河南省濮阳市2018届中考第一次模拟考试数学试题含答案

合集下载

河南省濮阳市数学中考模拟试卷

河南省濮阳市数学中考模拟试卷

河南省濮阳市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分) (2018七上·台州期中) 3的倒数是()A .B .C . 3D .2. (2分)下列四个式子:①(﹣1)0=﹣1,②(﹣1)﹣1=1,③ ,④ ,其中正确的有()A . 1个B . 2个C . 3个D . 4个3. (2分)(2018·南海模拟) 下列图形中,是中心对称图形的是()A .B .C .D .4. (2分)下列结论正确的是()A . 5a2b-3a2b=2B . 单项式-x4的系数是-1C . 使式子有意义的x的取值范围是x>-5D . 若分式的值等于0,则m=±15. (2分) (2017八上·北海期末) 下列命题中,为真命题的是()A . 对顶角相等B . 同位角相等C . 若a2=b2 ,则a=bD . 同旁内角相等,两直线平行6. (2分)(2019·重庆模拟) 使得关于x的不等式组有且只有4个整数解,且关于x的分式方程 + =-8的解为正数的所有整数a的值之和为()A . 11B . 15C . 18D . 197. (2分)如图所示,正三棱柱的俯视图是()A .B .C .D .8. (2分)(2017·雁塔模拟) 若二次函数y=ax2+bx+c(a<0)的图象如图所示,且关于x的方程ax2+bx+c=k 有两个不相等的实根,则常数k的取值范围是()A . 0<k<4B . ﹣3<k<1C . k<﹣3或k>1D . k<49. (2分)如图,∠AOB和线段CD,如果P点到OA,OB的距离相等,且PC=PD,则P点是()A . ∠AOB的平分线与CD的交点B . CD的垂直平分线与OA的交点C . ∠AOB的平分线与CD的垂直平分线的交点D . CD的中点10. (2分) (2017九上·兰山期末) sin60°的值等于()A .B .C .D .11. (2分) (2017八下·金华期中) 已知数据1、5、4、3、3、2,则下列关于这组数据的说法错误的是()A . 平均数和众数都是3B . 中位数为3C . 方差为10D . 标准差是12. (2分)不等式2x-4≤0的解集在数轴上表示为()A .B .C .D .13. (2分) (2020八下·邵阳期中) 、两地相距48千米,一艘轮船从地顺流航行至地,又立即从地逆流返回地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为千米/时,则可列方程()A .B .C .D .14. (2分)如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A .B . 5cosαC .D . 5sinα16. (2分)(2017·深圳模拟) 已知二次函数y=ax2+bx+c的图象如图,其对称轴为直线x=1,给出下列结论:①b2-4ac>0;②2a+b=0;③abc>0;④3a+c>0.则正确的结论个数为()A . 1B . 2C . 3D . 4二、填空题 (共3题;共3分)17. (1分) (2016七上·保康期中) 若a、b互为相反数,c、d互为倒数,且m的绝对值为2,则m+cd﹣(a+b)=________.18. (1分)用配方法解方程x2+6x+3=0,方程可变为(x+3)2=________.19. (1分)(2017·黑龙江模拟) 已知扇形的半径为5cm,圆心角等于120°,则该扇形的弧长等于________.三、解答题 (共7题;共80分)20. (5分) (2017七下·嘉兴期末) 如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,•规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.21. (10分) (2015八下·宜昌期中) 如图一,矩形ABCD中,AB=5cm,BC=4cm,E是BC上一点,将△CDE沿DE折叠,使点C落在AB上一点F处,连结DF、EF.(1)求BE的长度;(2)设点P、H、G分别在线段DE、BC、BA上,当BP=CP且四边形BGPH为矩形时,请说明矩形BGPH的长宽比为2:1,并求PE的长.(如图二)22. (10分)(2018·淮安) 一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果;(2)求点A落在第四象限的概率.23. (10分) (2019九上·岑溪期中) 如图,反比例函数y1=的图象与一次函数y2=ax+b的图象相交于点A(1,4)和B(﹣2,n).(1)求反比例函数与一次函数的解析式;(2)请根据图象直接写出y1<y2时,x的取值范围.24. (15分) (2016九上·玉环期中) 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.25. (15分)(2017·平南模拟) 如图,在矩形ABCD中,AO=10,AB=8,分别以OC、OA所在的直线为x轴,y 轴建立平面直角坐标系,点D(3,10)、E(0,6),抛物线y=ax2+bx+c经过O,D,C三点.(1)求抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使四边形MENC是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.26. (15分) (2018八下·罗平期末) 如图,在平面直角坐标系中,A(0,8),B(﹣4,0),线段AB的垂直平分线CD分别交AB、OA于点C、D,其中点D的坐标为(0,3).(1)求直线AB的解析式;(2)求线段CD的长;(3)点E为y轴上一个动点,当△C DE为等腰三角形时,求E点的坐标.参考答案一、单选题 (共16题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、16-1、二、填空题 (共3题;共3分)17-1、18-1、19-1、三、解答题 (共7题;共80分)20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、。

(完整版)2018年河南省中考数学一模试卷

(完整版)2018年河南省中考数学一模试卷

2018年河南省中考数学一模试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中,最小的数是()A.﹣3B.﹣(﹣2)C.0D.﹣2.(3分)据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A.9.29×109B.9.29×1010C.92.9×1010D.9.29×1011 3.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)小明解方程﹣=1的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1﹣(x﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x=﹣2④系数化为1,得x=2⑤A.①B.②C.③D.④5.(3分)为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是()A.180个,160个B.170个,160个C.170个,180个D.160个,200个6.(3分)关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.7.(3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°8.(3分)郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.9.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.10.(3分)如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(7,4)D.(8,3)二、填空题(每小题3分,共15分)11.(3分)=.12.(3分)方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=.13.(3分)点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1y2.(用“>”、“<”、“=”填空)14.(3分)如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A 出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD 的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为.15.(3分)如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:(x+2y)2﹣(2y+x)(2y﹣x)﹣2x2,其中x=+2,y=﹣2.17.(9分)全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.运动形式A B C D E人数1230m549请你根据以上信息,回答下列问题:(1)接受问卷调查的共有人,图表中的m=,n=;(2)统计图中,A类所对应的扇形圆心角的度数为;(3)根据调查结果,我市市民最喜爱的运动方式是,不运动的市民所占的百分比是;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?18.(9分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.19.(9分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)20.(9分)如图,反比例y=的图象与一次函数y=kx﹣3的图象在第一象限内交于A(4,a).(1)求一次函数的解析式;(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.21.(10分)一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)22.(10分)如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1中,PM与PN的数量关系是,位置关系是.(2)探究证明:将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;(3)拓展延伸:把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.2018年河南省中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【分析】应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.【解答】解:因为在数轴上﹣3在其他数的左边,所以﹣3最小;故选:A.【点评】此题考负数的大小比较,应理解数字大的负数反而小.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11﹣1=10.【解答】解:929亿=92 900 000 000=9.29×1010.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.【分析】先细心观察原立体图形和长方体的位置关系,结合四个选项选出答案.【解答】解:由图可知,主视图由一个矩形和三角形组成.故选:D.【点评】本题考查了简单组合体的三视图,培养了学生的思考能力和对几何体三种视图的空间想象能力.4.【分析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.【解答】解:﹣=1去分母,得1﹣(x﹣2)=x,故①错误,故选:A.【点评】本题考查解分式方程,解答本题的关键是明确解分式方程的方法.5.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选:B.【点评】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.【分析】根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围,再将其表示在数轴上即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣2x+k+2=0有实数根,∴△=(﹣2)2﹣4(k+2)≥0,解得:k≤﹣1.故选:C.【点评】本题考查了根的判别式以及在数轴上表示不等式的解集,牢记“当△≥0时,方程有实数根”是解题的关键.7.【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进行判断.【解答】解∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作BC,CD边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD中,S△ABC =S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故B正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A正确;AB=CD,AD=BC(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.【点评】本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.8.【分析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.【解答】解:列表得:A B C D EA AA BA CA DA EAB AB BB CB DB EBC AC BC CC DC ECD AD BD CD DD EDE AE BE CE DE EE∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,∴恰好选择从同一个口进出的概率为=,故选:C.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.【分析】根据S△ABE =S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE =S矩形ABCD=3=•AE•BF,∴BF=.故选:B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.10.【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2018除以6,根据商和余数的情况确定所对应的点的坐标即可.【解答】解:如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4).故选:C.【点评】此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.二、填空题(每小题3分,共15分)11.【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:2【点评】此题主要考查了学生开平方的运算能力,比较简单.12.【分析】根据一元二次方程的解的定义,将x=a代入方程3x2﹣5x+2=0,列出关于a的一元二次方程,通过变形求得3a2﹣5a的值后,将其整体代入所求的代数式并求值即可.【解答】解:∵方程3x2﹣5x+2=0的一个根是a,∴3a2﹣5a+2=0,∴3a2﹣5a=﹣2,∴6a2﹣10a+2=2(3a2﹣5a)+2=﹣2×2+2=﹣2.故答案是:﹣2.【点评】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.13.【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.【分析】由P的速度和图2得出AC和BC的长,运用勾股定理求出AB,即可求出sin∠B,求出P运动5秒距离B的长度利用三角函数得出PD的值.【解答】解:∵P以每秒2cm的速度从点A出发,∴从图2中得出AC=2×3=6cm,BC=(7﹣3)×2=8cm,∵Rt△ABC中,∠ACB=90°,∴AB===10cm,∴sin∠B===,∵当点P运动5秒时,BP=2×7﹣2×5=4cm,∴PD=4×sin∠B=4×=2.4cm,故答案为2.4cm.【点评】本题主要考查了动点问题的函数图象,理清图象的含义即会识图是解题的关键.15.【分析】由四边形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE 是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG为等腰三角形时,①EF=GE=时,于是得到DE=DG=AD÷=1,②GE=GF时,根据勾股定理得到DE=.【解答】解:∵四边形ABCD是菱形,∠B=120°∴∠D=∠B=120°,∠A=180°﹣120°=60°,BC∥AD,∵EF∥AB,∴四边形ABFE是平行四边形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG为等腰三角形时,①当EF=EG时,EG=,如图1,过点D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,②GE=GF时,如图2,过点G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,过点D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,③当EF=FG时,∴∠EFG=180°﹣2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,故答案为:1或.【点评】本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.三、解答题(本大题共8小题,满分75分)16.【分析】利用完全平方公式、平方差公式展开并合并同类项,然后把x、y的值代入进行计算即可得解.【解答】解:原式=x2+4xy+4y2﹣(4y2﹣x2)﹣2x2=x2+4xy+4y2﹣4y2+x2﹣2x2=4xy,当x=+2,y=﹣2时,原式=4×(+2)×(﹣2)=4×(3﹣4)=﹣4.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式混合运算顺序和运算法则及完全平方公式、平方差公式.17.【分析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)由表可知样本中散步人数最多,据此可得,再用E项目人数除以总人数可得;(4)总人数乘以样本中C人数所占比例.【解答】解:(1)接受问卷调查的共有30÷20%=150人,m=150﹣(12+30+54+9)=45,n%=×100%=36%,∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为360°×=28.8°,故答案为:28.8°;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是×100%=6%,故答案为:散步、6%;(4)1500×=450(人),答:估计该社区参加碧沙岗“暴走团”的大约有450人.【点评】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.【分析】(1)连接OC,如图所示,由CD⊥AB,AE⊥CF,利用垂直的定义得到一对直角相等,再由CF为圆的切线,利用切线的性质得到CO⊥EF,可得出AE 与OC平行,利用两直线平行内错角相等,等边对等角得到一对角相等,利用AAS得到三角形全等,利用全等三角形的对应边相等即可得证;(2)连接BC,在直角三角形ACD中,利用勾股定理求出AC的长,在直角三角形AEC中,利用锐角三角函数定义求出所求即可.【解答】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【点评】此题考查了切线的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.19.【分析】作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan ∠CAH=tan55°•x知CE=CH﹣EH=tan55°•x﹣4,根据BE=DE可得关于x的方程,解之可得.【解答】解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=4,设AH=x,则BE=GH=GA+AH=23+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,∴CE=CH﹣EH=tan55°•x﹣4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°•x﹣4+15,解得:x≈30,∴CH=tan55°•x=1.4×30=42,答:塔杆CH的高为42米.【点评】本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.20.【分析】(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx ﹣3求出k的值即可求出一次函数的解析式;(2)易求点B、C的坐标分别为(n,),(n,n﹣3).设直线y=x﹣3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ABC是等腰直角三角形时只有AB=AC一种情况.过点A作AF⊥BC于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程﹣1=1﹣(n﹣3),解方程即可.【解答】解:(1)∵反比例y=的图象过点A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函数y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函数的解析式为y=x﹣3;(2)由题意可知,点B、C的坐标分别为(n,),(n,n﹣3).设直线y=x﹣3与x轴、y轴分别交于点D、E,如图.当x=0时,y=﹣3;当y=0时,x=3,∴OD=OE,∴∠OED=45°.∵直线x=n平行于y轴,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一种情况,过点A作AF⊥BC于F,则BF=FC,F(n,1),∴﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.21.【分析】(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据“若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用,比较后即可得出结论;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数,比较后即可得出结论.【解答】解:(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据题意得:,解得:.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组所需费用为:300×12=3600(元),单独请乙组所需费用为:140×24=3360(元),∵3600>3360,∴单独请乙组所需费用最少.(3)商店请甲乙两组同时装修,才更有利,理由如下:单独请甲组完成,损失钱数为:200×12+3600=6000(元),单独请乙组完成,损失钱数为:200×24+3360=8160(元),请甲乙两组同时完成,损失钱数为:200×8+3520=5120(元).∵8160>6000>5120,∴商店请甲乙两组同时装修,才更有利.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数22.【分析】(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出当BD的值最大时,PM的值最大,△PMN的面积最大,推出当B、C、D共线时,BD的最大值=BC+CD=6,由此即可解决问题;【解答】解:(1)PM=PN,PM⊥PN,理由如下:延长AE交BD于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN.故答案是:PM=PN,PM⊥PN.(2)如图②中,设AE交BC于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴当BD的值最大时,PM的值最大,△PMN的面积最大,∴当B、C、D共线时,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面积的最大值=×3×3=.【点评】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.23.【分析】(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA==,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,解方程即可解决问题;【解答】解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴抛物线的解析式为y=﹣x2+2x+3.∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D坐标(1,4).(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA==,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=当点M在x轴上方时,=,解得m=﹣或3(舍弃),∴M(﹣,),当点M在x轴下方时,=,解得m=﹣或m=3(舍弃),∴点M(﹣,﹣),综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,当﹣m2+2m+3=1﹣m时,解得m=,当﹣m2+2m+3=m﹣1时,解得m=,∴满足条件的m的值为或;【点评】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。

河南省濮阳市2018届高三第一次模拟(一模)考试数学试题(理)(答案+解析)

河南省濮阳市2018届高三第一次模拟(一模)考试数学试题(理)(答案+解析)

河南省濮阳市2018届高三第一次模拟考试数学试题(理)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )A. B. C. D.2. 若复数满足,其中为虚数单位,表示复数的共轭复数,则( )A. B. C. D.3. 如图所示的长方形的长为2,宽为1,在长方形内撒一把豆子(豆子大小忽略不计),然后统计知豆子的总数为粒,其中落在飞鸟图案中的豆子有粒,据此请你估计图中飞鸟图案的面积约为( )A. B. C. D.4. 函数的图象大致为( )A. B. C. D.5. 设,若,则( )A. B. C. D.6. 设点是,表示的区域内任一点,点是区域关于直线的对称区域内的任一点,则的最大值为( )A. B. C. D.7. 已知三棱锥中,与是边长为2的等边三角形且二面角为直二面角,则三棱锥的外接球的表面积为( )A. B. C. D.8. 执行如图所示的程序框图(其中表示等于除以10的余数),则输出的为( )A. 2B. 4C. 6D. 89. 某几何体是由一个三棱柱和一个三棱锥构成的,其三视图如图所示,则该几何体的体积为( )A. B. C. D.10. 已知双曲线,是左焦点,,是右支上两个动点,则的最小值是( )A. 4B. 6C. 8D. 1611. 已知中,,,成等比数列,则的取值范围是( )A. B. C. D.12. 已知且,若当时,不等式恒成立,则的最小值是( )A. B. C. D.二、填空题:每题5分,满分20分.13. 正三角形的边长为1,是其重心,则________.14. 的展开式中,的系数为________.15. 已知椭圆,和是椭圆的左、右焦点,过的直线交椭圆于,两点,若的内切圆半径为1,,,则椭圆离心率为________________.16. 先将函数的图象上的各点向左平移个单位,再将各点的横坐标变为原来的倍(其中),得到函数的图象,若在区间上单调递增,则的最大值为____________.三、解答题:本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知数列是等差数列,,,.(1)求数列的通项公式;(2)若数列为递增数列,数列满足,求数列的前项和.18.为创建国家级文明城市,某城市号召出租车司机在高考期间至少参加一次“爱心送考”,该城市某出租车公司共200名司机,他们参加“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机参加“爱心送考”的人均次数;(2)从这200名司机中任选两人,设这两人参加送考次数之差的绝对值为随机变量,求的分布列及数学期望.19. 如图,正方形中,,与交于点,现将沿折起得到三棱锥,,分别是,的中点.(1)求证:;(2)若三棱锥的最大体积为,当三棱锥的体积为,且二面角为锐角时,求二面角的正弦值.20. 已知点在抛物线上,是抛物线上异于的两点,以为直径的圆过点.(1)证明:直线过定点;(2)过点作直线的垂线,求垂足的轨迹方程.21. 已知函数.(1)若函数在上是减函数,求实数的取值范围;(2)若函数在上存在两个极值点,且,证明:.22. 在直角坐标系中,曲线的参数方程为(为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)过原点的直线分别与曲线交于除原点外的两点,若,求的面积的最大值.23. 已知函数.(1)求不等式的解集;(2)若函数在上有最大值,求实数的取值范围.【参考答案】一、选择题1.C【解析】,所以,故选C.2.A【解析】设,,即,即,故选A.3.B【解析】设飞鸟图案的面积为,那么,几,故选B.4.C【解析】,所以函数是偶函数,关于轴对称,排除A.D,当时,,排除B,故选C.5.B【解析】,所以原式等于而,,又因为,所以,可求得,那么,那么,故选B.6.D【解析】如图画出可行域,根据点的对称性可知,点与点关于直线的对称点间的距离最大,最大距离就是点到直线距离的2倍,联立,解得:,点到直线的距离,那么,故选D.7.D【解析】如图,取的中点,连接,,,,连接,点是三棱锥的外接球的球心,因为棱长都是2,所以,所以在中,,那么外接球的表面积是,故选D.8.D【解析】时,第一次进入循环,时,第二次进入循环,时,第三次进入循环,,时,第四次进入循环,,当时,第五次进入循环,时,第六次进入循环,,由此可知此循环的周期为6,当时,第2016次进入循环,,所以此时,退出循环,输出的值等于8,故选D.9.A【解析】次三视图还原为如图几何体,长方体削下去等高的四棱锥,剩下一个三棱锥和一个三棱柱,,故选A.10.C【解析】,所以,当且仅当三点共线时等号成立,故选C.11.B【解析】由已知可知,即,,即,,原式等于,设即原式等于,函数是增函数,当时,函数等于0,当时,函数等于,所以原式的取值范围是,故选B.12.A【解析】原式等价于,两边取自然对数得,令,则时,,因为,当时,即时,单调递增,当时,与矛盾;当时,即时,令,解得,,单调递增,时,单调递减,若,即,当时,单调递增,,矛盾;若,即,当时,递减,,成立,综上,,最小值为,故选A.二、填空题13.【解析】且两向量的夹角为,即故填:14.56【解析】原式,其中只可能出现在的展开式中,所以的系数是,故填:56.15.【解析】设周长为,则,又,则,又,则,故填:.16.9【解析】在区间上单调递增,所以有,即,由可得,当时,,所以正整数的最大值是9.三、解答题17. 解:(1)由题意得,所以,时,,公差,所以,时,,公差,所以.(2)若数列为递增数列,则,所以,,,所以,,所以,所以.18.解:由图可知,参加送考次数为1次,2次,3次的司机人数分别为20,100,80.(1)该出租车公司司机参加送考的人均次数为:.(2)从该公司任选两名司机,记“这两人中一人参加1次,另一个参加2次送考”为事件,“这两人中一人参加2次,另一人参加3次送考”为事件,“这两人中一人参加1次,另一人参加3次送考”为事件,“这两人参加次数相同”为事件.则,,.的分布列:的数学期望.19. 解:(1)依题意易知,,,∴平面,又∵平面,∴.(2)当体积最大时三棱锥的高为,当体积为时,高为,中,,作于,∴,∴,∴为等边三角形,∴与重合,即平面.以为原点,所在直线为轴,过且平行于的直线为轴,为轴,建立空间直角坐标系.∴,,,.设为平面的法向量,∵,,∴,取,设是平面的法向量,,,∴,取,∴,设二面角大小为,∴.20. 解:(1)点在抛物线上,代入得,所以抛物线的方程为,由题意知,直线的斜率存在,设直线的方程为,设,,联立得,得,,由于,所以,即,即.(*)又因为,,代入(*)式得,即,所以或,即或.当时,直线方程为,恒过定点,经验证,此时,符合题意;当时,直线方程为,恒过定点,不合题意,所以直线恒过定点.(2)由(1),设直线恒过定点,则点的轨迹是以为直径的圆且去掉,方程为.21. 解:(1)由函数在上是减函数,知恒成立,.由恒成立可知恒成立,则,设,则,由,函数在上递增,在上递减,∴,∴.(2)由(1)知.由函数在上存在两个极值点,且,知,则且,联立得,即,设,则,要证,只需证,只需证,只需证构造函数,则.故在上递增,,即,所以.22. 解:(1)曲线的普通方程为,即,所以,曲线的极坐标方程为,即.(2)不妨设,,.则,,的面积. 所以,当时,的面积取最大值为.23. 解:(1)设,根据图象,由解得或.所以,不等式的解集为.(2)由题意得,由函数在上有最大值可得解得.。

