ) A.∃x1,x2∈R,[f(x2)-f(x1)](x2-x1)≤0B.∀x1,x2∈R,[f(x2)-f(x1)](x2-x1)≤0C.∃x1,x2∈R,[f(x2)-f(x1)](x2-x1)<0D.∀x1,x2∈R,[f(x2)-f(x1)](x2-x1)<0答案 C解析已知全称命题p:∀x1,x2∈R,[f(x2)-f(x1)]·(x2-x1)≥0,则綈p:∃x1,x2∈R,[f(x2)-f(x1)](x2-x1)<0,故选C.思维升华(1)判定全称命题“∀x∈M,p(x)”是真命题,需要对集合M中的每一个元素x,证明p(x)成立;要判断特称命题是真命题,只要在限定集合内找到一个x=x0,使p(x0)成立.(2)对全(特)称命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词;②对原命题的结论进行否定.跟踪训练2 (1)(2019·东北三校联考)下列命题中是假命题的是( )A.∃x0∈R,log2x0=0 B.∃x0∈R,cos x0=1C.∀x∈R,x2>0 D.∀x∈R,2x>0答案 C解析因为log21=0,cos0=1,所以选项A,B均为真命题,02=0,选项C为假命题,2x>0,选项D为真命题,故选C.3x+1)≤0,则( )(2)已知命题p:∃x0∈R,log2(0A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0答案 B解析因为3x>0,所以3x+1>1,则log2(3x+1)>0,所以p是假命题;綈p:∀x∈R,log2(3x +1)>0.故选B.题型三充分、必要条件的应用例4已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10}.由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件, 即所求m 的取值范围是[0,3]. 引申探究若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,方程组无解,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意: (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.跟踪训练3 (1)若“x >2m 2-3”是“-1<x <4”的必要不充分条件,则实数m 的取值范围是__________. 答案 [-1,1]解析 依题意,可得(-1,4)(2m 2-3,+∞), 所以2m 2-3≤-1,解得-1≤m ≤1.(2)设n ∈N *,则一元二次方程x 2-4x +n =0有整数根的充要条件是n =________. 答案 3或4解析 由Δ=16-4n ≥0,得n ≤4, 又n ∈N *,则n =1,2,3,4. 当n =1,2时,方程没有整数根; 当n =3时,方程有整数根1,3,当n =4时,方程有整数根2.综上可知,n =3或4. 题型四 命题中参数的取值范围例5已知f (x )=ln(x 2+1),g (x )=⎝ ⎛⎭⎪⎫12x -m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________________.答案 ⎣⎢⎡⎭⎪⎫14,+∞ 解析 当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m ,由f (x )min ≥g (x )min ,得0≥14-m ,所以m ≥14.引申探究本例中,若将“∃x 2∈[1,2]”改为“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是________________.答案 ⎣⎢⎡⎭⎪⎫12,+∞ 解析 当x ∈[1,2]时,g (x )max =g (1)=12-m ,由f (x )min ≥g (x )max ,得0≥12-m ,∴m ≥12.思维升华 对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.跟踪训练4(1)已知命题“∀x ∈R ,x 2-5x +152a >0”的否定为假命题,则实数a 的取值范围是______________.答案 ⎝ ⎛⎭⎪⎫56,+∞ 解析 由“∀x ∈R ,x 2-5x +152a >0”的否定为假命题,可知原命题必为真命题,即不等式x 2-5x +152a >0对任意实数x 恒成立.设f (x )=x 2-5x +152a ,则其图象恒在x 轴的上方.故Δ=25-4×152a <0,解得a >56,即实数a 的取值范围为⎝ ⎛⎭⎪⎫56,+∞.(2)已知c >0,且c ≠1,设命题p :函数y =c x为减函数.命题q :当x ∈⎣⎢⎡⎦⎥⎤12,2时,函数f (x )=x +1x >1c恒成立.如果p 和q 有且只有一个是真命题,则c 的取值范围为________________.答案 ⎝ ⎛⎦⎥⎤0,12∪(1,+∞)解析 由命题p 为真知,0<c <1, 由命题q 为真知,2≤x +1x ≤52,要使x +1x >1c 恒成立,需1c <2,即c >12,当p 真q 假时,c 的取值范围是0<c ≤12;当p 假q 真时,c 的取值范围是c >1.综上可知,c 的取值范围是⎝ ⎛⎦⎥⎤0,12∪(1,+∞).利用充要条件求参数范围逻辑推理是从事实和命题出发,依据规则推出其他命题的素养.逻辑推理的主要形式是演绎推理,它是得到数学结论、证明数学命题的主要方式,也是数学交流、表达的基本思维品质. 例已知p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),q 是p 的必要不充分条件,则实数m 的取值范围为__________. 答案 [9,+∞)解析 ∵q 是p 的必要不充分条件. 即p 是q 的充分不必要条件, 由x 2-2x +1-m 2≤0(m >0), 得1-m ≤x ≤1+m (m >0).∴q 对应的集合为{x |1-m ≤x ≤1+m ,m >0}. 设M ={x |1-m ≤x ≤1+m ,m >0}. 又由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10, ∴p 对应的集合为{x |-2≤x ≤10}. 设N ={x |-2≤x ≤10}. 由p 是q 的充分不必要条件知,NM ,∴⎩⎪⎨⎪⎧m >0,1-m <-2,1+m ≥10或⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m >10,解得m ≥9.∴实数m 的取值范围为[9,+∞).素养提升 例题中得到实数m 的范围的过程就是利用已知条件进行推理论证的过程,数学表达严谨清晰.1.以下四个命题中既是特称命题又是真命题的是( ) A .锐角三角形有一个内角是钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,1x>2答案 B解析 A 中锐角三角形的内角都是锐角,所以A 是假命题;B 中当x =0时,x 2=0,满足x 2≤0,所以B 既是特称命题又是真命题;C 中因为2+(-2)=0不是无理数,所以C 是假命题;D 中对于任意一个负数x ,都有1x <0,不满足1x>2,所以D 是假命题.2.命题“∀x ∈R ,∃n 0∈N *,使得n 0≤x 2”的否定形式是( ) A .∀x ∈R ,∃n 0∈N *,使得n 0>x 2B .∀x ∈R ,∀n ∈N *,使得n >x 2C .∃x 0∈R ,∃n 0∈N *,使得n 0>x 20 D .∃x 0∈R ,∀n ∈N *,使得n >x 20 答案 D解析 ∀改写为∃,∃改写为∀,n ≤x 2的否定是n >x 2,则该命题的否定形式为“∃x 0∈R ,∀n ∈N *,使得n >x 20”.故选D.3.(2019·西安模拟)设a ,b ∈R ,则“(a -b )a 2<0”是“a <b ”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件答案 A解析 由(a -b )a 2<0可知a 2≠0,则一定有a -b <0,即a <b ;但a <b 即a -b <0时,有可能a =0,所以(a -b )a 2<0不一定成立,故“(a -b )a 2<0”是“a <b ”的充分不必要条件,故选A.4.(2019·石家庄模拟)“log 2(2x -3)<1”是“4x>8”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 由log 2(2x -3)<1⇒0<2x -3<2⇒32<x <52,4x >8⇒2x >3⇒x >32,所以“log 2(2x -3)<1”是“4x>8”的充分不必要条件,故选A.5.(2019·天津河西区模拟)设a ∈R ,则“a =3”是“直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 若直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行,则⎩⎪⎨⎪⎧a (a -1)-6=0,a (7-a )-9a ≠0,即a =3,即“a =3”是“直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行”的充要条件.6.下列命题中,真命题是( ) A .∃x 0∈R ,0e x≤0 B .∀x ∈R,2x >x 2C .a +b =0的充要条件是ab=-1 D .“a >1,b >1”是“ab >1”的充分条件 答案 D解析 因为y =e x>0,x ∈R 恒成立,所以A 不正确; 因为当x =-5时,2-5<(-5)2,所以B 不正确;“a b=-1”是“a +b =0”的充分不必要条件,C 不正确; 当a >1,b >1时,显然ab >1,D 正确.7.已知p :x ≥k ,q :(x +1)(2-x )<0,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞) D .(-∞,-1]答案 B解析 由q :(x +1)(2-x )<0,得x <-1或x >2,又p 是q 的充分不必要条件,所以k >2,即实数k 的取值范围是(2,+∞),故选B.8.若∃x 0∈⎣⎢⎡⎦⎥⎤12,2,使得2x 20-λx 0+1<0成立是假命题,则实数λ的取值范围是( )A .(-∞,22]B .(22,3] C.⎣⎢⎡⎦⎥⎤22,92 D .{3}答案 A解析 因为∃x 0∈⎣⎢⎡⎦⎥⎤12,2,使得2x 20-λx 0+1<0成立是假命题,所以∀x ∈⎣⎢⎡⎦⎥⎤12,2,2x 2-λx+1≥0恒成立是真命题,即∀x ∈⎣⎢⎡⎦⎥⎤12,2,λ≤2x +1x 恒成立是真命题,令f (x )=2x +1x ,则f ′(x )=2-1x 2,当x ∈⎣⎢⎡⎭⎪⎫12,22时,f ′(x )<0,当x ∈⎝ ⎛⎦⎥⎤22,2时,f ′(x )>0,所以f (x )≥f ⎝ ⎛⎭⎪⎫22=22,则λ≤2 2.9.已知f (x )是R 上的奇函数,则“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的__________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 充分不必要解析 ∵函数f (x )是奇函数,∴若x 1+x 2=0,则x 1=-x 2,则f (x 1)=f (-x 2)=-f (x 2),即f (x 1)+f (x 2)=0成立,即充分性成立;若f (x )=0,满足f (x )是奇函数,当x 1=x 2=2时,满足f (x 1)=f (x 2)=0,此时满足f (x 1)+f (x 2)=0,但x 1+x 2=4≠0,即必要性不成立.故“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的充分不必要条件.10.若命题“对∀x ∈R ,kx 2-kx -1<0”是真命题,则k 的取值范围是________________. 答案 (-4,0]解析 “对∀x ∈R ,kx 2-kx -1<0”是真命题,当k =0时,则有-1<0;当k ≠0时,则有k <0且Δ=(-k )2-4×k ×(-1)=k 2+4k <0,解得-4<k <0,综上所述,实数k 的取值范围是(-4,0].11.已知命题“∃x 0∈R ,使2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是________. 答案 (-1,3)解析 原命题的否定为∀x ∈R,2x 2+(a -1)x +12>0,由题意知,其为真命题,即Δ=(a -1)2-4×2×12<0,则-2<a -1<2,即-1<a <3.12.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R,B ={x |-1<x <m +1,m ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是____________.答案 (2,+∞)解析 因为A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R={x |-1<x <3},x ∈B 成立的一个充分不必要条件是x ∈A ,所以A B ,所以m +1>3,即m >2.13.已知α,β∈(0,π),则“sin α+sin β<13”是“sin(α+β)<13”的______________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 充分不必要解析 因为sin(α+β)=sin αcos β+cos αsin β<sin α+sin β,所以若sin α+sin β<13,则有sin(α+β)<13,故充分性成立;当α=β=π2时,有sin(α+β)=sin π=0<13,而sin α+sin β=1+1=2,不满足sin α+sin β<13,故必要性不成立.所以“sin α+sin β<13”是“sin(α+β)<13”的充分不必要条件.14.(2019·山东济南一中月考)已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m的取值范围是____________.答案 ⎣⎢⎡⎦⎥⎤-12,43 解析 解不等式|x -m |<1,得m -1<x <m +1.由题意可得⎝ ⎛⎭⎪⎫13,12(m -1,m +1),故⎩⎪⎨⎪⎧m -1≤13,m +1≥12且等号不同时成立,解得-12≤m ≤43.15.已知函数f (x )=x +4x ,g (x )=2x+a ,若∀x 1∈⎣⎢⎡⎦⎥⎤12,1,∀x 2∈[2,3],f (x 1)≥g (x 2)恒成立,则实数a 的取值范围是______________. 答案 (-∞,-3]解析 由题意知f (x )min ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤12,1≥g (x )max (x ∈[2,3]),因为f (x )在⎣⎢⎡⎦⎥⎤12,1上为减函数,g (x )在[2,3]上为增函数,所以f (x )min =f (1)=5,g (x )max =g (3)=8+a ,所以5≥8+a ,即a ≤-3.16.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =x 2-32x +1,0≤x ≤2,B ={x |x +m 2≥2},p :x ∈A ,q :x ∈B ,p 是q 的充分条件,则实数m 的取值范围是________________. 答案 ⎝ ⎛⎦⎥⎤-∞,-54∪⎣⎢⎡⎭⎪⎫54,+∞解析 由y =x 2-32x +1=⎝ ⎛⎭⎪⎫x -342+716,0≤x ≤2,得716≤y ≤2,∴A =⎣⎢⎡⎦⎥⎤716,2.又由题意知A ⊆B , ∴2-m 2≤716,∴m 2≥2516.∴m ≥54或m ≤-54.。

