九上期末试题

合集下载

陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。

江苏省南京市秦淮区2023-2024学年上学期期末检测九年级数学试卷(含解析)

江苏省南京市秦淮区2023-2024学年上学期期末检测九年级数学试卷(含解析)

2023-2024学年江苏省南京市秦淮区九年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列函数中,y与x之间的关系是二次函数的是( )A.y=1﹣3x3B.y=x2﹣5xC.y=x4+2x2﹣1D.2.(2分)若⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定3.(2分)某班5名学生的体重(单位:kg)分别为:51,53,47,51,60,则这组数据的众数与中位数分别是( )A.60kg,51kg B.51kg,47kg C.60kg,47kg D.51kg,51kg 4.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.正八边形5.(2分)一元二次方程﹣2(2x+1)2+a2=0(a是常数,a≠0)的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定有没有实数根6.(2分)如图,在平面直角坐标系中,A,B两点的坐标分别为(2,0),(0,2),二次函数y=x2﹣2ax+b(a,b是常数)的图象的顶点在线段AB上,则b的最小值为( )A.0B.C.D.2二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请7.(2分)一元二次方程x2﹣x=0的根是 .8.(2分)若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是 .9.(2分)若△ABC内接于⊙O,∠AOB=120°,则圆周角∠ACB的度数 .10.(2分)如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=80°,则∠DCE = °.11.(2分)某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元.设平均每次降低成本的百分率为x,可得方程 .12.(2分)圆锥的底面半径为3cm,母线长为5cm,则圆锥的表面积为 cm2.13.(2分)杭州亚运会射箭比赛中,某运动员6箭的成绩(单位:环)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成绩为7环,则这6箭的平均成绩为 环.14.(2分)如图,点B,C在⊙O上,D为的中点,直径AD交BC于点E,AD=6,,则DE的长为 .15.(2分)在平面直角坐标系中,函数y=x2﹣2x﹣3的图象与x轴交于点A,B,将函数y =x2﹣2x﹣3的图象向上平移,平移后的图象与x轴交于点C,D.若AB=2CD,则平移后的图象对应的函数表达式为 .16.(2分)如图,在△ABC中,∠ACB=90°,点D,E分别在BC,AC上,DE与△ABC 的内切圆O相切.若△ABC的面积是30,△CDE的周长是4,则AB的长为 .三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2+2x﹣4=0;(2)x(x﹣3)=3﹣x.18.(6分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…0123…y…5212…(1)求该二次函数的表达式;(2)若点A(﹣1,y1),B(4,y2)在这个函数的图象上,则y1 y2.(填“>”“<”或“=”)19.(8分)如图,用篱笆围成一块矩形花圃,该花圃一侧靠墙,而且有一道隔栏(隔栏也用篱笆制作),已知所用篱笆的总长为24m,花圃的面积为45m2,墙的最大可用长度为10m,求边AB的长.20.(8分)如图,已知△ABC内接于⊙O,AD是⊙O的直径,连接BD,CD,BC平分∠ABD.(1)求证∠CAD=∠ABC;(2)若AD=6,则AC的长为 .21.(8分)一只不透明的袋子中装有1个白球和a个红球,这些球除颜色外都相同.已知从袋中任意摸出1个球是白球的概率是.(1)a的值是 ;(2)先从袋中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求2次摸到的球颜色不同的概率.22.(8分)已知P是⊙O上一点,在⊙O上作两点A,B,使得∠APB分别满足以下条件:(1)在图①中,∠APB=90°;(2)在图②中,∠APB=30°.(说明:第(1)题只用无刻度的直尺作图,第(2)题只用圆规作图;保留作图痕迹,不写作法.)23.(8分)已知关于x的方程x2﹣(2m+2)x+m2+2m=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为1,求m的值.24.(7分)2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等)、气温(如“5/17℃”指当天最低和最高气温分别是5℃和17℃)、风向和风级.(1)计算这7天最低气温的平均数和方差.(2)阅读冷空气等级标准表:序号等级冷空气来临的48小时内日最低气温变化情况①弱冷空气降温幅度小于6℃②中等强度冷空气降温幅度大于或等于6℃,但小于8℃③较强冷空气降温幅度大于或等于8℃且日最低气温超过8℃④强冷空气降温幅度大于或等于8℃,且日最低气温不超过8℃⑤寒潮降温幅度大于或等于10℃且日最低气温不超过4℃本次来临的冷空气的等级是 .(填序号)(3)本次冷空气来临后,除导致气温下降外,还带来哪些天气情况的变化?请写出一个结论.25.(8分)2023年12月18日晚,甘肃省积石山县发生6.2级地震.“一方有难,八方支援”,某商家决定将后续一个月销售某商品获得的利润全部捐赠给灾区.已知购进该商品的成本为10元/件,当售价为12元时,平均每天可以卖出1200件.调查发现,该商品每涨价1元,平均每天少售出100件.当每件商品的售价是多少元时,该商家捐赠的金额最大?最大捐赠金额是多少?(一个月按30天计算)26.(9分)阅读下列内容:如果点P(a,b)在一次函数y=x+1的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?下面是解决问题的一种途径.所以点(2a,2b)一定在函数y=x+2的图象上.根据阅读内容解决下列问题:(1)如果点P(a,b)在反比例函数的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?填写下面的空格.(2)如果点P(a,b)在一次函数y=2x的图象上,判断点(a+b,ab)一定在哪个函数的图象上?说明理由.27.(10分)如图,已知A,B是⊙O的2个三等分点,C是优弧AB上的一个动点(点C不与A,B两点重合),连接AB,BC,AC.D,E分别是,的中点,连接DE,分别交AC,BC于点F,G.(1)当点C运动到优弧AB的中点时,直接写出DE与AB的关系.(2)求证FG+AB=AF+BG.(说明:第(2)题共5分,如果你觉得困难,可以在(1)的条件下证明,证明正确得2分.)(3)若I是AE,BD的交点,点O与点I的距离记为d.当AB=6时,d取值范围是 .2023-2024学年江苏省南京市秦淮区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列函数中,y与x之间的关系是二次函数的是( )A.y=1﹣3x3B.y=x2﹣5xC.y=x4+2x2﹣1D.【分析】根据二次函数的定义判断即可.【解答】解:A、y=1﹣3x3,x的最高次数是3,不是二次函数,不符合题意;B、y=x2﹣5x,是二次函数,符合题意;C、y=x4+2x2﹣1,x的最高次数是4,不是二次函数,不符合题意;D、y=,不是二次函数,不符合题意.故选:B.2.(2分)若⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定【分析】根据点P到圆心的距离与圆的半径比较大小即可得出结论.【解答】解:∵⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,1<2,∴点P与⊙O的位置关系是:点P在⊙O内,故选:C.3.(2分)某班5名学生的体重(单位:kg)分别为:51,53,47,51,60,则这组数据的众数与中位数分别是( )A.60kg,51kg B.51kg,47kg C.60kg,47kg D.51kg,51kg【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中51出现了1次,次数最多,故众数是51kg;将这组数据从小到大的顺序排列为:47,51,51,53,60,处于中间位置的那个数是51,那么由中位数的定义可知,这组数据的中位数是51kg.4.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.正八边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,符合题意.故选:D.5.(2分)一元二次方程﹣2(2x+1)2+a2=0(a是常数,a≠0)的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定有没有实数根【分析】根据一元二次方程根的判别式解答即可.【解答】解:一元二次方程﹣2(2x+1)2+a2=0可化为﹣8x2﹣8x+a2﹣2=0,∵a=﹣8,b=﹣8,c=a2﹣2,a≠0,∴Δ=(﹣8)2﹣4×(﹣8)×(a2﹣2)=64+32a2﹣64=32a2>0,∴方程有两个不相等的实数根.故选:A.6.(2分)如图,在平面直角坐标系中,A,B两点的坐标分别为(2,0),(0,2),二次函数y=x2﹣2ax+b(a,b是常数)的图象的顶点在线段AB上,则b的最小值为( )A.0B.C.D.2【分析】先用a,b表示出二次函数图象的顶点坐标,再结合该顶点在线段AB上即可解【解答】解:∵二次函数解析式为y=x2﹣2ax+b(a,b是常数),∴顶点坐标为(a,﹣a2+b).又∵A(2,0),B(0,2),∴直线AB的函数解析式为y=﹣x+2.∵二次函数图象的顶点在线段AB上,∴﹣a2+b=﹣a+2,且0≤a≤2,则b=a2﹣a+2=()2+,∴当a=时,b有最小值为.故选:C.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请7.(2分)一元二次方程x2﹣x=0的根是 x1=0,x2=1 .【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.8.(2分)若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是 .【分析】直接利用根与系数的关系求解.【解答】解:根据根与系数的关系得x1+x2=﹣=.故答案为:.9.(2分)若△ABC内接于⊙O,∠AOB=120°,则圆周角∠ACB的度数 60°或120° .【分析】分点C在优弧和劣弧上两种情况,当点C在优弧上时,可直接利用圆周角定理得到∠ACB是∠AOB的一半,当点C在劣弧上时,可以优弧上找点D,则可求得∠ADB 是∠AOB的一半,再利用圆内接四边形的性质可求得∠ACB【解答】解:如图1,当点C在优弧上时,则∠ACB=∠AOB=60°;如图2,当点C在劣弧上时,在优弧上找点D,连接DA、DB,则可得∠ADB=∠AOB=60°,又∵四边形ACBD为圆的内接四边形,∴∠ADB+∠ACB=180°,∴∠ACB=180°﹣60°=120°,∴∠ACB的度数是60°或120°;故答案为:60°或120°.10.(2分)如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=80°,则∠DCE = 80 °.【分析】利用圆内接四边形的对角互补和邻补角的性质求解.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=80°故答案为:80.11.(2分)某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元.设平均每次降低成本的百分率为x,可得方程 36(1﹣x)2=25 .【分析】根据某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元,可以列出相应的方程.【解答】解:由题意可得,36(1﹣x)2=25,故答案为:36(1﹣x)2=25.12.(2分)圆锥的底面半径为3cm,母线长为5cm,则圆锥的表面积为 15π cm2.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15π(cm2).故答案为:15π.13.(2分)杭州亚运会射箭比赛中,某运动员6箭的成绩(单位:环)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成绩为7环,则这6箭的平均成绩为 8 环.【分析】根据前3箭的平均成绩为7环,可以得到前三箭的总环数,从而可以得到这六箭的总环数,从而可以得到平均成绩.【解答】解:由题意可得,x1+x2+x3=3×7=21,∴(x1+x2+x3+x1+1+x2+2+x3+3)÷6=48÷6=8(环),即这6箭的平均成绩为8环,故答案为:8.14.(2分)如图,点B,C在⊙O上,D为的中点,直径AD交BC于点E,AD=6,,则DE的长为 3﹣ .【分析】连接OB,根据圆心角、弦、弧的关系推出AD⊥BC,根据垂径定理求出BE=BC=,再根据勾股定理求解即可.【解答】解:如图,连接OB,∵D为的中点,直径AD交BC于点E,∴AD⊥BC,∴BE=BC=,∵AD=6,∴OB=OD=3,在Rt△BOE中,OB2=OE2+BE2,∴32=OE2+,∴OE=或OE=﹣(舍去),∴DE=OD﹣OE=3﹣,故答案为:3﹣.15.(2分)在平面直角坐标系中,函数y=x2﹣2x﹣3的图象与x轴交于点A,B,将函数y =x2﹣2x﹣3的图象向上平移,平移后的图象与x轴交于点C,D.若AB=2CD,则平移后的图象对应的函数表达式为 y=x2﹣2x .【分析】先解方程x2﹣2x﹣3=0得到A(﹣1,0),B(3,0),则AB=4,所以CD=2,由于函数y=x2﹣2x﹣3的图象向上平移时对称轴不变,对称轴为直线x=1,而C、D关于直线x=1对称,所以C(0,0),D(2,0),然后利用交点式写出平移后抛物线的解析式.【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),∴AB=3﹣(﹣1)=4,∵AB=2CD,∴CD=2,∵函数y=x2﹣2x﹣3的图象向上平移时对称轴不变,仍然为直线x=1,∴C(0,0),D(2,0),∴平移后抛物线的解析式为y=x(x﹣2),即y=x2﹣2x.故答案为:y=x2﹣2x.16.(2分)如图,在△ABC中,∠ACB=90°,点D,E分别在BC,AC上,DE与△ABC 的内切圆O相切.若△ABC的面积是30,△CDE的周长是4,则AB的长为 13 .【分析】过点分别作OF⊥AB于点F,OG⊥BC于点G,OH⊥AC于点H,根据切线长定理得到AF=AH,BF=BG,CG=CH,ME=HE,MD=GD,由△CDE的周长是4求出CG=CH=2,设BG=BF=x,AF=AH=y,则AB=x+y,BC=x+2,AC=y+2,根据勾股定理得到xy=2(x+y)+4①,根据三角形的面积公式得到xy=60﹣2(x+y)②,①②求得x+y即可.【解答】解:过点分别作OF⊥AB于点F,OG⊥BC于点G,OH⊥AC于点H,∵⊙O是△ABC的内切圆,∴AF=AH,BF=BG,CG=CH,∵DE与⊙O相切,设切点为M,∴ME=HE,MD=GD,∵△CDE的周长是4,CG+CH=4,∴CG=CH=2,设BG=BF=x,AF=AH=y,则AB=x+y,BC=x+2,AC=y+2,∵∠ACB=90°,∴AB2=BC2+AC2,∴(x+y)2=(x+2)2+(y+2)2,化简得xy=2(x+y)+4①,∵△ABC的面积是30,∴BC•AC=30,∴(x+2)(y+2)=60,∴xy=60﹣2(x+y)②,由①②得x+y=13,∴AB=13.故答案为:13.三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2+2x﹣4=0;(2)x(x﹣3)=3﹣x.【分析】(1)利用配方法得到(x+1)2=5,然后利用直接开平方法解方程;(2)先移项,再利用因式分解法把方程转化为x﹣3=0或x+1=0,然后解两个一次方程即可.【解答】解:(1)x2+2x﹣4=0,x2+2x=4,x2+2x+1=5,(x+1)2=5,x+1=±,所以x1=﹣1+,x2=﹣1﹣;(2)x(x﹣3)=3﹣x,x(x﹣3)+x﹣3=0,(x﹣3)(x+1)=0,x﹣3=0或x+1=0,所以x1=3,x2=﹣1.18.(6分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…0123…y…5212…(1)求该二次函数的表达式;(2)若点A(﹣1,y1),B(4,y2)在这个函数的图象上,则y1 > y2.(填“>”“<”或“=”)【分析】(1)用待定系数法即可解决问题.(2)分别求出y1和y2即可解决问题.【解答】解:(1)由题知,将点(0,5),(1,2),(2,1)分别代入函数表达式得,,解得,所以该二次函数表达式为y=x2﹣4x+5.(2)当x=﹣1时,;当x=4时,;∴y1>y2.故答案为:>.19.(8分)如图,用篱笆围成一块矩形花圃,该花圃一侧靠墙,而且有一道隔栏(隔栏也用篱笆制作),已知所用篱笆的总长为24m,花圃的面积为45m2,墙的最大可用长度为10m,求边AB的长.【分析】设边AB边的长为x m,根据花圃的面积为45m2,列出一元二次方程,解之取符合题意的值即可.【解答】解:设边AB边的长为x m,由题意得:x(24﹣3x)=45,整理得:x2﹣8x+15=0,解得:x1=3(不符合题意,舍去),x2=5,答:边AB的长为5m.20.(8分)如图,已知△ABC内接于⊙O,AD是⊙O的直径,连接BD,CD,BC平分∠ABD.(1)求证∠CAD=∠ABC;(2)若AD=6,则AC的长为 3 .【分析】(1)由角平分线的性质和圆周角定理可得∠DBC=∠ABC=∠CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】(1)证明:∵BC平分∠ABD,∴∠DBC=∠ABC,∵∠CAD=∠DBC,∴∠CAD=∠ABC;(2)解:∵∠CAD=∠ABC,∴=,∴AC=CD,∵AD是⊙O的直径,AD=6,∴∠ACD=90°,在Rt△ACD中,2AC2=AD2=62,解得:AC=3.故答案为:3.21.(8分)一只不透明的袋子中装有1个白球和a个红球,这些球除颜色外都相同.已知从袋中任意摸出1个球是白球的概率是.(1)a的值是 2 ;(2)先从袋中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求2次摸到的球颜色不同的概率.【分析】(1)直接利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及2次摸到的球颜色不同的结果数,再利用概率公式可得出答案.【解答】解:∵从袋中任意摸出1个球是白球的概率是,∴,解得a=2,经检验,a=2是原方程的解且符合题意.故答案为:2.(2)列表如下:白红红白(白,白)(白,红)(白,红)红(红,白)(红,红)(红,红)红(红,(红,(红,白)红)红)共有9种等可能的结果,其中2次摸到的球颜色不同的结果有4种,∴2次摸到的球颜色不同的概率为.22.(8分)已知P是⊙O上一点,在⊙O上作两点A,B,使得∠APB分别满足以下条件:(1)在图①中,∠APB=90°;(2)在图②中,∠APB=30°.(说明:第(1)题只用无刻度的直尺作图,第(2)题只用圆规作图;保留作图痕迹,不写作法.)【分析】(1)过O点画直线交⊙O于点A、B,则根据圆周角定理得到∠APB满足条件;(2)任取点A,以A为圆心,AO为半径画弧交⊙O于点B,则△AOB为等边三角形,所以∠AOB=60°,然后根据圆周角定理得到∠APB满足条件.【解答】解:(1)如图①,∠APB为所作;(2)如图②,∠APB为所作;23.(8分)已知关于x的方程x2﹣(2m+2)x+m2+2m=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为1,求m的值.【分析】(1)先求出Δ的值,再判断出其符号即可;(2)把x=1代入方程,求出m的值即可.【解答】(1)证明:方程x2﹣(2m+2)x+m2+2m=0中,∵a=1,b=﹣(2m+2),c=m2+2m,∴Δ=[﹣(2m+2)]2﹣4×1×(m2+2m)=4>0,∴无论m取何值,方程总有两个不相等的实数根;(2)∵方程有一个根为1,∴12﹣(2m+2)×1+m2+2m=0,即m2﹣1=0,∴m=±1.24.(7分)2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等)、气温(如“5/17℃”指当天最低和最高气温分别是5℃和17℃)、风向和风级.(1)计算这7天最低气温的平均数和方差.(2)阅读冷空气等级标准表:序号等级冷空气来临的48小时内日最低气温变化情况①弱冷空气降温幅度小于6℃②中等强度冷空气降温幅度大于或等于6℃,但小于8℃③较强冷空气降温幅度大于或等于8℃且日最低气温超过8℃④强冷空气降温幅度大于或等于8℃,且日最低气温不超过8℃⑤寒潮降温幅度大于或等于10℃且日最低气温不超过4℃本次来临的冷空气的等级是 ⑤ .(填序号)(3)本次冷空气来临后,除导致气温下降外,还带来哪些天气情况的变化?请写出一个结论.【分析】(1)根据平均数和方差的定义列式计算即可;(2)对照表格可得答案;(3)参照天气情况图可得答案.【解答】解:(1)这7天最低气温的平均数=4(℃),方差为×[(17﹣4)2+(5﹣4)2+(0﹣4)2+(0﹣4)2+(2﹣4)2+(6﹣4)2+(﹣2﹣4)2]=;(2)由题意知,本次来临的冷空气的等级是⑤,故答案为:⑤;(3)本次冷空气来临后,除导致气温下降外,还带来雨雪.25.(8分)2023年12月18日晚,甘肃省积石山县发生6.2级地震.“一方有难,八方支援”,某商家决定将后续一个月销售某商品获得的利润全部捐赠给灾区.已知购进该商品的成本为10元/件,当售价为12元时,平均每天可以卖出1200件.调查发现,该商品每涨价1元,平均每天少售出100件.当每件商品的售价是多少元时,该商家捐赠的金额最大?最大捐赠金额是多少?(一个月按30天计算)【分析】依据题意,设每件商品的售价是x元,先求出每天的利润为w=(x﹣10)[1200﹣100(x﹣12)]=(x﹣10)(2400﹣100x)=﹣100(x﹣17)2+4900,再由二次函数的性质进行判断可以得解.【解答】解:由题意,设每件商品的售价是x元,∴每天的利润为w=(x﹣10)[1200﹣100(x﹣12)]=(x﹣10)(2400﹣100x)=﹣100x2+3400x﹣24000=﹣100(x﹣17)2+4900.∴当每件商品的售价是17元时,利润最大为4900元.∴每月最大利润为147000元.答:当每件商品的售价是17元时,该商家捐赠的金额最大,最大捐赠金额是147000元.26.(9分)阅读下列内容:如果点P(a,b)在一次函数y=x+1的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?下面是解决问题的一种途径.所以点(2a,2b)一定在函数y=x+2的图象上.根据阅读内容解决下列问题:(1)如果点P(a,b)在反比例函数的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?填写下面的空格.(2)如果点P(a,b)在一次函数y=2x的图象上,判断点(a+b,ab)一定在哪个函数的图象上?说明理由.【分析】(1)根据点P(a,b)在反比例函数的图象上,得ab=2,对于点(2a,2b),则x=2a,y=2b,则xy=4ab=8,由此可得出答案;(2)根据点P(a,b)在一次函数y=2x的图象上,得b=2a,对于(a+b,ab),则x=a+b=3a,y=ab=2a2,进而得得,由此可得出结论.【解答】解:(1)∵点P(a,b)在反比例函数的图象上,∴ab=2,对于点(2a,2b),则x=2a,y=2b,∴xy=4ab,将ab=2代入xy=4ab,得xy=8,即,∴点(2a,2b)一定在这个函数的图象上;如下图所示:(2)点(a+b,ab)一定在这个函数的图象上,理由如下:∵点P(a,b)在一次函数y=2x的图象上,∴b=2a,对于(a+b,ab),则x=a+b=3a,y=ab=2a2,∵x=3a,∴,∴.∴点(a+b,ab)一定在这个函数的图象上.27.(10分)如图,已知A,B是⊙O的2个三等分点,C是优弧AB上的一个动点(点C不与A,B两点重合),连接AB,BC,AC.D,E分别是,的中点,连接DE,分别交AC,BC于点F,G.(1)当点C运动到优弧AB的中点时,直接写出DE与AB的关系.(2)求证FG+AB=AF+BG.(说明:第(2)题共5分,如果你觉得困难,可以在(1)的条件下证明,证明正确得2分.)(3)若I是AE,BD的交点,点O与点I的距离记为d.当AB=6时,d取值范围是 0≤d<2 .【分析】(1)当点C运动到优弧AB的中点时,连接AD,AE,BE,利用同圆中等弧所对的圆周角相等可以推导出DE∥AB,再证明四边形ABED是矩形可以得出DE=AB;(2)在条件(1)下,连接CE,根据圆周角相等和等腰三角形可以推导出BG=2FG,最后推导出FG+AB=AF+BG;(3)根据点C的运动轨迹就可以推导出d的取值范围.【解答】解:(1)当点C运动到优弧AB的中点时,DE∥AB且DE=AB,连接AD,BE,AE,CE,∵A,B是⊙O的2个三等分点,∴==,∴AB=AC=BC,∴△ABC是等边三角形,又∵D,E分别是,的中点,∴===,∴∠DEA=∠EAB=∠DEC=∠CBE=∠DAC=∠CED=∠ECB=30°,∴DE∥AB,∴∠DAB=∠EBA=90°,∴DA⊥AB,EB⊥AB,∴四边形ABED是矩形,∴AB=DE;证明:(2)在(1)的条件下,∵∠ACB=60°,FG∥AB,∴∠CFG=∠CGF=60°,∴△CFG为等边三角形,∴CF=FG=CG,又∵∠CED=∠ECB=30°,∴CG=GE,∵在△GEB中,∠GBE=30°,∠GEB=90°,∴BG=2GE=2FG,∵AB=AF+CF,∴AB+FG=AF+CF+FG=AF+BG;解:(3)连接OB,作OM⊥AB,∵当点C运动到优弧AB的中点时,此时AE,BD的交点I与圆心O重回,∴点O与点I的距离d为0,∵A,B是⊙O的2个三等分点,∴劣弧对的圆心角为120°,∴∠OBM=30°,又∵AB=6,∴OB=2,∵OI≤OB+IB,∴当点C运动到点A或点B时,OI=OB=2,∵点C不与A,B两点重合,∴OI<2,∴0≤d<2,故答案为:0≤d<2.。

