关于物理动能表达式的理解

合集下载

最新高中物理动能定理的内容与公式

最新高中物理动能定理的内容与公式

高中物理动能定理的内容与公式高中物理动能定理的内容与公式高中物理动能定理公式是W=(1/2)mV₁²-(1/2)mVo²=Ek₂-Ek₁,W为外力做的功,Vo是物体初速度,V₁是末速度,Ek₂表示物体的末动能,Ek₁表示物体的初动能。

W是动能的变化,又称动能的增量,也表示合外力对物体做的总功。

动能定理研究的对象是单一的物体,或者可以称单一物体的物体系。

动能定理的计算式是等式,一般以地面为参考系。

动能定理适用于物体的直线运动,也适应于曲线运动;适用于恒力做功,也适用于变力做功;里可以是分段作用,也可以是同时作用,只要可以求出各个力的正负代数和。

拓展阅读:高中物理动能定理的知识点动能定理的基本概念合外力做的功,等于物体动能的改变量,这就是动能定理的内容。

动能定理还可以表述为:过程中所有分力做的功的代数和,等于动能的改变量。

这里的合外力指研究对象受到的所有外力的合力。

动能定理的表达式动能定理的基本表达式:F合s=W=ΔEk;动能定理的其他表示方法:∫Fds=W=ΔEk;F1s1+F2s2+F3s3+……=ΔEk;功虽然是标量,但有正负一说。

最为严谨的公式是第二个公式;最常用的,有些难度的却是第三个公式。

动能定理根源我们来推导动能定理,很多学生可能认为这是没有必要的,其实恰恰相反。

近几年的高考物理试题,特别注重基础知识的推导和与应用。

理解各个知识点之间的关联,能够帮你更好的理解物理考点。

在内心理解了动能定理,知道了它的本源,才能在考试中科学运用动能定理来解题。

动能定理的推导分为如下两步:(1)匀变速直线运动下的动能定理推导过程物体做匀变速直线运动,则其受力情况为F合=ma;由匀变速直线运动的公式:2as=v2-v02;方程的两边都乘以m,除以2,有:mas=½(mv2-v02)=Ek2-Ek1=ΔEk;上述方程的左端mas=F合s=W;因此有:F合s=W=ΔEk;这就是动能定理在匀变速直线运动情况下的推导过程。

高中物理 7.7动能和动能定律详解

高中物理  7.7动能和动能定律详解

高中物理| 7.7动能和动能定律详解动能物体由于运动而具有的能量,用符号EK表示表达式:E K=1/2mv2动能是标量,单位是焦耳(J),动能是状态量,表达某一瞬间物体由于运动而具有的能量。

由动能的表达式可以看出,一个物体的动能跟该物体的质量和该物体的速度有关。

动能定理力在一个过程中对物体做的功,等于物体在这个过程中动能的变化,这个结论叫动能定理。

表达式:W=E k2-E k1解释:式中W为在某一过程中合外力对物体做的功,也可理解为各力对物体做功的代数和;E k1表示物体在这个过程中的初状态的动能,E k2表示物体在这个过程中末状态的动能。

如果外力做正功,物体的动能增加;外力做负功,物体的动能减少。

适用范围动能定理既适用于直线运动,也适用于曲线运动,既适用于恒力做功,也适用于变力做功。

且只需确定初、末状态而不必涉及过程细节,因而解题很方便。

应用动能定理解题的一般步骤①确定研究对象和研究过程。

②分析物理过程,分析研究对象在运动过程中的受力情况,画受力示意图,及过程状态草图,明确各力做功情况,即是否做功,是正功还是负功。

③找出研究过程中物体的初、末状态的动能(或动能的变化量)④根据动能定理建立方程,代入数据求解,对结果进行分析、说明或讨论。

1. 两个质量为m的物体,若速度相同,则两个物体的动能,若动能相同,两个物体的速度?2. 下列关于运动物体所受合力做功和动能变化的关系正确的是( )A 如果物体所受合力为零,则合力对物体做的功一定为零B 如果合力对物体所做的功为零,则合力一定为零C 物体在合力作用下做变速运动,动能一定发生变化D 物体的动能不变,所受合力一定为零3. 如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。

求物体在轨道AB段所受的阻力对物体做的功。

1. 相同不一定相同(速度方向可以不同)2. A物体所受合力为零,则合力做功为零,物体的动能变化为零.但如果物体所受合力不为零,合力对物体做功也可能为零,动能变化为零,如匀速圆周运动。

动能与势能的关系

动能与势能的关系

动能与势能的关系动能和势能是物理学中两个重要概念,它们描述了物体运动和位置的特性。

动能是指物体由于运动而具有的能量,而势能则是物体由于位置而具有的能量。

本文将探讨动能与势能之间的关系,以及它们在物理学中的应用。

一、动能的定义和表达式动能是物体由于运动而具有的能量。

根据经典力学的理论,一个物体的动能等于其质量乘以速度的平方的一半。

动能的表达式可以表示为:动能 (K) = 1/2 * m * v^2其中,K表示动能,m为物体的质量,v为物体的速度。

二、势能的定义和表达式势能是物体由于位置而具有的能量。

一个物体的势能取决于其所处的位置和与其他物体之间的相互作用。

常见的势能有重力势能、弹性势能和化学势能等。

1. 重力势能重力势能指的是物体由于位于地球表面上某一高度而具有的能量。

重力势能的表达式可以表示为:重力势能 (U) = m * g * h其中,U表示重力势能,m为物体的质量,g为重力加速度,h为物体相对于参考点的高度。

2. 弹性势能弹性势能是指物体由于受到弹性力而具有的能量。

弹性势能的表达式可以表示为:弹性势能 (U) = 1/2 * k * x^2其中,U表示弹性势能,k为弹簧的劲度系数,x为弹簧伸长或压缩的位移。

3. 化学势能化学势能指的是物体由于化学反应而具有的能量。

化学势能的表达式取决于化学反应的特性,可以通过热力学等方法进行计算。

三、动能与势能的转化动能和势能之间存在着相互转化的关系。

在物体运动中,动能可以转化为势能,而势能也可以转化为动能。

最典型的例子是一个自由下落的物体,由于其位置的改变,其势能逐渐减小,而动能逐渐增加,直至达到最大值。

四、应用举例动能和势能的概念在物理学中有广泛的应用。

1. 机械能守恒定律根据机械能守恒定律,一个孤立系统中的机械能总量保持不变。

这意味着在一个封闭的物理系统中,动能和势能可以相互转化,但其总和保持不变。

2. 能量转换与利用动能和势能的转化是能量在自然界中转换与利用的基础。

理论力学第13章动能定理

理论力学第13章动能定理
详细描述
在理论力学中,动能被定义为物体运动时的能量,其大小与物体的质量和速度有关。根据牛顿第二定律,物体的动量改变量等于作用在物体上的外力的冲量。因此,如果一个力在一段时间内作用在一个物体上,那么这个力就会使物体的动量发生改变,从而产生动能的变化。
动能的定义
外力的功
外力的功等于力的大小与物体在力的方向上发生的位移的乘积。
总结词
外力的功是指力对物体运动所产生的效应,其大小等于力的大小与物体在力的方向上发生的位移的乘积。这是物理学中功的定义,也是计算外力对物体所做功的基本方法。
详细描述
VS
系统动能的增量等于合外力对系统所做的功。
详细描述
系统动能的增量是指在一个过程中,系统动能的增加量。这个增量可以通过计算合外力对系统所做的功来得到。如果合外力对系统做正功,则系统动能增加;如果合外力对系统做负功,则系统动能减少。因此,系统动能的增量与合外力对系统所做的功有直接的关系。
总结词
系统动能的增量
03
CHAPTER
动能定理的应用
适用于单个质点在力的作用下运动的情况,计算质点的动能变化。
单个质点的动能定理指出,质点在力的作用下运动时,外力对质点所做的功等于质点动能的增量。这个定理是理论力学中研究质点运动的基本定理之一,可以用来解决各种实际问题。
总结词
详细描述
单个质点的动能定理
动能定理是能量守恒定律在动力学中的具体表现,是解决动力学问题的有力工具。
动能定理适用于一切宏观低速的物体,对于微观、高速适用于狭义相对论。
动能定理适用于直线运动,对于曲线运动需要积分形式进行处理。
动能定理的适用范围
02
CHAPTER
动能定理的基本内容
总结词