2018年河南省濮阳市中考第一次模拟考试数学试卷及答案

2018年河南省濮阳市中考第一次模拟考试数学试卷及答案

2018年河南省濮阳市中考第⼀次模拟考试数学试卷及答案2018年九年级濮阳市第⼀次模拟考试数学⼀、选择题(每⼩题3分,共30分) 1、 ?3的相反数是() A 、?3B 、3C 、13-D 、132、今年3⽉5⽇,⼗三届全国⼈⼤⼀次会议在⼈民⼤会堂开幕,会议听取了国务院总理李克强关于政府⼯作的报告. 其中表⽰,五年来,⼈民⽣活持续改善,脱贫攻坚取得决定性进展,贫困⼈⼝减少6800多万,易地扶贫搬迁830万⼈,贫困发⽣率由10.2%下降到3.1%.将830万⽤科学记学法表⽰为() A 、58310?B 、60.8310?C 、68.310?D 、78.310?3、如图是由三个⼩正⽅体叠成的⼀个⼏何体,它的左视图是()A B C D4、下列各式计算正确的是()A 、ab ab ab 532=+B 、()22345a ba b -=C =D 、()2211a a +=+ 5、不等式组21217x x -≥??->-?的解集在数轴上表⽰正确的是()A B C D 6、如图,直线AB 与直线CD 相交于点O ,E 是∠COB 内⼀点,且OE ⊥AB ,∠AOC=35°,则∠EOD 的度数是()A 、155°B 、145°C 、135°D 、125°7、在学校举⾏的“阳光少年,励志青年”的演讲⽐赛中,五位评委给选⼿⼩明的评分分别为:90,85,90,80,95,则这组数据的众数是()A 、95B 、90C 、85D 、808、若关于x 的⽅程2504x x a +-+=有两个不相等的实数根,则满⾜条件的最⼩整数a 的值是()A 、?1 B 、0 C 、1 D 、29、某校组织九年级学⽣参加中考体育测试,共租3辆客车,分别标号1,2,3,李军和赵娟两⼈可以任选⼀辆车坐,则两⼈同坐2号车的概率为() A 、19B 、16 C 、13 D 、1210、如图,在平⾯直⾓坐标系中,Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC=2,∠ABC=30°,把Rt △ABC 先绕B 点顺时针旋转180°,然后向下平移2个单位,则A 点的对应点的坐标为()A 、(2,2--+ B 、(2,2-- C 、(4,2-- D 、(4,2--⼆、填空题(每⼩题3分,共15分)11、计算:()22sin 3012-?+--= .12、若⼆次函数()20y ax bx c a =++<的图像经过(2,0),且其对称轴为直线x=?1,则当函数值y>0成⽴时,x 的取值范围是 .13、如图,已知双曲线()0ky k x=<经过直⾓三⾓形OAB 斜边OA 的中点D ,且与直⾓边AB 相交于点C. 若点A 的坐标为(?6,4),则△AOC 的⾯积为 .第13题图第14题图第15题图14、如图,将矩形ABCD 绕点C 沿顺时针⽅向旋转90°到矩形''''A B C D 的位置,AB=2, AD=4,则阴影部分的⾯积为 .15、如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,点D ,E 为AC ,BC 上两个动点,若将∠C 沿DE 折叠,点C 的对应点'C 恰好落在AB 上,且'ADC ?恰为直⾓三⾓形,则此时CD 的长为 .三、解答题(本⼤题共8个,满分75分)16、(8分)先化简,再求值:232(1)211a a a a -÷--+-,其中1a =.17、(9分)某校在3⽉份举⾏读书节活动,⿎励学⽣进⾏有益的课外阅读,张⽼师为了了解该校学⽣课外阅读的情况,设计了“你最喜欢的课外读物类型”的调查问卷,包括“名著”“科幻”“历史”“童话”四类,在学校随机抽取了部分学⽣进⾏调查,被抽取的学⽣只能在四种类型中选择其中⼀类,最后将调查结果绘制成如下两幅尚不完整的统计图.请你根据以上信息解答下列问题:(1)本次调查中,张⽼师⼀共调查了名学⽣;(2)求本次调查中选择“历史”类的⼥⽣⼈数和“童话”类的男⽣⼈数,并将条形统计图补充完整;(3)扇形图中“童话”类对应的圆⼼⾓度数为 .(4)如果该校共有学⽣360名,请估算该校最喜欢“名著”类和“历史”类的学⽣总⼈数. 18、(9分)如图,已知△ABC 内接于O ,AB 是直径,OD ∥AC ,AD=OC. (1)求证:四边形OCAD 是平⾏四边形;(2)填空:①当∠B= 时,四边形OCAD 是菱形;②当∠B= 时,AD 与O 相切. 19、(9分)如图,线段AB ,CD 分别表⽰甲、⼄两建筑物的⾼,BA ⊥AD ,CD ⊥DA ,垂⾜分别为A ,D. 从D 点测得B 点的仰⾓α为60°,从C 点测得B 点的仰⾓β为30°,甲建筑物的⾼AB=30⽶.(1)求甲、⼄两建筑物之间的距离AD. (2)求⼄建筑物的⾼CD.20、(9分)如图,⼀次函数y kx b =+的图象与反⽐例函数my x=的图象交于点A (?3,m+8),B(n ,?6)两点.(1)求⼀次函数与反⽐例函数的解析式;(2)求△AOB 的⾯积.21、(10分)每年的6⽉5⽇为世界环保⽇,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、⼄两种型号的设备可供选购. 经调查:购买3台甲型设备⽐购买2台⼄型设备多花16万元,购买2台甲型设备⽐购买3台⼄型设备少花6万元. (1)求甲、⼄两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资⾦不超过110万元,你认为该公司有哪⼏种购买⽅案;(3)在(2)的条件下,已知甲型设备的产量为240吨/⽉,⼄型设备的产量为180吨/⽉.若每⽉要求总产量不低于2040吨,为了节约资⾦,请你为该公司设计⼀种最省钱的购买⽅案. 22、(10分)如图1,在四边形ABCD 中,AB=AD.∠B+∠ADC=180°,点E ,F 分别在四边形ABCD 的边BC ,CD 上,∠EAF=12∠BAD ,连接EF ,试猜想EF ,BE ,DF 之间的数量关系.图1 图2 图3(1)思路梳理将△ABE 绕点A 逆时针旋转⾄△ADG ,使AB 与AD 重合.由∠B+∠ADC=180°,得∠FDG=180°,即点F ,D ,G 三点共线.易证△AFG ? ,故EF ,BE ,DF 之间的数量关系为;(2)类⽐引申如图2,在图1的条件下,若点E ,F 由原来的位置分别变到四边形ABCD 的边CB ,DC 的延长线上,∠EAF=12∠BAD ,连接EF ,试猜想EF ,BE ,DF 之间的数量关系,并给出证明.(3)联想拓展如图3,在△ABC 中,∠BAC=90°,AB=AC ,点D ,E 均在边BC 上,且∠DAE=45°. 若BD=1,EC=2,则DE 的长为 .23、(11分)如图,抛物线23y ax bx =+-经过点A(2,?3),与x 轴负半轴交于点B ,与y轴交于点C ,且OC=3OB. (1)求抛物线的解析式;(2)点D 在y 轴上,且∠BDO=∠BAC ,求点D 的坐标;(3)点M 在抛物线上,点N 在抛物线的对称轴上,是否存在以点A ,B ,M ,N 为顶点的四边形是平⾏四边形?若存在,求出所有符合条件的点M 的坐标;若不存在,请说明理由.2018九年级濮阳市第⼀次模拟考试数学参考答案2017年4⽉⼀、选择题(每题3分,共30分)⼆、填空题(每题3分,共15分)三、解答题(本⼤题8个⼩题,共75分) 16.(8分)解:原式=2a 312()(1)1a a a ---÷-- 2a 31(1)3a a a --=?--11a =- …………………………………5分当1时,原式11a ===-…………………8分17.(9分)解:(1)(3+4)÷17.5%=40(⼈),……………2分 (2) 选择“历史”类的⼥⽣⼈数为40×20%-6=2(⼈)选择“童话”类的男⽣⼈数为40×30%-9=3(⼈)………4分补全条形图(图略)………………6分 (3)360°×30%=108°………7分(4)360×(17.5%+20%)=135(⼈)答:最喜欢“名著”和“历史”的学⽣总数为135⼈……9分 18.(9分)解(⽅法不唯⼀) (1)∵OD ∥AC∴∠CAO=∠AOD ⼜∵AD=OC ,OC=OA ,∴AD=AO∴∠ACO=∠CAO=∠AOD=∠ADO, ∴△CAO 和△DOA 中,∠COA=∠OAD ∴ OC ∥AD∴四边形OCAD 是平⾏四边形 ………………………5分(2)① 30° …………………………7分② 45° …………………………9分 19. (9分)解:(1) 在Rt △ABD 中,α=60°,AB=30tan α=ABAD∴30tan tan 603AB AD α====⽶)答: 甲、⼄两建筑物之间的距离AD 的长为. ………….4分(2) 过点C 作CE ⊥AB 于点E,则,在Rt △CBE 中,β=30°,tan β=BECE∴ BE=CE tan tan 301010β?===(⽶). ∴ CD=30-10=20(⽶).答:⼄建筑物的⾼为20⽶. …………………………………9分 20. (9分)∴m+8=-6+8=2,所以,点A 的坐标为(-3,2),解得n=1,所以,点B 的坐标为(1,-6),将点A(-3,2),B(1,-6)代⼊y=kx+b 得,3k 26b k b -+=??+=-?解得k 24b =-??=-?∴⼀次函数的解析式为y=-2x-4……………………6分 (2) 设AB 与x 轴相交于点C ,令-2x-4=0解得x=-2,∴点C 的坐标为(-2,0)∴ OC=211222626822AOB AOC BOC S S S =+=??+??=+=. …………9分21. (10分)解:(1)设甲,⼄两种型号设备每台的价格分别为x 万元和y 万元,由题意得: 3x 216263y x y -=??+=? 解得12y 10x =??=?∴甲,⼄两种型号设备每台的价格分别为12万元和10万元.……………..4分(2)设购买甲型设备m 台,⼄型设备(10-m )台,则:12m+10(10-m )≤110,∴m ≤5,∵ m 取⾮负整数∴ m=0,1,2,3,4,5,∴有6种购买⽅案.……………………………6分(3)由题意:240m+180(10-m )≥2040,∴m ≥4∴ m 为4或5.当m=4时,购买资⾦为:12×4+10×6=108(万元),当m=5时,购买资⾦为:12×5+10×5=110(万元),∴最省钱的购买⽅案为,选购甲型设备4台,⼄型设备6台………………………………………………9分22.(10分)解:(1)△AFE. ……………………………1分EF=BE+DF.……………………………2分(2) EF,BE,DF之间的数量关系是BF=DF-BE ………………3分证明:将△ABE绕点A逆时针旋转,使AB与AD重合,得到△ADE',则△ABE≌ADE',∴∠DAE'=∠BAE,AE'=AE,DE'=BE,∠ADE'=∠ABE,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∠ADE'=∠ADC,即E',D,F三点共线,⼜∠EAF=12∠BAD∴∠E'AF=∠BAD-(∠BAF+∠DAE')=∠BAD-(∠BAF+∠BAE)=∠BAD-∠EAF=12∠BAD.∴∠EAF=∠E'AF,在△AEF和△AE'F中,∵ AE=AE',∠EAF=∠E'AF, AF=AF,∴△AFE≌△AFE'(SAS),∴ FE=FE',⼜∵ FE'=DF-DE',∴EF=DF-BE.…………………………………………8分(310分【提⽰】将△ABD绕点A逆时针旋转⾄△ACD',使AB与AC重合,连接ED' ∵ AD=AD',∠DAE=∠D'AE=45°,AE=AE,∴△AED≌AED',.∴ DE=D'E.∵∠ACB=∠B=∠ACD'=45°,∴∠ECD'=90°,在Rt △ECD'中,23.(11分)解:(1)由y=2a 3x bx +-得C (0,-3),∴ OC=3,∵OC=30B ,∴ 0B=1,∴B(-1,0),把A (2,-3),B(-1,0)代⼊y=2a 3x bx +-中,得 4a+2b-3=-3a-b-3=0 解得a=1,b=-2抛物线的解析式为=223x x --…………………………3分(2)作BF ⊥AC 交AC 的延长线于点F ∵ A(2,-3),C (0,-3),∴ AF ∥x 轴,∴ F(-1,-3),∴ BF=3,AF=3, ∴∠BAC=45°,设D (0,m ),则OD=|m|,∴∠BDO=∠BAC ,∴∠BDO=45°,∴ OD=0B=1,∴ |m|=1,∴ m=±1,D(0,1),或D(0,-1);………………………………7分(3)设M(a ,2a -2a-3),N(1,n),①以AB 为边,则AB/∥MN ,AB=MN ,过点M 作ME ⊥对称轴于点E ,AF ⊥x 轴于点F ,则△ABF ≌△NME.由(1)知抛物线对称轴为直线x=-1,B(-1,0),⼜∵A(2,-3),∴NE=AF=3,ME=BF=3,∴|a-1|=3,,∴a=4或a=-2,∴点M的坐标为(4,5),(-2,5),………….9分②以AB为对⾓线,BN=AM,BN∥AM,则点N在x轴上,M点与C点重合,∴M(0,-3)……………………………………………….10分综上所述,存在以点A,B,M,N为顶点的四边形是平⾏四边形,点M的坐标为(4,5),(-2,5),(0,-3)………………11分。

河南省濮阳市中考数学一模试卷

河南省濮阳市中考数学一模试卷

河南省濮阳市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2018·黄石) 太阳半径约696000千米,则696000千米用科学记数法可表示为()A . 0.696×106B . 6.96×108C . 0.696×107D . 6.96×1052. (2分) (2017八下·西城期末) 下列命题中,不正确的是().A . 平行四边形的对角线互相平分B . 矩形的对角线互相垂直且平分C . 菱形的对角线互相垂直且平分D . 正方形的对角线相等且互相垂直平分3. (2分)(2019·合肥模拟) 下列运算正确的是()A . a2·a3=a6B . (a2)3=a5C . 2a3+3a3=5a6D . (a+2b)(a-2b)=a2-4b24. (2分)(2019·武汉模拟) 在不透明袋子里装颜色不同的16个球,每次从袋子里摸出1个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在0.5,估计袋中白球有()A . 16个B . 12个C . 8个D . 5个5. (2分)如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()A .B .C .D .6. (2分) (2017七下·曲阜期中) 实数的值在()A . 0与1之间B . 1与2之间C . 2与3之间D . 3与4之间7. (2分)药品研究所开发一种抗菌新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后,血液中药物浓度y(微克/毫升)与服药后时间x(时)之间的函数关系如图所示,则当1≤x≤6时,y的取值范围是()A .B .C .D .8. (2分)(2013·内江) 若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A . 抛物线开口向上B . 抛物线的对称轴是x=1C . 当x=1时,y的最大值为﹣4D . 抛物线与x轴的交点为(﹣1,0),(3,0)二、填空题 (共6题;共7分)9. (1分) (2018八下·柳州期末) 化简:(2 )2=________.10. (1分) (2018八上·郑州期中) 一次函数y=ax+b在直角坐标系中的图像如图所示,则化简得结果是________。

2018年河南省中考数学一模试卷(可编辑修改word版)

2018年河南省中考数学一模试卷(可编辑修改word版)

