VASP(计算前的)验证
VASP参数设置详解解读
VASP参数设置详解计算材料2010-11-30 20:11:32 阅读197 评论0 字号:大中小订阅转自小木虫,略有增减软件主要功能:采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型l 计算材料的状态方程和力学性质(体弹性模量和弹性常数)l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF)l 计算材料的光学性质l 计算材料的磁学性质l 计算材料的晶格动力学性质(声子谱等)l 表面体系的模拟(重构、表面态和STM模拟)l 从头分子动力学模拟l 计算材料的激发态(GW准粒子修正)计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册INCAR文件:该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类:对所计算的体系进行注释:SYSTEM●定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWA V●定义电子的优化–平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG–电子部分优化的方法:ALGO,IALGO,LDIAG–电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX–自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFF●定义离子或原子的优化–原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW–分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS–离子弛豫收敛标准:EDIFFG●定义态密度积分的方法和参数–smearing方法和参数:ISMEAR,SIGMA–计算态密度时能量范围和点数:EMIN,EMAX,NEDOS–计算分波态密度的参数:RWIGS,LORBIT●其它–计算精度控制:PREC–磁性计算:ISPIN,MAGMOM,NUPDOWN–交换关联函数:GGA,VOSKOWN–计算ELF和总的局域势:LELF,LVTOT–结构优化参数:ISIF–等等。
vasp 计算知识
vasp 输入文件中的ISMEAR参数指的是波函数占据数目,但是这个到底是什么意思?可以浅显一点讲吗
就是说电子在费米面附近占据数从0突变到1,这是个deta函数,为了计算方便,用一个平滑点的函数在费米面附近代替这个deta函数,这样计算就不容易振荡,易于收敛。ismear就是可以采用这种方法:将SIGMA在不同大小的kmesh下进行静态计算测试,对每一个SIGMA值求“entropy T*S”值,可以得出一系列(一般取两条)不同kmesh下SIGMA与“entropy T*S”对应的曲线,将这些曲线比较,取不同kmesh曲线的“entropy T*S”差值最小的点对应的SIGMA值即可。具体参数设置可以参看侯柱峰编写的《VASP软件包使用入门指南》中“§5.7节ISMEAR和SIGMA”。
SIGMA的值是展宽,决定了电子的占有数,当它取不同值时,对金属体系的费米能处的电子占有数变化很大。一般地对于半导体和绝缘体来说SIGMA=0.05就够小了,金属的默认取值0.2。如果计算的体系是金属,在静态计算物理量时,则用ISMEAR=-5,这时不必设置SIGMA(此时SIGMA的取值对结果没有影响)。如果对体系进行驰豫,先用ISMAR=1或2(金属体系)或0(半导体或绝缘体)优化出SIGMA,得到优化的结构后,再进行静态计算(ISMEAER=0用的比较多,手册上的说法不管什么计算取ISMEAR=0然后找一个合适的SIGMA就可以)。另外,SIGMA的值依赖于kmesh的大小,当kmesh发生改变时SIGMA的值也需要重新优化取值。
最好是每做一个计算,都要先做一个SIGMA的检测以选取合适的SIGMA值,不过在有了可靠的经验以后就不用每次都做了。绝缘体SIGMA可以取得小一点,金属的不要取的太小否则不容易收敛。在收敛速度可以接受的情况下可以适当减小SIGMA。
VASP计算前的各种测试
BatchDoc Word文档批量处理工具(计算前的)验证一、检验赝势的好坏:(一)方法:对单个原子进行计算;(二)要求:1、对称性和自旋极化均采用默认值;2、ENCUT要足够大;3、原胞的大小要足够大,一般设置为15 ?足矣,对某些元素还可以取得更小一些。
(三)以计算单个Fe原子为例:1、INCAR文件:SYSTEM = Fe atomENCUT = 450.00 eVNELMDL = 5 ! make five delays till charge mixing,详细意义见注释一ISMEAR = 0SIGMA=0.12、POSCAR文件:atom15.001.00 0.00 0.000.00 1.00 0.000.00 0.00 1.001Direct0 0 03、KPOINTS文件:(详细解释见注释二。
)AutomaticGamma1 1 10 0 04、POTCAR文件:(略)注释一:关键词“NELMDL”:A)此关键词的用途:指定计算开始时电子非自洽迭代的步数(即NELMDL gives the number of non-selfconsistent steps at the beginning),文档批量处理工具BatchDoc Word文档批量处理工具BatchDoc Word densitycharge fastermake calculations 。
目的是“非自洽”指的是保持“非自Charge density is used to set up the Hamiltonian, 所以不变,由于洽”也指保持初始的哈密顿量不变。
