2008年普通高等学校招生全国统一考试数学理试题(山东卷)(含解析)

合集下载

历年高考真题 附答案(山东卷)2008数学

历年高考真题 附答案(山东卷)2008数学

2008年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高.球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,,的集合M 的个数是( ) A .1B .2C .3D .42.设z 的共轭复数是z ,若4z z +=,8z z = ,则z z等于( )A .iB .i -C .1±D .i ±3.函数ππln cos 22y x x ⎛⎫=-<<⎪⎝⎭的图象是( )4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( ) A .1516B .2716-C .89D .186.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A .9π B .10πC .11πD .12π 7.不等式252(1)x x +-≥的解集是( )A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦, C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,xxA .B .C .D .俯视图 正(主)视图 侧(左)视图8.已知a b c ,,为A B C △的三个内角A B C ,,的对边,向量1)(cos sin )A A =-=,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B ,的大小分别为( )A .ππ63, B .2ππ36, C .ππ36, D .ππ33, 9.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )A .B .5C .3D .8510.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( )A .5-B .5C .45- D .4511.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( ) A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭12.已知函数()log (21)(01)xa f xb a a =+->≠,的图象如图所示,则a b ,满足的关系是( )A .101a b -<<< B .101b a -<<<C .101ba -<<<- D .1101ab --<<<第Ⅱ卷(共90二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 14.执行右边的程序框图,若0.8p =, 则输出的n =.15.已知2(3)4log 3233xf x =+,则8(2)(4)(8)(2)f f f f ++++ 的 值等于 .x16.设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 . 三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2.(Ⅰ)求π8f ⎛⎫⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间.18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率. 19.(本小题满分12分)如图,在四棱锥P A B C D -中,平面P A D ⊥平面A B C D ,AB D C ∥,P A D △是等边三角形,已知28B D A D ==,2AB D C ==(Ⅰ)设M 是P C 上的一点,证明:平面M B D ⊥平面PAD ; (Ⅱ)求四棱锥P A B C D -的体积. 20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a 2a 3a 4a 5a 6a 7a 8a 9a 10aABCMPD记表中的第一列数1247a a a a ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)n n n nb n b S S=-≥.(Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式;(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当81491a =-时,求上表中第(3)k k ≥行所有项的和.21.(本小题满分12分)设函数2132()x f x x e ax bx -=++,已知2x =-和1x =为()f x 的极值点. (Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小.22.(本小题满分14分)已知曲线11(0)x y C a b a b+=>>:所围成的封闭图形的面积为曲线1C3记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设A B 是过椭圆2C 中心的任意弦,l 是线段A B 的垂直平分线.M 是l 上异于椭圆中心的点. (1)若M O OA λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求A M B △的面积的最小值.2008年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题 1.B 2.D 3.A 4.C 5.A 6.D 7.D8.C9.B10.C11.B12.A二、填空题 13.221412xy-= 14.4 15.2008 16.11三、解答题17.解:(Ⅰ)())cos()f x x x ωϕωϕ=+-+12sin()cos()22x x ωϕωϕ⎤=+-+⎥⎣⎦π2sin 6x ωϕ⎛⎫=+- ⎪⎝⎭.因为()f x 为偶函数,所以对x ∈R ,()()f x f x -=恒成立,因此ππsin()sin 66x x ωϕωϕ⎛⎫-+-=+- ⎪⎝⎭. 即ππππsin cos cos sin sin cos cos sin 6666x x x x ωϕωϕωϕωϕ⎛⎫⎛⎫⎛⎫⎛⎫--+-=-+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理得πsin cos 06x ωϕ⎛⎫-= ⎪⎝⎭. 因为0ω>,且x ∈R , 所以πcos 06ϕ⎛⎫-= ⎪⎝⎭. 又因为0πϕ<<, 故ππ62ϕ-=.所以π()2sin 2cos 2f x x x ωω⎛⎫=+= ⎪⎝⎭. 由题意得2ππ22ω= ,所以2ω=. 故()2cos 2f x x =.因此ππ2cos 84f ⎛⎫==⎪⎝⎭(Ⅱ)将()f x 的图象向右平移π6个单位后,得到π6f x ⎛⎫-⎪⎝⎭的图象, 所以πππ()2cos 22cos 2663g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 当π2π22ππ3k x k -+≤≤(k ∈Z ), 即π2πππ63k x k ++≤≤(k ∈Z )时,()g x 单调递减,因此()g x 的单调递减区间为π2πππ63k k ⎡⎤++⎢⎥⎣⎦,(k ∈Z ). 18.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,, 132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的. 用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,, 122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成, 因而61()183P M ==.(Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=.19.(Ⅰ)证明:在ABD △中, 由于4AD =,8B D =,AB = 所以222AD BD AB +=.故AD BD ⊥.又平面P A D ⊥平面A B C D ,平面PAD 平面A B C D A D =,ABCM PD OBD ⊂平面A B C D ,所以B D ⊥平面PAD , 又BD ⊂平面M BD , 故平面M B D ⊥平面PAD .(Ⅱ)解:过P 作P O A D ⊥交A D 于O , 由于平面P A D ⊥平面A B C D , 所以P O ⊥平面A B C D .因此P O 为四棱锥P A B C D -的高, 又P A D △是边长为4的等边三角形.因此42PO ==在底面四边形A B C D 中,A B D C ∥,2A B D C =,所以四边形A B C D 是梯形,在R t AD B △中,斜边A B5=此即为梯形A B C D 的高, 所以四边形A B C D的面积为2425S ==.故1243P A B C D V -=⨯⨯=20.(Ⅰ)证明:由已知,当2n ≥时,221n n n nb b S S =-,又12n n S b b b =+++ , 所以1212()1()n n n n n nS S S S S S ---=--,即112()1n n n n S S S S ---=-,所以11112nn S S --=,又1111S b a ===.所以数列1n S ⎧⎫⎨⎬⎩⎭是首项为1,公差为12的等差数列.由上可知1111(1)22n n n S +=+-=,即21n S n =+.所以当2n ≥时,12221(1)n n n b S S n nn n -=-=-=-++.因此1122(1)n n b n n n =⎧⎪=⎨-⎪+⎩, ,,.≥ (Ⅱ)解:设上表中从第三行起,每行的公比都为q ,且0q >. 因为12131212782⨯+++== ,所以表中第1行至第12行共含有数列{}n a 的前78项, 故81a 在表中第13行第三列, 因此28113491a b q ==- .又1321314b =-⨯,所以2q =.记表中第(3)k k ≥行所有项的和为S ,则(1)2(12)2(12)(3)1(1)12(1)kkkk b q S k qk k k k --==-=--+-+ ≥.21.解:(Ⅰ)因为122()e (2)32x f x x x ax bx -'=+++1e(2)(32)x x x x ax b -=+++,又2x =-和1x =为()f x 的极值点,所以(2)(1)0f f ''-==,因此6203320a b a b -+=⎧⎨++=⎩,,解方程组得13a =-,1b =-. (Ⅱ)因为13a =-,1b =-,所以1()(2)(e 1)x f x x x -'=+-,令()0f x '=,解得12x =-,20x =,31x =. 因为当(2)x ∈-∞-,(01) ,时,()0f x '<; 当(20)(1)x ∈-+∞ ,,时,()0f x '>. 所以()f x 在(20)-,和(1)+∞,上是单调递增的; 在(2)-∞-,和(01),上是单调递减的.(Ⅲ)由(Ⅰ)可知21321()e 3x f x x x x -=--,故21321()()e (e )x x f x g x x x x x ---=-=-, 令1()e x h x x -=-, 则1()e 1x h x -'=-. 令()0h x '=,得1x =,因为(]1x ∈-∞,时,()0h x '≤, 所以()h x 在(]1x ∈-∞,上单调递减. 故(]1x ∈-∞,时,()(1)0h x h =≥; 因为[)1x ∈+∞,时,()0h x '≥, 所以()h x 在[)1x ∈+∞,上单调递增. 故[)1x ∈+∞,时,()(1)0h x h =≥. 所以对任意()x ∈-∞+∞,,恒有()0h x ≥,又20x ≥,因此()()0f x g x -≥,故对任意()x ∈-∞+∞,,恒有()()f x g x ≥. 22.解:(Ⅰ)由题意得23ab ⎧=⎪⎨=.又0a b >>, 解得25a =,24b =.因此所求椭圆的标准方程为22154xy+=.(Ⅱ)(1)假设A B 所在的直线斜率存在且不为零,设A B 所在直线方程为(0)y kx k =≠,()A A A x y ,.解方程组22154x y y kx ⎧+=⎪⎨⎪=⎩,,得222045A x k =+,2222045A k y k =+, 所以22222222202020(1)454545A Akk OA x y kkk+=+=+=+++.设()M x y ,,由题意知(0)M O OA λλ=≠,所以222M O OA λ=,即2222220(1)45k x y kλ++=+,因为l 是A B 的垂直平分线, 所以直线l 的方程为1y x k =-,即x k y=-,因此22222222222220120()4545x y x y x y x y x yλλ⎛⎫+ ⎪+⎝⎭+==++ , 又220x y +≠, 所以2225420x y λ+=, 故22245xyλ+=.又当0k =或不存在时,上式仍然成立. 综上所述,M 的轨迹方程为222(0)45xyλλ+=≠.(2)当k 存在且0k ≠时,由(1)得222045Ax k=+,2222045Aky k=+,由221541x yy x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2222054M k x k =+,222054M y k =+, 所以2222220(1)45A Ak OA x y k+=+=+,222280(1)445k ABOAk+==+,22220(1)54k OMk+=+.解法一:由于22214A MB S A B O M= △2222180(1)20(1)44554k k kk++=⨯⨯++2222400(1)(45)(54)k k k +=++22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥ 222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭,当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时A M B △面积的最小值是409A M B S =△. 当0k =,140229A M B S =⨯=>△. 当k不存在时,140429A M B S =⨯=>△. 综上所述,A M B △的面积的最小值为409. 解法二:因为222222111120(1)20(1)4554k k O A O M k k+=+++++2224554920(1)20k k k +++==+, 又22112O A O M O A O M + ≥,409O A O M ≥, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立, 此时A M B △面积的最小值是409A M B S =△. 当0k =,140229A M B S =⨯=>△. 当k不存在时,140429A M B S =⨯=>△. 综上所述,A M B △的面积的最小值为409.。

2008年全国高考理科数学试题及答案-山东-推荐下载

2008年全国高考理科数学试题及答案-山东-推荐下载

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2008高考试题——数学理(山东卷)

2008高考试题——数学理(山东卷)

2008年普通高等学校招生全国统一考试(山东卷)数学(理)第Ⅰ卷(共60分)参考公式:球的表面积公式:S =4πr 2,其中R 是球的半径. 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:P n (k )=C k np k (1-p )n-k(k =0,1,2,…,n ). 如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ). 如果事件A 、B 相互独立,那么P (AB )=P (A )·P (B ).一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足M ⊆{}1234,,,a a a a 且{}{}12312,,,M a a a a a ⋂=的集合M 的个数是 (A )1 (B)2 (C)3 (D)4 解析:本题考查集合子集的概念及交集运算。

集合M 中必含有12,a a 则{}{}12124,,,M a a M a a a ==或 (2)设z 的共轭复数是z ,或z +z =4,z ·z =8,则zz等于 (A )1 (B )-i (C)±1 (D) ±i 解析:本题考查共轭复数的概念、复数的运算。