﹣2018 年河南省中考数学一模试卷一、选择题(每小题 3 分,共 30 分) 1.(3 分)下列各数中,最小的数是( A .﹣3B .﹣(﹣2)) C .0D .﹣2.(3 分)据财政部网站消息,2018 年中央财政困难群众救济补助预算指标约为 929 亿元,数据 929 亿元科学记数法表示为( )A .9.29×109B .9.29×1010C .92.9×1010D .9.29×10113.(3 分)如图所示的几何体的主视图是 ()A .B .C .D .4.(3 分)小明解方程 =1 的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得 1﹣(x ﹣2)=1① 去括号,得 1﹣x +2=1② 合并同类项,得﹣x +3=1③ 移项,得﹣x=﹣2④ 系数化为 1,得 x=2⑤ A .①B .②C .③D .④5.(3 分)为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160 个),周二(160 个),周三(180 个),周 四(200 个),周五(170 个).则小丽这周跳绳个数的中位数和众数分别是( )A.180 个,160 个B.170 个,160 个C.170 个,180 个D.160 个,206.(3 分)关于x 的一元二次方程x2﹣2x+k+2=0 有实数根,则k 的取值范围在数轴上表示正确的是()A.B.C.D.7.(3 分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC C.AB=CD,AD=BC D.∠DAB+∠BCD=180°8.(3 分)郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E 五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.9.(3 分)如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE,过点B 作BF⊥AE 交AE 于点F,则BF 的长为()A.B.C.D.10.(3 分)如图,动点P 从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018 次碰到矩形的边时,点P 的坐标为()A.(1,4)B.(5,0)C.(7,4)D.(8,3)二、填空题(每小题3 分,共15 分)11.(3 分)=.12.(3 分)方程3x2﹣5x+2=0 的一个根是a,则6a2﹣10a+2= .13.(3 分)点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1 的图象上,若当1<x1<2,3 <x2<4 时,则y1与y2的大小关系是y1 y2.(用“>”、“<”、“=”填空)14.(3 分)如图1,在R t△ABC 中,∠ACB=90°,点P 以每秒2cm 的速度从点A 出发,沿折线AC﹣CB 运动,到点B 停止.过点P 作PD⊥AB,垂足为D,PD 的长y(cm)与点P 的运动时间x(秒)的函数图象如图2 所示.当点P 运动5 秒时,PD 的长的值为.15.(3 分)如图,在菱形ABCD 中,AB=,∠B=120°,点E 是AD 边上的一个动点(不与A,D 重合),EF∥AB 交BC 于点F,点G 在CD 上,DG=DE.若△EFG 是等腰三角形,则DE 的长为.三、解答题(本大题共8 小题,满分75 分)16.(8 分)先化简,再求值:(x+2y)2﹣(2y+x)(2y﹣x)﹣2x2,其中x=+2,y=﹣2.17.(9 分)全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.运动形式 A B C D E人数12 30 m 54 9请你根据以上信息,回答下列问题:(1)接受问卷调查的共有人,图表中的m= ,n=;(2)统计图中,A 类所对应的扇形圆心角的度数为;(3)根据调查结果,我市市民最喜爱的运动方式是,不运动的市民所占的百分比是;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500 人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?18.(9 分)如图,AB 是⊙O 的直径,点C 为⊙O 上一点,经过C 作CD⊥AB 于点D,CF 是⊙O 的切线,过点A 作AE⊥CF 于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB 的长.19.(9 分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A 处测得塔杆顶端C 的仰角是55°,乙同学站在岩石B 处测得叶片的最高位置D 的仰角是45°(D,C,H 在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15 米(塔杆与叶片连接处的长度忽略不计),岩石高BG 为4 米,两处的水平距离AG 为23 米,BG⊥GH,CH⊥AH,求塔杆CH 的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)20.(9 分)如图,反比例y=的图象与一次函数y=kx﹣3 的图象在第一象限内交于A(4,a).(1)求一次函数的解析式;(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC 是等腰直角三角形,求n 的值.21.(10 分)一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8 天可以完成,需付费用共3520 元;若先请甲组单独做6天,再请乙组单独做12 天可以完成,需付费用3480 元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12 天,乙组单独完成需24 天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200 元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)22.(10 分)如图1,△ABC 与△CDE 都是等腰直角三角形,直角边AC,CD 在同一条直线上,点M、N 分别是斜边AB、DE 的中点,点P 为AD 的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1 中,PM 与PN 的数量关系是,位置关系是.(2)探究证明:将图1 中的△CDE 绕着点C 顺时针旋转α(0°<α<90°),得到图2,AE 与MP、BD 分别交于点G、H,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△CDE 绕点 C 任意旋转,若AC=4,CD=2,请直接写出△PMN 面积的最大值.23.(11 分)如图,抛物线y=﹣x2+bx+c 与x 轴交于点A 和点B(3,0),与y 轴交于点C(0,3),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D 的坐标;(2)点M 是抛物线上的动点,设点M 的横坐标为m.①当∠MBA=∠BDE 时,求点M 的坐标;②过点M 作MN∥x 轴,与抛物线交于点N,P 为x 轴上一点,连接PM,PN,将△PMN 沿着MN 翻折,得△QMN,若四边形MPNQ 恰好为正方形,直接写出m 的值.﹣2018 年河南省中考数学一模试卷参考答案与试题解析一、选择题(每小题3 分,共30 分)1.【分析】应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.【解答】解:因为在数轴上﹣3 在其他数的左边,所以﹣3 最小;故选:A.【点评】此题考负数的大小比较,应理解数字大的负数反而小.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于929 亿有11 位,所以可以确定n=11﹣1=10.【解答】解:929 亿=92 900 000 000=9.29×1010.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定 a 与n 值是关键.3.【分析】先细心观察原立体图形和长方体的位置关系,结合四个选项选出答案.【解答】解:由图可知,主视图由一个矩形和三角形组成.故选:D.【点评】本题考查了简单组合体的三视图,培养了学生的思考能力和对几何体三种视图的空间想象能力.4.【分析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.【解答】解:=1去分母,得1﹣(x﹣2)=x,故①错误,故选:A.【点评】本题考查解分式方程,解答本题的关键是明确解分式方程的方法.5.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160 出现了2 次,出现的次数最多,则众数是160;故选:B.【点评】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.【分析】根据方程的系数结合根的判别式△≥0,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围,再将其表示在数轴上即可得出结论.【解答】解:∵关于x 的一元二次方程x2﹣2x+k+2=0 有实数根,∴△=(﹣2)2﹣4(k+2)≥0,解得:k≤﹣1.故选:C.【点评】本题考查了根的判别式以及在数轴上表示不等式的解集,牢记“当△≥0 时,方程有实数根”是解题的关键.7.【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD 为菱形.所以根据菱形的性质进行判断.【解答】解∵四边形ABCD 是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD 是平行四边形(对边相互平行的四边形是平行四边形);过点D 分别作BC,CD 边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD 中,S△ABC =S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故 B 正确;∴平行四边形ABCD 为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A 正确;AB=CD,AD=BC(平行四边形的对边相等),故C 正确;如果四边形ABCD 是矩形时,该等式成立.故D 不一定正确.故选:D.【点评】本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.8.【分析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.【解答】解:列表得:A B C D EA AA BA CA DA EAB AB BB CB DB EBC AC BC CC DC ECD AD BD CD DD EDE AE BE CE DE EE∴一共有25 种等可能的情况,恰好选择从同一个口进出的有 5 种情况,∴恰好选择从同一个口进出的概率为=,故选:C.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率= 所求情况数与总情况数之比.9.【分析】根据S△ABE =S矩形ABCD=3=•AE•BF,先求出AE,再求出BF 即可.【解答】解:如图,连接BE.∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE 中,AE===,∵S△ABE = S矩形ABCD=3= •AE•BF,∴BF=.故选:B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.10.【分析】根据反射角与入射角的定义作出图形,可知每6 次反弹为一个循环组依次循环,用2018 除以6,根据商和余数的情况确定所对应的点的坐标即可.【解答】解:如图,经过6 次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P 第2018 次碰到矩形的边时为第336 个循环组的第2 次反弹,点P 的坐标为(7,4).故选:C.【点评】此题主要考查了点的坐标的规律,作出图形,观察出每6 次反弹为一个循环组依次循环是解题的关键.二、填空题(每小题3 分,共15 分)11.【分析】如果一个数x 的平方等于a,那么x 是 a 的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:2【点评】此题主要考查了学生开平方的运算能力,比较简单.12.【分析】根据一元二次方程的解的定义,将x=a 代入方程3x2﹣5x+2=0,列出关于a 的一元二次方程,通过变形求得3a2﹣5a 的值后,将其整体代入所求的代数式并求值即可.【解答】解:∵方程3x2﹣5x+2=0 的一个根是a,∴3a2﹣5a+2=0,∴3a2﹣5a=﹣2,∴6a2﹣10a+2=2(3a2﹣5a)+2=﹣2×2+2=﹣2.故答案是:﹣2.【点评】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.13.【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5 可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A 点横坐标离对称轴的距离小于 B 点横坐标离对称轴的距离,∴y1<y2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.【分析】由P 的速度和图2 得出AC 和BC 的长,运用勾股定理求出AB,即可求出sin∠B,求出P 运动5 秒距离B 的长度利用三角函数得出PD 的值.【解答】解:∵P 以每秒2cm 的速度从点 A 出发,∴从图 2 中得出AC=2×3=6cm,BC=(7﹣3)×2=8cm,∵Rt△ABC 中,∠ACB=90°,∴AB= ==10cm,∴sin∠B= ==,∵当点P 运动 5 秒时,BP=2×7﹣2×5=4cm,∴PD=4×sin∠B=4×=2.4cm,故答案为2.4cm.【点评】本题主要考查了动点问题的函数图象,理清图象的含义即会识图是解题的关键.15.【分析】由四边形ABCD 是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE 是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG 为等腰三角形时,①EF=GE= 时,于是得到DE=DG=AD÷=1,② GE=GF 时,根据勾股定理得到DE=.【解答】解:∵四边形ABCD 是菱形,∠B=120°∴∠D=∠B=120°,∠A=180°﹣120°=60°,BC∥AD,∵EF∥AB,∴四边形ABFE 是平行四边形,∴EF∥AB,∴EF=AB= ,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG 为等腰三角形时,①当EF=EG 时,EG=,如图1,过点 D 作DH⊥EG 于H,∴EH= EG= ,在Rt△DEH 中,DE==1,②GE=GF 时,如图2,过点G 作GQ⊥EF,∴EQ= EF= ,在Rt△EQG 中,∠QEG=30°,∴EG=1,过点D 作DP⊥EG 于P,∴PE= EG= ,同①的方法得,DE=,③当EF=FG 时,∴∠EFG=180°﹣2×30°=120°=∠CFE,此时,点 C 和点G 重合,点 F和点B 重合,不符合题意,故答案为:1 或.【点评】本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.三、解答题(本大题共8 小题,满分75 分)16.【分析】利用完全平方公式、平方差公式展开并合并同类项,然后把x、y 的值代入进行计算即可得解.【解答】解:原式=x2+4xy+4y2﹣(4y2﹣x2)﹣2x2=x2+4xy+4y2﹣4y2+x2﹣2x2=4xy,当x=+2,y= ﹣2 时,原式=4×(+2)×(﹣2)=4×(3﹣4)=﹣4.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式混合运算顺序和运算法则及完全平方公式、平方差公式.17.【分析】(1)由B 项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D 项目人数除以总人数可得n 的值;(2)360°乘以 A 项目人数占总人数的比例可得;(3)由表可知样本中散步人数最多,据此可得,再用E 项目人数除以总人数可得;(4)总人数乘以样本中C 人数所占比例.【解答】解:(1)接受问卷调查的共有30÷20%=150 人,m=150﹣(12+30+54+9)=45,n%=×100%=36%,∴n=36,故答案为:150、45、36;(2)A 类所对应的扇形圆心角的度数为360°×=28.8°,故答案为:28.8°;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是×100%=6%,故答案为:散步、6%;(4)1500×=450(人),答:估计该社区参加碧沙岗“暴走团”的大约有450 人.【点评】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.【分析】(1)连接OC,如图所示,由CD⊥AB,AE⊥CF,利用垂直的定义得到一对直角相等,再由CF 为圆的切线,利用切线的性质得到CO⊥EF,可得出AE 与OC 平行,利用两直线平行内错角相等,等边对等角得到一对角相等,利用AAS 得到三角形全等,利用全等三角形的对应边相等即可得证;(2)连接BC,在直角三角形ACD 中,利用勾股定理求出AC 的长,在直角三角形AEC 中,利用锐角三角函数定义求出所求即可.【解答】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF 是圆O 的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE 和△CAD 中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD 中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC 中,cos∠EAC==,∵AB 为直径,∴∠ACB=90°,∴cos∠CAB= =,∵∠EAC=∠CAB,∴=,即AB=.【点评】此题考查了切线的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.19.【分析】作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan∠CAH=tan55°•x 知CE=CH﹣EH=tan55°•x﹣4,根据BE=DE 可得关于x 的方程,解之可得.【解答】解:如图,作BE⊥DH 于点E,则GH=BE、BG=EH=4,设AH=x,则BE=GH=GA+AH=23+x,在Rt△ACH 中,CH=AHtan∠CAH=tan55°•x,∴CE=CH﹣EH=tan55°•x﹣4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°•x﹣4+15,解得:x≈30,∴CH=tan55°•x=1.4×30=42,答:塔杆CH 的高为42 米.【点评】本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.20.(1)由已知先求出a,得出点A 的坐标,再把A 的坐标代入一次函数y=kx﹣3 【分析】求出k 的值即可求出一次函数的解析式;(2)易求点B、C 的坐标分别为(n,),(n,n﹣3).设直线y=x﹣3 与x 轴、y 轴分别交于点D、E,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ ABC 是等腰直角三角形时只有AB=AC 一种情况.过点 A 作AF⊥BC 于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程﹣1=1﹣(n﹣3),解方程即可.【解答】解:(1)∵反比例y= 的图象过点A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函数y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函数的解析式为y=x﹣3;(2)由题意可知,点B、C 的坐标分别为(n,),(n,n﹣3).设直线y=x﹣3 与x 轴、y 轴分别交于点D、E,如图.当x=0 时,y=﹣3;当y=0 时,x=3,∴OD=OE,∴∠OED=45°.∵直线x=n 平行于y 轴,∴∠BCA=∠OED=45°,∵△ABC 是等腰直角三角形,且0<n<4,∴只有AB=AC 一种情况,过点A 作AF⊥BC 于F,则BF=FC,F(n,1),∴﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4 舍去,∴n 的值是1.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.21.【分析】(1)设甲组工作一天商店应付x 元,乙组工作一天商店应付y 元,根据“若请甲乙两个装修组同时施工,8 天可以完成,需付费用共3520 元;若先请甲组单独做6 天,再请乙组单独做12 天可以完成,需付费用3480 元”,即可得出关于x、y 的二元一次方程组,解之即可得出结论;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用,比较后即可得出结论;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数,比较后即可得出结论.【解答】解:(1)设甲组工作一天商店应付x 元,乙组工作一天商店应付y 元,根据题意得:,解得:.答:甲组工作一天商店应付300 元,乙组工作一天商店应付140 元.(2)单独请甲组所需费用为:300×12=3600(元),单独请乙组所需费用为:140×24=3360(元),∵3600>3360,∴单独请乙组所需费用最少.(3)商店请甲乙两组同时装修,才更有利,理由如下:单独请甲组完成,损失钱数为:200×12+3600=6000(元),单独请乙组完成,损失钱数为:200×24+3360=8160(元),请甲乙两组同时完成,损失钱数为:200×8+3520=5120(元).∵8160>6000>5120,∴商店请甲乙两组同时装修,才更有利.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用;(3)根据损失总钱数=每天盈利× 装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数22.【分析】(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)由(2)可知△PMN 是等腰直角三角形,PM=BD,推出当BD 的值最大时,PM 的值最大,△PMN 的面积最大,推出当B、C、D 共线时,BD 的最大值=BC+CD=6,由此即可解决问题;【解答】解:(1)PM=PN,PM⊥PN,理由如下:延长AE 交BD 于O.∵△ACB 和△ECD 是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE 和△BCD 中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵点M、N 分别是斜边AB、DE 的中点,点P 为AD 的中点,∴PM= BD,PN= AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN.故答案是:PM=PN,PM⊥PN.(2)如图②中,设AE 交BC 于O.∵△ACB 和△ECD 是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N 分别为AD、AB、DE 的中点,∴PM= BD,PM∥BD;PN= AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)由(2)可知△PMN 是等腰直角三角形,PM=BD,∴当BD 的值最大时,PM 的值最大,△PMN 的面积最大,∴当B、C、D 共线时,BD 的最大值=BC+CD=6,∴PM=PN=3,∴△PMN 的面积的最大值=×3×3= .【点评】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.23.【分析】(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA==,tan∠BDE= =,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N 关于抛物线的对称轴对称,四边形MPNQ 是正方形,推出点P是抛物线的对称轴与x 轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,解方程即可解决问题;【解答】解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴抛物线的解析式为y=﹣x2+2x+3.∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D 坐标(1,4).(2)①作MG⊥x 轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA= =,∵DE⊥x 轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE= =,∵∠MBA=∠BDE,∴=当点M 在x 轴上方时,=,解得m=﹣或3(舍弃),∴M(﹣,),当点M 在x 轴下方时,=,解得m=﹣或m=3(舍弃),∴点M(﹣,﹣),综上所述,满足条件的点M 坐标(﹣,)或(﹣,﹣);②如图中,∵MN∥x 轴,∴点M、N 关于抛物线的对称轴对称,∵四边形MPNQ 是正方形,∴点P 是抛物线的对称轴与x 轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,当﹣m2+2m+3=1﹣m 时,解得m=,当﹣m2+2m+3=m﹣1 时,解得m=,∴满足条件的m 的值为或;【点评】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。