:B)默认值(default value)(时) 当ISTART=0, INIWANELMDL = -5 V=1, and IALGO=8 ) ISTART=0, INIWA V=1, and IALGO=48( NELMDL = -12 时当)其他情况下NELMDL = 0 (NELMDL might be positive or negative.ionic each applied means A positive number that after a delay is(movement -- in general not a convenient option. )在每次核运动之后(只在A negative value results in a delay only for the start-configuration.第一步核运动之前)NELMDL”为什么可以减少计算所需的时间?C)关键词“the the is Charge density used Hamiltonian, to set then upwavefunctions are optimized iteratively so that they get closer to the exacta optimized wavefunctions wavefunctions of Hamiltonian. this From theold with density charge is calculated, the which is then mixed newManual P105input-charge density. A brief flowchart is given below.(参自页)是比较离谱的,在前一般情况下,the initial guessed wavefunctions不变、保持初始的density次非自洽迭代过程中保持NELMDLcharge哈密顿量不变,只对wavefunctions进行优化,在得到一个与the exact文档批量处理工具BatchDoc WordBatchDoc Word文档批量处理工具wavefunctions of initial Hamiltonian较为接近的wavefunctions后,再开始同时优化charge density。
个人非常好的VASP学习与总结
个人非常好的VASP学习与总结VASP(Vienna Ab initio Simulation Package)是一种用于计算材料电子结构和材料性质的第一性原理软件包。
它是由奥地利维也纳大学的Peter Blöchl教授和Jürgen Hafner教授等人开发的。
VASP广泛应用于材料科学、凝聚态物理、表面科学、催化化学等领域,并且已成为当前计算材料科学研究中的重要工具。
我的VASP学习与总结主要包括以下几个方面:一、理论基础在学习VASP之前,我首先了解了从头计算的理论基础。
这包括了量子力学、自旋极化的密度泛函理论、平面波基组和赝势等关键概念。
我通过阅读相关文献和教材,深入理解了这些理论基础,并通过编程实现了一些基本的从头计算算法,如Hartree-Fock法和密度泛函理论。
二、VASP软件架构和输入文件学习VASP的过程中,我详细了解了VASP的软件架构和输入文件的格式。
VASP的软件架构分为主程序和一系列的预处理工具、后处理工具和与其他软件的接口。
对于输入文件,我了解了INCAR文件中的各种参数,如体系的描述、计算方法、收敛准则等;POSCAR文件中的晶体结构描述;KPOINTS文件中的k点网格描述等。
我还学习了如何使用VASP进行周期性边界条件下的能带计算、电子密度计算和弛豫力计算等。
三、VASP计算结果的解析和可视化VASP计算得到的结果需要进一步解析和可视化。
我学习了使用一些常用的后处理工具,如VASP可视化工具、VESTA和XCrysDen等,来分析和可视化VASP计算的结果。
这些工具可以帮助我理解晶体结构、电子能带结构以及电荷分布等。
四、VASP参数优化和计算效率为了得到准确的计算结果,我尝试了调整VASP计算中的一些参数,如波函数截断、k点密度、能量收敛准则等,以获得更准确的计算结果。
此外,我还学习了使用并行计算技术来提高VASP计算的效率,如MPI和OpenMP等,并了解了VASP在高性能计算集群上的使用方法。
如何用VASP计算晶格常数
如何用VASP计算晶格常数VASP是一款常用的第一性原理计算软件,可用于计算各种物理和化学性质,包括晶格常数。
本文将通过详细的步骤指导如何使用VASP计算晶格常数。
1.准备工作:在使用VASP计算晶格常数之前,需要准备以下文件:-INCAR文件:包含所有计算参数的输入文件。
- POSCAR文件:包含体系的原子坐标和晶格常数的输入文件。
可以使用外部软件生成,例如Materials Studio、VESTA等。
-POTCAR文件:包含原子势能信息的文件。
-KPOINTS文件:用于定义k点网格,用于计算能带结构。
可以使用自动生成工具进行生成。
2.设置INCAR文件:打开INCAR文件,设置以下参数:-ENCUT:截断能。
一种势能截断参数,对计算结果影响较大。
可通过多次计算逐渐增大其值,直到结果收敛为止。
- ISMEAR:用于定义电子占据数的方法。
常用的选项有Gaussian和Methfessel-Paxton。
- SIGMA:在使用ISMEAR选项为Gaussian时,用于定义宽度的参数。
一般选择小于0.2 eV。
- PREC:定义计算的精度级别。
常用的设置有Low、Normal和High。
-NSW:定义离子进行多少步的迭代。
-ISTART和ICHARG:对于初始的计算,将其设置为0。
-EDIFF:收敛判据。
设置一个合适的值,使得计算结果收敛。
3.设置POSCAR文件:打开POSCAR文件,设置晶体的结构参数。
可以手动输入原子的坐标,或者复制其他软件生成的文件内容。
4.设置POTCAR文件:在VASP的安装目录中,找到POTCAR文件夹,并将需要使用的原子势能文件复制到当前工作目录中。
注意保持POTCAR文件的顺序和POSCAR文件中原子的顺序一致。
5.设置KPOINTS文件:打开KPOINTS文件,在其中设置k点的信息。
k点的密度对计算结果的精度有一定影响,可以根据具体需求进行调整。
在这里,我们将只计算晶格常数,因此可以选择较低的k点密度。
VASP验证
VASP验证计算前的验证 (Pre-calculation Verification of VASP)在进行VASP计算之前,为了确保计算结果的准确性和可靠性,需要进行一系列的验证。
这些验证包括结构优化验证、能带计算验证、振动频率验证以及轨道杂化功能验证等。
以下将分别对这些验证进行详细介绍。
1.结构优化验证:结构优化是计算中非常重要的一步,可以通过优化晶格参数和原子坐标得到体系的基态结构。
为了验证结构优化的准确性,可以进行以下步骤:-对于已知结构的化合物,可以将VASP计算得到的最优结构与实验数据进行比较,包括晶格参数、原子位置、结合能等。
-对于无法与实验数据进行比较的系统,可以使用其他第一性原理计算方法,如DFT、DFT+U等进行验证。
如果不同方法得到的最优结构相似,则说明VASP的结构优化结果可信。
2.能带计算验证:能带计算是研究材料的能电子结构和导电性质的重要手段。
为了验证能带计算的准确性:-可以将计算得到的能带与实验测量的能带进行比较,检查带隙的大小和位置是否一致。
-可以进行材料的半导体/金属性质的判断,如计算能带的导带和价带位置,以及带隙的大小,与实验结果进行比较。
3.振动频率验证:振动频率可以提供很多关于材料的信息,如热稳定性、相变性质等。
为了验证振动频率的准确性:-可以计算出体系的振动频率,并与实验测量的振动频率进行比较,检查谐振模式是否一致。
-可以计算振动模式的能量偏移,以及特征频率的大小和位置,与实验结果进行比较。