2019高考数学(理)一轮复习全套学案

2019高考数学(理)一轮复习全套学案

2019高考数学(理)一轮复习全套学案目录第一章集合与常用逻辑用语第1节集合第2节命题及其关系、充分条件与必要条件第3节全称量词与存在量词、逻辑联结词“且”“或”“非”第二章函数、导数及其应用第1节函数及其表示第2节函数的单调性与最值第3节函数的奇偶性、周期性与对称性第4节二次函数与幂函数第5节指数与指数函数第6节对数与对数函数第7节函数的图像第8节函数与方程第9节函数模型及其应用第10节变化率与导数、计算导数第11节第1课时导数与函数的单调性第11节第2课时导数与函数的极值、最值学案第11节第3课时导数与函数的综合问题学案第12节定积分与微积分基本定理第三章三角函数、解三角形第1节任意角、弧度制及任意角的三角函数第2节同角三角函数的基本关系与诱导公式第3节三角函数的图像与性质第4节函数y=Asin(ωx+φ)的图像及应用学案第5节两角和与差及二倍角的三角函数第6节正弦定理和余弦定理第6节简单的三角恒等变换第7节正弦定理和余弦定理第8节解三角形实际应用举例第四章平面向量、数系的扩充与复数的引入第1节平面向量的概念及线性运算第2节平面向量的基本定理及坐标表示第3节平面向量的数量积与平面向量应用举例第4节数系的扩充与复数的引入第五章数列第1节数列的概念与简单表示法第2节等差数列及其前n项和第3节等比数列及其前n项和第4节数列求和第六章不等式、推理与证明第1节不等式的性质与一元二次不等式第2节基本不等式及其应用第3节二元一次不等式(组)与简单的线性规划问题第4节归纳与类比第5节综合法、分析法、反证法第6节数学归纳法第七章立体几何第1节简单几何体的结构及其三视图和直观图第2节空间图形的基本关系与公理第3节平行关系第4节垂直关系第5节简单几何体的表面积与体积第6节空间向量及其运算第7节第1课时利用空间向量证明平行与垂直第7节第2课时利用空间向量求空间角第八章平面解析几何第1节直线的倾斜角与斜率、直线的方程第2节两条直线的位置关系第3节圆的方程第4节直线与圆、圆与圆的位置关系第5节椭圆第6节抛物线第7节双曲线第8节曲线与方程第9节第1课时直线与圆锥曲线的位置关系第9节第2课时定点、定值、范围、最值问题第九章算法初步、统计与统计案例第1节算法与算法框图第2节随机抽样第3节统计图表、用样本估计总体学案第4节变量间的相关关系与统计案例第十章计数原理、概率、随机变量及其分布第1节分类加法计数原理与分步乘法计数原理第2节排列与组合第3节二项式定理第4节随机事件的概率学案第5节古典概型第6节几何概型第7节离散型随机变量及其分布列第8节二项分布与正态分布第9节离散型随机变量的均值与方差不等式选讲第1节绝对值不等式不等式选讲第2节不等式的证明坐标系与参数方程第1节坐标系坐标系与参数方程第2节参数方程第一节 集 合[考纲传真] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn 图表达集合间的基本关系及集合的基本运算.[基础知识填充]1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉. (3)集合的三种表示方法:列举法、描述法、Venn 图法. (4)常见数集的记法2.中至少有一AB3.A ∪BA ∩B∁A[(1)若有限集A 中有n 个元素,则A 的子集有2n个,真子集有2n-1个. (2)任何集合是其本身的子集,即:A ⊆A . (3)子集的传递性:A ⊆B ,B ⊆C ⇒A ⊆C . (4)A ⊆B ⇔A ∩B =A ⇔A ∪B =B .(5)∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)任何集合都有两个子集.( )(2){x |y =x 2}={y |y =x 2}={(x ,y )|y =x 2}.( ) (3)若{x 2,1}={0,1},则x =0,1.( ) (4){x |x ≤1}={t |t ≤1}.( )(5)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立. (6)若A ∩B =A ∩C ,则B =C .( )[解析] (1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.三个集合分别表示函数y =x 2的定义域(-∞,+∞),值域[0,+∞),抛物线y =x 2上的点集.(3)错误.当x =1时,不满足互异性.(4)正确.两个集合均为不大于1的实数组成的集合. (5)正确.由交集、并集、子集的概念知,正确. (6)错误.当A =∅时,B ,C 可为任意集合.[答案] (1)× (2)× (3)× (4)√ (5)√ (6)×2.(教材改编)若集合A ={x ∈N |x ≤22},a =2,则下列结论正确的是( )A .{a }⊆AB .a ⊆AC .{a }∈AD .a ∉A D [由题意知A ={0,1,2},由a =2,知a ∉A .]3.若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( )A .{x |-2<x <-1}B .{x |-2<x <3}C .{x |-1<x <1}D .{x |1<x <3}A [∵A ={x |-2<x <1},B ={x |x <-1或x >3}, ∴A ∩B ={x |-2<x <-1}.故选A.]4.设全集U ={x |x ∈N +,x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( )A .{1,4}B .{1,5}C .{2,5}D .{2,4}D [由题意得A ∪B ={1,3}∪{3,5}={1,3,5}.又U ={1,2,3,4,5},∴∁U (A ∪B )={2,4}.] 5.已知集合A ={x 2+x,4x },若0∈A ,则x =________.-1 [由题意,得⎩⎪⎨⎪⎧x 2+x =0,4x ≠0或⎩⎪⎨⎪⎧4x =0,x 2+x ≠0,解得x =-1.](第2页)(1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素个数为( ) A .3 B .4 C .5 D .6(2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2 019+b 2 019为( )A .1B .0C .-1D .±1(1)B (2)C [(1)因为集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以当b =4,a =1,2,3时,x =5,6,7. 当b =5,a =1,2,3时,x =6,7,8. 由集合元素的互异性,可知x =5,6,7,8. 即M ={5,6,7,8},共有4个元素. (2)由已知得a ≠0,则b a=0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 019+b2 019=(-1)2 019+02 019=-1.]确定集合中的元素是什么,即集合是数集还是点集看这些元素满足什么限制条件根据限制条件列式求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性[跟踪训练A.92 B.98 C .0 D .0或98(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.【79140001】(1)D (2)-32 [(1)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的取值为0或98.(2)因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.](1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B =A(2)已知集合A ={x |(x +1)(x -3)<0},B ={x |-m <x <m }.若B ⊆A ,则m 的取值范围为________. (1)B (2)m ≤1 [(1)由题意知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 因此B A .(2)当m ≤0时,B =∅,显然B ⊆A ,当m >0时,因为A ={x |(x +1)(x -3)<0}={x |-1<x <3}. 当B ⊆A 时,有所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为m ≤1.] 化简集合,从表达式中寻找两集合的关系用列举法或图示法等表示各个集合,从元素或图形中寻找关系2.根据集合间的关系求参数的方法已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、A ≠,应分[跟踪训练] (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________. (1)D (2)(-∞,4] [(1)由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}. 由题意知B ={1,2,3,4},所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)∵B ⊆A ,∴当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.]◎角度1 集合的运算(1)(2017·全国卷Ⅰ)已知集合A ={x |x <1},B ={x |3x<1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1}D .A ∩B =∅(2)(2018·九江一中)设U =R ,A ={-3,-2,-1,0,1,2},B ={x |x ≥1},则A ∩(∁U B )=( ) A .{1,2}B .{-1,0,1,2}C .{-3,-2,-1,0}D .{2}(1)A (2)C [(1)∵B ={x |3x<1},∴B ={x |x <0}.又A ={x |x <1},∴A ∩B ={x |x <0},A ∪B ={x |x <1}.故选A. (2)由题意得∁U B ={x |x <1},∴A ∩(∁U B )={-3,-2,-1,0},故选C.] ◎角度2 利用集合的运算求参数(2018·合肥第二次质检)已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [集合A ∩B ≠∅,则⎩⎪⎨⎪⎧12a ≤2a -1,2a -1≥1,解得a ≥1,故选A.] ◎角度3 新定义集合问题如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =______.{0,6} [由题意可知-2x =x 2+x ,所以x =0或x =-3.而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}.]看元素组成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提看集合能否化简,集合能化简的先化简,再研究其关系并进行运算,可使问题简单明了,易于求解要借助用数轴表示,并注意端点值的取舍以集合为依托,对集合的定义、运算、性质加以创新,但最终应转化为原来的集合问题来解决[跟踪训练A .{1,-3} B .{1,0} C .{1,3}D .{1,5}(2)已知全集U =R ,集合M ={x |(x -1)(x +3)<0},N ={x ||x |≤1},则阴影部分(如图1­1­1)表示的集合是( )图1­1­1A .[-1,1)B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1)(3)设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =________.【79140002】(1)C (2)D (3){0}∪[2,+∞) [(1)∵A ∩B ={1}, ∴1∈B .∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.故选C.(2)由题意可知,M=(-3,1),N=[-1,1],∴阴影部分表示的集合为M∩(∁U N)=(-3,-1).(3)由已知A={x|0<x<2},B={y|y≥0},又由新定义A⊗B={x|x∈A∪B且x∉A∩B},结合数轴得A⊗B={0}∪[2,+∞).]第二节命题及其关系、充分条件与必要条件[考纲传真] 1.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义.(第3页)[基础知识填充]1.四种命题及其相互关系(1)四种命题间的相互关系图1­2­1(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.2.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件;(2)若p⇒q,且⇒/p,则p是q的充分不必要条件;(3)若p⇒/q且q⇒p,则p是q的必要不充分条件;(4)若p⇔q,则p是q的充要条件;(5)若p⇒/q且q⇒/p,则p是q的既不充分也不必要条件.[知识拓展] 集合与充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有:(1)若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件.(2)若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件.(3)若A=B,则p是q的充要条件.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“x 2+2x -3<0”是命题.( )(2)命题“若p ,则q ”的否命题是“若p ,则﹁q ”.( ) (3)四种形式的命题中,真命题的个数为0或2或4.( ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( )(5)“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( ) [解析] (1)错误.该语句不能判断真假,故该说法是错误的. (2)错误.否命题既否定条件,又否定结论.(3)正确.因为两个命题互为逆否命题,它们有相同的真假性. (4)正确.q 是p 的必要条件说明p ⇒q ,所以p 是q 的充分条件. (5)正确.原命题与逆否命题是等价命题. [答案] (1)× (2)× (3)√ (4)√ (5)√2.(教材改编)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4C [“若p ,则q ”的逆否命题是“若﹁q ,则﹁p ”,显然﹁q :tan α≠1,﹁p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.]3.“x =1”是“(x -1)(x +2)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [若x =1,则(x -1)(x +2)=0显然成立,但反之不一定成立,即若(x -1)(x +2)=0,则x =1或-2.]4.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中真命题的个数为( )A .1B .2C .3D .4B [原命题正确,从而其逆否命题也正确;其逆命题为“若a >-6,则a >-3”是假命题,从而其否命题也是假命题.因此4个命题中有2个真命题.]5.(2017·天津高考)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 B [∵2-x ≥0,∴x ≤2. ∵|x -1|≤1,∴0≤x ≤2.∵当x ≤2时不一定有x ≥0,当0≤x ≤2时一定有x ≤2, ∴“2-x ≥0”是“|x -1|≤1”的必要而不充分条件. 故选B.](第4页)(1)命题“若a 2>b 2,则a >b ”的否命题是( ) A .若a 2>b 2,则a ≤b B .若a 2≤b 2,则a ≤b C .若a ≤b ,则a 2>b 2D .若a ≤b ,则a 2≤b 2(2)(2017·河南开封二十五中月考)下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y ,则x >|y |”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若1x>1,则x >1”的逆否命题(1)B (2)B [(1)根据命题的四种形式可知,命题“若p ,则q ”的否命题是“若﹁p ,则﹁q ”.该题中,p 为a 2>b 2,q 为a >b ,故﹁p 为a 2≤b 2,﹁q 为a ≤b .所以原命题的否命题为:若a 2≤b 2,则a ≤b .(2)对于A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x2=4>1,故为假命题;对于B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知为真命题;对于C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故为假命题;对于D ,命题“若1x>1,则x >1”的逆否命题为“若x ≤1,则1x≤1”,易知为假命题,故选B.]联系已有的数学公式、定理、结论进行正面直接判断利用原命题与逆否命题,逆命题与否命题的等价关系进行判断易错警示:写一个命题的其他三种命题时,需注意:判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例[跟踪训练个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为( )【79140007】A.0 B.1C.2 D.3D[原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.](1)(2017·北京高考)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2017·安徽百所重点高中二模)“a3>b3”是“ln a>ln b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(1)A(2)B[(1)法一:由题意知|m|≠0,|n|≠0.设m与n的夹角为θ.若存在负数λ,使得m=λn,则m与n反向共线,θ=180°,∴m·n=|m||n|cos θ=-|m||n|<0.当90°<θ<180°时,m·n<0,此时不存在负数λ,使得m=λn.故“存在负数λ,使得m=λn”是“m·n<0”的充分而不必要条件.故选A.法二:∵m=λn,∴m·n=λn·n=λ|n|2.∴当λ<0,n≠0时,m·n<0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A.(2)由a 3>b 3可得a >b ,当a <0,b <0时,ln a ,ln b 无意义;反之,由ln a >ln b 可得a >b ,故a 3>b 3.因此“a 3>b 3”是“ln a >ln b ”的必要不充分条件.]定义法:根据集合法:根据断问题.等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题[跟踪训练] (1)(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-12<12”是“sin θ<2”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·合肥第一次质检)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(1)A (2)A [(1)∵⎪⎪⎪⎪⎪⎪θ-π12<π12,∴-π12<θ-π12<π12,即0<θ<π6.