最全的大学材料科学基础复习要点

合集下载

最全的大学材料科学基础复习要点

最全的大学材料科学基础复习要点

第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

(2)特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(3)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷;b 可有无限多种。

2 晶胞(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(4)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

材料科学基础复习资料

材料科学基础复习资料

材料科学基础复习资料材料科学基础是各个工程领域的基本学科,是各个领域的基础。

材料科学基础涵盖了材料的结构、物理与化学性质、制备工艺等方面内容,是材料科学领域学习过程中必须掌握的知识。

因此,为帮助有需要的人顺利复习材料科学基础知识,本文整理了一些相关的复习资料。

一、材料基础知识1. 基本的物理性质:包括化学成分、密度、电导率、热导率等基本参数,通常在每种材料的材料数据表中都可查到。

2. 结构相关:晶体结构:晶体结构指材料中原子、离子、分子排布的类型和规律,常用的晶体结构有:立方晶系、四方晶系、六方晶系、等轴晶系、正交晶系、单斜晶系、三斜晶系等。

非晶态:非晶态作为一种新兴的材料类型,其分子呈无序排列,在某些情况下可能拥有更好的性能。

3. 材料特性:热膨胀系数:在温度变化时,材料线膨胀的速度大小,通常用公式ΔL/L0 = αΔT 表示,其中α为热膨胀系数。

韧性:材料在受到剪切力或拉伸力时的弹性变形程度,是一种考量材料性能的指标,通常可以通过材料变形曲线进行查看。

4. 金属与合金相关:金属材料通常具有良好的导电、导热等特性,同时在高温、高压等环境下具有较强的稳定性。

合金则通常是由多个金属或者非金属元素组成的混合物,其性质与材料组分、配比等有关。

二、材料治理、工艺及应用1. 材料的处理:常用材料的处理包括固化、焊接、框架处理、表面处理以及高压工艺等,其中固化的过程包括了煅烧、烧结等过程。

2. 材料配方:通常材料的配方根据材料的成分、目的等进行确定,其中分子键长、键能以及分子排列等指标都可能用来确定最终配方。

3. 材料的加工工序:通常材料加工工序包括切削、钣金、打压成形等过程,每个工序都会影响材料的性质和特性。

三、材料的主要分类1. 材料的物理分类:主要涉及到材料的形态、密度以及各种物理性质,通常有固体、液体、气体以及等离子体等分类方式。

2. 材料的化学分类:不同的元素应用于不同的方案分类,这种分类通常依据材料的化学成分。

材料科学基础期末复习总汇.doc

材料科学基础期末复习总汇.doc

1•空间点阵一把原子或原子团按某种规律抽象成三维空间排列的点,这些有规律排列的点称为空间点阵。

2.金属间化合物一由不同的金属或金属与亚金属组成的一类合金相,其点阵既不同于溶剂的点阵,也不同于溶质的点阵,而是属于一种新的点阵。

3.过冷度一理论熔点与实际结晶温度的差值。

4.相一体系中具有相同的物理化学性质的均匀部分。

5.上坡扩散一在化学位梯度的推动下,溶质由低浓度的地方向高浓度的地方扩散的现象。

1.原子配位数一晶体中与任何一原子最临近并且等距离的原子数,它表示晶体中原子的密堆程度以及原子的化学键数。

2.固溶体一在合金相中,组成合金的异类原子以不同比例均匀混合,混合后形成的合金相的点阵与组成合金的溶剂组元结构相同。

3.成分过冷一合金凝固时由于液固界面前沿溶质浓度分布不均匀,使其实际温度低于其理论熔点而所造成的一种特殊过冷现象。

4去应力退火一冷变形金属通过加热使内应力得到很大程度的消除,同时又能保持冷变形强化状态的工艺。

5.柯肯达尔效应〜在置换固溶体中由于两组元的原子以不同速率相对扩散而引起标记面漂移的现象。

1. 晶体缺陷一晶体中原子排列的不完全区域,按几何特征分为点、线、面、体晶体缺陷。

2. 多滑移一晶体在外力的作用滑移时,由于晶体的转动,将使多个滑移系同时达到临界分切应力,从而使这些滑移系同时或交替进行滑移,多滑移也称复滑移。

3. 再结晶一冷变形金属加热到再结晶温度以上时,通过重新形核和长大的方式使变形晶粒转变为无畸变等轴晶粒,位错密度和空位浓度完全恢复到冷变形之前的状态,加工硬化也完全消失,这种转变过程称为再结晶。