动能定理与功率

动能定理与功率

动能定理与功率动能定理是物理学中的一条基本定律,描述了物体运动时动能的变化规律。

功率则是描述物体完成单位时间内所做的功的大小。

本文将主要讨论动能定理与功率的概念、关系以及应用。

一、动能定理的概念与表达式动能定理是指一个物体的动能变化等于其所受的净功。

动能定理的数学表达式可以表示为:\[ΔK = W_{net}\]其中,ΔK表示物体动能的变化量,W_net表示物体所受到的净功。

二、功率的概念与表达式功率是描述物体完成单位时间内所做的功的大小。

功率的数学表达式可以表示为:\[P = \frac{W}{t}\]其中,P表示功率,W表示物体所做的功,t表示完成功的时间。

三、动能定理与功率的关系根据动能定理的表达式可知,物体的动能变化等于其所受的净功。

而功率则描述了单位时间内完成的功。

由功率的定义可知,功等于功率乘以时间,即W = P × t。

将其代入动能定理的表达式中可以得到:\[ΔK = P × t\]从上式可以发现,动能的变化量ΔK与功率P相乘的结果等于所用时间t。

这表明,动能的变化量与功率乘以时间成正比,即功率越大,或者功率作用的时间越长,物体的动能变化量越大。

四、动能定理与功率的应用动能定理与功率的关系在实际生活中有广泛的应用。

以下将介绍几个常见的应用场景:1. 车辆行驶过程中的动能定理和功率在车辆行驶过程中,车辆的动能变化等于所受的净功。

而车辆的功率可以通过发动机的输出功率来表示。

根据动能定理和功率的关系,可以得出车辆动能的变化量与发动机输出功率和所用时间的乘积成正比。

这就意味着,如果要提高车辆的动能,可以增加发动机的功率或者延长运行的时间。

2. 运动员训练过程中的动能定理和功率在运动员的训练过程中,动能定理和功率也起到重要的作用。

运动员通过训练来提高身体的机能和爆发力,而运动员的功率则可以通过训练效果和所用时间来衡量。

根据动能定理和功率的关系,可以得出运动员的动能变化量与其所做功的大小和训练的时间成正比。

动能定理

动能定理

7动能和动能定理一、动能和动能定理1.基本知识(1)动能 ①定义: 物体由于 而具有的能.②表达式: E k =12mv 2,式中v 是瞬时速度.③单位 动能的单位与功的单位相同,国际单位都是 ,符号为J. 1 J =1 kg·m 2/s 2=1 N·m. ④对动能概念的理解a .动能是标量,只有 ,没有 ,且动能为非负数.b .动能是状态量,在某一时刻,物体具有一定的速度,也就具有一定的动能. ⑤动能的变化量 即末状态的动能与初状态的ΔE k =12mv 22-12mv 21.ΔE k >0,表示物体的 .ΔE k <0表示物体的 .(2)动能定理的推导①建立情景 如图所示,质量为m 的物体,在恒力F 作用下,经位移l 后,速度由v 1增加到v 2.②推导依据外力做的总功:W = 由牛顿第二定律:F =由运动学公式:l =v 22-v 212a.③结论:W =12mv 22-12mv 21 即W =E k2-E k1=ΔE k .(3)动能定理的内容力在一个过程中对物体所做的功,等于物体在这个过程中 。

(4)动能定理的表达式 ①W =12mv 22-12mv 21. ②W =E k2-E k1. 说明:式中W 为 ,它等于各力做功的 。

(5)动能定理的适用范围不仅适用于 做功和 运动,也适用于 做功和 运动情况.二、对动能、动能定理的理解1.动能的特征(1)是状态量:与物体的运动状态(或某一时刻的速度)相对应.(2)具有相对性:选取不同的参考系,物体的速度不同,动能也不同,一般以地面为参考系.(3)是标量:只有大小,没有方向;只有正值,没有负值.2.对动能定理的理解(1)内容:外力对物体做的总功等于其动能的增加量,即W =ΔE k . (2)表达式W =ΔE k 中的W 为外力对物体做的总功.(3)ΔE k =12mv 22-12mv 21为物体动能的变化量,也称作物体动能的增量,表示物体动能变化的大小.(4)动能定理描述了做功和动能变化的两种关系.①等值关系:某物体的动能变化量总等于合力对它做的功.②因果关系:合力对物体做功是引起物体动能变化的原因,合力做功的过程实质上是其他形式的能与动能相互转化的过程,转化了多少由合力做了多少功来度量.例1. 关于运动物体所受的合力、合力做的功及动能变化的关系,下列说法正确的是( )A .合力为零,则合力做功一定为零B .合力做功为零,则合力一定为零C .合力做功越多,则动能一定越大D .动能不变化,则物体所受合力一定为零规律总结: 动能与速度的关系1.瞬时关系:动能和速度均为状态量,二者具有瞬时对应关系.2.变化关系:动能是标量,速度是矢量,当动能发生变化时,物体的速度(大小)一定发生了变化,当速度发生变化时,可能仅是速度方向的变化,物体的动能可能不变.训练1.(2014·苏州高一检测)一物体做变速运动时,下列说法正确的有( ) A .合力一定对物体做功,使物体动能改变 B .物体所受合力一定不为零 C .合力一定对物体做功,但物体动能可能不变 D .物体加速度一定不为零 动能定理的应用及优越性1.应用动能定理解题的基本步骤2.优越性(1)对于变力作用或曲线运动,动能定理提供了一种计算变力做功的简便方法.功的计算公式W=Fl cos α只能求恒力做的功,不能求变力的功,而由于动能定理提供了一个物体的动能变化ΔE k与合力对物体所做功具有等量代换关系,因此已知(或求出)物体的动能变化ΔE k=E k2-E k1,就可以间接求得变力做功.算,运算简单不易出错.注意:动能定理虽然是在物体受恒力作用,沿直线做匀加速直线运动的情况下推导出来的,但是对于外力是变力或物体做曲线运动,动能定理同样成立.例2.一架喷气式飞机质量m=5×103 kg,起飞过程中从静止开始滑行的路程s=5.3×102 m时(做匀加速直线运动),达到起飞速度v=60 m/s.在此过程中飞机受到的平均阻力是飞机重力的k倍(k=0.02).求飞机受到的牵引力.规律总结:动能定理与牛顿运动定律在解题时的选择方法1.动能定理与牛顿运动定律是解决力学问题的两种重要方法,一般来讲凡是牛顿运动定律能解决的问题,用动能定理都能解决,但动能定理能解决的问题,牛顿运动定律不一定都能解决,且同一个问题,用动能定理要比用牛顿运动定律解决起来更简便.2.通常情况下,其问题若涉及时间或过程的细节,要用牛顿运动定律去解决;其问题若不考虑具体细节、状态或时间,如物体做曲线运动、受力为变力等情况,一般要用动能定理去解决.训练2.一辆汽车以v1=6 m/s的速度沿水平路面行驶时,急刹车后能滑行s1=3.6 m,如果以v2=8 m/s的速度行驶,在同样的路面上急刹车后滑行的距离s2应为( ) A.6.4 m B.5.6 m C.7.2 m D.10.8 m三、用动能定理求变力的功例3.如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R .一质量为m 的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力做功为( )A.12μmgRB.12mgR C .mgR D .(1-μ)mgR规律总结:1.本题中摩擦力的大小、方向都在变化,应用功的定义式无法直接求它做的功,在这种情况下,就要考虑利用动能定理.2.