江西省横峰中学2018-2019学年高二上学期第5周周练数学试题Word版含答案

合集下载

江西省横峰中学2017-2018学年高二第5周周练数学(理)试题Word版缺答案

江西省横峰中学2017-2018学年高二第5周周练数学(理)试题Word版缺答案

2017-2018 学年度上学期高二年级第五周周练数学试卷命题人:杨慧考试时间: 45 分钟一、选择题:(此题包含 5 小题,共 40 分,每题只有一个选项切合题意)1、在回归直线方程y a bx 中,回归系数 b 表示()A.当 x 0 时,y的均匀值 B . x 改动一个单位时,y 的实质改动量C.y改动一个单位时,x的均匀改动量 D . x 改动一个单位时,y 的均匀改动量2.已知两个变量x, y 之间拥有线性有关关系,试验测得(x, y)的四组值分别为 (1,2) ,(2,4) ,(3,5), (4,7),则 y 与 x 之间的回归直线方程为 ( )A . y= 0.8x+ 3B . y=- 1.2x+ 7.5 C. y= 1.6x+ 0.5 D. y= 1.3x+1.2 3.下面的语句为赋值有 ( )个( 1) y=0.8x+ 3 (2)x+ y=- 2x+ 7 (3)a=b (4)m=n, n=m (5)a*b=yA.1B.2C.3D.44.阅读下面两个算法:算法一:算法二:i=0S=0S=0For i=1 To 201Do S=S+i1S=S+Next1 ii=i+1输出 SLoop While i< 20输出S以上两个算法()A.程序同样,结果同样B.程序不一样,结果同样C.程序同样,结果不一样D.程序不一样,结果不一样5.某店一个月的收入和支出总合记录了N 个数据a1,a2,。

a N,此中收入记为正数,支出记为负数。

该店用下面的程序框图计算月总收入S 和月净盈余V,那么在图中空白的判断框和办理框中,应分别填入以下四个选项中的A. A>0,V=S- T B.A<0,V=S- Tc. A>0, V=S+TD.A<0, V=S+T二、填空题:(此题包含 5 小题,共 40 分)6.当 x= 5, y=- 20 时,下面程序运转后输出的结果为7.以以下图是一个算法框图,则输出的S 的值是 ______________ .N=0DoN=N+1N=N*NLoop While N<20输出 N8 某程序框图以下图,输出的结果是57,循环体履行多少次.9.运转下面的程序时,While循环语句的输出结果是.10.以下给出了一个算法框图,其作用是输入x 的值,输出相应的y 的值,若要使输入的x 的值与输出的y 的值相等,则这样的x 的值有个 .三、解答题:(此题包含 1 小题,共 20 分)11.数学的美是令人惊诧的!如三位数153,它知足 153=13+53+33,即这个整数等于它各位上的数字的立方的和,我们称这样的数为“水仙花数” .请您设计一个算法,求大于 100,小于 1 000 的全部“水仙花数”的均匀值.写出算法框图和程序.。

横峰县高中2018-2019学年高二上学期第一次月考试卷数学

横峰县高中2018-2019学年高二上学期第一次月考试卷数学

横峰县高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,m ⊥α,则l ⊥α; ②若m ∥l ,m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=l ,β∩γ=m ,γ∩α=n ,n ∥β,则l ∥m . 其中正确命题的个数是( )A .1B .2C .3D .42. 已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3. 若函数y=f (x )是y=3x 的反函数,则f (3)的值是( ) A .0B .1C .D .34. 有以下四个命题:①若=,则x=y . ②若lgx 有意义,则x >0.③若x=y ,则=.④若x >y ,则 x 2<y 2. 则是真命题的序号为( ) A .①②B .①③C .②③D .③④5. 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF|=3,则△AOF 的面积为( )A .B .C .D .26. 已知随机变量X 服从正态分布N (2,σ2),P (0<X <4)=0.8,则P (X >4)的值等于( ) A .0.1 B .0.2 C .0.4 D .0.67. 若复数z=2﹣i ( i 为虚数单位),则=( )A .4+2iB .20+10iC .4﹣2iD .8. 已知在数轴上0和3之间任取一实数,则使“2log 1x ”的概率为( )A .14 B .18 C .23 D .1129. 命题“若α=,则tan α=1”的逆否命题是( )A .若α≠,则tan α≠1 B .若α=,则tan α≠1C .若tan α≠1,则α≠D .若tan α≠1,则α=10.函数f (x )=3x +x 的零点所在的一个区间是( ) A .(﹣3,﹣2) B .(﹣2,﹣1) C .(﹣1,0)D .(0,1)11.一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化12.设全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩∁U N=﹛2,4﹜,则N=( ) A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}二、填空题13.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .14.阅读如图所示的程序框图,运行相应的程序,若输入的X 的值为2,则输出的结果是 .15.已知条件p:{x||x﹣a|<3},条件q:{x|x2﹣2x﹣3<0},且q是p的充分不必要条件,则a的取值范围是.16.等比数列{a n}的前n项和S n=k1+k2·2n(k1,k2为常数),且a2,a3,a4-2成等差数列,则a n=________.17.已知f(x+1)=f(x﹣1),f(x)=f(2﹣x),方程f(x)=0在[0,1]内只有一个根x=,则f(x)=0在区间[0,2016]内根的个数.18.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为(用数字作答)三、解答题19.已知等差数列{a n}的首项和公差都为2,且a1、a8分别为等比数列{b n}的第一、第四项.(1)求数列{a n}、{b n}的通项公式;(2)设c n=,求{c n}的前n项和S n.20.已知A、B、C为△ABC的三个内角,他们的对边分别为a、b、c,且.(1)求A;(2)若,求bc的值,并求△ABC的面积.21.已知数列{a n}是等比数列,首项a1=1,公比q>0,且2a1,a1+a2+2a3,a1+2a2成等差数列.(Ⅰ)求数列{a n}的通项公式(Ⅱ)若数列{b n}满足a n+1=(),T n为数列{b n}的前n项和,求T n.22.选修4﹣5:不等式选讲已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.(Ⅰ)求a的值;(Ⅱ)若恒成立,求k的取值范围.23.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周得到如图所示的几何体σ.(1)求几何体σ的表面积;(2)点M时几何体σ的表面上的动点,当四面体MABD的体积为,试判断M点的轨迹是否为2个菱形.24.双曲线C:x2﹣y2=2右支上的弦AB过右焦点F.(1)求弦AB的中点M的轨迹方程(2)是否存在以AB为直径的圆过原点O?若存在,求出直线AB的斜率K的值.若不存在,则说明理由.横峰县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:∵①若m∥l,m⊥α,则由直线与平面垂直的判定定理,得l⊥α,故①正确;②若m∥l,m∥α,则l∥α或l⊂α,故②错误;③如图,在正方体ABCD﹣A1B1C1D1中,平面ABB1A1∩平面ABCD=AB,平面ABB1A1∩平面BCC1B1=BB1,平面ABCD∩平面BCC1B1=BC,由AB、BC、BB1两两相交,得:若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n不成立,故③是假命题;④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则由α∩γ=n知,n⊂α且n⊂γ,由n⊂α及n∥β,α∩β=m,得n∥m,同理n∥l,故m∥l,故命题④正确.故选:B.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.2.【答案】B【解析】解:∵△ABC是锐角三角形,∴A+B>,∴A>﹣B,∴sinA>sin(﹣B)=cosB,∴sinA﹣cosB>0,同理可得sinA﹣cosC>0,∴点P在第二象限.故选:B3.【答案】B【解析】解:∵指数函数的反函数是对数函数,∴函数y=3x的反函数为y=f(x)=log3x,所以f(9)=log33=1.故选:B.【点评】本题给出f(x)是函数y=3x(x∈R)的反函数,求f(3)的值,着重考查了反函数的定义及其性质,属于基础题.4.【答案】A【解析】解:①若=,则,则x=y,即①对;②若lgx有意义,则x>0,即②对;③若x=y>0,则=,若x=y<0,则不成立,即③错;④若x>y>0,则x2>y2,即④错.故真命题的序号为①②故选:A.5.【答案】B【解析】解:抛物线y2=4x的准线l:x=﹣1.∵|AF|=3,∴点A到准线l:x=﹣1的距离为3∴1+x A=3∴x A=2,∴y A=±2,∴△AOF的面积为=.故选:B.【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定A的坐标是解题的关键.6.【答案】A【解析】解:∵随机变量ξ服从正态分布N(2,o2),∴正态曲线的对称轴是x=2P (0<X <4)=0.8,∴P (X >4)=(1﹣0.8)=0.1, 故选A .7. 【答案】A【解析】解:∵z=2﹣i ,∴====,∴=10•=4+2i ,故选:A .【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.8. 【答案】C 【解析】试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202303-=-.故本题答案选C. 考点:几何概型. 9. 【答案】C【解析】解:命题“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”.故选:C .10.【答案】C【解析】解:由函数f (x )=3x +x 可知函数f (x )在R 上单调递增,又f (﹣1)=﹣1<0,f (0)=30+0=1>0,∴f (﹣1)f (0)<0,可知:函数f (x )的零点所在的区间是(﹣1,0). 故选:C .【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.11.【答案】B 【解析】考点:棱柱、棱锥、棱台的体积. 12.【答案】B【解析】解:∵全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩C u N=﹛2,4﹜, ∴集合M ,N 对应的韦恩图为 所以N={1,3,5} 故选B二、填空题13.【答案】1 【解析】试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是212121c cb b a a ≠=,当直线是斜截式直线方程时,两直线垂直121-=k k ,两直线平行时,21k k =,21b b ≠.114.【答案】 ﹣3 .【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数f(x)=的函数值.当x=2时,f(x)=1﹣2×2=﹣3故答案为:﹣3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.15.【答案】[0,2].【解析】解:命题p:||x﹣a|<3,解得a﹣3<x<a+3,即p=(a﹣3,a+3);命题q:x2﹣2x﹣3<0,解得﹣1<x<3,即q=(﹣1,3).∵q是p的充分不必要条件,∴q⊊p,∴,解得0≤a≤2,则实数a的取值范围是[0,2].故答案为:[0,2].【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题16.【答案】【解析】当n=1时,a1=S1=k1+2k2,当n≥2时,a n=S n-S n-1=(k1+k2·2n)-(k1+k2·2n-1)=k2·2n-1,∴k1+2k2=k2·20,即k1+k2=0,①又a2,a3,a4-2成等差数列.∴2a3=a2+a4-2,即8k2=2k2+8k2-2.②由①②联立得k1=-1,k2=1,∴a n=2n-1.答案:2n-117.【答案】2016.【解析】解:∵f(x)=f(2﹣x),∴f(x)的图象关于直线x=1对称,即f(1﹣x)=f(1+x).∵f(x+1)=f(x﹣1),∴f(x+2)=f(x),即函数f(x)是周期为2的周期函数,∵方程f(x)=0在[0,1]内只有一个根x=,∴由对称性得,f()=f()=0,∴函数f(x)在一个周期[0,2]上有2个零点,即函数f(x)在每两个整数之间都有一个零点,∴f(x)=0在区间[0,2016]内根的个数为2016,故答案为:2016.18.【答案】15【解析】解:8名支教名额分配到三所学校,每个学校至少一个名额,则8人可以分为(6,1,1),(5,2,1),(4,3,1),(4,2,2),(3,3,2),∵甲学校至少分到两个名额,第一类是1种,第二类有4种,第三类有4种,第四类有3种,第五类也有3种,根据分类计数原理可得,甲学校至少分到两个名额的分配方案为1+4+4+3+3=15种故答案为:15.【点评】本题考查了分类计数原理得应用,关键是分类,属于基础题.三、解答题19.【答案】【解析】解:(1)由等差数列通项公式可知:a n=2+(n﹣1)2=2n,当n=1时,2b1=a1=2,b4=a8=16, (3)设等比数列{b n}的公比为q,则, (4)∴q=2, (5)∴ (6)(2)由(1)可知:log2b n+1=n (7)∴ (9)∴,∴{c n}的前n项和S n,S n=. (12)【点评】本题考查等比数列及等差数列通项公式,等比数列性质,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题.20.【答案】【解析】解:(1)∵A、B、C为△ABC的三个内角,且cosBcosC﹣sinBsinC=cos(B+C)=,∴B+C=,则A=;(2)∵a=2,b+c=4,cosA=﹣,∴由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2+bc=(b+c)2﹣bc,即12=16﹣bc,解得:bc=4,则S=bcsinA=×4×=.△ABC【点评】此题考查了两角和与差的余弦函数公式,余弦定理,以及三角形面积公式,熟练掌握公式及定理是解本题的关键.21.【答案】【解析】解:(I)∵2a1,a1+a2+2a3,a1+2a2成等差数列.∴2(a1+a2+2a3)=2a1+a1+2a2.∴2(1+q+2q2)=3+2q,化为4q2=1,公比q>0,解得q=.∴a n=.(II)∵数列{b n}满足a n+1=(),∴=,∴b n=n,∴b n=n•2n﹣1.∴数列{b n}的前n项和T n=1+2×2+3×22+…+n•2n﹣1.2T n=2+2×22+…+(n﹣1)•2n﹣1+n•2n,∴﹣T n=1+2+22+…+2n﹣1﹣n•2n=﹣n•2n,∴T n=(n﹣1)•2n+1.22.【答案】【解析】解:(Ⅰ)由|ax+1|≤3得﹣4≤ax≤2∵不等式f(x)≤3的解集为{x|﹣2≤x≤1}.∴当a≤0时,不合题意;当a>0时,,∴a=2;(Ⅱ)记,∴h(x)=∴|h(x)|≤1∵恒成立,∴k≥1.【点评】本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题.23.【答案】【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=×4π×2×2=8π,或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;(2)由已知S=××2×sin135°=1,△ABD因而要使四面体MABD的体积为,只要M点到平面ABCD的距离为1,因为在空间中有两个平面到平面ABCD的距离为1,它们与几何体σ的表面的交线构成2个曲边四边形,不是2个菱形.【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.24.【答案】【解析】解:(1)设M(x,y),A(x1,y1)、B(x2,y2),则x12﹣y12=2,x22﹣y22=2,两式相减可得(x1+x2)(x1﹣x2)﹣(y1+y2)(y1﹣y2)=0,∴2x(x1﹣x2)﹣2y(y1﹣y2)=0,∴=,∵双曲线C:x2﹣y2=2右支上的弦AB过右焦点F(2,0),∴,化简可得x2﹣2x﹣y2=0,(x≥2)﹣﹣﹣﹣﹣﹣﹣(2)假设存在,设A(x1,y1),B(x2,y2),l AB:y=k(x﹣2)由已知OA⊥OB得:x1x2+y1y2=0,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣①,所以(k2≠1)﹣﹣﹣﹣﹣﹣﹣﹣②联立①②得:k2+1=0无解所以这样的圆不存在.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣。

江西省横峰中学2018-2019高二上学期期中考试数学试题卷预测卷(二)简略答案

江西省横峰中学2018-2019高二上学期期中考试数学试题卷预测卷(二)简略答案

江西省横峰中学2018-2019高二上学期期中考试数学试题卷预测卷(二)简略答案1 / 5 横峰中学2018-2019高二上学期期中考试数学试题卷预测卷(二)一、单选题1.已知正数 满足 ,则的最小值为( )A . 5B .C .D . 2 2.设实数 满足,则 的最小值为( )A . -0.5B . -2C . -5D . 53.对于二项式,四位同学作了四种判断,其中正确的是( ) (1)存在,展开式中有常数项;(2)对任意,展开式中没有常数项;(3)对任意,展开式中没有的一次项;(4)存在,展开式中有的一次项。