显然0<θ<π6时,sin θ<12成立.但sin θ<12时,由周期函数的性质知0<θ<π6不一定成立.故0<θ<π6是sin θ<12的充分而不必要条件.故选A.(2)由祖暅原理可得﹁q ⇒﹁p ,即p ⇒q ,则充分性成立;反之不成立,如将同一个圆锥正放和倒放,在等高处的截面积不恒相等,但体积相等,∴p 是q 的充分不必要条件,故选A.]m 的取值范围为________.[0,3] [由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3.即所求m 的取值范围是[0,3].]1.把本例中的“必要条件”改为“充分条件”,求m 的取值范围.[解] 由x ∈P 是x ∈S 的充分条件,知P ⊆S ,则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≤-2,1+m ≥10,解得m ≥9,即所求m 的取值范围是[9,+∞).2.本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.[解] 不存在.理由:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,无解,∴不存在实数m ,使x ∈P 是x ∈S 的充要条件. 组求解易错警示:求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象[跟踪训练] (1)已知p :x ≥k ,q :x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1)(2)已知条件p :2x 2-3x +1≤0,条件q :a ≤x ≤a +1.若﹁p 是﹁q 的必要不充分条件,则实数a 的取值范围是________.【79140008】(1)B (2)⎣⎢⎡⎦⎥⎤0,12 [(1)∵3x +1<1,∴3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,∴x >2或x <-1, ∵p 是q 的充分不必要条件,∴k >2.(2)命题p 为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.﹁p 对应的集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1或x <12, ﹁q 对应的集合B ={}x |x >a +1或x <a .∵﹁p 是﹁q 的必要不充分条件,∴⎩⎪⎨⎪⎧a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12,∴0≤a ≤12.]第三节 全称量词与存在量词、逻辑联结词“且”“或”“非”[考纲传真] 1.了解逻辑联结词“且”“或”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.(第5页) [基础知识填充]1.简单的逻辑联结词(1)命题中的“且”“或”“非”叫作逻辑联结词. (2)命题p 且q ,p 或q ,﹁p 的真假判断2.(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题. (2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题. (2)p 或q 的否定为:﹁p 且﹁q ;p 且q 的否定为:﹁p 或﹁q .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)命题“5>6或5>2”是假命题.( )(2)命题﹁(p 且q )是假命题,则命题p ,q 中至少有一个是假命题.( ) (3)“长方形的对角线相等”是特称命题.( )(4)命题“对顶角相等”的否定是“对顶角不相等”.( ) [解析] (1)错误.命题p 或q 中,p ,q 有一真则真. (2)错误.p 且q 是真命题,则p ,q 都是真命题.(3)错误.命题“长方形的对角线相等”可叙述为“所有长方形的对角线相等”,是全称命题. (4)错误.“对顶角相等”是全称命题,其否定为“有些对顶角不相等”. [答案] (1)× (2)× (3)× (4)×2.(教材改编)已知p :2是偶数,q :2是质数,则命题﹁p ,﹁q ,p 或q ,p 且q 中真命题的个数为( )A .1B .2C .3D .4B [p 和q 显然都是真命题,所以﹁p ,﹁q 都是假命题,p 或q ,p 且q 都是真命题.] 3.下列四个命题中的真命题为( )A .存在x 0∈Z,1<4x 0<3B .存在x 0∈Z,5x 0+1=0C .任意x ∈R ,x 2-1=0 D .任意x ∈R ,x 2+x +2>0D [选项A 中,14<x 0<34且x 0∈Z ,不成立;选项B 中,x 0=-15,与x 0∈Z 矛盾;选项C 中,x ≠±1时,x 2-1≠0;选项D 正确.]4.命题:“存在x 0∈R ,x 20-ax 0+1<0”的否定为________.任意x ∈R ,x 2-ax +1≥0 [因为特称命题的否定是全称命题,所以命题“存在x 0∈R ,x 20-ax 0+1<0”的否定是“任意x ∈R ,x 2-ax +1≥0”.]5.若命题“任意x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.[-8,0] [当a =0时,不等式显然成立.当a ≠0时,依题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,解得-8≤a <0.综上可知-8≤a≤0.](第6页)(1)(2018·东北三省四市模拟(一))已知命题p:函数y=lg(1-x)在(-∞,1)上单调递减,命题q:函数y=2cos x是偶函数,则下列命题中为真命题的是( )A.p且q B.(﹁p)或(﹁q)C.(﹁p)且q D.p且(﹁q)(2)若命题“p或q”是真命题,“﹁p为真命题”,则( )A.p真,q真B.p假,q真C.p真,q假D.p假,q假(1)A(2)B[(1)命题p中,因为函数u=1-x在(-∞,1)上为减函数,所以函数y=lg(1-x)在(-∞,1)上为减函数,所以p是真命题;命题q中,设f(x)=2cos x,则f(-x)=2cos(-x)=2cos x=f(x),x∈R,所以函数y=2cos x是偶函数,所以q是真命题,所以p且q是真命题,故选A.(2)因为﹁p为真命题,所以p为假命题,又因为p或q为真命题,所以q为真命题.]确定命题的构成形式;判断依据“或”——一真即真,p”等形式命题的真假是y=|tan x| [跟踪训练] (2018·呼和浩特一调)命题p:x=2π是函数y=|sin x|的一条对称轴,q:2的最小正周期,下列命题①p或q;②p且q;③p;④﹁q,其中真命题有( )【79140013】A.1个B.2个C.3个D.4个C[由已知得命题p为真命题,命题q为假命题,所以p或q为真命题,p且q为假命题,﹁q为真命题,所以真命题有①③④,共3个,故选C.]◎角度1 全称命题、特称命题的真假判断下列命题中,真命题是( ) A .任意x ∈R ,x 2-x -1>0B .任意α,β∈R ,sin(α+β)<sin α+sin βC .存在x ∈R ,x 2-x +1=0D .存在α,β∈R ,sin(α+β)=cos α+cos βD [因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以A 是假命题.当α=β=0时,有sin(α+β)=sin α+sin β,所以B 是假命题.x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,所以C 是假命题.当α=β=π2时,有sin(α+β)=cos α+cos β,所以D 是真命题,故选D.] ◎角度2 含有一个量词的命题的否定命题“任意n ∈N +,f (n )∈N +且f (n )≤n ”的否定形式是( ) A .任意n ∈N +,f (n )∉N +且f (n )>n B .任意n ∈N +,f (n )∉N +或f (n )>n C .存在n 0∈N +,f (n 0)∉N +且f (n 0)>n 0 D .存在n 0∈N +,f (n 0)∉N +或f (n 0)>n 0D [写全称命题的否定时,要把量词“任意”改为“存在”,并且否定结论,注意把“且”改为“或”.]要判断一个全称命题是真命题,必须对限定集合x 成立;但要判断全称命题是假命题,只要能找出集合x 0不成立即可要判断一个特称命题是真命题,只要在限定集合中,至少能找到一个=x 0,使x 0成立即可,否则,这一特称命题就是假命题2.全称命题与特称命题的否定改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写否定结论:对原命题的结论进行否定[跟踪训练] (1)已知命题p :存在x ∈⎝⎭⎪⎫0,2,使得cos x ≤x ,则﹁p 为( )A .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x >xB .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x <xC .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x >xD .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x ≤x(2)下列命题中的假命题是( ) A .存在x 0∈R ,lg x 0=0 B .存在x 0∈R ,tan x 0= 3 C .任意x ∈R ,x 3>0D .任意x ∈R,2x>0(1)C (2)C [(1)原命题是一个特称命题,其否定是一个全称命题,而“cos x ≤x ”的否定是“cos x >x ”.故选C.(2)当x =1时,lg x =0,故命题“存在x 0∈R ,lg x 0=0”是真命题;当x =π3时,tan x =3,故命题“存在x 0∈R ,tan x 0=3”是真命题;由于x =-1时,x 3<0,故命题“任意x ∈R ,x 3>0”是假命题;根据指数函数的性质,对任意x ∈R,2x>0,故命题“任意x ∈R,2x>0”是真命题.]给定命题p :对任意实数x 都有ax 2+ax +1>0成立;q :关于x 的方程x 2-x +a =0有实数根.如果p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.[解] 当p 为真命题时,“对任意实数x 都有ax 2+ax +1>0成立”⇔a =0或⎩⎪⎨⎪⎧a >0,Δ<0,∴0≤a <4.当q 为真命题时,“关于x 的方程x 2-x +a =0有实数根”⇔Δ=1-4a ≥0,∴a ≤14.∵p 或q 为真命题,p 且q 为假命题, ∴p ,q 一真一假.∴若p 真q 假,则0≤a <4,且a >14,∴14<a <4;若p 假q 真,则⎩⎪⎨⎪⎧a <0或a ≥4,a ≤14,即a <0.故实数a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫14,4.先求出每个简单命题是真命题时参数的取值范围再根据复合命题的真假确定各个简单命题的真假情况有时不一定只有一种情况最后由的结果求出满足条件的参数取值范围[跟踪训练] (1)(2018·太原模拟(二))若命题“任意x ∈(0,+∞),x +x≥m ”是假命题,则实数m 的取值范围是________.【79140014】(2)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,则实数m 的取值范围为( ) A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤2(1)(2,+∞) (2)A [(1)由题意,知“存在x ∈(0,+∞),x +1x<m ”是真命题,又因为x ∈(0,+∞),所以x +1x≥2,当且仅当x =1时等号成立,所以实数m 的取值范围为(2,+∞).(2)依题意知,p ,q 均为假命题.当p 是假命题时,任意x ∈R ,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此,由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.]第一节 函数及其表示[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).(第8页) [基础知识填充]1.函数与映射的概念2.(1)函数的定义域、值域:数集A 叫作函数的定义域;函数值的集合{f (x )|x ∈A }叫作函数的值域. (2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. (4)函数的表示法:表示函数的常用方法有解析法、图像法和列表法. 3.分段函数若函数在其定义域内,对于定义域的不同取值区间,有着不同的对应关系,这样的函数通常叫作分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.[知识拓展]1.函数与映射的本质是两个集合间的“多对一”和“一对一”关系.2.分段函数是高考必考内容,常考查(1)求最值;(2)求分段函数单调性;(3)分段函数解析式;(4)利用分段函数求值,解题的关键是分析用哪一段函数,一般需要讨论.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图像至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)×2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.如图2­1­1所示,所给图像是函数图像的有( )图2­1­1A .1个B .2个C .3个D .4个B [(1)中,当x >0时,每一个x 的值对应两个不同的y 值,因此(1)不是函数图像;(2)中,当x =x 0时,y 的值有两个,因此(2)不是函数图像;(3)(4)中,每一个x 的值对应唯一的y 值,因此(3)(4)是函数图像,故选B.]4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=________.139 [f (3)=23,f (f (3))=⎝ ⎛⎭⎪⎫232+1=139.]5.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________.-2 [∵f (x )=ax 3-2x 的图像过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.](第9页)(1)(2018·济南一模)函数f (x )=2x-12+3x +1的定义域为________.(2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是________.(1)(-1,+∞) (2)[0,1) [(1)由题意得⎩⎨⎧2x -12≥0,x +1≠0,解得x >-1,所以函数f (x )的定义域为(-1,+∞).(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1).]已知函数解析式,构造使解析式有意义的不等式组求解实际问题:由实际意义及使解析式有意义构成的不等式组求解抽象函数:①若已知函数x 的定义域为g x 的定义域由不等式x b 求出;②若已知函数g x 的定义域为x 的定义域为x 在时的值域.x 定义域为[m x 定义域,先求φx 值域[a a ≤h xb ,.[跟踪训练] (1)函数f (x )=1-x+lg(3x +1)的定义域是( )A.⎝ ⎛⎭⎪⎫-13,1 B.⎝ ⎛⎭⎪⎫-13,+∞C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,-13 (2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.【79140019】(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意可知{ 1-x >0,x +1>0,解得⎩⎨⎧x <1,x >-13,∴-13<x <1,故选A.(2)∵f (2x)的定义域为[-1,1], ∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(4)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x =x (x ≠0),求f (x )的解析式.[解] (1)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,令t =x +1x,当x >0时,t ≥2x ·1x=2,当且仅当x =1时取等号;当x <0时,t =-⎝ ⎛⎭⎪⎫-x -1x ≤-2,当且仅当x =-1时取等号,∴f (t )=t 2-2t ∈(-∞,-2]∪[2,+∞).综上所述.f (x )的解析式是f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(2)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (3)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴{ 2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(4)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x+2f (x )=1x.联立方程组⎩⎨⎧fx +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).待定系数法:若已知函数的类型,可用待定系数法换元法:已知复合函数gx 的解析式,可用换元法,此时要注意新元的取值范围构造法:已知关于x 与f ⎝ ⎛⎭⎪⎫1x 或f -x 的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出x已知f x +1)=,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式. [解] (1)法一:(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1),所以f (x )=x 2-1(x ≥1).法二:(配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,所以f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, 所以a =1,b =2,f (x )=x 2+2x +c . 又因为方程f (x )=0有两个相等的实根, 所以Δ=4-4c =0,c =1, 故f (x )=x 2+2x +1.◎角度1 求分段函数的函数值(2015·全国卷Ⅱ)设函数f (x )={ 1+log 2-x ,x <1,x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12C [∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3. ∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.故选C.]。