再结晶过程不发生晶体结构的变化。

5.复合界面一通过物理和化学作用把两种或两种以上异质、异形和异性的材料复合起来所形成的界面称为复合界面。

1. 同素异构体一相图成分相同的化学物质在不同热力学条件下形成的各种不同结构的物质。

2. 微观偏析一是在一个晶粒范围内成分不均匀的现象。

根据凝固时晶体生长形态的不同,可分为枝晶偏析、胞状偏析和晶界偏析。

材料科学基础复习要点

材料科学基础复习要点

材料科学基础复习要点第一章工程材料中的原子排列1、晶体中的原子键合方式?各种原子结合键的特点2、原子核外电子的能级排列?遵循的规律3、晶体和非晶体的区别?晶体的各向异性及各向同性4、晶体结构和空间点阵的联系及区别5、晶向指数和晶面指数的确定及表示方法,重点为面心立方晶体和体心立方晶体中密排面和密排方向的指数及其表示6、三种常见的晶体结构的特点,包括晶胞中的原子数、点阵常数与原子半径的关系、致密度、配位数、晶体中的间隙、原子堆垛方式、密堆程度、晶体的多晶型性7、铁的三种同素异构体的晶体结构类型8、空位的类型:肖脱基空位、弗兰克尔空位,空位浓度对晶体物理性能的影响9、位错的类型,刃位错、螺位错位错线与柏氏矢量间的关系,画图表示,位错密度对材料强度的影响10、位错环中位错类型的确定(如课本27页,图1-38,33页,图1-47)11、位错柏氏矢量的确定、柏氏回路与柏氏矢量的关系12、柏氏矢量的表示方法、柏氏矢量的模的计算13、柏氏矢量的守恒性及其推论14、作用在位错上的力的大小及方向15、位错的运动方式?刃、螺位错分别能如何运动,运动方向与位错线、柏氏矢量间的关系16、刃、螺位错应力场的特点?应变能与柏氏矢量的关系,不同类型位错应变的大小比较17、平行同号位错间的相互作用18、常见金属晶体中的位错:全位错、不全位错,位错稳定性的判定19、位错反应的判定20、晶界的类型及其位错模型,界面能与晶界位向差间的关系21、相界面的类型22、课后作业51页习题1、3、11,复习思考题1、2、9、10、12第二章固体中的相结构1、相的定义2、固溶体的晶体结构特点、分类及影响固溶体固溶度的因素3、金属原子间形成无限固溶体的条件4、间隙固溶体和间隙化合物的区别5、固溶体的性能特点6、金属间化合物的结构特点、分类、特性7、课后习题79页1、复习思考题1、2第三章凝固1、金属凝固的微观过程及宏观现象2、过冷现象与过冷度3、金属结晶的热力学条件、驱动力及其与过冷度间的关系4、金属结晶的结构条件5、晶核的形成方式6、均匀形核过程中系统能量的变化、临界晶核半径、形核功、临界晶核表面积、临界晶核体积间的关系推导7、均匀形核的条件8、均匀形核的形核率的受控因数、有效过冷度及其与熔点间的关系9、非均匀形核的形核功与均匀形核功间的比较10、晶体长大的条件、动态过冷度11、液固界面的微观结构及其宏观表象、常见金属的界面结构12、不同界面结构下晶体的长大方式13、液固界面的温度梯度与晶体长大形态间的关系14、铸态晶粒大小的控制措施15、课后习题109页1、6,复习思考题第四章相图1、相平衡及相律,相平衡的热力学条件,相率的表达式及其应用2、杠杆定律的计算3、固溶体非平衡凝固中固相、液相的成分变化规律,晶内偏析及其消除方法4、成分过冷的定义、表达式含义及成分过冷对固溶体生长形态及组织的影响5、典型二元共晶相图的分析,如Pb-Sn相图,包括典型合金的结晶过程分析、室温下组成相及组织组成的分析、相的相对含量、组织相对含量的计算(室温下)、非平衡凝固组织组成的分析6、伪共晶、离异共晶的定义,组织特征7、铁碳合金相图的基本相组成及其结构、性能特点8、铁碳合金相图中重要的点、线的含义、3个典型转变的方程式及其转变产物的相组成、组织名称。

材料科学基础复习资料整理

材料科学基础复习资料整理

一.名词解释塑性韧性强度弹性比功分子键(空间)点阵固溶体间隙固溶体固溶强化位错多晶体单晶体反应扩散柯肯达尔效应二次结晶共晶转变包晶转变共析转变铁素体(非)均匀形核结构起伏成分过冷过冷度加工硬化再结晶淬透性(过)时效回火脆性调幅分解二. 需掌握的知识点1. 延性断裂和脆性断裂的区分标准—断裂前有无明显塑性变形。

2. 原子核外电子分布规律遵循的三个原则。

3. 金属键、离子键、共价键、分子键的特点。

4. 混合键比例计算与电负性差的关系。

5. fcc、bcc、hcp的常见金属、一个晶胞内原子数、配位数、致密度、常见滑移系等。

6. 固态合金相分为两大类:固溶体(间隙固溶体与置换固溶体)和中间相(区别点)。

7.影响固溶体溶解度的因素。

8.间隙相和间隙化合物的区别。

9. 晶体缺陷几何特征分类-点、线、面缺陷。

10. 点缺陷的种类及其区别(肖脱基缺陷和弗兰克尔缺陷)。

11.获得过饱和点缺陷的方法及原因。

12. 各类位错运动方向与柏氏矢量、切应力、位错线的位向关系。

13. 位错的主要运动方式;常温下金属塑性变形的方式。

14. 位错的增殖机制:F-R位错增殖机制、双交滑移增殖机制的主要内容。

15.说明柏氏矢量的确定方法。

掌握利用柏氏矢量和位错线的位向关系来判断位错类型。

16.两根平行的螺型位错相遇时的相互作用情况。

17.刃型位错和螺型位错的不同点。

18. 大小角度晶界的位向差、常见类型、模型描述、能量等。

19. 扩散第一定律、第二定律的数学表达式及其字母的物理含义。

20. 体扩散的主要机制、适用对象、扩散激活能大小等;短路扩散等;反应扩散与原子扩散;多晶材料的三种扩散途径—晶内、晶界、表面扩散。

21.柯肯达尔效应的含义及说明的问题(重要意义)。

22. 上坡扩散:物质由低浓度→高浓度,说明扩散的真正原因是化学势梯度而非浓度梯度。

23. 反应扩散定义、特点、扩散层增厚速度的决定因素。

24. 影响扩散的主要因素简述及分别叙述。

材料科学基础复习要点

材料科学基础复习要点

《材料科学基础》复习要点一、主要内容1. 工程材料中的原子排列(1)原子键合,工程材料种类;(2)原子的规则排列:晶体结构与空间点阵,晶向及晶面的特点及表示,金属的晶体结构,陶瓷的晶体结构。

(3)原子的不规则排列:点、线、面缺陷的类型及特征,位错的弹性性质,实际晶体中的位错。

2. 固体中的相结构(1)固溶体:分类、性能及影响固溶度的因素;(2)金属间化合物:分类、性能及特征;(3)陶瓷晶体相:分类、结构、性能及特征;(4)玻璃相:性能、特征及形成条件。

3. 凝固与结晶(1)结晶的基本规律;(2)结晶的基本条件;(3)晶核的形成:形核能量变化,临界晶核,形核功,形核率;(4)晶体的长大:长大条件,液固界面结构,长大机制,温度梯度,晶体形态;(5)凝固理论的应用。