A . (1)(3)B . (2)(3)C . (2)(4)D . (1)(4)4.程序读上面的程序回答:若先后输入两个数53、125,则输出的结果是( )A . 53 125B . 35 521C . 53D . 355.甲乙丙丁戊五人并排站成一排,如果乙必须站在甲的右边(甲乙可以不相邻),那么不同的排法共有( )种.A . 120B . 60C . 50D . 306.若等比数列的前3项为, , ,则该数列的第4项是( )A . 2B . 4C . 8D . 167.已知等差数列的前15项和,则( )A . 7B . 15C . 6D . 8()31nx n N x +⎛⎫+∈ ⎪⎝⎭n N +∈n N +∈n N +∈x n N +∈x x 1x +22x +1530S =2139a a a ++=8.设变量x ,y 满足约束条件 ,则目标函数的最大值为( )A . 6B . 19C . 21D . 459.(2017.南昌市二模)( 展开式 项的系数为( )A . -3B . -1C . 1D . 310.某程序的程序框图如图所示,若输入的,则输出的A .B .C . 1D . 2 11.设,那么a n+1—a n 等于( ) A . B . C . + D . — 12.设 满足约束条件则 的最小值为( )A . 0B . 1C . 2D . 3二、填空题13.已知实数 满足,且 x−y+k−2≥0 的最小值是__________.14.设离散型随机变量X 可能取的值为1、2、3、4.P (X =k )=ak +b (k =1、2、3、4).又X 的均值E (X )=3,则a +b =__.15.设 为数列 的前 项和,已知 ,对任意 、 ,都有 ,则的最小值为__________.2x =x=1-12()*11111232n a n N n n n n=++++∈+++121n +122n +121n +122n +121n +122n +江西省横峰中学2018-2019高二上学期期中考试数学试题卷预测卷(二)简略答案3 / 516.若直线 0平面区域划分为面积成 的两部分,则实数的值等于________.三、解答题17.已知正数数列 满足: ,≥2) (1)求 , ;(2)设数列 满足 ,证明:数列 是等差数列,并求数列 的通项 .18.写出求过两点M(-2,-1),N(2,3)的直线与坐标轴围成面积的一个算法.19.已知数列{an}的首项a 1=1,前n 项和为Sn ,且a n+1=S n +n+1(n ∈N+)(Ⅰ)求证数列{a n +1}为等比数列;(Ⅱ)设数列{ }的前n 项和为T n ,求证: . (Ⅲ)设函数 ,令 ,求数列{b n }的通项公式,并判断其单调性.20.某校100名学生期末考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是: .(Ⅰ)求图中 的值;(Ⅱ)根据频率分布直方图,估计这100名学生语文成绩的平均分; (Ⅲ)若成绩在 的学生中男生比女生多一人,且从成绩在 的学生中任选2人,求此2人都是男生的概率.21.已知数列为数列的前项和且.(1)求数列的通项公式;{}{},,n n n a b S {}n a n ()222,n n n S a b n n N +=-=∈{}n a(2)若数列的通项公式为,令 为的前项和,求. 22.1995年联合国教科文组织宣布每年的4月23日为世界读书日,主旨宣言为“希望散居在全球各地的人们,都能享受阅读带来的乐趣,都能尊重和感谢为人类文明作出巨大贡献的文学、文化、科学思想的大师们,都能保护知识产权.”为了解大学生课外阅读情况,现从某高校随机抽取100名学生,将他们一年课外阅读量(单位:本)的数据,分成7组 , ,…, ,并整理得到如图频率分布直方图:(1)估计其阅读量小于60本的人数;(2)一只阅读量在 , , 内的学生人数比为2:3:5.为了解学生阅读课外书的情况,现从阅读量在 0)学生中随机选取3人进行调查座谈,用 表示所选学生阅读量在 内的人数,求 的分布列和数学期望;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计100名学生该年课外阅读量的平均数在第几组(只需写出结论).参考答案1.C 2.C 3.D 4.D 5.B 6.C 7.C 8.C 9.A 10.A 11.D 12.C13. . 14.15.30 16. 2或 17.(1) , ;(2)18.见解析19.(1)见解析(2)见解析(3)见解析20.(1) (2)73 (3) {}n c ,2{ ,4n n n n n a b n c a b n -=为奇数为偶数n T n {}n c 2nT 110江西省横峰中学2018-2019高二上学期期中考试数学试题卷预测卷(二)简略答案5 / 5 21.(1) (2) . 22.(1)20;(2) (3)第五组2n n a =27127499n n n T -=+⋅。

【精品】2018学年江西省上饶市横峰中学高二上学期期中数学试卷和解析(理科)

【精品】2018学年江西省上饶市横峰中学高二上学期期中数学试卷和解析(理科)

2018学年江西省上饶市横峰中学高二(上)期中数学试卷(理科)一、选择题:(本题包括12小题,共60分,每小题只有一个选项符合题意)1.(5分)下列给出的赋值语句中正确的是()A.3=A B.M=﹣M C.B=A=2D.x+y=02.(5分)用简单随机抽样方法从含有6个个体的总体中抽取一个容量为2的样本,某一个体a“第一次被抽到的概率”、“第二次被抽到的概率”、“在整个抽样过程中被抽到”的概率分别是()A.B.C.D.3.(5分)已知实数x∈[0,10],执行如图所示的程序框图,则输出的x不小于47的概率为()A.B.C.D.4.(5分)已知点在△ABC表示的区域内(包含边界),且目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a的值为()A.B.C.D.5.(5分)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()78166572080263140702436997281198 32049234493582003623486969387481A.11B.08C.07D.026.(5分)将甲、乙等5位同学分别保送到北京大学、上海交通大学、浙江大学三所大学就读,则每所大学至少保送一人的不同保送方法有()A.240种B.180种C.150种D.540种7.(5分)若不等式(a﹣2)x2+2(a﹣2)x﹣4<0对任意实数x均成立,则实数a的取值范围是()A.(﹣2,2]B.[﹣2,2]C.(2,+∞)D.(﹣∞,2]8.(5分)若s(p)表示p所示平面图形的面积,如A={(x,y)|(x﹣a)2+(y﹣b)2≤r2,r>0},B={(x,y)|2x+3y﹣5≤0},且s(A∩B)=s(A),则下列式子一定成立的是()A.2a+3b﹣5≤0B.2a+3b﹣5≥0C.2a+3b﹣5=0D.2a+3b﹣5>09.(5分)如图,从上往下读(不能跳读)构成句子“构建和谐社会,创美好未来”的不同读法种数是()A.250B.240C.252D.30010.(5分)由等式x4+a1x3+a2x2+a3x+a4=(x+1)4+b1(x+1)3+b2(x+1)2+b3(x+1)+b4,定义映射f:(a1,a2,a3,a4)→(b1,b2,b3,b4),则f(4,3,2,1)等于()A.(1,2,3,4)B.(0,3,4,0)C.(﹣1,0,2,﹣2)D.(0,﹣3,4,﹣1)11.(5分)已知三角形ABC三边长分别为a,b,c,均为整数,且满足b=25,a≤b≤c,则符。

江西省横峰中学2017-2018学年高二第5周周练数学(文)试题

江西省横峰中学2017-2018学年高二第5周周练数学(文)试题

第五周周练数学测试(9月25号)(文科)一选择题(共40分每个10分)1我市对上下班交通情况作抽样调查,在上下班时间各抽取12辆机动车,车辆行驶时速(单位:km/h)的茎叶图如图2所示:则上下班时间车辆行驶时速的中位数分别为( )A.28和28.5 B.29和28.52.用系统抽样法(按等距的规则)要从140名学生中抽取容量为20的样本,将140名学生从1~140编号.按编号顺序平均分成20组(1~7号,8~14号,…,134~140号),若第17组抽出的号码为117,则第一组中按此抽样方法确定的号码是( ) B.5 C.43.某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:根据上表提供的数据,求出y关于x的回归直线方程为yx+17.5,那么表中t的值为( ) A.40 B.50 C.60 D.704.已知数据x1,x2,x3,…,x n的中位数为k,众数为m,平均数为n,方差为p,则下列说法中,错误的是( )A.数据2x1,2x2,2x3,…,2x n的中位数为2kB.数据2x1,2x2,2x3,…,2x n的众数为2mC.数据2x1, 2x2,2x3,…,2x n的平均数为2nD.数据2x1,2x2,2x3,…,2x n的方差为2p二填空题:(共40分每个10分)5、为了了解参加运动会的2000名运动员的年龄情况,从中抽取100名运动员;就这个问题,下列说法中正确的有;①2000名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤这个抽样方法可采用按年龄进行分层抽样6、如图是某学校抽取的学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率依次成等差数列,第2小组的频数为15,则抽取的学生人数为 .7. 已知一组数据为a ,a ,b ,c ,d ,b ,c ,c ,且a <b <c <d ,则这组数据的众数为 ,中位数为 ,平均数为 .8已知三点(3,10),(7,20),(11,24)的横坐标x 与纵坐标y 具有线性关系,则其线性回归方程是 .三 解答题满分20分12、中日“钓鱼岛争端”问题越来越引起社会关注,我校对高一600名学生进行了一次 “钓鱼岛”知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.(1)填写答题卡...频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;(2)试估计该年段成绩在)90,70[段的有多少人;(3)请你估算该年级的平均数及中位数.。

横峰县高中2018-2019学年高二上学期数学期末模拟试卷含解析(1)

横峰县高中2018-2019学年高二上学期数学期末模拟试卷含解析(1)

横峰县高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下列命题中的说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .“x=﹣1”是“x 2+5x ﹣6=0”的必要不充分条件C .命题“∃x ∈R ,使得x 2+x+1<0”的否定是:“∀x ∈R ,均有x 2+x+1>0”D .命题“在△ABC 中,若A >B ,则sinA >sinB ”的逆否命题为真命题2. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则74S a =( ) A .74 B .145C .7D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.3. 如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为4,点E ,F 分别是线段AB ,C 1D 1上的动点,点P 是上底面A 1B 1C 1D 1内一动点,且满足点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .4 D .24. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.5.在等差数列{a n}中,a1=2,a3+a5=8,则a7=()A.3 B.6 C.7 D.86.在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既不充分也非必要条件7.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于()A.12+ B.12+23πC.12+24πD.12+π8.已知等差数列{a n}满足2a3﹣a+2a13=0,且数列{b n} 是等比数列,若b8=a8,则b4b12=()A.2 B.4 C.8 D.169.487被7除的余数为a(0≤a<7),则展开式中x﹣3的系数为()A.4320 B.﹣4320 C.20 D.﹣2010.设、是两个非零向量,则“(+)2=||2+||2”是“⊥”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分又不必要条件11.给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行;③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是()A.1个B.2个C.3个D.4个12.正方体的内切球与外接球的半径之比为()A.B.C.D.二、填空题13.数列{ a n}中,a1=2,a n+1=a n+c(c为常数),{a n}的前10项和为S10=200,则c=________.14.已知数列{a n}中,a1=1,a n+1=a n+2n,则数列的通项a n=.15.设函数f(x)=则函数y=f(x)与y=的交点个数是.16.已知双曲线﹣=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是.17.直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于_________ 。

横峰县高中2018-2019学年上学期高二数学12月月考试题含解析

横峰县高中2018-2019学年上学期高二数学12月月考试题含解析

横峰县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知,则的大小关系是( )1.50.1 1.30.2,2,0.2ab c ===,,a b c A . B . C . D .a b c <<a c b <<c a b <<b c a<<2. 已知圆方程为,过点与圆相切的直线方程为( )C 222x y +=(1,1)P -C A . B .C .D .20x y -+=10x y +-=10x y -+=20x y ++=3. 双曲线:的渐近线方程和离心率分别是( )A .B .C .D .4. 已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是( )A .0B .1C .2D .35. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形6. 以下四个命题中,真命题的是( )A .2,2x R x x ∃∈≤- B .“对任意的,”的否定是“存在,x R ∈210x x ++>0x R ∈20010x x ++< C .,函数都不是偶函数R θ∀∈()sin(2)f x x θ=+ D .已知,表示两条不同的直线,,表示不同的平面,并且,,则“”是m n αβm α⊥n β⊂αβ⊥ “”的必要不充分条件//m n 【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.7. 已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是()A .(﹣2,﹣1)∪(1,2)B .(﹣2,﹣1)∪(0,1)∪(2,+∞)C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)8. 已知PD ⊥矩形ABCD 所在的平面,图中相互垂直的平面有( )A .2对B .3对C .4对D .5对9. 已知的终边过点,则等于( )()2,37tan 4πθ⎛⎫+ ⎪⎝⎭A . B .C .-5D .515-1510.向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系式如图所示,那么水瓶的形状是( )A .B .C .D .11.复数是虚数单位)的虚部为( )i iiz (21+=A .B .C .D .1-i -i 22【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.12.在等比数列{a n }中,已知a 1=3,公比q=2,则a 2和a 8的等比中项为( )A .48B .±48C .96D .±96二、填空题13.log 3+lg25+lg4﹣7﹣(﹣9.8)0= .14.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 . 15.在下列给出的命题中,所有正确命题的序号为 .①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称;②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.16.在△ABC 中,已知=2,b=2a ,那么cosB 的值是 .17.已知是定义在上函数,是的导数,给出结论如下:()f x R ()f x '()f x ①若,且,则不等式的解集为;()()0f x f x '+>(0)1f =()xf x e -<(0,)+∞②若,则;()()0f x f x '->(2015)(2014)f ef >③若,则;()2()0xf x f x '+>1(2)4(2),n n f f n N +*<∈④若,且,则函数有极小值;()()0f x f x x'+>(0)f e =()xf x 0⑤若,且,则函数在上递增.()()xe xf x f x x'+=(1)f e =()f x (0,)+∞其中所有正确结论的序号是.18.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”) 三、解答题19.求下列各式的值(不使用计算器):(1);(2)lg2+lg5﹣log 21+log 39. 20.已知矩阵A =,向量=.求向量,使得A 2=.21.(本小题满分13分)在四棱锥中,底面是梯形,,,,P ABCD -ABCD //AB DC 2ABD π∠=AD =22AB DC ==为的中点.F PA (Ⅰ)在棱上确定一点,使得平面;PB E //CE PAD (Ⅱ)若的体积.PA PB PD ===P BDF -ABCDPF22.已知函数f (x )=lnx+ax 2+b (a ,b ∈R ).(Ⅰ)若曲线y=f (x )在x=1处的切线为y=﹣1,求函数f (x )的单调区间;(Ⅱ)求证:对任意给定的正数m ,总存在实数a ,使函数f (x )在区间(m ,+∞)上不单调;(Ⅲ)若点A (x 1,y 1),B (x 2,y 2)(x 2>x 1>0)是曲线f (x )上的两点,试探究:当a <0时,是否存在实数x 0∈(x 1,x 2),使直线AB 的斜率等于f'(x 0)?若存在,给予证明;若不存在,说明理由. 23.已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程.24.双曲线C与椭圆+=1有相同的焦点,直线y=x为C的一条渐近线.求双曲线C的方程.横峰县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B 【解析】试题分析:函数在R 上单调递减,所以,且,而,所以0.2xy = 1.51.30.20.2< 1.5 1.300.20.21<<<0.121>。