物体的运动过程分为多个阶段时,我们尽量对全过程应用动能定理,如果这样不能解决问题,我们再分段处理.如本题中我们直接对由A →B →C 的全过程应用动能定理,就比分为两个阶段由A →B 和由B →C 分别来处理简单一些.动能定理在多过程中的应用1.分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.2.全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力的做功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单、更方便. 例4.如图所示,ABCD 为一竖直平面的轨道,其中BC 水平,A 点比BC 高出10 m ,BC 长1 m ,AB 和CD 轨道光滑.一质量为1 kg 的物体,从A 点以4 m/s 的速度开始运动,经过BC 后滑到高出C 点10.3 m 的D 点速度为零.求:(g 取10 m/s 2)(1)物体与BC 轨道间的动摩擦因数. (2)物体第5次经过B 点时的速度.(3)物体最后停止的位置(距B 点多少米).当堂双基达标1.对于动能的理解,下列说法错误的是( )A .动能是机械能的一种表现形式,凡是运动的物体都具有动能B .动能总为正值C .一定质量的物体,动能变化时,速度一定变化;但速度变化时,动能不一定变化D .动能不变的物体,一定处于平衡状态2.(多选)关于动能,下列说法正确的是( )A .公式E k =12mv 2中的速度v 是物体相对于地面的速度B .动能的大小由物体的质量和速率决定,与物体运动的方向无关C .物体以相同的速率向东和向西运动,动能的大小相等但方向不同D .物体以相同的速率做匀速直线运动和曲线运动,其动能不同3.(多选)一质量为0.1 kg 的小球,以5 m/s 的速度在光滑水平面上匀速运动,与竖直墙壁碰撞后以原速率反弹,若以弹回的速度方向为正方向,则小球碰墙过程中的速度变化和动能变化分别是( )A .Δv =10 m/sB .Δv =0C .ΔE k =1 JD .ΔE k =0 4.关于动能定理,下列说法中正确的是( ) A .某过程中外力的总功等于各力做功的绝对值之和 B .只要合外力对物体做功,物体的动能就一定改变 C .在物体动能不改变的过程中,动能定理不适用 D .动能定理只适用于受恒力作用而加速运动的过程5.下列关于运动物体所受的合力、合力做功和动能变化的关系,正确的是( ) A .如果物体所受的合力为零,那么合力对物体做的功一定为零 B .如果合力对物体做的功为零,则合力一定为零C .物体在合力作用下做匀变速直线运动,则动能在一段过程中变化量一定不为零D .如果物体的动能不发生变化,则物体所受合力一定是零6.一质量为m 的小球,用长为l 的轻绳悬挂于O 点.第一次小球在水平拉力F 1作用下,从平衡位置P 点缓慢地移到Q 点,此时绳与竖直方向夹角为θ(如图7­7­4所示),在这个过程中水平拉力做功为W 1.第二次小球在水平恒力F 2作用下,从P 点移到Q 点,水平恒力做功为W 2,重力加速度为g ,且θ<90°,则( )A .W1=F 1l sin θ,W 2=F 2l sin θ B .W 1=W 2=mgl (1-cos θ)C .W 1=mgl (1-cos θ),W 2=F 2l sin θD .W 1=F 1l sin θ,W 2=mgl (1-cos θ)7.一质量为m 的滑块,以速度v 在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力,经过一段时间后,滑块的速度变为-2v (方向与原来相反),在这段时间内,水平力所做的功为( )A.32mv 2 B .-32mv 2 C.52mv 2 D .-52mv 2 8.(多选)甲、乙两个质量相同的物体,用大小相等的力F 分别拉它们在水平面上从静止开始运动相同的距离s ,如图7­7­6所示,甲在光滑面上,乙在粗糙面上,则下列关于力F 对甲、乙两物体做的功和甲、乙两物体获得的动能的说法中正确的是( )A .力F 对甲物体做功多B .力F 对甲、乙两个物体做的功一样多C .甲物体获得的动能比乙大D .甲、乙两个物体获得的动能相同9.有一质量为m 的木块,从半径为r 的圆弧曲面上的a 点滑向b 点,如图所示,如果由于摩擦使木块的运动速率保持不变,则以下叙述正确的是( )A .木块所受的合力为零B .因木块所受的力都不对其做功,所以合力做的功为零C .重力和摩擦力做的功代数和为零D .重力和摩擦力的合力为零10.物体在合外力作用下做直线运动的v ­t 图象如图所示.下列表述正确的是( )A .在0~1 s 内,合力做正功B .在0~2 s 内,合力总是做负功C .在1~ 2 s 内,合力不做功D .在0~3 s 内,合力总是做正功11.(多选)如图所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动.小环从最高点A 滑到最低点B 的过程中,小环线速度大小的平方v 2随下落高度h 的变化图象可能是图中的( )12.如图所示,一物体由A 点以初速度v 0下滑到底端B ,它与挡板B 做无动能损失的碰撞后又滑回到A 点,其速度正好为零.设A 、B 两点高度差为h ,则它与挡板碰前的速度大小为( )A. 2gh +v 204B.2ghC.2gh +v 202D.2gh +v 2013.质量为m的小球用长度为L的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空气阻力作用.已知小球经过最低点时轻绳受的拉力为7mg,经过半周小球恰好能通过最高点,则此过程中小球克服空气阻力做的功为( )A.mgL4B.mgL3C.mgL2D.mgL14.物体在合外力的作用下做直线运动的v-t图像如图所示,下列表述中正确的是()A.在0~1s内,合外力做正功B.在0~2s内,合外力总是做正功C.在1s~2s内,合外力不做正功D.在0~3s内,合外力总是做正功15.(多选)物体沿直线运动的v­t图象如图所示,已知在第1秒内合力对物体做功为W,则( )A.从第1秒末到第3秒末合力做功为4WB.从第3秒末到第5秒末合力做功为-2WC.从第5秒末到第7秒末合力做功为WD.从第3秒末到第4秒末合力做功为-0.75W16.如图所示,在距沙坑表面高h=8 m处,以v0=22 m/s的初速度竖直向上抛出一质量m=0.5 kg的物体,物体落到沙坑并陷入沙坑d=0.3 m深处停下.若物体在空中运动时的平均阻力是重力的0.1倍(g=10 m/s2).求:(1)物体上升到最高点时离开沙坑表面的高度H;(2)物体在沙坑中受到的平均阻力F是多少?17.如图所示,滑雪者从高为H的山坡上A点由静止下滑,到B点后又在水平雪面上滑行,最后停止在C点.A、C两点的水平距离为s,求滑雪板与雪面间的动摩擦因数μ.18.如图所示,AB为固定在竖直平面内的14光滑圆弧轨道,轨道的B点与水平地面相切,其半径为R.质量为m的小球由A点静止释放,求:(1)小球滑到最低点B时,小球速度v的大小;(2)小球刚到达最低点B时,轨道对小球支持力F N的大小;(3)小球通过光滑的水平面BC滑上固定曲面,恰达最高点D,D到地面的高度为h(已知h<R),则小球在曲面上克服摩擦力所做的功Wf.。