4.轨道杂化功能验证:轨道杂化功能是一种改进的DFT方法,可以更准确地描述具有局域d或f电子的过渡金属和稀土金属体系。
为了验证轨道杂化功能的准确性:-可以将VASP计算得到的体系的电子结构与实验结果进行比较,包括态密度、能带结构等。
-可以计算过渡金属和稀土金属的能带结构,并与实验结果进行比较,检查其是否更准确地描述了电子结构。
通过以上验证步骤,可以确保VASP计算的准确性和可靠性。
VASP参数设置详解要点
VASP参数设置详解要点VASP(Vienna Ab initio Simulation Package)是一种第一原理计算程序,用于计算材料性质和从头计算材料结构。
在进行VASP模拟时,合理设置参数非常重要,它们决定了模拟的准确性和效率。
下面将详细讨论几个关键的VASP参数设置要点。
1.设置能量截断(ENCUT):ENCUT是控制计算中的平面波能量截断的参数。
它应该尽量接近真实波函数的动能截断,以保证计算结果的准确度。
选择合适的ENCUT值非常关键,过低的值可能导致计算不收敛,过高的值则会造成计算时间过长。
一般建议从400eV开始进行尝试,然后根据计算的收敛性和计算结果调整。
2.设置k点密度(KPOINTS):k点密度是控制倒空间采样的参数。
k点密度越高,计算结果越准确,但计算时间也会增加。
为了在准确性和效率之间取得平衡,可以根据材料的对称性和大小进行合理的选择。
一般情况下,对于晶体,k点密度可以使用Reciprocal Space的自动生成程序,对于分子系统,可以使用Gamma Point + Monkhorst Pack方案。
3.设置电子步的最大迭代次数(NELM):NELM是控制电子步迭代收敛性的参数。
它决定了算法进行多少次最大迭代。
在计算过程中,电子步的总数是非常关键的。
如果电子步的迭代次数不足,可能会导致计算不收敛。
通常可以从60次开始进行尝试,如果计算结果不收敛,可以增加NELM的值。
4.设置计算精度(PREC):PREC参数是控制计算精度的参数。
该参数取值从粗到细分别为Low,Medium,High和Accuracy。
选择适当的计算精度可以在减少计算时间和提高计算结果准确性之间取得平衡。
一般情况下,可以从Medium开始尝试。
5.设置自洽迭代的收敛判据(EDIFF):EDIFF是控制自洽迭代收敛性的参数。
当自洽迭代前后两次总能量的变化低于EDIFF时,认为自洽迭代收敛。
合理设置EDIFF可以保证计算结果的准确性。
VASP计算方法
VASP计算方法VASP是维也纳第一原理模拟计算软件的缩写。
它是一种基于密度泛函理论的材料模拟计算方法,广泛应用于化学、物理、材料科学等领域。
VASP使用基于平面波展开(plane wave basis)的赝势(pseudopotentials)方法来描述材料中的电子结构。
其核心思想是将电子波函数以平面波的形式展开,并采用赝势来模拟电子的相互作用。
这种方法能够高效地计算含有数百个原子的系统的电子结构和相关性质。
在VASP中,首先需要确定材料的晶体结构。
用户可以通过输入晶体结构的空间群信息和原子坐标来定义体系的几何信息,还可以指定晶胞的尺寸和形状。
然后,通过选择适当的波函数和赝势,可以定义计算模型并进行模拟计算。
VASP计算可以分为一系列的步骤,包括结构优化、静态能量计算、力学性质计算等。
首先,通过结构优化,可以找到体系的最稳定结构和原子位置。
随后,通过静态能量计算,可以计算材料的能带结构和密度态。
在静态计算的基础上,还可以计算材料的力学性质,如弹性常数、声子谱等。
此外,VASP还可以进行分子动力学模拟和绝对零度的自由能计算。
在VASP计算中,还需要设置一些计算参数来优化计算性能和结果的准确性。
例如,可以通过设置波函数的能量截断来控制展开平面波的数目,提高计算效率。
还可以选择适当的赝势来模拟材料中的电子相互作用。
此外,还可以通过设置自旋极化和计算参数等,扩展VASP的应用范围和处理领域。
除了常规计算方法外,VASP还提供了一些高级计算功能,如HSE06方法和GW近似方法等。
这些方法可以进一步提高计算结果的准确性和可靠性。
总之,VASP是一种强大而灵活的第一原理模拟计算方法,可用于研究和预测各种材料的性质和行为。
通过调整计算参数和采用适当的计算模型,可以在各种材料科学领域中开展深入的研究,并帮助解决实际问题。
VASP中电子态密度计算的流程
VASP中电子态密度计算的流程VASP(Vienna Ab initio Simulation Package)是一种基于密度泛团理论(DFT)的第一性原理计算软件包,适用于从头计算材料的电子结构和相关性质。
电子态密度(Electronic Density of States, DOS)是VASP中一个重要的计算任务,它描述了材料中电子的能量分布情况,可以用来分析材料的能带结构、电导性、磁性等性质。
下面是VASP中计算电子态密度的一般流程:1.构建体系:首先需要确定要研究的体系的晶体结构。
可以通过实验数据、结构数据库或者其他理论方法得到体系的晶体结构,然后使用VASP提供的一些工具生成输入文件。
2.检查和准备输入文件:在进行计算之前,需要检查输入文件的正确性。
输入文件主要包括POSCAR(晶体结构)、POTCAR(势能文件)和KPOINTS(k点网格),还可以包括INCAR(控制参数)和CHGCAR(电荷密度)。
可以使用VASP提供的一些工具来生成这些文件。
3.设置计算参数:在INCAR文件中设置计算参数。
这些参数包括计算方式(GS、NSW等)、电子相关参数(ENCUT、EDIFF、ISMEAR等)和计算资源(NPAR、NCORE等)等。
4.进行自洽计算:运行VASP程序开始自洽计算。
自洽计算是指通过迭代寻找材料中所有电子的基态波函数和电子密度。
5.DOS计算:自洽计算完成后,可以进行DOS计算。
首先需要通过选择一个能量范围,确定所需的DOS信息。
然后在INCAR文件中设置相关参数,如要求计算PDOS(投影态密度)、LORBIT参数(需要计算轨道投影DOS)等。
6.执行DOS计算:运行VASP程序开始DOS计算。
程序会在给定的能量范围内计算电子态密度,并输出相应的结果。
7. 分析结果:根据VASP计算结果,可以通过一些可视化软件(如VESTA、XCrysDen等)绘制电子态密度的能带图、分析能带结构,进而分析材料的电子特性和相关性质。
VASP使用总结
VASP使用总结VASP(Vienna Ab initio Simulation Package)是一款基于密度泛函理论(DFT)的第一性原理计算软件,主要用于材料科学和凝聚态物理领域的计算。
它提供了丰富的功能和工具,可以用于模拟和研究各种材料的物理和化学性质。
以下是对VASP使用的总结:1.输入文件的准备在进行VASP计算之前,首先需要准备好输入文件。
VASP使用的输入文件包括POSCAR、INCAR、POTCAR等。
POSCAR文件用于定义晶体结构和原子坐标,INCAR文件用于定义计算参数和设置计算方法,POTCAR文件用于定义原子的赝势。