可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±(3)函数ln cos ()22y x x ππ=-<<的图象是解析:本题考查复合函数的图象。

l n c o s 22y x x ππ⎛⎫=-<< ⎪⎝⎭是偶函数,可排除B,D;由cos x 的值域可以确定。

(4)设函数()1f x x x a =++-的图象关于直线x =1对称,则a 的值为(A) 3 (B)2 (C)1 (D)-1 解析:本题考查分段函数的图象。

山东2008年全国各地高考理科数学试题及参考答案及参考答案

山东2008年全国各地高考理科数学试题及参考答案及参考答案

2008年全国各地高考试题(山东卷)理科数学 第Ⅰ卷(共60分)参考公式:球的表面积公式:S =4πr 2,其中R 是球的半径.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:P n (k )=C k n p k (1-p )n-k(k =0,1,2,…,n ).如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ). 如果事件A 、B 相互独立,那么P (AB )=P (A )·P (B ).一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足M ⊆{a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1·a 2}的集合M 的个数是 (A)1 (B)2 (C)3 (D)4 (2)设z 的共轭复数是z ,或z +z =4,z ·z =8,则zz等于 (A)1 (B)-i (C)±1 (D) ±i (3)函数y =lncos x (-2π<x <)2π的图象是(4)设函数f (x )=|x +1|+|x -a |的图象关于直线x =1对称,则a 的值为(A) 3 (B)2 (C)1 (D)-1 (5)已知cos(α-6π)+sin α=的值是则)67sin(,354πα- (A)-532 (B)532 (C)-54 (D) 54(6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A)9π (B)10π (C)11π (D)12π(7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为(A)511 (B)681 (C)3061 (D)4081(8)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为(A)304.6 (B)303.6 (C)302.6 (D)301.6 (9)(X -31x)12展开式中的常数项为(A)-1320 (B)1320 (C)-220 (D)220 (10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A)1342222=-y x (B)15132222=-y x(C)1432222=-y x (D)112132222=-y x(11)已知圆的方程为X 2+Y 2-6X -8Y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为(A)106 (B)206 (C)306 (D)406(12)设二元一次不等式组⎪⎩⎪⎨⎧≤-+≥+-≥-+0142,080192y x y x y x ,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是(A)[1,3] (B)[2,10] (C)[2,9] (D)[10,9]第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右边的程序框图,若p =0.8,则输出的n = 4 . (14)设函数f (x )=ax 2+c (a ≠0).若)()(010x f dx x f =⎰,0≤x 0≤1,则x 0的值为33. (15)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B =6π. (16)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为(5,7).三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)已知函数f (x )=)0,0)(cos()sin(3><<+-+ωϕϕωϕωπx x 为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为.2π (Ⅰ)美洲f (8π)的值; (Ⅱ)将函数y =f (x )的图象向右平移6π个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间. 解:(Ⅰ)f (x )=)cos()sin(3ϕωϕω+-+x x=⎥⎦⎤⎢⎣⎡+-+)cos(21)sin(232ϕωϕωx x=2sin(ϕω+x -6π) 因为 f (x )为偶函数,所以 对x ∈R ,f (-x )=f (x )恒成立,因此 sin(-ϕω+x -6π)=sin(ϕω+x -6π). 即-sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π)=sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π),整理得 sin x ωcos(ϕ-6π)=0.因为 ω>0,且x ∈R ,所以 cos(ϕ-6π)=0.又因为 0<ϕ<π,故 ϕ-6π=2π.所以 f (x )=2sin(x ω+2π)=2cos x ω.由题意得 .2,222 = 所以 ωπωπ⋅=故 f (x )=2cos2x . 因为 .24cos2)8(==ππf(Ⅱ)将f (x )的图象向右平移个6π个单位后,得到)6(π-x f 的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到)64(ππ-f 的图象.).32(cos 2)64(2cos 2)64()(ππππππ-=⎥⎦⎤⎢⎣⎡-=-=f f x g 所以 当 2k π≤32ππ-≤2 k π+ π (k ∈Z),即 4k π+≤32π≤x ≤4k π+38π(k ∈Z)时,g (x )单调递减.因此g (x )的单调递减区间为 ⎥⎦⎤⎢⎣⎡++384,324ππππk k (k ∈Z)(18)(本小题满分12分)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。

2008年数学(理科)试卷(山东卷)(word版 详细解析)

2008年数学(理科)试卷(山东卷)(word版 详细解析)

中学学科网2008年普通高等学校招生全国统一考试(山东卷)理科数学全解全析解析作者:孙宜新第I 卷一、选择题:本大题共12小题,每小题5分,共60分。

(1)满足M ⊆{}1234,,,a a a a 且{}{}12312,,,M a a a a a ⋂=的集合M 的个数是().1A ().2B ().3C ().4D2.设z 的共轭复数是z ,若4z z +=,8z z ⋅=,则zz等于 ().A i ().B i - ().1C ± ().D i ±【标准答案】:D 。

【试题分析】 可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===± 【高考考点】: 共轭复数的概念、复数的运算。

【易错提醒】: 可能在以下两个方面出错:一是不能依据共轭复数条件设2z bi =+简化运算;二是由248b +=只求得 2.b =【学科网备考提示】: 理解复数基本概念并进行复数代数形式的四则运算是复数内容的基本要求,另外待定系数法、分母实数化等解题技巧也要引起足够重视。

3函数ln cos ()22y x x ππ=-<<的图象是5.已知4cos()sin 365παα-+=,则7sin()6πα+的值是 23().5A -23().5B 4().5C - 4().5D 【标准答案】:C 。

【试题分析】:334cos()sin cos sin 36225παααα-+=+=,134cos sin 225αα+=, 7314sin()sin()sin cos .66225ππαααα⎛⎫+=-+=-+=- ⎪ ⎪⎝⎭【高考考点】: 三角函数变换与求值。

【易错提醒】: 不能由334cos()sin cos sin 36225παααα-+=+=得到134cos sin 225αα+=是思考受阻的重要体现。

历年高考真题 附答案(山东卷)2008数学

历年高考真题 附答案(山东卷)2008数学

2008年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高.球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,,的集合M 的个数是( ) A .1B .2C .3D .42.设z 的共轭复数是z ,若4z z +=,8z z = ,则z z等于( )A .iB .i -C .1±D .i ±3.函数ππln cos 22y x x ⎛⎫=-<<⎪⎝⎭的图象是( )4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( ) A .1516B .2716-C .89D .186.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A .9π B .10πC .11πD .12π 7.不等式252(1)x x +-≥的解集是( )A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦, C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,xxA .B .C .D .俯视图 正(主)视图 侧(左)视图8.已知a b c ,,为A B C △的三个内角A B C ,,的对边,向量1)(cos sin )A A =-=,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B ,的大小分别为( )A .ππ63, B .2ππ36, C .ππ36, D .ππ33, 9.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )A .B .5C .3D .8510.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( )A .5-B .5C .45- D .4511.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( ) A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭12.已知函数()log (21)(01)xa f xb a a =+->≠,的图象如图所示,则a b ,满足的关系是( )A .101a b -<<< B .101b a -<<<C .101ba -<<<- D .1101ab --<<<第Ⅱ卷(共90二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 14.执行右边的程序框图,若0.8p =, 则输出的n =.15.已知2(3)4log 3233xf x =+,则8(2)(4)(8)(2)f f f f ++++ 的 值等于 .x16.设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 . 三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2.(Ⅰ)求π8f ⎛⎫⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间.18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率. 19.(本小题满分12分)如图,在四棱锥P A B C D -中,平面P A D ⊥平面A B C D ,AB D C ∥,P A D △是等边三角形,已知28B D A D ==,2AB D C ==(Ⅰ)设M 是P C 上的一点,证明:平面M B D ⊥平面PAD ; (Ⅱ)求四棱锥P A B C D -的体积. 20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a 2a 3a 4a 5a 6a 7a 8a 9a 10aABCMPD记表中的第一列数1247a a a a ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)n n n nb n b S S=-≥.(Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式;(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当81491a =-时,求上表中第(3)k k ≥行所有项的和.21.(本小题满分12分)设函数2132()x f x x e ax bx -=++,已知2x =-和1x =为()f x 的极值点. (Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小.22.(本小题满分14分)已知曲线11(0)x y C a b a b+=>>:所围成的封闭图形的面积为曲线1C3记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设A B 是过椭圆2C 中心的任意弦,l 是线段A B 的垂直平分线.M 是l 上异于椭圆中心的点. (1)若M O OA λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求A M B △的面积的最小值.2008年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题 1.B 2.D 3.A 4.C 5.A 6.D 7.D8.C9.B10.C11.B12.A二、填空题 13.221412xy-= 14.4 15.2008 16.11三、解答题17.解:(Ⅰ)())cos()f x x x ωϕωϕ=+-+12sin()cos()22x x ωϕωϕ⎤=+-+⎥⎣⎦π2sin 6x ωϕ⎛⎫=+- ⎪⎝⎭.因为()f x 为偶函数,所以对x ∈R ,()()f x f x -=恒成立,因此ππsin()sin 66x x ωϕωϕ⎛⎫-+-=+- ⎪⎝⎭. 即ππππsin cos cos sin sin cos cos sin 6666x x x x ωϕωϕωϕωϕ⎛⎫⎛⎫⎛⎫⎛⎫--+-=-+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理得πsin cos 06x ωϕ⎛⎫-= ⎪⎝⎭. 因为0ω>,且x ∈R , 所以πcos 06ϕ⎛⎫-= ⎪⎝⎭. 又因为0πϕ<<, 故ππ62ϕ-=.所以π()2sin 2cos 2f x x x ωω⎛⎫=+= ⎪⎝⎭. 由题意得2ππ22ω= ,所以2ω=. 故()2cos 2f x x =.因此ππ2cos 84f ⎛⎫==⎪⎝⎭(Ⅱ)将()f x 的图象向右平移π6个单位后,得到π6f x ⎛⎫-⎪⎝⎭的图象, 所以πππ()2cos 22cos 2663g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 当π2π22ππ3k x k -+≤≤(k ∈Z ), 即π2πππ63k x k ++≤≤(k ∈Z )时,()g x 单调递减,因此()g x 的单调递减区间为π2πππ63k k ⎡⎤++⎢⎥⎣⎦,(k ∈Z ). 18.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,, 132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的. 用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,, 122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成, 因而61()183P M ==.(Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=.19.(Ⅰ)证明:在ABD △中, 由于4AD =,8B D =,AB = 所以222AD BD AB +=.故AD BD ⊥.又平面P A D ⊥平面A B C D ,平面PAD 平面A B C D A D =,ABCM PD OBD ⊂平面A B C D ,所以B D ⊥平面PAD , 又BD ⊂平面M BD , 故平面M B D ⊥平面PAD .(Ⅱ)解:过P 作P O A D ⊥交A D 于O , 由于平面P A D ⊥平面A B C D , 所以P O ⊥平面A B C D .因此P O 为四棱锥P A B C D -的高, 又P A D △是边长为4的等边三角形.因此42PO ==在底面四边形A B C D 中,A B D C ∥,2A B D C =,所以四边形A B C D 是梯形,在R t AD B △中,斜边A B5=此即为梯形A B C D 的高, 所以四边形A B C D的面积为2425S ==.故1243P A B C D V -=⨯⨯=20.(Ⅰ)证明:由已知,当2n ≥时,221n n n nb b S S =-,又12n n S b b b =+++ , 所以1212()1()n n n n n nS S S S S S ---=--,即112()1n n n n S S S S ---=-,所以11112nn S S --=,又1111S b a ===.所以数列1n S ⎧⎫⎨⎬⎩⎭是首项为1,公差为12的等差数列.由上可知1111(1)22n n n S +=+-=,即21n S n =+.所以当2n ≥时,12221(1)n n n b S S n nn n -=-=-=-++.因此1122(1)n n b n n n =⎧⎪=⎨-⎪+⎩, ,,.≥ (Ⅱ)解:设上表中从第三行起,每行的公比都为q ,且0q >. 因为12131212782⨯+++== ,所以表中第1行至第12行共含有数列{}n a 的前78项, 故81a 在表中第13行第三列, 因此28113491a b q ==- .又1321314b =-⨯,所以2q =.记表中第(3)k k ≥行所有项的和为S ,则(1)2(12)2(12)(3)1(1)12(1)kkkk b q S k qk k k k --==-=--+-+ ≥.21.解:(Ⅰ)因为122()e (2)32x f x x x ax bx -'=+++1e(2)(32)x x x x ax b -=+++,又2x =-和1x =为()f x 的极值点,所以(2)(1)0f f ''-==,因此6203320a b a b -+=⎧⎨++=⎩,,解方程组得13a =-,1b =-. (Ⅱ)因为13a =-,1b =-,所以1()(2)(e 1)x f x x x -'=+-,令()0f x '=,解得12x =-,20x =,31x =. 因为当(2)x ∈-∞-,(01) ,时,()0f x '<; 当(20)(1)x ∈-+∞ ,,时,()0f x '>. 所以()f x 在(20)-,和(1)+∞,上是单调递增的; 在(2)-∞-,和(01),上是单调递减的.(Ⅲ)由(Ⅰ)可知21321()e 3x f x x x x -=--,故21321()()e (e )x x f x g x x x x x ---=-=-, 令1()e x h x x -=-, 则1()e 1x h x -'=-. 令()0h x '=,得1x =,因为(]1x ∈-∞,时,()0h x '≤, 所以()h x 在(]1x ∈-∞,上单调递减. 故(]1x ∈-∞,时,()(1)0h x h =≥; 因为[)1x ∈+∞,时,()0h x '≥, 所以()h x 在[)1x ∈+∞,上单调递增. 故[)1x ∈+∞,时,()(1)0h x h =≥. 所以对任意()x ∈-∞+∞,,恒有()0h x ≥,又20x ≥,因此()()0f x g x -≥,故对任意()x ∈-∞+∞,,恒有()()f x g x ≥. 22.解:(Ⅰ)由题意得23ab ⎧=⎪⎨=.又0a b >>, 解得25a =,24b =.因此所求椭圆的标准方程为22154xy+=.(Ⅱ)(1)假设A B 所在的直线斜率存在且不为零,设A B 所在直线方程为(0)y kx k =≠,()A A A x y ,.解方程组22154x y y kx ⎧+=⎪⎨⎪=⎩,,得222045A x k =+,2222045A k y k =+, 所以22222222202020(1)454545A Akk OA x y kkk+=+=+=+++.设()M x y ,,由题意知(0)M O OA λλ=≠,所以222M O OA λ=,即2222220(1)45k x y kλ++=+,因为l 是A B 的垂直平分线, 所以直线l 的方程为1y x k =-,即x k y=-,因此22222222222220120()4545x y x y x y x y x yλλ⎛⎫+ ⎪+⎝⎭+==++ , 又220x y +≠, 所以2225420x y λ+=, 故22245xyλ+=.又当0k =或不存在时,上式仍然成立. 综上所述,M 的轨迹方程为222(0)45xyλλ+=≠.(2)当k 存在且0k ≠时,由(1)得222045Ax k=+,2222045Aky k=+,由221541x yy x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2222054M k x k =+,222054M y k =+, 所以2222220(1)45A Ak OA x y k+=+=+,222280(1)445k ABOAk+==+,22220(1)54k OMk+=+.解法一:由于22214A MB S A B O M= △2222180(1)20(1)44554k k kk++=⨯⨯++2222400(1)(45)(54)k k k +=++22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥ 222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭,当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时A M B △面积的最小值是409A M B S =△. 当0k =,140229A M B S =⨯=>△. 当k不存在时,140429A M B S =⨯=>△. 综上所述,A M B △的面积的最小值为409. 解法二:因为222222111120(1)20(1)4554k k O A O M k k+=+++++2224554920(1)20k k k +++==+, 又22112O A O M O A O M + ≥,409O A O M ≥, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立, 此时A M B △面积的最小值是409A M B S =△. 当0k =,140229A M B S =⨯=>△. 当k不存在时,140429A M B S =⨯=>△. 综上所述,A M B △的面积的最小值为409.。