清泉州阳光实验学校高三数学第一轮复习 常用逻辑用语教学案(教师)

清泉州阳光实验学校高三数学第一轮复习  常用逻辑用语教学案(教师)

清泉州阳光实验学校教案11常用逻辑用语一、课前检测1.以下语句中是命题的是〔B 〕A 周期函数的和是周期函数吗?B 145sin =︒C 0122>-+x xD 梯形是不是平面图形呢?2.命题“假设p 不正确,那么q 不正确〞的逆命题的等价命题是〔D 〕A .假设q 不正确,那么p 不正确B.假设q 不正确,那么p 正确C .假设p 正确,那么q 不正确D.假设p 正确,那么q 正确3.“假设240b ac -<,那么20ax bx c ++=没有实根〞,其否命题是〔C 〕A .假设240b ac ->,那么20ax bx c ++=没有实根B .假设240b ac ->,那么20ax bx c ++=有实根 C .假设240b ac -≥,那么20ax bx c ++=有实根D .假设240b ac -≥,那么20ax bx c ++=没有实根4.〔2021文〕以下命题中的假命题是〔C 〕 A.,lg 0x R x∃∈= B.,tan 1x R x ∃∈= C.3,0x R x ∀∈> D.,20x x R ∀∈>5.23:,522:>=+q p ,那么以下判断中,错误的选项是〔B 〕A.p 或者者q 为真,非q 为假B.p 或者者q 为真,非p 为假C.p 且q 为假,非p 为真D.p 且q 为假,p 或者者q 为真 二、知识梳理 〔一〕、逻辑联结词1.可以的语句叫做命题.命题由两部分构成; 解读:2.常见的逻辑联结词有、、,它们的符号表示分别为、、。

原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互解读:3.“或者者〞、“且〞、“非〞的真值判断 〔1〕“非p 〞形式复合命题的真假与P 的真假相反;〔2〕“p 且q 〞形式复合命题当P 与q 同为真时为真,其他情况时为假; 〔3〕“p 或者者q 〞形式复合命题当p 与q 同为假时为假,其他情况时为真. 解读: 〔二〕、四种命题1.四种命题:原命题:假设p 那么q ;逆命题:、否命题:逆否命题:. 解读:2.四种命题的关系:原命题与它的逆否命题同、否命题与逆命题同. 解读:3.命题假设p 那么q 的否认形式为。