2.材料结构的优化VASP可以通过结构优化计算来确定材料的最稳定结构。
结构优化计算通过改变原子位置和晶胞大小,寻找最低能量的结构。
可以使用ISIF 参数来设置优化类型,如禁止移动原子、禁止改变晶胞大小等。
3.能带结构的计算VASP可以计算材料的能带结构,从而提供关于能带轨道和能带间隙的信息。
能带结构计算需要先进行结构优化计算,然后再进行自洽计算和能带计算。
可以通过设置KPOINTS和NBANDS参数来控制计算的精度和效率。
4.密度状态的计算VASP可以计算材料的密度状态,包括电荷密度、电荷分布和电子态密度等。
通过密度状态计算,可以了解材料的电子结构和性质。
可以通过设置LSORBIT、IALGO和NPAR等参数来控制计算的模式和效率。
5.势能面的计算VASP可以计算材料的势能面,并通过构建势能面图像来显示材料的稳定性和反应性。
势能面计算需要进行结构优化计算,然后通过改变原子位置和晶胞大小来势能面上的最低能量和结构。
6.热力学性质的计算VASP可以通过计算自由能、热容和热膨胀系数等热力学性质来了解材料的热稳定性和热响应。
热力学性质的计算需要进行结构优化计算和自洽计算,然后使用VASP提供的工具和脚本进行热力学性质的分析和计算。
7.计算结果的解析和可视化VASP提供了丰富的工具和脚本,可以用于解析和可视化计算结果。
VASP参数设置详解
VASP参数设置详解VASP(Vienna Ab initio Simulation Package)是一种用于计算材料的密度泛净近似(DFT)的第一性原理计算软件包。
它通过解Schrödinger方程来模拟材料的电子结构和相关性质。
在使用VASP进行计算时,合理地设置一些参数对于获得准确和可靠的计算结果至关重要。
下面是一些VASP参数的详细解释和设置建议。
1.ENCUT:电子截断能电子截断能决定了在计算中使用的总能量截断。
它代表了在周期性晶体中采样自由电子波函数所需的最高能量。
对于不同的系统,需要选择一个适当的ENCUT值来平衡计算精度和计算成本。
一般来说,较大的ENCUT可以提供更准确的结果,但也会增加计算的时间和计算资源的需求。
2.KPOINTS:k空间采样KPOINTS参数决定了在倒空间中如何采样能带结构或密度(扩展计算)等。
k点的选择通常取决于晶体结构的对称性和计算的目标。
大多数情况下,使用自动设置的KPOINTS能够提供合理的结果,但对于具有特殊性质(如表面性质或嵌入物性质)的系统,可能需要进行手动调整以获得更准确的结果。
3.ISMEAR:布洛赫函数展宽类型ISMEAR参数定义了用于计算导体体系的占有数矩阵的布洛赫函数的展宽类型。
对于绝缘体,可以使用较小的展宽(如ISMEAR=0),对于导体,使用较大的展宽(如ISMEAR=-5)以便准确地描述费米面附近的行为。
4. SIGMA:Methfessel-Paxton方法的展宽参数SIGMA参数是Methfessel-Paxton方法用来对扩展波函数(导体体系)进行展宽的参数。
较小的SIGMA可以提供更准确的结果,但可能会使计算更加耗时。
合理的SIGMA选择应遵循VASP文档中的建议范围。
5.EDIFF:能量差(收敛标准)EDIFF参数定义了能量收敛的标准。
计算迭代过程中,当两个连续的迭代之间的能量差小于EDIFF时,认为计算已经收敛。
VASP计算前的验证
VASP计算前的验证在进行VASP计算之前,我们通常需要进行一些验证来确保计算结果的准确性和可靠性。
这些验证的目的是确保我们选取了正确的初始结构、参数和计算方法,并评估计算方案的可行性。
下面是一些常见的验证步骤:1.结构优化验证:首先,需要对所研究体系的初始原子结构进行结构优化。
我们可以使用实验得到的结构或者其他第一性原理计算方法得到的结构作为初始结构,然后使用VASP进行结构优化。
优化的目标是使得系统的总能量降到最低,找到能量最稳定的体系结构。
这一步骤通常使用DFT(密度泛函理论)计算方法和初始的波函数和电荷密度。
2.能带结构验证:在结构优化结束后,我们可以通过计算体系的能带结构来验证计算的准确性。
能带结构可以展现材料的带隙、导带和化合物的本质。
我们可以在不同的路径上计算和绘制能量对动量的关系图来得到能带结构。
这一验证步骤可以帮助我们理解材料的电子结构和导电性质。
3.力学性质验证:VASP也可以计算材料的力学性质,例如弹性常数、杨氏模量和泊松比等。
在进行这类计算之前,我们需要确保所选择的结构是力学稳定的,并且在加压或应变下仍然保持稳定。
因此,在进行这类计算之前,我们需要对原子结构进行弛豫以优化晶格参数和原子位置,以获得稳定的体系结构。
然后,通过施加应力或应变来计算材料的力学性质。
4.衬底效应验证:对于表面或界面材料的计算,我们通常需要考虑衬底的影响。
通过将材料结构嵌入到一个有无限大尺寸的衬底中并进行计算,我们可以模拟实验条件下的表面或界面材料。
这涉及到对衬底的初始结构进行结构优化,并确保表面或界面层的材料是稳定的。
5.收敛测试:在以上验证步骤完成后,我们还需要进行VASP计算的收敛测试。
这是为了确定所选择的计算参数是否足够可靠和准确。
我们可以通过改变计算参数,如平面波截断能、k点网格密度和电子自洽迭代收敛标准等,来测试计算结果的稳定性和收敛性。
通过逐步增加计算参数的精度,直到得到满意的结果为止。
vasp计算弹性常数
vasp计算弹性常数
弹性常数(elasticmodulus)是材料力学中最重要的物理量之一,它表征材料的刚性程度。
它是描述材料弹性性质的唯一参数,也是物理化学中最常用的概念之一。
现在,它已成为材料设计和模拟的研究实验。
VASP(Vienna Ab initio Simulation Package)是一种非凡的
计算机软件,它可用于从原子层面来预测材料的性能。
其优点在于它可以有效计算和模拟态密度和势能,电子结构,以及其他物理性质,如弹性常数。
VASP计算弹性常数具有一定的复杂性。
它首先要求设定计算参数,以确定计算精度和计算极限。
其次,运行VASP软件,确定给定
温度和压力下材料的刚度,然后再根据极限状态或近似状态求取弹性常数。
最后,运行VASP以验证计算结果。
计算弹性常数的最终目的是确定材料的机械性质,以预测材料的整体性能。
这一过程可以利用VASP软件实现,它将原子中的电子结
构转化为材料的结构性质及弹性常数。
此外,VASP的计算速度也有
极大的优势,可以在可接受的时间内完成大量的计算任务,给常规材料设计和模拟计算提供重要的计算支持。
综上所述,VASP可以用来有效计算材料的弹性常数,并且这一
过程有着极大的优势,它可以在可接受的时间内完成大量的计算任务,给常规材料设计和模拟计算提供重要的计算支持。
因此,VASP可以
成为有效的材料设计和模拟工具,可以有效的计算和模拟材料的弹性
常数。
VASP几个计算实例