九年级数学(上)期末考试试卷含答案

九年级数学(上)期末考试试卷含答案

九年级数学(上)期末考试试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣37.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是米.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.14.写出一个图象位于二、四象限的反比例函数的表达式,y=.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:,你的理由是:.三、解答题(本题共30分,每小题5分)17.计算:|.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.28.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(﹣5,6)的“关联点”为点(﹣5,﹣6).(1)①点(2,1)的“关联点”为;②如果点A(3,﹣1),B(﹣1,3)的“关联点”中有一个在函数的图象上,那么这个点是(填“点A”或“点B”).(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”,那么点M的坐标为;②如果点N*(m+1,2)是一次函数y=x+3图象上点N的“关联点”,求点N的坐标.(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a的取值范围是.29.在菱形ABCD中,∠BAD=120°,射线AP位于该菱形外侧,点B关于直线AP的对称点为E,连接BE、DE,直线DE与直线AP交于F,连接BF,设∠PAB=α.(1)依题意补全图1;(2)如图1,如果0°<α<30°,判断∠ABF与∠ADF的数量关系,并证明;(3)如图2,如果30°<α<60°,写出判断线段DE,BF,DF之间数量关系的思路;(可以不写出证明过程)(4)如果60°<α<90°,直接写出线段DE,BF,DF之间的数量关系.参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.【考点】比例的性质.【分析】根据等式的性质:两边都除以同一个不为零的数(或整式),结果不变,可得答案.【解答】解:两边都除以ab,得=,故A正确;B、两边都除以20,得=,故B错误;C、两边都除以4b,得=,故C错误;D、两边都除以5a,得=,故D错误.故选:A.【点评】本题考查了比例的性质,利用两边都除以同一个不为零的数(或整式),结果不变是解题关键.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的余弦为邻边比斜边,可得答案.【解答】解:cosB===,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定【考点】点与圆的位置关系.【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.【点评】此题主要考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.【考点】概率公式;条形统计图.【专题】计算题.【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,然后根据概率公式求解.【解答】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,所以小明抽到红色糖果的概率==.故选B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了条形统计图.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象的增减性来比较m与n的大小.【解答】解:∵反比例函数中系数2>0,∴反比例函数的图象位于第一、三象限,且在每一象限内y随x的增大而减小.又∵点A(1,m)与点B(3,n)都位于第一象限,且1<3,∴m>n.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,解答该题时,也可以把点A、B的坐标分别代入函数解析式求得相应的m、n的值,然后比较它们的大小即可.8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】根据得A、B的坐标求出OB、AB的长,根据位似的概念得到比例式,计算求出OD、CD 的长,得到点C的坐标.【解答】解:∵A(6,3)、B(6,0),∴OB=6,AB=3,由题意得,△ODC∽△OBA,相似比为,∴==,∴OD=2,CD=1,∴点C的坐标为(2,1),故选:D.【点评】本题考查的是位似变换的概念和性质以及坐标与图形的性质,掌握位似的两个图形一定是相似形和相似三角形的性质是解题的关键.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】计算题.【分析】连结BC,如图,根据圆周角定理得到∠ACB=90°,则利用勾股定理得到BC=,再利用面积法可得到y=,CD为半径时最大,即y的最大值为2,此时x=2,由于y与x函数关系的图象不是抛物线,也不是一次函数图象,则可判断A、C错误;利用y最大时,x=2可对B、D进行判断.【解答】解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∴BC==,∵CD•AB=AC•BC,∴y=,∵y的最大值为2,此时x=2.故选B.【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用圆周角定理得到∠ACB=90°.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是1:9.【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】解:∵两个相似三角形的相似比是1:3,又∵相似三角形的面积比等于相似比的平方,∴这两个三角形面积的比是1:9.故答案为:1:9.【点评】本题考查了相似三角形的性质,注意:相似三角形的面积比等于相似比的平方.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是12米.【考点】正多边形和圆.【分析】由正六边形的半径为2,则OA=OB=2米;由∠AOB=60°,得出△AOB是等边三角形,则AB=OA=OB=2米,即可得出结果.【解答】解:如图所示:∵正六边形的半径为2米,∴OA=0B=2米,∴正六边形的中心角∠AOB==60°,∴△AOB是等边三角形,∴AB=OA=OB,∴AB=2米,∴正六边形的周长为6×2=12(米);故答案为:12.【点评】本题考查了正六边形的性质、等边三角形的判定与性质;解决正多边形的问题,常常把多边形问题转化为等腰三角形或直角三角形来解决.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.【考点】弧长的计算.【专题】应用题.【分析】首先根据题意,可得,然后根据圆的周长公式,求出直径是2m的圆的周长是多少;最后用直径是2m的圆的周长除以3,求出的长是多少即可.【解答】解:根据题意,可得,∴(m),即的长是m.故答案为:.【点评】此题主要考查了弧长的计算,以及圆的周长的计算方法,要熟练掌握,解答此题的关键是判断出,并求出直径是2m的圆的周长是多少.14.写出一个图象位于二、四象限的反比例函数的表达式,y=答案不唯一,如y=﹣x等.【考点】正比例函数的性质.【专题】开放型.【分析】根据正比例函数的系数与图象所过象限的关系,易得答案.【解答】解:根据正比例函数的性质,其图象位于第二、四象限,则其系数k<0;故只要给出k小于0的正比例函数即可;答案不唯一,如y=﹣x等.【点评】解题关键是掌握正比例函数的图象特点.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【考点】垂径定理的应用.【专题】压轴题.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:否,你的理由是:y<﹣2.【考点】反比例函数的性质.【分析】根据反比例函数图象所经过的象限和函数的增加性解答.【解答】解:否,理由如下:∵反比例函数,且x>1,∴反比例函数的图象位于第四象限,∴y<﹣2.故答案是:否;y<﹣2.【点评】本题考查了反比例函数的性质.注意在本题中,当x>0时,y<0.三、解答题(本题共30分,每小题5分)17.计算:|.【考点】实数的运算;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=×﹣+﹣1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定,由已知可证∠A=∠DCB,又因为∠ACB=∠BDC=90°,即证△ABC∽△CBD,(2)根据勾股定理得到AB=5,根据三角形的面积公式得到CD=,然后根据勾股定理即可得到结论.【解答】(1)证明:∵CD⊥AB,∴∠BDC=90°.∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠DCB+∠ACD=90°.∴∠A=∠DCB.又∵∠ACB=∠BDC=90°,∴△ABC∽△CBD;(2)解:∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴CD=,∵CD⊥AB,∴BD===.【点评】本题考查了相似三角形的判定,解直角三角形,熟练掌握相似三角形的判定定理是解题的关键.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.【考点】二次函数的三种形式;二次函数的性质.【分析】(1)运用配方法把一般式化为顶点式;(2)根据二次函数的性质解答即可;(3)根据二次函数的开口方向和对称轴解答即可.【解答】解:(1)y=x2﹣6x+5=(x﹣3)2﹣4;(2)二次函数的图象的对称轴是x=3,顶点坐标是(3,﹣4);(3)∵抛物线的开口向上,对称轴是x=3,∴当x≤3时,y随x的增大而减小.【点评】本题考查的是二次函数的三种形式和二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键,注意二次函数的性质的应用.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.【考点】作图-旋转变换.【专题】作图题.【分析】(1)在BA上截取BC′=BC,延长CB到A′使BA′=BA,然后连结A′C′,则△A′BC′满足条件;(2)先利用勾股定理计算出AB=2,再利用旋转的性质得BA=BA′,∠ABA′=90°,然后根据等腰直角三角形的性质计算AA′的长即可.【解答】解:(1)如图,△A′BC′为所作;(2)∵∠ABC=90°,B C=1,AC=,∴AB==2,∵△ABC沿逆时针方向旋转90°得到△A′BC′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=AB=2.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先把A(﹣1,n)代入y=﹣2x求出n的值,确定A点坐标为(﹣1,2),然后把A(﹣1,2)代入y=可求出k的值,从而可确定反比例函数的解析式;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,则B点坐标为(﹣1,0),C点坐标为(0,2),由于PA=OA,然后利用等腰三角形的性质易确定满足条件的P点坐标.【解答】解:(1)把A(﹣1,n)代入y=﹣2x得n=﹣2×(﹣1)=2,∴A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,∴反比例函数的解析式为y=﹣;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,如图,∵点A的坐标为(﹣1,2),∴B点坐标为(﹣1,0),C点坐标为(0,2)∴当P在x轴上,其坐标为(﹣2,0);当P点在y轴上,其坐标为(0,4);∴点P的坐标为(﹣2,0)或(0,4).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了等腰三角形的性质.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意得出DC=BC,进而利用tan30°=求出答案.【解答】解:由题意可得:AB=46m,∠DBC=45°,则DC=BC,故tan30°===,解得:DC=23(+1).答:永定楼的高度CD为23(+1)m.【点评】此题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.【考点】抛物线与x轴的交点.【专题】证明题.【分析】(1)令y=0,使得二次函数变为一元二次方程,然后求出方程中△的值,即可证明结论;(2)令y=0,使得二次函数变为一元二次方程,然后对方程分解因式,又因此二次函数的图象与x 轴两个交点的横坐标都是整数,从而可以求得符合要求的正整数m的值.【解答】解:(1)证明:∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2(m≠0),△=[﹣(m+2)]2﹣4×m×2=m2+4m+4﹣8m=m2﹣4m+4=(m﹣2)2≥0∴0=mx2﹣(m+2)x+2(m≠0)有两个实数根,即二次函数y=mx2﹣(m+2)x+2(m≠0)的图象与x轴总有交点;(2)∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2=(mx﹣2)(x﹣1),∴,又∵此二次函数的图象与x轴两个交点的横坐标都是整数,∴正整数m的值是:1或2,即正整数m的值是1或2.【点评】本题考查抛物线与x轴的交点,解题的关键是建立二次函数与一元二次方程之间的关系,然后找出所求问题需要的条件.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.【考点】平行四边形的判定与性质.【分析】(1)由平行四边形的定义即可得出四边形AECD为平行四边形;(2)作FM⊥CD于M,由平行四边形的性质得出DF=EF=2,由已知条件得出△DFM是等腰直角三角形,DM=FM=DF=2,由含30°角的直角三角形的性质和勾股定理得出CF=2FM=4,CM=2,得出DC=DM+CM=2+2即可.【解答】(1)证明:∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形;(2)解:作FM⊥CD于M,如图所示:则∠FND=∠FMC=90°,∵四边形AECD为平行四边形,∴D F=EF=2,∵∠FCD=30°,∠FDC=45°,∴△DFM是等腰直角三角形,∴DM=FM=DF=2,CF=2FM=4,∴CM=2,∴DC=DM+CM=2+2.【点评】本题考查了平行四边形的判定与性质、等腰直角三角形的判定与性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的判定与性质,通过作辅助线构造直角三角形是解决问题(2)的关键.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.【考点】抛物线与x轴的交点;二次函数与不等式(组).【分析】(1)由二次函数的图象与x轴有两个交点得出判别式△>0,得出不等式,解不等式即可;(2)二次函数y1=x2+2x+m﹣5的图象经过把点B坐标代入二次函数解析式求出m的值,即可得出结果;点B(1,0);(3)由图象可知:当y2<y1时,比较两个函数图象的位置,即可得出结果.【解答】解:(1)∵二次函数y1=x2+2x+m﹣5的图象与x轴有两个交点,∴△>0,∴22﹣4(m﹣5)>0,解得:m<6;(2)∵二次函数y1=x2+2x+m﹣5的图象经过点(1,0),∴1+2+m﹣5=0,解得:m=2,∴它的表达式是y1=x2+2x﹣3,∵当x=0时,y=﹣3,∴C(0,﹣3);(3)由图象可知:当y2<y1时,x的取值范围是x<﹣3或x>0.【点评】本题考查了二次函数图象上点的坐标特征、抛物线与x轴的交点;由题意求出二次函数的解析式是解决问题的关键.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.【考点】切线的判定.【分析】(1)要证AD是⊙O的切线,连接OA,只证∠DAO=90°即可.(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的直径.【解答】(1)证明:连接OA;∵BC为⊙O的直径,BA平分∠CBF,AD⊥BF,∴∠ADB=∠BAC=90°,∠DBA=∠CBA;∵∠OAC=∠OCA,∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,∴DA为⊙O的切线.(2)解:∵BD=1,tan∠BAD=,∴AD=2,∴AB==,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC===5.∴⊙O的直径为5.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了三角函数的知识.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)把A点和B点坐标代入得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)利用配方法得到y=(x﹣1)2+,则抛物线的对称轴为直线x=1,利用点C与点A关于直线x=1对称得到C点坐标为(2,2);然后利用二次函数图象上点的坐标特征求D点坐标;(3)画出抛物线,如图,先利用待定系数法求出直线BC的解析式为y=x+1,再利用平移的性质得到图象G向下平移1个单位时,点A在直线BC上;图象G向下平移3个单位时,点D在直线BC上,由于图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,所以1<t≤3.【解答】解:(1)把A(0,2)和B(1,)代入得,解得,所以抛物线解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴抛物线的对称轴为直线x=1,∵点C与点A关于此抛物线的对称轴对称,∴C点坐标为(2,2);当x=4时,y=x2﹣x+2=8﹣4+2=6,∴D点坐标为(4,6);(3)如图,。