江西省横峰中学2018-2019学年高二上学期第1周周练数学试题Word版含答案

江西省横峰中学2018-2019学年高二上学期第1周周练数学试题Word版含答案

横峰中学2018-19学年度上学期周练(第一周)高二年级数学试卷考试日期:9月10日一、选择题:(本题包括3小题,共30分,每小题只有一个选项符合题意)1. 已知,且,则下列不等式一定成立的是()A. B. C.D.2. 已知,满足,则的取值范围是()A. B.C.D.3.不等式的解集是()A. {x|≤x≤2}B. {x|≤x<2}C. {x|x>2或x≤} D. {x|x≥}二、填空题(共2题;共20分)4. 函数f(x)=log2(x2﹣x+a)在[2,+∞)上恒为正,则a的取值范围是________5.设函数,则满足的的取值范围是________.三、解答题(共2题;共20+30=50分)6. 已知函数 . (1)当时,求不等式的解集;(2)若的定义域为,求的取值范围.7. 已知f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5).(1)求f(x)的解析式;(2)已知g(x)=f(x)+mx﹣6,求当m为何值时,g(x)为偶函数;(3)若g(x)=f(x)+mx﹣6在[1,2]上最小值为h(m),试讨论h(m)﹣k=0的零点个数(k为常数).(附加题在背面,选做)四、附加题(共1题;共20分)8. ( 20分 ) 已知函数f(x)= .(1)当a=b=1时,求满足f(x)=3x的x 的取值;(2)若函数f(x)是定义在R上的奇函数①存在t∈R,不等式f(t2﹣2t)<f(2t2﹣k)有解,求k的取值范围;②若函数g(x)满足f(x)•[g(x)+2]= (3﹣x﹣3x),若对任意x∈R,不等式g(2x)≥m•g(x)﹣11恒成立,求实数m的最大值.高二年级××答案一、选择题:(本题包括25小题,共50分,每小题只有一个选项符合题意)1.【答案】B2.【答案】A3.【答案】B二、填空题4.【答案】a>﹣15.【答案】三、解答题6. 【答案】(1)解: 时,,则,即,解得或 .∴不等式的解集为(2)解:∵ 的定义域为,∴ 对任意恒成立,当时,,解得 .又成立,∴ 的取值范围是7.【答案】解:(1)由不等式f(x)<0的解集为(0,5)可知,f(x)=2x2+bx+c=0的解为0,5根据方程的根与系数关系可得c=0,5=-即b=﹣10,c=0∴f(x)=2x2﹣10x.(2)∵g(x)=f(x)+mx﹣6=2x2+(m﹣10)x﹣6,对称轴是.若使得g(x)为偶函数,则对称轴为x=0∴m=10(3)∵g(x)=f(x)+mx﹣6=2x2+(m﹣10)x﹣6,对称轴是①当,即m>6时,y=g(x)在x∈[1,2]上单调增,故h(m)=g(1)=m﹣14;②当,即2≤m≤6时,y=g(x)在x∈[1,2]先减后增,于是③当,即m<2时,y=g(x)在x∈[1,2]上单调减,故h(m)=g(2)=2m﹣18.综上所述,(3)由题知,h(m)﹣k=0根的个数等价于函数y=h(m)与y=k两个图象公共点的个数,由y=h(m)的解析式,可知y=h(m)在R上单调递增,结合图象知,不论k为何值,方程h(m)﹣k=0总存在唯一的实数根.四、附加题8.【答案】(1)解:由题意,,化简得3•(3x)2+2•3x﹣1=0,解得3x=﹣1(舍)或,∴x=﹣1(2)解:∵f(x)是奇函数,∴f(﹣x)+f(x)=0,∴ ,化简并变形得:(3a﹣b)(3x+3﹣x)+2ab﹣6=0,要使上式对任意的x成立,则3a﹣b=0且2ab﹣6=0,解得:或,∵f(x)的定义域是R,∴ ,(舍去)∴a=1,b=3,∴ .① = 对任意x1, x2∈R,x1<x2有:= ,∵x1<x2,∴ ,∴f(x1)>f(x2),因此f(x)在R上递减.∵f(t2﹣2t)<f(2t2﹣k),∴t2﹣2t>2t2﹣k,即t2+2t﹣k<0在t∈R时有解∴△=4+4k>0,解得:k>﹣1,∴k的取值范围为(﹣1,+∞);②∵f(x)•[g(x)+2]= (3﹣x﹣3x),∴ 即g(x)=3x+3﹣x,∴g(2x)=32x+3﹣2x=(3x+3﹣x)2﹣2,不等式g(2x)≥m•g(x)﹣11恒成立,即(3x+3﹣x)2﹣2≥m•(3x+3﹣x)﹣11,即:恒成立.令t=3x+3﹣x,t≥2,则在t≥2时恒成立,令,,t∈(2,3)时,h′(t)<0,∴h(t)在(2,3)上单调递减,t∈(3,+∞)时,h′(t)>0,∴h(t)在(3,+∞)上单调递增,∴h(t)min=h(3)=6,∴m≤6.∴实数m的最大值为6。

江西上饶横峰中学18-19学度高二第一次抽考-数学(文)

江西上饶横峰中学18-19学度高二第一次抽考-数学(文)

江西上饶横峰中学18-19学度高二第一次抽考-数学(文)【一】选择题:本大题共10小题,每题5分,共50分.在每题列出的四个选项中,只有一项为哪一项符合题目要求的.1.假设R c b a ∈,,,且b a >,那么以下不等式一定成立的是〔〕A.c b c a -≥+B.bc ac >C.02>-b a c D.0)(2≥-c b a 2.棱长都是1的三棱锥的表面积为〔〕3.直线22b y ax -=1在Y 轴上的截距是〔〕 A.|b |B.±b C.-b 2D.b 24.如图给出了计算401614121++++ 的值的程序框图, 其中①②分别是()A 、2,20+=<n n iB 、2,20+==n n iC 、2,20+=>n n iD 、1,20+=>n n i由公差为D 的等差数列A1、A2、A3…重新组成的数列A1+A4,A2+A5,A3+A6…是〔〕A 、公差为D 的等差数列B 、公差为2D 的等差数列C 、公差为3D 的等差数列 D 、非等差数列6、数列{n a }的通项公式为n n S n a ,492-=达到最小值时,n =()A.21B.22C.23D.247、对在△ABC 中,=C B A sin :sin :sin )13(:6:2+,那么最小内角是()A.600B.450C.300D.都不是8、L1:a y x -+b =0,L2:b y x -+a =0(a ≠0,b ≠0,a ≠b )的图形可能是()9、实数X ,Y 满足线性约束条件,1,1,y x x y y ≤⎧⎪+≤⎨⎪≥-⎩那么2z x y =+的最大值为(A )-3 (B )32- (C )32 (D )310.M ={),(y x |29x y -=},N ={),(y x |b x y +=},且M ∩N =φ,那么b应满足的条件是〔〕A.|b |≥32B.0《b 《2C.-3≤b ≤32D.b 》32或b 《-3【二】填空题〔本大题共5小题,每题5分,共25分,请将正确答案填写在横线上〕11. 一元二次不等式a X 2+b X +2>0的解集是(-21,31),那么a +b 的值是12.在△ABC 中,假设B b A a cos cos =,那么△ABC 是三角形.13.直线ι1:(K -3)X +(4-K )Y +L =0,与ι3:2(K -3)X -2Y +3=0平行,那么K 的值是________14.某个几何体的三视图如图〔主视图中的弧线是半圆〕,根据图中标出的尺寸,可得这个几何体的体积是.15.数列}{n a 满足12 (01),1 (1).n n n n n a a a a a +≤≤⎧=⎨->⎩且167a =,那么2012a =__________【三】解答题〔本大题共6小题,共75分、解答应写出文字说明、证明过程或演算步骤〕16、〔12分〕集合2{|680},{|()(3)0}.A x x x B x x a x a =-+<=--<〔1〕假设,A B a ⊆求的取值范围;〔2〕假设{|34},A B x x a ⋂=<<求的值。

江西省横峰中学2018-2019学年高二上学期第3周周练数学试题Word版

江西省横峰中学2018-2019学年高二上学期第3周周练数学试题Word版

横峰中学2018-2019学年度上学期周练高二年级数学试卷考试日期:9月24日一、选择题:(本题包括5小题,共40分,每小题只有一个选项符合题意)1、如果0a b <<,那么下列不等式成立的 ( )A .11a b < B .2ab b < C .2ab a -<- D .11a b -<-2、已知1324a b a b -<+<<-<且,则2a+3b 的取值范围是( ) A 1317(,)22- B 711(,)22- C 713(,)22- D 913(,)22- 3、若不等式组表示的平面区域是一个三角形,则的取值范围是( ) A. B. C. D. 或4、已知,若,则的最小值为 A. 4 B. 9 C. 8 D. 105、若不等式2162a b x x b a+<+对任意a , ()0,b ∈+∞恒成立,则实数x 的取值范围是( ) A. ()2,0- B. ()(),20,-∞-⋃+∞C. ()4,2-D. ()(),42,-∞-⋃+∞二、填空题(共2题;共16分)6、若不等式组0{24 24x x y x y ≥+≤+≥所表示的平面区域被直线4y kx =+分为面积相等的两部分,则k的值为________7、已知的最小值是5,则z 的最大值是______.三、解答题(共2题;共20+24=44分) 8、某厂家举行大型的促销活动,经测算某产品当促销费用为x 万元时,销售量t 万件满足1253t x =-+(其中0x a ≤≤,a 为正常数),现假定生产量与销售量相等,已知生产该产品t 万件还需投入成本()102t +万元(不含促销费用),产品的销售价格定为205t ⎛⎫+ ⎪⎝⎭万元/万件.(1)将该产品的利润y 万元表示为促销费用x 万元的函数;(2)促销费用投入多少万元时,厂家的利润最大.9、若,x y 满足10{30 350x y x y x y -+≥+-≥--≤,求:(1)2z x y =+的最小值;(2)22z x y =+的范围;(3)y x z x+=的最大值.四、附加题(共1题;共20分) 10、设不等式⎪⎩⎪⎨⎧+-≤>>n nx y y x 300所表示的平面区域为n D ,记n D 内的整点个数为n a (n∈*N ),(整点即横坐标和纵坐标均为整数的点).(1)求数列{a n }的通项公式;(2)记数列{a n }的前项和为S n ,且123-⋅=n n n s T ,若对于一切正整数n ,总有≤n T m ,求实数m 的取值范围.。

横峰县二中2018-2019学年高二上学期数学期末模拟试卷含解析

横峰县二中2018-2019学年高二上学期数学期末模拟试卷含解析

横峰县二中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在ABC ∆中,若60A ∠=,45B ∠=,BC =AC =( )A .B . C.D 2. 利用计算机在区间(0,1)上产生随机数a ,则不等式ln (3a ﹣1)<0成立的概率是( )A .B .C .D .3. 下列命题正确的是( )A .很小的实数可以构成集合.B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.C .自然数集 N 中最小的数是.D .空集是任何集合的子集.4. 函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( ) A .f (2)<f (π)<f (5) B .f (π)<f (2)<f (5)C .f (2)<f (5)<f (π)D .f (5)<f (π)<f (2)5. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )A .1B .C .D .26. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .567. 已知x ,y 满足约束条件,使z=ax+y 取得最小值的最优解有无数个,则a 的值为( )A .﹣3B .3C .﹣1D .18. 定义在R 上的奇函数f (x ),满足,且在(0,+∞)上单调递减,则xf (x )>0的解集为( )A .B .C .D .9. 已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是( )A .(﹣2,﹣1)∪(1,2)B .(﹣2,﹣1)∪(0,1)∪(2,+∞)C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)10. 如果命题p ∨q 是真命题,命题¬p 是假命题,那么( ) A .命题p 一定是假命题 B .命题q 一定是假命题C .命题q 一定是真命题D .命题q 是真命题或假命题11.已知两条直线12:,:0L y x L ax y =-=,其中为实数,当这两条直线的夹角在0,12π⎛⎫⎪⎝⎭内变动 时,的取值范围是( )A . ()0,1B .⎝C .()1,3⎫⎪⎪⎝⎭D .(12.两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akmC .2akmD .akm二、填空题13.若全集,集合,则14.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B ,若|AF|=3|BF|,则l 的斜率是 .15.若函数f (x )=﹣m 在x=1处取得极值,则实数m 的值是 .16.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.17.已知椭圆中心在原点,一个焦点为F (﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .18.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分别是AC ,BD 的中点,MN =m 与n 所成角的余弦值是______________.【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.三、解答题19.如图,四面体ABCD 中,平面ABC ⊥平面BCD ,AC=AB ,CB=CD ,∠DCB=120°,点E 在BD 上,且CE=DE .(Ⅰ)求证:AB ⊥CE ;(Ⅱ)若AC=CE ,求二面角A ﹣CD ﹣B 的余弦值.20.等差数列{a n }的前n 项和为S n .a 3=2,S 8=22. (1)求{a n }的通项公式;(2)设b n =,求数列{b n }的前n 项和T n .21.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x 相交于点A 、B 两点,设11(,)A x y ,22(,)B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由.22.已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且csinA=acosC .(I )求C 的值; (Ⅱ)若c=2a ,b=2,求△ABC 的面积.23.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动.(1)证明:BC 1∥平面ACD 1.(2)当时,求三棱锥E ﹣ACD 1的体积.24.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(Ⅰ)证明:AM⊥PM;(Ⅱ)求点D到平面AMP的距离.横峰县二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】考点:正弦定理的应用.2.【答案】C【解析】解:由ln(3a﹣1)<0得<a<,则用计算机在区间(0,1)上产生随机数a,不等式ln(3a﹣1)<0成立的概率是P=,故选:C.3.【答案】D【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,故选D.考点:集合的概念;子集的概念.4.【答案】B【解析】解:∵函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,∴f(π)=f(6﹣π),f(5)=f(1),∵f(6﹣π)<f(2)<f(1),∴f(π)<f(2)<f(5)故选:B【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档.5.【答案】A【解析】解:极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1.故选:A.【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.6.【答案】C【解析】解:∵函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.∴函数f(x)关于直线x=1对称,∵数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),∴a6+a23=2.则{a n}的前28项之和S28==14(a6+a23)=28.故选:C.【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.7.【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=ax+y,得y=﹣ax+z,若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件.若a>0,则目标函数的斜率k=﹣a<0.平移直线y=﹣ax+z,由图象可知当直线y=﹣ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时﹣a=﹣1,即a=1.若a<0,则目标函数的斜率k=﹣a>0.平移直线y=﹣ax+z,由图象可知当直线y=﹣ax+z,此时目标函数只在C处取得最小值,不满足条件.综上a=1.故选:D.【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键.注意要对a进行分类讨论.8.【答案】B【解析】解:∵函数f(x)是奇函数,在(0,+∞)上单调递减,且f ()=0,∴f (﹣)=0,且在区间(﹣∞,0)上单调递减,∵当x<0,当﹣<x<0时,f(x)<0,此时xf(x)>0当x>0,当0<x<时,f(x)>0,此时xf(x)>0综上xf(x)>0的解集为故选B9.【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图则不等式xf(x)<0的解为:或解得:x∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)故选:D.10.【答案】D【解析】解:∵命题“p 或q ”真命题,则命题p 与命题q 中至少有一个命题为真命题,又∵命题“非p ”也是假命题,∴命题p 为真命题. 故命题q 为可真可假. 故选D【点评】本题考查的知识点是命题的真假判断与应用,其中熟练掌握复合命题真值表是解答本题的关键.11.【答案】C 【解析】1111]试题分析:由直线方程1:L y x =,可得直线的倾斜角为045α=,又因为这两条直线的夹角在0,12π⎛⎫⎪⎝⎭,所以直线2:0L ax y -=的倾斜角的取值范围是03060α<<且045α≠,所以直线的斜率为00tan30tan 60a <<且0tan 45α≠1a <<或1a << C. 考点:直线的倾斜角与斜率. 12.【答案】D【解析】解:根据题意,△ABC 中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm ,∴由余弦定理,得cos120°=,解之得AB=akm ,即灯塔A 与灯塔B 的距离为akm ,故选:D .【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.二、填空题13.【答案】{|0<<1}【解析】∵,∴{|0<<1}。