VASP几个计算实例VASP(Vienna Ab initio Simulation Package)是一种用于电子结构计算的软件包,广泛应用于固体物理、材料科学、化学等领域。
下面将介绍几个使用VASP进行计算的实例。
1.晶体结构优化晶体结构优化是材料科学中的常见任务,其目的是通过调整晶格参数和原子位置来寻找能量最低的晶体结构。
VASP可以用于计算晶体的总能量和力。
在VASP中,可以使用数值优化算法,如共轭梯度法或拟牛顿法,迭代调整晶格参数和原子位置,直到找到最低能量的结构。
2.原子表面吸附原子在固体表面上的吸附可以影响材料的性质和反应活性。
使用VASP,可以计算原子在表面上的位置和附着能,以研究吸附的稳定性和反应特性。
通过优化原子的位置,可以获得吸附位点和吸附能垒,这对于设计催化剂和研究表面反应机理非常重要。
3.力场参数优化力场是描述分子和固体中原子之间相互作用的经验势能函数。
使用VASP,可以通过计算分子或固体的电子结构和力学性质来优化力场参数。
对于有机分子,可以通过比较实验数据和计算结果来优化分子力场参数,以获得更准确的分子模拟结果。
4.分子动力学模拟分子动力学模拟是研究分子在一段时间内随时间演化情况的常用方法。
VASP能够提供分子动力学模拟所需的能量和力信息。
通过将VASP与分子动力学软件(如LAMMPS)结合使用,可以模拟大分子体系的运动和相变行为,从而对材料性能进行预测。
5.带隙计算带隙是半导体和绝缘体中的重要性质,它决定了电子的导电性和能量带的结构。
使用VASP,可以计算材料的能带结构和态密度,并通过计算能量差来确定材料的带隙。
这对于设计新型材料和理解电子输运性质具有重要意义。
总之,VASP是一款强大的计算工具,可以应用于多个领域的电子结构计算和材料模拟。
以上介绍的实例只是VASP的一小部分应用,它可以为科学家们提供关键的研究工具,推动材料科学和化学等领域的发展。
第一原理电子结构计算程序VASP实用教程
第一原理电子结构计算程序VASP实用教程VASP(Vienna Ab Initio Simulation Package)是一种基于密度泛函理论(DFT)的第一原理电子结构计算程序,广泛用于材料科学和固体物理学领域。
本文将介绍VASP的原理、计算流程和应用。
1.原理VASP使用密度泛函理论计算材料的电子结构和相关物性。
它基于Kohn-Sham方程,通过自洽迭代求解电子密度和势能,得到材料的基态能量、晶体结构和能带结构等信息。
VASP采用平面波基组、赝势和超胞方法,能够模拟各种材料的基态和激发态性质。
2.计算流程VASP的计算流程可以简要概括为以下几个步骤:(1)几何优化:首先,需要确定材料的原子结构。
可以从实验数据或其他理论计算得到初始结构,然后使用VASP优化几何构型,使得系统的总能量达到最低。
(2)能带结构计算:在结构优化后,可以计算材料的能带结构,以分析电子在不同能级上的分布情况。
这对于描述导电性和光学性质等具有重要意义。
(3)态密度计算:能带结构可以用来计算材料的电子态密度,即每个能级上的电子数目。
态密度对于理解材料的物性非常重要,如导电性、热导性等。
(4)光学性质计算:VASP还可以计算材料的光学性质,如吸收系数、折射率等。
这对于设计光电子器件和材料有重要意义。
(5)磁性计算:VASP可以计算磁性材料的磁矩、磁性相互作用等性质。
这对于研究磁性材料和磁性器件具有重要意义。
3.应用VASP在材料科学和固体物理学领域有着广泛的应用。
以下是一些典型的应用领域:(1)材料发现和设计:VASP可以预测不同材料的力学、电子和光学性质,帮助科学家寻找新的功能材料,并指导材料的设计和合成。
(2)催化剂设计:VASP可以模拟催化反应的活化能和反应机理,为催化剂的设计提供理论依据,并加速催化剂的开发和优化。
(3)气体吸附和分离:VASP可以计算材料对气体的吸附能力和分离性能,用于设计高效的气体吸附剂和分离器材料。
VASP(计算前的各种测试)
(计算前的)验证一、检验赝势的好坏:(一)方法:对单个原子进行计算;(二)要求:1、对称性和自旋极化均采用默认值;2、ENCUT要足够大;3、原胞的大小要足够大,一般设置为15 Å足矣,对某些元素还可以取得更小一些。
(三)以计算单个Fe原子为例:1、INCAR文件:SYSTEM = Fe atomENCUT = 450.00 eVNELMDL = 5 ! make five delays till charge mixing,详细意义见注释一ISMEAR = 0SIGMA=0.12、POSCAR文件:atom15.001.00 0.00 0.000.00 1.00 0.000.00 0.00 1.001Direct0 0 03、KPOINTS文件:(详细解释见注释二。
)AutomaticGamma1 1 10 0 04、POTCAR文件:(略)注释一:关键词“NELMDL”:A)此关键词的用途:指定计算开始时电子非自洽迭代的步数(即NELMDL gives the number of non-selfconsistent steps at the beginning),目的是make calculations faster。
“非自洽”指的是保持charge density 不变,由于Charge density is used to set up the Hamiltonian, 所以“非自洽”也指保持初始的哈密顿量不变。
B)默认值(default value):NELMDL = -5 (当ISTART=0, INIWA V=1, and IALGO=8时)NELMDL = -12 (当ISTART=0, INIWA V=1, and IALGO=48时)NELMDL = 0 (其他情况下)NELMDL might be positive or negative.A positive number means that a delay is applied after each ionicmovement -- in general not a convenient option. (在每次核运动之后)A negative value results in a delay only for the start-configuration. (只在第一步核运动之前)C)关键词“NELMDL”为什么可以减少计算所需的时间?Charge density is used to set up the Hamiltonian, then the wavefunctions are optimized iteratively so that they get closer to the exact wavefunctions of this Hamiltonian. From the optimized wavefunctions a new charge density is calculated, which is then mixed with the old input-charge density. A brief flowchart is given below.(参自Manual P105页)一般情况下,the initial guessed wavefunctions是比较离谱的,在前NELMDL次非自洽迭代过程中保持charge density不变、保持初始的哈密顿量不变,只对wavefunctions进行优化,在得到一个与the exactwavefunctions of initial Hamiltonian较为接近的wavefunctions后,再开始同时优化charge density。