2024年北京朝阳区初三九年级上学期期末数学试题和答案

2024年北京朝阳区初三九年级上学期期末数学试题和答案

张卡片,除所标注文字不同外无其他差别.其中,写有“珍稀濒危植.随机摸出一张卡片写有“珍的扇形作圆锥的侧面,记扇形的半径为R,所在一定范围内变化时,l与S都随R的变第12题图第14题图试题13.某科技公司开展技术研发,在相同条件下,对运用新技术生产的一批产品的合格率进行检测,下表是检测过程中的一组统计数据:估计这批产品合格的产品的概率为.14.如图,AB 是半圆O 的直径,将半圆O 绕点A 逆时针旋转30°,点B 的对应点为B ',连接A B ',若AB =8,则图中阴影部分的面积是_______.15.对于向上抛的物体,在没有空气阻力的条件下,上升高度h ,初速度v ,抛出后所经历的时间t ,这三个量之间有如下关系:221gt vt h -=(其中 g 是重力加速度,g 取10m/s 2).将一物体以v=21m/s 的初速度v 向上抛,当物体处在离抛出点18m 高的地方时,t 的值为 .16.已知函数y 1=kx +4k -2(k 是常数,k ≠0),y 2=ax 2+4ax -5a (a 是常数,a ≠0),在同一平面直角坐标系中,若无论k 为何值,函数y 1和y 2的图象总有公共点,则a 的取值范围是_______.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程x 2-1 =6x .18.关于x 的一元二次方程x 2-(m +4)x +3(m +1)=0 .(1)求证:该方程总有两个实数根;(2)若该方程有一根小于0,求m 的取值范围.抽取的产品数n 5001000150020002500300035004000合格的产品数m 476967143119262395288333673836合格的产品频率nm0.9520.9670.9540.9630.9580.9610.9620.959图2图3图1图1 图2试题北京市朝阳区2023~2024学年度第一学期期末检测九年级数学试卷参考答案及评分标准(选用)2024.1一、选择题(共16分,每题2分)题号12345678答案DABCACAC二、填空题(共16分,每题2分)三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)17.解:方程化为x 2 -6x =1.x 2 -6x+9 =10.1032=-)(x .103±=-x .1031+=x ,1032-=x .18.(1)证明:依题意,得=[-(m +4)]2-4×3(m +1) =(m -2)2.∵(m -2)2≥0,∴0≥∆∴该方程总有两个实数根.(2)解:解方程,得x =.∴x 1= m +1,x 2=3.依题意,得m +1<0.∴m <-1.19.解:(1)根据题意,设该二次函数的解析式为 y 2=a (x -1)2+4.当x =0时,y 2 =3∴a =-1.∴y 2=-x 2+2x +3.题号9101112答案x 1=3,x 2=-3相切(1,3)140题号13141516答案答案不唯一,如0.9593438+π1.2或3a <0或a ≥52线段垂直平分线上的点与这条线段两个端点的距离相等.三角形的外角等于与它不相邻的两个内角的和.由题意可知,抛物线顶点C ),(9254.设抛物线对应的函数解析式)4(2+-=x a y试题26. 解:(1)由题意知,a +b +c = 9a +3b +c .∴b = -4a .∴22=-=a b t . (2)∵a >0,∴当x ≥t 时,y 随x 的增大而增大;当x ≤t 时,y 随x 的增大而减小.设抛物线上的四个点的坐标为A (t -1,m A ) ,B (t ,m B ),C (2,n C ),D (3,n D ).点A 关于对称轴x =t 的对称点为A'(t +1,m A )∵抛物线开口向上,点B 是抛物线顶点,∴m A >m B .ⅰ 当t ≤1时,n C < n D∴t +1≤2.∴m A ≤n C ,∴不存在m >n ,不符合题意.ⅱ 当1<t ≤2时,n C < n D∴2<t +1≤3.∴m A >n C .∴存在m >n ,符合题意.ⅲ当2<t ≤3时,∴n 的最小值为m B .∵m A >m B .. ∴存在m >n ,符合题意.ⅳ 当3<t <4时,n D <n C .∴2<t -1<3.∴m A >n D .∴存在m >n ,符合题意.ⅴ 当t ≥4时,n D <n C .∴t -1≥3.∴m A ≤n D ,∴不存在m >n ,不符合题意.综上所述,t 的取值范围是1<t <4.)解:补全图1,如图.证明:延长AF到点G,使得GF=AF,连接,连接GE并延长,与AB的延长。

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。

每小题只有一个选项符合题目要求。

1.方程x2-2x-24=0的根是( )A.x1=6,x2=4 B.x1=6,x2=-4C.x1=-6,x2=4 D.x1=-6,x2=-42.一个不透明的袋子中装有2个白球和3个黑球,这些球除了颜色外无其他差别,从中摸出3个球,下列事件属于必然事件的是( )A.至少有1个球是白色球B.至少有1个球是黑色球C.至少有2个球是白色球D.至少有2个球是黑色球3.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.16x2-6x+21,有以下结论:①当x>5时,y随x的增大而4.对于二次函数y=12增大;②当x=6时,y有最小值3;③图象与x轴有两个交点;④图象是由抛物x2向左平移6个单位长度,再向上平移3个单位长度得到的.其中正确结线y=12论的个数为( )A.1 B.2C.3 D.4⏜的长是5.如图,四边形ABCD内接于⊙O,⊙O的半径为3.若∠D=120°,则AC( )πA.πB.23C .2πD .4π6.如图,在△AOB 中,OA =4,OB =6,AB =2√7,将△AOB 绕原点O 旋转90°,则旋转后点A 的对应点A ′的坐标是( )A .(4,2)或(-4,2)B .(2√3,-4)或(-2√3,4)C .(-2√3,2)或(2√3,-2)D .(2,-2√3)或(-2,2√3)7.如图,AB 是O 的直径,ACD CAB ∠=∠ 2AD = 4AC =,则O 的半径为( )A .B .C .D8.如图,四边形ABCD 中,60A ∠=︒ //AB CD DE AD ⊥交AB 于点E ,以点E 为圆心 、DE 为半径且6DE =的圆交CD 于点F ,则阴影部分的面积为( )A .6π-B .12π-C .6πD .12π 9.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A .3(1)6210x x -= B .3(1)6210x -=C .(31)6210x x -=D .36210x =10.如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A ,B 是圆上的两点,O 为圆心,∠AOB =120°,小强从点A 走到点B ,走便民路比走观赏路少走( )A .(6π-6√3)米B .(6π-9√3)米C .(12π-9√3)米D .(12π-18√3)米二、填空题:本题共6个小题,每小题3分,共18分。

山东省枣庄市山亭区2022-2023学年九年级上册期末语文试题(含解析)

山东省枣庄市山亭区2022-2023学年九年级上册期末语文试题(含解析)

2022—2023学年度第一学期期末考试九年级语文一、积累运用(共23分)2022年是中国共产主义青年团成立100周年,下面是一位同学的朗诵词。

请阅读这段文字,完成下面小题。

“挚着百年炬火,我们走在历史交汇的时刻。

迎着朝阳,向着皓月,我们不能胆怯,不能彷徨!让我们博彩众长,挥洒炙热,强国一代是你是我!”坚定的誓言,是青年学子对新时代的献礼。

共青团从混沌小路来,向未知大道去。

曾经的道路跌荡坎坷,但她永保活力,在这重要的时刻,带领着青年人奔向美好的未来!“青年如初春,如朝日,如百卉之萌动,如利刃之新发于硎,人生最可宝贵之时期也。

”我们不仅要展现出青年的朝气与活力,还要为祖国的繁荣昌盛贡献出自己的一份力量。

让我们努力拼搏,挥洒汗水,不负时代,不负学业,不负青春!我们要把最美好的青春献给您,我们要用最美的歌儿歌唱我们的祖国,我爱祖国。

1.部分同学对加点字的读音有疑问。

写出加点字的正确音节(1)擎着(2)炙热(3)混沌(4)奔向2.部分同学认为画线词语中有错别字,下列判断错误的一项是()A.“交汇”应写为“交会” B.“博彩众长”应写为“博采众长”C.“跌荡坎坷”应写为“跌宕坎坷” D.“永保活力”应写为“永葆活力”3.下面“我爱祖国”的书法字体中,属于隶书的一项是()A.A B.B C.C D.D4.下面句子没有语病的一项是()A.唐代诗人元稹曾作《咏廿四气诗·小雪十月中》,诗中写出了“小雪”三候:即“虹藏不见、天气上升地气下降、闭塞而成冬。

”B.只要全党全国各族人民团结一心、苦干实干,中华民族伟大复兴的巨轮就一定能够乘风破浪、胜利驶向光辉的彼岸。

C.广大中国球迷,对于在冬天观看世界杯比赛直播,是此前从未有过的特别体验。

D.更科学、更规范、更快速、更有效地开展防控工作,科学精准,提高防疫工作。

5.下面有关文学文化知识表述不正确的一项是()A.词又称“长短句”,句式长短不一,讲究韵律,如《沁园春·雪》《浣溪沙·(身向云山那畔行)》等。

重庆市巴蜀中学2023-2024学年九年级上学期期末数学试题(含答案)

重庆市巴蜀中学2023-2024学年九年级上学期期末数学试题(含答案)

数学一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.若数a 的平方等于16,那么数a 可能是()A .2B .-4C .D .2.如图,该几何体由5个大小相同的正方体组成,从正面看到该几何体的形状图是()A .B .C .D .3.下列运算正确的是()A .B .C .D .4.已知一次函数,y 随着x 的增大而减小,且,则在直角坐标系内它的图象大致是()A .B .C .D .5.如图,反比例函数的图象经过矩形OABC 的对角线AC 的中点D ,若矩形OABC 的面积为12,则k 的值为()(5题图)A .2B .3C .4D .66.如图,在中,,若,,则为()4±8±325x x x +=32x x x-=326x x x ⋅=32x x x÷=y kx b =+0kb <()0,0ky k x x=≠>ABC △DE BC ∥:1:2ADE BDE S S =△△3ADE S =△ABC S △(6题图)A .9B .12C .24D .277.平面直角坐标系中,A 、B 、C 三点坐标分别为,,,以这三点为平行四边形的三个顶点,则第四个顶点不可能在()A .第一象限B .第二象限C .第三象限D .第四象限8.如图,过上一点P 的切线与直径AB 的延长线交于点C ,点D 是圆上一点,且,则的度数为()(8题图)A .32°B .33°C .34°D .35°9.菱形ABCD ,,E ,F 分别是CB ,CD 上两点,连接AE ,AF ,EF ,且,如果,则下列说法错误的是()(9题图)A .B .C .D .10.对于以下式子:,,,,下列说法正确的有()(1)如果,则无论y 取何常数,A ,B ,C ,D 调整顺序后可组成一列数,这列数后项减去前项的差均相等;(2)代数式一定是非负数;(3)如果A 为第1项,B 为第2项,C 为第3项,第1项与第2项的和减去第3项的结果为第4项,第2项()0,0()0,4-()3,3-O e 29BDP ∠=︒C∠60B ∠=︒60EAF ∠=︒BAE α∠=CEF α∠=60FAD α∠=︒-60EFC α∠=︒-90AFD α∠=︒-A x y =+B x y =-2C x y =-D xy =0x =222A B C D ⋅--与第3项的和减去第4项的结果为第5项,……,依此类推,则第2024项为.A .0个B .1个C .2个D .3个二、填空题(本大题共8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11______.12.一个正多边形的内角和是1080°,则这个正多边形有______条边.13.已知当时,整式的值等于10,则当时,则的值为______.14.某次车展活动设计了一种有奖竞猜游戏,游戏规则如下:在5个相同商标牌中,有3个商标牌的背面贴有一个笑脸,其余2张商标牌的背面贴一张哭脸,每个人每次翻两张牌,只有两张都是笑脸才得奖,则观众每次获奖的概率是______.15.如图,已知,,,B 、D 、E 在同一直线上,则的度数为______.(15题图)16.如图,扇形AOB ,点O 为圆心,半径OB 长为2,,再以点B 为圆心,OB 为半径作弧,交弧AB 于点C ,则阴影部分的面积是______.(16题图)17.若整数a 使关于x 的不等式组无解,且使关于y 的分式方程有非负整数解,则满足条件的a 的值之和为______.18.一个四位正整数M ,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M 为“共进退数”,并规定等于M 的前两位数所组成的数字与后两位数所组成的数字之和,等于M 的前两位数所组成的数字与后两位数所组成的数字之差,如果,那么M 各数位上的数字之和为3032x y +0122⎛⎫--= ⎪⎝⎭2x =35bx cx +-2x =-37bx cx ++AB AC =AD AE =52BAC DAE ∠=∠=︒BEC ∠90AOB ∠=︒232x a x a ->⎧⎨-<-⎩5355ay y y -=---()F M ()G M ()60F M =______;有一个四位正整数(,,,且为整数)是一个“共进退数”,且是一个平方数,是一个整数,则满足条件的数N 是______.三.解答题(本大题共8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(本小题满分8分)计算:(1)(2)20.(本小题满分10分)如图:正方形ABCD 中,直线经过点D ,与AB 交于点E ,(1)用直尺和圆规作图:过点C 作DE 的垂线,垂足为G ,交AD 于点F ,(请保留作图痕迹,不要求写作图过程)(2)同学们作图完成后,通过测量发现,并且推理论证了该结论,请你根据他们的推理论证过程完成以下证明:如图:已知正方形ABCD 中,DE 、CF 分别是直线,直线被一组对边截得的线段,当时,求证:.证明:∵正方形ABCD ,∴,∴,∴,∵,∴,∴ ② ,∴,在和中,1101100010N x y z =+++08x ≤≤09y ≤≤08z ≤≤()F N ()7G N ()()()212141a a a a -+--211121xx x x ⎛⎫-÷ ⎪+++⎝⎭1l 2l DE CF =1l 2l DE CF ⊥DE CF =AD DC =90EAD CDF ∠=∠=︒90+∠=︒AED ①DE CF ⊥90FGD ∠=︒AED DFG ∠=∠DAE △CDF △,∴,∴.同学们进一步研究发现,一条直线被正方形的一组对边所截得的线段与另一条直线被正方形的另一组对边所截得的线段垂直时均具备此特征,请你依据题目中的相关描述,完成下列命题:两条直线分别被正方形的一组对边所截,若所截得的线段④.21.(本小题满分10分)为了激发同学们对古诗词学习的兴趣,2023年9月我市某中学开展了“课外古诗词赏析比赛”.为了解学生课外古诗词的学习情况,现从该校七、八年级中各随机抽取10名学生的比赛成绩(成绩为百分制,学生得分均为整数且用x 表示,)进行整理、描述和分析,并将其共分成四组:A :,B :,C :,D :)下面给出了部分信息:七年级10名学生的比赛成绩是:84,85,86,88,89,95,96,99,99,99.八年级10名学生的比赛成绩在C 组中的数据是:90,94,94.七、八年级抽取的学生比赛成绩统计表年级七年级八年级平均数9292中位数92b 众数c100根据以上信息,解答下列问题:(1)______,______,______;(2)根据以上数据,你认为该校七、八年级中哪个年级学生古诗词掌握得较好?请说明理由(一条理由即可);(3)该校七年级有1420名学生、八年级有1300名学生参加了此次“课外古诗词赏析比赛”,请估计参加此次比赛成绩不低于90分的学生人数是多少?22.列方程解应用题(本小题满分10分)中国最重要的传统节日之一春节,除了有热烈的庆祝活动和丰盛的美食外,长辈发压岁钱给晚辈表达美好的祝福也是春节习俗的重要组成部分.为迎接2024年龙年春节的到来,某工厂计划安排甲车间生产16000个龙年布艺红包袋.根据现有设备和工艺,甲车间每天可生产360个布艺红包袋,甲车间单独先工作4天后,工厂安排乙车间加入一起赶工,且乙车间每天可生产680个布艺红包袋,EAD CDF AED DFG⎧∠=∠⎪⎨⎪∠=∠⎩③DAE CDF △≌△DE CF =85x <8590x ≤<9095x ≤<95100x ≤≤a =b =c =(1)从开始加工到完成这批布艺红包袋一共需要多少天?(2)由于市场需求增大,甲车间按原生产效率单独生产4天后,工厂改进了两个车间的生产工艺,并将剩下的生产任务平均分给了甲、乙两车间.改进后甲、乙两车间每天生产的布艺红包袋数量之比为,且改进工艺后两个车间完成剩下生产任务的天数之和为10天,问改进工艺后甲车间每天生产多少个布艺红包袋?23.(本小题满分10分)如图,平行四边形ABCD 中,,,连接AC ,,动点P 以每秒1个单位的速度从点C 出发沿折线运动,设点P 运动时间为x 秒,的面积为,(1)请直接写出关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数图象,并写出该函数的一条性质;(3)的函数图象如图所示,当时请直接写出x 的取值范围.(结果保留一位小数,误差小于0.2)24.(本小题满分10分)今年10月“愉悦创造营”的同学们积极参加劳动实践,在校园“耕读园”里播种了近百粒萝卜种子.某周日下午返校时涵涵和静静约好一起去“耕读园”看看萝卜的生长情况.如图,已知“耕读园”在点A 处,涵涵家位于点A 正南方一条东西走向的街道BD 上,且在耕读园西南方向800米的C 处;静静家位于点D 正北方米且位于“耕读园”南偏西60°方向上的点E 处,图中点A 、B 、C 、D 、E 在同一平面内,(1)求静静家离耕读园的距离是多少?(结果保留根号)7:133AB =5BC =90BAC ∠=︒C A D →→ABP △1y 1y 24y x=12y y ≥(2)涵涵周日下午5:40出门,先以80米/分钟的速度从C 出发,往正西方向走到点D 处后再向正北方向到静静家楼下两人碰面,然后两人以此速度一起前往“耕读园”,请问她们能在5:55前到达耕读园吗?(参考数据:,结果精确到十分位)25.(本小题满分10分)如图1:平面直角坐标系中,抛物线与x 轴交于点和点B ,与y轴交于点C ,点是抛物线上一点,图1图2 图3(1)求抛物线表达式;(2)如图2:点是y 轴上一点,连接AD ,点P 是直线AD 上方抛物线上一个动点,过点P 作轴交直线AD 于点E ,在射线ED 上取一点F ,使得,求周长的最大值及此时点P 的坐标.(3)如图3:将原抛物线沿射线AD 方向平移4个单位长度,平移后抛物线的对称轴与x 轴交于点N ,射线AD 上有一点G ,连接GN ,过点G 作GN 的垂线与抛物线交于点M ,连接MN ,若,请直接写出点M 的坐标.26.(本小题10分)已知,中,,,交BC 于点D ,.图1 图2 图3(1)如图1,将BD 绕点B 逆时针旋转得线段BE ,且点E 在DA 的延长线上,求BE 的长.(2)如图2,在(1)的条件下,连接CE ,F 为AB 上一点,且满足:,作于点G ,求证:.(3)如图3,在(1)的条件下,P 、Q 分别为线段BA 、EB 上的两个动点,且满足,当1.414≈ 2.449≈292y ax bx =++()A -()()0,3D PE y ∥PE PF =PEF △292y ax bx =++1y 1y 30GMN ∠=︒ABC △AB AC =120BAC ∠=︒AD AB ⊥6AD =BEF AFG ∠=∠FG CE ⊥CG =BP EQ =PD QD+最小时,M 为平面内一动点,将沿EM 翻折得,请直接写出的最大值.BEM △B EM '△PB '参考答案一、选择题(每题4分,共48分)1-5:CADAB6-10:DAADB二、填空题(每题4分,共32分)19.计算:(1)解:原式.(2)解:原式.20.①②③④互相垂直,那么这两条线段相等21.(1)40,94,99;(2)解:八年级学生的古诗词掌握得较好.从平均数看,七年级平均分92分=八年级平均分92分,从中位数看,七年级92分<八年级中位数94分,所以八年级学生的古诗词掌握得较好.(3)(人)答:估计参加本次比赛成绩不低于90分的学生约为1620人.22.解:(1)设从开始加工到完成这批布艺红包袋一共需要x 天.答:从开始加工到完成这批布艺红包袋.一共需要18天.()()()212141a a a a -+--224141a a a a =--+=-211121xx x x ⎛⎫-÷ ⎪+++⎝⎭2(1)11x x x x x+=⨯=++ADE ∠90ADE DFG ∠+∠=︒AD CD =571420130016201010⨯+⨯=()()3603603204160003604x ++-=-⨯⎡⎤⎣⎦18x =(2)设甲车间每天生产7m 个,乙车间每天生产13m 个布艺红包袋.(个)经检验:是原分式方程的解,且符合题意.∴改进后甲每天产量:(个).答:改进工艺后,甲车间每天生产1120个布艺红包袋.23.(1)(2)当时,随x 增大而减小,当时,随x 增大而增大.(3)或(结果保留一位小数,误差不超过0.2).24.解:(1)过E 作于H ,,,∵中,,,∴,∴,∴,∴∵,EDBH 为矩形.∴,,∵,,,∴(米),答:静静家离耕读园距离为米.(2)∵,,∴∵矩形EDBH ,,∴,16000360472802-⨯=7280728010713m m+=160m =160m =16071120⨯=()()360426244955x x y x x ⎧-+≤<⎪⎪=⎨⎪-<≤⎪⎩04x <<1y 49x <<1y 0.8 3.2x ≤≤ 4.79.0x ≤≤EH AB ⊥90EHA BHE ∠==︒800AC =ABC △90B ∠=︒45BAC ∠=︒9045ACB BAC BAC ∠=︒-∠=︒=∠BA BC =222AC AB BC =+AB BC ==90D B BHE ∠=∠=∠=︒ED =HE BD =ED HB ==90AHE ∠=︒60EAH ∠=︒AH =cos AH AE EAH ===∠90AHE ∠=︒60EAH ∠=︒AE =sin EH AE EAH =⋅∠==BD EH ==CD BD BC =-=-∴总用时:(分),∵5:50-5:40=15(分),∴,∴她们能在5:55前到达耕读园.25.解:(1),代入,,∴.(2)过P 作于点H ,则,设,,,∴,,∴,∴,∴PE最大时,最大,直线AD :,,,,开口向下,对称轴直线,,∴时,,.14.4814.580CD DE EA ++=≈≈14.515<()A -()927029362a a ⎧-+=⎪⎪⎨⎪-+=⎪⎩12a b ⎧=-⎪⎨⎪=⎩21922y x =-+PH EF ⊥90PHE ∠=︒219,22P p p ⎛⎫-+ ⎪⎝⎭∠=∠PHE DOA EPH DAO ∠=∠EPH DAO △∽△PH AO PE AD ==PH PE =()(22PEF C PE PH PE =+=+△PEF C △3y x =+3E p p ⎛⎫+ ⎪ ⎪⎝⎭212526PE p ⎛=-++ ⎝102-<x =0p -<<x =PEF C △356P ⎛⎫ ⎪ ⎪⎝⎭(3),,.26.解:(1).(2)延长EF 至M ,使得,连接BM 、CM 、CF ,,∴,∴,,∴,,,∴,,∴,,,∴,∴,∴,∴,,∴(3)1223M ⎫⎪⎪⎭)2M ()316M --12BE =EM CM =BEF AFG ∠=∠AFE EBF BEF EFG AFG ∠=∠+∠=∠+∠30EBF EFG ∠=∠=︒FG CE ⊥60FEG ∠=︒EM CM BEM DEC EB EC =⎧⎪∠=∠⎨⎪=⎩()SAS BEM DEC △≌△BM CD =120EAM EDC ∠=∠=︒180EBM AEB ∠+∠=︒BM AE ∥CD AD AE ==BM AE =()ASA AEF BMF △≌△FE FM =CF EM ⊥30FCG ∠=︒CG =()max 12PB '=+-。