(完整版)河南省中考数学一模试卷.doc

(完整版)河南省中考数学一模试卷.doc

2018 年河南省中考数学一模试卷一、选择题(每小题 3 分,共 30 分)1.(3 分)下列各数中,最小的数是()A.﹣ 3B.﹣(﹣ 2)C.0D.﹣2.( 3 分)据财政部网站消息, 2018 年中央财政困难群众救济补助预算指标约为929 亿元,数据 929 亿元科学记数法表示为()A.9.29×109 B.9.29× 1010 C.92.9×1010 D.9.29×10113.(3 分)如图所示的几何体的主视图是()A.B.C.D.4.(3 分)小明解方程﹣=1 的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1﹣( x﹣2)=1①去括号,得 1﹣x+2=1②合并同类项,得﹣ x+3=1③移项,得﹣ x=﹣2④系数化为 1,得 x=2⑤A.①B.②C.③D.④5.(3 分)为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160 个),周二( 160 个),周三( 180 个),周四(200 个),周五(170 个).则小丽这周跳绳个数的中位数和众数分别是()A.180 个, 160 个B.170 个, 160 个 C.170 个, 180 个D.160 个, 200 个6.( 3 分)关于 x 的一元二次方程x2﹣2x+k+2=0 有实数根,则 k 的取值范围在数轴上表示正确的是()A.B.C.D.7.(3 分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ ABC=∠ ADC,∠ BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠ DAB+∠BCD=180°8.(3 分)郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E 五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.9.(3 分)如图,在矩形ABCD中, AB=2,BC=3.若点 E 是边 CD 的中点,连接AE,过点 B 作 BF⊥AE 交 AE于点 F,则 BF的长为()A.B.C.D.10.( 3 分)如图,动点 P 从( 0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角. 当点 P 第 2018 次碰到矩形的边时,点 P 的坐标为()A .(1,4)B .( 5, 0)C .(7,4)D .(8,3)二、填空题(每小题 3 分,共 15 分)11.( 3 分) = ..( 3 分)方程 2﹣5x+2=0 的一个根是 a ,则 6a 2﹣10a+2= . 12 3x.( 3 分)点2﹣4x ﹣ 1 的图象上,若当 13 A ( x 1,y 1)、B (x 2,y 2)在二次函数 y=x1<x 1<2,3<x 2<4 时,则 y 1 与 y 2 的大小关系是 y 1 y 2.(用 “>”、“<”、 “ =填”空)14.( 3 分)如图 1,在 R t △ABC 中,∠ ACB=90°,点 P 以每秒 2cm 的速度从点 A 出发,沿折线 AC ﹣CB 运动,到点 B 停止.过点 P 作 PD ⊥AB ,垂足为 D ,PD的长 y ( cm )与点 P 的运动时间 x (秒)的函数图象如图 2 所示.当点 P 运动5 秒时, PD 的长的值为 .15.( 3 分)如图,在菱形 ABCD 中, AB= ,∠ B=120°,点 E 是 AD 边上的一个动点(不与 A ,D 重合),EF ∥AB 交 BC 于点 F ,点 G 在 CD 上, DG=DE .若△EFG 是等腰三角形,则 DE 的长为 .三、解答题(本大题共8 小题,满分 75 分)16.( 8 分)先化简,再求值:(x+2y)2﹣( 2y+x)(2y﹣x)﹣ 2x2,其中 x= +2,y= ﹣2.17.( 9 分)全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目: A:健身房运动; B:跳广场舞; C:参加暴走团; D:散步; E:不运动.以下是根据调查结果绘制的统计图表的一部分.运动形式A B C D E人数1230m549请你根据以上信息,回答下列问题:( 1)接受问卷调查的共有人,图表中的m=,n=;( 2)统计图中, A 类所对应的扇形圆心角的度数为;( 3)根据调查结果,我市市民最喜爱的运动方式是,不运动的市民所占的百分比是;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有 1500 人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?18.( 9 分)如图, AB 是⊙ O 的直径,点 C 为⊙ O 上一点,经过 C 作 CD⊥AB 于点D, CF是⊙ O 的切线,过点 A 作 AE⊥CF于 E,连接 AC.(1)求证: AE=AD.(2)若 AE=3,CD=4,求 AB 的长.19.( 9 分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的 A 处测得塔杆顶端 C 的仰角是 55°,乙同学站在岩石 B 处测得叶片的最高位置 D 的仰角是 45°( D,C,H 在同一直线上, G,A,H 在同一条直线上),他们事先从相关部门了解到叶片的长度为15 米(塔杆与叶片连接处的长度忽略不计),岩石高 BG为 4 米,两处的水平距离 AG 为 23 米, BG⊥GH,CH⊥ AH,求塔杆 CH 的高.(参考数据: tan55 °≈1.4,tan35 °≈0.7,sin55 °≈ 0.8, sin35 °≈0.6)20.( 9 分)如图,反比例 y=的图象与一次函数y=kx﹣ 3 的图象在第一象限内交于 A(4,a).(1)求一次函数的解析式;(2)若直线 x=n(0<n<4)与反比例函数和一次函数的图象分别交于点 B,C,连接 AB,若△ ABC是等腰直角三角形,求 n 的值.21.( 10 分)一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工, 8 天可以完成,需付费用共3520 元;若先请甲组单独做6 天,再请乙组单独做12 天可以完成,需付费用3480 元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需 12 天,乙组单独完成需 24 天,单独请哪个组,商店所需费用最少?( 3)装修完毕第二天即可正常营业,且每天仍可盈利200 元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用( 1)(2)问的条件及结论)22.(10 分)如图 1,△ABC与△ CDE都是等腰直角三角形,直角边 AC,CD 在同一条直线上,点 M 、N 分别是斜边 AB、DE的中点,点 P 为 AD 的中点,连接AE, BD, PM, PN, MN.( 1)观察猜想:图 1 中, PM 与 PN 的数量关系是,位置关系是.( 2)探究证明:将图 1 中的△ CDE绕着点 C 顺时针旋转α(0°<α<90°),得到图 2,AE与MP、 BD 分别交于点 G、H,判断△ PMN 的形状,并说明理由;( 3)拓展延伸:把△ CDE绕点 C 任意旋转,若AC=4, CD=2,请直接写出△ PMN 面积的最大值.23.( 11 分)如图,抛物线 y=﹣ x2+bx+c 与 x 轴交于点 A 和点 B(3,0),与 y 轴交于点 C(0,3),点 D 是抛物线的顶点,过点 D 作 x 轴的垂线,垂足为 E,连接 DB.(1)求此抛物线的解析式及顶点 D 的坐标;(2)点 M 是抛物线上的动点,设点 M 的横坐标为 m.①当∠ MBA=∠ BDE时,求点 M 的坐标;②过点 M 作 MN∥x 轴,与抛物线交于点 N,P 为 x 轴上一点,连接 PM,PN,将第 6页(共 26页)出 m 的值.2018 年河南省中考数学一模试卷参考答案与试题解析一、选择题(每小题 3 分,共 30 分)1.【分析】应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.【解答】解:因为在数轴上﹣ 3 在其他数的左边,所以﹣ 3 最小;故选: A.【点评】此题考负数的大小比较,应理解数字大的负数反而小.2.【分析】科学记数法的表示形式为a× 10n的形式,其中 1≤| a| < 10,n 为整数.确定n 的值是易错点,由于 929 亿有 11 位,所以可以确定 n=11﹣1=10.【解答】解: 929 亿 =92 900 000 000=9.29×1010.故选: B.【点评】此题考查科学记数法表示较大的数的方法,准确确定 a 与 n 值是关键.3.【分析】先细心观察原立体图形和长方体的位置关系,结合四个选项选出答案.【解答】解:由图可知,主视图由一个矩形和三角形组成.故选: D.【点评】本题考查了简单组合体的三视图,培养了学生的思考能力和对几何体三种视图的空间想象能力.4.【分析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.【解答】解:﹣=1第 8页(共 26页)1﹣( x﹣2)=x,故①错误,故选: A.【点评】本题考查解分式方程,解答本题的关键是明确解分式方程的方法.5.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是 170,则中位数是 170;160 出现了 2 次,出现的次数最多,则众数是160;故选: B.【点评】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.【分析】根据方程的系数结合根的判别式△≥0,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围,再将其表示在数轴上即可得出结论.【解答】解:∵关于 x 的一元二次方程x2﹣2x+k+2=0 有实数根,∴△ =(﹣ 2)2﹣4(k+2)≥ 0,解得: k≤﹣ 1.故选: C.【点评】本题考查了根的判别式以及在数轴上表示不等式的解集,牢记“当△≥0时,方程有实数根”是解题的关键.7.【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进行判断.第 9页(共 26页)【解答】解∵四边形 ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形 ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点 D 分别作 BC,CD 边上的高为 AE, AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形 ABCD中, S△ABC=S△ACD,即 BC×AE=CD×AF,∴BC=CD,即 AB=BC.故 B 正确;∴平行四边形 ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ ABC=∠ADC,∠ BAD=∠BCD(菱形的对角相等),故 A 正确;AB=CD,AD=BC(平行四边形的对边相等),故 C 正确;如果四边形 ABCD是矩形时,该等式成立.故 D 不一定正确.故选: D.【点评】本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.8.【分析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.【解答】解:列表得:A B C D EA AA BA CA DA EAB AB BB CB DB EBC AC BC CC DC ECD AD BD CD DD ED第10页(共 26页)E AE BE CE DE EE∴一共有 25 种等可能的情况,恰好选择从同一个口进出的有 5 种情况,∴恰好选择从同一个口进出的概率为=,故选: C.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率 = 所求情况数与总情况数之比.9.【分析】根据 S△ABE=S 矩形ABCD=3= ?AE?BF,先求出 AE,再求出 BF即可.【解答】解:如图,连接 BE.∵四边形 ABCD是矩形,∴AB=CD=2,BC=AD=3,∠ D=90°,在 Rt△ADE中, AE===,∵S△ABE= S矩形ABCD=3= ?AE?BF,∴ BF=.故选: B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.10.【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依第11页(共 26页)次循,用 2018 除以 6,根据商和余数的情况确定所的点的坐即可.【解答】解:如, 6 次反后点回到出点(0, 3),∵2018÷ 6=336⋯2,∴当点 P 第 2018 次碰到矩形的第336 个循的第 2 次反,点P 的坐( 7,4).故:C.【点】此主要考了点的坐的律,作出形,察出每6次反一个循依次循是解的关.二、填空(每小 3 分,共 15 分)11.【分析】如果一个数 x 的平方等于 a,那么 x 是 a 的算平方根,由此即可求解.【解答】解:∵ 22=4,∴=2.故答案: 2【点】此主要考了学生开平方的运算能力,比.12.【分析】根据一元二次方程的解的定,将x=a 代入方程 3x2 5x+2=0,列出关于a 的一元二次方程,通形求得 3a2 5a 的后,将其整体代入所求的代数式并求即可.【解答】解:∵方程 3x25x+2=0 的一个根是 a,∴3a2 5a+2=0,∴3a2 5a= 2,第12页(共 26页)∴6a2﹣ 10a+2=2( 3a2﹣ 5a)+2=﹣2×2+2=﹣2.故答案是:﹣ 2.【点评】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.13.【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x2﹣4x﹣1=( x﹣2)2﹣5 可知,其图象开口向上,且对称轴为 x=2,∵1< x1<2,3<x2<4,∴A 点横坐标离对称轴的距离小于 B 点横坐标离对称轴的距离,∴y1<y2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.【分析】由 P 的速度和图 2 得出 AC和 BC的长,运用勾股定理求出AB,即可求出sin∠B,求出 P 运动 5 秒距离 B 的长度利用三角函数得出 PD 的值.【解答】解:∵ P以每秒 2cm 的速度从点 A 出发,∴从图 2 中得出 AC=2×3=6cm,BC=(7﹣3)× 2=8cm,∵Rt△ABC中,∠ ACB=90°,∴ AB===10cm,∴sin∠B= = = ,∵当点 P 运动 5 秒时, BP=2×7﹣2×5=4cm,第13页(共 26页)∴PD=4× sin∠ B=4× =2.4cm,故答案为 2.4cm.【点评】本题主要考查了动点问题的函数图象,理清图象的含义即会识图是解题的关键.15.【分析】由四边形 ABCD是菱形,得到 BC∥ AD,由于 EF∥AB,得到四边形 ABFE 是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△ EFG为等腰三角形时,① EF=GE=时,于是得到DE=DG= AD÷=1,②GE=GF时,根据勾股定理得到DE=.【解答】解:∵四边形 ABCD是菱形,∠ B=120°∴∠D=∠ B=120°,∠ A=180°﹣120°=60°,BC∥AD,∵EF∥AB,∴四边形 ABFE是平行四边形,∴EF∥AB,∴EF=AB= ,∠ DEF=∠A=60°,∠ EFC=∠B=120°,∵ DE=DG,∴∠ DEG=∠DGE=30°,∴∠ FEG=30°,当△ EFG为等腰三角形时,①当 EF=EG时, EG=,如图 1,过点 D 作 DH⊥EG于 H,∴EH= EG= ,在 Rt△DEH中, DE= =1,②GE=GF时,如图 2,过点 G 作 GQ⊥EF,∴ EQ= EF= ,第14页(共 26页)在Rt△EQG中,∠QEG=30°,∴ EG=1,过点 D 作 DP⊥EG于 P,∴ PE= EG= ,同①的方法得, DE=,③当 EF=FG时,∴∠ EFG=180°﹣ 2× 30°=120°=∠CFE,此时,点 C 和点 G 重合,点F 和点 B 重合,不符合题意,故答案为: 1 或.【点评】本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.三、解答题(本大题共8 小题,满分 75 分)16.【分析】利用完全平方公式、平方差公式展开并合并同类项,然后把x、y 的值代入进行计算即可得解.【解答】解:原式 =x2+4xy+4y2﹣( 4y2﹣x2)﹣ 2x2=x2+4xy+4y2﹣4y2+x2﹣ 2x2=4xy,当x= +2,y= ﹣ 2 时,原式 =4×( +2)×(﹣ 2)=4×( 3﹣4)=﹣4.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式混合运算顺序和运算法则及完全平方公式、平方差公式.17.【分析】(1)由 B 项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得 m=45,再用 D 项目人数除以总人数可得n 的值;( 2) 360°乘以 A 项目人数占总人数的比例可得;( 3)由表可知样本中散步人数最多,据此可得,再用 E 项目人数除以总人数可得;( 4)总人数乘以样本中 C 人数所占比例.【解答】解:(1)接受问卷调查的共有30÷ 20%=150人,m=150﹣(12+30+54+9)=45,n%=×100%=36%,∴n=36,故答案为: 150、45、 36;( 2) A 类所对应的扇形圆心角的度数为360°×=28.8 °,故答案为: 28.8 °;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是×100%=6%,故答案为:散步、 6%;(4) 1500×=450(人),答:估计该社区参加碧沙岗“暴走团”的大约有450人.【点评】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.【分析】(1)连接 OC,如图所示,由 CD⊥ AB,AE⊥CF,利用垂直的定义得到一对直角相等,再由CF为圆的切线,利用切线的性质得到CO⊥EF,可得出 AE 与 OC平行,利用两直线平行内错角相等,等边对等角得到一对角相等,利用AAS得到三角形全等,利用全等三角形的对应边相等即可得证;(2)连接 BC,在直角三角形 ACD中,利用勾股定理求出 AC 的长,在直角三角形AEC中,利用锐角三角函数定义求出所求即可.【解答】(1)证明:连接 OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠ AEC=∠ADC=90°,∵CF是圆 O 的切线,∴CO⊥CF,即∠ ECO=90°,∴AE∥OC,∴∠ EAC=∠ACO,∵OA=OC,∴∠ CAO=∠ACO,∴∠ EAC=∠CAO,在△ CAE和△ CAD中,,∴△ CAE≌△ CAD(AAS),∴AE=AD;( 2)解:连接 CB,如图所示,∵△ CAE≌△ CAD,AE=3,∴AD=AE=3,∴在 Rt△ ACD中, AD=3,CD=4,根据勾股定理得: AC=5,在Rt△AEC中, cos∠EAC= = ,∵AB为直径,∴∠ ACB=90°,∴ cos∠ CAB= = ,∵∠ EAC=∠CAB,∴= ,即 AB= .【点评】此题考查了切线的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.19.【分析】作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan ∠CAH=tan55°?x知 CE=CH﹣ EH=tan55°?x﹣ 4,根据 BE=DE可得关于 x 的方程,解之可得.【解答】解:如图,作 BE⊥DH 于点 E,则GH=BE、BG=EH=4,设AH=x,则 BE=GH=GA+AH=23+x,在Rt△ACH中, CH=AHtan∠CAH=tan55°?x,∴ CE=CH﹣EH=tan55°?x﹣ 4,∵∠ DBE=45°,∴ BE=DE=CE+DC,即 23+x=tan55 °?x﹣4+15,解得: x≈30,∴CH=tan55°?x=1×.430=42,答:塔杆 CH的高为 42 米.【点评】本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.20.【分析】( 1)由已知先求出 a,得出点 A 的坐标,再把 A 的坐标代入一次函数y=kx ﹣3 求出 k 的值即可求出一次函数的解析式;( 2)易求点 B、C 的坐标分别为( n,),(n,n﹣3).设直线y=x﹣3与x轴、y 轴分别交于点 D、 E,易得 OD=OE=3,那么∠ OED=45°.根据平行线的性质得到∠ BCA=∠OED=45°,所以当△ ABC 是等腰直角三角形时只有 AB=AC一种情况.过点 A 作 AF⊥BC 于 F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程﹣1=1﹣( n﹣3),解方程即可.【解答】解:(1)∵反比例 y=的图象过点A(4,a),∴a= =1,∴A( 4, 1),把A(4,1)代入一次函数 y=kx﹣3,得 4k﹣3=1,∴ k=1,∴一次函数的解析式为 y=x﹣3;( 2)由题意可知,点B、C 的坐标分别为( n,),(n,n﹣3).设直线 y=x﹣ 3 与 x 轴、 y 轴分别交于点 D、E,如图.当 x=0 时, y=﹣3;当 y=0 时, x=3,∴OD=OE,∴∠OED=45°.∵直线 x=n 平行于 y 轴,∴∠ BCA=∠OED=45°,∵△ ABC是等腰直角三角形,且 0<n<4,∴只有 AB=AC一种情况,过点 A 作 AF⊥ BC于 F,则 BF=FC,F(n,1),∴﹣1=1﹣( n﹣ 3),解得 n1=1,n2=4,∵0< n< 4,∴ n2=4 舍去,∴ n 的值是 1.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.21.【分析】(1)设甲组工作一天商店应付x 元,乙组工作一天商店应付y 元,根据“若请甲乙两个装修组同时施工, 8 天可以完成,需付费用共 3520 元;若先请甲组单独做 6 天,再请乙组单独做 12 天可以完成,需付费用 3480 元”,即可得出关于 x、y 的二元一次方程组,解之即可得出结论;(2)根据所需总费用 =每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用,比较后即可得出结论;(3)根据损失总钱数 =每天盈利×装修时间 +装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数,比较后即可得出结论.第20页(共 26页)【解答】解:(1)设甲组工作一天商店应付x 元,乙组工作一天商店应付y 元,根据题意得:,解得:.答:甲组工作一天商店应付300 元,乙组工作一天商店应付140 元.(2)单独请甲组所需费用为: 300×12=3600(元),单独请乙组所需费用为: 140×24=3360(元),∵ 3600> 3360,∴单独请乙组所需费用最少.(3)商店请甲乙两组同时装修,才更有利,理由如下:单独请甲组完成,损失钱数为:200×12+3600=6000(元),单独请乙组完成,损失钱数为:200×24+3360=8160(元),请甲乙两组同时完成,损失钱数为:200× 8+3520=5120(元).∵8160> 6000> 5120,∴商店请甲乙两组同时装修,才更有利.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据所需总费用 =每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用;(3)根据损失总钱数 =每天盈利×装修时间 +装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数22.【分析】(1)由等腰直角三角形的性质易证△ACE≌△ BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由( 1)中的证明思路即可证明;(3)由(2)可知△ PMN 是等腰直角三角形, PM= BD,推出当 BD 的值最大时,PM 的值最大,△ PMN 的面积最大,推出当B、 C、 D 共线时, BD 的最大值=BC+CD=6,由此即可解决问题;【解答】解:(1)PM=PN,PM⊥PN,理由如下:延长 AE 交 BD 于 O.∵△ ACB和△ ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ ACB=∠ECD=90°.在△ ACE和△ BCD中,∴△ ACE≌△ BCD(SAS),∴AE=BD,∠ EAC=∠CBD,∵∠ EAC+∠AEC=90°,∠ AEC=∠BEO,∴∠ CBD+∠BEO=90°,∴∠ BOE=90°,即 AE⊥BD,∵点 M 、 N 分别是斜边 AB、DE 的中点,点 P 为 AD 的中点,∴PM= BD,PN= AE,∴PM=PM,∵PM∥ BD, PN∥AE,AE⊥BD,∴∠ NPD=∠EAC,∠ MPA=∠BDC,∠ EAC+∠BDC=90°,∴∠ MPA+∠NPC=90°,∴∠ MPN=90°,即PM⊥PN.故答案是: PM=PN,PM⊥PN.( 2)如图②中,设AE 交 BC于 O.∵△ ACB和△ ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ ACB=∠ ECD=90°.∴∠ ACB+∠BCE=∠ECD+∠BCE.∴∠ ACE=∠BCD.∴△ ACE≌△ BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠ CAE=∠ CBD,∴∠ BHO=∠ACO=90°.∵点 P、M 、 N 分别为 AD、AB、 DE 的中点,∴PM= BD,PM∥BD;PN= AE,PN∥AE.∴PM=PN.∴∠ MGE+∠BHA=180°.∴∠ MGE=90°.∴∠ MPN=90°.∴PM⊥ PN.( 3)由( 2)可知△ PMN 是等腰直角三角形, PM= BD,∴当 BD 的值最大时, PM 的值最大,△ PMN 的面积最大,第23页(共 26页)∴PM=PN=3,∴△ PMN 的面积的最大值 =×3×3=.【点评】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.23.【分析】(1)利用待定系数法即可解决问题;(2)①根据 tan∠MBA= =,tan∠BDE= =,由∠ MBA=∠BDE,构建方程即可解决问题;②因为点 M 、N 关于抛物线的对称轴对称,四边形MPNQ 是正方形,推出点P是抛物线的对称轴与x 轴的交点,即 OP=1,易证 GM=GP,即| ﹣m2+2m+3| =| 1 ﹣m| ,解方程即可解决问题;【解答】解:(1)把点 B( 3, 0),C(0,3)代入 y=﹣x2+bx+c,得到,解得,∴抛物线的解析式为y=﹣x2+2x+3.∵y=﹣x2+2x﹣1+1+3=﹣( x﹣1)2+4,∴顶点 D 坐标( 1, 4).(2)①作 MG⊥ x 轴于 G,连接 BM.则∠ MGB=90°,设 M (m,﹣ m2+2m+3),∴MG=| ﹣m2+2m+3| ,BG=3﹣ m,∴ tan∠MBA= =,∵DE⊥x 轴, D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B( 3, 0),∴BE=2,∴tan∠ BDE= = ,∵∠ MBA=∠BDE,∴=当点 M 在 x 轴上方时,=,解得 m=﹣或3(舍弃),∴ M(﹣,),当点 M 在 x 轴下方时,=,解得 m=﹣或m=3(舍弃),∴点 M (﹣,﹣),综上所述,满足条件的点M 坐标(﹣,)或(﹣,﹣);②如图中,∵ MN∥x 轴,∴点 M 、 N 关于抛物线的对称轴对称,∵四边形 MPNQ 是正方形,∴点 P 是抛物线的对称轴与 x 轴的交点,即 OP=1,易证 GM=GP,即 | ﹣m2+2m+3| =| 1﹣m| ,当﹣ m2+2m+3=1﹣ m 时,解得 m= ,当﹣ m2+2m+3=m﹣1 时,解得 m= ,∴满足条件的 m 的值为或;【点评】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。

2018年河南省中考一模数学试卷(解析版)

2018年河南省中考一模数学试卷(解析版)