2020高考数学一轮复习第一单元集合与常用逻辑用语学案文

2020高考数学一轮复习第一单元集合与常用逻辑用语学案文

【2019最新】精选高考数学一轮复习第一单元集合与常用逻辑用语学案文第1课集__合[过双基]1.集合的含义及表示(1)集合的含义:研究对象叫做元素,一些元素组成的总体叫做集合.集合中元素的性质:确定性、无序性、互异性.(2)元素与集合的关系:①属于,记为;②不属于,记为.(3)集合的表示方法:列举法、描述法和图示法.(4)常用数集的记法:自然数集,正整数集N*或N +,整数集,有理数集,实数集.2.集合间的基本关系AB 或B A(1)集合A是其本身的子集,即A⊆A;(2)子集关系的传递性,即A⊆B,B⊆C⇒A⊆C;(3)A∪A=A∩A=,A∪∅=,A∩∅=,∁UU=,∁U∅=. 1.(2018·江西临川一中期中)已知集合A={2,0,1,8},B={k|k∈R,k2-2∈A,k-2∉A},则集合B中所有的元素之和为( )B.-2A.2D.2C.0解析:选B 若k2-2=2,则k=2或k=-2,当k=2时,k-2=0,不满足条件,当k=-2时,k-2=-4,满足条件;若k2-2=0,则k=±,显然满足条件;若k2-2=1,则k=±,显然满足条件;若k2-2=8,则k=±,显然满足条件.所以集合B中的元素为-2,±,±,±,所以集合B中的元素之和为-2,故选B. 2.(2018·河北武邑中学期中)集合A={x|x2-7x<0,x∈N*},则B=中元素的个数为( )B.2A.1D.4C.3解析:选D A={x|x2-7x<0,x∈N*}={x|0<x<7,x∈N*}={1,2,3,4,5,6},B=={1,2,3,6},则B中元素的个数为4个.3.(2017·黄冈三模)设集合U={1,2,3,4},集合A={x∈N|x2-5x+4<0},则∁UA等于( )B.{1,4}A.{1,2}D.{1,3,4}C.{2,4}解析:选B因为集合U={1,2,3,4},集合A={x∈N|x2-5x+4<0}={x∈N|1<x<4}={2,3},所以∁UA={1,4}.4.(2017·天津高考)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=( )B.{1,2,4}A.{2}D.{x∈R|-1≤x≤5}C.{1,2,4,6}解析:选 B A∪B={1,2,4,6},又C={x∈R|-1≤x≤5},则(A∪B)∩C={1,2,4}.5.(2017·衡水押题卷)已知集合A={x|x2-2x≤0},B={y|y=log2(x+2),x∈A},则A∩B为( )B.[0,1]A.(0,1)D.[1,2]C.(1,2)解析:选 D 因为A={x|0≤x≤2},所以B={y|y=log2(x+2),x∈A}={y|1≤y≤2},所以A∩B={x|1≤x≤2}.[清易错]1.在写集合的子集时,易忽视空集.2.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.3.在应用条件A∪B=B⇔A∩B=A⇔A⊆B时,易忽略A=∅的情况.1.(2018·西安质检)已知集合M={1,2,3,4},则集合P={x|x∈M,且2x∉M}的子集的个数为( )A.8 B.4 C.3 D.2解析:选B 由题意,得P={3,4},所以集合P的子集有22=4个,故选B.2.已知全集U={2,3,a2+2a-3},A={|a+1|,2},∁UA={a+3},则实数a 的值为________.解析:∵∁UA={a+3},∴a+3≠2且a+3≠|a+1|且a+3∈U,由题意,得a+3=3或a+3=a2+2a-3,解得a=0或a=2或a=-3,又∵|a+1|≠2且,∴a≠0且a≠-3,∴a=2.答案:23.设集合A ={x|x2-5x +6=0},集合B ={x|mx -1=0},若A∩B=B ,则实数m 组成的集合是________.解析:由题意知A ={2,3},又A∩B=B ,所以B ⊆A. 当m =0时,B =∅,显然成立;当m≠0时,B =⊆{2,3},所以=2或=3,即m =或. 故m 组成的集合是. 答案:⎩⎨⎧⎭⎬⎫0,12,13[全国卷5年命题分析]考点 考查频度 考查角度集合的基本概念 5年2考 集合的表示、集合元素的性质集合间的基本关系 未考查集合的基本运算5年11考交、并、补运算,多与不等式相结合集合的基本概念[典例M 中的元素个数为( )A .3B .4C .5D .6(2)(2018·厦门模拟)已知P ={x|2<x<k ,x∈N},若集合P 中恰有3个元素,则k 的取值范围为________.[解析] (1)∵a∈A,b∈B,∴x=a +b 为1+4=5,1+5=2+4=6,2+5=3+4=7,3+5=8,共4个元素.(2)因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k≤6. [答案] (1)B (2)(5,6] [方法技巧]与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集还是点集.(2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.[即时演练]1.(2018·莱州一中模拟)已知集合A ={x∈N|x2+2x -3≤0},B ={C|C ⊆A},则集合B 中元素的个数为( )A .2B .3C .4D .5解析:选C A ={x∈N|(x+3)(x -1)≤0}={x∈N|-3≤x≤1}={0,1},共有22=4个子集,因此集合B 中元素的个数为4,选C.2.已知集合A ={m +2,2m2+m},若3∈A,则m 的值为________.解析:由题意得m +2=3或2m2+m =3,则m =1或m =-,当m =1时,m +2=3且2m2+m =3,根据集合中元素的互异性可知不满足题意;当m =-时,m +2=,而2m2+m =3,故m =-.答案:-32集合间的基本关系[典例] (1),若C ⊆A ,则实数a 的取值范围为( )A .(-∞,0)∪(2,+∞)B .(-∞,0]∪[3,+∞)C .[0,2]D .[0,3](2)已知集合A ={x|1≤x<5},B ={x|-a<x≤a+3},若B ⊆(A∩B),则实数a 的取值范围为________.[解析] (1)∵C ⊆A ,∴解得0≤a≤2,故实数a 的取值范围为[0,2]. (2)因为B ⊆(A∩B),所以B ⊆A. ①当B =∅时,满足B ⊆A , 此时-a≥a+3,即a≤-;②当B ≠∅时,要使B ⊆A ,则⎩⎪⎨⎪⎧-a<a +3,-a≥1,a +3<5,解得-<a≤-1.由①②可知,实数a的取值范围为(-∞,-1].[答案] (1)C (2)(-∞,-1][方法技巧]已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn图帮助分析.[即时演练]1.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若B⊆A,则m=________.解析:由已知得A={x|x=-2或x=-1},B={x|x=-1或x=-m}.因为B⊆A,当-m=-1,即m=1时,满足题意;当-m=-2,即m=2时,满足题意,故m=1或2.答案:1或22.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,实数a的取值范围是(c,+∞),则c=________.解析:由l og2x≤2,得0<x≤4,即A={x|0<x≤4},而B=(-∞,a),由于A⊆B,如图所示,则a>4,即c=4.答案:4集合的基本运算集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力.常见的命题角度有:1求交集或并集;2交、并、补的混合运算;3集合运算中的参数范围;4集合的新定义问题.角度一:求交集或并集1.(2017·山东高考)设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:选 D 由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.2.(2017·浙江高考)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=( )A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)解析:选A 根据集合的并集的定义,得P∪Q=(-1,2).角度二:交、并、补的混合运算3.设全集U=R,集合A={x|x>0},B={x|x2-x-2<0},则A∩(∁UB)=( ) A.(0,2] B.(-1,2]C.[-1,2] D.[2,+∞)解析:选D 因为A={x|x>0},B={x|-1<x<2},所以∁UB={x|x≤-1或x≥2},所以A∩(∁UB)={x|x≥2}.4.若全集U=R,集合A={x|1<2x<4},B={x|x-1≥0},则A∪(∁UB)=________.解析:A={x|0<x<2},B={x|x≥1},则∁UB={x|x<1},所以A∪(∁UB)={x|x<2}.答案:{x|x<2}角度三:集合运算中的参数范围5.(2017·上海高考)设集合A={x||x-2|≤3},B={x|x<t},若A∩B=∅,则实数t的取值范围是________.解析:因为集合A={x|-1≤x≤5},B={x|x<t},且A∩B=∅,所以t≤-1,即实数t的取值范围是(-∞,-1].答案:(-∞,-1]角度四:集合的新定义问题6.设M,P是两个非空集合,定义M与P的差集为:M-P={x|x∈M,且x∉P},则M-(M-P)=( )A.P B.M∩PC.M∪P D.M解析:选B 设全集U,由题意可得M-P=M∩(∁UP),所以M-(M-P)=M∩P.7.对于集合M,定义函数fM(x)=对于两个集合A,B,定义集合AΔB={x|fA(x)·fB(x)=-1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合AΔB的结果为________.解析:由题意知当x∈A且x∉B或x∈B且x∉A时,有fA(x)·fB(x)=-1成立,所以AΔB={1,6,10,12}.答案:{1,6,10,12}[方法技巧]解集合运算问题4个注意点(1)看元素构成集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键.(2)对集合化简有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)应用数形常用的数形结合形式有数轴和Venn图.(4)创新性问题以集合为依托,对集合的定义、运算、性质进行创新考查,但最终化为原来的集合知识和相应数学知识来解决.1.(2017·全国卷Ⅰ)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0} B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅解析:选A ∵集合A={x|x<1},B={x|x<0},∴A∩B={x|x<0},A∪B={x|x<1},故选A.2.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=( )A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选C 因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.3.(2015·全国卷Ⅱ)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=( ) A.(-1,3) B.(-1,0)C.(0,2) D.(2,3)解析:选A 将集合A与集合B在数轴上画出(如图).由图可知A∪B=(-1,3),故选A.4.(2014·全国卷Ⅱ)已知集合A={-2,0,2},B={ x|x2 -x-2=0},则A∩B =( )A.∅B.{2}C.{0} D.{-2}解析:选B 因为B={x|x2-x-2=0}={-1,2},A={-2,0,2},所以A∩B={2},故选B.5.(2013·全国卷Ⅰ)已知集合A={x|x2-2x>0},B={x|-<x<},则( )A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B解析:选B 因为集合A={x|x>2或x<0},所以A∪B={x|x>2或x<0}∪{x|-<x<}=R,故选B.一、选择题1.