2008年山东高考数学理科试卷(word修改版)

2008年山东高考数学理科试卷(word修改版)

2008年山东高考数学理科第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足M ⊆{a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1·a 2}的集合M 的个数是(A )1 (B)2 (C)3 (D)4(2)设z 的共轭复数是z ,或z +z =4,z ·z =8,则zz 等于 (A )1 (B )-i (C)±1 (D) ±i(3)函数y =lncos x (-2π<x <)2π的图象是(4)设函数f (x )=|x +1|+|x -a |的图象关于直线x =1对称,则a 的值为 (A) 3 (B)2 (C)1 (D)-1(5)已知cos (α-6π)+sin α7)6πα+的值是 (A )-532 (B )532 (C)-54 (D) 54 (6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A)9π (B )10π(C)11π (D)12π(7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为(A )511 (B )681 (C )3061 (D )4081 (8)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为(A )304.6 (B )303.6 (C)302.6 (D)301.6(9)(X -31x )12展开式中的常数项为(A )-1320 (B )1320 (C )-220 (D)220(10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A )1342222=-y x (B)15132222=-y x (C)1432222=-y x (D)112132222=-y x (11)已知圆的方程为X 2+Y 2-6X -8Y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为(A )106 (B )206 (C )306 (D )406(12)设二元一次不等式组⎪⎩⎪⎨⎧≤-+≥+-≥-+0142,080192y x y x y x ,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是(A )[1,3] (B)[2,10] (C)[2,9] (D)[10,9]第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右边的程序框图,若p =0.8,则输出的n = 4 .(14)设函数f (x )=ax 2+c (a ≠0).若)()(010x f dx x f =⎰,0≤x 0≤1,则x 0的值为33. (15)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B =6π. (16)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为(5,7).三、解答题:本大题共6小题,共74分.(17)(本小题满分12分)已知函数f (x )=)0,0)(cos()sin(3><<+-+ωϕϕωϕωπx x 为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为.2π (Ⅰ)求f (8π)的值; (Ⅱ)将函数y =f (x )的图象向右平移6π个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间.(18)(本小题满分12分)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分, 答错得零分。