4. 二元相图:(1)相图的基本知识;(2)二元匀晶相图、共晶相图及包晶相图:二元合金的平衡凝固及非平衡凝固,凝固过程中的成分变化及偏析,成分过冷与固溶体组织,共晶体形成机理及其形态,杠杆定律;(3)二元相图的分析方法,其他类型二元相图及其应用;(4)Fe-C相图分析及平衡凝固;(5)铸锭组织与偏析。

5. 材料中的扩散:(1)扩散定律及其应用;(2)扩散的微观机理,影响扩散的因素;(3)扩散的热力学理论;(4)反应扩散。

6. 塑性变形:(1)单晶体的塑性变形;(2)多晶体的塑性变形;(3)合金的塑性变形;(4)冷变形金属的组织与性能。

7. 回复与与结晶:(1)冷变形金属在加热时的变化;(2)回复:机制,热力学,动力学,应用,影响因素;(3)再结晶:机制,热力学,动力学,应用,影响因素;(4)再结晶后晶粒长大:机制,热力学,动力学,应用及组织控制,影响因素;(5)金属的热变形,超塑性。

二、参考书目1. 《材料科学基础》,胡庚祥,蔡珣,上海交通大学出版社,20002. 《材料科学基础》(第二版),刘智恩,西北工业大学出版社20033. 《材料科学基础》,石德珂,西安交通大学出版社,20004. 《材料科学基础》,潘金生,仝健民,清华大学出版社,1998《材料科学基础》复习纲要重要概念-键合、工程材料-晶体、非晶体、各向异性-点阵、晶体结构、晶胞、晶系、布拉菲点阵、晶面指数、晶向指数、晶面族、晶向族-晶格常数、晶胞原子数、配位数、致密度、间隙-堆垛、密排面、密排方向、堆垛次序、堆垛方向-缺陷、点缺陷、刃位错、螺位错、混合位错-柏氏矢量、滑移矢量-位错密度-滑移、攀移、交滑移、交割、割阶、扭折、塞积-位错应力场、应变能、线张力、位错线上的力-位错增殖、位错源-全位错、不全位错、堆垛层错、位错反应-晶界、相界、界面能、大角度晶界、小角度晶界、孪晶界-相、固溶体、置换固溶体、间隙固溶体-金属间化合物、玻璃相-凝固、结晶、短程有序、长程有序-结构起伏(相起伏)、能量起伏、成分起伏-过冷度、形核过冷度、动态过冷度、临界过冷度、有效形核过冷度-均匀形核、非均匀形核、晶核、临界晶核、临界形核功、形核率-光滑界面、粗糙界面、垂直长大、横向长大、温度梯度、树枝状-平衡转变(结晶)、非平衡转变(结晶)、正常凝固-匀晶、共晶、包晶、共析、包析、脱溶转变-平衡分配系数、有效分配系数-微观偏析(枝晶偏析)、宏观偏析-亚共晶、共晶、过共晶、伪共晶、离异共晶、非平衡共晶、包晶转变不完全性-铁素体、奥氏体、珠光体、莱氏体、渗碳体、工业纯铁、钢、铸铁-液相线、固相线、液相面、固相面、中间面、液相平均成分线、固相平均成分线-浓度三角形-垂直截面、水平界面、投影图-扩散、空位扩散、间隙扩散、稳态扩散、非稳态扩散-扩散系数、扩散激活能、扩散通量、迁移率-上坡扩散、反应扩散-滑移、滑移线、滑移带、滑移方向、滑移面、滑移系、临界分切应力、取向因子、吕德斯带-柯氏气团、屈服、应变时效-细晶强化、固溶强化、复相强化、弥散强化、加工硬化-纤维组织、带状组织、流线、位错胞、变形亚结构、织构-回复、再结晶、晶粒长大-低、中、高温回复,多边化,去应力退火-再结晶温度、再结晶退火-临界变形度、热蚀沟、再结晶图-动态回复、动态再结晶,热变形-复合材料、基体、增强体、界面各章知识要点一、工程材料中的原子排列§1.1 原子键合• 原子键合的种类、特点、典型例子• 工程材料的分类及其主要键合类型• 键合的多重性§1.2 原子的规则排列• 晶体的特点、晶体结构、点阵• 晶系、布拉菲点阵• 晶面指数、晶向指数(标定和作图)及其特点,晶面族、晶向族• 晶面间距• 典型金属结构(fcc、bcc、hcp)(晶胞原子数、点阵常数、配位数、致密度)(间隙种类及其特点)(堆垛方式)• 多晶型性、同素异晶转变• 陶瓷晶体结构(离子键晶体、共价键晶体)(结构规则、不等径刚球密堆原理)§1.3 原子的不规则排列• 缺陷的种类• 点缺陷的种类• 空位的平衡浓度• 点缺陷对晶体性能的影响• 位错的类型、特点• 柏氏矢量(柏氏回路)• 位错的运动方式、特点• 位错的力学性能(应力场、畸变能、位错线上的力、线张力)• 位错的交互作用(位错与点、线、面缺陷的交互作用)• 位错增殖• 实际晶体中的位错(全位错、不全位错、单位位错、部分位错、堆垛层错、弗兰克位错、肖克来位错)• 位错反应• 面缺陷(类型及其结构模型、界面能、界面的特点)二、固体中的相结构§ 2.1 固溶体-固溶体的概念、分类-影响固溶度的因素-固溶体的均匀性-固溶体的性能§ 2.2 金属间化合物-化合物的概念、分类-化合物的性能§ 2.3 陶瓷晶体相-陶瓷的概念、特征§ 2.4 玻璃相-陶瓷的概念、形成条件三、凝固§ 3.1 金属结晶的基本规律-微观规律(形核、长大、)-宏观规律(过冷)§ 3.2 金属结晶的基本条件-热力学条件(ΔG < 0、ΔT )-动力学条件(形核:结构条件、能量条件、成分条件)(长大:速度条件)§ 3.3 晶核的形成-形核的方式(均匀形核、非均匀形核)-结晶时的体系能量变化-形核的驱动力和阻力-临界晶核的概念-临界晶核半径及其计算-临界形核功及其计算-形核率(概念、影响因素、特点)-两种形核方式的比较§3.4 晶体的长大-液固界面的微观结构-晶体的长大机制-温度梯度-晶体长大的形态§3.6 凝固理论的应用-铸锭晶粒组织及其控制-单晶体的制备-定向凝固-非晶合金的制备-微晶合金的制备四、相图§ 4.1 相、相平衡及相图制作-相的定义-相平衡的定义-成分的表示方法(质量分数、摩尔分数)-相图的制作方法§ 4.2 匀晶相图-相图分析-成分变化(平衡、非平衡)(微观偏析、宏观偏析)-成分过冷(概念、形成原因)-固溶体形貌§ 4.3 共晶相图-相图分析-共晶转变特点-典型合金的结晶过程(平衡、非平衡)-成分变化(平衡、非平衡)-共晶形成机理(形核机理、长大机理)-共晶体形貌特征(平衡、非平衡)-杠杆定律计算(相组成、组织组成)§ 4.4 包晶相图-相图分析-包晶转变特点-典型合金的结晶过程(平衡、非平衡)-成分变化(平衡、非平衡)-包晶形成机理-杠杆定律计算(相组成、组织组成)§ 4.5 其它相图-相图分析方法、步骤-典型合金的结晶过程(平衡、非平衡)-成分变化(平衡、非平衡)-杠杆定律计算(相组成、组织组成)§ 4.6 Fe-C相图-相图分析-典型合金的平衡结晶过程-成分变化-典型合金的名称-杠杆定律计算(相组成、组织组成)§ 4.8 铸锭组织与偏析-偏析的类型§ 4.9 三元合金相图-成分表示法(浓度三角形)-三元匀晶相图(立体图、投影图)-三元匀晶相图(垂直截面、水平截面)-三元匀晶相图平衡结晶过程-简单三元共晶相图(立体图、投影图)-简单三元共晶相图(垂直截面、水平截面)-简单三元共晶相图平衡结晶过程五、材料中的扩散§5.1 扩散定律及其应用-扩散第一定律及其应用条件-扩散第二定律及其应用条件§ 5.2 扩散的微观机理-扩散的微观机理-原子热运动对扩散的影响-晶态、非晶态化合物中的扩散§ 5.3 扩散的热力学理论-扩散的驱动力-上坡扩散(概念、诱因)-扩散系数§ 5.4 反应扩散-反应扩散(概念、特点)陶瓷的概念、特征§ 5.5 扩散的影响因素-影响因素及其机理六、塑性变形§ 6.1 应力-应变曲线-工程应力应变曲线、真应力应变曲线及二者差别-强度及塑性指标,硬化系数§ 6.2 单晶体的塑性变形-滑移现象(滑移线、滑移带、滑移特征)-滑移系-临界分切应力-滑移的微观机理-晶体的转动、多滑移、交滑移及滑移线形貌-孪生的概念、特点§ 6.3 多晶体的塑性变形-位向差及晶界对塑变的影响-细晶强化机理、特征-霍尔-配奇公式§6.4 合金的塑性变形-固溶强化机理-屈服及应变时效-复相强化机理及特征-弥散强化机理§ 6.5 冷变形金属的组织和性能-组织变化(显微组织、变形亚结构、变形织构)-能量变化(内应力、畸变能)-力学性能(加工硬化)-物理、化学性能变化七、回复与再结晶§ 7.1 加热时的变化-显微组织变化-能量变化-力学性能变化-物理、化学性能变化§ 7.2 回复-回复机制-回复热力学-回复动力学-回复应用§ 7.3 再结晶-再结晶机制(形核机制、长大机制)-再结晶热力学-再结晶动力学-再结晶温度及其影响因素-再结晶组织及其影响因素§ 7.4 再结晶后晶粒长大-长大方式-晶粒长大(特征、热力学、动力学)-晶粒长大影响因素-再结晶应用八、固态相变-固态相变的分类九、复合效应与界面-复合材料定义、分类-复合材料的构成、各部分的作用-复合效应-界面结合种类热处理改变钢的性能的原因是因为采用不同的加热、保温、冷却方式使钢内部结构发生改变,从而获得所需性能。