2018年河南省中考数学一模试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中,最小的数是()A.﹣3B.﹣(﹣2)C.0D.﹣2.(3分)据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A.9.29×109B.9.29×1010C.92.9×1010D.9.29×1011 3.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)小明解方程﹣=1的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1﹣(x﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x=﹣2④系数化为1,得x=2⑤A.①B.②C.③D.④5.(3分)为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是()A.180个,160个B.170个,160个C.170个,180个D.160个,200个6.(3分)关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.7.(3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°8.(3分)郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.9.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.10.(3分)如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(7,4)D.(8,3)二、填空题(每小题3分,共15分)11.(3分)=.12.(3分)方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=.13.(3分)点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1y2.(用“>”、“<”、“=”填空)14.(3分)如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为.15.(3分)如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:(x+2y)2﹣(2y+x)(2y﹣x)﹣2x2,其中x=+2,y=﹣2.17.(9分)全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.请你根据以上信息,回答下列问题:(1)接受问卷调查的共有人,图表中的m=,n=;(2)统计图中,A类所对应的扇形圆心角的度数为;(3)根据调查结果,我市市民最喜爱的运动方式是,不运动的市民所占的百分比是;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?18.(9分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB 于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.19.(9分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H 在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)20.(9分)如图,反比例y=的图象与一次函数y=kx﹣3的图象在第一象限内交于A(4,a).(1)求一次函数的解析式;(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.21.(10分)一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)22.(10分)如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1中,PM与PN的数量关系是,位置关系是.(2)探究证明:将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;(3)拓展延伸:把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y 轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.2018年河南省中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列各数中,最小的数是()A.﹣3B.﹣(﹣2)C.0D.﹣【解答】解:因为在数轴上﹣3在其他数的左边,所以﹣3最小;故选:A.2.(3分)据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A.9.29×109B.9.29×1010C.92.9×1010D.9.29×1011【解答】解:929亿=92 900 000 000=9.29×1010.故选:B.3.(3分)如图所示的几何体的主视图是()A.B.C.D.【解答】解:由图可知,主视图由一个矩形和三角形组成.故选:D.4.(3分)小明解方程﹣=1的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1﹣(x﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x=﹣2④系数化为1,得x=2⑤A.①B.②C.③D.④【解答】解:﹣=1去分母,得1﹣(x﹣2)=x,故①错误,故选:A.5.(3分)为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是()A.180个,160个B.170个,160个C.170个,180个D.160个,200个【解答】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选:B.6.(3分)关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.【解答】解:∵关于x的一元二次方程x2﹣2x+k+2=0有实数根,∴△=(﹣2)2﹣4(k+2)≥0,解得:k≤﹣1.故选:C.7.(3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°【解答】解∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作BC,CD边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD中,S△ABC =S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故B正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A正确;AB=CD,AD=BC(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.8.(3分)郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.【解答】解:列表得:∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,∴恰好选择从同一个口进出的概率为=,故选:C.9.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE =S矩形ABCD=3=•AE•BF,∴BF=.故选:B.10.(3分)如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(7,4)D.(8,3)【解答】解:如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4).故选:C.二、填空题(每小题3分,共15分)11.(3分)=2.【解答】解:∵22=4,∴=2.故答案为:212.(3分)方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=﹣2.【解答】解:∵方程3x2﹣5x+2=0的一个根是a,∴3a2﹣5a+2=0,∴3a2﹣5a=﹣2,∴6a2﹣10a+2=2(3a2﹣5a)+2=﹣2×2+2=﹣2.故答案是:﹣2.13.(3分)点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1<y2.(用“>”、“<”、“=”填空)【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.14.(3分)如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为 2.4cm.【解答】解:∵P以每秒2cm的速度从点A出发,∴从图2中得出AC=2×3=6cm,BC=(7﹣3)×2=8cm,∵Rt△ABC中,∠ACB=90°,∴AB===10cm,∴sin∠B===,∵当点P运动5秒时,BP=2×7﹣2×5=4cm,∴PD=4×sin∠B=4×=2.4cm,故答案为2.4cm.15.(3分)如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为1或.【解答】解:∵四边形ABCD是菱形,∠B=120°∴∠D=∠B=120°,∠A=180°﹣120°=60°,BC∥AD,∵EF∥AB,∴四边形ABFE是平行四边形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG为等腰三角形时,①当EF=EG时,EG=,如图1,过点D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,②GE=GF时,如图2,过点G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,过点D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,③当EF=FG时,∴∠EFG=180°﹣2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,故答案为:1或.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:(x+2y)2﹣(2y+x)(2y﹣x)﹣2x2,其中x=+2,y=﹣2.【解答】解:原式=x2+4xy+4y2﹣(4y2﹣x2)﹣2x2=x2+4xy+4y2﹣4y2+x2﹣2x2=4xy,当x=+2,y=﹣2时,原式=4×(+2)×(﹣2)=4×(3﹣4)=﹣4.17.(9分)全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.请你根据以上信息,回答下列问题:(1)接受问卷调查的共有150人,图表中的m=45,n=36;(2)统计图中,A类所对应的扇形圆心角的度数为28.8°;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是6%;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?(1)接受问卷调查的共有30÷20%=150人,m=150﹣(12+30+54+9)【解答】解:=45,n%=×100%=36%,∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为360°×=28.8°,故答案为:28.8°;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是×100%=6%,故答案为:散步、6%;(4)1500×=450(人),答:估计该社区参加碧沙岗“暴走团”的大约有450人.18.(9分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB 于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.【解答】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.19.(9分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H 在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)【解答】解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=4,设AH=x,则BE=GH=GA+AH=23+x,在Rt△ACH中,CH=AH tan∠CAH=tan55°•x,∴CE=CH﹣EH=tan55°•x﹣4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°•x﹣4+15,解得:x≈30,∴CH=tan55°•x=1.4×30=42,答:塔杆CH的高为42米.20.(9分)如图,反比例y=的图象与一次函数y=kx﹣3的图象在第一象限内交于A(4,a).(1)求一次函数的解析式;(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.【解答】解:(1)∵反比例y=的图象过点A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函数y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函数的解析式为y=x﹣3;(2)由题意可知,点B、C的坐标分别为(n,),(n,n﹣3).设直线y=x﹣3与x轴、y轴分别交于点D、E,如图.当x=0时,y=﹣3;当y=0时,x=3,∴OD=OE,∴∠OED=45°.∵直线x=n平行于y轴,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一种情况,过点A作AF⊥BC于F,则BF=FC,F(n,1),∴﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.21.(10分)一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)【解答】解:(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据题意得:,解得:.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组所需费用为:300×12=3600(元),单独请乙组所需费用为:140×24=3360(元),∵3600>3360,∴单独请乙组所需费用最少.(3)商店请甲乙两组同时装修,才更有利,理由如下:单独请甲组完成,损失钱数为:200×12+3600=6000(元),单独请乙组完成,损失钱数为:200×24+3360=8160(元),请甲乙两组同时完成,损失钱数为:200×8+3520=5120(元).∵8160>6000>5120,∴商店请甲乙两组同时装修,才更有利.22.(10分)如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1中,PM与PN的数量关系是PM=PN,位置关系是PM⊥PN.(2)探究证明:将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;(3)拓展延伸:把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.【解答】解:(1)PM=PN,PM⊥PN,理由如下:延长AE交BD于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MP A=∠BDC,∠EAC+∠BDC=90°,∴∠MP A+∠NPC=90°,∴∠MPN=90°,即PM⊥PN.故答案是:PM=PN,PM⊥PN.(2)如图②中,设AE交BC于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴当BD的值最大时,PM的值最大,△PMN的面积最大,∴当B、C、D共线时,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面积的最大值=×3×3=.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y 轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.【解答】解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴抛物线的解析式为y=﹣x2+2x+3.∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D坐标(1,4).(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA==,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=当点M在x轴上方时,=,解得m=﹣或3(舍弃),∴M(﹣,),当点M在x轴下方时,=,解得m=﹣或m=3(舍弃),∴点M(﹣,﹣),综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,当﹣m2+2m+3=1﹣m时,解得m=,当﹣m2+2m+3=m﹣1时,解得m=,∴满足条件的m的值为或;。

河南省濮阳市中考数学一模试卷

河南省濮阳市中考数学一模试卷

河南省濮阳市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八下·兰州期中) 若0<a<1,则下列四个不等式中正确的是()A . a<1<B . a<<1C . <a<1D . 1<<a2. (2分)下列何者是0.000 815的科学记号()A . 8.15×10-3B . 8.15×10-4C . 815×10-3D . 815×10-63. (2分) (2018七上·定安期末) 如图,已知:AB∥CD,∠2=40° ,则∠1 =()A . 40°B . 50°C . 60°D . 80°4. (2分)(2014·南宁) 下列图形中,是轴对称图形的是()A .B .C .D .5. (2分)随机抽取九年级某班10位同学的年龄情况为:17岁1人,16岁5人,15岁2人,14岁2人.则这10位同学的年龄的中位数和平均数分别是(单位:岁)()A . 16和15B . 16和15.5C . 16和16D . 15.5和15.56. (2分) (2015九上·宁海月考) 如图,点A,B,C在⊙O上,已知∠ABC=130°,则∠AOC=()A . 100°B . 110°C . 120°D . 130°7. (2分) (2017·房山模拟) 如图1,已知点E,F,G,H是矩形ABCD各边的中点,AB=6,BC=8,动点M从点E出发,沿E→F→G→H→E匀速运动,设点M运动的路程x,点M到矩形的某一个顶点的距离为y,如果表示y 关于x函数关系的图象如图2所示,那么这个顶点是矩形的()A . 点AB . 点BC . 点CD . 点D8. (2分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影长为()米.A . 4B . 5C . 6D . 79. (2分) (2018七上·文山月考) 下列说法不正确的是()A . 经过两点有且只有一条直线B . 为了解全国七年级学生的数学成绩,选用普查的方式比较合适C . 绝对值最小的数是零D . 折线统计图能清楚地反映事物的变化情况10. (2分) (2019九上·重庆开学考) 如图,在平面直角坐标系中,反比例函数的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k为()A . 3B . 4C . 6D . 12二、填空题 (共6题;共7分)11. (1分)(2019·曲靖模拟) 在实数范围内,若有意义,则x的取值范围是________.12. (1分)因式分解:4ax2-a=________.13. (2分) (2016九上·萧山期中) 如图,∠AOB=110°, 则∠ACB=________14. (1分) (2019八下·乐清期末) 若关于x的方程有实数根,则m的值可以是________(写出一个即可)15. (1分) (2016八上·腾冲期中) 如下图,在△ABC中,AB=8,BC=6,AC的垂直平分线MN交AB,AC于点M,N.则△BCM的周长为________.16. (1分)一个袋子中装有除颜色外都相同的黑色、红色和黄色三种颜色的球,若从中任意摸出一球,记下颜色后再放回去,重复这样的试验500次,有300次摸出了黄球,则这次试验中随机摸出的一球为黄球的频率为________ .三、解答题 (共13题;共95分)17. (5分)(2014·宿迁) 计算:2sin30°+|﹣2|+(﹣1)0﹣.18. (5分)(2013·淮安) 解不等式:x+1≥ +2,并把解集在数轴上表示出来.19. (5分)(2017·河北模拟) 如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB,AC于E,F,求证:EF=BE+CF.20. (5分)(2020·思明模拟) 化简并求值:,其中a=.21. (5分)(2017·苏州模拟) 为解决“最后一公里”的交通接驳问题,某市投放了大量公租自行车使用,到2014年底,全市已有公租自行车25000辆,租赁点600个,预计到2016年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2014年底平均每个租赁点的公租自行车数量的1.2倍,预计到2016年底,全市将有租赁点多少个?22. (10分)长方形ABCD位于平面直角坐标系中平行移动.(1)如图1,若AB⊥x轴且点A的坐标(﹣4,4),点C的坐标为(﹣1,﹣2),在边AB上有动点P,过点P 作直线PQ交BC边于点Q,并使得BP=2BQ.①当S△BPQ= S长方形ABCD时,求P点的坐标.②在直线CD上是否存在一点M,使得△MPQ是以PQ为直角边的等腰直角三角形?若存在,求出M点坐标:若不存在,请说明理由.(2)如图2,若AB⊥x轴且A、B关于x轴对称,连接BD、OB、OD,且OB平分∠CBD,求证:BO⊥DO.23. (10分) (2018八上·合肥期中) 已知某种水果的批发金额与批发量的函数关系如图所示,(1)指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(2)相同的金额是多少时,可以多买14kg水果?24. (6分)(2020·哈尔滨模拟) 某中学为了丰富校园文化生活,校学生会决定举办演讲、歌唱、绘画、舞蹈四项比赛,要求每位学生都参加,且只能参加一项比赛。

2018年河南省濮阳市一模数学试卷

2018年河南省濮阳市一模数学试卷

2018年濮阳市初中毕业班摸底考试数学一、选择题(每小题3分,共30分) 1. -3的相反数是( )A .-3B . 3C .13-D .132. 今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告.其中表示,五年来,人民生活持续改善,脱贫攻坚取得了决定性进展,贫困人口减少6 800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%.将830万用科学记数法表示为( ) A .83×105B .0.83×106C .8.3×106D .8.3×1073. 如图是由三个小正方体叠成的一个几何体,它的左视图是( )A B CD4. 下列各式计算正确的是( )A .2ab +3ab =5abB .23245()a b a b -=C .23=5⨯D .22(1)1a a +=+5. 不等式组21217x x -⎧⎨->⎩≥-的解集在数轴上表示正确的是( )A .B .C .D .6. 如图,直线AB 与直线CD 相交于点O ,E 是∠COB 内一点,且OE ⊥AB ,∠AOC =35°,则∠EOD 的度数是( ) A .155° B .145° C .135° D .125°x 01-1-2-3-3-2-110xx01-1-2-3x 01-1-2-3OEDC B A7. 在学校举行的“阳光少年,励志青年”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是( ) A .95B .90C .85D .808. 若关于x 的方程0452=+-+a x x 有两个不相等的实数根,则满足条件的最小整数a 的值是( )A .-1B .0C .1D .29. 某校组织九年级学生参加中考体育测试,共租3辆客车,分别标号1,2,3,李军和赵娟两人可以任选一辆车乘坐,则两人同坐2号车的概率为( )A .91B .61C .31D .2110. 如图,在平面直角坐标系中,Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC =2,∠ABC =30°,把Rt △ABC 先绕B 点顺时针旋转180°,然后向下平移2个单位,则A 点的对应点的坐标为( ) A .(-2,32+-) B .(-2,23--) C .(-4,32--) D .(-4,32+-)二、选择题(每小题3分,共15分) 11. 计算:22sin 30+(1)22=-︒---_______.12. 若二次函数y =ax 2+bx +c (a <0)的图象经过(2,0),且其对称轴为直线x =-1,则当函数值y >0成立时,x 的取值范围是______________. 13. 如图,已知双曲线ky x=(k <0)经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(-6,4),则△AOC 的面积为_______.第13题图 第14题图 14. 如图,将矩形ABCD 绕点C 沿顺时针方向旋转90°到矩形A ′B ′CD ′的位置,AB =2,AD =4,则阴影部分的面积为_______.D'B'A'E D CB A D O BACx y yxCABO15. 如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,点D ,E 为AC ,BC 上的两个动点,若将∠C 沿DE 折叠,点C 的对应点C ′恰好落在AB 上,且△ADC ′恰为直角三角形,则此时CD 的长为_______.三、解答题(本大题共8个,满分75分) 16. (8分)先化简,再求值:2321211a a a a -⎛⎫÷- ⎪-+-⎝⎭,其中21a =+.ABCDE C'17. (9分)某校在3月份举行读书节活动,鼓励学生进行有益的课外阅读,张老师为了了解该校学生课外阅读的情况,设计了“你最喜欢的课外读物类型”的调查问卷,包括“名著”“科幻”“历史”“童话”四类,在学校随机抽取了部分学生进行调查,被抽取的学生只能在四种类型中选择其中一类,最后将调查结果绘制成如下两幅尚不完整的统计图.女男调查结果条形统计图人数/人类型童话历史科幻名著958438642O 17.5%32.5%30%20%名著科幻历史童话调查结果扇形统计图请你根据以上信息解答下列问题:(1)本次调查中,张老师一共调查了__________名学生;(2)求本次调查中选择“历史”类的女生人数和“童话”类的男生人数,并将条形统计图补充完整;(3)扇形图中“童话”类对应的圆心角的度数为__________;(4)如果该校共有学生360名,请估算该校最喜欢“名著”类和“历史”类的学生总人数.18. (9分)如图,已知△ABC 内接于⊙O ,AB 是直径,OD ∥AC ,AD =OC .(1)求证:四边形OCAD 是平行四边形;(2)填空:①当∠B =_____时,四边形OCAD 是菱形;②当∠B =_____时,AD 与⊙O 相切.19. (9分)如图,线段AB ,CD 分别表示甲、乙两建筑物的高,BA ⊥AD ,CD⊥DA ,垂足分别为A ,D .从D 点测得B 点的仰角α为60°,从C 点测得B 点的仰角β为30°,甲建筑物的高AB =30米. (1)求甲、乙两建筑物之间的距离AD ; (2)求乙建筑物的高CD .O B ACD 乙甲βαDCBA20. (9分)如图,一次函数y=kx+b 的图象与反比例函数my x的图象交于A (-3,m +8),B (n ,-6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB 的面积.21. (10分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购.经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元. (1)求甲、乙两种型号设备的价格;(2)该公司预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月.若每月要求总产量不低于2 040吨,为了节省资金,请你为该公司设计一种最省钱的购买方案.yx BO A22. (10分)如图1,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,点E ,F分别在四边形ABCD 的边BC ,CD 上,∠EAF =12∠BAD ,连接EF ,试猜想EF ,BE ,D F 之间的数量关系. (1)思路梳理将△ABE 绕点A 逆时针旋转至△ADG ,使AB 与AD 重合,由∠B +∠ADC =180°,得∠FDG =180°,即点F ,D ,G 三点共线,易证△AFG ≌_______,故EF ,BE ,DF 之间的数量关系为_________________. (2)类比引申如图2,在图1的条件下,若点E ,F 由原来的位置分别变到四边形ABCD的边CB ,DC 的延长线上,∠EAF =12∠BAD ,连接EF ,试猜想EF ,BE ,DF 之间的数量关系,并给出证明. (3)联想拓展如图3,在△ABC 中,∠BAC =90°,AB =AC ,点D ,E 均在边BC 上,且 ∠DAE =45°,若BD =1,EC =2,则DE 的长为_________.GFEDCB AF EDC BA图1 图2 图3EDCB A23. (11分)如图,抛物线y =ax 2+bx -3经过点A (2,-3),与x 轴负半轴交于点B ,与y 轴交于点C ,且OC =3OB . (1)求抛物线的解析式;(2)点D 在y 轴上,且∠BDO =∠BAC ,求点D 的坐标;(3)点M 在抛物线上,点N 在抛物线的对称轴上,是否存在以点A ,B ,M ,N 为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.yxCO BA。