“动能定理”含义的理解及其生活的应用

“动能定理”含义的理解及其生活的应用

“动能定理”含义的理解及其生活的应用动能定理是物理学中的一个基本定理,它描述了物体的动能与物体所受力量之间的关系。

根据动能定理,物体的动能的变化等于物体受力做功的大小。

动能定理的数学表达式为:动能的变化 = 功 = 做功的力× 物体移动的距离在这个公式中,动能的变化是一个物体动能的正负变化,正变化代表动能增加,负变化代表动能减少;做功的力是物体所受的外力;物体移动的距离是外力作用方向上物体移动的距离。

动能定理告诉我们,如果一个物体受到一个力作用,并且沿该力的方向移动了一定距离,那么它的动能将会发生变化。

动能定理的生活应用非常广泛。

下面我们来看几个例子:1. 撞击运动中的应用:当两个物体碰撞时,动能定理可以帮助我们计算碰撞后物体的速度变化。

在汽车碰撞中,我们可以通过测量碰撞前后两车的变形程度来估算车辆碰撞时的速度,从而判断碰撞对人体的伤害程度。

2. 运动器械的设计:在设计运动器械时,我们需要考虑它的动能变化情况。

在设计过山车的过程中,我们需要计算车辆在不同路段的动能变化情况,以确保车辆在高速下行时不会出现危险情况。

3. 能源利用优化:动能定理可以帮助我们优化能源利用。

在交通运输领域,我们可以通过合理安排交通信号灯的时间来减少车辆在起步和停车过程中的能量消耗,从而提高交通效率和节约能源。

4. 运动训练中的应用:动能定理在运动训练中也有着重要的应用。

在跑步运动中,我们可以通过合理调整步幅和步频以及改变地势等来控制身体的动能变化,以提高跑步效率。

通过学习和应用动能定理,我们可以更好地理解物体的运动规律,并且能够在生活中应用这一定理来解决问题。

无论是在日常生活中还是在科学研究中,动能定理都起到了重要的作用,为人们提供了关于运动和能量转化的深刻理解。

动能定理物体动能与功的关系

动能定理物体动能与功的关系

动能定理物体动能与功的关系动能定理是物理学中一个重要的定理,它描述了物体的动能与所受的做功之间的关系。

本文将详细介绍动能定理,并探讨物体动能与功之间的关系。

一、动能定理的定义和表达式动能定理是描述物体动能变化的定理。

它可以表达为:物体的动能变化等于物体所受的净外力所做的功。

动能定理的数学表达式为:物体的动能的变化量等于物体所受的净外力所做的功的总和。

数学表达式为:ΔKE = W_net其中,ΔKE表示物体动能的变化量,W_net表示物体所受的净外力所做的功的总和。

二、物体动能与功的关系根据动能定理,物体的动能的变化量等于物体所受的净外力所做的功的总和。

这意味着,当一个物体所受的净外力做功时,它的动能会发生变化。

1. 净外力与功的关系在动能定理中,功是由物体所受的净外力所做的。

净外力是指物体所受的所有作用力的矢量和。

功可以由净外力的大小和方向以及物体位移的大小和方向来计算。

2. 功对动能的影响根据动能定理,物体的动能的变化量等于物体所受的净外力所做的功的总和。

如果物体所受的净外力所做的功为正值,那么物体的动能将增加;如果功为负值,物体的动能将减小;如果功为零值,物体的动能将保持不变。

3. 动能与功的关系示例例如,当一个人用力推动一辆静止的小车,小车受到的作用力将进行功,将其推动到一定的位移。

这时,小车的动能将增加,同时也可以通过功的大小来计算增加的动能。

另一个示例是,当一个物体从高处自由下落时,在下落过程中,重力对物体进行功,使其动能增加。

这也可以通过功的大小来计算物体的动能增加量。

三、总结动能定理是描述物体动能与所受的净外力所做的功之间的关系的定理。

根据动能定理,物体的动能的变化量等于物体所受的净外力所做的功的总和。

净外力的大小和方向以及物体位移的大小和方向都会影响功的大小,进而影响物体动能的变化。

在实际问题中,我们可以利用动能定理来分析物体的运动情况和动能的变化。

通过计算功的大小和方向,我们可以了解物体动能的增加或减少,从而加深对动能和功之间关系的理解。

动能定理

动能定理

动能定理——高顺德一、要点大揭秘1.正确理解动能概念定义:物体由于运动而具有的能叫动能.(1)动能公式;E k=mv2/2,单位:焦耳,符号为J(2)可从以下四个方面全面理解这个概念.①动能是标量.动能的取值为正值或零,不会为负值.②动能是状态量.描述的是物体的某一时刻的运动状态.一定质量的物体在运动状态(瞬时速度)确定时,E k有惟一确定的值.③动能具有相对性.由于瞬时速度与参考系有关.所以E k也与参考系有关.在一般情况下,无特殊说明,则认为取大地为参考系.④物体的动能不会发生突变,它的改变需要一个过程,这个过程就是外力对物体做功的过程或物体对外做功的过程.2.如何正确理解动能具有相对性由动能的计算公式E K=mv2/2可知,速度v是一个与参照物有关的物理量,因此动能也是一个与选取的参考系有关的物理量,同一个运动物体,对于不同的参照物,它的动能一般是不相等的,在通常情况下,不做特别注明时,都是以地面为参照物来计算动能的。

如某人在以v。

=16m/s匀速运动的车厢里,相对于车厢以v=2m/s的速度向车厢前头投出一质量为1kg的物体。

如以车厢为参照物:物体的速度v=2m/s,动能E K= mv2/2=1/2×1×22=2J;如以地面为参照物则物体的速度为v+v0,动能E K= m(v+v0)2/2=1/2×1×182=162J,有人问静止的物体是否一定没有动能?有了动能具有相对性的结论,这个问题就好回答了,如果选取地球为参照物,物体的速度v0=0,当然没有动能,如果选取太阳为参照物,物体的质量)。

3.全面理解动能定理(1)动能定理表达式W=E k2-E k1(2)物理意义动能定理说明了做功是改变物体动能的一种途径,外力对物体做正功,物体的动能就增加,意味着其他物体通过做功的方式向所研究的对象输送了一部分能量;外力对物体做负功,物体的动能就减少,意味着研究对象向外输送了一部分能量。

“动能定理”含义的理解及其生活的应用

“动能定理”含义的理解及其生活的应用

“动能定理”含义的理解及其生活的应用“动能定理”是物理学中的一个重要定理,是描述物体运动的能量变化的规律。

简单来说,动能定理是指一个物体的动能的变化等于物体所受外力做功的大小。

根据动能定理,一个物体的动能变化等于物体所受外力做功的大小,即动能的增加等于所受到的外力所做的正功,而动能的减少等于所受到的外力所做的负功。

动能定理的数学表达式为:K2 - K1 = W,其中K2为物体的末动能,K1为物体的初动能,W为物体所受外力所做的功。

在日常生活中,动能定理有着许多应用。

以下是一些常见的例子:1. 抛掷运动:当我们抛掷一个物体时,抛出的物体会具有初速度。

根据动能定理,物体的动能变化等于所受到的外力所做的功,即动能的增加等于所受到的外力所做的正功。

在抛掷运动中,外力所做的功通常为重力对物体的负功,因此物体的动能会减小。

这也解释了为什么抛出的物体在空中逐渐失去高度和速度,最终落地停止运动。

2. 车辆制动:当我们开车行驶时,车辆具有一定的动能。

当需要制动减速或停车时,刹车产生的摩擦力会对车辆进行负功,减少车辆的动能。

根据动能定理,车辆的动能减少等于制动摩擦力所做的功,因此制动力越大,车辆的运动速度减少得越快。

3. 体育运动:在体育运动中,运动员的动能变化也可以通过动能定理来解释。

在进行跳远时,运动员在腾空过程中动能会减少,而在着地时动能会增加。

通过控制跳远的速度和姿势,运动员可以利用动能定理来最大程度地发挥自己的跳远能力。

动能定理是物理学中一个重要的规律,能够描述物体运动的能量变化。

在生活中,我们可以通过应用动能定理来解释和理解许多日常现象和运动过程,提高我们对物体运动的认识和理解。

高考物理知识体系总论:动能定理的应用

高考物理知识体系总论:动能定理的应用
2.对“外力”的理解 动能定理叙述中所说的“外力”,既可以是重力、 弹力、摩擦力,也可以是电场力、磁场力或其他 力。
动能定理的应用
大致框架
考点一ꢀ动能定 理的理解及应用
考点
考点二ꢀ动能定理 在多过程中的应用
考点三ꢀ与图象相 关的动能问题
1.应用动能定理解题应抓好“两状态,一过程” “两状态”即明确研究对象的始、末状态的速度或 动能情况;“一过程”即明确研究过程,确定这一 过程研究对象的受力情况和位置变化或位移信息。
动能定理的应用
大致框架
动能定理及应用
知识点一、动能 知识点二、动能定理
考点
动能定理的应用
大致框架
知识点一、动能
1.定义:物体由于运动而具有的能叫动能。 2.公式:Ek=mv2/2。 3.单位:焦耳,1J=1N·m=1 kg·m2/s2。 4.矢标性:动能是标量,只有正值。 5.状态量:动能是状态量,因为v是瞬时速度。
经典例题2
一个质量为0.3 kg的弹性小球,在光滑水平面上以6 m/s的速度垂直撞
到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,
则碰撞前后小球速度变化量的大小Δv和碰撞过程中小球的动能变化量
ΔEk为(ꢀꢀ)
A.Δv=0
B.Δv=12 m/s
C.ΔEk=1.8 J
D.ΔEk=10.8 J
答案解析2
答案解析:取初速度方向为正方向,则Δv=(-6-6)m/s=-12 m/s, 由于速度大小没变,动能不变,故动能变化量为0,故只有选项B正确。
经典例题3
如图,一半径为R的半圆形轨道竖直固定放置,轨道两端等高,质量为m 的质点自轨道端点P由静止开始滑下,滑到最低点Q时,对轨道的正压力 为2mg,重力加速度大小为g。质点自P滑到Q的过程中,克服摩擦力所做 的功为(ꢀꢀ)