全的大学材料科学基础复习要点

全的大学材料科学基础复习要点

第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

(2)特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(3)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷; b 可有无限多种。

2 晶胞(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(4)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

材料科学基础知识点

材料科学基础知识点

材料科学基础知识点
1. 结晶学:研究晶体的形成、结构和性质。

包括晶体生长、晶体结构分析、晶体缺陷等。

2. 材料力学:研究材料的力学性质,包括材料的强度、韧性、塑性、蠕变等。

3. 材料热学:研究材料的热传导、热膨胀、热稳定性等热学性质。

4. 材料电学:研究材料的电导率、介电性质、磁性等电学性质。

5. 材料化学:研究材料的化学成分、结构和化学反应。

包括材料的合成方法、表面改性、材料的腐蚀与防护等。

6. 材料物理学:研究材料的物理性质,包括光学性质、磁性、声学性质等。

7. 材料加工:研究材料的加工方法、工艺和性能改善。

包括材料的铸造、焊接、锻造、热处理等。

8. 材料性能测试:研究材料的各种性能指标的检测和测试方法。

9. 材料选择:根据工程要求和材料性能,选择最合适的材料。

10. 材料应用:研究材料在各种实际应用中的性能和适用范围,包括材料的耐久性、可靠性等。

材料科学基础知识点

材料科学基础知识点

材料科学基础知识点材料科学基础重点梳理第一章1.1原子的结合有哪些?1.2工程材料可分为哪几类?1.3晶向指数、晶面指数能画图,给图能写出。

1.4金属常见的晶格类型、配位数、致密度、原子密排面、密排晶向、结构中的间隙。

1.5晶体中缺陷的种类。

1.6位错的种类、位错方向与柏氏矢量的关系、位错的运动方式。

1.7位错反应条件及计算。

1.8晶界的种类,界面能与晶界的关系。

第二章2.1影响置换固溶体溶解度有哪些因素?有何规律?1、原子尺寸因素:溶质和溶剂的尺寸差别越小越容易形成置换固溶体2、晶体结构因素:同一种间隙原子在fcc的固熔度大于bcc的3、负电性因素;负电性相差很大时,即亲和力很大,往往比较容易形成比较稳定的化合物; 负电性差不大时,随负电性值增加,有利于增大固溶度4、电子浓度因素:溶质元素的原子价越高,形成固溶体的极限固溶度越小。