2018年河南省中考数学一模试卷及答案

2018年河南省中考数学一模试卷及答案

2018年河南省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.下列各数中,最小的数是()A. -3B. -(-2)C. 0D. -2.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A. 9.29×109B. 9.29×1010C. 92.9×1010D. 9.29×10113.如图所示的几何体的主视图是()A.B.C.D.4.小明解方程-=1的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1-(x-2)=1①去括号,得1-x+2=1②合并同类项,得-x+3=1③移项,得-x=-2④系数化为1,得x=2⑤A. ①B. ②C. ③D. ④5.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是()A. 180个,160个B. 170个,160个C. 170个,180个 D. 160个,200个6.关于x的一元二次方程x2-2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A. B. C. D.7.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A. ∠ABC=∠ADC,∠BAD=∠BCDB. AB=BCC. AB=CD,AD=BCD. ∠DAB+∠BCD=180°8.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.9.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.10.如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A. (1,4)B. (5,0)C. (7,4)D. (8,3)二、填空题(本大题共5小题,共15.0分)11.=______.12.方程3x2-5x+2=0的一个根是a,则6a2-10a+2=______.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2-4x-1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1______y2.(用“>”、“<”、“=”填空)14.如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC-CB运动,到点B停止.过点P 作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为______.15.如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为______.三、计算题(本大题共1小题,共8.0分)16.先化简,再求值:(x+2y)2-(2y+x)(2y-x)-2x2,其中x=+2,y=-2.四、解答题(本大题共7小题,共67.0分)17.全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.(1)接受问卷调查的共有______人,图表中的m=______,n=______;(2)统计图中,A类所对应的扇形圆心角的度数为______;(3)根据调查结果,我市市民最喜爱的运动方式是______,不运动的市民所占的百分比是______;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?18.如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.19.风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B 处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)20.如图,反比例y=的图象与一次函数y=kx-3的图象在第一象限内交于A(4,a).(1)求一次函数的解析式;(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.21.一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)22.如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P 为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1中,PM与PN的数量关系是____,位置关系是____.(2)探究证明:将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;(3)拓展延伸:把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN 面积的最大值.23.如图,抛物线y=-x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x 轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ 恰好为正方形,直接写出m的值.答案和解析1.【答案】A【解析】解:因为在数轴上-3在其他数的左边,所以-3最小;故选:A.应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.此题考负数的大小比较,应理解数字大的负数反而小.2.【答案】B【解析】【分析】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=10.【解答】解:929亿=92 900 000000=9.29×1010.故选B.3.【答案】D【解析】解:由图可知,主视图由一个矩形和三角形组成.故选:D.先细心观察原立体图形和长方体的位置关系,结合四个选项选出答案.本题考查了简单组合体的三视图,培养了学生的思考能力和对几何体三种视图的空间想象能力.4.【答案】A【解析】解:-=1去分母,得1-(x-2)=x,故①错误,故选:A.根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.本题考查解分式方程,解答本题的关键是明确解分式方程的方法.5.【答案】B【解析】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选:B.根据中位数和众数的定义分别进行解答即可.此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.【答案】C【解析】解:∵关于x的一元二次方程x2-2x+k+2=0有实数根,∴△=(-2)2-4(k+2)≥0,解得:k≤-1.故选C.根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围,再将其表示在数轴上即可得出结论.本题考查了根的判别式以及在数轴上表示不等式的解集,牢记“当△≥0时,方程有实数根”是解题的关键.7.【答案】D【解析】解∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作BC,CD边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD中,S△ABC=S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故B正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A正确;AB=CD,AD=BC(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进行判断.本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.8.【答案】C【解析】5种情况,∴恰好选择从同一个口进出的概率为=,故选:C.列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】B【解析】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=3=•AE•BF,∴BF=.故选:B.根据S△ABE=S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.10.【答案】C【解析】解:如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4).故选:C.根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2018除以6,根据商和余数的情况确定所对应的点的坐标即可.此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.11.【答案】2【解析】解:∵22=4,∴=2.故答案为:2如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.此题主要考查了学生开平方的运算能力,比较简单.12.【答案】-2【解析】解:∵方程3x2-5x+2=0的一个根是a,∴3a2-5a+2=0,∴3a2-5a=-2,∴6a2-10a+2=2(3a2-5a)+2=-2×2+2=-2.故答案是:-2.根据一元二次方程的解的定义,将x=a代入方程3x2-5x+2=0,列出关于a的一元二次方程,通过变形求得3a2-5a的值后,将其整体代入所求的代数式并求值即可.此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.13.【答案】<【解析】解:由二次函数y=x2-4x-1=(x-2)2-5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.【答案】2.4cm【解析】解:∵P以每秒2cm的速度从点A出发,∴从图2中得出AC=2×3=6cm,BC=(7-3)×2=8cm,∵Rt△ABC中,∠ACB=90°,∴AB===10cm,∴sin∠B===,∵当点P运动5秒时,BP=2×7-2×5=4cm,∴PD=4×si n∠B=4×=2.4cm,故答案为2.4cm.由P的速度和图2得出AC和BC的长,运用勾股定理求出AB,即可求出sin∠B,求出P运动5秒距离B的长度利用三角函数得出PD的值.本题主要考查了动点问题的函数图象,理清图象的含义即会识图是解题的关键.15.【答案】1或【解析】解:∵四边形ABCD是菱形,∠B=120°∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,∵EF∥AB,∴四边形ABFE是平行四边形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG为等腰三角形时,①当EF=EG时,EG=,如图1,过点D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,②GE=GF时,如图2,过点G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,过点D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,③当EF=FG时,∴∠EFG=180°-2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,故答案为:1或.由四边形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG为等腰三角形时,①EF=GE=时,于是得到DE=DG=AD÷=1,②GE=GF时,根据勾股定理得到DE=.本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.16.【答案】解:原式=x2+4xy+4y2-(4y2-x2)-2x2=x2+4xy+4y2-4y2+x2-2x2=4xy,当x=+2,y=-2时,原式=4×(+2)×(-2)=4×(3-4)=-4.【解析】利用完全平方公式、平方差公式展开并合并同类项,然后把x、y 的值代入进行计算即可得解.本题主要考查整式的混合运算-化简求值,解题的关键是熟练掌握整式混合运算顺序和运算法则及完全平方公式、平方差公式.17.【答案】150;45;36;28.8°;散步;6%【解析】(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)解:=45,n%=×100%=36%,∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为360°×=28.8°,故答案为:28.8°;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是×100%=6%,故答案为:散步、6%;(4)1500×=450(人),答:估计该社区参加碧沙岗“暴走团”的大约有450人.(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)由表可知样本中散步人数最多,据此可得,再用E项目人数除以总人数可得;(4)总人数乘以样本中C人数所占比例.本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.【答案】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【解析】(1)连接OC,如图所示,由CD⊥AB,AE⊥CF,利用垂直的定义得到一对直角相等,再由CF为圆的切线,利用切线的性质得到CO⊥EF,可得出AE与OC平行,利用两直线平行内错角相等,等边对等角得到一对角相等,利用AAS得到三角形全等,利用全等三角形的对应边相等即可得证;(2)连接BC,在直角三角形ACD中,利用勾股定理求出AC的长,在直角三角形AEC中,利用锐角三角函数定义求出所求即可.此题考查了切线的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.19.【答案】解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=4,设AH=x,则BE=GH=GA+AH=23+x,在Rt△ACH中,CH=AH tan∠CAH=tan55°•x,∴CE=CH-EH=tan55°•x-4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°•x-4+15,解得:x≈30,∴CH=tan55°•x=1.4×30=42,答:塔杆CH的高为42米.【解析】作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan∠CAH=tan55°•x知CE=CH-EH=tan55°•x-4,根据BE=DE 可得关于x的方程,解之可得.本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.20.【答案】解:(1)∵反比例y=的图象过点A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函数y=kx-3,得4k-3=1,∴k=1,∴一次函数的解析式为y=x-3;(2)由题意可知,点B、C的坐标分别为(n,),(n,n-3).设直线y=x-3与x轴、y轴分别交于点D、E,如图.当x=0时,y=-3;当y=0时,x=3,∴OD=OE,∴∠OED=45°.∵直线x=n平行于y轴,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一种情况,过点A作AF⊥BC于F,则BF=FC,F(n,1),∴-1=1-(n-3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【解析】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式;(2)易求点B、C的坐标分别为(n,),(n,n-3).设直线y=x-3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ABC是等腰直角三角形时只有AB=AC一种情况.过点A作AF⊥BC 于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程-1=1-(n-3),解方程即可.21.【答案】解:(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据题意得:,解得:.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组所需费用为:300×12=3600(元),单独请乙组所需费用为:140×24=3360(元),∵3600>3360,∴单独请乙组所需费用最少.(3)商店请甲乙两组同时装修,才更有利,理由如下:单独请甲组完成,损失钱数为:200×12+3600=6000(元),单独请乙组完成,损失钱数为:200×24+3360=8160(元),请甲乙两组同时完成,损失钱数为:200×8+3520=5120(元).∵8160>6000>5120,∴商店请甲乙两组同时装修,才更有利.【解析】(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据“若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用,比较后即可得出结论;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数,比较后即可得出结论.本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数22.【答案】解:(1)PM=PN;PM⊥PN(2)如图②中,设AE交BC于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.可知△PMN是等腰直角三角形.(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴当BD的值最大时,PM的值最大,△PMN的面积最大,∴当B、C、D共线时,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面积的最大值=×3×3=.【解析】【分析】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出当BD 的值最大时,PM的值最大,△PMN的面积最大,推出当B、C、D 共线时,BD的最大值=BC+CD=6,由此即可解决问题.【解答】解:(1)PM=PN,PM⊥PN,理由如下:延长AE交BD于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∠AEC=∠BDC,∵∠EAC+∠AEC=90°,∴∠EAC+∠BDC=90°,∴∠AOD=90°,即AE⊥BD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PN,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN.故答案为PM=PN,PM⊥PN;(2)见答案;(3)见答案.23.【答案】解:(1)把点B(3,0),C(0,3)代入y=-x2+bx+c,得到,解得,∴抛物线的解析式为y=-x2+2x+3.∵y=-x2+2x-1+1+3=-(x-1)2+4,∴顶点D坐标(1,4).(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,-m2+2m+3),∴MG=|-m2+2m+3|,BG=3-m,∴tan∠MBA==,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=当点M在x轴上方时,=,解得m=-或3(舍弃),∴M(-,),当点M在x轴下方时,=,解得m=-或m=3(舍弃),∴点M(-,-),综上所述,满足条件的点M坐标(-,)或(-,-);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,当-m2+2m+3=1-m时,解得m=,当-m2+2m+3=m-1时,解得m=,∴满足条件的m的值为或;【解析】(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA==,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题;本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。

2018年河南中考数学模拟试题word完美版(可编辑修改word版)

2018年河南中考数学模拟试题word完美版(可编辑修改word版)

2018 年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10 小题,每题3 分,共30 分)1.(3.00 分)﹣地相反数是()A.﹣B.C.﹣D.2.(3.00 分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7 亿元,数据“214.7 亿”用科学记数法表示为()A.2.147×102 B.0.2147×103 C.2.147×1010 D.0.2147×10113.(3.00 分)某正方体地每个面上都有一个汉字,如图是它地一种展开图,那么在原正方体中,与“国”字所在面相对地面上地汉字是()A.厉B.害C.了D.我4.(3.00 分)下列运算正确地是()A.(﹣x2)3=﹣x5B.x2+x3=x5 C.x3•x4=x7 D.2x3﹣x3=15.(3.00 分)河南省旅游资源丰富,2013~2017 年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确地是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3.00 分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5 钱,还差45 钱;若每人出7 钱,还差3 钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 线,根据题意,可列方程组为()A.B.C.D.7.(3.00 分)下列一元二次方程中,有两个不相等实数根地是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3.00 分)现有4 张卡片,其中3 张卡片正面上地图案是“”,1 张卡片正面上地图案是“”,它们除此之外完全相同.把这4 张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同地概率是()A.B.C.D.9.(3.00 分)如图,已知▱AOBC 地顶点O(0,0),A(﹣1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA,OB 于点D,E;②分别以点D,E 为圆心,大于DE 地长为半径作弧,两弧在∠AOB 内交于点F;③作射线OF,交边AC 于点G,则点G 地坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(3.00 分)如图1,点F 从菱形ABCD 地顶点A 出发,沿A→D→B以1cm/s 地速度匀速运动到点B,图2 是点F 运动时,△FBC 地面积y(cm2)随时间x(s)变化地关系图象,则a 地值为()A.B.2 C.D.2二、细心填一填(本大题共5 小题,每小题3 分,满分15 分,请把答案填在答題卷相应题号地横线上)11.(3.00 分)计算:|﹣5|﹣=.12.(3.00 分)如图,直线AB,CD 相交于点O,EO⊥AB 于点O,∠EOD=50°,则∠BOC 地度数为.13.(3.00 分)不等式组地最小整数解是.14.(3.00 分)如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 地中点D 逆时针旋转90°得到△A'B′C',其中点B 地运动路径为,则图中阴影部分地面积为.15.(3.00 分)如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC,△A′BC 与△ABC 关于BC 所在直线对称,点D,E 分别为AC,BC 地中点,连接DE 并延长交A′B 所在直线于点F,连接A′E.当△A′EF 为直角三角形时,AB 地长为.三、计算题(本大题共8 题,共75 分,请认真读题)治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年地栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他16.(8.00 分)先化简,再求值:(﹣1)÷,其中x= +1.17.(9.00 分)每到春夏交替时节,雌性杨树会以满天飞絮地方式来传播下一代,漫天飞舞地杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法地赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整地统计图.根据以上统计图,解答下列问题:(1)本次接受调查地市民共有人;(2)扇形统计图中,扇形E 地圆心角度数是;(3)请补全条形统计图;(4)若该市约有90 万人,请估计赞同“选育无絮杨品种,并推广种植”地人数.18.(9.00 分)如图,反比例函数y=(x>0)地图象过格点(网格线地交点)P.(1)求反比例函数地解析式;(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形地面积等于k 地值.19.(9.00 分)如图,AB 是⊙O 地直径,DO⊥AB 于点O,连接DA 交⊙O 于点C,过点C 作⊙O 地切线交DO 于点E,连接BC 交DO 于点F.(1)求证:CE=EF;(2)连接AF 并延长,交⊙O 于点G.填空:①当∠D 地度数为时,四边形ECFG 为菱形;②当∠D 地度数为时,四边形ECOG 为正方形.20.(9.00 分)“高低杠”是女子体操特有地一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己地身高和习惯在规定范围内调节高、低两杠间地距离.某兴趣小组根据高低杠器材地一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B 两点间地距离为90cm.低杠上点C 到直线AB 地距离CE 地长为155cm,高杠上点D 到直线AB 地距离DF 地长为234cm,已知低杠地支架AC 与直线AB 地夹角∠CAE 为82.4°,高杠地支架BD 与直线AB 地夹角∠DBF 为80.3°.求高、低杠间地水平距离CH 地长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10.00 分)某公司推出一款产品,经市场调查发现,该产品地日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润地几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y 关于x 地函数解析式(不要求写出x 地取值范围)及m 地值;(2)根据以上信息,填空:该产品地成本单价是元,当销售单价x=元时,日销售利润w 最大,最大值是元;(3)公司计划开展科技创新,以降低该产品地成本,预计在今后地销售中,日销售量与销售单价仍存在(1)中地关系.若想实现销售单价为90 元时,日销售利润不低于3750 元地销售目标,该产品地成本单价应不超过多少元?22.(10.00 分)(1)问题发现如图1,在△OAB 和△OCD 中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①地值为;②∠AMB 地度数为.(2)类比探究如图2,在△OAB 和△OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD 地延长线于点M.请判断地值及∠AMB 地度数,并说明理由;(3)拓展延伸在(2)地条件下,将△OCD 绕点O 在平面内旋转,AC,BD 所在直线交于点M,若OD=1,OB=,请直接写出当点C 与点M 重合时AC 地长.23.(11.00 分)如图,抛物线y=ax2+6x+c 交x 轴于A,B 两点,交y 轴于点C.直线y=x﹣5 经过点B,C.(1)求抛物线地解析式;(2)过点A 地直线交直线BC 于点M.①当AM⊥BC 时,过抛物线上一动点P(不与点B,C 重合),作直线AM 地平行线交直线BC 于点Q,若以点A,M,P,Q 为顶点地四边形是平行四边形,求点P 地横坐标;②连接AC,当直线AM 与直线BC 地夹角等于∠ACB 地2 倍时,请直接写出点M 地坐标.2018 年河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10 小题,每题3 分,共30 分)1.(3.00 分)﹣地相反数是()A.﹣B.C.﹣D.【分析】直接利用相反数地定义分析得出答案.【解答】解:﹣地相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数地定义是解题关键.2.(3.00 分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7 亿元,数据“214.7 亿”用科学记数法表示为()A.2.147×102 B.0.2147×103 C.2.147×1010 D.0.2147×1011【分析】科学记数法地表示形式为a×10n地形式,其中1≤|a|<10,n 为整数.确定n 地值时,要看把原数变成a 时,小数点移动了多少位,n 地绝对值与小数点移动地位数相同.当原数绝对值>1 时,n 是正数;当原数地绝对值<1 时,n 是负数.【解答】解:214.7 亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法地表示方法.科学记数法地表示形式为a×10n地形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 地值以及n 地值.3.(3.00 分)某正方体地每个面上都有一个汉字,如图是它地一种展开图,那么在原正方体中,与“国”字所在面相对地面上地汉字是()A.厉B.害C.了D.我【分析】正方体地表面展开图,相对地面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体地表面展开图,相对地面之间一定相隔一个正方形,“地”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上地文字,注意正方体地空间图形,从相对面入手,分析及解答问题.4.(3.00 分)下列运算正确地是()A.(﹣x2)3=﹣x5B.x2+x3=x5 C.x3•x4=x7 D.2x3﹣x3=1【分析】分别根据幂地乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式地运算,解题地关键是掌握幂地乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3.00 分)河南省旅游资源丰富,2013~2017 年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确地是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差地意义以及平均数地求法和中位数、众数地定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C 错误;D、∵5 个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差地意义以及平均数地求法和中位数、众数地定义,正确把握相关定义是解题关键.6.(3.00 分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5 钱,还差45 钱;若每人出7 钱,还差3 钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x 人,羊价为y 线,根据羊地价格不变列出方程组.【解答】解:设合伙人数为x 人,羊价为y 线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题地关键.7.(3.00 分)下列一元二次方程中,有两个不相等实数根地是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根地判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查地是一元二次方程根地判别式,一元二次方程ax2+bx+c=0(a≠0)地根与△=b2﹣4ac 有如下关系:①当△>0 时,方程有两个不相等地两个实数根;②当△=0 时,方程有两个相等地两个实数根;③当△<0 时,方程无实数根.8.(3.00 分)现有4 张卡片,其中3 张卡片正面上地图案是“”,1 张卡片正面上地图案是“”,它们除此之外完全相同.把这4 张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同地概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3 张用A1,A2,A3,表示,用B 表示,可得:,一共有12 种可能,两张卡片正面图案相同地有 6 种,故从中随机抽取两张,则这两张卡片正面图案相同地概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有地可能是解题关键.9.(3.00 分)如图,已知▱AOBC 地顶点O(0,0),A(﹣1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA,OB 于点D,E;②分别以点D,E 为圆心,大于DE 地长为半径作弧,两弧在∠AOB 内交于点F;③作射线OF,交边AC 于点G,则点G 地坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH 中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC 地顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH 中,AO=,由题可得,OF 平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO= ,∴HG= ﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线地作法,勾股定理以及平行四边形地性质地运用,解题时注意:求图形中一些点地坐标时,过已知点向坐标轴作垂线,然后求出相关地线段长,是解决这类问题地基本方法和规律.10.(3.00 分)如图1,点F 从菱形ABCD 地顶点A 出发,沿A→D→B以1cm/s 地速度匀速运动到点B,图2 是点F 运动时,△FBC 地面积y(cm2)随时间x(s)变化地关系图象,则a 地值为()A.B.2 C.D.2【分析】通过分析图象,点F 从点A 到D 用as,此时,△FBC 地面积为a,依此可求菱形地高DE,再由图象可知,BD=,应用两次勾股定理分别求BE 和a.【解答】解:过点 D 作DE⊥BC 于点 E由图象可知,点 F 由点 A 到点 D 用时为as,△FBC 地面积为acm2.∴AD=a∴∴DE=2当点F 从D 到B 时,用s∴BD=Rt△DBE 中,BE=∵ABCD 是菱形∴EC=a﹣1,DC=aRt△DEC 中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间地关系.二、细心填一填(本大题共5 小题,每小题3 分,满分15 分,请把答案填在答題卷相应题号地横线上)11.(3.00 分)计算:|﹣5|﹣= 2 .【分析】直接利用二次根式以及绝对值地性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3.00 分)如图,直线AB,CD 相交于点O,EO⊥AB 于点O,∠EOD=50°,则∠BOC 地度数为 140°.【分析】直接利用垂直地定义结合互余以及互补地定义分析得出答案.【解答】解:∵直线AB,CD 相交于点O,EO⊥AB 于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC 地度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直地定义、互余以及互补地定义,正确把握相关定义是解题关键.13.(3.00 分)不等式组地最小整数解是﹣2 .【分析】先求出每个不等式地解集,再求出不等式组地解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组地解集为﹣3<x≤1,∴不等式组地最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组地整数解,能根据不等式地解集得出不等式组地解集是解此题地关键.14.(3.00 分)如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 地中点D 逆时针旋转90°得到△A'B′C',其中点B 地运动路径为,则图中阴影部分地面积为π.【分析】利用弧长公式L=,计算即可.【解答】解:△ABC 绕AC 地中点D 逆时针旋转90°得到△A'B′C',此时点A′在斜边AB 上,CA′⊥AB,DB′==,A′B′==2 ,∴S阴= ﹣1×2÷2﹣(2 )×÷2= π﹣.【点评】本题考查旋转变换、弧长公式等知识,解题地关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3.00 分)如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC,△A′BC 与△ABC 关于BC 所在直线对称,点D,E 分别为AC,BC 地中点,连接DE 并延长交A′B 所在直线于点F,连接A′E.当△A′EF 为直角三角﹣形时,AB 地长为 4 或4 .【分析】当△A′EF 为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称地性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线地性质得:BC=2A'B=8,最后利用勾股定理可得AB 地长;②当∠A'FE=90°时,如图2,证明△ABC 是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF 为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC 与△ABC 关于BC 所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E 分别为AC,BC 地中点,∴D、E 是△ABC 地中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB 中,∵E 是斜边BC 地中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB= =4 ;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC 与△ABC 关于BC 所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC 是等腰直角三角形,∴AB=AC=4;综上所述,AB 地长为4或4;故答案为:4或4;【点评】本题考查了三角形地中位线定理、勾股定理、轴对称地性质、等腰直角三角形地判定、直角三角形斜边中线地性质,并利用分类讨论地思想解决问题.三、计算题(本大题共8 题,共75 分,请认真读题)16.(8.00 分)先化简,再求值:(﹣1)÷,其中x= +1.【分析】根据分式地运算法则即可求出答案,【解答】解:当x=+1 时,原式=•=1﹣x=﹣【点评】本题考查分式地运算,解题地关键是熟练运用分式地运算法则,本题属于基础题型.17.(9.00 分)每到春夏交替时节,雌性杨树会以满天飞絮地方式来传播下一代,漫天飞舞地杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法地赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整地统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年地栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查地市民共有2000 人;(2)扇形统计图中,扇形E 地圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90 万人,请估计赞同“选育无絮杨品种,并推广种植”地人数.【分析】(1)将 A 选项人数除以总人数即可得;(2)用360°乘以E 选项人数所占比例可得;(3)用总人数乘以D 选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C 选项人数所占百分比可得.【解答】解:(1)本次接受调查地市民人数为300÷15%=2000 人,故答案为:2000;(2)扇形统计图中,扇形E 地圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D 选项地人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”地人数为90×40%=36(万人).【点评】本题考查地是条形统计图和扇形统计图地综合运用.读懂统计图,从不同地统计图中得到必要地信息是解决问题地关键.条形统计图能清楚地表示出每个项目地数据;扇形统计图直接反映部分占总体地百分比大小.18.(9.00 分)如图,反比例函数y=(x>0)地图象过格点(网格线地交点)P.(1)求反比例函数地解析式;(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形地面积等于k 地值.【分析】(1)将P 点坐标代入y=,利用待定系数法即可求出反比例函数地解析式;(2)根据矩形满足地两个条件画出符合要求地两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)地图象过格点P(2,2),∴k=2×2=4,∴反比例函数地解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP 即为所求作地图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点地坐标特征,待定系数法求反比例函数解析式,矩形地判定与性质,正确求出反比例函数地解析式是解题地关键.19.(9.00 分)如图,AB 是⊙O 地直径,DO⊥AB 于点O,连接DA 交⊙O 于点C,过点C 作⊙O 地切线交DO 于点E,连接BC 交DO 于点F.(1)求证:CE=EF;(2)连接AF 并延长,交⊙O 于点G.填空:①当∠D 地度数为30°时,四边形ECFG 为菱形;②当∠D 地度数为22.5°时,四边形ECOG 为正方形.【分析】(1)连接OC,如图,利用切线地性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形地判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF 和△FEG 都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG 为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG 得到∠OEG=∠OCE=90°,从而证明四边形ECOG 为矩形,然后进一步证明四边形ECOG 为正方形.【解答】(1)证明:连接OC,如图,∵CE 为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB 为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF 为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG 为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG 为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG 为矩形,而OC=OG,∴四边形ECOG 为正方形.故答案为30°,22.5°.【点评】本题考查了切线地性质:圆地切线垂直于经过切点地半径.若出现圆地切线,必连过切点地半径,构造定理图,得出垂直关系.也考查了菱形和正方形地判定.20.(9.00 分)“高低杠”是女子体操特有地一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己地身高和习惯在规定范围内调节高、低两杠间地距离.某兴趣小组根据高低杠器材地一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B 两点间地距离为90cm.低杠上点C 到直线AB 地距离CE 地长为155cm,高杠上点D 到直线AB 地距离DF 地长为234cm,已知低杠地支架AC 与直线AB 地夹角∠CAE 为82.4°,高杠地支架BD 与直线AB 地夹角∠DBF 为80.3°.求高、低杠间地水平距离CH 地长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE 和Rt△DBF 中,分别求出AE、BF 地长.计算出EF.通过矩形CEFH 得到CH 地长.【解答】解:在Rt△ACE 中,∵tan∠CAE= ,∴AE= =≈≈21(cm)在Rt△DBF 中,∵tan∠DBF= ,∴BF= =≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH 是矩形,∴CH=EF=151cm答:高、低杠间地水平距离CH 地长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10.00 分)某公司推出一款产品,经市场调查发现,该产品地日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润地几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y 关于x 地函数解析式(不要求写出x 地取值范围)及m 地值;(2)根据以上信息,填空:该产品地成本单价是80 元,当销售单价x= 100 元时,日销售利润w 最大,最大值是2000 元;(3)公司计划开展科技创新,以降低该产品地成本,预计在今后地销售中,日销售量与销售单价仍存在(1)中地关系.若想实现销售单价为90 元时,日销售利润不低于3750 元地销售目标,该产品地成本单价应不超过多少元?【分析】(1)根据题意和表格中地数据可以求得y 关于x 地函数解析式;(2)根据题意可以列出相应地方程,从而可以求得生产成本和w 地最大值;(3)根据题意可以列出相应地不等式,从而可以取得科技创新后地成本.【解答】解;(1)设y 关于x 地函数解析式为y=kx+b,,得,即y 关于x 地函数解析式是y=﹣5x+600,当x=115 时,y=﹣5×115+600=25,即m 地值是25;(2)设成本为a 元/个,当x=85 时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100 时,w 取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b 元,当x=90 时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品地成本单价应不超过65 元.【点评】本题考查二次函数地应用、一元二次方程地应用、不等式地应用,解答本题地关键是明确题意,找出所求问题需要地条件,利用函数和数形结合地思想解答.22.(10.00 分)(1)问题发现如图1,在△OAB 和△OCD 中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD 交于点M.填空:①地值为 1 ;②∠AMB 地度数为40°.(2)类比探究如图2,在△OAB 和△OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 地延长线于点M.请判断地值及∠AMB 地度数,并说明理由;(3)拓展延伸在(2)地条件下,将△OCD 绕点O 在平面内旋转,AC,BD 所在直线交于点M,若OD=1,OB=,请直接写出当点C 与点M 重合时AC 地长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形地内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边地比相等且夹角相等可得△AOC∽△BOD,则= ,由全等三角形地性质得∠AMB 地度数;(3)正确画图形,当点C 与点M 重合时,有两种情况:如图3 和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC 地长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB 中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,= ,∠AMB=90°,理由是:Rt△COD 中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴= ,∠CAO=∠DBO,在△AMB 中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点 C 与点M 重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD 中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB 中,∠OAB=30°,OB=,∴AB=2OB=2 ,在Rt△AMB 中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3 ;②点C 与点M 重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB 中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2 ;综上所述,AC 地长为3或2.【点评】本题是三角形地综合题,主要考查了三角形全等和相似地性质和判定,几何变换问题,解题地关键是能得出:△AOC∽△BOD,根据相似三角形地性质,并运用类比地思想解决问题,本题是一道比较好地题目.23.(11.00 分)如图,抛物线y=ax2+6x+c 交x 轴于A,B 两点,交y 轴于点C.直线y=x﹣5 经过点B,C.(1)求抛物线地解析式;(2)过点A 地直线交直线BC 于点M.①当AM⊥BC 时,过抛物线上一动点P(不与点B,C 重合),作直线AM 地平行线交直线BC 于点Q,若以点A,M,P,Q 为顶点地四边形是平行四边形,求点P 地横坐标;②连接AC,当直线AM 与直线BC 地夹角等于∠ACB 地2 倍时,请直接写出点M 地坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0 得A(1,0),再判断△OCB 为等腰直角三角形得到∠ OBC=∠OCB=45°,则△AMB 为等腰直角三角形,所以AM=2,接着根据平行四边形地性质得到PQ=AM=2,PQ⊥BC,作PD⊥x 轴交直线BC 于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:, 当 P 点在直线 BC 上方时,PD=﹣m 2+6m ﹣5﹣(m ﹣5)=4;当 P 点在直线 BC 下方时, PD=m ﹣5﹣(﹣m 2+6m ﹣5),然后分别解方程即可得到 P 点地横坐标;②作 AN ⊥BC 于 N ,NH ⊥x 轴于 H ,作 AC 地垂直平分线交 BC 于 M 1,交 AC 于 E , 如图 2,利用等腰三角形地性质和三角形外角性质得到∠AM 1B=2∠ACB ,再确定 N (3,﹣2),AC 地解析式为 y=5x ﹣5,E 点坐标为( ﹣),利用两直线垂直地问题可设直线 EM 1地解析式为 y=﹣x +b ,把 E (,﹣)代入求出 b 得到直线 EM 1 地解析式为 y=﹣x ﹣,则解方程组 得 M 1 点地坐标;作直线 BC 上作点 M 1 关于 N 点地对称点 M 2,如图 2,利用对称性得到∠AM 2C=∠AM 1B=2∠ACB ,设 M 2(x ,x ﹣5), 根据中点坐标公式得到 3=,然后求出 x 即可得到 M 2 地坐标,从而得到满足条件地点 M 地坐标.【解答】解:(1)当 x=0 时,y=x ﹣5=﹣5,则 C (0,﹣5),当 y=0 时,x ﹣5=0,解得 x=5,则 B (5,0),把 B (5,0),C (0,﹣5)代入 y=ax 2+6x +c 得,解得, ∴抛物线解析式为 y=﹣x 2+6x ﹣5;(2)①解方程﹣x 2+6x ﹣5=0 得 x 1=1,x 2=5,则 A (1,0),∵B (5,0),C (0,﹣5),∴△OCB 为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM ⊥BC ,∴△AMB 为等腰直角三角形,∴AM= AB= ×4=2 , ∵以点 A ,M ,P ,Q 为顶点地四边形是平行四边形,AM ∥PQ ,。