“动能定理”含义的理解及其生活的应用

“动能定理”含义的理解及其生活的应用

“动能定理”含义的理解及其生活的应用动能定理是物理学中一个非常重要的定理,它描述了一个物体的动能和它的速度之间的关系。

简而言之,动能定理说的就是一个物体的动能与其质量和速度成正比,当速度增加时,动能也随之增加。

动能定理的数学表达式为:K.E = 1/2 * m * v^2,其中K.E表示动能,m表示质量,v表示速度。

动能定理的含义有两个方面,一方面是从物理角度解释,另一方面则是从生活应用的角度来理解。

从物理角度来讲,动能定理告诉我们一个物体的动能与其速度的平方成正比,这就意味着速度越大,动能也就越大。

而动能实际上就是一个物体由于运动而具有的能量,所以动能定理也可以理解为告诉我们一个物体的能量与其速度的平方成正比。

其实这也符合常识,我们在生活中经常可以观察到这个现象,比如汽车行驶的速度越快,撞击力也就越大,这正是由动能定理所描述的。

从生活应用的角度来讲,动能定理也有很多实际的应用。

比如在交通工具的设计中,工程师们经常会利用动能定理来进行设计,通过控制车辆的速度和质量来达到更安全和高效的运行效果。

在机械设备的设计中也会用到动能定理,比如在飞机的设计中,通过合理控制飞机的速度和质量分布,来实现更稳定和高效的飞行。

而在日常生活中,我们也可以通过动能定理来分析一些实际问题,比如在运动中如何更好地利用动能来提高效率,比如在进行运动锻炼时如何通过控制速度来减少受伤的可能性等等。

动能定理的理解和应用并不仅限于物理学领域,它实际上贯穿了我们生活的方方面面。

通过深入理解动能定理,我们可以更好地理解运动和能量之间的关系,从而更好地利用这些知识来解决实际问题。

在工程学领域,动能定理也被广泛应用。

比如在机械设计中,工程师们通常要考虑设备的动能,通过对动能的合理设计和控制,可以有效地提高设备的效率和稳定性。

另外在交通工具的设计中,比如汽车、火车、飞机等,工程师们也需要考虑动能定理,通过控制车辆的速度和质量分布,来保证车辆的安全性和稳定性。

动能定理的应用速度与能量的关系

动能定理的应用速度与能量的关系

动能定理的应用速度与能量的关系动能定理的应用:速度与能量的关系引言:动能定理是物理学中的一个重要定理,描述了物体的动能与所受力的变化之间的关系。

动能定理可以用来解释与分析物体的速度和能量之间的关系。

本文将探讨动能定理在速度和能量之间应用的相关问题。

一、动能定理的基本定义和表达式动能定理描述了物体的动能与所受力的变化之间的关系,其基本定义和表达式如下:动能定理:物体的动能变化等于物体所受合外力做功的大小。

表达式:ΔK = W其中,ΔK表示物体的动能变化,W表示物体所受合外力做的功。

二、速度和能量的关系根据动能定理,我们可以推导出速度和能量之间的关系。

假设物体的质量为m,初速度为v₁,最终速度为v₂,动能的变化可以表示为:ΔK = K₂ - K₁ = 1/2mv₂² - 1/2mv₁²进一步化简可得:ΔK = 1/2m(v₂² - v₁²)根据动能定理,动能的变化等于物体所受的合外力做的功,即:1/2m(v₂² - v₁²) = W将动能的变化ΔK表示为速度的函数,可以得到:ΔK = 1/2mv₂² - 1/2mv₁² = W三、应用实例:加速度和能量的关系动能定理在速度和能量之间的关系中有着广泛的应用。

一个常见的应用实例是研究加速度和能量的关系。

假设物体质量为m,初速度为v₁,加速度为a,时间间隔为Δt,根据动能定理,可以推导出以下关系:ΔK = 1/2mv₂² - 1/2mv₁² = W根据牛顿第二定律,可以得到物体的加速度表达式:F = ma根据功的定义,可以得到合外力做功的表达式:W = FΔx = mΔx / Δt * Δx = ma * Δx = m(v₂ - v₁)将上述表达式代入动能定理中可得:1/2mv₂² - 1/2mv₁² = m(v₂ - v₁)该等式可以进一步转化为:(v₂ + v₁)(v₂ - v₁) = 2a(v₂ - v₁)通过以上推导,我们可以发现速度之间的差值与加速度之间存在着一定的关系,从而揭示了速度和能量之间的联系。