2.2间隙固溶体与间隙相之间的关系。

间隙固熔体式固熔体的一种,间隙相是一种金属间化合物两者的晶体结构也各不相同。

2.3金属间化合物的种类及特点金属间化合物分为正常价化合物,电子价化合物和间隙化合物;正常价化合物:电负性差值越大,稳定性越高;电子价化合物:间隙化合物:主要受组元的原子尺寸因素控制。

通常是由渡族金属与原子半径很小的非金属元素组成,分为简单间隙化合物与复杂间隙化合物,非金属元素处于化合物晶格的间隙中。

第三章3.1金属结晶的热力学条件是什么?热力学第二定律:在等温等压条件下物质系统总是自发地从自由能较高的状态向自由能较低的状态转变,就是说只有伴随着自由能降低的过程才能自发的进行。

3.2金属结晶的能量条件是什么?能量起伏(详细看书P85-86)固态金属自由能低于液态金属自由能。

当温度低于Tm时液态的自由能Gl高于固态的自由能,由液态转为固态时,将释放出那份能量而是系统自由能降低,所以过程才能够自动进行。

凝固过程一定要在低于熔点温度时才能进行。

3.3金属结晶的结构条件是什么?结构起伏 (详细看书P86-87)3.4金属结晶时的形核有哪些方式?均匀形核、非均匀形核3.5根据凝固理论,如何细化晶粒?单位体积中的晶粒数取决于两个因素:形核率N和长大速度V;增加过冷度;小制件:增加冷却速度,大制件:采用形核剂;振动。

材料科学基础复习资料整理

材料科学基础复习资料整理

材料科学基础复习资料整理一.名词解释塑性韧性强度弹性比功分子键(空间)点阵固溶体间隙固溶体固溶强化位错多晶体单晶体反应扩散柯肯达尔效应二次结晶共晶转变包晶转变共析转变铁素体(非)均匀形核结构起伏成分过冷过冷度加工硬化再结晶淬透性(过)时效回火脆性调幅分解二. 需掌握的知识点1. 延性断裂和脆性断裂的区分标准—断裂前有无明显塑性变形。

2. 原子核外电子分布规律遵循的三个原则。

3. 金属键、离子键、共价键、分子键的特点。

4. 混合键比例计算与电负性差的关系。

5. fcc、bcc、hcp的常见金属、一个晶胞内原子数、配位数、致密度、常见滑移系等。

6. 固态合金相分为两大类:固溶体(间隙固溶体与置换固溶体)和中间相(区别点)。

7.影响固溶体溶解度的因素。

8.间隙相和间隙化合物的区别。

9. 晶体缺陷几何特征分类-点、线、面缺陷。

10. 点缺陷的种类及其区别(肖脱基缺陷和弗兰克尔缺陷)。

11.获得过饱和点缺陷的方法及原因。

12. 各类位错运动方向与柏氏矢量、切应力、位错线的位向关系。

13. 位错的主要运动方式;常温下金属塑性变形的方式。

14. 位错的增殖机制:F-R位错增殖机制、双交滑移增殖机制的主要内容。

15.说明柏氏矢量的确定方法。

掌握利用柏氏矢量和位错线的位向关系来判断位错类型。

16.两根平行的螺型位错相遇时的相互作用情况。

17.刃型位错和螺型位错的不同点。

18. 大小角度晶界的位向差、常见类型、模型描述、能量等。

19. 扩散第一定律、第二定律的数学表达式及其字母的物理含义。

20. 体扩散的主要机制、适用对象、扩散激活能大小等;短路扩散等;反应扩散与原子扩散;多晶材料的三种扩散途径—晶内、晶界、表面扩散。

21.柯肯达尔效应的含义及说明的问题(重要意义)。

22. 上坡扩散:物质由低浓度→高浓度,说明扩散的真正原因是化学势梯度而非浓度梯度。

23. 反应扩散定义、特点、扩散层增厚速度的决定因素。

24. 影响扩散的主要因素简述及分别叙述。

材科基知识点范文

材科基知识点范文

材科基知识点范文材料科学与工程(Materials Science and Engineering,简称MSE)是一门研究材料的基本原理、性能、结构和制备工艺的学科。