河南省2018年中考数学模拟试题及答案解析(word版)

河南省2018年中考数学模拟试题及答案解析(word版)

河南省2018年中考数学模拟试题及答案解析(word版)————————————————————————————————作者:————————————————————————————————日期:2018年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣=.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D 逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.2018年河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a ≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣=2.【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D 逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S==π.阴【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4.【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的。

河南省濮阳市濮阳县2018届九年级中考模拟数学试卷(Word版,含答案)

河南省濮阳市濮阳县2018届九年级中考模拟数学试卷(Word版,含答案)

河南省濮阳市濮阳县九年级中考模拟数学试卷一、单选题(共10题;共30分)1.将抛物线y=5x2向下平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A. y=5(x+2)2-3B. y=5(x+2)2+3C. y=5(x-2)2-3D. y=5(x-2)2+32.有长24m的篱笆,一面利用围墙围成如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为x m,面积是s m2,则s与x的关系式是()A. s=﹣3x2+24xB. s=﹣2x2﹣24xC. s=﹣3x2﹣24xD. s=﹣2x2+24x3.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为()A. B. C. D.4.一张长方形桌子的长是150cm,宽是100cm,现在要设计一块长方形桌布,面积是桌面的2倍,且使四周垂下的边宽是xcm.根据题意,得()A. (150+x)(100+x)=150×100×2B. (150+2x)(100+2x)=150×100×2C. (150+x)(100+x)=150×100D. 2(150x+100x)=150×1005.如图,⊙O是△ABC的外接圆,直径AD与BC相交于点E,连接CD,若⊙O的半径为5,AB=AC=8,DE=3,则EC长为()A. 4B.C.D.6.如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A. AE=OEB. CE=DEC. OE=CED. ∠AOC=60°7.关于x的方程x2﹣4x+4a=0有两个实数根,则a的取值范围是()A. a<1B. a>1C. a≤1D. a≥18.抛掷两枚均匀的硬币,当抛掷多次以后,出现两个反面的成功率大约稳定在().A. 25%B. 50%C. 75%D. 100%9.如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数有()A. 2条B. 3条C. 4条D. 5条10.下列图形中,即是中心对称又是轴对称图形的是( )A. 等边三角形B. 平行四边形C. 梯形D. 矩形二、填空题(共8题;共24分)11.在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.连接BD,把△ABD绕着点B逆时针旋转90°得到△EBF,若点F刚好落在DA的延长线上,则∠C=________°.12.若最简二次根式与是同类二次根式,则a=________.13.要使代数式有意义,则x的取值范围是________.14.反比例函数y=中,k值满足方程k2﹣k﹣2=0,且当x>0时,y随x的增大而增大,则k=________15.二次函数y=x2﹣4x﹣3的顶点坐标是________.16.某小组同学,新年时每人互送贺年卡一张,共送贺年卡56张,这个小组共有________ 人.17.将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是________18.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为________.三、解答题(共6题;共36分)19.我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.(1)求y与x的函数关系式;(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价﹣成本)20.如图,已知圆的半径为r,求外接正六边形的边长.21.已知直线L1∥L2,点A,B,C在直线L1上,点E,F,G在直线L2上,任取三个点连成一个三角形,求:(1)连成△ABE的概率;(2)连成的三角形的两个顶点在直线L2上的概率.22.一学校为了绿化校园环境,向某园林公司购买力一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?23.如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,求满足x的方程.24.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.四、综合题(共10分)25.已知∠α的顶点在正n边形的中心点O处,∠α绕着顶点O旋转,角的两边与正n边形的两边分别交于点M、N,∠α与正n边形重叠部分面积为S.(1)当n=4,边长为2,∠α=90°时,如图(1),请直接写出S的值;(2)当n=5,∠α=72°时,如图(2),请问在旋转过程中,S是否发生变化?并说明理由;(3)当n=6,∠α=120°时,如图(3),请猜想S是原正六边形面积的几分之几(不必说明理由).若∠α的平分线与BC边交于点P,判断四边形OMPN的形状,并说明理由.。

河南省濮阳市2018届高三第一次模拟考试数学(理)

河南省濮阳市2018届高三第一次模拟考试数学(理)

河南省濮阳市2018届⾼三第⼀次模拟考试数学(理)濮阳市2018届⾼三毕业班第⼀次模拟考试数学(理科)⼀、选择题:本⼤题共12个⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.已知集合{}220A x x x =--<,{}2,1,0,1,2B =--,则A B = ( ) A .{}2,1,0--B .{}1,0,1-C .{}0,1D .{}0,1,22.若复数z 满⾜121zi i+=+,其中i 为虚数单位,z 表⽰复数z 的共轭复数,则z =( ) A .3i --B .3i -C .3i +D .3i -+3.如图所⽰的长⽅形的长为2,宽为1,在长⽅形内撒⼀把⾖⼦(⾖⼦⼤⼩忽略不计),然后统计知⾖⼦的总数为m 粒,其中落在飞鸟图案中的⾖⼦有n 粒,据此请你估计图中飞鸟图案的⾯积约为( )A .nmB .2nmC .m nD .2m n4.函数()22111222x x f x +-骣骣琪琪=+-琪琪桫桫的图象⼤致为( )ABCD5.设()0,90a ?°°,若()3sin 7525a +=-°,则()()sin 15sin 75a a +?=°°( ) A.110C.110-D.-6.设点M 是20260220x x y x y ì+-+?í?++,表⽰的区域1W 内任⼀点,点N 是区域1W 关于直线:l y x =的对称区域2W 内的任⼀点,则MN 的最⼤值为( )B. C. D.7.已知三棱锥A BCD -中,ABD △与BCD △是边长为2的等边三⾓形且⼆⾯⾓A BD C --为直⼆⾯⾓,则三棱锥A BCD -的外接球的表⾯积为( ) A.103pB.5pC.6pD.203p8.执⾏如图所⽰的程序框图(其中mod10b c =表⽰b 等于c 除以10的余数),则输出的b 为( )A.2B.4C.6D .89.某⼏何体是由⼀个三棱柱和⼀个三棱锥构成的,其三视图如图所⽰,则该⼏何体的体积为( )A .43B .32C .53D .11610.已知双曲线224x y -=,1F 是左焦点,1P ,2P 是右⽀上两个动点,则111212F P F P PP +-的最⼩值是( ) A .4B .6C .8D .1611.已知ABC △中,sin A ,sin B ,sin C 成等⽐数列,则sin 2sin cos BB B+的取值范围是( )A .纟?-??棼B .纟??棼C .(-D .纟??棼12.已知0a >且1a 1,若当1x 3时,不等式x a ax 3恒成⽴,则a 的最⼩值是( )A .eB .1eeC .2D .ln2⼆、填空题(每题5分,满分20分,将答案填在答题纸上)13.正三⾓形ABC 的边长为1,G 是其重⼼,则AB AG.14.8201711x x骣琪++琪桫的展开式中,3x 的系数为 .15.已知椭圆()222210x y a b a b+=>>,1F 和2F 是椭圆的左、右焦点,过1F 的直线交椭圆于()11,A x y ,()22,B x y 两点,若2ABF △的内切圆半径为1,122F F =,123y y -=,则椭圆离⼼率为 .16.先将函数()sin f x x =的图象上的各点向左平移6p个单位,再将各点的横坐标变为原来的1w 倍(其中*N w ?),得到函数()g x 的图象,若()g x 在区间,64p p 轾犏犏臌上单调递增,则w 的最⼤值为.三、解答题(本⼤题共6⼩题,共70分.解答应写出⽂字说明、证明过程或演算步骤.)17.已知数列{}n a 是等差数列,21a t t =-,24a =,23a t t =+. (1)求数列{}n a 的通项公式;(2)若数列{}n a 为递增数列,数列{}n b 满⾜2log n n b a =,求数列(){}1n n a b -的前n 项和n S . 18.为创建国家级⽂明城市,某城市号召出租车司机在⾼考期间⾄少参加⼀次“爱⼼送考”,该城市某出租车公司共200名司机,他们参加“爱⼼送考”的次数统计如图所⽰.(1)求该出租车公司的司机参加“爱⼼送考”的⼈均次数;(2)从这200名司机中任选两⼈,设这两⼈参加送考次数之差的绝对值为随机变量X ,求X 的分布列及数学期望.19.如图,正⽅形ABCD 中,AB =,AC 与BD 交于O 点,现将ACD △沿AC 折起得到三棱锥D ABC -,M ,N 分别是OD ,OB 的中点.(1)求证:AC MN ^;(2)若三棱锥D ABC -的最⼤体积为0V ,当三棱锥D ABC -0,且⼆⾯⾓D AC B --为锐⾓时,求⼆⾯⾓D NC M --的正弦值. 20.已知点()2,1M 在抛物线2:C y ax =上,,A B 是抛物线上异于M 的两点,以AB 为直径的圆过点M .(1)证明:直线AB 过定点;(2)过点M 作直线AB 的垂线,求垂⾜N 的轨迹⽅程. 21.已知函数()()21ln 2f x x x mx x m R =--?. (1)若函数()f x 在()0,+?上是减函数,求实数m 的取值范围; (2)若函数()f x 在()0,+?上存在两个极值点12,x x,且12x x <,证明:12ln ln 2x x +>.22.在直⾓坐标系xOy 中,曲线C 的参数⽅程为2cos 12sin x y aaì?í?=+?(a 为参数),以平⾯直⾓坐标系的原点为极点,x 轴的正半轴为极轴建⽴极坐标系. (1)求曲线C 的极坐标⽅程;(2)过原点O 的直线12,l l 分别与曲线C 交于除原点外的,A B 两点,若3A O△,求AOB △的⾯积的最⼤值.23.已知函数()()212f x ax x a R =--+?. (1)求不等式()()0f x f x +-?的解集;(2)若函数()y f x =在R 上有最⼤值,求实数a 的取值范围.濮阳市2018届⾼三毕业班第⼀次模拟考试数学(理科)参考答案⼀、选择题1-5:CABCB 6-10:DDDAC 11、12:BA⼆、填空题13.12 14.56 15.2316.9 三、解答题17.解:(1)由题意得22228t t t t t -++==,所以2t =?, 2t =时,12a =,公差2d =,所以2n a n =, 2t =-时,16a =,公差2d =-,所以82n a n =-.(2)若数列{}n a 为递增数列,则2n a n =,所以2log 2n b n =,4n n b =,()()1214n nn ab n -=-?,所以 ()()231143454234214n nn S n n -=+-?-?…,()()23414143454234214n n n S n n +=+-?-?…,所以()23134242424214nn n S n +-=+??+?-?…()()211414422143n n n -+-=+?206543n n +---=,所以()1654209n n n S +-+=.18.解:由图可知,参加送考次数为1次,2次,3次的司机⼈数分别为20,100,80. (1)该出租车公司司机参加送考的⼈均次数为:12021003802.3200=.(2)从该公司任选两名司机,记“这两⼈中⼀⼈参加1次,另⼀个参加2次送考”为事件A ,。