2008年山东高考数学真题

2008年山东高考数学真题

2008年山东省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•山东)满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.42.(5分)(2008•山东)设z的共轭复数是,若,,则等于()A.i B.﹣i C.±1 D.±i3.(5分)(2008•山东)函数y=lncosx()的图象是()A.B.C.D.4.(5分)(2008•山东)设函数f(x)=|x+1|+|x﹣a|的图象关于直线x=1对称,则a的值为()A.3 B.2 C.1 D.﹣15.(5分)(2008•山东)已知,则的值是()A.B. C. D.6.(5分)(2008•山东)如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.9πB.10πC.11πD.12π7.(5分)(2008•山东)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为()A.B.C.D.8.(5分)(2008•山东)如图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为()A.304.6 B.303.6 C.302.6 D.301.69.(5分)(2008•山东)展开式中的常数项为()A.﹣1320 B.1320 C.﹣220 D.22010.(5分)(2008•山东)4.设椭圆C1的离心率为,焦点在x轴上且长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=111.(5分)(2008•山东)已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10B.20C.30D.4012.(5分)(2008•山东)设二元一次不等式组所表示的平面区域为M,使函数y=a x(a>0,a≠1)的图象过区域M的a的取值范围是()A.[1,3]B.[2,] C.[2,9]D.[,9]二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2008•山东)执行如图所示的程序框图,若p=0.8,则输出的n=.14.(4分)(2008•山东)设函数f(x)=ax2+c(a≠0),若f(x)dx=f(x0),0≤x0≤1,则x0的值为.15.(4分)(2008•山东)已知a,b,c为△ABC的三个内角A,B,C的对边,向量=(,﹣1),=(cosA,sinA).若⊥,且acosB+bcosA=csinC,则角B=.16.(4分)(2008•山东)若不等式|3x﹣b|<4的解集中的整数有且仅有1,2,3,则b的取值范围.三、解答题(共6小题,满分74分)17.(12分)(2008•山东)已知函数(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为.(Ⅰ)求的值;(Ⅱ)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.18.(12分)(2008•山东)甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.(Ⅰ)求随机变量ξ的分布列和数学期望;(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).19.(12分)(2008•山东)将数列{a n}中的所有项按每一行比上一行多一项的规则排成如下数表:a1a2a3a4a5a6a7a8a9a10…记表中的第一列数a1,a2,a4,a7,…构成的数列为{b n},b1=a1=1.S n为数列{b n}的前n项和,且满足.(Ⅰ)证明数列成等差数列,并求数列{b n}的通项公式;(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第k(k≥3)行所有项的和.20.(12分)(2008•山东)如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E﹣AF﹣C的余弦值.21.(12分)(2008•山东)已知函数,其中n∈N*,a为常数.(Ⅰ)当n=2时,求函数f(x)的极值;(Ⅱ)当a=1时,证明:对任意的正整数n,当x≥2时,有f(x)≤x﹣1.22.(14分)(2008•山东)如图,设抛物线方程为x2=2py(p>0),M为直线y=﹣2p上任意一点,过M引抛物线的切线,切点分别为A,B.(Ⅰ)求证:A,M,B三点的横坐标成等差数列;(Ⅱ)已知当M点的坐标为(2,﹣2p)时,.求此时抛物线的方程;(Ⅲ)是否存在点M,使得点C关于直线AB的对称点D在抛物线x2=2py(p>0)上,其中,点C 满足(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.2008年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•山东)满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.4【分析】首先根据M∩{a1,a2,a3}={a1,a2}可知a1,a2是M中的元素,a3不是M中的元素,由子集的定义即可得出答案.【解答】解:∵M∩{a1,a2,a3}={a1,a2}∴a1,a2是M中的元素,a3不是M中的元素∵M⊆{a1,a2,a3,a4}∴M={a1,a2}或M={a1,a2,a4},故选B2.(5分)(2008•山东)设z的共轭复数是,若,,则等于()A.i B.﹣i C.±1 D.±i【分析】可设,根据即得.【解答】解:本小题主要考查共轭复数的概念、复数的运算.可设,由得4+b2=8,b=±2.选D3.(5分)(2008•山东)函数y=lncosx()的图象是()A.B.C.D.【分析】利用函数的奇偶性可排除一些选项,利用函数的有界性可排除一些个选项.从而得以解决.【解答】解:∵cos(﹣x)=cosx,∴是偶函数,可排除B、D,由cosx≤1⇒lncosx≤0排除C,故选A.4.(5分)(2008•山东)设函数f(x)=|x+1|+|x﹣a|的图象关于直线x=1对称,则a的值为()A.3 B.2 C.1 D.﹣1【分析】函数f(x)=|x﹣a|+|x﹣b|的图象为轴对称图形,其对称轴是直线x=,可利用这个性质快速解决问题【解答】解:|x+1|、|x﹣a|在数轴上表示点x到点﹣1、a的距离,他们的和f(x)=|x+1|+|x﹣a|关于x=1对称,因此点﹣1、a关于x=1对称,所以a=3故选A5.(5分)(2008•山东)已知,则的值是()A.B. C. D.【分析】从表现形式上看不出条件和结论之间的关系,在这种情况下只有把式子左边分解再合并,约分整理,得到和要求结论只差π的角的三角函数,通过用诱导公式,得出结论.【解答】解:∵,∴,∴.故选C6.(5分)(2008•山东)如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.9πB.10πC.11πD.12π【分析】由题意可知,几何体是由一个球和一个圆柱组合而成的,依次求表面积即可.【解答】解:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面为S=4π×12+π×12×2+2π×1×3=12π故选D.7.(5分)(2008•山东)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为()A.B.C.D.【分析】由题意知本题是古典概型问题,试验发生的基本事件总数为C183,选出火炬手编号为a n=a1+3(n﹣1),分类讨论当a1=1时可得4种选法;a1=2时得4种选法;a1=3时得4种选法.【解答】解:由题意知本题是古典概型问题,∵试验发生的基本事件总数为C183=17×16×3.选出火炬手编号为a n=a1+3(n﹣1),a1=1时,由1,4,7,10,13,16可得4种选法;a1=2时,由2,5,8,11,14,17可得4种选法;a1=3时,由3,6,9,12,15,18可得4种选法.∴.故选B.8.(5分)(2008•山东)如图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为()A.304.6 B.303.6 C.302.6 D.301.6【分析】平均数=,总数的计算可分成个位数字的和,百位数字与十位数字的和两部分分别计算.【解答】解:故选B.9.(5分)(2008•山东)展开式中的常数项为()A.﹣1320 B.1320 C.﹣220 D.220【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0求出常数项.【解答】解:,令得r=9∴.故选项为C10.(5分)(2008•山东)4.设椭圆C1的离心率为,焦点在x轴上且长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【分析】在椭圆C1中,由题设条件能够得到,曲线C2是以F1(﹣5,0),F2(5,0),为焦点,实轴长为8的双曲线,由此可求出曲线C2的标准方程.【解答】解:在椭圆C1中,由,得椭圆C1的焦点为F1(﹣5,0),F2(5,0),曲线C2是以F1、F2为焦点,实轴长为8的双曲线,故C2的标准方程为:﹣=1,故选A.11.(5分)(2008•山东)已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10B.20C.30D.40【分析】根据题意可知,过(3,5)的最长弦为直径,最短弦为过(3,5)且垂直于该直径的弦,分别求出两个量,然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可.【解答】解:圆的标准方程为(x﹣3)2+(y﹣4)2=52,由题意得最长的弦|AC|=2×5=10,根据勾股定理得最短的弦|BD|=2=4,且AC⊥BD,四边形ABCD的面积S=|AC|•|BD|=×10×4=20.故选B12.(5分)(2008•山东)设二元一次不等式组所表示的平面区域为M,使函数y=a x(a>0,a≠1)的图象过区域M的a的取值范围是()A.[1,3]B.[2,] C.[2,9]D.[,9]【分析】先依据不等式组,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用函数y=a x(a>0,a≠1)的图象特征,结合区域的角上的点即可解决问题.【解答】解析:平面区域M如如图所示.求得A(2,10),C(3,8),B(1,9).由图可知,欲满足条件必有a>1且图象在过B、C两点的图象之间.当图象过B点时,a1=9,∴a=9.当图象过C点时,a3=8,∴a=2.故a的取值范围为[2,9=.故选C.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2008•山东)执行如图所示的程序框图,若p=0.8,则输出的n=4.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是判断S=>0.8时,n+1的值.【解答】解:根据流程图所示的顺序,该程序的作用是判断S=>0.8时,n+1的值.当n=2时,当n=3时,,此时n+1=4.故答案为:414.(4分)(2008•山东)设函数f(x)=ax2+c(a≠0),若f(x)dx=f(x0),0≤x0≤1,则x0的值为.【分析】求出定积分∫01f(x)dx,根据方程ax02+c=∫01f(x)dx即可求解.【解答】解:∵f(x)=ax2+c(a≠0),∴f(x0)=∫01f(x)dx=[+cx]01=+c.又∵f(x0)=ax02+c.∴x02=,∵x0∈[0,1]∴x0=.15.(4分)(2008•山东)已知a,b,c为△ABC的三个内角A,B,C的对边,向量=(,﹣1),=(cosA,sinA).若⊥,且acosB+bcosA=csinC,则角B=.【分析】由向量数量积的意义,有,进而可得A,再根据正弦定理,可得sinAcosB+sinBcosA=sinC sinC,结合和差公式的正弦形式,化简可得sinC=sin2C,可得C,由A、C的大小,可得答案.【解答】解:根据题意,,由正弦定理可得,sinAcosB+sinBcosA=sinCsinC,又由sinAcosB+sinBcosA=sin(A+B)=sinC,化简可得,sinC=sin2C,则C=,则,故答案为.16.(4分)(2008•山东)若不等式|3x﹣b|<4的解集中的整数有且仅有1,2,3,则b的取值范围5<b<7.【分析】首先分析题目已知不等式|3x﹣b|<4的解集中的整数有且仅有1,2,3,求b的取值范围,考虑到先根据绝对值不等式的解法解出|3x﹣b|<4含有参数b的解,使得解中只有整数1,2,3,即限定左边大于0小于1,右边大于3小于4.即可得到答案.【解答】解:因为,又由已知解集中的整数有且仅有1,2,3,故有.故答案为5<b<7.三、解答题(共6小题,满分74分)17.(12分)(2008•山东)已知函数(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为.(Ⅰ)求的值;(Ⅱ)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.【分析】(Ⅰ)先用两角和公式对函数f(x)的表达式化简得f(x)=2sin(ωx+φ﹣),利用偶函数的性质即f(x)=f(﹣x)求得ω,进而求出f(x)的表达式,把x=代入即可.(Ⅱ)根据三角函数图象的变化可得函数g(x)的解析式,再根据余弦函数的单调性求得函数g(x)的单调区间.【解答】解:(Ⅰ)==.∵f(x)为偶函数,∴对x∈R,f(﹣x)=f(x)恒成立,∴.即,整理得.∵ω>0,且x∈R,所以.又∵0<φ<π,故.∴.由题意得,所以ω=2.故f(x)=2cos2x.∴.(Ⅱ)将f(x)的图象向右平移个单位后,得到的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到的图象.∴.当(k∈Z),即(k∈Z)时,g(x)单调递减,因此g(x)的单调递减区间为(k∈Z).18.(12分)(2008•山东)甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.(Ⅰ)求随机变量ξ的分布列和数学期望;(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).【分析】(1)由题意甲队中每人答对的概率均为,故可看作独立重复试验,故,(2)AB为“甲、乙两个队总得分之和等于3”和“甲队总得分大于乙队总得分”同时满足,有两种情况:“甲得(2分)乙得(1分)”和“甲得(3分)乙得0分”这两个事件互斥,分别求概率,再取和即可.【解答】解:(Ⅰ)解法一:由题意知,ξ的可能取值为0,1,2,3,且,,,.所以ξ的分布列为ξ0 1 2 3Pξ的数学期望为.解法二:根据题设可知,,因此ξ的分布列为,k=0,1,2,3.因为,所以.(Ⅱ)解法一:用C表示“甲得(2分)乙得(1分)”这一事件,用D表示“甲得(3分)乙得0分”这一事件,所以AB=C∪D,且C,D互斥,又=,,由互斥事件的概率公式得.解法二:用A k表示“甲队得k分”这一事件,用B k表示“乙队得k分”这一事件,k=0,1,2,3.由于事件A3B0,A2B1为互斥事件,故有P(AB)=P(A3B0∪A2B1)=P(A3B0)+P(A2B1).由题设可知,事件A3与B0独立,事件A2与B1独立,因此P(AB)=P(A3B0)+P(A2B1)=P(A3)P(B0)+P(A2)P(B1)=.19.(12分)(2008•山东)将数列{a n}中的所有项按每一行比上一行多一项的规则排成如下数表:a1a2a3a4a5a6a7a8a9a10…记表中的第一列数a1,a2,a4,a7,…构成的数列为{b n},b1=a1=1.S n为数列{b n}的前n项和,且满足.(Ⅰ)证明数列成等差数列,并求数列{b n}的通项公式;(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第k(k≥3)行所有项的和.【分析】(Ⅰ)由题意所给的已知等式特点应考虑应用已知数列的前n项和求其通项这一公式来寻求出路,得到Sn与SS n﹣1之间的递推关系,先求出S n的通项公式即可得证,接下来求{b n}的通项公式;(Ⅱ)由题意第一列数a1,a2,a4,a7,…构成的数列为{b n},b1=a1=1,又已知{b n}的通项公式和a81的值,应该现有规律判断这一向位于图示中的具体位置,有从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数进而求解.【解答】解:(Ⅰ)证明:由已知,当n≥2时,,又S n=b1+b2+…+b n,所以,又S1=b1=a1=1.所以数列是首项为1,公差为的等差数列.由上可知,.所以当n≥2时,.因此(Ⅱ)设上表中从第三行起,每行的公比都为q,且q>0.因为,所以表中第1行至第12行共含有数列{a n}的前78项,故a81在表中第13行第三列,因此.又,所以q=2.记表中第k(k≥3)行所有项的和为S,则.20.(12分)(2008•山东)如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E﹣AF﹣C的余弦值.【分析】(1)要证明AE⊥PD,我们可能证明AE⊥面PAD,由已知易得AE⊥PA,我们只要能证明AE⊥AD即可,由于底面ABCD为菱形,故我们可以转化为证明AE⊥BC,由已知易我们不难得到结论.(2)由EH与平面PAD所成最大角的正切值为,我们分析后可得PA的值,由(1)的结论,我们进而可以证明平面PAC⊥平面ABCD,则过E作EO⊥AC于O,则EO⊥平面PAC,过O作OS⊥AF 于S,连接ES,则∠ESO为二面角E﹣AF﹣C的平面角,然后我们解三角形ASO,即可求出二面角E﹣AF﹣C的余弦值.【解答】证明:(Ⅰ)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形.因为E为BC的中点,所以AE⊥BC.又BC∥AD,因此AE⊥AD.因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.而PA⊂平面PAD,AD⊂平面PAD且PA∩AD=A,所以AE⊥平面PAD.又PD⊂平面PAD,所以AE⊥PD.解:(Ⅱ)设AB=2,H为PD上任意一点,连接AH,EH.由(Ⅰ)知AE⊥平面PAD,则∠EHA为EH与平面PAD所成的角.在Rt△EAH中,,所以当AH最短时,∠EHA最大,即当AH⊥PD时,∠EHA最大.此时,因此.又AD=2,所以∠ADH=45°,所以PA=2.因为PA⊥平面ABCD,PA⊂平面PAC,所以平面PAC⊥平面ABCD.过E作EO⊥AC于O,则EO⊥平面PAC,过O作OS⊥AF于S,连接ES,则∠ESO为二面角E﹣AF﹣C的平面角,在Rt△AOE中,,,又F是PC的中点,在Rt△ASO中,,又,在Rt△ESO中,,即所求二面角的余弦值为.21.(12分)(2008•山东)已知函数,其中n∈N*,a为常数.(Ⅰ)当n=2时,求函数f(x)的极值;(Ⅱ)当a=1时,证明:对任意的正整数n,当x≥2时,有f(x)≤x﹣1.【分析】(1)欲求:“当n=2时,”的极值,利用导数,求其导函数的零点及单调性进行判断即可;(2)欲证:“f(x)≤x﹣1”,令,利用导函数的单调性,只要证明函数f(x)的最大值是x﹣1即可.【解答】解:(Ⅰ)解:由已知得函数f(x)的定义域为{x|x>1},当n=2时,,所以.(1)当a>0时,由f'(x)=0得,,此时.当x∈(1,x1)时,f'(x)<0,f(x)单调递减;当x∈(x1,+∞)时,f'(x)>0,f(x)单调递增.(2)当a≤0时,f'(x)<0恒成立,所以f(x)无极值.综上所述,n=2时,当a>0时,f(x)在处取得极小值,极小值为.当a≤0时,f(x)无极值.(Ⅱ)证法一:因为a=1,所以.当n为偶数时,令,则(x≥2).所以当x∈[2,+∞)时,g(x)单调递增,又g(2)=0,因此恒成立,所以f(x)≤x﹣1成立.当n为奇数时,要证f(x)≤x﹣1,由于,所以只需证ln(x﹣1)≤x﹣1,令h(x)=x﹣1﹣ln(x﹣1),则(x≥2),所以当x∈[2,+∞)时,h(x)=x﹣1﹣ln(x﹣1)单调递增,又h(2)=1>0,所以当x≥2时,恒有h(x)>0,即ln(x﹣1)<x﹣1命题成立.综上所述,结论成立.证法二:当a=1时,.当x≥2时,对任意的正整数n,恒有,故只需证明1+ln(x﹣1)≤x﹣1.令h(x)=x﹣1﹣(1+ln(x﹣1))=x﹣2﹣ln(x﹣1),x∈[2,+∞),则,当x≥2时,h'(x)≥0,故h(x)在[2,+∞)上单调递增,因此当x≥2时,h(x)≥h(2)=0,即1+ln(x﹣1)≤x﹣1成立.故当x≥2时,有.即f(x)≤x﹣1.22.(14分)(2008•山东)如图,设抛物线方程为x2=2py(p>0),M为直线y=﹣2p上任意一点,过M引抛物线的切线,切点分别为A,B.(Ⅰ)求证:A,M,B三点的横坐标成等差数列;(Ⅱ)已知当M点的坐标为(2,﹣2p)时,.求此时抛物线的方程;(Ⅲ)是否存在点M,使得点C关于直线AB的对称点D在抛物线x2=2py(p>0)上,其中,点C 满足(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.【分析】(Ⅰ)根据题意先设出A,B和M的坐标,对抛物线方程求导,进而表示出AM,BM的斜率,则直线AM和BM的直线方程可得,联立后整理求得2x0=x1+x2.推断出A,M,B三点的横坐标成等差数列.(Ⅱ)利用(Ⅰ)的结论,x0=2代入抛物线方程整理推断出x1,x2是方程x2﹣4x﹣4p2=0的两根,利用韦达定理求得x1+x2的值,表示出直线AB的方程,利用弦长公式求得|AB|,进而求得p,则抛物线的方程可得.(Ⅲ)设出D点的坐标,进而表示出C的坐标,则CD的中点的坐标可得,代入直线AB的方程,把D点坐标代入抛物线的方程,求得x3,然后讨论x0=0和x0≠0时,两种情况,分析出答案.【解答】解:(Ⅰ)证明:由题意设.由x2=2py得,得,所以,.因此直线MA的方程为,直线MB的方程为.所以,①.②由①、②得,因此,即2x0=x1+x2.所以A,M,B三点的横坐标成等差数列.(Ⅱ)解:由(Ⅰ)知,当x0=2时,将其代入①、②并整理得:x12﹣4x1﹣4p2=0,x22﹣4x2﹣4p2=0,所以x1,x2是方程x2﹣4x﹣4p2=0的两根,因此x1+x2=4,x1x2=﹣4p2,又,所以.由弦长公式得.又,所以p=1或p=2,因此所求抛物线方程为x2=2y或x2=4y.(Ⅲ)解:设D(x3,y3),由题意得C(x1+x2,y1+y2),则CD的中点坐标为,设直线AB的方程为,由点Q在直线AB上,并注意到点也在直线AB上,代入得.若D(x3,y3)在抛物线上,则x32=2py3=2x0x3,因此x3=0或x3=2x0.即D(0,0)或.(1)当x0=0时,则x1+x2=2x0=0,此时,点M(0,﹣2p)适合题意.(2)当x0≠0,对于D(0,0),此时,=,又,AB⊥CD,所以,即x12+x22=﹣4p2,矛盾.对于,因为,此时直线CD平行于y轴,又,所以直线AB与直线CD不垂直,与题设矛盾,所以x0≠0时,不存在符合题意的M点.综上所述,仅存在一点M(0,﹣2p)适合题意.参与本试卷答题和审题的老师有:wubh2011;rxl;yhx01248;翔宇老师;涨停;qiss;wdlxh;wdnah;zlzhan;sllwyn;杨南;danbo7801;小张老师;wsj1012;邢新丽;zhwsd(排名不分先后)菁优网2016年4月12日。