在现代科学技术中,材料科学与工程的研究内容十分丰富和广泛,包括金属材料、无机非金属材料、有机高分子材料、复合材料等。

以下是关于材料科学与工程的一些基本知识点。

1.材料的分类:-金属材料:如钢、铝等。

具有良好的导电性、导热性和机械性能。

-无机非金属材料:如陶瓷、玻璃等。

具有高温耐性、绝缘性等特点。

-有机高分子材料:如塑料、橡胶等。

具有良好的可塑性和可拉伸性。

-复合材料:由两种或两种以上的材料组合而成,具有优异的力学性能。

2.结构与性能:-结晶结构:材料中的原子按照一定的顺序排列形成有序的晶格结构。

晶格结构的不同对材料的性能有重要影响。

-缺陷结构:包括点缺陷、面缺陷和体缺陷,是材料中的非正常原子或原子排列方式。

-物理性能:包括力学性能(如强度、硬度等)、热学性能(如导热性、热膨胀系数等)和电学性能(如导电性、绝缘性等)等。

-化学性能:材料的化学稳定性、耐腐蚀性等。

3.材料制备工艺:-熔炼:将原材料加热至液体状态,使其均匀混合,再通过冷却凝固,得到所需形状和尺寸的材料。

-粉末冶金:通过机械粉碎,将金属或非金属制成细小颗粒,然后通过压制、烧结等工艺获得材料。

-涂覆技术:通过把材料表面涂覆上其他材料,提高材料的性能和耐用性。

-复合制备:通过将两种或两种以上具有不同性能的材料组合在一起,形成新的复合材料,发挥各材料的优点。

4.特种材料:-高温材料:能在高温环境下保持稳定性能的材料,如高温合金等。

-磁性材料:具有磁性质的材料,如铁、钴、镍等。

-光学材料:对光的传播和反射有特殊性能的材料,如玻璃、晶体等。

-生物材料:用于医学和生物领域的材料,如人工关节、植入材料等。

5.材料测试与表征:-X射线衍射:通过测量X射线的衍射图案,确定材料的晶体结构和晶格参数。

材料科学基础复习资料

材料科学基础复习资料

材料科学基础复习资料材料科学基础复习资料材料科学是一门研究材料的性质、结构、制备和应用的学科。

它涉及到多个学科领域,如物理学、化学、工程学等。

材料科学的发展对于现代社会的进步和创新发挥着重要的作用。

在这篇文章中,我们将复习一些材料科学的基础知识和重要概念。

1. 材料的分类材料可以根据其组成、结构和性质的不同进行分类。

常见的材料分类包括金属材料、陶瓷材料、聚合物材料和复合材料。

金属材料具有良好的导电性和导热性,常用于制造工具和机械部件。

陶瓷材料具有优异的耐热性和耐腐蚀性,常用于制作陶瓷器皿和瓷砖。

聚合物材料具有良好的可塑性和绝缘性能,广泛应用于塑料制品和纤维材料。

复合材料是由两种或更多种材料组成的材料,具有优异的力学性能和特殊的功能。

2. 材料的结构材料的结构对其性质和性能具有重要影响。

材料的结构可以分为原子结构、晶体结构和非晶态结构。

原子结构是材料中最基本的结构单元,决定了材料的化学性质。

晶体结构是由原子或离子按照一定规律排列而成的,具有明确的晶格和晶面。

非晶态结构是指材料的原子或分子无序排列的结构,常见于玻璃等非晶体材料。

3. 材料的性质材料的性质包括物理性质和化学性质。

物理性质是指材料在外界条件下的响应和行为,如硬度、弹性、导电性等。

化学性质是指材料与其他物质发生化学反应的性质,如腐蚀性、氧化性等。

材料的性质与其组成、结构和制备方法密切相关。

4. 材料的制备材料的制备是指通过一系列的加工过程将原材料转变为所需的成品材料。

常见的材料制备方法包括熔融法、溶液法、沉积法和固相反应法等。

熔融法是将原材料加热至熔点后冷却固化,常用于金属和玻璃材料的制备。

溶液法是将原材料溶解在溶剂中,然后通过蒸发或沉淀得到所需的材料。

沉积法是将原材料沉积在基底上,常用于薄膜和涂层的制备。

固相反应法是将原材料在高温下反应生成所需的材料。

5. 材料的应用材料的应用广泛涉及到各个领域,如电子、能源、医疗、航空航天等。

电子材料用于制造电子器件和电路,如半导体材料和导电材料。

材料科学基础各章复习要点2021.12

材料科学基础各章复习要点2021.12

材料科学基础各章复习要点2021.12材料科学基础各章复习要点第一章晶体结构名词解释:(1)同构同质多晶(2)萤石型和反萤石型(3)二八面体和三八面体(4)正尖晶石和反尖晶石主要内容:1.元素金属原子形成晶体的结构差异(A1、A2、A3类型)2、从晶体结构特点说明金属或合金在力学性能上表现出良好的塑性和延展性3、通过8-m规则说明金刚石的晶体结构特点4.NaCl型晶体结构的特征,为什么大多数ax型化合物具有NaCl型结构?在ax型晶体结构中,一般阴离子x的半径较大,而阳离子a的半径较小,所以x做紧密堆积,a填充在其空隙中。

大多数ax型化合物的r+/r-在0.414~0.732之间,应该填充在八面体空隙,即具有nacl型结构;并且nacl型晶体结构的对称性较高,所以ax型化合物大多具有nacl型结构。

5.CSCL型结构特点;立方ZnS和六方ZnS晶体结构的差异;6、金红石和萤石型晶体结构特点。

caf2晶体结构与性能的关系。

7、刚玉(?-al2o3)型结构特点。

8.ABO3(钙钛矿、钛铁矿、碳酸钙)的晶体结构特征;ab2o4尖晶石结构特征9。

钛酸钡的铁电效应,为什么钛酸钙没有自发极化?10.硅酸盐晶体结构的共同特征11、五类硅酸盐晶体结构特点,si/o,典型代表名称和分子式12、绿宝石、堇青石结构与性能关系13.滑石和叶蜡石的晶体结构特征以及结构与性能的关系14。

高岭石和蒙脱石的晶体结构特征及其与性能的关系15-方石英-鳞片石英的晶体结构差异16、o2-作而心立方堆积时,根据电价规则,在下面情况下,空隙内各需填入何种价态的阳离子,并对每一种结构举出一个例子。

(a)所有四面体空隙位置均填满;(b)所有八而体空隙位置均填满;(c)填满一半四面体空隙位置;(d)填满一半八面休空隙位置。

第二章晶体结构缺陷名词解释(1) Frenkel缺陷和肖特基缺陷(2)刃位错和螺位错(3)热缺陷和杂质缺陷(4)置换型固溶体和填隙型固溶体(5)点缺陷和线缺陷主要内容:1.缺陷反应方程的编写方法2、热缺陷浓度计算3.杂质缺陷、固溶体及固溶体分子式4、非化学计量化合物结构缺陷(半导体)种类、形成条件、缺陷浓度、电导率与气体压力的关系。