横峰县高中2018-2019学年高二上学期第二次月考试卷数学

横峰县高中2018-2019学年高二上学期第二次月考试卷数学

横峰县高中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________ 一、选择题1.已知i是虚数单位,则复数等于()A.﹣+i B.﹣+i C.﹣i D.﹣i2.已知函数f(x)=sin2(ωx)﹣(ω>0)的周期为π,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为()A.πB.C.D.3.若f(x)=sin(2x+θ),则“f(x)的图象关于x=对称”是“θ=﹣”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分又不必要条件4.一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是()A.4πB.12πC.16πD.48π5.在空间中,下列命题正确的是()A.如果直线m∥平面α,直线n⊂α内,那么m∥nB.如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC.如果平面α外的一条直线m垂直于平面α内的两条相交直线,那么m⊥αD.如果平面α⊥平面β,任取直线m⊂α,那么必有m⊥β6.下面的结构图,总经理的直接下属是()A.总工程师和专家办公室B.开发部C .总工程师、专家办公室和开发部D .总工程师、专家办公室和所有七个部7. 双曲线()222210,0x y a b a b-=>>的左右焦点分别为12F F 、,过2F 的直线与双曲线的右支交于A B 、两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则2e =( )A .1+B .4-C .5-D .3+8. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为( )A .6B .9C .12D .189. 下列各组函数中,表示同一函数的是( )A 、()f x =x 与()f x =2x xB 、()1f x x =- 与()f x =C 、()f x x =与()f x = D 、()f x x =与2()f x =10.把函数y=sin (2x ﹣)的图象向右平移个单位得到的函数解析式为( )A .y=sin (2x ﹣)B .y=sin (2x+)C .y=cos2xD .y=﹣sin2x11.若偶函数y=f (x ),x ∈R ,满足f (x+2)=﹣f (x ),且x ∈[0,2]时,f (x )=1﹣x ,则方程f (x )=log 8|x|在[﹣10,10]内的根的个数为( )A .12B .10C .9D .812.给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )A .{}4,2B .{}1,3C .{}1,2,3,4D .以上情况都有可能二、填空题13.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .14.下列命题:①函数y=sinx 和y=tanx 在第一象限都是增函数;②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点; ③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5; ④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强. 其中正确命题的序号是 (把所有正确命题的序号都写上). 15.椭圆的两焦点为F 1,F 2,一直线过F 1交椭圆于P 、Q ,则△PQF 2的周长为 .16.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答)17.命题“∃x ∈R ,2x 2﹣3ax+9<0”为假命题,则实数a 的取值范围为 .18.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .三、解答题19.已知函数f (x )=|x ﹣a|.(1)若f (x )≤m 的解集为{x|﹣1≤x ≤5},求实数a ,m 的值. (2)当a=2且0≤t <2时,解关于x 的不等式f (x )+t ≥f (x+2).20.(本小题满分12分)已知函数()2ln f x ax bx x =+-(,a b ∈R ).(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求出b 的值;若不存在,说明理由;21.(本题满分12分)已知数列}{n a 的前n 项和为n S ,233-=n n a S (+∈N n ). (1)求数列}{n a 的通项公式;(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:27<n T (+∈N n ). 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重点突出运算、论证、化归能力的考查,属于中档难度.22.已知函数f (x )=|x ﹣10|+|x ﹣20|,且满足f (x )<10a+10(a ∈R )的解集不是空集. (Ⅰ)求实数a 的取值集合A(Ⅱ)若b∈A,a≠b,求证a a b b>a b b a.23.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程=x+,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线=bx+a,其中b==,a=﹣b.24.已知A、B、C为△ABC的三个内角,他们的对边分别为a、b、c,且.(1)求A;(2)若,求bc的值,并求△ABC的面积.横峰县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:复数===,故选:A.【点评】本题考查了复数的运算法则,属于基础题.2.【答案】D【解析】解:由函数f(x)=sin2(ωx)﹣=﹣cos2ωx (ω>0)的周期为=π,可得ω=1,故f(x)=﹣cos2x.若将其图象沿x轴向右平移a个单位(a>0),可得y=﹣cos2(x﹣a)=﹣cos(2x﹣2a)的图象;再根据所得图象关于原点对称,可得2a=kπ+,a=+,k∈Z.则实数a的最小值为.故选:D【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos(ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题.3.【答案】B【解析】解:若f(x)的图象关于x=对称,则2×+θ=+kπ,解得θ=﹣+kπ,k∈Z,此时θ=﹣不一定成立,反之成立,即“f(x)的图象关于x=对称”是“θ=﹣”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键.4.【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B .【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.5. 【答案】 C【解析】解:对于A ,直线m ∥平面α,直线n ⊂α内,则m 与n 可能平行,可能异面,故不正确;对于B ,如果平面α内的两条相交直线都平行于平面β,那么平面α∥平面β,故不正确; 对于C ,根据线面垂直的判定定理可得正确;对于D ,如果平面α⊥平面β,任取直线m ⊂α,那么可能m ⊥β,也可能m 和β斜交,;故选:C .【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题.6. 【答案】C【解析】解:按照结构图的表示一目了然, 就是总工程师、专家办公室和开发部. 读结构图的顺序是按照从上到下,从左到右的顺序.故选C .【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读.7. 【答案】C 【解析】试题分析:设1A F A B m==,则12,2,22B F m A F m B F m a==--,因为22AB AF BF m =+=,所以22m a a m --=,解得4a =,所以212AF m ⎛⎫=- ⎪ ⎪⎝⎭,在直角三角形12AF F 中,由勾股定理得22542c m ⎛= ⎝,因为4a =,所以225482c a ⎛=⨯ ⎝,所以25e =-考点:直线与圆锥曲线位置关系.【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方]8.【答案】【解析】选D.法一:6 102=2 016×3+54,2 016=54×37+18,54=18×3,18是54和18的最大公约数,∴输出的a=18,选D.法二:a=6 102,b=2 016,r=54,a=2 016,b=54,r=18,a=54,b=18,r=0.∴输出a=18,故选D.9.【答案】C【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:①定义域相同,②对应法则相同。

横峰县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

横峰县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

第 6 页,共 17 页
【解析】解:对于函数 y=sin(2x+
),令 2x+
=kπ+
,k∈z,
求得 x= π,可得它的图象的对称轴方程为 x= π,k∈z, 故选:A. 【点评】本题主要考查正弦函数的图象的对称性,属于基础题. 6. 【答案】B 【解析】解:角 θ 的终边经过点 P(4,m),且 sinθ= , 可得 解得 m=3. 故选:B. 【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查. 7. 【答案】C 【解析】解:对于 A、B,是两个集合的关系,不能用元素与集合的关系表示,所以不正确; 对于 C,0 是集合中的一个元素,表述正确. 对于 D,是元素与集合的关系,错用集合的关系,所以不正确. 故选 C 【点评】本题考查运算与集合的关系,集合与集合的关系,考查基本知识的应用 8. 【答案】C 【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0 对一切 x∈R 恒成立, 即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0 对一切 x∈R 恒成立 若 m+1=0,显然不成立 若 m+1≠0,则 解得 a 故选 C. 【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于 0 只需 9. 【答案】A . . ,(m>0)
) D. 2,5
第 1 页,共 17 页
A. 4, 2
B. 1,3
C. 1, 2,3, 4
D.以上情况都有可能 )
“自然数 a,b,c 中恰有一个偶数”正确的反设为( 11.用反证法证明某命题时,对结论 : A.a,b,c 中至少有两个偶数 B.a,b,c 中至少有两个偶数或都是奇数 C.a,b,c 都是奇数 D.a,b,c 都是偶数 12.若函数 f(x)=3﹣|x﹣1|+m 的图象与 x 轴没有交点,则实数 m 的取值范围是( A.m≥0 或 m<﹣1 B.m>0 或 m<﹣1C.m>1 或 m≤0 D.m>1 或 m<0 )

横峰县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

横峰县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

横峰县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 直线的倾斜角是( )A .B .C .D .2.+(a ﹣4)0有意义,则a 的取值范围是( )A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠43. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A .24B .80C .64D .2404. 若函数y=x 2+bx+3在[0,+∞)上是单调函数,则有( )A .b ≥0B .b ≤0C .b >0D .b <05. 函数y=sin (2x+)图象的一条对称轴方程为( )A .x=﹣B .x=﹣C .x=D .x=6. 已知角θ的终边经过点P (4,m ),且sin θ=,则m 等于( )A .﹣3B .3C .D .±37. 已知集合M={0,1,2},则下列关系式正确的是( ) A .{0}∈M B .{0}∉M C .0∈MD .0⊆M8. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1)C .D .9. 已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5,7B =,则()U A B =ð( )A .{}2,4,6B .{}1,3,5C .{}2,4,5D .{}2,510.给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )A .{}4,2B .{}1,3C .{}1,2,3,4D .以上情况都有可能 11.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数12.若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <0二、填空题13.已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m 满足方程+=1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,a 的取值范围为 .14.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= .15.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .16.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .17.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)18.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________三、解答题19.(本小题满分12分)已知椭圆C 的离心率为2,A 、B 分别为左、右顶点, 2F 为其右焦点,P 是椭圆C 上异于A 、B 的 动点,且PA PB 的最小值为-2. (1)求椭圆C 的标准方程;(2)若过左焦点1F 的直线交椭圆C 于M N 、两点,求22F M F N 的取值范围.20.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.(1)若不等式1()21(0)2f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;(2)若不等式()2|23|2yyaf x x ≤+++,对任意的实数,x y R ∈恒成立,求实数a 的最小值. 【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.21.(本小题满分12分)设椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,圆22127x y +=与直线1x y a b +=相切,O 为坐标原点.(1)求椭圆C 的方程;(2)过点(4,0)Q -任作一直线交椭圆C 于,M N 两点,记MQ QN λ=,若在线段MN 上取一点R ,使得MR RN λ=-,试判断当直线运动时,点R 是否在某一定直一上运动?若是,请求出该定直线的方 程;若不是,请说明理由.22.(本小题满分12分)中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的 概率.23.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求实数的取值范围; (3)在区间[]1,1-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围.24.【南师附中2017届高三模拟二】已知函数()()323131,02f x x a x ax a =+--+>. (1)试讨论()()0f x x ≥的单调性;(2)证明:对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤; (3)设(1)中的p 的最大值为()g a ,求()g a 得最大值.横峰县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】A【解析】解:设倾斜角为α,∵直线的斜率为,∴tan α=,∵0°<α<180°, ∴α=30° 故选A .【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握.2. 【答案】B【解析】解:∵+(a ﹣4)0有意义,∴,解得2≤a <4或a >4. 故选:B .3. 【答案】B 【解析】 试题分析:8058631=⨯⨯⨯=V ,故选B. 考点:1.三视图;2.几何体的体积.4. 【答案】A【解析】解:抛物线f (x )=x 2+bx+3开口向上,以直线x=﹣为对称轴,若函数y=x 2+bx+3在[0,+∞)上单调递增函数,则﹣≤0,解得:b ≥0,故选:A .【点评】本题考查二次函数的性质和应用,是基础题.解题时要认真审题,仔细解答.5. 【答案】A【解析】解:对于函数y=sin(2x+),令2x+=kπ+,k∈z,求得x=π,可得它的图象的对称轴方程为x=π,k∈z,故选:A.【点评】本题主要考查正弦函数的图象的对称性,属于基础题.6.【答案】B【解析】解:角θ的终边经过点P(4,m),且sinθ=,可得,(m>0)解得m=3.故选:B.【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查.7.【答案】C【解析】解:对于A、B,是两个集合的关系,不能用元素与集合的关系表示,所以不正确;对于C,0是集合中的一个元素,表述正确.对于D,是元素与集合的关系,错用集合的关系,所以不正确.故选C【点评】本题考查运算与集合的关系,集合与集合的关系,考查基本知识的应用8.【答案】C【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立,即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立若m+1=0,显然不成立若m+1≠0,则解得a.故选C.【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.9.【答案】A考点:集合交集,并集和补集.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目. 10.【答案】A 【解析】试题分析:()()()()((1))14,((2))14,((3))32,((4))34,f g f f g f f g f f g f ========故值域为{}4,2.考点:复合函数求值.11.【答案】B【解析】解:∵结论:“自然数a ,b ,c 中恰有一个偶数” 可得题设为:a ,b ,c 中恰有一个偶数 ∴反设的内容是 假设a ,b ,c 中至少有两个偶数或都是奇数.故选B .【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“.12.【答案】A【解析】解:∵函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点, ∴﹣m=3﹣|x ﹣1|无解,∵﹣|x ﹣1|≤0,∴0<3﹣|x ﹣1|≤1,∴﹣m ≤0或﹣m >1, 解得m ≥0或m >﹣1 故选:A .二、填空题13.【答案】 [,] .【解析】解:由m 2﹣7am+12a 2<0(a >0),则3a <m <4a即命题p :3a <m <4a ,实数m 满足方程+=1表示的焦点在y 轴上的椭圆,则, ,解得1<m <2,若p 是q 的充分不必要条件,则,解得,故答案为[,].【点评】本题考查充分条件、必要条件,一元二次不等式的解法,根据不等式的性质和椭圆的性质求出p ,q 的等价条件是解决本题的关键.14.【答案】 35 .【解析】解:∵2a n =a n ﹣1+a n+1,(n ∈N *,n >1), ∴数列{a n }为等差数列,又a 2+a 8=6,∴2a 5=6,解得:a 5=3, 又a 4a 6=(a 5﹣d )(a 5+d )=9﹣d 2=8, ∴d 2=1,解得:d=1或d=﹣1(舍去) ∴a n =a 5+(n ﹣5)×1=3+(n ﹣5)=n ﹣2. ∴a 1=﹣1, ∴S 10=10a 1+=35.故答案为:35.【点评】本题考查数列的求和,判断出数列{a n }为等差数列,并求得a n =2n ﹣1是关键,考查理解与运算能力,属于中档题.15.【答案】 .【解析】解:∵△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,∴由正弦定理可得:,解得:a=3,∴利用余弦定理:a2=b2+c2﹣2bccosA,可得:9=4+c2﹣2c,即c2﹣2c﹣5=0,∴解得:c=1+,或1﹣(舍去).故答案为:.【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题.16.【答案】﹣2.【解析】解:∵曲线y=x n+1(n∈N*),∴y′=(n+1)x n,∴f′(1)=n+1,∴曲线y=x n+1(n∈N*)在(1,1)处的切线方程为y﹣1=(n+1)(x﹣1),该切线与x轴的交点的横坐标为x n=,∵a n=lgx n,∴a n=lgn﹣lg(n+1),∴a1+a2+…+a99=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100)=lg1﹣lg100=﹣2.故答案为:﹣2.17.【答案】10cm【解析】解:作出圆柱的侧面展开图如图所示,设A关于茶杯口的对称点为A′,则A′A=4cm,BC=6cm,∴A′C=8cm,∴A′B==10cm.故答案为:10.【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决.18.【答案】【解析】【知识点】抛物线双曲线 【试题解析】抛物线的准线方程为:x=2;双曲线的两条渐近线方程为:所以故答案为:三、解答题19.【答案】(1)22142x y +=;(2)22[2,7)F M F N ∈-. 【解析】试题解析:(1)根据题意知2c a =,即2212c a =,∴22212a b a -=,则222a b =, 设(,)P x y ,∵(,)(,)PA PB a x y a x y =-----,2222222221()222a x x a y x a x a =-+=-+-=-,∵a x a -≤≤,∴当0x =时,2min ()22a PA PB =-=-, ∴24a =,则22b =.∴椭圆C 的方程为22142x y +=. 1111]设11(,)M x y ,22(,)N x y ,则12x x +=,21224(1)12k x x k -=+,∵211(2,)F M x y =-,222()F N x y =,∴222121212)2(F M F N x x x x k x x =+++2221212(1))22k x x x x k =+++++ 2222224(1)42(1)2(1)2212k k k k k k --=++-+++ 29712k =-+.∵2121k +≥,∴210112k<≤+. ∴297[2,7)12k-∈-+. 综上知,22[2,7)F M F N ∈-.考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法. 20.【答案】【解析】(1)由题意,知不等式|2|21(0)x m m ≤+>解集为(][),22,-∞-+∞.由|2|21x m ≤+,得1122m x m --≤≤+,……………………2分 所以,由122m +=,解得32m =.……………………4分(2)不等式()2|23|2yy a f x x ≤+++等价于|21||23|22y y a x x --+≤+,由题意知max (|21||23|)22yy a x x --+≤+.……………………6分21.【答案】(1)22143x y +=;(2)点R 在定直线1x =-上. 【解析】试题解析:(1)由12e =,∴2214e a =,∴2234a b =7=,解得2,a b ==,所以椭圆C 的方程为22143x y +=.设点R 的坐标为00(,)x y ,则由MR RN λ=-⋅,得0120()x x x x λ-=--, 解得1121221212011224424()41()814x x x x x x x x x x x x x x x λλ++⋅-+++===+-++++又2212122226412322424()24343434k k x x x x k k k ---++=⨯+⨯=+++,212223224()883434k x x k k -++=+=++,从而121201224()1()8x x x x x x x ++==-++, 故点R 在定直线1x =-上.考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系. 22.【答案】(1)甲,乙,丙,丁;(2)25P =. 【解析】试题分析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲,乙,丙,丁;(2)利用列举出从参加问卷调查的40名学生中随机抽取两名学生的方法共有15种,这来自同一所大学的取法共有种,再利用古典慨型的概率计算公式即可得出.试题解析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲2,乙3,丙2,丁3.(2)设乙中3人为123,,a a a ,丁中3人为123,,b b b ,从这6名学生中随机选出2名学生发言的结果为12{,}a a ,13{,}a a ,11{,}a b ,12{,}a b ,13{,}a b ,32{,}a a ,12{,}b a ,22{,}b a ,32{,}b a ,31{,}a b ,32{,}a b ,33{,}a b ,12{,}b b ,13{,}b b ,23{,}b b ,共15种,这2名同学来自同一所大学的结果共6种,所以所求概率为62155P ==. 考点:1、分层抽样方法的应用;2、古典概型概率公式. 23.【答案】(1)2()243f x x x =-+;(2)102a <<;(3)1m <-.试题解析:(1)由已知,设2()(1)1f x a x =-+,由(0)3f =,得2a =,故2()243f x x x =-+.(2)要使函数不单调,则211a a <<+,则102a <<. (3)由已知,即2243221x x x m -+>++,化简得2310x x m -+->,设2()31g x x x m =-+-,则只要min ()0g x >, 而min ()(1)1g x g m ==--,得1m <-. 考点:二次函数图象与性质.【方法点晴】利用待定系数法求二次函数解析式的过程中注意选择合适的表达式,这是解题的关键所在;另外要注意在做题过程中体会:数形结合思想,方程思想,函数思想的应用.二次函数的解析式(1)一般式:()()20f x ax bx c a =++≠;(2)顶点式:若二次函数的顶点坐标为(),h k ,则其解析式为()()()20f x a x h k a =-+≠;(3)两根式:若相应一元二次方程的两根为()12,x x ,则其解析式为()()()()120f x a x x x x a =--≠.24.【答案】(1)证明过程如解析;(2)对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤;(3)()g a 【解析】【试题分析】(1)先对函数()()323131,02f x x a x ax a =+--+>进行求导,再对导函数的值的 符号进行分析,进而做出判断;(2)先求出函数值()01,f =()3213122f a a a =--+=()()211212a a -+-,进而分()1f a ≥-和()1f a <-两种情形进行 分析讨论,推断出存在()0,p a ∈使得()10f p +=,从而证得当[]0,x p ∈时,有()11f x -≤≤成立;(3) 借助(2)的结论()f x :在[)0,+∞上有最小值为()f a ,然后分011a a ≤,两种情形探求()g a 的解析表达式和最大值。