Linux简介与vasp_初步
ps –aux #查看进程
kill 进程编号 #结束进程
Sh脚本的写法 详细请参见 /viewarticle.php?id=20338
Linux压缩与减压
数据传输
1.与windows主机的数据传输 sz:下载linux数据到windows主机下,默认目录
Linux简介与vasp 初步
王锐 重庆大学物理学院物理系
2011.05.09
目录
• Linux 简介
/special/linuxcom/
• Vasp 初步 • 1. 概述
• • • • 2. 单个原子的计算(H原子) 3. 晶格常数的优化 4. 计算前的验证 5. 能带计算(单层石墨graphen)
INCAR
SYSTEM = Fe ENCUT = 450 ISTART = 0; ICHARG = 2 ISMEAR = -5 NSW = 0; IBRION = -1 ISIF = 2 ISPIN = 2 EDIFF = 1.0E-5; PREC = Accurate LWAVE =.FALSE. LCHARG =.FALES.
POSCAR文件
C 2.45944 # 晶格常数 1.000 0.000 0.000 0.500 0.866 0.000 0.000 0.000 15.000 #层间距取得大 2 #表示复式格子 Cartesian 0.000000 0.000000 0.000000 0.500000 0.288667 0.000000 #第二个原子位置
KPOINTS 文件
Atuo #注释行 0 #0表示自动产生 Monk #产生方法 1 1 1 #1*1*1,网络尺寸 0.0 0.0 0.0 #k点相对于原点平移
VASP问题MicrosoftWord
VASP 计算的过程遇到的问题1、VASP能够进行哪些过程的计算?怎样设置?我们平时最常用的研究方法是做单点能计算,结构优化、从头计算的分子动力学和电子结构相关性质的计算。
一般我们的研究可以按照这样的过程来进行如果要研究一个体系的最优化构型问题可以首先进行结构弛豫优化,然后对优化后的结构进行性质计算或者单点能计算。
如果要研究一个体系的热力学变化过程可以首先进行分子动力学过程模拟,然后在某个温度或压强下进行性质计算或者单点能计算。
如果要研究一个体系的热力学结构变化可以首先在初始温度下进行NVT计算,然后进行分子动力学退火,然后在结束温度下进行性质计算研究。
2、什么是单点能计算(single point energy)?如何计算?跟其它软件类似,VASP具有单点能计算的功能。
也就是说,对一个给定的固定不变的结构(包括原子、分子、表面或体材料)能够计算其总能,即静态计算功能。
单点能计算需要的参数最少,最多只要在KPOINTS文件中设置一下合适的K点或者在INCAR文件中给定一个截断能ENCUT就可以了。
还有一个参数就是电子步的收敛标准的设置EDIFF,默认值为EDIFF=1E-4,一般不需要修改这个值。
具体来说要计算单点能,只要在INCAR中设置IBRION=-1也就是让离子不移动就可以了。
3、什么是结构优化(structure optimization)?如何计算?结构优化又叫结构弛豫(structure relax),是指通过对体系的坐标进行调整,使得其能量或内力达到最小的过程,与动力学退火不同,它是一种在0K下用原子间静力进行优化的方法。
可以认为结构优化后的结构是相对稳定的基态结构,能够在实验之中获得的几率要大些(当然这只是理论计算的结果,必须由实验来验证)。
一般要做弛豫计算,需要设置弛豫收敛标准,也就是告诉系统收敛达成的判据(convergence break condition),当系统检测到能量变化减小到一个确定值时例如EDIFFG=1E-3时视为收敛中断计算,移动离子位置尝试进行下一步计算。
VASP使用总结
VASP计算的理论及实践总结一、赝势的选取二、收敛测试1、VASP测试截断能和K 点2、MS测试三、结构弛豫四、VASP的使用流程(计算性质)1、VASP的四个输入文件的设置2、输出文件的查看及指令3、计算单电能(1) 测试截断能(2) 测试K点4、进行结构优化5、计算弹性常数6、一些常用指令一、赝势的选取VASP赝势库中分为:PP和PAW两种势,PP又分为SP(标准)和USPP(超软)。
交换关联函数分为:LDA(局域密度近似)和GGA(广义梯度近似)。
GGA 又分为PW91和PBE。
在VASP中,其中pot ,pot-gga是属于超软势(使用较少)。
Paw, paw-pbe ,和paw-gga是属于PAW。
采用较多的是PAW-pbe 和PAW-gga。
此外vasp 中的赝势分为几种,包扩标准赝势(没有下标的)、还有硬(harder)赝势(_h)、软(softer)赝势(_s), 所谓的硬(难以赝化),就是指该元素原子的截断动能比较大,假想的势能与实际比较接近,计算得到的结果准确,但比较耗时,难以收敛。
软(容易赝化),表示该元素原子的截断动能比较小,赝势模型比较粗糙,但相对简单,可以使计算很快收敛(比如VASP开发的超软赝势)。
即硬的赝势精度高,但计算耗时。
软的精度低,容易收敛,但节省计算时间。
另一种情况:如Gd_3,这是把f电子放入核内处理,对于Gd来说,f电子恰好半满。
所以把f电子作为价电子处理的赝势还是蛮好的(类似还有Lu,全满)。
(相对其他的4f元素来说,至于把f电子作为芯内处理,是以前对4f元素的通用做法。
计算结果挺好)常用的做法是:用两种赝势测试一下对自己所关心的问题的影响情况。
在影响不大的情况下,选用不含4f电子的赝势(即后缀是3),一来减少计算量,二来避免DFT对4f电子的处理。
【1.赝势的选择:vasp的赝势文件放在目录~/vasp/potentials 下,可以看到该目录又包含五个子目录pot pot_GGA potpaw potpaw_GGA potpaw_PBE ,其中每一个子目录对应一种赝势形式。
VASP计算前的验证
V ASP计算前的验证一、检验赝势的好坏:检验赝势的好坏:(一)方法:对单个原子进行计算;(二)要求:1、对称性和自旋极化均采用默认值;2、ENCUT 要足够大;3、原胞的大小要足够大,一般设置为15 Ǻ足矣,对某些元素还可以取得更小一些。