大学期末总复习——材料科学基础知识点汇总

大学期末总复习——材料科学基础知识点汇总

大学期末总复习——材料科学基础知识点汇总一、名词解释1、空间点阵:表示晶体中原子规则排列的抽象质点。

2、配位数:直接与中心原子连接的配体的原子数目或基团数目。

3、对称:物体经过一系列操作后,空间性质复原;这种操作称为对称操作。

4、超结构:长程有序固溶体的通称。

5、固溶体:一种元素进入到另一种元素的晶格结构形成的结晶,其结构一般保持和母相一致。

6、致密度:晶体结构中原子的体积与晶胞体积的比值。

7、正吸附:材料表面原子处于结合键不饱和状态,以吸附介质中原子或晶体内部溶质原子达到平衡状态,当溶质原子或杂质原子在表面浓度大于在其在晶体内部的浓度时称为正吸附。

8、晶界能:晶界上原子从晶格中正常结点位置脱离出来,引起晶界附近区域内晶格发生畸变,与晶内相比,界面的单位面积自由能升高,升高部分的能量为晶界能。

9、小角度晶界:多晶体材料中,每个晶粒之间的位向不同,晶粒与晶粒之间存在界面,若相邻晶粒之间的位向差在10°~2°之间,称为小角度晶界。

10、晶界偏聚:溶质原子或杂质原子在晶界或相界上的富集,也称内吸附,有因为尺寸因素造成的平衡偏聚和空位造成的非平衡偏聚。

11、肖脱基空位:脱位原子进入其他空位或者迁移至晶界或表面而形成的空位。

12、弗兰克耳空位:晶体中原子进入空隙形而形成的一对由空位和间隙原子组成的缺陷。

13、刃型位错:柏氏矢量与位错线垂直的位错。

螺型位错:柏氏矢量与位错线平行的位错。

14、柏氏矢量:用来表征晶体中位错区中原子的畸变程度和畸变方向的物理量。

15、单位位错:柏氏矢量等于单位点阵矢量的位错。

16、派—纳力:位错滑动时需要克服的周围原子的阻力。

17、过冷:凝固过程开始结晶温度低于理论结晶温度的现象。

18、过冷度:实际结晶温度和理论结晶温度之间的差值。

19、均匀形核:在过冷的液态金属中,依靠金属本身的能量起伏获得成核驱动力的形核过程。

20、过冷度:实际结晶温度和理论结晶温度之间的差值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

(2)特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(3)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷;b 可有无限多种。

2 晶胞(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(4)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

(5)晶胞中点的位置表示(坐标法)。

3 布拉菲点阵14种点阵分属7个晶系。

4 晶向指数与晶面指数晶向:空间点阵中各阵点列的方向。

晶面:通过空间点阵中任意一组阵点的平面。

国际上通用米勒指数标定晶向和晶面。

(1)晶向指数的标定a 建立坐标系。

确定原点(阵点)、坐标轴和度量单位(棱边)。

b 求坐标。

u’,v’,w’。

c 化整数。

u,v,w.d 加[ ]。

[uvw]。

说明:a 指数意义:代表相互平行、方向一致的所有晶向。

b 负值:标于数字上方,表示同一晶向的相反方向。

c 晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。

用<uvw>表示,数字相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。

(2)晶面指数的标定a 建立坐标系:确定原点(非阵点)、坐标轴和度量单位。

b 量截距:x,y,z。

c 取倒数:h’,k’,l’。

d 化整数:h,k,k。

e 加圆括号:(hkl)。

说明:a 指数意义:代表一组平行的晶面;b 0的意义:面与对应的轴平行;c 平行晶面:指数相同,或数字相同但正负号相反;d 晶面族:晶体中具有相同条件(原子排列和晶面间距完全相同),空间位向不同的各组晶面。

用{hkl}表示。

e 若晶面与晶向同面,则hu+kv+lw=0;f 若晶面与晶向垂直,则u=h, k=v, w=l。

(3)六方系晶向指数和晶面指数a 六方系指数标定的特殊性:四轴坐标系(等价晶面不具有等价指数)。

b 晶面指数的标定标法与立方系相同(四个截距);用四个数字(hkil)表示;i=-(h+k)。

c 晶向指数的标定标法与立方系相同(四个坐标);用四个数字(uvtw)表示;t=-(u+w)。

依次平移法:适合于已知指数画晶向(末点)。

坐标换算法:[UVW]~[uvtw]u=(2U-V)/3, v=(2V-U)/3, t=-(U+V)/3, w=W。

二典型晶体结构及其几何特征1三种常见晶体结构面心立方(A1, FCC)体心立方(A2, BCC)密排六方(A3, HCP)晶胞原子数 4 2 6点阵常数a=2/2r a=4/3/3r a=2r配位数12 8(8+6)12致密度0.74 0.68 0.74堆垛方式ABCABC.. ABABAB.. ABABAB..结构间隙正四面体正八面体四面体扁八面体四面体正八面体(个数)8 4 12 6 12 6(r B/r A)0.225 0.414 0.29 0.15 0.225 0.414配位数(CN):晶体结构中任一原子周围最近且等距离的原子数。

致密度(K):晶体结构中原子体积占总体积的百分数。

K=nv/V。

间隙半径(r B):间隙中所能容纳的最大圆球半径。

2 离子晶体的结构(1)鲍林第一规则(负离子配位多面体规则):在离子晶体中,正离子周围形成一个负离子配位多面体,正负离子间的平衡距离取决于正负离子半径之和,正离子的配位数取决于正负离子的半径比。