2024届福建福州部分学校九年纪上学期期末考试语文试题及答案

2024届福建福州部分学校九年纪上学期期末考试语文试题及答案

2024届福建福州部分学校九年纪上学期期末考试语文试题一、积累与运用(25分)1、根据提示,写出相应的古诗文。

(8分)2、走进“福”文化,按要求作答。

福建是中国唯一以“福”字①(guàn)名的省份。

在()传统“福”文化的中国人看来,这个地方的祖先(),起名有水平。

要()福建何以谓“福”,需要从福建省名由来说起,“福建”由福州府和建州府各取首字而来。

这是对“福”的②(qí)愿追求,也是对“福”的具体指向。

“福”是很迷人的字眼。

甲骨文中的“福”是双手捧酒浇在祭台上,从示从畐,顺天垂象,腹满之义。

可见,“福”既要人付出心血与汗水去构造,又是来自上天的幸运,要天人合力就能成全。

八闽地名,福、寿、安、宁皆备,散发浓浓的“福泰永宁,平安长乐”愿求。

这就是“福”文化的心理深层内涵。

(1)根据拼音,依次写出文段①②处对应的汉字。

(2分)①②(2)依次填入文中括号内的词语,全都恰当的一项是()(3分)A.崇拜深谋远虑追究B.崇尚高瞻远瞩追溯C.崇拜高瞻远瞩追溯D.崇尚深谋远虑追究(3)文中画横线的句子有语病,下列修改最恰当的一项是()(3分)A.“福”既要人付出心血与汗水去创造,又是来自上天的幸运,要天人合力就能成全。

B.“福”既要人付出心血与汗水去缔造,又是来自上天的幸运,要天人合力才能成全。

C.“福”既是来自上天的幸运,又要人付出心血与汗水去创造,要天人合力才能成全。

D.“福”既是来自上天的幸运,又要人付出心血与汗水去缔造,要天人合力就能成全。

(4)下列哪幅“福”字最适合陈列在福建博物院“古代文明之光”展厅?请选择并说明理由。

(4分)我选择(),理由是:3、名著阅读交流。

马克思说:“抗争是一种勇气,是一种拯救自己的勇气。

”请从下面三个人物中任选一个,结合相关情节简述他们“抗争”的经过,并谈谈你从中获得的感悟。

(5分)(1)林冲(《水浒传》)(2)保尔·柯察金(《钢铁是怎样炼成的》)(3)徐海东(《红星照耀中国》)二、阅读(65分)(一)(7分)阅读下面诗歌,完成4-5题。

2023-2024 学年第一学期九年级上期末考试语文试题答案

2023-2024 学年第一学期九年级上期末考试语文试题答案

2023- 2024学年第一学期九年级期末考试语文试题参考答案及评分标准一、积累与运用(23分)1. (8分)①飞鸟相与还②乱花渐欲迷人眼③佳木秀而繁阴④窈窕淑女⑤君子好逑⑥但愿人长久⑦千里共婵娟⑧后天下之乐而乐【评分说明】每空 1分。

错字、漏字、添字 , 该空不给分。

2. (9分)(1) (3分) ①溯②蕴③qián (2) (3分) B (3) (3分) C3. (6分)示例一 : 林冲 : 他原是八十万禁军枪棒教头 , 因其妻子被高衙内看上而多次遭到陷害 , 他选择妥协和退让 , 直到在草料场再次遭到陆谦、富安等三人放火暗算后终于爆发 , 提枪戳死他们 , 走上了造反的道路。

感悟 : 人不能始终抱有幻想 , 更不能逆来顺受、委曲求全 , 要敢于与黑恶势力作斗争。

示例二 : 保尔·柯察金 : 他从小在社会最底层饱受折磨和侮辱 , 十月革命爆发后走上革命道路 , 在一次战斗中头部受到重伤 , 后因高强度的工作和久病缠身 , 失去工作能力且双目失明、全身瘫痪 ; 之后开始从事文学创作 , 以笔作为武器 , 开始新的生活。

感悟 : 无论处于怎样的人生逆境 , 我们都应该积极面对 , 英勇顽强、不畏艰难、自强不息 , 敢于与命运抗争。

示例三 : 徐海东 : 他出身贫寒 , 入学后因在“贫儿对富儿”争斗中奋起反抗 , 遭到地主子弟和先生痛打 , 从而脱离学校 ; 长大后 , 参与反对克扣工资的工人罢工 , 之后参加连队 , 开始革命生涯。

感悟 : 面对欺凌、打压 , 要保持正直 , 坚定地追求真理 , 敢于反抗。

【评分说明】按等级评分 , 不按点评分。

四等0分 , 无情节且感悟错误或没有感悟; 三等1-2分 , 情节不支持 , 感悟不准确 ; 二等3-5分 , 有情节支持 , 感悟基本正确 , ; 一等6分 , 情节充分恰切 , 感悟深入或全面。

补充:情节4分,起因、经过、结果各1分(其中,若只有章回标题,无情节描述只给1分),感悟2分九年级语文期末考试参考答案及评分标准第1页(共4页)二、阅读(67分)(一) (7分)4. (3分) 远远望去 , 长江浩荡悠远 , 雾气笼罩的碧波奔流不息。

北京市石景山区2023-2024学年九年级(上)期末语文试题(含解析)

北京市石景山区2023-2024学年九年级(上)期末语文试题(含解析)

一、基础·运用(共13 分)班级开展以“相约最美古诗词”为主题的综合性学习活动。

各组开展专题研究,在展示交流会上分享成果,并结集成册。

请你完成下列任务。

1.在专题探究报告集的封面上用正楷字书写“相约最美古诗词”作为标题。

2.第一组同学向大家介绍“《诗经》之美”。

他们对文案中的字音和字形解说不正确...的一项是()不读《诗经》,不知道国人的浪漫;不读《诗经》,不知道国人的优雅。

《诗经》之美,美到极致,其质朴清新的语言美、重章叠.句的音韵美、“赋比兴.”的手法美、“兴观群怨”的功能美,惊艳了三千年的时光。

孔子说:“诗三百皆可弦歌之。

”梁启超说:“真金美玉、字字可信者,《诗经》其首也。

”它备.受历代读书人推崇,是国人的精神家底。

它来自远古,却把光照进我们当下的生活,成为每个国人心中最温暖的慰藉.。

A.“叠”在此处是“重复”的意思,应写作“叠”B.“兴”在此处指诗歌的表现手法,应读作“xìnɡ”C.“备”在此处是“完全”的意思,应写作“备”D.“藉”在此处是“想念”的意思,应读作“jí”3.第二组同学向大家解说“宋词之美Top10”的专题研究成果。

下面文案中成语使用不恰当...的一项是()物阜民丰的大宋王朝已经消逝在历史的长河中了,但被称为“一代之文学”的宋词,却在大浪淘沙....,那些文采斐然、流传千古的佳作,....中毫不褪色,情韵依旧。

宋词之美,美不胜收至今读来依然令人拍案叫绝....。

TOP10在画“北宋词人朋友圈”时,我们发现了一个有意思的现象,晏殊、欧阳修、王安石、苏轼的好友中,都有一个名字赫然在列——张先。

俗话说物以类聚....,能与这些大咖相交甚厚,他当然不是庸常之辈。

“云破月来花弄影”“不如桃杏,犹解嫁东风”“天不老,情难绝,心似双丝网,中有千千结”……层出不穷的“金句”让他俘获了北宋词坛一众大家的心。

A.大浪淘沙B.美不胜收C.拍案叫绝D.物以类聚4.第三组同学向大家介绍“诗仙李白的仙气从何而来”的专题研究成果。

华师版九年级数学上册期末测试题(含答案)

华师版九年级数学上册期末测试题(含答案)

华东师大版数学九年级上期期末测试题一、选择题1. 下列方程中, 是一元二次方程的是(A )221x y += (B )21121x x =+ (C )24535x x --= (D0= 2. 下列各组二次根式中, 化简后是同类二次根式的是(A)(B和3 (C)n(D3. 下列说法正确的是(A )做抛掷硬币的实验, 如果没有硬币用图钉代替硬币, 做出的实验结果是一致的 (B )抛掷一枚质地均匀的硬币, 已连续掷出5次正面, 则第6次一定掷出背面 (C )某种彩票中奖的概率是1%, 因此买100张该彩票一定会中奖(D )天气预报说明天下雨的概率是50%, 也就是说明天下雨和不下雨的机会是均等的4.若 = , 则 的值为 (A )5 (B )15 (C )3 (D )135. △ 的顶点 的坐标为 , 先将△ 沿 轴对折, 再向左平移两个单位, 此时 点的坐标为(A )(2,4)- (B )(0,4)- (C )(4,4)-- (D )(0,4)6. 用配方法解方程 , 下列配方变形正确的是(A )2(2)2x += (B )2(2)2x -= (C )2(2)4x += (D )2(2)4x -= 7. 如图(1), 小正方形的边长均为1, 则下列图中的三角形 (阴影部分)与△ABC 相似的是8. 某服装店搞促销活动, 将一种原价为56元的衬衣第一次降价后, 销量仍然不好, 又进行第二次降价, 两次降价的百分率相同, 现售价为31.5元, 设降价的百分率为 , 则列出方程正确的是 (A )256(1)31.5x -= (B )56(1)231.5x -÷= (C )256(1)31.5x += (D )231.5(1)56x -=二、填空题: (本大题共8个小题, 每小题3分, 共24分.请把答案填在题中的横线上. )(B )(C )(D )(A )CAB图(1)9. 若二次根式有意义, 则实数的取值范围是__________.10. 在比例尺为1∶4000000的地图上, 量得甲、乙两地距离为2.5cm, 则甲、乙两地的实际距离为____________km.11. 如图(4), 在菱形中, 、分别是、的中点,•如果, 那么菱形的周长__________.12. 有30张扑克牌, 牌面朝下, 随机抽出一张记下花色再放回;洗牌后再这样抽, 经历多次试验后, 得到随机抽出一张牌是红桃的概率为20%, 则红桃牌大约有张.13. 关于的一元二次方程有实数根, 则的取值范围是________.14. 如图(5), 在中, ∠是直角, , ,矩形的一边在上, 顶点、分别在、上, 若∶=1∶4, 则矩形的面积是;15. 设, 是关于的方程的两个实数根,且.则= .三、(本大题共4个小题, 每小题6分, 共24分. )16. 化简:· . 17. 解方程:.18. 解方程: . 19. 已知中, , ,, 求和.20. (2007山东青岛)一艘轮船自西向东航行, 在A处测得东偏北21.3°方向有一座小岛C, 继续向东航行60海里到达B处, 测得小岛C此时在轮船的东偏北63.5°方向上. 之后, 轮船继续向东航行多少海里, 距离小岛C最近?(参考数据:sin21.3°≈ , tan21.3°≈ , sin63.5°≈ , tan63.5°≈2)((第16题图) 四、(本大题共4个小题, 每小题7分, 共28分. )21.一个不透明的袋子中装有三个完全相同的小球, 小球上分别标有数字3, 4, 5, •从袋中随机取出一个小球, 用小球上的数字作十位, 然后放回, •搅匀后再取出一个小球, 用小球上的数字作个位, 这样组成一个两位数;试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为8的两位数的概率是多少?•用列表法或画树状图加以说明.22. 如图(7), 在△ 中, 是∠ 的平分线, 的垂直平分线 交 于 , 交 的延长线于 , 连结 .求证: · . 五、(本大题共2个小题, 每题9分, 共18分. ) 29.为适应市场需要, 某灯具商店采购了一批某种型号的节能灯, 共用去400元, 在搬运过程中, 不小心打碎了5盏, 该店把余下的灯每盏加价4元全部售出;仍然获得利润90元.求每盏灯的进价.A BC 东参考答案与评分建议一、CBDAA CBADA CC二、13. 14. 100 15. 40 16. 17. 6 18. 且 19. 100 20. ②③三、21. 解:原式 ………………………………(4分)3a = ………………………………(6分) 22. 解: ………………………………(2分)2(1)0x += ………………………………(4分)1x =- ………………………………(6分) 23. 解: ( ) ……………(4分)125,2x x ==- (125,2x x ==-) ………………………………(6分)24. 解: 在 中, ∵∴ , ……………(4分)∴ , ∴ ……………(6分)四、25.解:可以组成33, 34, 35, 43, 44, 45, 53, 54, 55 ……………(2分)……………(5分)3 4 4 5 3 3 4 5 3 45 5十位上的数字与个位上的数字之和为8的两位数的概率是:……………(7分) 26. (1)解: 设抛物线为:∵抛物线的图象与 轴交于 、 两点, 且经过点∴ , ∴ ……………(4分)∴抛物线的解析式为2(2)(1)y x x =+-(也可以是2224y x x =+-)…………(5分) (2)2224y x x =+-2211192()42()4222y x x x =++--=+- ∴抛物线的对称轴为12x =-(直接用公式求出也得分)……………(7分)27. 证明: ∵ 是 的垂直平分线, ∴ , …………(2分) 又∵ 平分 , ∴ ……………(3分)∵,ADF B BAD DAF CAD CAF ∠=∠+∠∠=∠+∠ ∴B CAF ∠=∠ ……………(4分) ∴BAF AFC ∆∆ ……………(5分) ∴ , 即 ……………(6分)∴2FD FB FC =⋅ ……………(7分)28. 解: 根据题意得: ……………(1分)∴222121212()2x x x x x x +=+- ……………(2分)2(2)(21)11k k =+-+= ……………(3分) 解得124,2k k =-= ……………(4分)当 时, ……………(5分)当 时, , 不合题意, 舍去……………(6分) ∴4k =- ……………(7分)五、解: 设每盏灯的进价为 元, ……………(1分) 根据题意列方程得: ……………(4分) 解方程得: ……………(7分)经检验 都是原方程的根, 但 不合题意, 舍去∴10x = ……………(8分) 答: 每盏灯的进价为10元.……………(9分) 30. 解:正确画出图形得5分方法一: 如图(8.1)(没有考虑人的高度不扣分)①将标杆EF 立在一个适当的位置; ……………(6分)②人 站在一个适当的位置: 通过标杆的顶部 , 刚好看到旗杆的顶部 ……(7分) ③测出人的身高CD ,标杆的高度EF ,人到标杆DF 的距离和人到旗杆DB 的距离 …(8分) ④计算旗杆的高度: ∵ ,∴ , 所以旗杆的高度 …………(9分) (方法二: 如图(8.2)①将平面镜放在 处, ……………(6分)②人 走到适当的地方: 刚好能从平面镜 中看到旗杆的顶部 …………(7分) ③测出人的高度 , 人到平面镜的距离 , 平面镜到旗杆底部的距离 …(8分) ④计算出旗杆的高度: ∵ ,∴ , 所以旗杆的高度 …………(9分) )六、31.(1)证明:∵ , ∴∴BPD BMA ∆∆…………(1分)∴,DP BP BPPD AM AM AB AB==…………(2分) 同理: …………(3分) 又∵ 是等边三角形, ∴ ∴12()BP CP BP CPh h AM AM h h AB AC BC BC+=+=+=…………(4分) (也可以用面积相等、三角函数来证明) (2)123h h h h ++=…………(5分) 过 作 ∥ , 交 于 , 交 于 , 交 于 又∵ , ∴ …………(6分)由(1)可得: …………(7分) ∴123h h h AN MN h ++=+=…………(8分) (3)123h h h h ++= …………(10分)32. 解: (1)∵直线 经过 轴上的点 和 轴上的点 ∴ , ∴, ∴ …………(1分)又∵抛物线2y x bx c =++经过A 、B 两点∴2204488b b c c c=-⎧=++⎧⇒⎨⎨=--=⎩⎩…………(2分) ∴抛物线为822--=x x y …………(3分)(2)由(1)可得 (注意: 可以由公式求出, 也可由配方得出)…………(4分) 过 作 轴的垂线, 交 轴于 ∴1OG =ABD AOB AGD AOB AOBD OBDG S S S S S S ∆∆∆∆=-=+-四边形梯形111(89)1(41)9486222=⨯+⨯+⨯-⨯-⨯⨯=…………(6分) (3)过 作 轴, 交 于 , 交抛物线于 , 设 则2(,28);(,28)H t t N t t t ---由图可知: …………(7分)①当 时, 解得: 都不合题意, 舍去…………(8分) ②当 时, 解得: (不合题意, 舍去)…………(9分) 由①和②可得: ∴22228028()28339t t --=-⨯-=- ∴280(,)39N -……………………(10分)。