横峰县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

横峰县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

横峰县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 点A 是椭圆上一点,F 1、F 2分别是椭圆的左、右焦点,I 是△AF 1F 2的内心.若,则该椭圆的离心率为( )A .B .C .D .2. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( ) A .720 B .270 C .390 D .3003. 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A .1:2:3B .2:3:4C .3:2:4D .3:1:24. 下列说法中正确的是( )A .三点确定一个平面B .两条直线确定一个平面C .两两相交的三条直线一定在同一平面内D .过同一点的三条直线不一定在同一平面内5. 已知集合A={y|y=x 2+2x ﹣3},,则有( )A .A ⊆BB .B ⊆AC .A=BD .A ∩B=φ6. 1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆ )C. 1D. 1【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.7. 定义运算,例如.若已知,则=( )A .B .C .D .8. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对9. 设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣2)∪(0,2)B .(﹣∞,﹣2)∪(2,+∞)C .(﹣2,0)∪(2,+∞)D .(﹣2,0)∪(0,2)10.设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( )A .BC .D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想. 11.已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.12.在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )A .B .C .D .二、填空题13.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=()t ﹣a (a 为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.14.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.15.已知平面向量a ,b 的夹角为3π,6=-b a ,向量c a -,c b -的夹角为23π,23c a -=,则a与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.16.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 .17.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB 最小则直线的方程是 .18.满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 的个数是 .三、解答题19.(本小题满分12分)已知在ABC ∆中,角C B A ,,所对的边分别为,,,c b a 且 )3(s i n ))(sin (sin c b C a b B A -=-+. (Ⅰ)求角A 的大小;(Ⅱ) 若2a =,ABC ∆c b ,.20.已知函数f(x)=|x﹣5|+|x﹣3|.(Ⅰ)求函数f(x)的最小值m;(Ⅱ)若正实数a,b足+=,求证:+≥m.21.(本小题满分12分)如图四棱柱ABCD-A1B1C1D1的底面为菱形,AA1⊥底面ABCD,M为A1A的中点,AB=BD=2,且△BMC1为等腰三角形.(1)求证:BD⊥MC1;(2)求四棱柱ABCD-A1B1C1D1的体积.22.在△ABC中,D为BC边上的动点,且AD=3,B=.(1)若cos∠ADC=,求AB的值;(2)令∠BAD=θ,用θ表示△ABD的周长f(θ),并求当θ取何值时,周长f(θ)取到最大值?23.已知P(m,n)是函授f(x)=e x﹣1图象上任一于点(Ⅰ)若点P关于直线y=x﹣1的对称点为Q(x,y),求Q点坐标满足的函数关系式(Ⅱ)已知点M(x0,y0)到直线l:Ax+By+C=0的距离d=,当点M在函数y=h(x)图象上时,公式变为,请参考该公式求出函数ω(s,t)=|s﹣e x﹣1﹣1|+|t﹣ln(t﹣1)|,(s∈R,t>0)的最小值.24.(1)直线l的方程为(a+1)x+y+2﹣a=0(a∈R).若l在两坐标轴上的截距相等,求a的值;(2)已知A(﹣2,4),B(4,0),且AB是圆C的直径,求圆C的标准方程.横峰县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】B【解析】解:设△AF 1F 2的内切圆半径为r ,则S △IAF1=|AF 1|r ,S △IAF2=|AF 2|r ,S △IF1F2=|F 1F 2|r ,∵,∴|AF 1|r=2×|F 1F 2|r ﹣|AF 2|r ,整理,得|AF1|+|AF 2|=2|F 1F 2|.∴a=2,∴椭圆的离心率e===.故选:B .2. 【答案】C解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队. 各个班的人数有5班的3人、16班的4人、33班的5人, 首发共有1、2、2;2、1、2;2、2、1类型;所求方案有: ++=390. 故选:C . 3. 【答案】D【解析】解:设球的半径为R ,则圆柱、圆锥的底面半径也为R ,高为2R ,则球的体积V 球=圆柱的体积V 圆柱=2πR 3圆锥的体积V 圆锥=故圆柱、圆锥、球的体积的比为2πR 3:: =3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.4. 【答案】D【解析】解:对A ,当三点共线时,平面不确定,故A 错误; 对B ,当两条直线是异面直线时,不能确定一个平面;故B 错误;对C ,∵两两相交且不共点的三条直线确定一个平面,∴当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C 错误; 对D ,由C 可知D 正确. 故选:D .5. 【答案】B 【解析】解:∵y=x 2+2x ﹣3=(x+1)2﹣4,∴y ≥﹣4. 则A={y|y ≥﹣4}. ∵x >0,∴x+≥2=2(当x=,即x=1时取“=”),∴B={y|y ≥2}, ∴B ⊆A . 故选:B .【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项.6. 【答案】D【解析】∵120PF PF ⋅=,∴12PFPF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,12||2PF PF a -=,则222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-,2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =.c =,整理,得2()4ca=+1e =,故选D. 7. 【答案】D【解析】解:由新定义可得,====.故选:D .【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.8. 【答案】A【解析】解:∵线段AB 在平面α内, ∴直线AB 上所有的点都在平面α内, ∴直线AB 与平面α的位置关系: 直线在平面α内,用符号表示为:AB ⊂α故选A .【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.9. 【答案】A【解析】解:设g (x )=,则g (x )的导数为:g ′(x )=,∵当x >0时总有xf ′(x )﹣f (x )<0成立, 即当x >0时,g ′(x )<0,∴当x >0时,函数g (x )为减函数,又∵g (﹣x )====g (x ),∴函数g (x )为定义域上的偶函数, ∴x <0时,函数g (x )是增函数,又∵g (﹣2)==0=g (2),∴x >0时,由f (x )>0,得:g (x )<g (2),解得:0<x <2, x <0时,由f (x )>0,得:g (x )>g (﹣2),解得:x <﹣2, ∴f (x )>0成立的x 的取值范围是:(﹣∞,﹣2)∪(0,2). 故选:A .10.【答案】B 【解析】11.【答案】B12.【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有4×6=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.二、填空题13.【答案】0.6【解析】解:当t>0.1时,可得1=()0.1﹣a∴0.1﹣a=0a=0.1由题意可得y≤0.25=,即()t﹣0.1≤,即t﹣0.1≥解得t≥0.6,由题意至少需要经过0.6小时后,学生才能回到教室.故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.14.【答案】)3,0(【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即)1()(l o g 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(.15.【答案】6π,18+ 【解析】16.【答案】 .【解析】解:由题意知点P 的坐标为(﹣c ,)或(﹣c ,﹣),∵∠F 1PF 2=60°,∴=,即2ac=b 2=(a 2﹣c 2).∴e 2+2e ﹣=0,∴e=或e=﹣(舍去).故答案为:.【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题.17.【答案】30x y -+=【解析】试题分析:由圆C 的方程为22230x y y +--=,表示圆心在(0,1)C ,半径为的圆,点()1,2P -到圆心的距()1,2P -在圆内,所以当AB CP ⊥时,AB 最小,此时11,1CP k k =-=,由点斜式方程可得,直线的方程为21y x -=+,即30x y -+=.考点:直线与圆的位置关系的应用.18.【答案】 4 .【解析】解:由题意知,满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 有:{2,3},{2,3,1},{2,3,4},{2,3,1,4},故共有4个,故答案为:4.三、解答题19.【答案】解:(Ⅰ)由正弦定理及已知条件有2223c bc a b -=-, 即bc a c b 3222=-+. 3分由余弦定理得:232cos 222=-+=bc a c b A ,又),0(π∈A ,故6π=A . 6分(Ⅱ) ABC ∆3sin 21=∴A bc ,34=∴bc ①, 8分 又由(Ⅰ)2223c bc a b -=-及,2=a 得1622=+c b ,② 10分由 ①②解得32,2==c b 或2,32==c b . 12分20.【答案】【解析】(Ⅰ)解:∵f (x )=|x ﹣5|+|x ﹣3|≥|x ﹣5+3﹣x|=2,…(2分)当且仅当x ∈[3,5]时取最小值2,…(3分)∴m=2.…(4分)(Ⅱ)证明:∵(+)[]≥()2=3,∴(+)×≥()2,∴+≥2.…(7分)【点评】本题主要考查绝对值不等式和均值不等式等基础知识,考查运算求解能力,考查化归与转化思想.21.【答案】【解析】解:(1)证明:如图,连接AC ,设AC 与BD 的交点为E ,∵四边形ABCD 为菱形,∴BD ⊥AC ,又AA 1⊥平面ABCD ,BD ⊂平面ABCD ,∴A 1A ⊥BD ;又A 1A ∩AC =A ,∴BD ⊥平面A 1ACC 1,又MC 1⊂平面A 1ACC 1,∴BD ⊥MC 1.(2)∵AB =BD =2,且四边形ABCD 是菱形,∴AC =2AE =2AB 2-BE 2=23,又△BMC 1为等腰三角形,且M 为A 1A 的中点,∴BM 是最短边,即C 1B =C 1M .则有BC 2+C 1C 2=AC 2+A 1M 2,即4+C 1C 2=12+(C 1C 2)2, 解得C 1C =463, 所以四棱柱ABCD -A 1B 1C 1D 1的体积为V =S 菱形ABCD ×C 1C=12AC ×BD ×C 1C =12×23×2×463=8 2.即四棱柱ABCD-A1B1C1D1的体积为8 2.22.【答案】【解析】(本小题满分12分)解:(1)∵,∴,∴…2分(注:先算∴sin∠ADC给1分)∵,…3分∴,…5分(2)∵∠BAD=θ,∴, (6)由正弦定理有,…7分∴,…8分∴,…10分=,…11分当,即时f(θ)取到最大值9.…12分【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.23.【答案】【解析】解:(1)因为点P,Q关于直线y=x﹣1对称,所以.解得.又n=e m﹣1,所以x=1﹣e(y+1)﹣1,即y=ln(x﹣1).(2)ω(s,t)=|s﹣e x﹣1﹣1|+|t﹣ln(t﹣1)﹣1|=,令u(s)=.则u(s),v(t)分别表示函数y=e x﹣1,y=ln(t﹣1)图象上点到直线x﹣y﹣1=0的距离.由(1)知,u min(s)=v min(t).而f′(x)=e x﹣1,令f′(s)=1得s=1,所以u min(s)=.故.【点评】本题一方面考查了点之间的轴对称问题,同时利用函数式的几何意义将问题转化为点到直线的距离,然后再利用函数的思想求解.体现了解析几何与函数思想的结合.24.【答案】【解析】解:(1)当a=﹣1时,直线化为y+3=0,不符合条件,应舍去;当a≠﹣1时,分别令x=0,y=0,解得与坐标轴的交点(0,a﹣2),(,0).∵直线l在两坐标轴上的截距相等,∴a﹣2=,解得a=2或a=0;(2)∵A(﹣2,4),B(4,0),∴线段AB的中点C坐标为(1,2).又∵|AB|=,∴所求圆的半径r=|AB|=.因此,以线段AB为直径的圆C的标准方程为(x﹣1)2+(y﹣2)2=13.。