2008年高考数学(理)试题及答案详解(山东卷)

2008年高考数学(理)试题及答案详解(山东卷)

(12)设二元一次不等式组

x

y

8

0,
所表示的平面区域为 M,使函数 y=ax(a>0,
2x y 14 0
a≠1)的图象过区域 M 的 a 的取值范围是
(A)[1,3]
(B)[2, 10 ]
(C)[2,9]
(D)[ 10 ,9]
第Ⅱ卷(共 90 分)
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.
(A) 3
(B)2
(C)1
(D)-1
(5)已知
cos(α
π
-
)+sinα
=
4
3,则sin(α 7π )的值是
6
5
6
(A)- 2 3 5
(B) 2 3 5
4
(C)-
5
4
(D)
5
(6)右图是一个几何体的三视图,根据图中数据,可得该几
何体的表面积是
(A)9π
(B)10π
(C)11π
(D) 12π
(7)在某地的奥运火炬传递活动中,有编号为 1,2,3,„,

34 35

34 243
解法二:用 Ak 表示“甲队得 k 分”这一事件,用 Bk 表示“已队得 k 分”这一事件,k=0,1,2,3
.
由于事件 A3B0,A2B1 为互斥事件,故事 P(AB)=P(A3B0∪A2B1)=P(A3B0)+P(A2B1).
(2)3 3
( 1 32

1) C23 2
2008 年普通高等学校招生全国统一考试(山东卷)
理科数学
参考答案
第Ⅰ卷(共 60 分)

2008年 山东省高考数学试卷(理科)

2008年 山东省高考数学试卷(理科)

2008年山东省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•山东)满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M 的个数是()A.1 B.2 C.3 D.42.(5分)(2008•山东)设z的共轭复数是,若,,则等于()A.i B.﹣i C.±1 D.±i3.(5分)(2008•山东)函数y=lncosx()的图象是()A.B.C.D.4.(5分)(2008•山东)设函数f(x)=|x+1|+|x﹣a|的图象关于直线x=1对称,则a的值为()A.3 B.2 C.1 D.﹣15.(5分)(2008•山东)已知,则的值是()A.B. C. D.6.(5分)(2008•山东)如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.9πB.10πC.11πD.12π7.(5分)(2008•山东)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为()A.B.C.D.8.(5分)(2008•山东)如图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为()A.304.6 B.303.6 C.302.6 D.301.69.(5分)(2008•山东)展开式中的常数项为()A.﹣1320 B.1320 C.﹣220 D.22010.(5分)(2008•山东)4.设椭圆C1的离心率为,焦点在x轴上且长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=111.(5分)(2008•山东)已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10B.20C.30D.4012.(5分)(2008•山东)设二元一次不等式组所表示的平面区域为M,使函数y=a x(a>0,a≠1)的图象过区域M的a的取值范围是()A.[1,3]B.[2,] C.[2,9]D.[,9]二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2008•山东)执行如图所示的程序框图,若p=0.8,则输出的n=.14.(4分)(2008•山东)设函数f(x)=ax2+c(a≠0),若f(x)dx=f(x0),0≤x0≤1,则x0的值为.15.(4分)(2008•山东)已知a,b,c为△ABC的三个内角A,B,C的对边,向量=(,﹣1),=(cosA,sinA).若⊥,且acosB+bcosA=csinC,则角B=.16.(4分)(2008•山东)若不等式|3x﹣b|<4的解集中的整数有且仅有1,2,3,则b的取值范围.三、解答题(共6小题,满分74分)17.(12分)(2008•山东)已知函数(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为.(Ⅰ)求的值;(Ⅱ)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.18.(12分)(2008•山东)甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.(Ⅰ)求随机变量ξ的分布列和数学期望;(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).19.(12分)(2008•山东)将数列{a n}中的所有项按每一行比上一行多一项的规则排成如下数表:a1a2a3a4a5a6a7a8a9a10…记表中的第一列数a1,a2,a4,a7,…构成的数列为{b n},b1=a1=1.S n为数列{b n}的前n项和,且满足.(Ⅰ)证明数列成等差数列,并求数列{b n}的通项公式;(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第k(k≥3)行所有项的和.20.(12分)(2008•山东)如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E﹣AF ﹣C的余弦值.21.(12分)(2008•山东)已知函数,其中n∈N*,a为常数.(Ⅰ)当n=2时,求函数f(x)的极值;(Ⅱ)当a=1时,证明:对任意的正整数n,当x≥2时,有f(x)≤x﹣1.22.(14分)(2008•山东)如图,设抛物线方程为x2=2py(p>0),M为直线y=﹣2p上任意一点,过M引抛物线的切线,切点分别为A,B.(Ⅰ)求证:A,M,B三点的横坐标成等差数列;(Ⅱ)已知当M点的坐标为(2,﹣2p)时,.求此时抛物线的方程;(Ⅲ)是否存在点M,使得点C关于直线AB的对称点D在抛物线x2=2py(p>0)上,其中,点C满足(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.。

2008年普通高等学校招生全国统一考试数学(山东卷·理科)

2008年普通高等学校招生全国统一考试数学(山东卷·理科)

2008年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)参考公式:球的表面积公式:S =4πr 2,其中R 是球的半径.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率: P n (k )=C kn p k (1-p )n-k (k =0,1,2,…,n ).如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ). 如果事件A 、B 相互独立,那么P (AB )=P (A )·P (B ). 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足M ⊆{a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1·a 2}的集合M 的个数是 (A )1 (B)2 (C)3 (D)4 (2)设z 的共轭复数是z ,或z +z =4,z ·z =8,则zz等于 (A )1 (B )-i (C)±1 (D) ±i (3)函数y =lncos x (-2π<x <)2π的图象是(4)设函数f (x )=|x +1|+|x -a |的图象关于直线x =1对称,则a 的值为(A) 3 (B)2 (C)1 (D)-1 (5)已知cos (α-6π)+sin α=的值是则)67sin(,354πα- (A )-532 (B )532 (C)-54 (D) 54 (6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A)9π (B )10π (C)11π (D)12π(7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为(A )511 (B )681 (C )3061 (D )4081(8)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为(A )304.6 (B )303.6 (C)302.6 (D)301.6 (9)(X -31x)12展开式中的常数项为(A )-1320 (B )1320 (C )-220 (D)220 (10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A )1342222=-y x (B)15132222=-y x(C)1432222=-y x (D)112132222=-y x(11)已知圆的方程为X 2+Y 2-6X -8Y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为(A )106 (B )206 (C )306 (D )406(12)设二元一次不等式组⎪⎩⎪⎨⎧≤-+≥+-≥-+0142,080192y x y x y x ,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是(A )[1,3] (B)[2,10] (C)[2,9] (D)[10,9]第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右边的程序框图,若p =0.8,则输出的n = 4 . (14)设函数f (x )=ax 2+c (a ≠0).若)()(010x f dx x f =⎰,0≤x 0≤1,则x 0的值为33. (15)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B =6π. (16)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为(5,7).三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)已知函数f (x )=)0,0)(cos()sin(3><<+-+ωϕϕωϕωπx x 为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为.2π(Ⅰ)求f (8π)的值; (Ⅱ)将函数y =f (x )的图象向右平移6π个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间. 解:(Ⅰ)f (x )=)cos()sin(3ϕωϕω+-+x x=⎥⎦⎤⎢⎣⎡+-+)cos(21)sin(232ϕωϕωx x =2sin(ϕω+x -6π) 因为 f (x )为偶函数,所以 对x ∈R ,f (-x )=f (x )恒成立,因此 sin (-ϕω+x -6π)=sin(ϕω+x -6π). 即-sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π)=sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π),整理得 sin x ωcos(ϕ-6π)=0.因为 ω>0,且x ∈R ,所以 cos (ϕ-6π)=0. 又因为 0<ϕ<π,故 ϕ-6π=2π.所以 f (x )=2sin(x ω+2π)=2cos x ω.由题意得 .2,222 = 所以 ωπωπ⋅=故 f (x )=2cos2x . 因为 .24cos2)8(==ππf(Ⅱ)将f (x )的图象向右平移个6π个单位后,得到)6(π-x f 的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到)64(ππ-f 的图象.).32(cos 2)64(2cos 2)64()(ππππππ-=⎥⎦⎤⎢⎣⎡-=-=f f x g 所以 当 2k π≤32ππ-≤2 k π+ π (k ∈Z),即 4k π+≤32π≤x ≤4k π+38π(k ∈Z)时,g (x )单调递减. 因此g (x )的单调递减区间为 ⎥⎦⎤⎢⎣⎡++384,324ππππk k (k ∈Z) (18)(本小题满分12分)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。

2008年高考理科数学试题及参考答案(山东卷)

2008年高考理科数学试题及参考答案(山东卷)

2
(A)
1,3
(B) 2, 10


(C) 2,9
(D) 10,9


第二 卷(共 90 分) 二、境空题:本大题共 4 小题,每小题 4 分,共 16 分 ( 13 )执行右边的程序框图,若 P=0. 8 ,则输出的 n= 4 ( 14 ) 设函数 f ( x ) ax 2 c ( a 0) ,若
(2)设 Z 的共轭复数是 z ,若 z z 4, z z 8 ,则 A. i B. -i C.
z ( z