物理-动能定理及其应用

物理-动能定理及其应用

动能定理及其应用物理考点 1.理解动能定理,会用动能定理解决一些基本问题.2.掌握解决动能定理与图象结合的问题的方法.考点一 动能定理的理解和基本应用基础回扣1.动能(1)定义:物体由于运动而具有的能量叫作动能.(2)公式:E k =m v 2,单位:焦耳(J).1 J =1 N·m =1 kg·m 2/s 2.12(3)动能是标量、状态量.2.动能定理(1)内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.(2)表达式:W =ΔE k =E k2-E k1=m v 22-m v 12.1212(3)物理意义:合力做的功是物体动能变化的量度.技巧点拨1.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动.(2)动能定理既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.2.解题步骤3.注意事项(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)当物体的运动包含多个不同过程时,可分段应用动能定理求解;也可以全过程应用动能定理求解.(3)动能是标量,动能定理是标量式,解题时不能分解动能.例1 (2019·辽宁大连市高三月考)如图1所示,一名滑雪爱好者从离地h =40 m 高的山坡上A 点由静止沿两段坡度不同的直雪道AD 、DC 滑下,滑到坡底C 时的速度大小v =20 m/s.已知滑雪爱好者的质量m =60 kg ,滑雪板与雪道间的动摩擦因数μ=0.25,BC 间的距离L =100 m ,重力加速度g =10 m/s 2,忽略在D 点损失的机械能,则下滑过程中滑雪爱好者做的功为( )图1A .3 000 JB .4 000 JC .5 000 JD .6 000 J答案 A解析 根据动能定理有W -μmgL AD cosα-μmgL CD cosβ+mgh =m v 2,即:12W -μmgL +mgh =m v 2,求得W =3 000 J ,故选A.12例2 (2017·上海卷·19)如图2,与水平面夹角θ=37°的斜面和半径R =0.4 m 的光滑圆轨道相切于B 点,且固定于竖直平面内.滑块从斜面上的A 点由静止释放,经B 点后沿圆轨道运动,通过最高点C 时轨道对滑块的弹力为零.已知滑块与斜面间动摩擦因数μ=0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:图2(1)滑块在C 点的速度大小v C ;(2)滑块在B 点的速度大小v B ;(3)A 、B 两点间的高度差h .答案 (1)2 m/s (2)4.29 m/s (3)1.38 m解析 (1)在C 点,滑块竖直方向所受合力提供向心力,mg =m v C 2R 解得v C ==2 m/s.gR (2)B →C 过程,由动能定理得-mgR (1+cos 37°)=m v C 2-m v B 21212解得v B =≈4.29 m/s.v C 2+2gR (1+cos 37°)(3)滑块从A →B 的过程,利用动能定理:mgh -μmg cos 37°·=m v B 2-0hsin 37°12代入数据,解得h =1.38 m.1.(动能定理的理解)(2018·天津卷·2)滑雪运动深受人民群众喜爱.如图3所示,某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB ,从滑道的A 点滑行到最低点B 的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB 下滑过程中( )图3A .所受合外力始终为零B .所受摩擦力大小不变C .合外力做功一定为零D .机械能始终保持不变答案 C解析 运动员从A 点滑到B 点的过程中速率不变,则运动员做匀速圆周运动,其所受合外力指向圆心,A 错误;如图所示,运动员受到的沿圆弧切线方向的合力为零,即F f =mg sin α,下滑过程中α减小,sin α变小,故摩擦力F f 变小,B 错误;由动能定理知,运动员匀速率下滑动能不变,合外力做功为零,C 正确;运动员下滑过程中动能不变,重力势能减小,机械能减小,D 错误.2.(动能定理的应用)(多选)(2019·宁夏银川市质检)如图4所示为一滑草场.某条滑道由上下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,载人滑草车与草地之间的动摩擦因数均为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计载人滑草车在两段滑道交接处的能量损失,重力加速度大小为g ,sin 37°=0.6,cos 37°=0.8).则( )图4A .动摩擦因数μ=67B .载人滑草车最大速度为2gh7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为g 35答案 AB解析 对载人滑草车从坡顶由静止开始滑到底端的全过程分析,由动能定理可知:mg ·2h -μmg cos 45°·-μmg cos 37°·=0,解得μ=,选项A 正确; 对经过上段hsin 45°hsin 37°67滑道的过程分析,根据动能定理有mgh -μmg cos 45°·=m v m 2,解得:v m =,选hsin 45°122gh 7项B 正确;载人滑草车克服摩擦力做功为2mgh ,选项C 错误;载人滑草车在下段滑道上的加速度为a ==-g ,故大小为g ,选项D 错误.mg sin 37°-μmg cos 37°m335335考点二 应用动能定理求变力做功在一个有变力做功的过程中,由动能定理,W 变+W 恒=m v 22-m v 12,物体初、末速度已1212知,恒力做功W 恒可根据功的公式求出,这样就可以得到W 变=m v 22-m v 12-W 恒,就可1212以求变力做的功了.例3 (2020·四川雅安市期末)如图5所示,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高,质量m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的压力为2mg ,重力加速度大小为g .质点自P 滑到Q 的过程中,克服摩擦力所做的功为( )图5A.mgRB.mgR 1413C.mgRD.mgR12π4答案 C解析 在Q 点质点受到的竖直向下的重力和竖直向上的支持力的合力充当向心力,所以有F N -mg =m ,F N =F N ′=2mg ,联立解得v =,下滑过程中,根据动能定理可得v 2R gR mgR -W f =m v 2,解得W f =mgR ,所以克服摩擦力做功mgR ,选项C 正确.1212123.(应用动能定理求变力做功)(2019·河南郑州市高一月考)质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一轻弹簧O 端相距s ,如图6所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为(重力加速度大小为g )( )图6A.m v 02-μmg (s +x )B.m v 02-μmgx 1212C .μmgs D .μmg (s +x )答案 A解析 根据功的定义式可知物体克服摩擦力做功为W f =μmg (s +x ),由动能定理可得-W 弹-W f =0-m v 02,则W 弹=m v 02-μmg (s +x ),故选项A 正确.1212考点三 动能定理与图象结合的问题1.解决图象问题的基本步骤(1)观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义.(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点、图线下的面积等所表示的物理意义,分析解答问题,或者利用函数图线上的特定值代入函数关系式求物理量.2.图象所围“面积”和图象斜率的含义 动能定理与E k-x图象结合例4 (2019·全国卷Ⅲ·17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h在3 m以内时,物体上升、下落过程中动能E k随h的变化如图7所示.重力加速度取10 m/s2.该物体的质量为( )图7A.2 kg B.1.5 kg C.1 kg D.0.5 kg答案 C解析 法一:特殊值法画出运动示意图.设该外力的大小为F,据动能定理知A →B (上升过程):-(mg +F )h =E k B -E k A B →A (下落过程):(mg -F )h =E k A ′-E k B ′整理以上两式并代入数据得mgh =30 J ,解得物体的质量m =1 kg ,选项C 正确.法二:写表达式根据斜率求解上升过程:-(mg +F )h =E k -E k0,则E k =-(mg +F )h +E k0下降过程:(mg -F )h =E k ′-E k0′,则E k ′=(mg -F )h +E k0′,结合题图可知mg +F = N =12 N ,72-363-0mg -F = N =8 N48-243-0联立可得m =1 kg ,选项C 正确. 动能定理与F -x 图象结合例5 如图8甲所示,在倾角为30°的足够长的光滑斜面AB 的A 处连接一粗糙水平面OA ,OA 长为4m .有一质量为m 的滑块,从O 处由静止开始受一水平向右的力F 作用.F 在水平面上按图乙所示的规律变化.滑块与OA 间的动摩擦因数μ=0.25,g 取10 m/s 2,试求:图8(1)滑块运动到A 处的速度大小;(2)不计滑块在A 处的速率变化,滑块沿斜面AB 向上运动的最远距离是多少.答案 (1)5 m/s (2)5 m2解析 (1)由题图乙知,在OA 段拉力做功为W =(2mg ×2-0.5mg ×1) J =3.5mg (J)滑动摩擦力F f =-μmg =-0.25mg ,W f =F f ·x OA =-mg (J),滑块在OA 上运动的全过程,由动能定理得W +W f =m v A 2-012代入数据解得v A =5 m/s.2(2)对于滑块冲上斜面的过程,由动能定理得-mgL sin 30°=0-m v A 212解得L =5 m所以滑块沿斜面AB 向上运动的最远距离为L =5 m.4.(动能定理与a -t 图象结合)(2020·山西太原市模拟)用传感器研究质量为2 kg 的物体由静止开始做直线运动的规律时,在计算机上得到0~6 s 内物体的加速度随时间变化的关系如图9所示.下列说法正确的是( )图9A .0~6 s 内物体先向正方向运动,后向负方向运动B .0~6 s 内物体在4 s 时的速度最大C .物体在2~4 s 内的速度不变D .0~4 s 内合力对物体做的功等于0~6 s 内合力对物体做的功答案 D解析 物体6 s 末的速度v 6=×(2+5)×2 m/s -×1×2 m/s =6 m/s ,结合题图可知0~6 s1212内物体一直向正方向运动,A 项错误;由题图可知物体在5 s 末速度最大,v m =×(2+5)×122 m/s =7 m/s ,B 项错误;由题图可知物体在2~4 s 内加速度不变,做匀加速直线运动,速度变大,C 项错误;在0~4s 内由动能定理可知,W 合4=m v 42-0,又v 4=×(2+4)×21212m/s =6 m/s ,得W 合4=36 J,0~6 s 内合力对物体做的功:W 合6=m v 62-0,又v 6=6 m/s ,12得W 合6=36 J ,则W 合4=W 合6,D 项正确.5.(动能定理与E k -x 图象结合)(2020·湖北高三月考)质量为2 kg 的物块放在粗糙水平面上,在水平拉力的作用下由静止开始运动,物块的动能E k 与其发生的位移x 之间的关系如图10所示.已知物块与水平面间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2,则下列说法正确的是( )图10A .x =1 m 时速度大小为2 m/sB .x =3 m 时物块的加速度大小为2.5 m/s 2C .