九年级(上)期末数学试卷(含答案)

九年级(上)期末数学试卷(含答案)

九年级(上)期末数学试卷一、选一选,本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.2.(3分)将6.18×10﹣3化为小数是()A.0.000618 B.0.00618 C.0.0618 D.0.6183.(3分)有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b|D.b+c>04.(3分)下列运算正确的是()A.a0=0 B.a3+a2=a5 C.a2•a﹣1=a D. +=5.(3分)若多边形的边数由3增加到n(n为大于3的整数)则其外角和的度数()A.增加B.减少C.不变D.不能确定6.(3分)已知k1>0>k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致是()A.B.C.D.7.(3分)函数y=中,自变量x的取值范围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤58.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5709.(3分)已知圆锥的底面面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.18cm2D.27cm210.(3分)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C二、认真填一填,本大题共8小题,每小题4分,共32分.11.(4分)因式分解:x2y﹣4y=.12.(4分)购买单价为a元的笔记本3本和单价为b元的铅笔5支应付款元.13.(4分)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是元.14.(4分)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,可列方程.15.(4分)一直角三角形的两边长分别为5和12,则第三边的长是.16.(4分)如图,在△ABC中,两条中线BE、CD相交于点O,若△ABC的周长为8cm,则△ADE的周长为.17.(4分)如图,是一个圆心人工湖的平面图,弦AB是湖上的一座桥,已知桥长100m,测得圆周角∠ACB=30°,则这个人工湖的直径为m.18.(4分)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.三、解答题(一):本大题共5小题,共38分.解答应写出必要的文字说明、证明过程或演算步骤.19.(7分)计算:﹣()﹣1+(﹣1)﹣20080﹣|﹣2|.20.(7分)化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.21.(8分)(1)作Rt△ABC的外接圆⊙P(不写作法,保留作图痕迹)(2)Rt△ABC中,若∠C=90°,BC=8,AC=6.求:⊙P的面积.22.(8分)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,求建筑物AB的高度.(注:结果保留到0.1,≈1.414,≈1.732)23.(8分)甘肃省省府兰州,又名金城,在金城,黄河母亲河通过自身文化的演绎,衍生和流传了独特的“金城八宝”美食,“金城八宝”美食中甜品类有:味甜汤糊“灰豆子”、醇香软糯“甜胚子”、生津润肺“热冬果”、香甜什锦“八宝百合”;其他类有:青白红绿“牛肉面”、酸辣清凉“酿皮子”、清爽溜滑“浆水面”、香醇肥美“手抓羊肉”,李华和王涛同时去品尝美食,李华准备在“甜胚子、牛肉面、酿皮子、手抓羊肉”这四种美食中选择一种,王涛准备在“八宝百合、灰豆子、热冬果、浆水面”这四种美食中选择一种.(甜胚子、牛肉面、酿皮子、手抓羊肉分别记为A,B,C,D,八宝百合、灰豆子、热冬果、浆水面分别记为E,F,G,H)(1)用树状图或表格的方法表示李华和王涛同学选择美食的所有可能结果;(2)求李华和王涛同时选择的美食都是甜品类的概率.四、解答题(二):本大题共5小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤24.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.25.(10分)如图,在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为﹣1.(1)求点B的坐标及k的值;(2)求直线y=﹣2x+1、直线y=kx+4与y轴所围成的△ABC的面积.26.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.27.(10分)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.28.(12分)如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.参考答案与试题解析一、选一选,本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.【解答】解:|﹣2|=2.故选:B.2.(3分)将6.18×10﹣3化为小数是()A.0.000618 B.0.00618 C.0.0618 D.0.618【解答】解:∵0.00618=6.18×10﹣3,∴6.18×10﹣3=0.00618,故选:B.3.(3分)有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b|D.b+c>0【解答】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.4.(3分)下列运算正确的是()A.a0=0 B.a3+a2=a5 C.a2•a﹣1=a D. +=【解答】解:(A)a0=1(a≠0),故A错误;(B)a2与a3不是同类项,故B错误;(D)原式=,故D错误;故选:C.5.(3分)若多边形的边数由3增加到n(n为大于3的整数)则其外角和的度数()A.增加B.减少C.不变D.不能确定【解答】解:因为多边形外角和固定为360°,所以外角和的读数是不变的.故选:C.6.(3分)已知k1>0>k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致是()A.B.C.D.【解答】解:∵k1>0>k2,∴函数y=k1x的结果第一、三象限,反比例y=的图象分布在第二、四象限.故选:C.7.(3分)函数y=中,自变量x的取值范围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤5【解答】解:由题意得,x﹣5≥0,解得x≥5.故选:C.8.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.9.(3分)已知圆锥的底面面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.18cm2D.27cm2【解答】解:∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选:A.10.(3分)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,故中间一段图象对应的路径为,又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.二、认真填一填,本大题共8小题,每小题4分,共32分.11.(4分)因式分解:x2y﹣4y=y(x﹣2)(x+2).【解答】解:x2y﹣4y=y(x2﹣4)=y(x﹣2)(x+2).故答案为:y(x﹣2)(x+2).12.(4分)购买单价为a元的笔记本3本和单价为b元的铅笔5支应付款3a+5b 元.【解答】解:应付款3a+5b元.故答案为:3a+5b.13.(4分)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是1000元.【解答】解:设这台空调的进价为x元,根据题意得:2000×0.6﹣x=x×20%,解得:x=1000.故这台空调的进价是1000元.故答案为:1000.14.(4分)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,可列方程=.【解答】解:由题意可得,=,故答案为:=.15.(4分)一直角三角形的两边长分别为5和12,则第三边的长是13或.【解答】解:设第三边为x,(1)若12是直角边,则第三边x是斜边,由勾股定理得:52+122=x2,∴x=13;(2)若12是斜边,则第三边x为直角边,由勾股定理得:52+x2=122,∴x=;∴第三边的长为13或.故答案为:13或.16.(4分)如图,在△ABC中,两条中线BE、CD相交于点O,若△ABC的周长为8cm,则△ADE的周长为4cm.【解答】解:∵在△ABC中,两条中线BE、CD相交于点O,∴DE是△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴△ABC的周长:△ADE的周长=,∵△ABC的周长为8cm,∴△ADE的周长为4cm,故答案为:4cm.17.(4分)如图,是一个圆心人工湖的平面图,弦AB是湖上的一座桥,已知桥长100m,测得圆周角∠ACB=30°,则这个人工湖的直径为200m.【解答】解:连结OA、OB,如图,∵∠AOB=2∠ACB=2×30°=60°,而OA=OB,∴△OAB为等边三角形,∴OA=AB=100m,∴个人工湖的直径为200m.故答案为200m.18.(4分)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.【解答】解:按一定规律排列的一列数依次为:,,,,,,…,按此规律,第n个数为,∴当n=100时,=,即这列数中的第100个数是,故答案为:.三、解答题(一):本大题共5小题,共38分.解答应写出必要的文字说明、证明过程或演算步骤.19.(7分)计算:﹣()﹣1+(﹣1)﹣20080﹣|﹣2|.【解答】解:原式=2﹣+3﹣﹣1﹣(2﹣)=2﹣2+=.20.(7分)化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.【解答】解:(﹣)÷=[﹣)÷=(﹣)÷=×=x+2,∵x2﹣4≠0,x﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x=1代入,原式=3.21.(8分)(1)作Rt△ABC的外接圆⊙P(不写作法,保留作图痕迹)(2)Rt△ABC中,若∠C=90°,BC=8,AC=6.求:⊙P的面积.【解答】解:(1)Rt△ABC的外接圆⊙P如图所示:(2)在Rt△ACB中,∵∠C=90°,AC=6,BC=8,∴AB==10,∴⊙P的面积=25π.22.(8分)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,求建筑物AB的高度.(注:结果保留到0.1,≈1.414,≈1.732)【解答】解:设AB=x米,在Rt△ABC中,∵∠ACB=45°,∴BC=AB=x米,则BD=BC+C D=x+100(米),在Rt△ABD中,∵∠ADB=30°,∴tan∠ADB==,即=,解得:x=50+50≈136.6,即建筑物AB的高度约为136.6米.23.(8分)甘肃省省府兰州,又名金城,在金城,黄河母亲河通过自身文化的演绎,衍生和流传了独特的“金城八宝”美食,“金城八宝”美食中甜品类有:味甜汤糊“灰豆子”、醇香软糯“甜胚子”、生津润肺“热冬果”、香甜什锦“八宝百合”;其他类有:青白红绿“牛肉面”、酸辣清凉“酿皮子”、清爽溜滑“浆水面”、香醇肥美“手抓羊肉”,李华和王涛同时去品尝美食,李华准备在“甜胚子、牛肉面、酿皮子、手抓羊肉”这四种美食中选择一种,王涛准备在“八宝百合、灰豆子、热冬果、浆水面”这四种美食中选择一种.(甜胚子、牛肉面、酿皮子、手抓羊肉分别记为A,B,C,D,八宝百合、灰豆子、热冬果、浆水面分别记为E,F,G,H)(1)用树状图或表格的方法表示李华和王涛同学选择美食的所有可能结果;(2)求李华和王涛同时选择的美食都是甜品类的概率.【解答】解:(1)列表得:E F G H李华王涛A AE AF AG AHB BE BF BG BHC CE CF CG CHD DE DF DG DH由列表可知共有16种情况;(2)由(1)可知有16种情况,其中李华和王涛同时选择的美食都是甜品类的情况有AE,AF,AG三种情况,所以李华和王涛同时选择的美食都是甜品类的概率=.四、解答题(二):本大题共5小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤24.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=150;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240名学生最喜爱足球活动.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.25.(10分)如图,在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为﹣1.(1)求点B的坐标及k的值;(2)求直线y=﹣2x+1、直线y=kx+4与y轴所围成的△ABC的面积.【解答】解:(1)∵直线y=﹣2x+1过点B,点B的横坐标为﹣1,∴y=2+1=3,∴B(﹣1,3),∵直线y=kx+4过B点,∴3=﹣k+4,解得:k=1;(2)∵k=1,∴一次函数解析式为:y=x+4,∴A(0,4),∵y=﹣2x+1,∴C(0,1),∴AC=4﹣1=3,∴△ABC的面积为:×1×3=.26.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.27.(10分)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.【解答】解:(1)如图所示,连接BO,∵∠ACB=30°,∴∠OBC=∠OCB=30°,∵DE⊥AC,CB=BD,∴Rt△DCE中,BE=CD=BC,∴∠BEC=∠BCE=30°,∴△BCE中,∠EBC=180°﹣∠BEC﹣∠BCE=120°,∴∠EBO=∠EBC﹣∠OBC=120°﹣30°=90°,∴BE是⊙O的切线;(2)当BE=3时,BC=3,∵AC为⊙O的直径,∴∠ABC=90°,又∵∠ACB=30°,∴AB=tan30°×BC=,∴AC=2AB=2,AO=,∴阴影部分的面积=半圆的面积﹣Rt△ABC的面积=π×AO2﹣AB×BC=π×3﹣××3=﹣.28.(12分)如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.【解答】方法一:解:(1)∵对称轴为直线x=2,∴设抛物线解析式为y=a(x﹣2)2+k.将A(﹣1,0),C(0,5)代入得:,解得,∴y=﹣(x﹣2)2+9=﹣x2+4x+5.(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.设P(x,﹣x2+4x+5),如答图2,过点P作PN⊥y轴于点N,则PN=x,ON=﹣x2+4x+5,∴MN=ON﹣OM=﹣x2+4x+4.S四边形MEFP=S梯形OFPN﹣S△PMN﹣S△OME=(PN+OF)•ON﹣PN•MN﹣OM•OE=(x+2)(﹣x2+4x+5)﹣x•(﹣x2+4x+4)﹣×1×1=﹣x2+x+=﹣(x﹣)2+∴当x=时,四边形MEFP的面积有最大值为,把x=时,y=﹣(﹣2)2+9=.此时点P坐标为(,).(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3.令y=﹣x2+4x+5=3,解得x=2±.∵点P在第一象限,∴P(2+,3).四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF 的周长将取得最小值.如答图3,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.设直线PM2的解析式为y=mx+n,将P(2+,3),M2(1,﹣1)代入得:,解得:m=,n=﹣,∴y=x﹣.当y=0时,解得x=.∴F(,0).∵a+1=,∴a=.∴a=时,四边形PMEF周长最小.方法二:(1)略.(2)连接MF,过点P作x轴垂线,交MF于点H,有最大值时,四边形MEFP面积最大.显然当S△PMF当a=1时,E(1,0),F(2,0),∵M(0,1),∴l MF:y=﹣x+1,设P(t,﹣t2+4t+5),H(t,﹣t+1),=(P Y﹣H Y)(F X﹣M X),∴S△PMF=(﹣t2+4t+5+t﹣1)(2﹣0)=﹣t2+t+4,∴S△PMF最大值为,∴当t=时,S△PMF=EF×MY=×1×1=,∵S△MEF的最大值为+=.∴S四边形MEFP(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3,∴﹣x2+4x+5=0,解得:x=2±,∵点P在第一象限,∴P(2+,3),PM、EF长度固定,当ME+PF最小时,PMEF的周长取得最小值,将点M向右平移1个单位长度(EF的长度),得M1(1,1),∵四边形MEFM1为平行四边形,∴ME=M1F,作点M1关于x轴的对称点M2,则M2(1,﹣1),∴M2F=M1F=ME,当且仅当P,F,M2三点共线时,此时ME+PF=PM2最小,∵P(2+,3),M2(1,﹣1),F(a+1,0),∴K PF=K M1F,∴,∴a=.。

九年级(上)期末数学试卷(附答案解析)

九年级(上)期末数学试卷(附答案解析)