横峰县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

横峰县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

横峰县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题1.已知f(x)=,则“f[f(a)]=1“是“a=1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件2.已知圆C:x2+y2﹣2x=1,直线l:y=k(x﹣1)+1,则l与C的位置关系是()A.一定相离 B.一定相切C.相交且一定不过圆心D.相交且可能过圆心3.设a,b为正实数,1122a b+≤,23()4()a b ab-=,则logab=()A.0B.1-C.1D.1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 4.在下列区间中,函数f(x)=()x﹣x的零点所在的区间为()A.(0,1) B.(1,2) C.(2,3 )D.(3,4)5.若实数x,y满足,则(x﹣3)2+y2的最小值是()A.B.8 C.20 D.26.如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是()A .i ≤21B .i ≤11C .i ≥21D .i ≥11 7. 已知,则f{f[f (﹣2)]}的值为( ) A .0 B .2C .4D .88. 设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( )A .10B .40C .50D .80 9. 已知平面向量=(1,2),=(﹣2,m ),且∥,则=( )A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4)10.cos80cos130sin100sin130︒︒-︒︒等于( )A .3 B .12 C .12- D .3- 11.一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P ,直线PF 1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )A .B .C .D .12.双曲线E 与椭圆C :x 29+y 23=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积为π,则E 的方程为( ) A.x 23-y 23=1 B.x 24-y 22=1 C.x 25-y 2=1 D.x 22-y 24=1二、填空题13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 14.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .15.log 3+lg25+lg4﹣7﹣(﹣9.8)0= .16.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.17.抛物线y=x 2的焦点坐标为( )A .(0,)B .(,0)C .(0,4)D .(0,2)18.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .14.已知集合,若3∈M ,5∉M ,则实数a 的取值范围是 .三、解答题19.在等比数列{a n }中,a 3=﹣12,前3项和S 3=﹣9,求公比q .20.已知数列{}n a 的前项和公式为2230n S n n =-.(1)求数列{}n a 的通项公式n a ; (2)求n S 的最小值及对应的值.21.已知复数z的共轭复数是,且复数z满足:|z﹣1|=1,z≠0,且z在复平面上对应的点在直线y=x上.求z及z的值.22.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A上是否存在点M,使二面角M﹣BC﹣D的大小为45°,且∠CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由.23.如图,正方形ABCD中,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E.(Ⅰ)求证:AE=EB;(Ⅱ)若EF•FC=,求正方形ABCD的面积.24.已知椭圆的左焦点为F,离心率为,过点M(0,1)且与x轴平行的直线被椭圆G截得的线段长为.(I)求椭圆G的方程;(II)设动点P在椭圆G上(P不是顶点),若直线FP的斜率大于,求直线OP(O是坐标原点)的斜率的取值范围.横峰县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】B【解析】解:当a=1,则f (a )=f (1)=0,则f (0)=0+1=1,则必要性成立, 若x ≤0,若f (x )=1,则2x+1=1,则x=0, 若x >0,若f (x )=1,则x 2﹣1=1,则x=,即若f[f (a )]=1,则f (a )=0或,若a >0,则由f (a )=0或1得a 2﹣1=0或a 2﹣1=, 即a 2=1或a 2=+1,解得a=1或a=, 若a ≤0,则由f (a )=0或1得2a+1=0或2a+1=, 即a=﹣,此时充分性不成立,即“f[f (a )]=1“是“a=1”的必要不充分条件, 故选:B .【点评】本题主要考查充分条件和必要条件的判断,根据分段函数的表达式解方程即可.2. 【答案】C【解析】【分析】将圆C 方程化为标准方程,找出圆心C 坐标与半径r ,利用点到直线的距离公式表示出圆心到直线的距离d ,与r 比较大小即可得到结果.【解答】解:圆C 方程化为标准方程得:(x ﹣1)2+y 2=2, ∴圆心C (1,0),半径r=, ∵≥>1, ∴圆心到直线l 的距离d=<=r ,且圆心(1,0)不在直线l 上,∴直线l 与圆相交且一定不过圆心. 故选C 3. 【答案】B.【解析】2323()4()()44()a b ab a b ab ab -=⇒+=+,故112222a b a b ab++≤⇒≤ 2322()44()1184()82()()a b ab ab ab ab ab ab ab ab ++⇒≤⇒=+≤⇒+≤,而事实上1122ab ab ab ab +≥⋅=,∴1ab =,∴log 1a b =-,故选B.4. 【答案】A【解析】解:函数f (x )=()x ﹣x ,可得f(0)=1>0,f(1)=﹣<0.f(2)=﹣<0,函数的零点在(0,1).故选:A.5.【答案】A【解析】解:画出满足条件的平面区域,如图示:,由图象得P(3,0)到平面区域的最短距离d min=,∴(x﹣3)2+y2的最小值是:.故选:A.【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.6.【答案】D【解析】解:∵S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i≤10,应不满足条件,继续循环∴当i≥11,应满足条件,退出循环填入“i≥11”.故选D.7.【答案】C【解析】解:∵﹣2<0 ∴f (﹣2)=0∴f (f (﹣2))=f (0) ∵0=0∴f (0)=2即f (f (﹣2))=f (0)=2 ∵2>0 ∴f (2)=22=4即f{f[(﹣2)]}=f (f (0))=f (2)=4 故选C .8. 【答案】 C【解析】 二项式定理. 【专题】计算题.【分析】利用二项展开式的通项公式求出展开式的x k 的系数,将k 的值代入求出各种情况的系数.【解答】解:(x+2)5的展开式中x k 的系数为C 5k 25﹣k 当k ﹣1时,C 5k 25﹣k =C 5124=80, 当k=2时,C 5k 25﹣k =C 5223=80, 当k=3时,C 5k 25﹣k =C 5322=40, 当k=4时,C 5k 25﹣k =C 54×2=10, 当k=5时,C 5k 25﹣k =C 55=1, 故展开式中x k 的系数不可能是50故选项为C【点评】本题考查利用二项展开式的通项公式求特定项的系数.9. 【答案】B【解析】解:排除法:横坐标为2+(﹣6)=﹣4, 故选B .10.【答案】D 【解析】试题分析:原式()()cos80cos130sin80sin130cos 80130cos 210cos 30180cos30=︒︒-︒︒=︒+︒=︒=︒+︒=-︒=.考点:余弦的两角和公式.11.【答案】D【解析】解:设F2为椭圆的右焦点由题意可得:圆与椭圆交于P,并且直线PF1(F1为椭圆的左焦点)是该圆的切线,所以点P是切点,所以PF2=c并且PF1⊥PF2.又因为F1F2=2c,所以∠PF1F2=30°,所以.根据椭圆的定义可得|PF1|+|PF2|=2a,所以|PF2|=2a﹣c.所以2a﹣c=,所以e=.故选D.【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义.12.【答案】【解析】选C.可设双曲线E的方程为x2a2-y2b2=1,渐近线方程为y=±ba x,即bx±ay=0,由题意得E的一个焦点坐标为(6,0),圆的半径为1,∴焦点到渐近线的距离为1.即|6b|b2+a2=1,又a2+b2=6,∴b=1,a=5,∴E的方程为x25-y2=1,故选C.二、填空题13.【答案】2【解析】14.【答案】a≤﹣1.【解析】解:由x2﹣2x﹣3≥0得x≥3或x≤﹣1,若“x<a”是“x2﹣2x﹣3≥0”的充分不必要条件,则a≤﹣1,故答案为:a≤﹣1.【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键.15.【答案】.【解析】解:原式=+lg100﹣2﹣1=+2﹣2﹣1=,故选:【点评】本题考查了对数的运算性质,属于基础题.16.【答案】6【解析】解:集合A为{2,3,7}的真子集有7个,奇数3、7都包含的有{3,7},则符合条件的有7﹣1=6个.故答案为:6【点评】本题考查集合的子集问题,属基础知识的考查.17.【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,∴焦点坐标为(0,2).故选:D.【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.18.【答案】6.【解析】解:f(x)=x3﹣2cx2+c2x,f′(x)=3x2﹣4cx+c2,f′(2)=0⇒c=2或c=6.若c=2,f′(x)=3x2﹣8x+4,令f′(x)>0⇒x<或x>2,f′(x)<0⇒<x<2,故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,∴x=2是极小值点.故c=2不合题意,c=6.故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.三、解答题19.【答案】【解析】解:由已知可得方程组,第二式除以第一式得=,整理可得q 2+4q+4=0,解得q=﹣2.20.【答案】(1)432n a n =-;(2)当7n =或时,n S 最小,且最小值为78112S S =-. 【解析】试题分析:(1)根据数列的项n a 和数列的和n S 之间的关系,即可求解数列{}n a 的通项公式n a ;(2)由(1)中的通项公式,可得1270a a a <<<<L ,80a =,当9n ≥时,0n a >,即可得出结论.1试题解析:(1)∵2230n S n n =-,∴当1n =时,1128a S ==-.当2n ≥时,221(230)[2(1)30(1)]432n n n a S S n n n n n -=-=-----=-.∴432n a n =-,n N +∈. (2)∵432n a n =-,∴1270a a a <<<L ,80a =, 当9n ≥时,0n a >.∴当7n =或8时,n S 最小,且最小值为78112S S =-. 考点:等差数列的通项公式及其应用. 21.【答案】【解析】解:∵z 在复平面上对应的点在直线y=x 上且z ≠0,∴设z=a+ai ,(a ≠0),∵|z ﹣1|=1, ∴|a ﹣1+ai|=1, 即=1, 则2a 2﹣2a+1=1,即a 2﹣a=0,解得a=0(舍)或a=1, 即z=1+i , =1﹣i , 则z =(1+i )(1﹣i )=2.【点评】本题主要考查复数的基本运算,利用复数的几何意义利用待定系数法是解决本题的关键.22.【答案】【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=×4π×2×2=8π,或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;(2)作ME⊥AC,EF⊥BC,连结FM,易证FM⊥BC,∴∠MFE为二面角M﹣BC﹣D的平面角,设∠CAM=θ,∴EM=2sinθ,EF=,∵tan∠MFE=1,∴,∴tan=,∴,∴CM=2.【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.23.【答案】【解析】证明:(Ⅰ)∵以D为圆心、DA为半径的圆弧与以BC为直径半圆交于点F,且四边形ABCD为正方形,∴EA为圆D的切线,且EB是圆O的切线,由切割线定理得EA2=EF•EC,故AE=EB.(Ⅱ)设正方形的边长为a,连结BF,∵BC为圆O的直径,∴BF⊥EC,在Rt△BCE中,由射影定理得EF•FC=BF2=,∴BF==,解得a=2,∴正方形ABCD的面积为4.【点评】本题考查两线段相等的证明,考查正方形面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.24.【答案】【解析】解:(I)∵椭圆的左焦点为F,离心率为,过点M(0,1)且与x轴平行的直线被椭圆G截得的线段长为.∴点在椭圆G上,又离心率为,∴,解得∴椭圆G的方程为.(II)由(I)可知,椭圆G的方程为.∴点F的坐标为(﹣1,0).设点P的坐标为(x0,y0)(x0≠﹣1,x0≠0),直线FP的斜率为k,则直线FP的方程为y=k(x+1),由方程组消去y0,并整理得.又由已知,得,解得或﹣1<x0<0.设直线OP的斜率为m,则直线OP的方程为y=mx.由方程组消去y0,并整理得.由﹣1<x0<0,得m2>,∵x0<0,y0>0,∴m<0,∴m∈(﹣∞,﹣),由﹣<x0<﹣1,得,∵x0<0,y0>0,得m<0,∴﹣<m<﹣.∴直线OP(O是坐标原点)的斜率的取值范围是(﹣∞,﹣)∪(﹣,﹣).【点评】本题考查椭圆方程的求法,考查直线的斜率的取值范围的求法,是中档题,解题时要认真审题,注意椭圆与直线的位置关系的合理运用.。