在前4 m 位移过程中拉力对物块做的功为9 JD .在前4 m 位移过程中物块所经历的时间为2.8 s 答案 D解析 根据动能定理ΔE k =F 合x 可知,物体在两段运动中分别所受合外力恒定,则物体做加速度不同的匀加速运动;由题图图象可知x =1 m 时动能为2 J ,v 1== m/s ,故A 2E km 2错误.同理,当x =2 m 时动能为4 J ,v 2=2 m/s ;当x =4 m 时动能为9 J ,v 4=3 m/s ,则2~4 m 内有2a 2x 2=v 42-v 22,解得2~4 m 内物块的加速度为a 2=1.25 m/s 2,故B 错误.对物体运动全过程,由动能定理得:W F +(-μmgx 4)=E k 末-0,解得W F =25J ,故C 错误.0~2 m 过程,t 1==2 s ;2~4 m 过程,t 2==0.8 s ,故总时间为2 s +0.8 s =2.82x 1v 2x 2v2+v 42s ,D正确.课时精练1.(2018·全国卷Ⅱ·14)如图1,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定( )图1A .小于拉力所做的功B .等于拉力所做的功C .等于克服摩擦力所做的功D .大于克服摩擦力所做的功答案 A解析 由题意知,W 拉-W 克摩=ΔE k ,则W 拉>ΔE k ,A 项正确,B 项错误;W 克摩与ΔE k 的大小关系不确定,C 、D 项错误.2.如图2所示,小物体从A 处由静止开始沿光滑斜面AO 下滑,又在粗糙水平面上滑动,最终停在B 处,已知A 距水平面OB 的高度为h ,物体的质量为m ,现用力将物体从B 点静止沿原路拉回至距水平面高为h 的C 点处,已知重力加速度为g ,需外力做的功至少应为( )23图2A.mghB.mgh1323C.mgh D .2mgh 53答案 C解析 物体从A 到B 全程应用动能定理可得mgh -W f =0,由B 返回C 处过程,由动能定理得W F -W f -mgh =0,联立可得W F =mgh ,故选C.23533.(2018·江苏卷·4)从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k 与时间t 的关系图像是( )答案 A解析 小球做竖直上抛运动,设初速度为v 0,则v =v 0-gt小球的动能E k =m v 2,把速度v 代入得12E k =mg 2t 2-mg v 0t +m v 02,1212E k 与t 为二次函数关系,故A 正确.4.(2021·广东茂名市第一中学期中)如图3所示,运动员把质量为m 的足球从水平地面踢出,足球在空中达到的最高点高度为h ,在最高点时的速度为v ,不计空气阻力,重力加速度为g ,下列说法正确的是( )图3A .运动员踢球时对足球做功m v 212B .足球上升过程重力做功mghC .运动员踢球时对足球做功mgh +m v 212D .足球上升过程克服重力做功mgh +m v 212答案 C解析 足球被踢起后在运动过程中,只受到重力作用,只有重力做功,重力做功为-mgh ,即克服重力做功mgh ,B 、D 错误;由动能定理有W 人-mgh =m v 2,因此运动员对足球做12功W 人=mgh +m v 2,故A 错误,C 正确.125.(2021·湖南怀化市模拟)如图4所示,DO 是水平面,AB 是斜面,初速度为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零,如果斜面改为AC ,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初速度(已知物体与斜面及水平面之间的动摩擦因数处处相同且不为零)( )图4A .等于v 0B .大于v 0C .小于v 0D .取决于斜面答案 A解析 物体从D 点滑动到顶点A 过程中-mg ·x AO -μmg ·x DB -μmg cos α·x AB =0-m v 02,由几12何关系有x AB cos α=x OB ,因而上式可以简化为-mg ·x AO -μmg ·x OD =0-m v 02,从上式可以12看出,物体的初速度与路径无关.故选A.6.(2021·福建宁德市高三期中)如图5所示,质量为m 的物体置于光滑水平面上,一根绳子跨过定滑轮一端固定在物体上,另一端在力F 作用下,物体由静止开始运动到绳与水平方向的夹角α=45°时绳以速度v 0竖直向下运动,此过程中,绳的拉力对物体做的功为( )图5A.m v 02B.m v 021412C .m v 02D.m v 0222答案 C解析 将物体的运动分解为沿绳子方向的运动以及垂直绳子方向的运动,则当物体运动到绳与水平方向的夹角α=45°时物体的速度为v ,则v cos 45°=v 0,可得v =v 0,物体由静止2开始运动到绳与水平方向的夹角α=45°过程中,只有绳子拉力对物体做功,由动能定理得绳的拉力对物体做的功:W =m v 2-0=m v 02,故C 正确,A 、B 、D 错误.127.(多选)在某一粗糙的水平面上,一质量为2 kg 的物体在水平恒定拉力的作用下做匀速直线运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图6中给出了拉力随位移变化的关系图象.已知重力加速度g 取10 m/s 2.根据以上信息能精确得出或估算得出的物理量有( )图6A .物体与水平面间的动摩擦因数B .合外力对物体所做的功C .物体做匀速运动时的速度D .物体运动的时间答案 ABC解析 物体做匀速直线运动时,拉力F 0与滑动摩擦力F f 相等,物体与水平面间的动摩擦因数为μ==0.35,A 正确;减速过程由动能定理得W F +W f =0-m v 2,根据F -x 图象中F 0mg 12图线与坐标轴围成的面积可以估算力F 做的功W F ,而W f =-μmgx =-F 0x ,由此可求得合外力对物体所做的功,及物体做匀速运动时的速度v ,B 、C 正确;因为物体做变加速运动,所以运动时间无法求出,D 错误.8.质量m =1 kg 的物体,在水平恒定拉力F (拉力方向与物体初速度方向相同)的作用下,沿粗糙水平面运动,经过的位移为4 m 时,拉力F 停止作用,运动到位移为8 m 时物体停止运动,运动过程中E k -x 图象如图7所示.取g =10 m/s 2,求:图7(1)物体的初速度大小;(2)物体和水平面间的动摩擦因数;(3)拉力F 的大小.答案 (1)2 m/s (2)0.25 (3)4.5 N解析 (1)从题图可知物体初动能为2 J ,则E k0=m v 2=2 J ,12得v =2 m/s.(2)在位移为4 m 处物体的动能为E k =10 J ,在位移为8 m 处物体的动能为零,这段过程中物体克服摩擦力做功.设摩擦力为F f ,则由动能定理得-F f x 2=0-E k代入数据,解得F f =2.5 N.因F f =μmg ,故μ=0.25.(3)物体从开始运动到位移为4 m 的过程中,受拉力F 和摩擦力F f 的作用,合力为F -F f ,根据动能定理有(F -F f )x 1=E k -E k0,故得F =4.5 N.9.(多选)(2020·贵州安顺市网上调研)如图8所示,半圆形光滑轨道BC 与水平光滑轨道AB 平滑连接.小物体在水平恒力F 作用下,从水平轨道上的P 点,由静止开始运动,运动到B点撤去外力F ,小物体由C 点离开半圆轨道后落在P 点右侧区域.已知PB =3R ,重力加速度为g ,F 的大小可能为( )图8A.mgB.125mg 6C .mgD.7mg 6答案 BC解析 小球能通过C 点应满足m ≥mg ,v C 2R 且由C 点离开半圆轨道后落在P 点右侧区域,则有2R =gt 2,v C t <3R ,对小球从P 点到C 12点由动能定理得F ·3R -2mgR =m v ,12C 2联立解得≤F <5mg 625mg 24故B 、C 正确,A 、D 错误.10.如图9所示,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的小球(可看成质点)从P 点上方高为R 处由静止开始下落,恰好从P 点进入轨道.小球滑到轨道最低点N 时,对轨道的压力大小为4mg ,g 为重力加速度.用W 表示小球从P 点运动到N 点的过程中克服摩擦力所做的功,则( )图9A .W =mgR ,小球恰好可以到达Q 点12B .W >mgR ,小球不能到达Q 点12C .W =mgR ,小球到达Q 点后,继续上升一段距离12D .W <mgR ,小球到达Q 点后,继续上升一段距离12答案 C解析 在N 点,根据牛顿第二定律有F N -mg =m ,解得v N =,对小球从开始下落v N 2R 3gR 至到达N 点的过程,由动能定理得mg ·2R -W =m v N 2-0,解得W =mgR .由于小球在PN 1212段某点处的速度大于此点关于ON 在NQ 段对称点处的速度,所以小球在PN 段某点处受到的支持力大于此点关于ON 在NQ 段对称点处受到的支持力,则小球在NQ 段克服摩擦力做的功小于在PN 段克服摩擦力做的功,小球在NQ 段运动时,由动能定理得-mgR -W ′=m v Q 2-m v N 2,因为W ′<mgR ,则小球在N 处的动能大于小球从N 到Q 121212克服重力做的功和克服摩擦力做的功之和,可知v Q >0,所以小球到达Q 点后,继续上升一段距离,选项C 正确.11.如图10甲所示,长为4 m 的水平轨道AB 与半径为R =0.6 m 的竖直半圆弧轨道BC 在B 处相连接,有一质量为1 kg 的滑块(大小不计),从A 处由静止开始受水平向右的力F 作用,F 的大小随位移变化的关系如图乙所示,滑块与AB 间的动摩擦因数为μ=0.25,与BC间的动摩擦因数未知,g 取10 m/s 2.求:图10(1)滑块到达B 处时的速度大小;(2)滑块在水平轨道AB 上运动前2 m 过程所用的时间;(3)若到达B 点时撤去力F ,滑块沿半圆弧轨道内侧上滑,并恰好能到达最高点C ,则滑块在半圆弧轨道上克服摩擦力所做的功是多少?答案 (1)2 m/s (2) s (3)5 J10835解析 (1)对滑块从A 到B 的过程,由动能定理得F 1x 1+F 3x 3-μmgx =m v B 2,12得v B =2 m/s.10(2)在前2 m 内,有F 1-μmg =ma ,且x 1=at 12,解得t 1= s.12835(3)当滑块恰好能到达最高点C 时,应有mg =m ,v C 2R 对滑块从B 到C 的过程,由动能定理得W -mg ×2R =m v C 2-m v B 2,1212代入数值得W =-5 J ,即滑块在半圆弧轨道上克服摩擦力做的功为5 J.12.(2020·山西运城市月考)如图11,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切,BC 为圆弧轨道的直径,O 为圆心,OA 和OB 之间的夹角为α,sinα=.一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;35在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:图11(1)水平恒力的大小和小球到达C 点时速度的大小;(2)小球到达B 点时对圆弧轨道的压力大小.答案 (1)mg (2)mg345gR 2152解析 (1)设水平恒力的大小为F 0,小球所受重力和水平恒力的合力的大小为F ,小球到达C 点时速度的大小为v C ,则=tan α,F =,F 0mg mgcos α由牛顿第二定律得F =m ,v C 2R 联立并代入数据解得F 0=mg ,v C =.345gR2(2)设小球到达B 点时速度的大小为v B ,小球由B 到C 的过程中由动能定理可得-2FR =m v C 2-m v B 2,1212代入数据解得v B =52gR小球在B 点时有F N -F =m ,v B 2R 解得F N =mg152由牛顿第三定律可知,小球在B 点时对圆弧轨道的压力大小为F N ′=mg .152。