(三)以计算单个Fe原子为例:1、INCAR 文件:SYSTEM = Fe atomENCUT = 450.00 eVNELMDL = 5 ! make five delays till charge mixing,详细意义见注释一ISMEAR = 0SIGMA=0.12、POSCAR 文件:atom15.001.00 0.00 0.000.00 1.00 0.000.00 0.00 1.001Direct0 0 03、KPOINTS 文件:AutomaticGamma1 1 10 0 04、POTCAR 文件:(略)注释一:关键词“NELMDL”:A)此关键词的用途:指定计算开始时电子非自洽迭代的步数(即NELMDL gives the number of non-selfconsistent steps at the beginning),目的是make calculations faster。
“非自洽”指的是保持charge density 不变,由于Charge density is used to set up the Hamiltonian, 所以“非自洽”也指保持初始的哈密顿量不变。
B)默认值(default value):NELMDL = -5 (当ISTART=0, INIW A V=1, and IALGO=8 时)NELMDL = -12 (当ISTART=0, INIW A V=1, and IALGO=48 时)NELMDL = 0 (其他情况下)NELMDL might be positive or negative. A positive number means that a delay is applied after each ionic movement -- in general not a convenient option. (在每次核运动之后)A negative value results in a delay only for the start-configuration. (只在第一步核运动之前)C)关键词“NELMDL”为什么可以减少计算所需的时间?Charge density is used to set up the Hamiltonian, then the wavefunctions are optimized iteratively so that they get closer to the exact wavefunctions of this Hamiltonian. From the optimized wavefunctions a new charge density is calculated, which is then mixed with the old input-charge density. A brief flowchart is given below.(参自Manual P105 页)一般情况下,the initial guessed wavefunctions 是比较离谱的,在前NELMDL次非自洽迭代过程中保持charge density不变、保持初始的哈密顿量不变,只对wavefunctions进行优化,在得到一个与the exact wavefunctions of initial Hamiltonian较为接近的wavefunctions后,再开始同时优化charge density。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(计算前的)验证一、检验赝势的好坏:(一)方法:对单个原子进行计算;(二)要求:1、对称性和自旋极化均采用默认值;2、ENCUT要足够大;3、原胞的大小要足够大,一般设置为15 Å足矣,对某些元素还可以取得更小一些。
(三)以计算单个Fe原子为例:1、INCAR文件:SYSTEM = Fe atomENCUT = 450.00 eVNELMDL = 5 ! make five delays till charge mixing,详细意义见注释一ISMEAR = 0SIGMA=0.12、POSCAR文件:atom15.001.00 0.00 0.000.00 1.00 0.000.00 0.00 1.001Direct0 0 03、KPOINTS文件:(详细解释见注释二。
)AutomaticGamma1 1 10 0 04、POTCAR文件:(略)注释一:关键词“NELMDL”:A)此关键词的用途:指定计算开始时电子非自洽迭代的步数(即NELMDL gives the number of non-selfconsistent steps at the beginning),目的是make calculations faster。
“非自洽”指的是保持charge density 不变,由于Charge density is used to set up the Hamiltonian, 所以“非自洽”也指保持初始的哈密顿量不变。
B)默认值(default value):NELMDL = -5 (当ISTART=0, INIWA V=1, and IALGO=8时)NELMDL = -12 (当ISTART=0, INIWA V=1, and IALGO=48时)NELMDL = 0 (其他情况下)NELMDL might be positive or negative.A positive number means that a delay is applied after each ionicmovement -- in general not a convenient option. (在每次核运动之后)A negative value results in a delay only for the start-configuration. (只在第一步核运动之前)C)关键词“NELMDL”为什么可以减少计算所需的时间?Charge density is used to set up the Hamiltonian, then the wavefunctions are optimized iteratively so that they get closer to the exact wavefunctions of this Hamiltonian. From the optimized wavefunctions a new charge density is calculated, which is then mixed with the old input-charge density. A brief flowchart is given below.(参自Manual P105页)一般情况下,the initial guessed wavefunctions是比较离谱的,在前NELMDL次非自洽迭代过程中保持charge density不变、保持初始的哈密顿量不变,只对wavefunctions进行优化,在得到一个与the exactwavefunctions of initial Hamiltonian较为接近的wavefunctions后,再开始同时优化charge density。