横峰县高级中学2018-2019学年上学期高二数学12月月考试题含解析

横峰县高级中学2018-2019学年上学期高二数学12月月考试题含解析

横峰县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. -2sin 80°的值为( )sin 15°sin 5°A .1 B .-1C .2D .-22. 执行如图所示的程序,若输入的,则输出的所有的值的和为( )3x x A .243 B .363 C .729 D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.3. 在△ABC 中,b=,c=3,B=30°,则a=( )A .B .2C .或2D .24. 已知集合(其中为虚数单位),,则( )23111{1,(),,}122i A i i i i -=-+-+2{1}B x x =<A B =A .B .C . {1}-{1}{-D .5. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:(1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m ,(3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β,其中正确命题是()A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4)6. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( )A .B .y=x 2C .y=﹣x|x|D .y=x ﹣27. 设f (x )=asin (πx+α)+bcos (πx+β)+4,其中a ,b ,α,β均为非零的常数,f (1988)=3,则f (2008)的值为( )A .1B .3C .5D .不确定8. 已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是()A .M ∪NB .M ∩NC .∁I M ∪∁I ND .∁I M ∩∁I N 9. “方程+=1表示椭圆”是“﹣3<m <5”的( )条件.A .必要不充分B .充要C .充分不必要D .不充分不必要10. 在区间上恒正,则的取值范围为()()()22f x ax a =-+[]0,1A .B .C .D .以上都不对0a >0a <<02a <<11.已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是()A .15B .30C .31D .6412.下列函数中,在其定义域内既是奇函数又是减函数的是()A .y=|x|(x ∈R )B .y=(x ≠0)C .y=x (x ∈R )D .y=﹣x 3(x ∈R )二、填空题13.已知各项都不相等的等差数列,满足,且,则数列项中{}n a 223n n a a =-26121a a a =∙12n n S -⎧⎫⎨⎬⎩⎭的最大值为_________.14.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 .15.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线) 16.若展开式中的系数为,则__________.6()mx y +33x y 160-m =【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.17.已知一组数据,,,,的方差是2,另一组数据,,,,()1x 2x 3x 4x 5x 1ax 2ax 3ax 4ax 5ax 0a >的标准差是,则.a =18.设p :f (x )=e x +lnx+2x 2+mx+1在(0,+∞)上单调递增,q :m ≥﹣5,则p 是q 的 条件.三、解答题19.(本题满分15分)若数列满足:(为常数, ),则称为调和数列,已知数列为调和数{}n x 111n nd x x +-=d *n N ∈{}n x {}n a 列,且,.11a =123451111115a a a a a ++++=(1)求数列的通项;{}n a n a (2)数列的前项和为,是否存在正整数,使得?若存在,求出的取值集合;若不存2{}nna n n S n 2015n S ≥n 在,请说明理由.【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.20.已知数列{a n}是等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<1.21.已知△ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC的面积.22.已知函数f(x)=(a>0)的导函数y=f′(x)的两个零点为0和3.(1)求函数f(x)的单调递增区间;(2)若函数f(x)的极大值为,求函数f(x)在区间[0,5]上的最小值.23.已知p:﹣x2+2x﹣m<0对x∈R恒成立;q:x2+mx+1=0有两个正根.若p∧q为假命题,p∨q为真命题,求m的取值范围.24.已知f(x)=log3(1+x)﹣log3(1﹣x).(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x∈[,]时,不等式f(x)≥g(x)有解,求k的取值范围.横峰县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】【解析】解析:选A.-2 sin 80°sin 15°sin 5°=-2cos 10°=sin (10°+5°)sin 5°sin 10°cos 5°+cos 10°sin 5°-2 cos 10°sin 5°sin 5°===1,选A.sin 10°cos 5°-cos 10°sin 5°sin5 °sin (10°-5°)sin 5°2. 【答案】D【解析】当时,是整数;当时,是整数;依次类推可知当时,是整数,则3x =y 23x =y 3(*)nx n N =∈y 由,得,所以输出的所有的值为3,9,27,81,243,729,其和为1092,故选D .31000nx =≥7n ≥x 3. 【答案】C 【解析】解:∵b=,c=3,B=30°,∴由余弦定理b 2=a 2+c 2﹣2accosB ,可得:3=9+a 2﹣3,整理可得:a 2﹣3a+6=0,∴解得:a=或2.故选:C . 4. 【答案】D 【解析】考点:1.复数的相关概念;2.集合的运算5. 【答案】B【解析】解:∵直线l ⊥平面α,α∥β,∴l ⊥平面β,又∵直线m ⊂平面β,∴l ⊥m ,故(1)正确;∵直线l ⊥平面α,α⊥β,∴l ∥平面β,或l ⊂平面β,又∵直线m ⊂平面β,∴l 与m 可能平行也可能相交,还可以异面,故(2)错误;∵直线l ⊥平面α,l ∥m ,∴m ⊥α,∵直线m ⊂平面β,∴α⊥β,故(3)正确;∵直线l ⊥平面α,l ⊥m ,∴m ∥α或m ⊂α,又∵直线m ⊂平面β,则α与β可能平行也可能相交,故(4)错误;故选B .【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.6.【答案】D【解析】解:函数为非奇非偶函数,不满足条件;函数y=x2为偶函数,但在区间(0,+∞)上单调递增,不满足条件;函数y=﹣x|x|为奇函数,不满足条件;函数y=x﹣2为偶函数,在区间(0,+∞)上单调递减,满足条件;故选:D【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题.7.【答案】B【解析】解:∵f(1988)=asin(1988π+α)+bcos(1998π+β)+4=asinα+bcosβ+4=3,∴asinα+bcosβ=﹣1,故f(2008)=asin(2008π+α)+bcos(2008π+β)+4=asinα+bcosβ+4=﹣1+4=3,故选:B.【点评】本题主要考查利用诱导公式进行化简求值,属于中档题.8.【答案】D【解析】解:∵全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},∴M∪N={1,2,3,6,7,8},M∩N={3};∁I M∪∁I N={1,2,4,5,6,7,8};∁I M∩∁I N={2,7,8},故选:D.9.【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即﹣3<m<5且m≠1,此时﹣3<m<5成立,即充分性成立,当m=1时,满足﹣3<m <5,但此时方程+=1即为x 2+y 2=4为圆,不是椭圆,不满足条件.即必要性不成立.故“方程+=1表示椭圆”是“﹣3<m <5”的充分不必要条件.故选:C .【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题. 10.【答案】C 【解析】试题分析:由题意得,根据一次函数的单调性可知,函数在区间上恒正,则()()22f x ax a =-+[]0,1,即,解得,故选C.(0)0(1)0f f >⎧⎨>⎩2020a a a >⎧⎨-+>⎩02a <<考点:函数的单调性的应用.11.【答案】A【解析】解:∵等差数列{a n },∴a 6+a 8=a 4+a 10,即16=1+a 10,∴a 10=15,故选:A . 12.【答案】D【解析】解:y=|x|(x ∈R )是偶函数,不满足条件,y=(x ≠0)是奇函数,在定义域上不是单调函数,不满足条件,y=x (x ∈R )是奇函数,在定义域上是增函数,不满足条件,y=﹣x 3(x ∈R )奇函数,在定义域上是减函数,满足条件,故选:D 二、填空题13.【答案】【解析】考点:1.等差数列的通项公式;2.等差数列的前项和.【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公1,,,,n n a a d n S 式在解题中起到变量代换作用,而是等差数列的两个基本量,用它们表示已知和未知是常用方法.1,a d 14.【答案】 [] .【解析】解:由题设知C 41p (1﹣p )3≤C 42p 2(1﹣p )2,解得p ,∵0≤p ≤1,∴,故答案为:[].15.【答案】 3.3 【解析】解:如图BC 为竿的高度,ED 为墙上的影子,BE 为地面上的影子.设BC=x ,则根据题意=,AB=x ,在AE=AB ﹣BE=x ﹣1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3.【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题. 16.【答案】2-【解析】由题意,得,即,所以.336160C m =-38m =-2m =-17.【答案】2【解析】试题分析:第一组数据平均数为,2)((()()(,2524232221=-+-+-+-+-∴x x x x x x x x x x x .22222212345()()()()()8,4,2ax ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=考点:方差;标准差.18.【答案】 必要不充分 【解析】解:由题意得f ′(x )=e x ++4x+m ,∵f (x )=e x +lnx+2x 2+mx+1在(0,+∞)内单调递增,∴f ′(x )≥0,即e x ++4x+m ≥0在定义域内恒成立,由于+4x ≥4,当且仅当=4x ,即x=时等号成立,故对任意的x ∈(0,+∞),必有e x ++4x >5∴m ≥﹣e x ﹣﹣4x 不能得出m ≥﹣5但当m ≥﹣5时,必有e x ++4x+m ≥0成立,即f ′(x )≥0在x ∈(0,+∞)上成立∴p 不是q 的充分条件,p 是q 的必要条件,即p 是q 的必要不充分条件故答案为:必要不充分三、解答题19.【答案】(1),(2)详见解析.1n a n =当时,…………13分8n =911872222015S =⨯+>>∴存在正整数,使得的取值集合为,…………15分n 2015n S ≥{}*|8,n n n N ≥∈20.【答案】已知数列{a n }是等比数列,S n 为数列{a n }的前n 项和,且a 3=3,S 3=9(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =log 2,且{b n }为递增数列,若c n =,求证:c 1+c 2+c 3+…+c n <1.【考点】数列的求和;等比数列的通项公式.【专题】计算题;证明题;方程思想;综合法;等差数列与等比数列.【分析】(Ⅰ)设数列{a n }的公比为q ,从而可得3(1++)=9,从而解得;(Ⅱ)讨论可知a 2n+3=3•(﹣)2n =3•()2n ,从而可得b n =log 2=2n ,利用裂项求和法求和.【解析】解:(Ⅰ)设数列{a n }的公比为q ,则3(1++)=9,解得,q=1或q=﹣;故a n=3,或a n=3•(﹣)n﹣3;(Ⅱ)证明:若a n=3,则b n=0,与题意不符;故a2n+3=3•(﹣)2n=3•()2n,故b n=log2=2n,故c n==﹣,故c1+c2+c3+…+c n=1﹣+﹣+…+﹣=1﹣<1.【点评】本题考查了数列的性质的判断与应用,同时考查了方程的思想应用及裂项求和法的应用.21.【答案】【解析】解:由题意设a=n、b=n+1、c=n+2(n∈N+),∵最大角是最小角的2倍,∴C=2A,由正弦定理得,则,∴,得cosA=,由余弦定理得,cosA==,∴=,化简得,n=4,∴a=4、b=5、c=6,cosA=,又0<A<π,∴sinA==,∴△ABC的面积S===.【点评】本题考查正弦定理和余弦定理,边角关系,三角形的面积公式的综合应用,以及方程思想,考查化简、计算能力,属于中档题.22.【答案】【解析】解:f′(x)=令g(x)=﹣ax2+(2a﹣b)x+b﹣c函数y=f′(x)的零点即g(x)=﹣ax2+(2a﹣b)x+b﹣c的零点即:﹣ax2+(2a﹣b)x+b﹣c=0的两根为0,3则解得:b=c=﹣a,令f′(x)>0得0<x<3所以函数的f(x)的单调递增区间为(0,3),(2)由(1)得:函数在区间(0,3)单调递增,在(3,+∞)单调递减,∴,∴a=2,∴;,∴函数f(x)在区间[0,4]上的最小值为﹣2.23.【答案】【解析】解:若p为真,则△=4﹣4m<0,即m>1 …若q为真,则,即m≤﹣2 …∵p∧q为假命题,p∨q为真命题,则p,q一真一假若p真q假,则,解得:m>1 …若p假q真,则,解得:m≤﹣2 …综上所述:m≤﹣2,或m>1 …24.【答案】【解析】解:(1)f(x)=log3(1+x)﹣log3(1﹣x)为奇函数.理由:1+x>0且1﹣x>0,得定义域为(﹣1,1),(2分)又f(﹣x)=log3(1﹣x)﹣log3(1+x)=﹣f(x),则f(x)是奇函数.(2)g(x)=log=2log3,(5分)又﹣1<x<1,k>0,(6分)由f(x)≥g(x)得log3≥log3,即≥,(8分)即k2≥1﹣x2,(9分)x∈[,]时,1﹣x2最小值为,(10分)则k2≥,(11分)又k>0,则k≥,即k的取值范围是(﹣∞,].【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题.。