1
D.
i

y
(3)函数 y ln cos x (
x ) 的图像是( 2 2
y
y
y
x
x
x
x
A.
B.
C.
D. )
(4)设函数 f ( x ) x 1 x a 的图像关于直线 x=1 对称,则 a 的值为( A. 3 B. 2 C. 1 D. -1
俯视图
2
3
3
2 正(主)视图
2 侧(左)视图
(7)在某地的奥运火炬传递活动中,有编号为 1 , 2 , 3…18 的 18 名火炬手,若从中任选 3 人,则选出的火炬手的编号能组成以 3 为公差的等差数列的概率为( ) (A)
1 5
(B)
1 68
(C)
1 308
(D)
1 408
2 3 3 9 0 1 1 2 0 1 6 2 4 7 5 8
有互斥事件的概率得 P ( AB ) P (C ) P ( D )
34 243
解法二:用 A 表示“甲队得 k 分” 这一事件、用 B 表示“乙队得 k 分”这一事件,k=0, k k 1,2,3,由于事件 A3 B0 与 A2 B1 为互斥事件故有

2008年普通高等学校招生全国统一考试山东卷

2008年普通高等学校招生全国统一考试山东卷

2008年普通高等学校招生全国统一考试(山东卷)数学(理) 第Ⅰ卷(共60分)参考公式:球的表面积公式:S =4πr 2,其中R 是球的半径. 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:P n (k )=C kn p k (1-p )n-k (k =0,1,2,…,n ).如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ). 如果事件A 、B 相互独立,那么P (AB )=P (A )·P (B ).一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足M ⊆{}1234,,,a a a a 且{}{}12312,,,M a a a a a ⋂=的集合M 的个数是 (A )1 (B)2 (C)3 (D)4 解析:本题考查集合子集的概念及交集运算。

集合M 中必含有12,a a 则{}{}12124,,,M a a M a a a ==或 (2)设z 的共轭复数是z ,或z +z =4,z ·z =8,则zz等于 (A )1 (B )-i (C)±1 (D) ±i 解析:本题考查共轭复数的概念、复数的运算。

可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±(3)函数ln cos ()22y x x ππ=-<<的图象是解析:本题考查复合函数的图象。

l n c o s 22y x x ππ⎛⎫=-<< ⎪⎝⎭是偶函数,可排除B,D;由cos x 的值域可以确定。

(4)设函数()1f x x x a =++-的图象关于直线x =1对称,则a 的值为 (A) 3 (B)2 (C)1 (D)-1解析:本题考查分段函数的图象。

2008年高考试题数学理山东卷(系列三)

2008年高考试题数学理山东卷(系列三)

2008年普通高等学校招生全国统一考试(山东卷) 数 学(理)第Ⅰ卷(共60分)参考公式:球的表面积公式:S =4πr 2,其中R 是球的半径. 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:P n (k )=C kn p k (1-p )n-k (k =0,1,2,…,n ).如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ). 如果事件A 、B 相互独立,那么P (AB )=P (A )·P (B ).一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足M ⊆{}1234,,,a a a a 且{}{}12312,,,M a a a a a ⋂=的集合M 的个数是 (A )1 (B)2 (C)3 (D)4 (2)设z 的共轭复数是z ,或z +z =4,z ·z =8,则zz等于 (A )1 (B )-i (C)±1 (D) ±i (3)函数ln cos ()22y x x ππ=-<<的图象是(4)设函数()1f x x x a =++-的图象关于直线x =1对称,则a 的值为 (A) 3 (B)2 (C)1 (D)-1 (5)已知4cos()sin 365παα-+=,则7sin()6πα+的值是 (A )-532 (B )532 (C)-54(D)54 (6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A)9π (B )10π (C)11π (D)12π(7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为(A )511 (B )681 (C )3061 (D )4081(8)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为(A )304.6 (B )303.6 (C)302.6 (D)301.6(9)(X -31x)12展开式中的常数项为(A )-1320 (B )1320 (C )-220 (D)220(10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A )1342222=-y x (B)15132222=-y x(C)1432222=-y x (D)112132222=-y x(11)已知圆的方程为X 2+Y 2-6X -8Y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD ,则四边形ABCD (A )106(C )306 (D (12表示的平面区域为M ,使函数象过区域M 的a (A )[1,3](B)[2,10] (C)[2,9](D)[10,9]第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)(13)执行右边的程序框图,若p =0.8,则输出的n = .(14)设函数f (x )=ax 2+c (a ≠0).若)()(010x f dx x f =⎰,0≤x 0≤1,则x 0的值为.(15)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B =6π(16)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为三、解答题:本大题共6小题,共74分. (17)(本小题满分12分) 已知函数f (x )=)0,0)(cos()sin(3><<+-+ωϕϕωϕωπx x 为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为.2π (Ⅰ)美洲f (8π)的值; (Ⅱ)将函数y =f (x )的图象向右平移6π个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间.(18)(本小题满分12分)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(山东卷)(理科)

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(山东卷)(理科)

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(山东卷)(理科) 测试题 2019.91,已知,则的值等于 .2,设满足约束条件 则的最大值为 .3,满足,且的集合的个数是( )A .1B .2C .3D .44,设的共轭复数是,若,,则等于( ) A .B .C .D .5,函数的图象是( )6,设函数的图象关于直线对称,则的值为( ) A .3B .2C .1D .7,已知的值是( ) A .B .C .D .8,下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积2(3)4log 3233x f x =+8(2)(4)(8)(2)f ff f ++++x y,20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥2z x y =+{}1234M a a a a ⊆,,,{}{}12312M a a a a a =,,,M z z 4z z +=8z z =zz i i -1±i ±ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭()1f x x x a =++-1x =a 1-πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭5-545-45是( )A .B .C .D .9,在某地的奥运火炬传递活动中,有编号为的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为( )A .B .C .D .10,下图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为( )A .304.6B .303.6C .302.6D .301.6测试题答案1, 解析:本小题主要考查对数函数问题。