动能的关系式-概述说明以及解释

动能的关系式-概述说明以及解释

动能的关系式-概述说明以及解释1.引言1.1 概述动能是物体运动过程中所具有的能量,它是描述物体活动与运动状态的重要概念。

在自然科学领域,动能是研究物体运动与能量转化的基础概念之一。

通过讨论动能与相关因素之间的关系,我们可以更深入地理解物体运动的本质及其规律。

本文将首先介绍动能的定义与概念,然后着重讨论动能与物体质量以及速度之间的关系。

通过分析这些关系式,我们可以揭示动能与物体运动属性之间的紧密联系。

最后,文章将总结动能的关系式,探讨动能在实际应用中的意义,并提出进一步研究动能的方向。

通过对动能的关系式的深入研究,我们可以更好地理解物体运动与能量转化的过程,并且在工程、力学、物理等领域中进行实际应用。

希望本文能够为读者提供有关动能的关系式的全面理解,并激发对动能相关研究的兴趣与思考。

1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构是指文章的组织框架,它有助于读者理解文章的脉络和逻辑。

本文按照以下结构来组织内容:1) 引言部分:介绍本文所要讨论的主题,即动能的关系式。

在引言中需要概述动能的基本概念和重要性,说明本文的研究目的和意义。

2) 正文部分:通过对动能的定义和概念的介绍,探讨动能与物体质量以及物体速度之间的关系。

2.1 动能的定义与概念:对动能的概念进行详细解释,解释动能是物体运动过程中具有的能量形式,是物体速度和质量的函数关系。

2.2 动能与物体质量的关系:讨论动能与物体质量之间的关系,说明质量对动能的影响。

引入动能公式,解释质量在动能中的作用。

2.3 动能与物体速度的关系:讨论动能与物体速度之间的关系,说明速度对动能的影响。

引入动能公式,解释速度在动能中的作用。

3) 结论部分:总结动能的关系式及其重要性,并讨论动能关系式在实际应用中的意义。

提出进一步研究动能关系式的方向,例如通过实验数据的收集和分析来验证动能关系式的准确性。

通过以上的结构安排,读者可以清晰地了解文章的内容流程,从而更好地理解动能的关系式的内涵和应用价值。

动能定理积分表达式

动能定理积分表达式

动能定理积分表达式动能定理是物理学中的一个重要概念,它描述了物体的动能与力的关系。

根据动能定理,物体的动能的变化等于物体所受外力所做的功。

动能定理的积分表达式是物体动能的变化与物体所受外力所做的功的关系式。

下面将详细介绍动能定理的积分表达式及其应用。

我们来回顾一下动能定理的基本概念。

动能是物体运动时所具有的能量,它与物体的质量和速度有关。

动能定理是描述动能变化与力的关系的定理,它表明物体的动能的变化等于物体所受外力所做的功。

动能定理的积分表达式可以表示为:∆K = W其中,∆K表示物体动能的变化,W表示物体所受外力所做的功。

动能定理的积分表达式可以用来计算物体在一定时间内动能的变化量。

通过对物体所受外力所做的功进行积分,我们可以得到物体动能的变化量。

这个积分表达式在力与动能的转化问题中具有重要的应用。

例如,当一个物体受到一个恒定的力F作用时,我们可以利用动能定理的积分表达式来计算物体的动能的变化量。

假设物体在某一时刻的速度为v1,在另一时刻的速度为v2,根据动能定理的积分表达式,我们可以得到:∆K = ∫(F·ds)其中,∫(F·ds)表示力F在物体位移s上所做的功。

根据牛顿第二定律,力F可以表示为物体的质量m乘以加速度a,即F = ma。

将这个表达式代入动能定理的积分表达式中,我们可以得到:∆K = ∫(ma·ds)由于加速度a可以表示为速度的导数,即a = dv/dt,这里v表示速度,t表示时间。

将这个表达式代入上式中,我们可以得到:∆K = ∫(m·dv/dt·ds)对上式进行积分,我们可以得到:∆K = ∫(m·dv)根据积分的定义,我们可以将上式的积分符号去掉,得到:∆K = m(v2 - v1)这个公式表示了物体动能的变化量与物体的质量和速度的关系。

根据这个公式,我们可以计算物体在不同速度下的动能的变化量。

动能定理的积分表达式是描述物体动能变化与力的关系的重要公式。

动能的定义公式

动能的定义公式

动能的定义公式
动能是物体由于运动而具有的能量,它是物理学中的一个重要概念。

动能的定义公式是根据物体的质量和速度来计算的。

具体公式如下:动能 = (1/2) × 质量 × 速度²
这个公式说明了动能的大小与物体的质量和速度的平方成正比。

当物体的质量增加或速度增加时,动能也会增加。

因此,动能可以看作是物体运动时所具有的能量。

动能的单位是焦耳(J),它是国际单位制中能量的基本单位。

在实际应用中,我们经常使用千焦耳(kJ)或兆焦耳(MJ)来表示较大的能量。

动能在日常生活中有着广泛的应用。

例如,当我们骑自行车、开汽车或者跑步时,我们的身体运动产生动能,这些动能可以被转化为其他形式的能量,如热能或电能。

动能也与机械工作密切相关,例如在机械装置中,动能可以被转化为做功的能量。

动能是物体由于运动而具有的能量,它可以通过质量和速度的乘积来计算。

动能的大小与物体的质量和速度的平方成正比,它在物理学和日常生活中都具有重要的意义和应用。

初中动能定理知识点总结归纳

初中动能定理知识点总结归纳

初中动能定理知识点总结归纳初中动能定理知识点总结归纳动能定理是物理学中非常重要的定理之一,它描述了物体的动能与其质量以及速度之间的关系。

在初中物理学习过程中,我们经常会接触到动能定理这一概念,并通过一系列的实例应用与计算来理解和应用它。

本文将对初中阶段学习动能定理的知识点进行总结归纳,帮助同学们更好地掌握这一重要定理。

动能的概念:动能是表示物体运动状态的物理量,它与物体的质量和速度有关。

动能定理就是描述了物体的动能与质量、速度之间的定量关系。

动能的计算:动能的计算公式为:动能= 1/2 × 质量× 速度的平方。

其中,质量的单位是千克,速度的单位是米/秒,动能的单位是焦耳(J)。

动能定理的表达式:动能定理的表达式为:2 × 动能 = 力× 路程。

这个表达式表示了动能与物体受到的力以及物体移动的路程之间的关系。

当物体受到力作用时,它会产生加速度,从而改变物体的速度,进而改变物体的动能。

动能定理的推导:动能定理的推导可以通过力与物体的位移之间的关系得到。

力的定义是质量乘以加速度,而物体的位移是速度乘以时间。

力与位移之间可以得到力与速度的平方的关系,由此可以推导出动能定理的表达式。

动能定理的应用:动能定理可以应用在各种物理现象和实例的分析中。

例如,在弹簧平衡上,可以通过动能定理计算物体弹簧振动时的最大速度;在碰撞问题中,可以通过动能定理分析物体碰撞前后的动能转化和损失情况;在水平面上的滑坡问题中,可以通过动能定理计算物体从滑坡上滑下来时的速度等等。

动能定理的应用实例:1.小明坐在光滑的滑坡上,开始时速度为0,当他下滑至底部时,速度达到10m/s。

已知小明的质量为50kg,请计算他下滑时的动能。

答:动能 = 1/2 × 质量× 速度的平方= 1/2 × 50kg × (10m/s)^2= 2500焦耳(J)2.小红用力拉弹簧,弹簧随即开始振动。

动能算符表达式

动能算符表达式

动能算符表达式动能是物体运动时所具有的能量,它是物体的质量和速度的函数。

动能的大小与物体的质量成正比,与物体的速度的平方成正比。

由于动能与速度的平方成正比,所以速度的改变对动能的影响更大。

我们可以使用动能算符表达式来计算物体的动能。

动能算符表达式可以写为E_k = 1/2 * m * v^2,其中E_k表示动能,m表示物体的质量,v表示物体的速度。

在动能算符表达式中,我们可以看到动能与物体的质量和速度的平方成正比。

这意味着质量越大,动能越大;速度越大,动能越大。

例如,一个质量为m的物体,速度为v的动能为E_k = 1/2 * m * v^2。

如果我们把速度增加到原来的两倍,动能将增加到原来的四倍。

动能算符表达式的计算步骤如下:1. 确定物体的质量m和速度v的数值。

2. 将质量m和速度v代入动能算符表达式中。

3. 计算动能E_k的数值。

例如,一个质量为2kg的物体,速度为3m/s,我们可以使用动能算符表达式计算其动能。

将质量和速度代入动能算符表达式,得到E_k = 1/2 * 2kg * (3m/s)^2 = 9J。

因此,该物体的动能为9焦耳。

动能算符表达式不仅可以用于计算物体的动能,还可以用于分析物体的运动。

通过观察物体的质量和速度的变化,我们可以推断出物体的动能的变化。

例如,当一个运动物体的速度增加时,它的动能也会增加;当一个物体的质量增加时,它的动能也会增加。

动能算符表达式在物理学中有广泛的应用。

在机械能守恒定律中,动能是重要的能量形式之一。

在弹性碰撞中,动能的转化可以帮助我们理解物体之间的能量交换过程。

在动能定理中,动能的改变与物体所受的力和位移有关。

动能是物体运动时所具有的能量,可以使用动能算符表达式来计算和描述动能。

动能算符表达式表明动能与物体的质量和速度的平方成正比。

通过使用动能算符表达式,我们可以计算物体的动能,并分析物体的运动。

动能算符表达式在物理学中有广泛的应用,可以帮助我们理解能量的转化和物体之间的相互作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在无能量损耗的情况下,力对物体做功,则物体得到全部能量。

先假设恒力对静止的物体m做功,一端时间t内恒力F做功
由F=ma可知道,在t时间内,有a存在,则有位移存在:
X=1/2at²
有位移则有做功的存在,则:
W=FX=ma×1/2at²=1/2ma²t²=1/2mv²
W在过程中是积累的,是状态量,多少就体现着速度方面。

至于为什么存在1/2和m和v²,这就是推导过程了,而且是基于F、a、某时间的t、m等定义量来推导的,所以会存在m 和v²这些量。

如果不是恒力,也一样,在短小时间t内,肯定有一定大小的力F在做功,长时间的积累,能量也就表现在了速度v的变化上。

相关文档
最新文档