横峰县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

横峰县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

横峰县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知全集为,且集合,,则等于( )R }2)1(log |{2<+=x x A }012|{≥--=x x x B )(B C A R A .B .C .D .)1,1(-]1,1(-)2,1[]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.2. 函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( )A .f (2)<f (π)<f (5)B .f (π)<f (2)<f (5)C .f (2)<f (5)<f (π)D .f (5)<f (π)<f (2)3. 已知函数,函数满足以下三点条件:①定义域为;②对任意,有⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f )(x g R R x ∈;③当时,则函数在区间上零1()(2)2g x g x =+]1,1[-∈x ()g x )()(x g x f y -=]4,4[-点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.4. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是()A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点5. 已知函数f (x )=若f (-6)+f (log 26)=9,则a 的值为( ){log 2(a -x ),x <12x ,x ≥1)A .4B .3C .2D .16. 在正方体中,是线段的中点,若四面体的外接球体积为,1111ABCD A B C D -M 11AC M ABD -36p 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.7. 执行如图所示的程序框图,若a=1,b=2,则输出的结果是()A .9B .11C .13D .158. 在下列区间中,函数f (x )=()x ﹣x 的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3 )D .(3,4)9. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是()A .0<B .0C .0D .010.在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( )A .7049B .7052C .14098D .1410111.下列哪组中的两个函数是相等函数( )A .B .()()4f x x =g ()()24=,22x f x g x x x -=-+C .D .()()1,01,1,0x f x g x x >⎧==⎨<⎩()()=f x x x =,g 12.(2015秋新乡校级期中)已知x+x ﹣1=3,则x 2+x ﹣2等于( )A .7B .9C .11D .13二、填空题13.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .14.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________.15.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 . 16.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .17.在平面直角坐标系中,,,记,其中为坐标原点,(1,1)=-a (1,2)=b {}(,)|M OM λμλμΩ==+a b O 给出结论如下:①若,则;(1,4)(,)λμ-∈Ω1λμ==②对平面任意一点,都存在使得;M ,λμ(,)M λμ∈Ω③若,则表示一条直线;1λ=(,)λμΩ④;{}(1,)(,2)(1,5)μλΩΩ= ⑤若,,且,则表示的一条线段且长度为0λ≥0μ≥2λμ+=(,)λμΩ其中所有正确结论的序号是 .18.已知||=1,||=2,与的夹角为,那么|+||﹣|= .三、解答题19.(本小题满分13分)椭圆:的左、右焦点分别为、,直线经过点与椭圆交于点C 22221(0)x y a b a b+=>>1F 2F :1l xmy =-1F C ,点在轴的上方.当时,M M x 0m =1||MF =(Ⅰ)求椭圆的方程;C (Ⅱ)若点是椭圆上位于轴上方的一点, ,且,求直线的方程.N C x 12//MF NF 12123MF F NF F S S ∆∆=l20.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件(2)求z=2x+y 的最大值,使式中的x 、y 满足约束条件+=1.21.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;(Ⅱ)求证:; (Ⅲ)若,判断直线与平面是否垂直?并说明理由.22.【2017-2018学年度第一学期如皋市高三年级第一次联考】设函数.()1ln 1f x a x x=+-(1)当时,求函数在点处的切线方程;2a =()f x ()()11f ,(2)讨论函数的单调性;()f x (3)当时,求证:对任意,都有.102a <<1+2x ⎛⎫∈∞ ⎪⎝⎭,1e x aa x +⎛⎫+< ⎪⎝⎭23.如图,四棱锥P ﹣ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC=PD=2,E 为PC 的中点,.求证:PC ⊥BC ;(Ⅱ)求三棱锥C ﹣DEG 的体积;(Ⅲ)AD 边上是否存在一点M ,使得PA ∥平面MEG .若存在,求AM 的长;否则,说明理由.24.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O公共点的极坐标. 横峰县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C2.【答案】B【解析】解:∵函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,∴f(π)=f(6﹣π),f(5)=f(1),∵f(6﹣π)<f(2)<f(1),∴f(π)<f(2)<f(5)故选:B【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档.3.【答案】D第Ⅱ卷(共100分)[.Com]4.【答案】B【解析】解:∵f′(x)=1﹣x+x2﹣x3+…+x2014=(1﹣x)(1+x2+…+x2012)+x2014;∴f′(x)>0在(﹣1,0)上恒成立;故f(x)在(﹣1,0)上是增函数;又∵f(0)=1,f(﹣1)=1﹣1﹣﹣﹣…﹣<0;故f(x)在(﹣1,0)上恰有一个零点;故选B.【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.5.【答案】【解析】选C.由题意得log2(a+6)+2log26=9.即log2(a+6)=3,∴a+6=23=8,∴a=2,故选C.6.【答案】C7.【答案】C【解析】解:当a=1时,不满足退出循环的条件,故a=5,当a=5时,不满足退出循环的条件,故a=9,当a=9时,不满足退出循环的条件,故a=13,当a=13时,满足退出循环的条件,故输出的结果为13,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答. 8.【答案】A【解析】解:函数f(x)=()x﹣x,可得f(0)=1>0,f(1)=﹣<0.f(2)=﹣<0,函数的零点在(0,1).故选:A.9.【答案】D【解析】解:∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0<θ≤.故选:D.10.【答案】B【解析】解:∵a n+1a n+2=2a n+1+2a n(n∈N+),∴(a n+1﹣2)(a n﹣2)=2,当n≥2时,(a n﹣2)(a n﹣1﹣2)=2,∴,可得a n+1=a n﹣1,因此数列{a n}是周期为2的周期数列.a1=3,∴3a2+2=2a2+2×3,解得a2=4,∴S2015=1007(3+4)+3=7052.【点评】本题考查了数列的周期性,考查了计算能力,属于中档题.11.【答案】D111]【解析】考点:相等函数的概念.12.【答案】A【解析】解:∵x+x ﹣1=3,则x 2+x ﹣2=(x+x ﹣1)2﹣2=32﹣2=7.故选:A .【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题. 二、填空题13.【答案】1-1,3]【解析】试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈ ≤≤≤=1-1,3]考点:集合运算【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.14.【答案】(,0)(4,)-∞+∞ 【解析】试题分析:把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可,设关于的函数44)2(24)4(x f(x)y 22+-+-=-+-+==x x a x a x a 对任意的2],[-2a ∈,当-2a =时,044)42(x )2(f(a)y 2>++--+=-==x f ,即086x )2(2>+-=-x f ,解得4x 2x ><或;当2a =时,044)42(x )2(y 2>-+-+==x f ,即02x )2(2>-=x f ,解得2x 0x ><或,∴的取值范围是{x|x 0x 4}<>或;故答案为:(,0)(4,)-∞+∞ .考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题.把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.15.【答案】12π【解析】考点:球的体积与表面积.【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键.16.【答案】 x ﹣y ﹣2=0 .【解析】解:直线AB 的斜率 k AB =﹣1,所以线段AB 的中垂线得斜率k=1,又线段AB 的中点为(3,1),所以线段AB 的中垂线得方程为y ﹣1=x ﹣3即x ﹣y ﹣2=0,故答案为x ﹣y ﹣2=0.【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程. 17.【答案】②③④【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力.由得,∴,①错误;(1,4)λμ+=-a b 124λμλμ-+=-⎧⎨+=⎩21λμ=⎧⎨=⎩与不共线,由平面向量基本定理可得,②正确;a b 记,由得,∴点在过点与平行的直线上,③正确;OA = a OM μ=+ a b AM μ=b M A b 由得,,∵与不共线,∴,∴,∴④2μλ+=+a b a b (1)(2)λμ-+-=0a b a b 12λμ=⎧⎨=⎩2(1,5)μλ+=+=a b a b 正确;设,则有,∴,∴且,∴表示的一(,)M x y 2x y λμλμ=-+⎧⎨=+⎩21331133x y x yλμ⎧=-+⎪⎪⎨⎪=+⎪⎩200x y x y -≤⎧⎨+≥⎩260x y -+=(,)λμΩ条线段且线段的两个端点分别为、,其长度为,∴⑤错误.(2,4)(2,2)-18.【答案】 .【解析】解:∵||=1,||=2,与的夹角为,∴==1×=1.∴|+||﹣|====.故答案为:.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题. 三、解答题19.【答案】【解析】解:(Ⅰ)由直线经过点得,:1l x my =-1F 1c =当时,直线与轴垂直,0m =l x 21||b MF a ==由解得的方程为. (4分)21c b a=⎧⎪⎨=⎪⎩1a b ⎧=⎪⎨=⎪⎩C 2212x y +=(Ⅱ)设,,由知.1122(,),(,)M x y N x y 120,0y y >>12//MF NF 12121122||3||MF F NF F S MF y S NF y ∆∆===联立方程,消去得,解得22112x my x y =-⎧⎪⎨+=⎪⎩x22(2)210m y my +--=y =∴,同样可求得, (11分)1y =2y =由得,解得,123y y =123y y =3=1m =直线的方程为. (13分)l 10x y -+=20.【答案】【解析】解:(1)由题意作出可行域如下,,结合图象可知,当过点A(2,﹣1)时有最大值,故Z max=2×2﹣1=3;(2)由题意作图象如下,,根据距离公式,原点O到直线2x+y﹣z=0的距离d=,故当d有最大值时,|z|有最大值,即z有最值;结合图象可知,当直线2x+y﹣z=0与椭圆+=1相切时最大,联立方程化简可得,116x2﹣100zx+25z2﹣400=0,故△=10000z2﹣4×116×(25z2﹣400)=0,故z2=116,故z=2x+y的最大值为.【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用.21.【答案】【解析】【知识点】垂直平行【试题解析】(Ⅰ)证明:因为,平面,平面,所以平面.因为,平面,平面,所以平面.又因为,所以平面平面.又因为平面,所以平面.(Ⅱ)证明:因为底面,底面,所以.又因为,,所以平面.又因为底面,所以.(Ⅲ)结论:直线与平面不垂直.证明:假设平面,由平面,得.由棱柱中,底面,可得,,又因为,所以平面,所以.又因为,所以平面,所以.这与四边形为矩形,且矛盾,故直线与平面不垂直.22.【答案】(1);(2)见解析;(3)见解析.10x y --=【解析】试题分析:(1)当时,求出导数易得,即,利用点斜式可得其切线方程;(2)2a =()'11f =1k =求得可得,分为和两种情形判断其单调性;(3)当时,根据(2)可()21'ax f x x -=0a ≤0a >102a <<得函数在上单调递减,故,即,化简可得所证结论.()f x ()12,()11a f f x ⎛⎫+< ⎪⎝⎭ln 1a a a x x a ⎛⎫+< ⎪+⎝⎭试题解析:(1)当时,2a =,,,,所以函数在点()12ln 1f x x x =+-()112ln1101f =+-=()221'f x x x =-()221'1111f =-=()f x 处的切线方程为,即.()10,()011y x -=⨯-10x y --=(2),定义域为,.()1ln 1f x a x x =+-()0+∞,()2211'a ax f x x x x-=-=①当时,,故函数在上单调递减;0a ≤()'0f x <()f x ()0+∞,②当时,令,得0a >()'0f x =1x a=x10a ⎛⎫ ⎪⎝⎭,1a1a ⎛⎫+∞ ⎪⎝⎭,()'f x -+()f x ↘极小值↗综上所述,当时,在上单调递减;当时,函数在上单调递减,在0a ≤()f x ()0+∞,0a >()f x 10a ⎛⎫ ⎪⎝⎭,上单调递增.1a ⎛⎫+∞ ⎪⎝⎭,(3)当时,由(2)可知,函数在上单调递减,显然,,故,102a <<()f x 10a ⎛⎫ ⎪⎝⎭,12a >()1120a ⎛⎫⊆ ⎪⎝⎭,,所以函数在上单调递减,对任意,都有,所以.所以()f x ()12,1+2x ⎛⎫∈∞ ⎪⎝⎭,01a x <<112a x <+<,即,所以,即,所以()11a f f x ⎛⎫+< ⎪⎝⎭1ln 1101a a a x x ⎛⎫++-< ⎪⎝⎭+ln 1a a a x x a ⎛⎫+< ⎪+⎝⎭1ln 1a x x a ⎛⎫+< ⎪+⎝⎭,即,所以.()ln 11a x a x ⎛⎫++< ⎪⎝⎭ln 11x aa x +⎛⎫+< ⎪⎝⎭1e x aa x +⎛⎫+< ⎪⎝⎭23.【答案】【解析】解:(I )证明:∵PD ⊥平面ABCD ,∴PD ⊥BC ,又∵ABCD 是正方形,∴BC ⊥CD ,∵PDICE=D ,∴BC ⊥平面PCD ,又∵PC ⊂面PBC ,∴PC ⊥BC .(II )解:∵BC ⊥平面PCD ,∴GC 是三棱锥G ﹣DEC 的高.∵E 是PC 的中点,∴.∴.(III )连接AC ,取AC 中点O ,连接EO 、GO ,延长GO 交AD 于点M ,则PA ∥平面MEG .下面证明之:∵E 为PC 的中点,O 是AC 的中点,∴EO ∥平面PA , 又∵EO ⊂平面MEG ,PA ⊄平面MEG ,∴PA ∥平面MEG ,在正方形ABCD 中,∵O 是AC 中点,∴△OCG ≌△OAM ,∴,∴所求AM 的长为.【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想.24.【答案】【解析】解:(1)圆O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ,故圆O 的直角坐标方程为:x2+y2=x+y,即x2+y2﹣x﹣y=0.直线l:,即ρsinθ﹣ρcosθ=1,则直线的直角坐标方程为:y﹣x=1,即x﹣y+1=0.(2)由,可得,直线l与圆O公共点的直角坐标为(0,1),故直线l 与圆O 公共点的一个极坐标为.【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题.。

横峰县高级中学2018-2019学年高二上学期第二次月考试卷数学

横峰县高级中学2018-2019学年高二上学期第二次月考试卷数学

横峰县高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x xf e e = C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.2. 若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=( ) A .12 B .10 C .8 D .63. 在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( ) A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形4. 双曲线的渐近线方程是( )A .B .C .D .5. 函数y=sin (2x+)图象的一条对称轴方程为( )A .x=﹣B .x=﹣C .x=D .x=6. 下列说法正确的是( )A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.7. 若多项式 x 2+x 10=a 0+a 1(x+1)+…+a 8(x+1)8+a 9(x+1)9+a 10(x+1)10,则 a 8=( )A .45B .9C .﹣45D .﹣98. 设M={x|﹣2≤x ≤2},N={y|0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )A .B .C .D .9. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( ) A .1 B .2 C .3 D .410.某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .34 D .38【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.11.直线的倾斜角是( )A .B .C .D . 12.复数i ﹣1(i 是虚数单位)的虚部是( )A .1B .﹣1C .iD .﹣i二、填空题13.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB最小则直线的方程是 .14.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.15.若全集,集合,则16.下图是某算法的程序框图,则程序运行后输出的结果是____.17.抛物线24x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆ 外接圆的标准方程为_________.18.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[,]上恒成立,则实数m 的取值范围是 .三、解答题19.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图1的矩形,俯视图为两个边长为1的正方形拼成的矩形. (1)求该几何体的体积V ;111] (2)求该几何体的表面积S .20.已知函数()()xf x x k e =-(k R ∈). (1)求()f x 的单调区间和极值;(2)求()f x 在[]1,2x ∈上的最小值.(3)设()()'()g x f x f x =+,若对35,22k ⎡⎤∀∈⎢⎥⎣⎦及[]0,1x ∀∈有()g x λ≥恒成立,求实数λ的取值范围.21.已知函数f (x )=cos (ωx+),(ω>0,0<φ<π),其中x ∈R 且图象相邻两对称轴之间的距离为;(1)求f (x )的对称轴方程和单调递增区间;(2)求f (x )的最大值、最小值,并指出f (x )取得最大值、最小值时所对应的x 的集合.22.已知圆C 经过点A (﹣2,0),B (0,2),且圆心在直线y=x 上,且,又直线l :y=kx+1与圆C 相交于P 、Q 两点.(Ⅰ)求圆C 的方程; (Ⅱ)若,求实数k 的值; (Ⅲ)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M 、N 两点,求四边形PMQN 面积的最大值.23.已知函数f(x)=|2x+1|+|2x﹣3|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)﹣log2(a2﹣3a)>2恒成立,求实数a的取值范围.24.如图在长方形ABCD中,是CD的中点,M是线段AB上的点,.(1)若M是AB的中点,求证:与共线;(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置.横峰县高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D.【解析】2.【答案】C【解析】解:直线y=kx﹣k恒过(1,0),恰好是抛物线y2=4x的焦点坐标,设A(x1,y1)B(x2,y2)抛物y2=4x的线准线x=﹣1,线段AB中点到y轴的距离为3,x1+x2=6,∴|AB|=|AF|+|BF|=x1+x2+2=8,故选:C.【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.3.【答案】D【解析】解:∵A+B+C=180°,∴sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,∴sinCcosA﹣sinAcosC=0,即sin(C﹣A)=0,∴A=C 即为等腰三角形.故选:D.【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础.4.【答案】B【解析】解:∵双曲线标准方程为,其渐近线方程是=0,整理得y=±x.故选:B.【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题.5.【答案】A【解析】解:对于函数y=sin(2x+),令2x+=kπ+,k∈z,求得x=π,可得它的图象的对称轴方程为x=π,k∈z,故选:A.【点评】本题主要考查正弦函数的图象的对称性,属于基础题.6.【答案】C【解析】考点:几何体的结构特征.7.【答案】A【解析】解:a8 是x10=[﹣1+(x+1)]10的展开式中第九项(x+1)8的系数,∴a8==45,故选:A.【点评】本题主要考查二项展开式的通项公式,二项展开式系数的性质以及多项恒等式系数相等的性质,属于基础题.8.【答案】B【解析】解:A项定义域为[﹣2,0],D项值域不是[0,2],C项对任一x都有两个y与之对应,都不符.故选B.【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题.9.【答案】C【解析】解:随机变量x1~N(2,1),图象关于x=2对称,x2~N(4,1),图象关于x=4对称,因为P(x1<3)=P(x2≥a),所以3﹣2=4﹣a,所以a=3,故选:C.【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.10.【答案】B11.【答案】A【解析】解:设倾斜角为α,∵直线的斜率为,∴tanα=,∵0°<α<180°,∴α=30°故选A.【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握.12.【答案】A【解析】解:由复数虚部的定义知,i ﹣1的虚部是1, 故选A .【点评】该题考查复数的基本概念,属基础题.二、填空题13.【答案】30x y -+= 【解析】试题分析:由圆C 的方程为22230x y y +--=,表示圆心在(0,1)C ,半径为的圆,点()1,2P -到圆心的距()1,2P -在圆内,所以当AB CP ⊥时,AB 最小,此时11,1CP k k =-=,由点斜式方程可得,直线的方程为21y x -=+,即30x y -+=.考点:直线与圆的位置关系的应用. 14.【答案】2300 【解析】111]试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥14020y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.1111]考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值. 15.【答案】{|0<<1} 【解析】∵,∴{|0<<1}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

横峰中学2018-2019学年度上学期周练(第5周)
高二年级数学试卷
命题人:曾瑜鹃 考试日期:9月24日
一、选择题:(本题包括5小题,共40分,每小题只有一个选项符合题意)
1、如果0a b <<,那么下列不等式成立的 ( )
A .
11a b < B .2ab b < C .2ab a -<- D .11a b -<-
2、已知1324a b a b -<+<<-<且,则2a+3b 的取值范围是( ) A 1317(,)22
- B 711(,)22- C 713(,)22- D 913(,)22- 3、若不等式组表示的平面区域是一个三角形,则的取值范围是( ) A. B. C. D. 或
4、已知
,若,则的最小值为 A. 4 B. 9 C. 8 D. 10
5、若不等式2162a b x x b a
+<+对任意a , ()0,b ∈+∞恒成立,则实数x 的取值范围是( ) A. ()2,0- B. ()(),20,-∞-⋃+∞
C. ()4,2-
D. ()(),42,-∞-⋃+∞
二、填空题(共2题;共16分)
6、若不等式组0
{24 24
x x y x y ≥+≤+≥所表示的平面区域被直线4y kx =+分为面积相等的两部分,则k
的值为________
7、已知
的最小值是5,则z 的最大值是
______.
三、解答题(共2题;共20+24=44分) 8、某厂家举行大型的促销活动,经测算某产品当促销费用为x 万元时,销售量t 万件满足1253
t x =-+(其中0x a ≤≤,a 为正常数),现假定生产量与销售量相等,已知生产该产品t 万件还需投入成本()102t +万元(不含促销费用),产品的销售价格定为205t ⎛⎫+ ⎪⎝⎭
万元/万件.
(1)将该产品的利润y 万元表示为促销费用x 万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大.
9、若,x y 满足10
{30 350
x y x y x y -+≥+-≥--≤,求:
(1)2z x y =+的最小值;
(2)22z x y =+的范围;
(3)y x z x
+=
的最大值.
四、附加题(共1题;共20分) 10、设不等式⎪⎩
⎪⎨⎧+-≤>>n nx y y x 300所表示的平面区域为n D ,记n D 内的整点个数为n a (n∈*N ),(整点即横坐标和纵坐标均为整数的点).
(1)求数列{a n }的通项公式;
(2)记数列{a n }的前项和为S n ,且1
23-⋅=n n n s T ,若对于一切正整数n ,总有≤n T m ,求实数m 的取值范围.。

相关文档
最新文档