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(山东卷)(理科)2280

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(山东卷)(理科)2280

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(山东卷)(理科) 测试题 2019.91,展开式中的常数项为( ) A .B .1320C .D .2202,设椭圆的离心率为,焦点在轴上且长轴长为26.若曲线上的点到椭圆的两个焦点的距离的差的绝对值等于8,则曲线的标准方程为( )A .B .C .D .3,已知圆的方程为.设该圆过点的最长弦和最短弦分别为和,则四边形的面积为( )A ..C ..4,设二元一次不等式组所表示的平面区域为,使函数的图象过区域的的取值范围是( ) A . B . C .D . 5,已知函数(,)为偶函数,且函数图象的两相邻对称轴间的距离为.(Ⅰ)求的值;(Ⅱ)将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图象,求的单调递减区间.12x ⎛-⎝1320-220-1C 513x 2C 1C 2C 2222143x y -=22221135x y -=2222134x y -=222211312x y -=22680x y x y +--=(35),AC BD ABCD 2190802140x y x y x y ⎧+-⎪-+⎨⎪+-⎩,,≥≥≤M (01)x y a a a =>≠,M a [13],[2[29],())cos()f x x x ωϕωϕ=+-+0πϕ<<0ω>()y f x =π2π8f ⎛⎫ ⎪⎝⎭()y f x =π6()y g x =()g x6,甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响.用表示甲队的总得分.(Ⅰ)求随机变量的分布列和数学期望; (Ⅱ)用表示“甲、乙两个队总得分之和等于3”这一事件,用表示“甲队总得分大于乙队总得分”这一事件,求.7,将数列中的所有项按每一行比上一行多一项的规则排成如下数表:……记表中的第一列数构成的数列为,.为数列的前项和,且满足.(Ⅰ)证明数列成等差数列,并求数列的通项公式;(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第行所有项的和.8,如图,已知四棱锥,底面为菱形,平面,,分别是的中点. (Ⅰ)证明:;(Ⅱ)若为上的动点,与平面所成最大角的正切值为,23221332,,ξξA B ()P AB {}n a 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 1247a a a a ,,,,{}nb 111b a ==n S {}n b n 221(2)nn n n b n b S S =-≥1n S ⎧⎫⎨⎬⎩⎭{}n b 81491a =-(3)k k ≥P ABCD -ABCD PA ⊥ABCD 60ABC ∠=E F ,BC PC ,AE PD ⊥H PD EHPAD求二面角的余弦值.9,已知函数,其中,为常数.(Ⅰ)当时,求函数的极值;(Ⅱ)当时,证明:对任意的正整数,当时,有.10,如图,设抛物线方程为,为直线上任意一点,过引抛物线的切线,切点分别为.(Ⅰ)求证:三点的横坐标成等差数列;(Ⅱ)已知当点的坐标为时,程;(Ⅲ)是否存在点,使得点关于直线的对称点在抛物线上,其中,点满足(为坐标原点).若存在,求出所有适合题意的点的坐标;若不存在,请说明理由.测试题答案1, 解:令得E AF C --1()ln(1)(1)n f x a x x =+--*x ∈N a 2n =()f x 1a =n 2n ≥()1f x x -≤22(0)x py p =>M 2y p =-M A B ,A M B ,,M (22)p -,AB =M C AB D 22(0)x py p =>C OC OA OB =+O M 4121212331121212((1)(1),r r r rr r r r r r r T C xC x x C x ----+==-⋅=-41203r -=9r =993101212121110(1)220.321T C C ⨯⨯=-=-=-=-⨯⨯∴常数项2, 解:对于椭圆,曲线为双曲线,,标准方程为:3, 解:化成标准方程 ,过点的最长弦为最短弦为4, 解:区域是三条直线相交构成的三角形(如图)显然,只需研究过、两种情形, 且即5, 解:(Ⅰ) . 因为为偶函数,所以对,恒成立,因此. 即, 整理得.因为,且,所以.又因为,故.所以. 由题意得,所以.故. 因此1C 13,5,a c ==2C 5,c =4a =3,b =2222 1.43x y -=22(3)(4)25x y -+-=(3,5)10,AC =BD ==12S AC BD =⋅=M 1a >(1,9)(3,8)19a ≤38a ≥29.a ≤≤())cos()f x x x ωϕωϕ=+-+12)cos()2x x ωϕωϕ⎤=+-+⎥⎣⎦π2sin 6x ωϕ⎛⎫=+- ⎪⎝⎭()f x x ∈R ()()f x f x -=ππsin()sin 66x x ωϕωϕ⎛⎫-+-=+- ⎪⎝⎭ππππsin cos cos sin sin cos cos sin 6666x x x x ωϕωϕωϕωϕ⎛⎫⎛⎫⎛⎫⎛⎫--+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭πsin cos 06x ωϕ⎛⎫-= ⎪⎝⎭0ω>x ∈R πcos 06ϕ⎛⎫-= ⎪⎝⎭0πϕ<<ππ62ϕ-=π()2sin 2cos 2f x x xωω⎛⎫=+= ⎪⎝⎭2ππ22ω=2ω=()2cos 2f x x =ππ2cos 84f ⎛⎫== ⎪⎝⎭(Ⅱ)将的图象向右平移个单位后,得到的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到的图象.所以. 当(),即()时,单调递减,因此的单调递减区间为().6, 解:(Ⅰ)解法一:由题意知,的可能取值为0,1,2,3,且,, ,.所以的分布列为的数学期望为.解法二:根据题设可知,, 因此的分布列为,.因为,所以.(Ⅱ)解法一:用表示“甲得2分乙得1分”这一事件,用表示“甲得3分乙得0分”这一事件,所以,且互斥,又()f x π6π6f x ⎛⎫- ⎪⎝⎭π46x f ⎛⎫- ⎪⎝⎭πππ()2cos 22cos 464623x x x g x f ⎡⎤⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦π2π2ππ23x k k -+≤≤k ∈Z 2π8π4π4π33k x k ++≤≤k ∈Z ()g x ()g x 2π8π4π4π33k k ⎡⎤++⎢⎥⎣⎦,k ∈Z ξ3321(0)1327P C ξ⎛⎫==⨯-= ⎪⎝⎭213222(1)1339P C ξ⎛⎫==⨯⨯-=⎪⎝⎭223224(2)1339P C ξ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭33328(3)327P C ξ⎛⎫==⨯=⎪⎝⎭ξξ124801232279927E ξ=⨯+⨯+⨯+⨯=2~33B ξ⎛⎫ ⎪⎝⎭,ξ3333222()1333k kkkk P k C C ξ-⎛⎫⎛⎫==⨯⨯-=⨯ ⎪ ⎪⎝⎭⎝⎭0123k =,,,2~33B ξ⎛⎫ ⎪⎝⎭,2323E ξ=⨯=C D AB C D =C D ,,,由互斥事件的概率公式得. 解法二:用表示“甲队得分”这一事件,用表示“乙队得分”这一事件,. 由于事件,为互斥事件,故有.由题设可知,事件与独立,事件与独立,因此. 7, 解:(Ⅰ)证明:由已知,当时,,又,所以, 又.所以数列是首项为1,公差为的等差数列.由上可知,. 所以当时,. 因此(Ⅱ)解:设上表中从第三行起,每行的公比都为,且. 因为,所以表中第1行至第12行共含有数列的前78项,故在表中第31行第三列,22322211121111()133332332332P C C ⎛⎫⎛⎫⎡⎤=⨯⨯-⨯⨯⨯+⨯⨯+⨯⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦4103=333521114()33323P D C ⎛⎫⎛⎫=⨯⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭4551043434()()()333243P AB P C P D =+=+==k A k k B k0123k =,,,30A B 21A B 30213021()()()()P AB P A B A B P A B P A B ==+3A 0B 2A 1B 30213021()()()()()()()P AB P A B P A B P A P B P A P B =+=+3221322222211211123433232323243C C ⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯⨯+⨯⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2n ≥221nn n nb b S S =-12n nS b b b =+++1212()1()n n n n n n S S S S S S ---=--112()1n n n n S S S S ---⇒=-11112n n S S -⇒-=1111S b a ===1n S ⎧⎫⎨⎬⎩⎭121111(1)22nn n S +=+-=21n S n ⇒=+2n ≥12221(1)n n n b S S n n n n -=-=-=-++1122(1)n n b n n n =⎧⎪=⎨-⎪+⎩, ,,.≥q 0q >12131212782⨯+++=={}n a 81a因此.又,所以.记表中第行所有项的和为,则.8, 解:(Ⅰ)证明:由四边形为菱形,,可得为正三角形.因为为的中点,所以. 又,因此.因为平面,平面,所以. 而平面,平面且, 所以平面.又平面, 所以.(Ⅱ)解:设,为上任意一点,连接. 由(Ⅰ)知平面,则为与平面所成的角. 在中,所以当最短时,最大, 即当时,最大. 此时,因此.又,所以,所以.解法一:因为平面,平面,所以平面平面.过作于,则平面,过作于,连接,则为二面角的平面角,28113491a b q ==-1321314b =-⨯2q =(3)k k ≥S (1)2(12)2(12)(3)1(1)12(1)k k k k b q S k q k k k k --==-=--+-+≥ABCD 60ABC ∠=ABC △E BC AE BC ⊥BC AD ∥AE AD ⊥PA ⊥ABCD AE ⊂ABCD PA AE ⊥PA ⊂PAD AD ⊂PAD PA AD A =AE ⊥PAD PD ⊂PAD AE PD ⊥2AB =H PD AH EH ,AE ⊥PAD EHA ∠EH PAD Rt EAH △AE =AH EHA ∠AH PD ⊥EHA ∠tan AE EHA AH ∠===AH =2AD =45ADH ∠=2PA =PA ⊥ABCD PA ⊂PAC PAC ⊥ABCD E EO AC ⊥O EO ⊥PAC O OS AF ⊥S ES ESO ∠E AF C --在中,,,又是的中点,在中,,又,在中,,即所求二面角的余弦值为.解法二:由(Ⅰ)知两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,又分别为的中点,所以,,所以. 设平面的一法向量为,则因此 取,则, 因为,,,所以平面,Rt AOE △3sin 302EO AE ==3cos302AO AE ==F PC Rt ASO △32sin 45SO AO ==SE ===Rt ESO△cos 5SO ESO SE ∠===5AE AD AP ,,A E F ,BC PC ,(000)10)0)(020)A B C D -,,,,,,,,,1(002)0)12P E F ⎫⎪⎪⎝⎭,,,,,,,31(300)122AE AF ⎛⎫== ⎪ ⎪⎝⎭,,,,,AEF 111()x y z =,,m 00AE AF ⎧=⎪⎨=⎪⎩,,m m 111101022x y z =++=⎩,.11z =-(021)=-,,m BD AC ⊥BD PA ⊥PA AC A =BD ⊥AFC故为平面的一法向量.又, 所以.因为二面角为锐角,所以所求二面角的余弦值为.9, 解:(Ⅰ)解:由已知得函数的定义域为,当时,,所以.(1)当时,由得,,此时.当时,,单调递减;当时,,单调递增.(2)当时,恒成立,所以无极值. 综上所述,时,当时,在.当时,无极值. (Ⅱ)证法一:因为,所以.当为偶数时, 令,则(). 所以当时,单调递增,BD AFC (0)BD =,cos 55BD BD BD<>===,m m m E AF C --()f x {}|1x x >2n =21()ln(1)(1)f x a x x =+--232(1)()(1)a x f x x --'=-0a >()0f x '=111x =>211x =<123()()()(1)a x x x x f x x ---'=-1(1)x x ∈,()0f x '<()f x 1()x x ∈+∞,()0f x '>()f x 0a ≤()0f x '<()f x 2n =0a >()f x 1x =+211ln 2a f a ⎛⎛⎫+=+ ⎪ ⎝⎭⎝0a ≤()f x 1a =1()ln(1)(1)nf x x x =+--n 1()1ln(1)(1)ng x x x x =-----1112()10(1)11(1)n n n x ng x x x x x ++-'=+-=+>----2x ≥[)2x ∈+∞,()g x又, 因此恒成立,所以成立. 当为奇数时,要证,由于,所以只需证, 令,则(),所以当时,单调递增,又,所以当时,恒有,即命题成立. 综上所述,结论成立.证法二:当时,.当时,对任意的正整数,恒有,故只需证明.令,,则,当时,,故在上单调递增,因此当时,,即成立.故当时,有. 即.10, 解:(Ⅰ)证明:由题意设.由得,得, (2)0g =1()1ln(1)(2)0(1)ng x x x g x =----=-≥()1f x x -≤n ()1f x x -≤10(1)nx <-ln(1)1x x --≤()1ln(1)h x x x =---12()1011x h x x x -'=-=--≥2x ≥[)2x ∈+∞,()1ln(1)h x x x =---(2)10h =>2x ≥()0h x >ln(1)1x x -<-1a =1()ln(1)(1)nf x x x =+--2x ≥n 11(1)nx -≤1ln(1)1x x +--≤()1(1ln(1))2ln(1)h x x x x x =--+-=---[)2x ∈+∞,12()111x h x x x -'=-=--2x ≥()0h x '≥()h x [)2+∞,2x ≥()(2)0h x h =≥1ln(1)1x x +--≤2x ≥1ln(1)1(1)nx x x +---≤()1f x x -≤221212120(2)22x x A x B x x x M x p p p ⎛⎫⎛⎫<- ⎪ ⎪⎝⎭⎝⎭,,,,,,22x py =22x y p =xy p '=所以,.因此直线的方程为, 直线的方程为.所以,① .②由①、②得, 因此,即.所以三点的横坐标成等差数列.(Ⅱ)解:由(Ⅰ)知,当时,将其代入①、②并整理得:, ,所以是方程的两根,因此,,又,所以. 由弦长公式得又,所以或,因此所求抛物线方程为或. (Ⅲ)解:设,由题意得,则的中点坐标为, 设直线的方程为,由点在直线上,并注意到点也在直线上, 代入得. 若在抛物线上,则,因此或.即或.1MA x k p =2MB x k p =MA 102()x y p x x p +=-MB 202()x y p x x p +=-211102()2x x p x x p p +=-222202()2x x p x x p p +=-121202x x x x x +=+-1202x x x +=0122x x x =+A M B ,,02x =2211440x x p --=2222440x x p --=12x x ,22440x x p --=124x x +=2124x x p =-222101221222AB x x x x x p p k x x p p -+===-2AB k p =AB ==AB =1p =2p =22x y =24x y =33()D x y ,1212()C x x y y ++,CD 12312322x x x y y y Q ++++⎛⎫ ⎪⎝⎭,AB 011()x y y x x p -=-Q AB 121222x x y y ++⎛⎫ ⎪⎝⎭,AB 033x y x p =33()D x y ,2330322x py x x ==30x =302x x =(00)D ,20022x D x p ⎛⎫ ⎪⎝⎭,(1)当时,则,此时,点适合题意. (2)当,对于,此时, , 又,,所以, 即,矛盾.对于,因为,此时直线平行于轴,又,所以直线与直线不垂直,与题设矛盾,所以时,不存在符合题意的点.综上所述,仅存在一点适合题意.00x =12020x x x +==(02)M p -,00x ≠(00)D ,2212022x x C x p ⎛⎫+ ⎪⎝⎭,2212022CD x x p k x +=221204x x px +=0AB x k p =AB CD ⊥22220121220144AB CD x x x x x k k p px p ++===-222124x x p +=-20022x D x p ⎛⎫ ⎪⎝⎭,2212022x x C x p ⎛⎫+ ⎪⎝⎭,CD y 00AB x k p =≠AB CD 00x ≠M (02)M p -,。

2008年普通高等学校招生全国统一测试(山东卷)

2008年普通高等学校招生全国统一测试(山东卷)

2008年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)参考公式:球的表面积公式:S =4πR 2,其中R 是球的半径.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:P n (k )=C k n p k (1-p )n-k(k =0,1,2,…,n ).如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ). 如果事件A 、B 相互独立,那么P (AB )=P (A )²P (B ).一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足M ⊆{a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1,a 2}的集合M 的个数是(A )1 (B)2 (C)3 (D)4 (2)设z 的共轭复数是z ,若z +z =4, z ²z =8,则zz等于 (A )i (B )-i (C)±1 (D) ±i (3)函数y =lncos x (-2π<x <2π=的图象是 ( A )(4)设函数f (x )=|x +1|+|x -a |的图象关于直线x =1对称,则a 的值为(A) 3 (B)2 (C)1 (D)-1(5)已知cos (α-6π)+sin α7sin()6πα+则的值是 (A )-532 (B )532 (C)-54 (D) 54(6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A)9π (B )10π (C)11π (D) 12π(7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手。

若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为(A )511 (B )681 (C )3061 (D )4081(8)右图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎 叶图,图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表 示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数 的平均数为(A )304.6 (B )303.6 (C)302.6 (D)301.6 (9)(X -31x)12展开式中的常数项为(A )-1320 (B )1320 (C )-220 (D)220 (10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A )1342222=-y x (B)15132222=-y x(C)1432222=-y x (D)112132222=-y x(11)已知圆的方程为X 2+Y 2-6X -8Y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为(A )106 (B )206 (C )306 (D )406(12)设二元一次不等式组⎪⎩⎪⎨⎧≤-+≥+-≥-+0142,080192y x y x y x ,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是(A )[1,3] (B)[2,10] (C)[2,9] (D)[10,9]第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右边的程序框图,若p =0.8,则输出的n = 4 . (14)设函数f (x )=ax 2+c (a ≠0),若)()(01x f dx x f =⎰,0≤x 0≤1,则x 0的值为33. (15)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A , sin A )。

2008年高考山东卷(理科数学)

2008年高考山东卷(理科数学)