(2)鲍林第二规则(电价规则含义):一个负离子必定同时被一定数量的负离子配位多面体所共有。

(3)鲍林第三规则(棱与面规则):在配位结构中,共用棱特别是共用面的存在,会降低这个结构的稳定性。

3 共价键晶体的结构(1)饱和性:一个原子的共价键数为8-N。

(2)方向性:各键之间有确定的方位(配位数小,结构稳定)三多晶型性元素的晶体结构随外界条件的变化而发生转变的性质。

第三节原子的不规则排列原子的不规则排列产生晶体缺陷。

晶体缺陷在材料组织控制(如扩散、相变)和性能控制(如材料强化)中具有重要作用。

晶体缺陷:实际晶体中与理想点阵结构发生偏差的区域。

(晶体缺陷可分为以下三类。

)点缺陷:在三维空间各方向上尺寸都很小的缺陷。

如空位、间隙原子、异类原子等。

线缺陷:在两个方向上尺寸很小,而另一个方向上尺寸较大的缺陷。

主要是位错。

面缺陷:在一个方向上尺寸很小,在另外两个方向上尺寸较大的缺陷。

如晶界、相界、表面等。

一点缺陷1 点缺陷的类型空位:肖脱基空位-离位原子进入其它空位或迁移至晶界或表面。

弗兰克尔空位-离位原子进入晶体间隙。

(1)间隙原子:位于晶体点阵间隙的原子。

(2)置换原子:位于晶体点阵位置的异类原子。

2 点缺陷的平衡浓度(1)点缺陷是热力学平衡的缺陷-在一定温度下,晶体中总是存在着一定数量的点缺陷(空位),这时体系的能量最低-具有平衡点缺陷的晶体比理想晶体在热力学上更为稳定。

(原因:晶体中形成点缺陷时,体系内能的增加将使自由能升高,但体系熵值也增加了,这一因素又使自由能降低。

其结果是在G-n曲线上出现了最低值,对应的n值即为平衡空位数。

)(2)点缺陷的平衡浓度C=Aexp(-∆Ev/kT)3 点缺陷的产生及其运动(1)点缺陷的产生平衡点缺陷:热振动中的能力起伏。

过饱和点缺陷:外来作用,如高温淬火、辐照、冷加工等。

(2)点缺陷的运动(迁移、复合-浓度降低;聚集-浓度升高-塌陷)4 点缺陷与材料行为(1)结构变化:晶格畸变(如空位引起晶格收缩,间隙原子引起晶格膨胀,置换原子可引起收缩或膨胀。

)(2)性能变化:物理性能(如电阻率增大,密度减小。

)力学性能(屈服强度提高。

)二线缺陷(位错)位错:晶体中某处一列或若干列原子有规律的错排。

意义:(对材料的力学行为如塑性变形、强度、断裂等起着决定性的作用,对材料的扩散、相变过程有较大影响。

)位错的提出:1926年,弗兰克尔发现理论晶体模型刚性切变强度与与实测临界切应力的巨大差异(2~4个数量级)。

1934年,泰勒、波朗依、奥罗万几乎同时提出位错的概念。

1939年,柏格斯提出用柏氏矢量表征位错。

1947年,柯垂耳提出溶质原子与位错的交互作用。

1950年,弗兰克和瑞德同时提出位错增殖机制。

之后,用TEM直接观察到了晶体中的位错。

1 位错的基本类型(1)刃型位错模型:滑移面/半原子面/位错线(位错线┻晶体滑移方向,位错线┻位错运动方向,晶体滑移方向//位错运动方向。

)分类:正刃型位错(┻);负刃型位错(┳)。

(2)螺型位错模型:滑移面/位错线。

(位错线//晶体滑移方向,位错线┻位错运动方向,晶体滑移方向┻位错运动方向。

)分类:左螺型位错;右螺型位错。

(3)混合位错模型:滑移面/位错线。

2 位错的性质(1)形状:不一定是直线,位错及其畸变区是一条管道。

(2)是已滑移区和未滑移区的边界。

(3)不能中断于晶体内部。

可在表面露头,或终止于晶界和相界,或与其它位错相交,或自行封闭成环。

3 柏氏矢量(1)确定方法 (避开严重畸变区)a 在位错周围沿着点阵结点形成封闭回路。

b 在理想晶体中按同样顺序作同样大小的回路。

c 在理想晶体中从终点到起点的矢量即为――。

(2)柏氏矢量的物理意义a 代表位错,并表示其特征(强度、畸变量)。

b 表示晶体滑移的方向和大小。

c 柏氏矢量的守恒性(唯一性):一条位错线具有唯一的柏氏矢量。

d 判断位错的类型。

(3)柏氏矢量的表示方法a 表示: b=a/n[uvw] (可以用矢量加法进行运算)。

b 求模:/b/=a/n[u2+v2+w2]1/2。

4 位错密度(1)表示方法:ρ=K/Vρ=n/A(2)晶体强度与位错密度的关系(τ-ρ图)。

(3)位错观察:浸蚀法、电境法。

5 位错的运动(1)位错的易动性。

(2)位错运动的方式a 滑移:位错沿着滑移面的移动。

刃型位错的滑移:具有唯一的滑移面螺型位错的滑移:具有多个滑移面。

位错环的滑移:注重柏氏矢量的应用。

b 攀移:刃型位错在垂直于滑移面方向上的运动。

机制:原子面下端原子的扩散――位错随半原子面的上下移动而上下运动。

分类:正攀移(原子面上移、空位加入)/负攀移(原子面下移、原子加入)。

应力的作用:(半原子面侧)压应力有利于正攀移,拉应力有利于负攀移。

(3)作用在位错上的力(单位距离上)滑移:f=τb;攀移:f=σb。

6 位错的应变能与线张力(1)单位长度位错的应变能:W=αGb2。

(α=0.5~1.0, 螺位错取下限,刃位错取上限。

)(2)位错是不平衡的缺陷。

(商增不能抵销应变能的增加。

)(3)位错的线张力:T=αGb2。

(4)保持位错弯曲所需的切应力:τ=Gb/2r。

7 位错的应力场及其与其它缺陷的作用(1)应力场螺位错:τ=Gb/2πr。

(只有切应力分量。

)刃位错:表达式(式1-9)晶体中:滑移面以上受压应力,滑移面以下受拉应力。

滑移面:只有切应力。

(2)位错与位错的交互作用f=τ b ,f=-σb (刃位错)。

同号相互排斥,异号相互吸引。

(达到能量最低状态。

)(3)位错与溶质原子的相互作用间隙原子聚集于位错中心,使体系处于低能态。

柯氏气团:溶质原子在位错线附近偏聚的现象。

(4)位错与空位的交互作用导致位错攀移。

8 位错的增殖、塞积与交割(1)位错的增殖:F-R源。

(2)位错的塞积分布:逐步分散。

相关文档
最新文档