九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列事件中是必然事件的是()A.平安夜下雪B.地球在自转的同时还不停的公转C.所有人15岁时身高必达到1.70米D.下雨时一定打雷2.下列图形既是轴对称图形又是中心对称图形的是()A.B. C.D.3.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=54.下列关系式中:①y=2x;;③y=﹣;④y=5x+1;⑤y=x2﹣1;⑥y=;⑦x y=11,y是x的反比例函数的共有()A.4个B.3个C.2个D.1个5.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2 B.3 C.4 D.56.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小7.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣18.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1 B.2π﹣1 C.π﹣1 D.π﹣29.已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,1)C.(2,1)D.(3,3)10.如图,D、E分别是△ABC边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则的值为()A.B.C.D.11.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题(共6小题,每小题3分,满分18分)13.在比例尺为1:1000 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离km.14.如果两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为.15.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.16.如图,正六边形ABCDEF内接于圆O,半径为4,则这个正六边形的边心距OM为.17.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.18.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB 的度数为(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示).(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是.三、解答题(共7小题,满分66分)19.已知关于x的一元二次方程x2+2x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,求关于x的二次函数y=x2+2x+k﹣1的图象的对称轴和顶点坐标.20.在x2□2x□1的空格中,任意填上“+”“﹣”,求其中能构成完全平方的概率(列出表格或画出树形图)21.如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(﹣6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式.(2)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值.22.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.23.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为元,今年生产的这种玩具每件的出厂价为元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.24.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=5,AD=时,求线段BG的长.25.已知二次函数的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列事件中是必然事件的是()A.平安夜下雪B.地球在自转的同时还不停的公转C.所有人15岁时身高必达到1.70米D.下雨时一定打雷【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、平安夜下雪是随机事件,故A错误;B、地球在自转的同时还不停的公转,是必然事件,故B正确;C、所有人15岁时身高必达到1.70米是随机事件,故C错误;D、下雪时一定打雷是不可能事件,故D错误;故选:B.2.下列图形既是轴对称图形又是中心对称图形的是()A.B. C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可作出判断.【解答】解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,也不是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:A.3.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=5【分析】方程常数项移到右边,两边加上4变形后,即可得到结果.【解答】解:方程移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3.故选A.4.下列关系式中:①y=2x;;③y=﹣;④y=5x+1;⑤y=x2﹣1;⑥y=;⑦xy=11,y是x的反比例函数的共有()A.4个B.3个C.2个D.1个【分析】分别根据反比例函数、二次函数及一次函数的定义对各小题进行逐一分析即可.【解答】解:①y=2x是正比例函数;可化为y=5x,是正比例函数;③y=﹣符合反比例函数的定义,是反比例函数;④y=5x+1是一次函数;⑤y=x2﹣1是二次函数;⑥y=不是函数;⑦xy=11可化为y=,符合反比例函数的定义,是反比例函数.故选C.5.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2 B.3 C.4 D.5【分析】根据垂径定理和相交弦定理求解.【解答】解:连接OD.由垂径定理得HD=,由勾股定理得HB=1,设圆O的半径为R,在Rt△ODH中,则R2=()2+(R﹣1)2,由此得2R=3,或由相交弦定理得()2=1×(2R﹣1),由此得2R=3,所以AB=3故选B.6.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【分析】根据反比例函数的性质:对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大解答即可.【解答】解:函数y=的图象位于第一、第三象限,A正确;图象既是轴对称图形又是中心对称图形,B正确;当x>0时,y随x的增大而减小,C错误;当x<0时,y随x的增大而减小,D正确,由于该题选择错误的,故选:C.7.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣1【分析】抛物线y=﹣x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又∵对称轴是直线x=﹣=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大而增大.故选B.8.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1 B.2π﹣1 C.π﹣1 D.π﹣2【分析】已知BC为直径,则∠CDB=90°,在等腰直角三角形ABC中,CD垂直平分AB,CD=DB,D为半圆的中点,阴影部分的面积可以看做是扇形ACB的面积与△ADC的面积之差.【解答】解:在Rt△ACB中,AB==2,∵BC是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB中,CD垂直平分AB,CD=BD=,∴D为半圆的中点,S阴影部分=S扇形ACB﹣S△ADC=π×22﹣×()2=π﹣1.故选A.9.已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,1)C.(2,1)D.(3,3)【分析】先根据点平移的规律得到A点平移后的对应点的坐标为(4,6),然后根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k求解.【解答】解:∵线段AB向左平移一个单位,∴A点平移后的对应点的坐标为(4,6),∴点C的坐标为(4×,6×),即(2,3).故选A.10.如图,D、E分别是△ABC边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则的值为()A.B.C.D.【分析】由S△BDE:S△CDE=1:3,得到=,于是得到=,根据DE∥AC,推出△BDE∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵S△BDE:S△CDE=1:3,∴=,∴=,∵DE∥AC,∴△BDE∽△ABC,∴==,故选D.11.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)【分析】作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH﹣OB=3﹣2=1,于是可写出C点坐标.【解答】解:作CH⊥x轴于H,如图,∵点B的坐标为(2,0),AB⊥x轴于点B,∴A点横坐标为2,当x=2时,y=x=2,∴A(2,2),∵△ABO绕点B逆时针旋转60°得到△CBD,∴BC=BA=2,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=,BH=CH=3,OH=BH﹣OB=3﹣2=1,∴C(﹣1,).故选:A.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.二、填空题(共6小题,每小题3分,满分18分)13.在比例尺为1:1000 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离150 km.【分析】设两地的实际距离为xcm,根据比例尺的定义得到15:x=1:1000 000,然后根据比例的性质计算出x,再把单位由cm化为km即可.【解答】解:设两地的实际距离为xcm,根据题意得15:x=1:1000 000,所以x=15000000cm=150km.故答案为150.14.如果两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为4:9.【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【解答】解:∵两个相似三角形的相似比为2:3,∴这两个相似三角形的面积比为4:9.15.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有18个.【分析】让球的总数×黄色玻璃球的概率即为所求的黄色玻璃球的球数.【解答】解:∵摸到红球、黄球、蓝球的频率为35%、25%和40%,∴摸到黄球的概率为0.25,故口袋中黄色玻璃球有0.25×72=18(个).故答案为:18.16.如图,正六边形ABCDEF内接于圆O,半径为4,则这个正六边形的边心距OM为2.【分析】由正六边形的性质得出∠AOM=60°,OA=4,求出∠OAM=30°,由含30°角的直角三角形的性质得出OM=OA=2即可.【解答】解:∵六边形ABCDEF是正六边形,OM⊥AC,∴∠AOM=60°,∠OMA=90°,OA=4,∴∠OAM=30°,∴OM=OA=2,即这个正三角形的边心距OM为2;故答案为:2.17.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3﹣1=2.故答案为:2.18.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB 的度数为30°(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示)90°﹣α.(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是45°<α<60°.【分析】(1)由条件可得出AB=BC=AC,再利用旋转可得出QM=MC,证得CB=CD=BA,再由三角形外角的性质即可得出结论;(2)由(1)可得BM为AC的垂直平分线,结合条件可以得出Q,C,A在以P为圆心,PA为半径的圆上,由圆周角定理可得∠ACQ=∠APQ=α,可得出∠CDB和α的关系;(3)借助(2)的结论和PQ=QD,可得出∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,结合∠BAD >∠PAD>∠MAD,代入可得出α的范围.【解答】解:(1)如图1,∵BA=BC,∠BAC=60°,∴AB=BC=AC,∠ABC=60°,∵M为AC的中点,∴MB⊥AC,∠CBM=30°,AM=MC.∵PQ由PA旋转而成,∴AP=PQ=QM=MC.∵∠AMQ=2α=120°,∴∠MCQ=60°,∠QMD=30°,∴∠MQC=60°.∴∠CDB=30°.故答案为:30°;(2)如图2,连接PC,∵由(1)得BM垂直平分AC,∴AP=PC,∠ADB=∠CDB,∠PAD=∠PCD,又∵PQ=PA,∴PQ=PC=PA,∴Q,C,A在以P为圆心,PA为半径的圆上,∴∠ACQ=∠APQ=α,∴∠BAC=∠ACD,∴DC∥BA,∴∠CDB=∠ABD=90°﹣α.故答案为:90°﹣α;(3)∵∠CDB=90°﹣α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD,∴2α>180°﹣2α>α,∴45°<α<60°.故答案为:45°<α<60°.三、解答题(共7小题,满分66分)19.已知关于x的一元二次方程x2+2x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,求关于x的二次函数y=x2+2x+k﹣1的图象的对称轴和顶点坐标.【分析】(1)根据一元二次方程x2+2x+k﹣1=0有实数根,可推△≥0,求出k的取值范围,得出k 的数值即可;(2)分别把k的值代入方程2x2+4x+k﹣1=0,解得结果根据方程有两个非零的整数根进行分析,确定k的值,进一步利用二次函数的性质确定对称轴和顶点坐标.【解答】解:(1)∵关于x的一元二次方程x2+2x+k﹣1=0有实数根,∴△=4﹣4(k﹣1)≥0.∴k≤2.∵k为正整数,∴k=1,2;(2)设方程x2+2x+k﹣1=0的两根为x1,x2,则x1+x2=﹣2,x1•x2=k﹣1,当k=1时,方程x2+2x+k﹣1=0有一个根为零;当k=2时,方程x2+2x+k﹣1=0有两个相同的非零实数根﹣1.k=2符合题意.二次函数y=x2+2x+1=(x+1)2,对称轴是x=﹣1,顶点坐标是(﹣1,0).20.在x2□2x□1的空格中,任意填上“+”“﹣”,求其中能构成完全平方的概率(列出表格或画出树形图)【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中能构成完全平方的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有4种等可能的结果,其中能构成完全平方的有2种情况,∴其中能构成完全平方的概率为:=.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(﹣6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式.(2)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值.【分析】(1)先由点C的坐标求出反比例函数的关系式,再由DE=3,求出点D的坐标,把点C,点D的坐标代入一次函数关系式求出k,b即可求一次函数的关系式.(2)由图象可知:一次函数的值小于反比例函数的值.【解答】解:(1)点C(﹣6,﹣1)在反比例函数y=的图象上,∴m=﹣6×(﹣1)=6,∴反比例函数的关系式为y=,∵点D在反比例函数y=上,且DE=3,∴y=3,代入求得:x=2,∴点D的坐标为(2,3).∵C、D两点在直线y=kx+b上,∴,解得:,∴一次函数的关系式为y=x+2.(2)由图象可知:当x<﹣6或0<x<2时,一次函数的值小于反比例函数的值.22.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.【分析】(1)由同弧所对的圆周角相等求得∠CAB=∠CDB=40°,然后根据平角是180°求得∠BPD=115°;最后在△BPD中依据三角形内角和定理求∠B即可;(2)过点O作OE⊥BD于点E,则OE=3.根据直径所对的圆周角是直角,以及平行线的判定知OE∥AD;又由O是直径AB的半径可以判定O是AB的中点,由此可以判定OE是△ABD的中位线;最后根据三角形的中位线定理计算AD的长度.【解答】解:(1)∵∠CAB=∠CDB(同弧所对的圆周角相等),∠CAB=40°,∴∠CDB=40°;又∵∠APD=65°,∴∠BPD=115°;∴在△BPD中,∴∠B=180°﹣∠CDB﹣∠BPD=25°;(2)过点O作OE⊥BD于点E,则OE=3.∵AB是直径,∴AD⊥BD(直径所对的圆周角是直角);∴OE∥AD;又∵O是AB的中点,∴OE是△ABD的中位线,∴AD=2OE=6.23.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为(10+7x)元,今年生产的这种玩具每件的出厂价为(12+6x)元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.【分析】(1)根据题意今年这种玩具每件的成本比去年成本增加0.7x倍,即为(10+10•0.7x)元/件;这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,即为(12+12•0.5x)元/件;(2)今年这种玩具的每件利润y等于每件的出厂价减去每件的成本价,即y=(12+6x)﹣(10+7x),然后整理即可;(3)今年的年销售量为(2+2x)万件,再根据年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量,得到w=2(1+x)(2﹣x),然后把它配成顶点式,利用二次函数的最值问题即可得到答案.【解答】解:(1)10+7x;12+6x;(2)y=(12+6x)﹣(10+7x),∴y=2﹣x (0<x≤1);(3)∵w=2(1+x)•y=2(1+x)(2﹣x)=﹣2x2+2x+4,∴w=﹣2(x﹣0.5)2+4.5∵﹣2<0,0<x≤1,∴w有最大值,∴当x=0.5时,w最大=4.5(万元).答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.24.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=5,AD=时,求线段BG的长.【分析】(1)由△ABC是等腰直角三角形和ADEF是正方形得到判断△ABD≌△ACF的条件;(2)由全等得到∠BGC=90°,利用勾股定理计算即可.【解答】解:(1)BD=CF成立.理由:∵△ABC是等腰直角三角形,∴AB=AC,∵ADEF是正方形,∴AD=AF,∠BAC=∠DAF,∴∠BAC﹣∠DAC=∠DAF﹣∠DAC,即∠BAD=∠CAF,在△ABD和△ACF中∴△ABD≌△ACF,∴BD=CF.(2)①由(1)全等得:∠ABD=∠ACE,∴∠GBC+∠GCB=∠GBC+∠ACF+∠ACB=(∠ABG+∠GBC)+∠ACB=45°+45°=90°,∴∠BGC=90°,∴BG⊥CF.②过D作DH⊥AB于H,AH=DH=AD÷=1,∴BH=3,∴BD==,延长AD交BC于P,则BP=CP,(AD平分∠BAC,AB=AC,等腰三角形三线合一)由∠BCG=90°知:DP∥CG,∴=1,∴BG=2BD=2.25.已知二次函数的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.【分析】(1)根据对称轴公式求出x=﹣,求出即可;(2)假设出平移后的解析式即可得出图象与x轴的交点坐标,再利用勾股定理求出即可;(3)由抛物线的解析式可得,A,B,C,M各点的坐标,再利用勾股定理逆定理求出CD⊥CM,即可证明.【解答】解:(1)由,得x=﹣=﹣=3,∴D(3,0);(2)方法一:如图1,设平移后的抛物线的解析式为,则C(0,k)OC=k,令y=0即,得,x2=3﹣,∴A,B,∴,=2k2+8k+36,∵AC2+BC2=AB2即:2k2+8k+36=16k+36,得k1=4,k2=0(舍去),∴抛物线的解析式为,方法二:∵,∴顶点坐标,设抛物线向上平移h个单位,则得到C(0,h),顶点坐标,∴平移后的抛物线:,当y=0时,,得,x2=3+,∴A,B,∵∠ACB=90°,∴△AOC∽△COB,则OC2=OA•OB,即,解得h1=4,h2=0(不合题意舍去),∴平移后的抛物线:;(3)方法一:如图2,由抛物线的解析式可得,A(﹣2,0),B(8,0),C(0,4),M,过C、M作直线,连接CD,过M作MH垂直y轴于H,则MH=3,∴,,在Rt△COD中,CD==AD,∴点C在⊙D上,∵,∴DM2=CM2+CD2∴△CDM是直角三角形,∴CD⊥CM,∴直线CM与⊙D相切.方法二:如图3,由抛物线的解析式可得A(﹣2,0),B(8,0),C(0,4),M,作直线CM,过D作DE⊥CM于E,过M作MH垂直y轴于H,则MH=3,,由勾股定理得,∵DM∥OC,∴∠MCH=∠EMD,∴Rt△CMH∽Rt△DME,∴得DE=5,由(2)知AB=10,∴⊙D的半径为5.∴直线CM与⊙D相切.。

北京市东城区2023-2024学年九年级上学期期末数学试题

北京市东城区2023-2024学年九年级上学期期末数学试题

北京市东城区2023-2024学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________....3x =是关于x 的方程220x x m --=的一个根,则m 的值是()15-.3-3.关于二次函数21)2y =+,下列说法正确的是().当1x =时,有最小值为2.当1x =时,有最大值为.当=1x -时,有最小值为2.当=1x -时,有最大值为.在下列事件中,随机事件是().投掷一枚质地均匀的骰子,向上一面的点数不超过6.从装满红球的袋子中随机摸出一个球,是白球.通常情况下,自来水在10℃结冰.投掷一枚质地均匀的骰子,向上一面的点数为2.如图,正方形ABCD 的边长为6,且顶点B ,C ,D 都在)A .3B .6326.北京2022年冬奥会以后,冰雪运动的热度持续.某地滑雪场第一周接待游客人,第三周接待游客8470人.设该地滑雪场游客人数的周平均增长率为A .2m 10π8.如图,O 是ABC 半径为2,6AB =,A .123B .24二、填空题9.将抛物线22y x =向下平移310.若一元二次方程261x x +-为.11.为了解某品种小麦的发芽率,某农业合作小组在相同条件下对该小麦做发芽试验,试验数据如下表:种子个数n 550发芽种子个数m44415.如图1,一名男生推铅球,铅球的运动路线近似是抛物线的一部分,铅球出手位置的高度为5m 3,当铅球行进的水平距离为y (单位:m )与水平距离过原点的水平直线为式为2112y x =-.若以过出手点且与地面垂直的直线为建立如图3所示的平面直角坐标系16.某单位承担了一项施工任务,完成该任务共需施工要求如下:①先完成工序A ,B ,②完成工序A 后方可进行工序③完成工序D 后方可进行工序④完成各道工序所需时间如下表所示:工序AB三、解答题作法:①作边AB 的垂直平分线,交AB ②以点O 为圆心,OA 长为半径作圆.则O 为所求作的圆.(1)利用直尺和圆规,补全图形(保留作图痕迹)(2)完成下面的证明.证明:连接OC .由作图可知,12OB OA AB ==∴点B 在O 上,在Rt ACB △中,90ACB ∠=︒,12OC ∴=()(填推理依据).OC OA ∴=.∴点C 在O 上.ACB ∴ 的三个顶点都在O 上.19.在平面直角坐标系xOy 中,二次函数(3)当03x <<时,对于x 的每一个值,都有2kx x bx >+,直接写出k 的取值范围.20.某班开展“讲数学家故事”的活动.下面是印有四位中国数学家纪念邮票图案的卡片A ,B ,C ,D ,卡片除图案外其它均相同.将四张卡片背面朝上,洗匀后放在桌面上,小明同学从中随机抽取两张,讲述卡片上数学家的故事.(1)请写出小明抽到的两张卡片所有可能出现的结果;(2)求小明抽到的两张卡片中恰好有数学家华罗庚邮票图案的概率.21.如图,AB 是O 的弦,半径OD AB ⊥于点C ,若16AB =,2CD =,求O 的半径的长.22.已知关于x 的一元二次方程22(21)20x m x m -++-=.(1)当该方程有两个不相等的实数根时,求m 的取值范围;(2)当该方程的两个实数根互为相反数时,求m 的值.23.如图,在边长均为1个单位长度的小正方形组成的网格中,O ,B 为格点(每个小正方形的顶点叫做格点),3OA =,4OB =,且150AOB ∠=︒,线段OA 关于直线OB 对称的线段为OA ',将线段OB 绕点O 逆时针旋转45︒得到线段OB '.(1)画出线段OA '、OB ';(2)将线段OB 绕点O 逆时针旋转()4590αα︒<<︒得到线段OC ',连接A C '.若5A C ''=,(1)求证:直线DE 是O (2)若30BAC ∠=︒,BC =25.食用果蔬前,适当浸泡可降低农药的残留.某小组针对同种果蔬研究了不同浸泡方式对某种农药去除率的影响.方式一:采用清水浸泡.记浸泡时间为t 分钟,农药的去除率为t (分)5810()1%y 305057方式二:采用不同浓度的食用碱溶液浸泡相同时间.记食用碱溶液的浓度为x ()%x 257(2)利用方式一的函数关系可以推断,降低该种农药残留的最佳浸泡时间约为______分钟;(3)利用方式一和方式二的函数关系可以推断,用食用碱溶液浸泡含该种农药的这种果蔬时,要想不低于清水浸泡的最大去除率,食用碱溶液的浓度%x 中,x 的取值范围可以是_____.26.在平面直角坐标系xOy 中,点(2,)c 在抛物线2(0)y ax bx c a =++>上,设该抛物线的对称轴为直线x t =.(1)求t 的值;(2)已知()11,M x y ,()22,N x y 是该抛物线上的任意两点,对于11m x m <<+,212m x m +<<+,都有12y y <,求m 的取值范围.27.在ABC 中,AB AC =,120BAC ∠=︒,D 为BC 上一点,连接DA ,将线段DA 绕点D 顺时针旋转60︒得到线段DE .(1)如图1,当点D 与点B 重合时,连接AE ,交BC 于点H ,求证:AE BC ⊥;(2)当BD CD ≠时(图2中BD CD <,图3中BD CD >),F 为线段AC 的中点,连接EF .在图2,图3中任选一种情况,完成下列问题:①依题意,补全图形.②猜想AFE ∠的大小,并证明.(1)在点1(3,0)P ,2(1,2)P -,3(4,1)P -(2)若P 是直线3y x =-+上的动点,(3)已知点(0,3)A ,A 的半径为1线36y x =+的“和距离”d 的取值范围.。

九年级(上)期末数学试卷(含答案解析)

九年级(上)期末数学试卷(含答案解析)