这样一来,计算时间要比一开始就同时优化charge density 和wavefunctions短得多。
注释二:为什么这里只需要一个k点?For atoms and molecules, the Bloch theorem does not apply, hence there is no need to use more than one single k-point. When more k-points are used,only the interaction between the atoms (which should be zero) is describedmore accurately.(三)计算任务执行方法:输入:vasp(四)赝势好的判断标准:计算得到的OUTCAR文件中的“energy without entropy”能量值在-0.001~-0.01 eV之间。
二、筛选合适的ENCUT大小:(一)输入文件:1、用脚本程序optencut.sh代替INCAR文件:rm WAVECARfor i in 100 150 200 250 300 350 400 450 500 550 600docat > INCAR <<!SYSTEM = bcc FeENCUT = $iISTART = 0 ; ICHARG = 2ISMEAR = -5PREC = Accurate!echo "ENCUT = $i eV"; time vaspE=$(grep "TOTEN" OUTCAR | tail -1| awk '{printf "%12.6f \n", $5}')echo $i $E >> commentdone2、POSCAR文件:bcc Fe2.8661.00 0.00 0.000.00 1.00 0.000.00 0.00 1.002Direct0 0 00.5 0.5 0.53、KPOINTS文件:Automatic generationMonkhorst-Pack9 9 90.0 0.0 0.04、POTCAR文件:(略)(二)计算任务执行方法:输入:dos2unix optencut.shbash optencut.sh(三)判别标准:计算完成后得到comment文件,它列出了在每个ENCUT时计算得到的相应的总能,只要总能变化在0.001 eV左右就足够了。
三、选择合适的k点数目:(一)输入文件:1、INCAR文件:SYSTEM = bcc FeENCUT = 450.00 eVISTART = 0 ; ICHARG = 2ISMEAR = -5PREC = Accurate2、POSCAR文件:bcc Fe2.8661.00 0.00 0.000.00 1.00 0.000.00 0.00 1.002Direct0 0 00.5 0.5 0.53、用脚本程序optkpoints.sh代替KPOINTS文件:rm WAVECARfor i in 5 7 9 11 13 15docat > KPOINTS <<!Automatic generationMonkhorst-pack$i $i $i0.0 0.0 0.0!echo " k mesh = $i x $i x $i"; time vaspE=$(grep "TOTEN" OUTCAR | tail -1| awk '{printf "%12.6f \n", $5}')KP=$(grep "irreducible" OUTCAR | tail -1| awk '{printf "%5i \n", $2}')echo $i $KP $E >> commentdone4、POTCAR文件:(略)(二)计算任务执行方法:输入:dos2unix optkpoints.shbash optkpoints.sh(三)判别标准:计算完成后得到comment文件,它列出了在k点数目与总能的对应值,只要总能变化在0.001 eV左右就非常足够了。
四、优化选择合适的SIGMA值(展宽σ值):(一)为什么要优化SIGMA值?若展宽σ太小,则计算难以收敛;若展宽σ太大,则会产生多余的熵(entropy),因此必须选择合适的σ值。
(Too large smearing-parameters might result in a wrong totalenergy, small smearing parameters require a large k-point mesh.)(二)ISMEAR和SIGMA:1、ISMEAR和SIGMA这两个关键词要联合起来使用,前者用来指定smearing的方法,后者用来指定smearing的展宽——σ值。
2、ISMEAR和SIGMA的默认值分别为1和0.2。
3、ISMEAR可能的取值为-5,-4,-3,-2,-1,0,N (N表示正整数):ISMEAR=-5,表示采用Blochl修正的四面体方法;ISMEAR=-4,表示采用四面体方法,但是没有Blochl修正;ISMEAR=-1,表示采用Fermi-Dirac smearing方法;ISMEAR=0,表示采用Gaussian smearing方法;ISMEAR=N,表示采用Methfessel-Paxton smearing方法,其中N是表示此方法中的阶数,一般情况下N取1或2, 但是In most cases andleads to very similar results。
4、σ值一般在0.1~0.3 eV范围内。
5、ISMEAR取值的一些经验:(1)一般说来,无论是对何种体系,进行何种性质的计算,采用ISMEAR=0并选择一个合适的SIGMA值,都能得到合理的结果。
(2)在进行静态计算(能量单点计算, no relaxation in metals)或态密度计算且k点数目大于4时,取ISMEAR=-5。
(3)当原胞较大而k点数目较小(小于4个)时,取ISMEAR=0,并选择一个合适的SIGMA值。
(if the cell is too large (or if you use only a single or two k-points) useISMEAR=0 in combination with a small SIGMA=0.05)(4)对半导体或绝缘体,不论是静态还是结构优化计算,都取ISMEAR=-5。
(Mind:Avoid to use ISMEAR>0 for semiconductors and insulators, since it might cause problems. Forinsulators use ISMEAR=0 or ISMEAR=-5.)(5)对金属体系(for relaxations in metals),取ISMEAR=1或2,并选择一个合适的SIGMA值。