2008年普通高等学校招生全国统一考试理科数学(山东卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.满足1234{,,,}M a a a a ⊆,且12312{,,}{,}Ma a a a a =的集合M 的个数是A .1B .2C .3D .4 2.设z 的共轭复数是z ,若4z z +=,8z z ⋅=,则zz等于 A .i B .i - C .1± D .i ±3.函数ln cos y x =(22ππx -<<)的图象是4.设函数()1f x x x a =++-的图象关于直线1x =对称,则a 的值为 A .3 B .2 C .2 D.1-5.已知cos()sin 6παα-+=7sin()6πα+的值是A ..532 C .45- D .54 6.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 A .9π B .10π C .11π D .12π7.在某地的奥运火炬传递活动中,有编号为1,2,3,,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为A .511B .681C .3061D .40818.右图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图,图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为A .304.6B .303.6C .302.6D .301.69.12(x -展开式中的常数项为 A .1320- B .1320 C .220- D .22010.设椭圆1C 的离心率为135,焦点在x 轴上且长轴长为26.若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为正(主)视图俯视图侧(左)视图 29 30 31 1 1 5 8 2 6 0 2 4 7A .1342222=-y x B .15132222=-y xC .1432222=-y x D .112132222=-y x11.已知圆的方程为22680x y x y +--=.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为A.. C..12.设二元一次不等式组2190802140x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩所表示的平面区域为M ,使函数xy a =(0a >,1a ≠)的图象过区域M 的a 的取值范围是A .[1,3] B. C .[2,9] D. 二、填空题:本大题共4小题,每小题4分,共16分. 13.执行右边的程序框图,若0.8p =,则输出的n = .14.设函数2()f x ax c =+(0a ≠),若)()(010x f dx x f =⎰,001x ≤≤,则0x 的值为 . 15.已知ABC ∆中,A ,B ,C 所对的边分别为a ,b ,c .向量(3,1)m =-,(cos ,sin )n A A =.若0m n ⋅=,且cos cos sin a B b A c C +=,则角B = .16.若不等式34x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围为 . 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为2π. (Ⅰ)求()8πf 的值;(Ⅱ)将函数()y f x =的图象向右平移6π个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数()y g x =的图象,求()g x 的单调递减区间.18.(本小题满分12分)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为32,乙队中3人答对的概率分别为23,23,12,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.(Ⅰ)求随机变量ξ分布列和数学期望;(Ⅱ)用A 表示“甲、乙两个队总得分之和等于3”这一事件,用B 表示“甲队总得分大于乙队总得分”这一事件,求()P AB . 19.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:记表中的第一列数1a ,2a ,4a ,7a ,构成的数列为{}n b ,111b a ==,n S 为数列{}n b 的前n 项和,且满足221nn n nb b S S =-(2n ≥). (Ⅰ)证明数列1{}nS 成等差数列,并求数列{}n b 的通项公式; 1a2a 3a 4a 5a 6a 7a 10a9a 8a(Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当91481-=a 时,求上表中第k (3k ≥)行所有项的和.20.(本小题满分12分)如图,已知四棱锥P ABCD -,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠= ,E ,F 分别是BC ,PC 的中点. (Ⅰ)证明:AE PD ⊥;(Ⅱ)若H 为PD 上的动点,EH 与平面PAD面角E AF C --的余弦值.21.(本小题满分12分) 已知函数1()ln(1)(1)nf x a x x =+--,其中n N *∈,a 为常数. (Ⅰ)当2n =时,求函数()f x 的极值;(Ⅱ)当1a =时,证明:对任意的正整数n ,当2x ≥时,有()1f x x ≤-. 22.(本小题满分14分)如图,设抛物线方程为22x py =(0p >),M 为直线2y p =-上任意一点,过M 引抛物线的切线,切点分别为A ,B .(Ⅰ)求证:A ,M ,B 三点的横坐标成等差数列;(Ⅱ)已知当M 点的坐标为(2,2)p -时,AB = (Ⅲ)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线22x py = (0p >)上,其中,点C 满足OC OA OB =+(O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由.A BCDEF P。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年普通高等学校招生全国统一考试(山东卷)理科数学全解全析(1)满足M ⊆{}1234,,,a a a a 且{}{}12312,,,M a a a a a ⋂=的集合M 的个数是().1A ().2B ().3C ().4D2.设z 的共轭复数是z ,若4z z +=,8z z ⋅=,则zz等于 ().A i ().B i - ().1C ± ().D i ±【标准答案】:D 。

【试题分析】 可设2z b i =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±【高考考点】: 共轭复数的概念、复数的运算。

【易错提醒】: 可能在以下两个方面出错:一是不能依据共轭复数条件设2z bi =+简化运算;二是由248b +=只求得 2.b =【学科网备考提示】: 理解复数基本概念并进行复数代数形式的四则运算是复数内容的基本要求,另外待定系数法、分母实数化等解题技巧也要引起足够重视。

3、函数ln cos ()22y x x ππ=-<<的图象是5.已知4cos()sin 365παα-+=,则7sin()6πα+的值是 23().5A -23().5B 4().5C - 4().5D 【标准答案】:C 。

【试题分析】:334cos()sin cos sin 36225παααα-+=+=,134cos sin 225αα+=, 7314sin()sin()sin cos .66225ππαααα⎛⎫+=-+=-+=- ⎪ ⎪⎝⎭【高考考点】: 三角函数变换与求值。

【易错提醒】: 不能由334cos()sin cos sin 36225παααα-+=+=得到134c o s s i n 225αα+=是思考受阻的重要体现。

【学科网备考提示】:三角变换与求值主要考查诱导公式、和差公式的熟练应用,其间会涉及一些计算技巧,如本题中的为需而变。

6.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是().9A π ().10B π ().11C π ().12D π【标准答案】:D 。

【试题分析】:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面及为22411221312.S ππππ=⨯+⨯⨯+⨯⨯=【高考考点】: 三视图与几何体的表面积。

【易错提醒】: 在计算圆柱的表面积时往往漏掉上底的面积误选C 。

【学科网备考提示】:课标在要求“会判断简单物体的三视图”的同时也提出“能根据三视图描述基本几何体或实物图形”,当然要注意这些基本的几何体所包括的范围,要围绕直棱柱、圆柱、圆锥、球来组合。

7.在某地的奥运火炬手传递活动中,有编号为1,2,3,...,18的18名火炬手。

若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为1().51A 1().68B 1().306C 1().408D 【标准答案】:B 。

【试题分析】:属于古典概型问题,基本事件总数为31817163C =⨯⨯。

选出火炬手编号为13(1)n a a n =+-,11a =时,由1,4,7,10,13,16可得4种选法; 12a =时,由2,5,8,11,14,17可得4种选法; 13a =时,由3,6,9,12,15,18可得4种选法。

4441.1716368P ++==⨯⨯【高考考点】: 古典概型【易错提醒】:寻求目标事件时会出现分类标准不明确导致事件的重复计数,如令14a =则所得编号就与11a =时的情形部分重复。

【学科网备考提示】:概率的计算与排列组合知识有着密切的联系,情景设置极易生活化,需要构建数学模型。

对阅读理解能力要求较高,具有理解新事物处理新信息的能力。

8.如图是根据《山东统计年鉴2007》中的资料作成的1997年到2006年我省城镇居民百户家庭人口数的茎叶图,图中左边的数字从左到右分别表示镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年到2006年我省城镇居民百户家庭人口数的平均数为().304.6A ().303.6B ().302.6C ().301.6D【标准答案】:B 。

【试题分析】:11582602473.610+++++++++=【高考考点】: 茎叶图、用样本数字特征估计总体特征。

【易错提醒】:也可以这样处理数据:995226101214173.610----++++++=,由于数据过大可能结果算错,或对茎叶图的特点不熟悉致错。

【学科网备考提示】:会画茎叶图,能从样本数据中提取基本的数字特征(如平均数、众数、中位数),并给出合理的解释. 9.1231()x x-展开式中的常数项为 ().1320A - ().1320B ().220C - ().220D【标准答案】:C 。

【试题分析】:412121233112121231()(1)(1),r r r rr r r r r r r T C xC x x C x x----+=-=-⋅=-993101212121110(1)220.321T C C ⨯⨯==-=-=-=-⨯⨯【高考考点】: 二项式定理及其应用 【易错提醒】: 在求通项1r T +时对31()rx-计算可能出现失误。

【学科网备考提示】:二项式定理的考查主要集中于通项公式的应用,热点是常数项和某一项的系数,并且要把它与二项式系数区别开来。

10.设椭圆1C 的离心率为513,焦点在x 轴上且长轴长为26,若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为2222().143x y A -= 2222().1135x y B -= 2222().134x y C -= 2222().11312x y D -=【标准答案】:A 。

【试题分析】:对于椭圆1C ,13,5,a c ==曲线2C 为双曲线,5,c =4a =,3,b =标准方程为:2222 1.43x y -=【高考考点】: 椭圆、双曲线标准方程【易错提醒】: 混淆两类曲线方程中的,,a b c 的关系。

【学科网备考提示】: 双曲线内容在新课标中作了淡化处理,2008年山东考试说明中明确提出了“了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质”,要从原来的繁难中解脱出来:定义应用为主,辅以简单性质,结合图形特点,适度强化运算,解答题在试卷中已经很难见到踪影。

11.已知圆的方程为22680x y x y +--=,设该圆过点(3,5)的最长弦和最短弦分别为,AB CD ,则四边形ACBD 的面积为().106A ().206B ().306C ().406D 【标准答案】:B 。

【试题分析】:22(3)(4)25x y -+-=,过点(3,5)的最长弦为10,AC =最短弦为2225146,BD =-=120 6.2S AC BD =⋅= 【高考考点】: 直线与圆的位置关系【易错提醒】: 不能发现最长弦最短弦与已知点和圆心的位置关系,对角线互相垂直的四边形面积公式用错误选D 。

【学科网备考提示】:把圆的一般方程化为标准方程有时是解决圆问题的必经之路,当确定了直线与圆的位置关系后,必须关注弦心距、半径、半弦构成的直角三角形。

12设二元一次不等式组2190802140x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩所表示的平面区域为M ,使函数(0,1)x y a a a =>≠的图象过区域M 的a 的取值范围是[]().1,3A ().2,10B ⎡⎤⎣⎦ []().2,9C ().10,9D ⎡⎤⎣⎦【标准答案】:C 。

161412108642y=3,8()2,10()1,9()【试题分析】如图阴影部分为平面区域M , 显然1a >,只需要研究过(1,9)、(3,8)两种情形。

19a ≤且38a ≥即29.a ≤≤ 【高考考点】: 线性规划与指数函数【易错提醒】: 对可行域中的三个关键点不能与指数函数的图像的走向相联系而在点(2,10)上作过多“纠缠”。

【学科网备考提示】:本题考查不等式所表示平面区域的作图、识图与目标函数的确定。

以往研究的函数多为线性问题,这里巧妙地与指数函数结合在一起,使问题新颖别致。

在解决相关问题时要注意多方面联系,多角度思考,使问题更呈现交汇性。

13.执行程序框图,若0.8p =,则输出的______.n = 【标准答案】:4。

【试题分析】:1110.8248++>,因此输出 4.n = 【高考考点】: 程序框图【易错提醒】: 没有注意到控制变量1n n =+在12nS S =+之后误填3。

【学科网备考提示】: 理解程序框图的顺序、条件、循环三种基本逻辑结构,尤其要注意循环结构中的循环体和控制变量的作用。

14.设函数2()(0)f x ax c a =+≠,若100()()f x dx f x =⎰,001x ≤≤,则0x 的值为___.【试题分析】:3cos sin 0A A -=,,3A π=sin cos sin cos sin sin A B B A C C +=, 2sin cos sin cos sin()sin sin A B B A A B C C +=+==,.2C π=【高考考点】: 解三角形【易错提醒】: m n ⋅的坐标运算与m n 的坐标表示混淆,利用正弦定理时右边忘记转化为2sin R C ,求出1c =这一错误结果使解题陷入困境。

【学科网备考提示】: 解三角形中经常出现求角的三角函数值问题,由于新课标中淡化了三角和差化积、积化和差公式的应用,且公式不要求记忆就很难及时想到利用它,自然形成了思维障碍.因此把三角函数的求值问题转化为从边入手,能够带来意想不到的效果。

当然正、余弦定理“功不可没”。

可作如下转化:222222sin 22a c b b c a a b c C ac bc +-+-⨯+⨯=,sin 1.C =16.若不等式34x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是___.17(本题满分12分) 已知()3sin()cos()(0,0)f x x x ωϕωϕϕπω=+-+<<>为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为.2π (I )求()8f π的值;(II )将函数()y f x =的图象向右平移6π个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数()y g x =的图象,求()g x 的单调递减区间。

【标准答案】:(I)31()3sin()cos()2sin()cos()22f x x x x x ωϕωϕωϕωϕ⎡⎤=+-+=+-+⎢⎥⎣⎦2sin()6x πωϕ=+-。

相关文档
最新文档