九年级(上)期末数学试卷一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一个选项符合题意.1.cos60°•sin60°的值等于()A.B.C.D.2.一元二次方程x2﹣81=0的解是()A.x=﹣9 B.x=9 C.x1=9,x2=﹣9 D.x=813.下列函数中,当x>0时,y的值随x的值增大而增大的是()A.y=﹣x2B.y=﹣C.y=﹣x+1 D.y=4.三角尺在灯泡O的照射下在墙上形成的影子如图所示.若OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A.5:2 B.2:5 C.4:25 D.25:45.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC 的度数是()A.45°B.60°C.75°D.90°6.将函数y=2x2向左平移2个单位,再向下平移3个单位得到的新函数是()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3 C.y=2(x+2)2﹣3 D.y=2(x﹣2)2﹣37.一元二次方程x2﹣5x+7=0的根的情况是()A.有两个不相等的实数根 B.只有一个实数根C.有两个相等的实数根D.没有实数根8.在Rt△ABC中,∠C=90°,AB=10,tanA=,则AC的长是()A.3 B.4 C.6 D.89.下列命题中,正确的是()A.平分弦的直线必垂直于这条弦B.垂直平分弦的直线必平分这条弦所对的弧C.平分弦的直径必垂直于这条弦,并且平分这条弦所对的两条弧D.垂直于弦的直线必过圆心10.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()A.B.C.D.11.小洋用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.120πcm2B.240πcm2C.260πcm2D.480πcm212.如图,在等边△ABC中,BC=6,点D,E分别在AB,AC上,DE∥BC,将△ADE沿DE翻折后,点A落在点A′处.连结A A′并延长,交DE于点M,交BC于点N.如果点A′为MN的中点,那么△ADE的面积为()A.B.3C.6D.9二、填空题:本题共5小题,每小题3分,共15分,只要求填写最后结果.13.若关于x的方程ax2﹣4x+3=0有两个相等的实数根,则常数a的值是.14.圆内接四边形ABCD的内角∠A:∠B:∠C=2:3:4,则∠D=度.15.已知△ABC∽△DEF,且相似比为3:4,S△ABC=2cm2,则S△DEF=cm2.16.如图,⊙O的直径AB=10cm,C是⊙O上一点,点D平分,DE=2cm,则弦AC=.17.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为.三、解答题:本大题共8小题,共69分,解答题应写出文字说明、证明过程或演算步骤.18.按下列的要求解一元二次方程:(1)(因式分解法)x2+7x+12=0(2)(配方法)x2+4x+1=0.19.如图,一次函数y1=kx+b的图象与反比例函数的图象交于A(1,6),B(a,2)两点.(1)求一次函数与反比例函数的解析式;(2)直接写出y1≥y2时x的取值范围.20.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)21.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.22.某商场经营某种品牌的玩具,购进时的单价是20元,根据市场调查,在一段时间内,销售单价是30元时,销量是300件,而销售单价每涨1元,就会少售出10件玩具,若商场想获得利润3750元,并规定每件玩具的利润不得超过进价时单价的100%,问该玩具的销售单价应定为多少元?23.如图,抛物线经过点A、B、C.(1)求此抛物线的解析式;(2)若抛物线和x轴的另一个交点为D,求△ODC的面积.24.如图,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若,AD=2,求线段BC的长.25.如图,对称轴为x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标.(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标.②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.参考答案与试题解析一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一个选项符合题意.1.cos60°•sin60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:cos60°•sin60°=×=,故选:D.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.2.一元二次方程x2﹣81=0的解是()A.x=﹣9 B.x=9 C.x1=9,x2=﹣9 D.x=81【考点】解一元二次方程-直接开平方法.【分析】首先移项,把﹣81移到等号右边,再两边直接开平方即可.【解答】解:x2﹣81=0,移项得:x2=81,两边直接开平方得:x=±9,到x1=9,x2=﹣9,故选:C.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.3.下列函数中,当x>0时,y的值随x的值增大而增大的是()A.y=﹣x2B.y=﹣C.y=﹣x+1 D.y=【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】分别根据反比例函数与一次函数的性质进行解答即可.【解答】解:A、∵y=﹣x2,∴对称轴x=0,当x>0时,y随着x的增大而减小,故本选项错误;B、∵反比例函数y=﹣中,k=﹣1<0,∴当x>0时y随x的增大而增大,故本选项正确;C、∵k<0,∴y随x的增大而减小,故本选项错误;D、∵k>0,∴y随着x的增大而增大,故本选项错误.故选B.【点评】本题考查了一次函数、反比例函数以及二次函数的性质,主要掌握二次函数、反比例函数、正比例函数的增减性(单调性),是解题的关键,是一道难度中等的题目.4.三角尺在灯泡O的照射下在墙上形成的影子如图所示.若OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A.5:2 B.2:5 C.4:25 D.25:4【考点】相似三角形的应用.【分析】先根据相似三角形对应边成比例求出三角尺与影子的相似比,再根据相似三角形周长的比等于相似比解答即可.【解答】解:如图,∵OA=20cm,OA′=50cm,∴===,∵三角尺与影子是相似三角形,∴三角尺的周长与它在墙上形成的影子的周长的比==2:5.故选:B.【点评】本题考查了相似三角形的应用,注意利用了相似三角形对应边成比例的性质,周长的比等于相似比的性质.5.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC 的度数是()A.45°B.60°C.75°D.90°【考点】圆周角定理;正多边形和圆.【分析】连接OB、OC,首先根据正方形的性质,得∠BOC=90°,再根据圆周角定理,得∠BPC=45°.【解答】解:如图,连接OB、OC,则∠BOC=90°,根据圆周角定理,得:∠BPC=∠BOC=45°.故选A.【点评】本题主要考查了正方形的性质和圆周角定理的应用.这里注意:根据90°的圆周角所对的弦是直径,知正方形对角线的交点即为其外接圆的圆心.6.将函数y=2x2向左平移2个单位,再向下平移3个单位得到的新函数是()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3 C.y=2(x+2)2﹣3 D.y=2(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】由于所给的函数解析式为顶点坐标式,可直接利用“上加下减、左加右减”的平移规律进行解答.【解答】解:将函数y=2x2向左平移2个单位,得:y=2(x+2)2;再向下平移3个单位,得:y=2(x+2)2﹣3;故选C.【点评】此题主要考查的是二次函数图象的平移规律,即:左加右减,上加下减.7.一元二次方程x2﹣5x+7=0的根的情况是()A.有两个不相等的实数根 B.只有一个实数根C.有两个相等的实数根D.没有实数根【考点】根的判别式.【分析】求出根的判别式△的值再进行判断即可.【解答】解:一元二次方程x2﹣5x+7=0中,△=(﹣5)2﹣4×1×7=﹣3<0,所以原方程无实数根.故选:D.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.在Rt△ABC中,∠C=90°,AB=10,tanA=,则AC的长是()A.3 B.4 C.6 D.8【考点】锐角三角函数的定义;勾股定理.【分析】根据锐角三角函数正切等于对边比邻边,可得BC与AC的关系,根据勾股定理,可得AC 的长.【解答】解:由tanA==,得BC=3x,CA=4x,由勾股定理,得BC2+AC2=AB2,即(3x)2+(4x)2=100,解得x=2,AC=4x=4×2=8.故选:D.【点评】本题考查了锐角三角函数,利用了锐角三角函数正切等于对边比邻边,还利用了勾股定理.9.下列命题中,正确的是()A.平分弦的直线必垂直于这条弦B.垂直平分弦的直线必平分这条弦所对的弧C.平分弦的直径必垂直于这条弦,并且平分这条弦所对的两条弧D.垂直于弦的直线必过圆心【考点】命题与定理.【分析】根据垂径定理及其推论对各选项分别进行判断.【解答】解:A、平分弦(非直径)的直径必垂直于这条弦,所以A选项错误;B、垂直平分弦的直线必平分这条弦所对的弧,所以B选项正确;C、平分弦(非直径)的直径必垂直于这条弦,并且平分这条弦所对的两条弧,所以C选项错误;D、垂直平分弦的直线必过圆心,所以D选项错误.故选B.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.10.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】根据题意有:xy=4;故y与x之间的函数图象为反比例函数,且根据x y实际意义x、y应大于0,其图象在第一象限.【解答】解:∵xy=4,∴xy=4,∴y=(x>0,y>0),当x=1时,y=4,当x=4时,y=1,故选:C.【点评】考查了反比例函数的图象及应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.11.小洋用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.120πcm2B.240πcm2C.260πcm2D.480πcm2【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:圆锥的侧面积=•2π•10•24=240π(cm2),所以这张扇形纸板的面积为240πcm2.故选B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.12.如图,在等边△ABC中,BC=6,点D,E分别在AB,AC上,DE∥BC,将△ADE沿DE翻折后,点A落在点A′处.连结A A′并延长,交DE于点M,交BC于点N.如果点A′为MN的中点,那么△ADE的面积为()A.B.3C.6D.9【考点】翻折变换(折叠问题).【分析】利用△ADE沿DE翻折的特性求出AM=A′M,再由DE∥BC,得到=,求得AE,再求出AM,利用△ADE的面积=DE•AM求解.【解答】解:△ADE沿DE翻折后,点A落在点A′处∴AM=A′M,又∵A′为MN的中点,∴AM=A′M=A′N,∵DE∥AC,∴=,∵△ABC是等边三角形,BC=6,∴BC=AC,∴=∴AE=2,∵AN是△ABC的BC边上的高,中线及角平分线,∴∠MAE=30°,∴AM=,ME=1,∴DE=2,∴△ADE的面积=DE•AM=××2=,故选:A.【点评】本题主要考查了三角形的折叠问题上,解题的关键是运用比例求出AE,再求面积.二、填空题:本题共5小题,每小题3分,共15分,只要求填写最后结果.13.若关于x的方程ax2﹣4x+3=0有两个相等的实数根,则常数a的值是.【考点】根的判别式.【分析】根据判别式的意义得到△=(﹣4)2﹣4a×3=0,然后求解即可.【解答】解:根据题意得△=(﹣4)2﹣4a×3=0,解得a=.故答案为.【点评】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.圆内接四边形ABCD的内角∠A:∠B:∠C=2:3:4,则∠D=90度.【考点】圆内接四边形的性质.【分析】根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为360°,从而求得∠D的度数.【解答】解:∵圆内接四边形的对角互补∴∠A:∠B:∠C:∠D=2:3:4:3设∠A=2x,则∠B=3x,∠C=4x,∠D=3x∴2x+3x+4x+3x=360°∴x=30°∴∠D=90°.【点评】本题考查圆内接四边形的性质和四边形的内角和为360°的运用.15.已知△ABC∽△DEF,且相似比为3:4,S△ABC=2cm2,则S△DEF=cm2.【考点】相似三角形的性质.【分析】根据相似三角形的性质,相似三角形面积的比等于相似比的平方,可求S△DEF的值.【解答】解:∵△ABC∽△DEF,且相似比为3:4∴S△ABC:S△DEF=9:16∴S△DEF=.【点评】本题主要考查了相似三角形的性质,相似三角形面积的比等于相似比的平方.16.如图,⊙O的直径AB=10cm,C是⊙O上一点,点D平分,DE=2cm,则弦AC=6cm.【考点】圆周角定理;垂径定理.【分析】由题意可知OD平分BC,OE为△ABC的中位线,根据直径求出半径,进而求出OE的长度,再根据中位线原理即可解答.【解答】解:∵点D平分,∴OD平分BC,∴OE为△ABC的中位线,又∵⊙O的直径AB=10cm,∴OD=5cm,DE=2cm,∴0E=3cm则弦AC=6cm.故答案为6cm.【点评】本题主要考查圆周角定理与垂径定理,垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.17.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为0.【考点】抛物线与x轴的交点.【专题】数形结合.【分析】依据抛物线的对称性求得与x轴的另一个交点,代入解析式即可.【解答】解:设抛物线与x轴的另一个交点是Q,∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0),∴与x轴的另一个交点Q(﹣2,0),把(﹣2,0)代入解析式得:0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为:0.【点评】本题考查了抛物线的对称性,知道与x轴的一个交点和对称轴,能够表示出与x轴的另一个交点,求得另一个交点坐标是本题的关键.三、解答题:本大题共8小题,共69分,解答题应写出文字说明、证明过程或演算步骤.18.按下列的要求解一元二次方程:(1)(因式分解法)x2+7x+12=0(2)(配方法)x2+4x+1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【专题】计算题.【分析】(1)利用因式分解法把原方程化为x+4=0或x+3=0,然后解两个一次方程即可;(2)利用配方法得到(x+2)2=3,然后利用直接开平方法解方程.【解答】解:(1)(x+4)(x+3)=0,x+4=0或x+3=0,所以x1=﹣4,x2=﹣3;(2)x2+4x=﹣1,x2+4x+4=3,(x+2)2=3,x+2=±所以x1=﹣2+,x2=﹣2﹣.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.19.如图,一次函数y1=kx+b的图象与反比例函数的图象交于A(1,6),B(a,2)两点.(1)求一次函数与反比例函数的解析式;(2)直接写出y1≥y2时x的取值范围.【考点】反比例函数与一次函数的交点问题.【专题】探究型.【分析】(1)先把A(1,6)代入反比例函数的解析式求出m的值,进而可得出反比例函数的解析式,再把B(a,2)代入反比例函数的解析式即可求出a的值,把点A(1,6),B(3,2)代入函数y1=kx+b即可求出k、b的值,进而得出一次函数的解析式;(2)根据函数图象可知,当x在A、B点的横坐标之间时,一次函数的图象在反比例函数图象的上方,再由A、B两点的横坐标即可求出x的取值范围.【解答】解:(1)∵点A(1,6),B(a,2)在y2=的图象上,∴=6,m=6.∴反比例函数的解析式为:y2=,∴=2,a==3,∵点A(1,6),B(3,2)在函数y1=kx+b的图象上,∴,解这个方程组,得∴一次函数的解析式为y1=﹣2x+8,反比例函数的解析式为y2=;(2)由函数图象可知,当x在A、B之间时一次函数的图象在反比例函数图象的上方,∵点A(1,6),B(3,2),∴1≤x≤3.【点评】本题考查的是反比例函数与一次函数的交点问题,能利用数形结合求不等式的解集是解答此题的关键.20.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【专题】几何图形问题.【分析】首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.【解答】解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.21.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.【考点】相似三角形的判定与性质.【分析】(1)根据两角对应相等,两三角形相似即可证明△ADC∽△ACB;(2)根据相似三角形的对应边成比例得出AC:AB=AD:AC,即AC2=AB•AD,将数值代入计算即可求出AC的长.【解答】(1)证明:在△ADC与△ACB中,∵∠ABC=∠ACD,∠A=∠A,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴AC:AB=AD:AC,∴AC2=AB•AD,∵AD=2,AB=7,∴AC2=7×2=14,∴AC=.【点评】本题考查的是相似三角形的判定与性质,用到的知识点为:①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(简叙为两角对应相等,两三角形相似);②相似三角形的对应边成比例.22.某商场经营某种品牌的玩具,购进时的单价是20元,根据市场调查,在一段时间内,销售单价是30元时,销量是300件,而销售单价每涨1元,就会少售出10件玩具,若商场想获得利润3750元,并规定每件玩具的利润不得超过进价时单价的100%,问该玩具的销售单价应定为多少元?【考点】一元二次方程的应用.【专题】销售问题.【分析】利用每件利润×销量=3750,进而求出答案即可.【解答】解:设该玩具的销售单价为x元,则依题意有:[300﹣10(x﹣30)](x﹣20)=3750化简得x2﹣80x+1575=0解这个方程得:x1=35,x2=45因为利润不得超过原价的100%,所以x2=45应舍去.答:该玩具应定价为35元.【点评】考查了一元二次方程的应用,解题的关键是了解总利润等于单件利润乘以销量,难度不大.23.如图,抛物线经过点A、B、C.(1)求此抛物线的解析式;(2)若抛物线和x轴的另一个交点为D,求△ODC的面积.【考点】待定系数法求二次函数解析式;抛物线与x轴的交点.【专题】计算题.【分析】(1)由于已知抛物线的顶点坐标,则可设顶点式y=a(x﹣1)2﹣4,然后把A点坐标代入求出a的值即可;(2)利用抛物线的对称性易得D点坐标,然后根据三角形面积公式求解.【解答】解:(1)设抛物线的解析式为y=a(x﹣1)2﹣4,把A(﹣1,0)代入得a•(﹣1﹣1)2﹣4=0,解得a=1,所以抛物线的解析式为y=(x﹣1)2﹣4;(2)因为抛物线的对称轴为直线x=1,则点A(﹣1,0)关于直线x=1的对称点D的坐标为(3,0),所以△ODC的面积=×3×4=6.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.24.如图,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若,AD=2,求线段BC的长.【考点】切线的判定与性质;勾股定理.【专题】计算题.【分析】(1)因为BC经过圆的半径的外端,只要证明AB⊥BC即可.连接OE、OC,利用△OBC≌△OEC,得到∠OBC=90°即可证明BC为⊙O的切线.(2)作DF⊥BC于点F,构造Rt△DFC,利用勾股定理解答即可.【解答】(1)证明:连接OE、OC.∵CB=CE,OB=OE,OC=OC,∴△OBC≌△OEC.∴∠OBC=∠OEC.又∵DE与⊙O相切于点E,∴∠OEC=90°.∴∠OBC=90°.∴BC为⊙O的切线.(2)解:过点D作DF⊥BC于点F,则四边形ABFD是矩形,BF=AD=2,DF=AB=2.∵AD、DC、BC分别切⊙O于点A、E、B,∴DA=DE,CE=CB.设BC为x,则CF=x﹣2,DC=x+2.在Rt△DFC中,(x+2)2﹣(x﹣2)2=(2)2,解得x=.∴BC=.【点评】此题考查了切线的判定和勾股定理的应用,作出辅助线构造直角三角形和全等三角形是解题的关键.25.如图,对称轴为x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标.(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标.②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由抛物线y=ax2+bx+c的对称轴为直线x=﹣1,交x轴于A、B两点,其中A点的坐标为(﹣3,0),根据二次函数的对称性,即可求得B点的坐标;(2)①a=1时,先由对称轴为直线x=﹣1,求出b的值,再将B(1,0)代入,求出二次函数的解析式为y=x2+2x﹣3,得到C点坐标,然后设P点坐标为(x,x2+2x﹣3),根据S△POC=4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;②先运用待定系数法求出直线AC的解析式为y=﹣x﹣3,再设Q点坐标为(x,﹣x﹣3),则D点坐标为(x,x2+2x﹣3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.【解答】解:(1)∵对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=﹣1对称,∵点A的坐标为(﹣3,0),∴点B的坐标为(1,0);(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=﹣1,∴=﹣1,解得b=2.将B(1,0)代入y=x2+2x+c,得1+2+c=0,解得c=﹣3.则二次函数的解析式为y=x2+2x﹣3,∴抛物线与y轴的交点C的坐标为(0,﹣3),OC=3.设P点坐标为(x,x2+2x﹣3),∵S△POC=4S△BOC,∴×3×|x|=4××3×1,∴|x|=4,x=±4.当x=4时,x2+2x﹣3=16+8﹣3=21;当x=﹣4时,x2+2x﹣3=16﹣8﹣3=5.∴点P的坐标为(4,21)或(﹣4,5);②设直线AC的解析式为y=kx+t (k≠0)将A(﹣3,0),C(0,﹣3)代入,得,解得,即直线AC的解析式为y=﹣x﹣3.设Q点坐标为(x,﹣x﹣3)(﹣3≤x≤0),则D点坐标为(x,x2+2x﹣3),QD=(﹣x﹣3)﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.【点评】此题考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题.此题难度适中,解题的关键是运用方程思想与数形结合思想.。

九年级语文上册期末测试题(附答案)

九年级语文上册期末测试题(附答案)

九年级语文上册期末测试题(附答案)第Ⅰ卷(选择题共48分)一、(18分,每小题3分)1.下列加点字注音完全正确的一项是( )A.这是某种令人惊骇(hài)而不知名的杰作,在不可名状的晨曦中依稀可见,宛如在欧洲文明的地平线上瞥(piě)见的亚洲文明的剪影。

B.富有创造力的人总是孜孜(zī)不倦的汲(xí)取知识,使自己学识渊博C.渐近故多时,天气又阴晦(huì)了,冷风吹进船舱中,鸣鸣的响,从篷隙向外一望,苍黄的天底下,远近横着几个萧(xiāo)索的荒村,没有一些活气。