(2017·北京高考)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B =( )A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}解析:选A 由集合交集的定义可得A∩B={x|-2<x<-1}.2.设集合A={x|x2-9<0},B={x|2x∈N},则A∩B中元素的个数为( )A.3 B.4C.5 D.6解析:选D 因为A={x|-3<x<3},B={x|2x∈N},所以由2x∈N可得A∩B=,其元素的个数是6.3.(2017·全国卷Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为( )A.3 B.2C.1 D.0解析:选B 因为A表示圆x2+y2=1上的点的集合,B表示直线y=x上的点的集合,直线y=x与圆x2+y2=1有两个交点,所以A∩B中元素的个数为2.4.设集合A={x|x2-2x-3<0},B={x|x>0},则A∪B=( )A.(-1,+∞) B.(-∞,3)C.(0,3) D.(-1,3)解析:选A 因为集合A={x|x2-2x-3<0}={x|-1<x<3},B={x|x>0},所以A∪B={x|x>-1}.5.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( )A.{1,-3} B.{1,0}C.{1,3} D.{1,5}解析:选C 因为A∩B={1},所以1∈B,所以1是方程x2-4x+m=0的根,所以1-4+m=0,m=3,方程为x2-4x+3=0,解得x=1或x=3,所以B={1,3}.6.设集合A={-1,0,1},集合B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B中元素的个数是( )A.7 B.10C.25 D.52解析:选B 因为A={-1,0,1},B={0,1,2,3},所以A∩B={0,1},A∪B={-1,0,1,2,3}.由x∈A∩B,可知x可取0,1;由y∈A∪B,可知y可取-1,0,1,2,3.所以元素(x,y)的所有结果如下表所示:所以7.(2017·吉林一模)设集合A={0,1},集合B={x|x>a},若A∩B中只有一个元素,则实数a的取值范围是( )A.(-∞,1) B.[0,1)C.[1,+∞) D.(-∞,1]解析:选 B 由题意知,集合A={0,1},集合B={x|x>a},画出数轴(如图所示).若A∩B中只有一个元素,则0≤a<1,故选B.8.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q=( )A.{x|0<x<1} B.{x|0<x≤1}C.{x|1≤x<2} D.{x|2≤x<3}解析:选B 由log2x<1,得0<x<2,所以P={x|0<x<2}.由|x-2|<1,得1<x<3,所以Q={x|1<x<3}.由题意,得P-Q={x|0<x≤1}.二、填空题9.(2018·辽宁师大附中调研)若集合A={x|(a-1)x2+3x-2=0}有且仅有两个子集,则实数a的值为________.解析:由题意知,集合A有且仅有两个子集,则集合A中只有一个元素.当a-1=0,即a=1时,A=,满足题意;当a-1≠0,即a≠1时,要使集合A中只有一个元素,需Δ=9+8(a-1)=0,解得a=-.综上可知,实数a的值为1或-.答案:1或-1810.已知集合A={x|1≤x≤3},B={x|≥1}.若A∩B是集合{x|x≥a}的子集,则实数a的取值范围为________.解析:∵由≥1,得x≥2,∴B={x|x≥2}.∵A={x|1≤x≤3},∴A∩B={x|2≤x≤3}.若集合A∩B={x|2≤x≤3}是集合{x|x≥a}的子集,则a≤2.答案:(-∞,2]11.(2018·贵阳监测)已知全集U={a1,a2,a3,a4},集合A是全集U的恰有两个元素的子集,且满足下列三个条件:①若a1∈A,则a2∈A;②若a3∉A,则a2∉A;③若a3∈A,则a4∉A.则集合A=________.(用列举法表示)解析:假设a1∈A,则a2∈A,由若a3∉A,则a2∉A可知,a3∈A,故假设不成立;假设a4∈A,则a3∉A,a2∉A,a1∉A,故假设不成立.故集合A={a2,a3}.答案:{a2,a3}12.(2016·北京高考)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店①第一天售出但第二天未售出的商品有________种;②这三天售出的商品最少有________种.解析:设三天都售出的商品有x种,第一天售出,第二天未售出,且第三天售出的商品有y种,则三天售出商品的种类关系如图所示.由图可知:①第一天售出但第二天未售出的商品有19-(3-x)-x=16(种).②这三天售出的商品有(16-y)+y+x+(3-x)+(6+x)+(4-x)+(14-y)=43-y(种).由于所以0≤y≤14.所以(43-y)min=43-14=29.答案:①16②29三、解答题13.已知A={x|-1<x≤3},B={x|m≤x<1+3m}.(1)当m=1时,求A∪B;(2)若B⊆∁RA,求实数m的取值范围.解:(1)因为m=1时,B={x|1≤x<4},所以A∪B={x|-1<x<4}.(2)∁RA={x|x≤-1或x>3}.当B=∅时,则m≥1+3m,得m≤-,满足B⊆∁RA,当B≠∅时,要使B⊆∁RA,须满足或解得m>3.综上所述,m的取值范围是∪(3,+∞).14.记函数f(x)=的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域为B.(1)求A;(2)若B⊆A,求实数a的取值范围.解:(1)由2-≥0,得≥0,解得x<-1或x≥1,即A=(-∞,-1)∪[1,+∞).(2)由(x-a-1)(2a-x)>0,得(x-a-1)(x-2a)<0,∵a<1,∴a+1>2a,∴B=(2a,a+1),∵B⊆A,∴2a≥1或a+1≤-1,即a≥或a≤-2,∵a<1,∴≤a<1或a≤-2,∴实数a的取值范围是(-∞,-2]∪.1.已知定义域均为{x|0≤x≤2}的函数f(x)=与g(x)=ax+3-3a(a>0),设函数f(x)与g(x)的值域分别为A与B,若A⊆B,则a的取值范围是( ) A.[2,+∞) B.[1,2]C.[0,2] D.[1,+∞)解析:选B 因为f′(x)=,所以f(x)=在[0,1)上是增函数,在(1,2]上是减函数,又因为f(1)=1,f(0)=0,f(2)=,所以A={x|0≤x≤1};由题意易得B=[3-3a,3-a],因为[0,1]⊆[3-3a,3-a],所以3-3a≤0且3-a≥1,解得1≤a≤2.2.已知集合A={x|x2-2 018x+2 017<0},B={x|log2x<m},若A⊆B,则整数m的最小值是________.解析:由x2-2 018x+2 017<0,解得1<x<2 017,故A={x|1<x<2 017}.由log2x<m,解得0<x<2m,故B={x|0<x<2m}.由A⊆B,可得2m≥2 017,因为210=1 024,211=2 048,所以整数m的最小值为11.答案:11第2课命题及其关系__充分条件与必要条件[过双基]1.命题2(1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件1A.若a>b,则ac≤bc B.若ac≤bc,则a≤bC.若ac>bc,则a>b D.若a≤b,则ac≤bc解析:选B 由逆否命题的定义可知,答案为B.2.已知命题p:对于x∈R,恒有2x+2-x≥2成立;命题q:奇函数f(x)的图象必过原点,则下列结论正确的是( )A.p∧q为真B.(綈p)∨q为真C.p∧(綈q)为真D.(綈p)∧q为真解析:选C 由指数函数与基本不等式可知,命题p是真命题;当函数f(x)=时,是奇函数但不过原点,则可知命题q是假命题,所以p∧(綈q)是真命题,故选C.3.已知p:x>1或x<-3,q:x>a,若q是p的充分不必要条件,则a的取值范围是( )A.[1,+∞) B.(-∞,1]C.[-3,+∞) D.(-∞,-3)解析:选A 法一:设P={x|x>1或x<-3},Q={x|x>a},因为q是p的充分不必要条件,所以,因此a≥1.法二:令a=-3,则q:x>-3,则由命题q推不出命题p,此时q不是p的充分条件,排除B、C;同理,取a=-4,排除D,选A.4.已知命题p:x≠+2kπ,k∈Z;命题q:sin x≠,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B 令x=,则sin x=,即p⇒/ q;当sin x≠时,x≠+2kπ或+2kπ,k∈Z,即q⇒p,因此p是q的必要不充分条件.[清易错]1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A是B的充分不必要条件(A⇒B且BA)与A的充分不必要条件是B(B⇒A 且AB)两者的不同.1.“若x,y∈R且x2+y2=0,则x,y全为0”的否命题是( )A.若x,y∈R且x2+y2≠0,则x,y全不为0B.若x,y∈R且x2+y2≠0,则x,y不全为0C.若x,y∈R且x,y全为0,则x2+y2=0D.若x,y∈R且xy≠0,则x2+y2=0解析:选B 原命题的条件:x,y∈R且x2+y2=0,结论:x,y全为0.否命题是否定条件和结论.即否命题:“若x,y∈R且x2+y2≠0,则x,y不全为0”.2.设a,b∈R,函数f(x)=ax+b(0≤x≤1),则f(x)>0恒成立是a+2b>0成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A 充分性:因为f(x)>0恒成立,所以则a+2b>0,即充分性成立;必要性:令a=-3,b=2,则a+2b>0成立,但是,f(1)=a+b>0不成立,即f(x)>0不恒成立,则必要性不成立.所以答案为A.[全国卷5年命题分析]考点考查频度考查角度四种命题的相互关系及真假判断5年1考命题的真假判断充分条件、必要条件5年1考充要条件的判断命题的相互关系及真假性[典例] 0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的( )A.逆命题B.否命题C.逆否命题D.否定(2)原命题为“若<an,n∈N*,则{an}为递减数列”,关于其逆命题、否命题、逆否命题真假性的依次判断正确的是( )A.真,真,真B.假,假,真C.真,真,假D.假,假,假[解析] (1)命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.(2)原命题是:“若an+1<an,n∈N*,则{an}为递减数列”为真命题,则其逆否命题为真,逆命题是:“若{an}为递减数列,n∈N*,则an+1<an”为真命题,所以否命题也为真命题.[答案] (1)B (2)A[方法技巧]命题的关系及真假判断(1)在判断命题之间的关系时,首先要分清命题的条件与结论,再分析每个命题的条件与结论之间的关系,要注意四种命题关系的相对性.(2)判断命题真假的方法:一是联系已有的数学公式、定理、结论进行正面直接判断;二是利用原命题和其逆否命题的等价关系进行判断.[即时演练]1.已知命题α:如果x<3,那么x<5;命题β:如果x≥3,那么x≥5;命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系,下列三种说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A.①③ B.②C.②③D.①②③解析:选A 命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定,然后交换条件与结论所得,因此①正确,②错误,③正确.2.给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A.3 B.2 C.1 D.0解析:选C 易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题,故它的逆命题、否命题、逆否命题三个命题中,真命题只有一个.充分、必要条件的判定[典例] d,前n项和为Sn,则“d>0”是“S4+S6>2S5”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)设α:1≤x≤3,β:m+1≤x≤2m+4,m∈R,若α是β的充分条件,则m 的取值范围是________.[解析] (1)因为{an}为等差数列,所以S4+S6=4a1+6d+6a1+15d=10a1+21d,2S5=10a1+20d,S4+S6-2S5=d,所以d>0⇔S4+S6>2S5.