D.父亲忽然看见两位先生在请两位打扮很漂亮的太太吃牡蛎(1ì)。

一个衣服褴(1ǎn)楼(1ǚ)的年老水手拿小刀一下撬开牡蛎,递给两位先生,再由他们递给两位太太。

2.下列句子中没有错别字的一项是( )A.不言而喻,在创造的宇宙里,这些人是光辉灿烂的明星。

然而在大多数情况下,即便是他们,也并非轻而易举就能获得如此非凡的灵感。

B现代的话讲,凡做一件事,便忠于一件事,将全副精力集中到这事必一一点不旁鹜,便是敬。

C.临近中午时,雷声已如万辆战车从天边滚动过来,不一会儿,暴风雨就竭斯底里地开始了,顿时,天昏地黯,仿佛世界已经到了末日。

D有人说:山穷水尽,走头无路,陷入绝境,等死而已,不能创造。

3.下列句子中加点成语使用正确的一项是( )A.这不但因为相宜的事业,并非像雨后的菌子一样,俯拾即是,而且因为我们对自身的认识,也如抽丝剥茧....,需要水落石出的流程。

B.有些人有一种错觉,似乎优雅风度就是矫揉造作,是出于无聊,是沽名钓誉....,是毫无意义的忸怩作态。

C.由于情况的变化,原来立竿见影....的方法,到了现在往往不灵了。

D.杜雍和沉着脸,绝不回头去看一眼。

他对杜小康带着哭腔的请求,置之度外....,只是不停地撑着船,将鸭子一个劲儿赶向前方。

4.下列选项没有语病、句意明确的一项是( )A.近年来,越来越多的“网红书店”凭借其高颜值成为众多年轻人的“打卡圣地”。

辽宁省沈阳市浑南区2023-2024学年九年级上学期期末物理试题(有解析)

辽宁省沈阳市浑南区2023-2024学年九年级上学期期末物理试题(有解析)

2023-2024学年辽宁省沈阳市浑南区九年级(上)期末物理试卷一、选择题(本题共9小题,共18分。

1-6题为单选题,7-9题为多选题,漏选得1分,错选得0分)1.以下四种现象中,不是利用水的比热容大这一特性的是( )A.春天农民育秧时,傍晚向秧田里灌水B.夏天洒水降温C.城市建人工湖调节气温D.汽车发动机用水做冷却液2.关于温度、热量和内能,下列说法正确的是( )A.0℃的水的内能比0℃的冰的内能大B.物体的温度越高,它的热量多C.热传递的过程中内能从内能大的物体传向内能小的物体D.在压缩冲程中内燃机汽缸内气体的内能增加3.将规格都是“220V;150W”的电冰箱、台式计算机、电热毯,分别接我们家的电路中,若通电时间相同,则有关电流通过它们时产生热量的多少,下列说法中正确的是( )A.电冰箱最多B.台式计算机最多C.电热毯最多D.一样多4.如图所示,取两个相同的验电器甲和乙,使甲带正电,乙不带电,用带有绝缘手柄的金属棒把甲和乙连接起来。

下列说法正确的是( )A.接触的瞬间有电荷从乙流向甲B.接触后甲验电器的箔片闭合在一起,乙验电器的箔片张开C.甲带正电可能是因为它与玻璃棒摩擦过的丝绸接触的结果D.甲中正电荷通过金属棒流向乙,乙中负电荷通过金属棒流向甲5.如图所示,电源电压保持不变,闭合开关S,当滑动变阻器滑片P向左滑动的过程中,下列说法正确的是( )A.电流表A的示数不变B.电流表A1的示数变大C.电压表V的示数不变D.电压表V与电流表A1的示数比变小6.如图所示为探究“焦耳定律”的实验装置.两个透明容器中密封着等量的空气,U型管中液面高度的变化反映密闭空气温度的变化.将容器中的电阻丝R1、R2串联在电路中,且R1<R2.下列说法正确的是A.该实验装置用于探究“电压和通电时间一定时,电热与电阻的关系”B.闭合开关后,通过R1的电流大于R2的电流C.闭合开关后,甲管中液面上升比乙慢D.闭合开关后,要使电流增大,应将滑动变阻器滑片P向左移动7.下列有关电阻的说法正确的是( )A.长度相同的铜导线的电阻比镍铬合金丝的电阻小B.导体的电阻越大,表明导体的导电能力越弱C.导体的电阻与导体两端的电压成正比,与流过它的电流成反比D.两个电阻并联,若其中一个电阻变小,则总电阻也变小8.小王家本次查看电能表的示数如图甲,上次查看时电能表的示数如图乙,则下列说法正确的是( )A.电能表是测量用电器在一段时间内消耗的电能的仪表B.这个电能表允许接入用电器的最大总功率为C.他家在这段时间内消耗的电能为903kW•hD.若只接入“220V;1000W”的电热水器,正常工作9.有关生活用电,下列说法正确的是( )12.如图所示为某型号电饭锅的内部结构的电路示意图,其中R1和R2均为发热电阻;当开关时,电路中的电流为4A,则电饭锅在这一挡工作14.如图所示的发光二极管,具有单向导电性,它是利用质在很低的温度时,电阻就变成了15.家庭电路中控制电灯的开关被短路,保险丝保险丝是利用电流的16.如图,电源电压恒定,S1。

安徽省黄山市2023-2024学年九年级上学期期末考试语文试题(含答案)

安徽省黄山市2023-2024学年九年级上学期期末考试语文试题(含答案)

2023—2024学年度第一学期期末质量检测九年级语文试题一、语文积累与综合运用(35分)1.默写。

(10分)(1)中国文化博大精深,古诗文更是包罗万象。

古诗文中有盛宴,如“ , ”(李白《行路难·其一》),极写宴会之奢侈;古诗文中有美景,如“ , ”(欧阳修《醉翁亭记》),描绘了琅琊山春夏两季的美丽风光;古诗文中还有爱情,如“ , ”(李商隐《无题》)巧用双关,写出诗人对爱情的至死不渝。

(2)亲情犹如一丘数不尽的细沙,沉淀的是长年堆积的牵挂。

杜甫的《月夜忆舍弟》中“ ,”以沉痛的语气,抒写思乡的愁绪中夹杂着对亲人疏离分散的挂念。

苏轼的《水调歌头》中“ , ”既表达了对亲人的思念和祝福,又表现出他的旷达态度和乐观精神。

2.学校文学社团举办“品读名著,善学精思”读书交流活动,请你参与并完成任务。

(13分)(1)在“感悟与评价”环节,主持人围绕“爱”这一主题,提供了以下作品。

请你仿照示例,给《艾青诗选》写一段感悟或评价,30字左右。

(3分)示例:在《昆虫记》中,法布尔将自己的一生都用在了对昆虫的观察和研究上,他对昆虫的形态、习性、劳动、繁衍和死亡的描述,洋溢着对生命的尊重和热爱。

(2)在“名著人物推荐”环节,《水浒传》中的108个好汉,各个人物形象鲜明。

金圣叹评:“《水浒》所叙,叙一百八人,人有其性情,人有其气质,人有其形状,人有其声口。

”请认真阅读下面两个语段,按要求回答问题。

【一】“乘着酒兴,踉跄走上冈来。

读了印信榜文,方知端的有虎。

欲待发步再回酒店里来,寻思道:“我回去时,须吃他耻笑,不是好汉,难以转去。

”存想了一回,说道:“怕甚么鸟!且只顾上去,看怎地!”【二】“屠户右手拿刀,左手便来要揪他,被他就势按住左手,赶将入去,望小腹上只一脚,腾地踢倒了在当街上。

他再入一步,踏住胸脯,提起那醋bō()儿大小拳头。

”①给加点的字注音,并根据拼音写出相应的汉字。

(3分)踉跄()揪()醋bō()儿②根据以上人物的“声口”进行判断,写出其姓名、绰号、与文段相关情节名称,并简述情节(50字左右)与主要性格特点。

天津市武清区等5地2023-2024学年九年级上学期期末语文试题(含答案)

天津市武清区等5地2023-2024学年九年级上学期期末语文试题(含答案)
奉汝父母,如我受也。
15.请结合原文分析,为什么于成龙离开的时候百姓“遮道呼号”。
六、现代文阅读
阅读《一树“飞天”挽春来》一文,完成下面小题。
一树“飞天”挽春来
管苏清
①杏花春雨,江南三月似水墨洇染,一天比一天水灵。
②每年这个时节,白玉兰成群结队,如飞天而至。一树一树的玉兰花舒展苞蕾,争先恐后,绽放如玉,凝脂停云,预示着春天一路飞奔而来了。
A.磨砺蕴含积聚B.磨砺隐含堆积
C.磨难蕴含堆积D.磨难隐含积聚
3.下面一段文字中有语病的一项是()
①古丝绸之路是一条文明交流之路。 ②以和平合作、 开放包容、 互学互鉴、互利共赢为核心的丝路精神是人类文明的宝贵遗产。③在新的时代背景下发挥丝路精神,是共建“一带一路”最重要的力量源泉。 ④它将激发出各国实现互联互通的极大热情。
C.汲取(jí)箴言(zhēn)锲而不舍(qì)
D.濡养(rú)恣睢(zì)自吹自擂(léi)
2.依次填入下面一段文字横线处的词语,最恰当的一项是()
奋斗是青春最亮丽的底色,行动是青年最有效的。青年就是社会中最有生气、最有闯劲的群体,他们着改造客观世界、 推动社会进步的无穷力量他们犹如初升的朝阳,不断着能量, 总有 刻会把光和热洒满大地。
(4)春蚕到死丝方尽,。(李商隐《无题》)
(5)刘禹锡在《酬乐天扬州初逢席上见赠》中表达乐观进取、积极向上人生态度的名句是:“,。”
五、文言文阅读
阅读下面文言文,完成下面小题。
于清端公成龙令①罗城,拊循残氓②,悉除诸禁,诚意感人,民皆以田赋亲输清端手。清端居罗城久,从仆或散去或死,罗人益怜之,每晨夕,集问安否,间敛金钱跪进,云:“知阿耶③清苦,我曹供些少盐米费耳。”笑谢曰:“我一人,何须如许物,可持归易甘旨,奉汝父母,如我受也。”民怏怏持去。比迁知合州,罗民遮道呼号曰:“耶今去,我侪④无天矣。”
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012—2013学年度上期期末考试九年级历史试题
1.许多科学家一致认为,人类的直系祖先是生活在非洲的南方古猿,在从猿到人的转变中,起了决定性作用的是
A.语言B.思想C.劳动D.自然环境
2.右图是史诗巨片《特洛伊》的电影海报,该片描述的是特洛伊
战争,其中“木马计”的故事非常精彩。

根据所学知识,这部影片
应取材于哪部文学名著
A.《一千零一夜》B.《荷马史诗》
C.《神曲》 D.《哈姆雷特》
3.文字是人类进入文明时代的重要标志之一。

下图给大家展示了人类几种古老的文字,其中属于古代两河流域居民使用的文字是
4.金字塔建筑是古代埃及文明的象征,它是埃及最高统治者——法老的
A.宫殿
B. 祭坛C.行宫D.陵墓
5.0至9十个阿拉伯数字,是世界通用的数字符号。

请问阿拉伯数字是由谁发明创造的A.古代印度B.中国C.古代两河流域居民D.古代埃及
6.日本由奴隶社会进入封建社会的标志是
A.大和国统一日本
B. 大化改新C.明治维新D.幕府政治的建立
A B C D
7. 西欧奴隶制度结束的标志是
A .恺撒独裁
B .屋大维实行元首制
C .罗马帝国分裂东西两部分
D .西罗马帝国的灭亡
8.在中国我们常把一个人遭受挫折或失败称为“走麦城”,而西方则常称为“人生的滑铁卢”,与西方这一典故相关的历史人物是
A. 克伦威尔 B .罗伯斯比尔 C. 拿破仑 D .伏尔泰 9.它始建于12世纪中叶,它以匀称的结构和美观的外形闻名于世,属于典型的哥特式建筑的天主教大教堂。

它是
A .麦加清真寺
B .罗马圆形剧场
C .帕特农神庙
D .巴黎圣母院 10.西欧封建制度的核心是
A .封建等级制
B .种姓制度
C .禅让制
D .封建世袭制 11.他被誉为“打开电气时代的领袖”,1931年10月21日,时任美国总统胡佛提议全国各地同时熄灭电灯一分钟,以表示对他逝世的哀悼。

他是
A .瓦特
B .史蒂芬孙
C .卡尔.本茨
D .爱迪生 12.在欧洲殖民者在贩卖黑人奴隶的过程中形成了罪恶的“三角贸易”,其路线是 A .欧洲→美洲→非洲→欧洲 B .欧洲→非洲→美洲→欧洲 C .欧洲→非洲→美洲→亚洲 D .非洲→欧洲→美洲→欧洲 13. 下图是世界名画《蒙娜丽莎》,画面人物的神态恬静端庄,她 “神秘的
微笑”给人以无限的遐想。

该作品体现的时代精神是 A .妇女解放 B .禁绝欲望 C .人文主义 D .启蒙思想 14.下列关于《共产党宣言》发表的意义,说法错误..
的是 A .是建立无产阶级政权的第一次伟大尝试 B .标志马克思主义的诞生 C .是国际共产主义运动的第一个战斗纲领 D .成为指导国际工人运动的革命理论 15.十九世纪70年代初,人类历史上第一个无产阶级掌权的新型政权诞生,它存在的时间虽然短暂,但它为无产阶级革命提供了宝贵的经验。

这个政权是
A .法兰西帝国
B .巴黎公社
C .法兰西共和国
D .国防政府
二、判断题:本本大题共5个小题,每小题1分,共5分。

以下表述是从上表信息中得出的,请在其后的括号内划“√”;违背了表中信息所表达的意思的,请在括号内划“×”;是表中信息没有涉及的,请在括号内划“○”。

(1)两次改革都发生在19世纪中期。

( )
(2)两次改革发生的共同背景是出现了统治危机。

( ) (3)两次改革都宣布实行中央集权。

( ) (4)两次改革都是一次自上而下的改革。

( ) (5)两次改革都促进了本国社会的进步。

( )
三、填图题:本大题2小题,第17题2分,第18题3分,共5分。

17. 识别下列图片,判断它们与哪次工业革命有关,请将英文字母填在对应横线上。

(1)第一次工业革命:______ (2)第二次工业革命:______
18
.观察图二,请将下列航行路线的英文字母代号填在图中相应的方框内。

A .哥伦布航线
B .麦哲伦航线
C .达·伽马航线
A .早期蒸汽机
B .早期飞机
四、材料分析题:本大题共3个小题,第19题4分,第20题4分,第
21题5分,共13分。

19.阅读材料:人类历史上各民族和国家经历了从相互孤立、隔绝到彼此交流融合的过程。

东西方之间文明的交往很早就已发生。

通过商人、使节、游历者、文人学者的来往,各地的文明发生了直接或间接的传播与交流……但和平交往并非是人类相处的惟一方式,在古代,战争和征服在带来灾难和痛苦的同时,也常常不自觉地充当了文明传播与交流的工具。

——摘自华师版《世界历史》九年级上册请回答:
(1)根据材料,归纳古代人类文明交往的两种主要方式。

(2分)
(2)结合所学知识,写出两例反映古代文明交往的历史事件。

(2分)
20.阅读下列材料:
材料一1776年7月4日,大陆会议颁布了《独立宣言》。

它宣称所有的人生而平等,造物主赋予他们不可剥夺的权利,其中包括生命、自由和对幸福的追求。

……《独立宣言》宣告北美13个殖民地脱离英国,建立独立的美利坚合众国。

材料二1852年,斯托夫人抨击奴隶制的小说《汤姆叔叔的小屋》一出版即大受欢迎,印刷上百万册,被搬上戏剧舞台后更是家喻户晓。

一时间,北方涌起废奴主义浪潮。

林肯总统称赞她是“发动了一次战争的小妇人”。

请回答:
(1)材料一中的《独立宣言》是在美国哪次战争中颁布的?(1分)这次战争的主要领导人是谁?(1分)
(2)材料二中的“战争”是指什么?(1分)林肯在这次战争中颁布的有关奴隶问题的重
要文献是什么?(1分)
21.阅读下列材料:
材料一确定议会为国家最高权力机关,规定国王必须依法行使权力,无权废除法律,征税须经议会同意,议员有政治活动自由。

材料二自由、平等是天赋的人权;国家主权属于人民,在法律面前人人平等;国家实行立法、行政、司法三权分立;私有财产神圣不可侵犯。

请回答:
(1)上述两则材料分别反映了哪两个
...国家的资产阶级革命?(2分)
(2)材料一和材料二分别出自哪两部
...资产阶级法律文件?(2分)
(3)材料二中最能体现“维护资产阶级利益”的内容是什么?(1分)
五、问答题:本大题2小题,第22题7分,第23题5分,共12分。

22.伯里克利说:“我们的制度之所以称为民主政治,因为政权是在全体公民手中,而不是在少数人手中。

”请回答:
(1)“我们的制度”是指哪个国家的制度?(1分)
(2)这个国家经过谁的改革,开启了民主政治的道路?(1分)民主政治达到顶峰时,这个国家的最高决策机构是什么?(1分)
(3)请谈谈你对材料中的“民主政治”的看法。

(2分)
(4)正是这种民主政治,造就了他们爱思考积极进取的民族气质,涌现出一大批科学家和思想家,其中曾发出“给我一个支点,我将翻转地球”的科学家和写成《几何原本》的数学家分别是谁?(2分)
23.宗教对当今的社会生活和文化影响很大,特别是西方,宗教成为他们生活中不可或缺的
一部分。

请回答:
(1)佛教产生的时间是?(1分)它的创始人是谁?(1分)
(2)“圣诞节”是西方社会的重大节日,它与哪一宗教信仰有关?(1分)该宗教的经典是什么?(1分)
(3)请谈谈你对宗教的认识?(1分)
2010—2011学年度上学期末考试
九年级历史参考答案及评分意见
二、判断题:本大题共5个小题,每小题1分,共5分。

(1)√(2)○(3)○(4)○(5)√
三、填图题:本大题2小题,第17题2分,第18题3分,共5分。

17. (1)A;(1分)(2)B(1分)
18.上左框A;下左框C;下右框B。

(每空1分,共3分)
四、材料分析题:本大题共3个小题,第19题4分,第20题4分,第21题5分,共13分。

19.(1)和平交往;(1分)暴力冲突。

(1分)
(2)马可•波罗来华;(1分)希波战争等。

(1分)(答案符合题意,史实正确即可)20.(1)美国独立战争;(1分)华盛顿(1分)
(2)美国南北战争(或美国内战);(1分)《解放黑人奴隶宣言》(1分)
21.(1)英国;(1分)法国(1分)
(2)《权利法案》;(1分)《人权宣言》(1分)
(3)私有财产神圣不可侵犯(1分)
五、问答题:本大题2小题,第22题7分,第23题5分,共12分。

22.(1)古代雅典(1分)
(2)梭伦改革(1分);公民大会(1分)
(3)古希腊民主政治开启了西方民主政治的先河;民主政治既有民主性的一面,又有局限性的一面等等。

(2分)
(4)阿基米德(1分);欧几里得(1分)
23.(1)公元前6世纪(1分);乔达摩·悉达多(1分)
(2)基督教(1分)《圣经》(1分)
(3)宗教可以成为人民大众的生活规范;宗教是非科学的,并且常常是统治阶级的工具。

但在一定历史条件下,宗教往往也起着进步的乃至革命的作用。

(1分)(言之有理即可)。

相关文档
最新文档