(2)若α是β的充分条件,则α对应的集合是β对应集合的子集,则解得-≤m≤0.[答案] (1)C (2)⎣⎢⎡⎦⎥⎤-12,0 [方法技巧]充要条件的3种判断方法即设A ={x |p (x )},B ={x |q (x )}:若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,若A =B ,则p 是q 的充要条件[1.(2016·四川高考)设p :实数x ,y 满足x>1且y>1,q :实数x ,y 满足x +y>2,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A ∵∴x+y>2,即p ⇒q.而当x =0,y =3时,有x +y =3>2,但不满足x>1且y>1,即q ⇒/ p .故p 是q 的充分不必要条件.2.已知m ,n∈R,则“mn <0”是“抛物线mx2+ny =0的焦点在y 轴正半轴上”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 若“mn<0”,则x2=-y 中的->0,所以“抛物线mx2+ny =0的焦点在y 轴正半轴上”成立,是充分条件;反之,若“抛物线mx2+ny =0的焦点在y 轴正半轴上”,则x2=-y 中的->0,即mn <0,则“mn <0”成立,故是充要条件.的深层次考查.此类题的解决方法一般有两种:(1)直接法:先求出p ,q 为真命题时所对应的条件,然后表示出綈p 与綈q ,把綈p 与綈q 所对应的关系转化为綈p 与綈q 所对应集合之间的关系,列出参数所满足的条件求解;(2)等价转化法,把綈p ,綈q 的关系转化为p ,q 的关系.[典例] (2018·安徽黄山调研)已知条件p :2x2-3x +1≤0,条件q :x2-(2a +1)x +a(a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.[解析] 由2x2-3x +1≤0,得≤x≤1,∴条件p 对应的集合P =.由x2-(2a +1)x +a(a +1)≤0,得a≤x≤a+1,∴条件q 对应的集合为Q ={x|a ≤x ≤a +1}.法一:用“直接法”解题綈p 对应的集合A =,綈q 对应的集合B ={x|x>a +1或x<a}.∵綈p 是綈q 的必要不充分条件,即BA , ∴或∴0≤a ≤.即实数a 的取值范围是.法二:用“等价转化法”解题∵綈p 是綈q 的必要不充分条件,∴根据原命题与逆否命题等价,得p 是q 的充分不必要条件.∴p ⇒q ,即P Q ⇔或⎩⎪⎨⎪⎧ a≤12,a +1>1,解得0≤a≤.即实数a 的取值范围是.[答案] ⎣⎢⎡⎦⎥⎤0,12 [方法技巧]根据充分、必要条件求参数范围的2个注意点(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[即时演练]1.(2018·安阳调研)已知p:x∈A={x|x2-2x-3≤0,x∈R},q:x∈B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.若p是綈q的充分条件,则实数m的取值范围是________.解析:∵A={x|-1≤x≤3},B={x|m-2≤x≤m+2},∴∁RB={x|x<m-2或x>m +2}.∵p是綈q的充分条件,∴A⊆∁RB,∴m-2>3或m+2<-1,∴m>5或m<-3.答案:(-∞,-3)∪(5,+∞)2.若“x2>1”是“x<a”的必要不充分条件,则a的最大值为________.解析:由x2>1,得x<-1,或x>1,又“x2>1”是“x<a”的必要不充分条件,知由“x<a”可以推出“x2>1”,反之不成立,所以a≤-1,即a的最大值为-1.答案:-11.(2014·全国卷Ⅱ)函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x =x0是f(x)的极值点,则( )A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件解析:选C 当f′(x0)=0时,x=x0不一定是f(x)的极值点,比如,y=x3在x=0时,f′(0)=0,但在x=0的左右两侧f′(x)的符号相同,因而x=0不是y =x3的极值点.由极值的定义知,x=x0是f(x)的极值点必有f′(x0)=0.综上知,p是q的必要条件,但不是充分条件.2.(2017·天津高考)设θ∈R,则“<”是“sin θ<”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选A 法一:由<,得0<θ<,故sin θ<.由sin θ<,得-+2kπ<θ<+2kπ,k∈Z,推不出“<”.故“<”是“sin θ<”的充分而不必要条件.法二:<⇒0<θ<⇒sin θ<,而当sin θ<时,取θ=-,=>.故“<”是“sin θ<”的充分而不必要条件.3.(2016·北京高考)设a,b是向量,则“| a |=|b|”是“|a+b |=|a-b|”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选D 若|a|=|b|成立,则以a,b为邻边的平行四边形为菱形.a+b,a -b表示的是该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a+b|=|a-b|不一定成立,从而不是充分条件;反之,若|a+b|=|a-b|成立,则以a,b 为邻边的平行四边形为矩形,而矩形的邻边长度不一定相等,所以|a|=|b|不一定成立,从而不是必要条件.故“|a|=|b|”是“|a+b|=|a-b|”的既不充分也不必要条件.4.(2015·陕西高考)“sin α=cos α”是“cos 2α=0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A cos 2α=0等价于cos2α-sin2α=0,即cos α=±sin α.由cos α=sin α可得到cos 2α=0,反之不成立,故选A.5.(2015·重庆高考)“x>1”是“log (x+2)<0”的( )12A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件解析:选B ∵x>1⇒log (x+2)<0,log (x+2)<0⇒x+2>1⇒x>-1,∴“x>1”是“log (x+2)<0”的充分而不必要条件.121212一、选择题1.命题“若α=,则tan α=1”的逆否命题是( )A.若α≠,则tan α≠1 B.若α=,则tan α≠1C.若tan α≠1,则α=D.若tan α≠1,则α≠π4解析:选D 逆否命题是将原命题中的条件与结论都否定后再交换位置即可.所以逆否命题为:若tan α≠1,则α≠.2.在命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A.都真B.都假C.否命题真D.逆否命题真解析:选D 对于原命题:“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x|ax2+bx+c<0}≠∅,则抛物线y=ax2+bx+c的开口向下”是一个假命题,因为当不等式ax2+bx+c<0的解集非空时,可以有a>0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.3.“直线y=x+b与圆x2+y2=1相交”是“0<b<1”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选C 由直线y=x+b与圆x2+y2=1相交可得<1,所以-<b<,因此,“直线y=x+b与圆x2+y2=1相交”⇒/ “0<b<1”,但“0<b<1”⇒“直线y=x +b与圆x2+y2=1相交”.故选C.4.命题p:“∀x>e,a-ln x<0”为真命题的一个充分不必要条件是( )A.a≤1 B.a<1C.a≥1 D.a>1解析:选B 由题意知∀x>e,a<ln x恒成立,因为ln x>1,所以a≤1,故答案为B.5.a2+b2=1是asin θ+bcos θ≤1恒成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A 因为a2+b2=1,所以设a=cos α,b=sin α,则asin θ+bcos θ=sin(α+θ)≤1恒成立;当asin θ+bcos θ≤1恒成立时,只需asin θ+bcos θ=sin(θ+φ)≤≤1即可,所以a2+b2≤1,故不满足必要性.6.若向量a=(x-1,x),b=(x+2,x-4),则“a⊥b”是“x=2”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B 若“a⊥b”,则a·b=(x-1,x)·(x+2,x-4)=(x-1)(x+2)+x(x-4)=2x2-3x-2=0,则x=2或x=-;若“x=2”,则a·b=0,即“a⊥b”,所以“a⊥b”是“x=2”的必要不充分条件.7.在△ABC中,“sin A-sin B=cos B-cos A”是“A=B”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B 在△ABC中,当A=B时,sin A-sin B=cos B-cos A显然成立,即必要性成立;当sin A-sin B=cos B-cos A时,则sin A+cos A=sin B+cos B,两边平方可得sin 2A=sin 2B,则A=B或A+B=,即充分性不成立.则在△ABC 中,“sin A-sin B=cos B-cos A”是“A=B”的必要不充分条件.8.设m,n是两条直线,α,β是两个平面,则下列命题中不正确的是( ) A.当n⊥α时,“n⊥β”是“α∥β”的充要条件B.当m⊂α时,“m⊥β”是“α⊥β”的充分不必要条件C.当m⊂α时,“n∥α”是“m∥n”的必要不充分条件D.当m⊂α时,“n⊥α”是“m⊥n”的充分不必要条件解析:选C 由垂直于同一条直线的两个平面平行可知,A正确;显然,当m⊂α时,“m⊥β”⇒“α⊥β”;当m⊂α时,“α⊥β”⇒/ “m⊥β”,故B正确;当m⊂α时,“m∥n”⇒/ “n∥α”, n也可能在平面α内,故C错误;当m⊂α时,“n⊥α”⇒“m⊥n”,反之不成立,故D正确.二、填空题9.“若a≤b,则ac2≤bc2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.解析:其中原命题和逆否命题为真命题,逆命题和否命题为假命题.答案:210.下列命题正确的序号是________.①命题“若a>b,则2a>2b”的否命题是真命题;②命题“a,b都是偶数,则a+b是偶数”的逆否命题是真命题;③若p是q的充分不必要条件,则綈p是綈q的必要不充分条件;④方程ax2+x+a=0有唯一解的充要条件是a=±.解析:①否命题“若2a≤2b,则a≤b”,由指数函数的单调性可知,该命题正确;②由互为逆否命题真假相同可知,该命题为真命题;由互为逆否命题可知,③是真命题;④方程ax2+x+a=0有唯一解,则a=0或求解可得a=0或a=±,故④是假命题.答案:①②③11.已知集合A=,B={x|-1<x<m+1,x∈R},若x∈B成立的一个充分不必要的条件是x∈A,则实数m的取值范围是________.解析:A=={x|-1<x<3},∵x∈B成立的一个充分不必要条件是x∈A,∴A B,∴m+1>3,即m>2.答案:(2,+∞)12.给出下列四个结论:①若am2<bm2,则a<b;②已知变量x和y满足关系y=-0.1x+1,若变量y与z正相关,则x与z负相关;③“已知直线m,n和平面α,β,若m⊥n,m⊥α,n∥β,则α⊥β”为真命题;④m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充分不必要条件.其中正确的结论是________(填序号).解析:由不等式的性质可知,①正确;由变量间相关关系可知,当变量y和z 是正相关时,x与z负相关,故②正确;③由已知条件,不能判断α与β的位置关系,故③错误;④当m=3时,直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直;当直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直时,(m+3)m-6m=0,则m=3或m=0,即m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充分不必要条件,则④正确.答案:①②④三、解答题。

高考数学第一轮复习《集合与常用逻辑用语》考情分析

高考数学第一轮复习《集合与常用逻辑用语》考情分析

第一轮复习《集合与常用逻辑用语》 一、题型分析近几年高考题《集合与常用逻辑用语》板块无论是全国卷还是四川卷对的出题,都是以选择填空为主,出选择题比较多一些,也有时候出大题。

一般是两道题,所占分值为10分。

选择题中很多是考查充要条件的,大题一般是集合的求解。

二、考点梳理1、集合的概念(1)元素特征:确定性、互异性、无序性。

(2)分类:按个数:有限集,无限集;按特征:点集,数集。

(3)表示:列举法,描述法,图示法,区间法(不能表示空集、单元素集)。

2、两类关系(1)元素与集合的关系:a ∈A 或a ∉A 。

(2)集合与集合的关系:A ⊆B (A ⊂B 与A=B ) 3、集合的运算(1){}A B x x A x B =∈∈且,{}A B x x A x B =∈∈或,{}AU x x U x A C =∈∉且。

(2)运算律:()()()()()()()()()A B A B U U U A B A B UU U A B C A B A C C C C C C C === 4、逻辑联结词与四种命题(1)量词:∀∃,(2)基本逻辑联结词:或∨,且∧,非⌝(3)复合命题真值表:p q ∨同假为假,p q ∧同真为真,p ⌝一真一假。

5、充要条件(1)概念:,p q q p ⇒≠,则p 是q 的充分不必要条件。

,p q q p ≠⇒,则p 是q 的必要不充分条件。

p ,q q p ⇒⇒,则p 、q 互为充要条件。

(2)与集合的关系:若p q ⊂,则p 是q 的充分不必要条件。

若p q ⊆,则p 是q 的充分条件。

若p=q ,则p 与q 互为充要条件。

二、易错考点针对训练例1:(关注∅)设A 、B 为两个集合,对于A B ⊆,下列说法正确的是( ) 0:,A x A x B ∃∈∈使 :B B A ⊆一定不成立:C B 不可能是空集 00:D x A x B ∈∈是的充分条件例2:(关注边界)设集合{}0M x x m =-≤,{}21,x N y y x R ==-∈,若M N =∅,则实数m 的取值范围是( ):1A M ≥- :1B M - :m 1C ≤- :m1D - 例3:(关注特殊元素)集合{}{}1,1,M x x N x ax MN M =====,则实数a 的可能集合为( )A {1,-1}B {1}C {0,1}D {-1,0,1}例4:(关注元素特征)设集合{}{}2211,20,,A P P N B q q N A B M =+∈=+∈=若则M 中元素的个数为( )A 0B 1C 2D 至少3个注:A B M =转化为222211209p q p q +=+⇒-=p+q=9p+q=313p q p q ⎧⎧⇒⎨⎨-=-=⎩⎩或 得p 5p 340q q ==⎧⎧⎨⎨==⎩⎩或 例5:(利用特定范围,化简解题过程)已知+,x R y R ∈∈,集合{}21,,1,,,12y A x x x x B y y ⎧⎫=++---=--+⎨⎬⎩⎭,且A=B ,则22x y +的值为( )A 1B 2C 3D 4注:y R +∈,则B 中元素二负一正且大小确定,而A 中210x x ++>,故有2111122x x y x x y y y x ⎧⎪++=+=⎧⎪--=-⇒⎨⎨=⎩⎪⎪-=-⎩例6(关注数形结合)下列四个命题1011:(0,),()23x x p x ∃∈+∞<有() 201123:(0,1),log log p x x x ∃∈>有 3121:(0,),2x p x x ∀∈+∞都有()>log 41311:(0,),log 32x p x x ∀∈<都有() 其中真命题是( )例7(关注集合关系与充要条件的转化)集合{}1x 0,11x A B x x a x ⎧-⎫=<=-<⎨⎬+⎩⎭,则a=1是A B =∅的( )条件A 充分不必要B 必要不充分C 充要D 既不充分也不必要三、复习中的一些措施:1、提前布置复习内容,督促学生课前动手、思考和记忆。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高三数学第一轮复习 11 常用逻辑用语(1)教案(学
生版)
一、课前检测
1.下列语句中是命题的是( )
A 周期函数的和是周期函数吗?
B 145sin =︒
C 0122>-+x x
D 梯形是不是平面图形呢?
2.命题“若p 不正确,则q 不正确”的逆命题的等价命题是 ( ) A.若q 不正确,则p 不正确 B. 若q 不正确,则p 正确 C 若p 正确,则q 不正确 D. 若p 正确,则q 正确
3.“若240b ac -<,则2
0ax bx c ++=没有实根”,其否命题是 ( )
A . 若2
40b ac ->,则20a x b x c ++=没有实根 B . 若240b ac ->,则2
0a
x b x c ++=有实根
C . 若2
40b ac -≥,则20a x b x c ++=有实根 D . 若240b ac -≥,则2
0a
x b x c ++=没有实根
4. (2010湖南文)下列命题中的假命题...
是( ) A. ,lg 0x R x ∃∈= B. ,tan 1x R x ∃∈= C. 3,0x R x ∀∈> D.
,20x x R ∀∈>
5. 已知23:,522:>=+q p ,则下列判断中,错误的是( ) A. p 或q 为真,非q 为假 B. p 或q 为真,非p 为假 C. p 且q 为假,非p 为真 D. p 且q 为假,p 或q 为真
二、知识梳理 (一)、逻辑联结词
1. 可以 的语句叫做命题.命题由 两部分构成; 解读:
2.常见的逻辑联结词有 、 、 ,它们的符号表示分别为 、 、 。

解读:
3.“或”、 “且”、 “非”的真值判断 (1)“非p ”形式复合命题的真假与P 的真假相反; (2)“p 且q ”形式复合命题当P 与q 同为真时为真,其他情况时为假; (3)“p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真. 解读:
(二)、四种命题
1. 四种命题:原命题:若p 则q ;逆命题: 、否命题: 逆否命题: . 解读:
2.四种命题的关系:原命题与它的逆否命题同 、否命题与逆命题同 . 解读:
3. 命题若p 则q 的否定形式为 。

解读:
解读:
三、典型例题分析
例1 写出命题“若22
0x y +=,则,x y 全为零”的逆命题、否命题和逆否命题. 逆命题: 否命题: 逆否命题:
变式训练:原命题:“设2
,,ac b a R c b a 则若、、>∈>bc 2
”以及它的逆命题,否命题、逆否命题中,真命题共有( )个.
A .0
B .1
C .2
D .4
例2 已知命题",1:"23a a a p >>则若;命题a
a a q 1,0:">
>则若, 则在“p 或q ”,“p 且q ”,“非p ”,“非q ”四个命题中,真命题是 。

变式训练:已知命题:p “[]0,1,x x a e ∀∈≥”,命题:q “2,40x R x x a ∃∈++=”, 若命题“p q ∧” 是真命题,则实数a 的取值范围是( ).
A .[,4]e
B .[1,4]
C .(4,)+∞
D .(,1]-∞
例3 已知p :012=++mx x 有两个不等的负根,q :01)2(442=+-+x m x 无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.
小结与拓展:含有逻辑联结词的命题要首先求出构成命题的简单命题的真假,其次求出含有逻辑联结词的命题成立的条件,最后求出参数成立的条件。

变式训练:已知p :不等式2
10mx +>的解集为R ;q :函数()log m f x x =是减函数。

若p
或q 为真,p 且q 为假,求m 的取值范围.
四、归纳与总结(以学生为主,师生共同完成) 1.知识:
2.思想与方法:
3.易错点:
4.教学反思(不足并查漏):。

相关文档
最新文档