(答案)2018濮阳中招一模考试试卷(数学)(A4版)

(答案)2018濮阳中招一模考试试卷(数学)(A4版)

初四年级摸底考试数学参考答案 2017年4月一、选择题(每题3分,共30分)二、填空题(每题3分,共15分)三、解答题(本大题8个小题,共75分)16.(8分)解:原式=)121()1(3a 2---÷--a a a 31)1(3a 2--∙--=a a a 错误!未找到引用源。

11-=a …………………………………5分错误!未找到引用源。

当a=12+时,原式22112111=-+=-=a …………………8分17.(9分)解:(1)(3+4)÷17.5%=40(人),……………2分 (2) 选择“历史”类的女生人数为40×20%-6=2(人) 选择“童话”类的男生人数为40×30%-9=3(人)………4分补全条形图(图略)………………6分 (3)360°×30%=108°………7分 (4)360×(17.5%+20%)=135(人)答:最喜欢“名著”和“历史”的学生总数为135人……9分 18.(9分)解(方法不唯一) (1)∵OD ∥AC∴∠CAO=∠AOD 又∵AD=OC ,OC=OA , ∴AD=AO∴∠ACO=∠CAO=∠AOD=∠ADO, ∴△CAO 和△DOA 中,∠COA=∠OAD ∴ OC ∥AD∴四边形OCAD 是平行四边形 ………………………5分 (2)① 30° …………………………7分② 45° …………………………9分 19. (9分)解:(1) 在Rt △ABD 中,α=60°,AB=30tan α=ADAB∴31033060tan 30ta ====αn AB AD (米) 答: 甲、乙两建筑物之间的距离AD 的长为310米. ………….4分 (2) 过点C 作CE ⊥AB 于点E,则CE=AD=103米,在Rt △CBE 中,β=30°,tan β=CEBE ∴ BE=CE 103331030tan 310t =⨯=∙=∙ βan (米). ∴ CD=30-10=20(米).答:乙建筑物的高为20米. …………………………………9分 20. (9分)∴m+8=-6+8=2,所以,点A 的坐标为(-3,2),解得n=1,所以,点B 的坐标为(1,-6),将点A(-3,2),B(1,-6)代入y=kx+b 得,⎩⎨⎧-=+=+-62k 3b k b 解得⎩⎨⎧-=-=42k b ∴一次函数的解析式为y=-2x-4……………………6分 (2) 设AB 与x 轴相交于点C ,令-2x-4=0解得x=-2, ∴ 点C 的坐标为(-2,0) ∴ OC=286262212221=+=⨯⨯+⨯⨯=+=∆∆∆BOC AOC AOB S S S . …………9分21. (10分)解:(1)设甲,乙两种型号设备每台的价格分别为x 万元和y 万元, 由题意得: ⎩⎨⎧=+=-y x y 362162x 3 解得⎩⎨⎧==10y 12x∴甲,乙两种型号设备每台的价格分别为12万元和10万元.……………..4分(2)设购买甲型设备m 台,乙型设备(10-m )台, 则:12m+10(10-m )≤110,∴m ≤5, ∵ m 取非负整数∴ m=0,1,2,3,4,5,∴ 有6种购买方案.……………………………6分 (3)由题意:240m+180(10-m )≥2040,∴m ≥4∴ m 为4或5.当m=4时,购买资金为:12×4+10×6=108(万元), 当m=5时,购买资金为:12×5+10×5=110(万元), ∴最省钱的购买方案为,选购甲型设备4台,乙型设备6台………………………………………………9分22.(10分)解:(1)△AFE. ……………………………1分EF=BE+DF.……………………………2分(2) EF,BE,DF 之间的数量关系是BF=DF-BE ………………3分证明:将△ABE绕点A逆时针旋转,使AB与AD重合,得到△ADE',则△ABE≌ADE',∴∠DAE'=∠BAE,AE'=AE,DE'=BE,∠ADE'=∠ABE,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∠ADE'=∠ADC,即E',D,F三点共线,1∠BAD又∠EAF=2∴∠E'AF=∠BAD-(∠BAF+∠DAE')=∠BAD-(∠BAF+∠BAE)1∠BAD.=∠BAD-∠EAF=2∴∠EAF=∠E'AF,在△AEF和△AE'F中,∵ AE=AE',∠EAF=∠E'AF, AF=AF,∴△AFE≌△AFE'(SAS),∴ FE=FE',又∵ FE'=DF-DE',∴EF=DF-BE.…………………………………………8分(3)5……………………………………………………10分【提示】将△ABD绕点A逆时针旋转至△ACD',使AB与AC重合,连接ED'∵AD=AD',∠DAE=∠D'AE=45°,AE=AE,∴△AED≌AED',.∴DE=D'E.∵∠ACB=∠B=∠ACD'=45°,∴∠ECD'=90°,在Rt △ECD'中,ED'= 522=+CD EC ,即DE=5 23.(11分)解:(1)由y=3a 2-+bx x 得C (0,-3), ∴ OC=3,∵OC=30B , ∴ 0B=1, ∴B(-1,0),把A (2,-3),B(-1,0)代入y=3a 2-+bx x 中, 得 4a+2b-3=-3a-b-3=0 解得a=1,b=-2抛物线的解析式为=322--x x …………………………3分 (2)作BF ⊥AC 交AC 的延长线于点F ∵ A(2,-3),C (0,-3), ∴ AF ∥x 轴, ∴ F(-1,-3), ∴ BF=3,AF=3, ∴ ∠BAC=45°,设D (0,m ),则OD=|m|, ∴ ∠BDO=∠BAC , ∴ ∠BDO=45°, ∴ OD=0B=1,∴ |m|=1,∴ m=±1,D(0,1),或D(0,-1);………………………………7分(3)设M(a,2a-2a-3),N(1,n),①以AB为边,则AB/∥MN,AB=MN,过点M作ME⊥对称轴于点E,AF ⊥x轴于点F,则△ABF≌△NME.由(1)知抛物线对称轴为直线x=-1,B(-1,0),又∵A(2,-3),∴NE=AF=3,ME=BF=3,∴|a-1|=3,,∴a=4或a=-2,∴点M的坐标为(4,5),(-2,5),………….9分②以AB为对角线,BN=AM,BN∥AM,则点N在x轴上,M点与C点重合,∴M(0,-3)……………………………………………….10分综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,点M的坐标为(4,5),(-2,5),(0,-3)………………11分。

濮阳市中考数学一模考试试卷

濮阳市中考数学一模考试试卷

濮阳市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·玉田模拟) 下列计算结果不正确是()A . 2﹣2=﹣B . |﹣1|=1C . 2sin60°=D . =﹣22. (2分)(2016·齐齐哈尔) 下列图形中既是中心对称图形又是轴对称图形的是()A .B .C .D .3. (2分)(2019·新乐模拟) 从图1的正方体上截去一个三棱锥后,得到如图2所示的几何体,则这个几何体的主视图是()A .B .C .D .4. (2分) (2017八下·邵阳期末) 矩形具有平行四边形不一定具有的性质是()A . 对角相等B . 对角线互相平分C . 一组对边平行另一组对边相等D . 对角线相等5. (2分)函数与在同一坐标系中的大致图象是()A .B .C .D .6. (2分) (2018九上·西峡期中) 关于的一元二次方程的根的情况是()A . 无法确定B . 有两个不等实根C . 有两相等实根D . 有实根7. (2分) (2019·潍坊模拟) 如图,在矩形中,、相交于点,点是边上的一点,若,则的度数为()A .B .C .D .8. (2分)(2020·上海模拟) 在Rt△ABC中,∠C=90°,若BC=3,AC=4,则sinB的值为()A .B .C .D .9. (2分)在△ABC中,∠C=90°,AC=6,BC=8,以C 为圆心r为半径画⊙C,使⊙C与线段AB有且只有两个公共点,则r的取值范围是()A . 6≤r≤8B . 6≤r <8C . <r≤6D . <r≤810. (2分) (2017九上·北海期末) 关于二次函数y=﹣2x2+3,下列说法中正确的是()A . 它的开口方向是向上B . 当x<﹣1时,y随x的增大而增大C . 它的顶点坐标是(﹣2,3)D . 它的对称轴是x=﹣2二、填空题 (共4题;共5分)11. (2分) (2020八下·哈尔滨月考) 已知,则的值为________.12. (1分)(2020·黄冈模拟) 对于反比例函数,下列说法:①点在它的图象上;②它的图象在第一、三象限;③当时,随的增大而增大;④当时,随的增大而减小.上述说法中,正确的序号是________.(填上所有你认为正确的序号)13. (1分) (2019九上·江都期末) 近几年房价迅速上涨,已知某小区年1月房价为每平方米元,经过两年连续涨价后,年1月房价为每平方米元.设该小区这两年房价平均增长率为,根据题意可列方程为________.14. (1分) (2017七下·独山期末) 菱形ABCD的边AB为5,对角线AC为8,则菱形ABCD的面积为________.三、计算题 (共2题;共15分)15. (10分)(2019·合肥模拟) 计算:6tan30°+(﹣1)2019+16. (5分)计算:(1)(2)化简:.四、综合题 (共12题;共68分)17. (6分) (2018九下·尚志开学考) 我国北方又进入了交通事故频发的季节,为此,某校在全校2000名学生中随机抽取一部分人进行“交通安全”知识问卷调查活动,对问卷调查成绩按“很好”、“较好”、“一般”、“较差”四类汇总分析,并绘制了如下扇形统计图和条形统计图.(1)本次活动共抽取了多少名同学?(2)补全条形统计图;(3)根据以上调查结果分析,估计该校2000名学生中,对“交通安全”知识了解一般的学生约有多少名?18. (5分) (2017八下·宁波期中) 如图,水库大坝的横截面是梯形,坝顶宽5米,坝高20米,斜坡AB的坡比为1:2.5,斜坡CD的坡比为1:2,求大坝的截面面积19. (10分)如图,在△ABC中,∠ACB=90°,以点B为圆心,BC的长为半径画弧,交线段AB于点D,以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中招第一次模拟考试数学考生注意:1. 本试卷共三大题,满分120分,考试时间100分钟.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答卷前请将答题卡上的项目填涂清楚. 一、选择题(每小题3分,共30分) 1. -3的相反数是A.-3B.3C.13-D.132. 今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告. 其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%.将830万用科学记学法表示为 A.58310⨯B.60.8310⨯C.68.310⨯D.78.310⨯3. 如图是由三个小正方体叠成的一个几何体,它的左视图是ABCD4. 下列各式计算正确的是A. 2ab+3ab=5abB. ()22345a b a b -=D. ()2211a a +=+5. 不等式组21217x x -≥⎧⎨->-⎩的解集在数轴上表示正确的是ABCD6. 如图,直线AB 与直线CD 相交于点O ,E 是∠COB 内一点,且OE ⊥AB ,∠AOC=35°,则∠EOD 的度数是 A.155°B.145°C.135°D.125°7. 在学校举行的“阳光少年,励志青年”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是 A.95B.90C.85D.808. 若关于x 的方程2504x x a +-+=有两个不相等的实数根,则满足条件的最小整数a 的值是A.-1B.0C.1D.29. 某校组织九年级学生参加中考体育测试,共租3辆客车,分别标号1,2,3,李军和赵娟两人可以任选一辆车坐,则两人同坐2号车的概率为 A.19B.16 C. 13 D.1210. 如图,在平面直角坐标系中,Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC=2,∠ABC=30°,把Rt △ABC 先绕B 点顺时针旋转180°,然后向下平移2个单位,则A 点的对应点的坐标为A.(2,2--B.(2,2--C.(4,2--D.(4,2--二、填空题(每小题3分,共15分) 11. 计算:()22sin 3012-︒+--= .12. 若二次函数()20y ax bx c a =++<的图像经过(2,0),且其对称轴为直线x=-1,则当函数值y>0成立时,x 的取值范围是 . 13. 如图,已知双曲线()0ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C. 若点A 的坐标为(-6,4),则△AOC 的面积为.第13题图 第14题图 第15题图14. 如图,将矩形ABCD 绕点C 沿顺时针方向旋转90°到矩形''''A B C D 的位置,AB=2, AD=4,则阴影部分的面积为 .15. 如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,点D ,E 为AC ,BC 上两个动点,若将 ∠C 沿DE 折叠,点C 的对应点'C 恰好落在AB 上,且'ADC ∆恰为直角三角形,则此时CD 的长为 .三、解答题(本大题共8个,满分75分)16.(8分)先化简,再求值:232(1)211a a a a -÷--+-,其中1a =.17.(9分)某校在3月份举行读书节活动,鼓励学生进行有益的课外阅读,张老师为了了解该校学生课外阅读的情况,设计了“你最喜欢的课外读物类型”的调查问卷,包括“名著”“科幻”“历史”“童话”四类,在学校随机抽取了部分学生进行调查,被抽取的学生只能在四种类型中选择其中一类,最后将调查结果绘制成如下两幅尚不完整的统计图.请你根据以上信息解答下列问题:(1)本次调查中,张老师一共调查了 名学生;(2)求本次调查中选择“历史”类的女生人数和“童话”类的男生人数,并将条形统计图补充完整;(3)扇形图中“童话”类对应的圆心角度数为 .(4)如果该校共有学生360名,请估算该校最喜欢“名著”类和“历史”类的学生总人数.18. (9分)如图,已知△ABC 内接于O ,AB 是直径,OD ∥AC ,AD=OC. (1)求证:四边形OCAD 是平行四边形;(2)填空: ①当∠B= 时,四边形OCAD 是菱形;②当∠B= 时,AD 与O 相切.第18题图 第19题图 第20题图19. (9分)如图,线段AB ,CD 分别表示甲、乙两建筑物的高,BA ⊥AD ,CD ⊥DA ,垂足分别为A ,D. 从D 点测得B 点的仰角α为60°,从C 点测得B 点的仰角β为30°,甲建筑物的高AB=30米.(1)求甲、乙两建筑物之间的距离AD. (2)求乙建筑物的高CD.20. (9分)如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于点A (-3,m+8),B(n ,-6)两点.(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积.21. (10分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购. 经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元. (1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月.若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.22. (10分)如图1,在四边形ABCD 中,AB=AD. ∠B+∠ADC=180°,点E ,F 分别在四边形ABCD 的边BC ,CD 上,∠EAF=12∠BAD ,连接EF ,试猜想EF ,BE ,DF 之间的数量关系.图1 图2 图3(1)思路梳理将△ABE 绕点A 逆时针旋转至△ADG ,使AB 与AD 重合.由∠B+∠ADC=180°,得∠FDG=180°,即点F ,D ,G 三点共线. 易证△AFG ≅ ,故EF ,BE ,DF 之间的数量关系为 ; (2)类比引申如图2,在图1的条件下,若点E ,F 由原来的位置分别变到四边形ABCD 的边CB ,DC 的延长线上,∠EAF=12∠BAD ,连接EF ,试猜想EF ,BE ,DF 之间的数量关系,并给出证明. (3)联想拓展如图3,在△ABC 中,∠BAC=90°,AB=AC ,点D ,E 均在边BC 上,且∠DAE=45°. 若BD=1,EC=2,则DE 的长为 .23. (11分)如图,抛物线23y ax bx =+-经过点A(2,-3),与x 轴负半轴交于点B ,与y 轴交于点C ,且OC=3OB. (1)求抛物线的解析式;(2)点D 在y 轴上,且∠BDO=∠BAC ,求点D 的坐标;(3)点M 在抛物线上,点N 在抛物线的对称轴上,是否存在以点A ,B ,M ,N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M 的坐标;若不存在,请说明理由.初中毕业班年级模拟考试数学参考答案2017年4月一、选择题(每题3分,共30分)二、填空题(每题3分,共15分)三、解答题(本大题8个小题,共75分) 16.(8分)解:原式=2a 312()(1)1a a a ---÷-- 2a 31(1)3a a a --=∙--11a =- …………………………………5分当1时,原式11a ===-…………………8分17.(9分)解:(1)(3+4)÷17.5%=40(人),……………2分 (2) 选择“历史”类的女生人数为40×20%-6=2(人) 选择“童话”类的男生人数为40×30%-9=3(人)………4分 补全条形图(图略)………………6分 (3)360°×30%=108°………7分 (4)360×(17.5%+20%)=135(人)答:最喜欢“名著”和“历史”的学生总数为135人……9分 18.(9分)解(方法不唯一) (1)∵OD ∥AC∴∠CAO=∠AOD 又∵AD=OC ,OC=OA , ∴AD=AO∴∠ACO=∠CAO=∠AOD=∠ADO, ∴△CAO 和△DOA 中,∠COA=∠OAD ∴ OC ∥AD∴四边形OCAD 是平行四边形 ………………………5分 (2)① 30° …………………………7分② 45° …………………………9分 19. (9分)解:(1) 在Rt △ABD 中,α=60°,AB=30tan α=ABAD∴30tan tan 603AB AD α====米)答: 甲、乙两建筑物之间的距离AD 的长为. ………….4分(2) 过点C 作CE ⊥AB 于点E,则,在Rt △CBE 中,β=30°,tan β=BECE∴ BE=CE tan tan 301010β∙===(米). ∴ CD=30-10=20(米).答:乙建筑物的高为20米. …………………………………9分 20. (9分)∴m+8=-6+8=2,所以,点A 的坐标为(-3,2),解得n=1,所以,点B 的坐标为(1,-6),将点A(-3,2),B(1,-6)代入y=kx+b 得,3k 26b k b -+=⎧⎨+=-⎩解得k 24b =-⎧⎨=-⎩∴一次函数的解析式为y=-2x-4……………………6分 (2) 设AB 与x 轴相交于点C ,令-2x-4=0解得x=-2, ∴ 点C 的坐标为(-2,0) ∴ OC=211222626822AOB AOC BOC S S S ∆∆∆=+=⨯⨯+⨯⨯=+=. …………9分21. (10分)解:(1)设甲,乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得: 3x 216263y x y -=⎧⎨+=⎩ 解得12y 10x =⎧⎨=⎩∴甲,乙两种型号设备每台的价格分别为12万元和10万元.……………..4分(2)设购买甲型设备m 台,乙型设备(10-m )台, 则:12m+10(10-m )≤110,∴m ≤5, ∵ m 取非负整数∴ m=0,1,2,3,4,5,∴ 有6种购买方案.……………………………6分 (3)由题意:240m+180(10-m )≥2040,∴m ≥4∴ m 为4或5.当m=4时,购买资金为:12×4+10×6=108(万元),当m=5时,购买资金为:12×5+10×5=110(万元),∴最省钱的购买方案为,选购甲型设备4台,乙型设备6台………………………………………………9分22.(10分)解:(1)△AFE. ……………………………1分EF=BE+DF.……………………………2分(2) EF,BE,DF之间的数量关系是BF=DF-BE ………………3分证明:将△ABE绕点A逆时针旋转,使AB与AD重合,得到△ADE',则△ABE≌ADE',∴∠DAE'=∠BAE,AE'=AE,DE'=BE,∠ADE'=∠ABE,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∠ADE'=∠ADC,即E',D,F三点共线,又∠EAF=12∠BAD∴∠E'AF=∠BAD-(∠BAF+∠DAE')=∠BAD-(∠BAF+∠BAE)=∠BAD-∠EAF=12∠BAD.∴∠EAF=∠E'AF,在△AEF和△AE'F中,∵ AE=AE',∠EAF=∠E'AF, AF=AF,∴△AFE≌△AFE'(SAS),∴ FE=FE',又∵ FE'=DF-DE',∴EF=DF-BE.…………………………………………8分(310分【提示】将△ABD绕点A逆时针旋转至△ACD',使AB与AC重合,连接ED' ∵ AD=AD',∠DAE=∠D'AE=45°,AE=AE,∴△AED≌AED',.∴ DE=D'E.∵∠ACB=∠B=∠ACD'=45°,∴∠ECD'=90°,在Rt △ECD'中,23.(11分)解:(1)由y=2a 3x bx +-得C (0,-3), ∴ OC=3,∵OC=30B , ∴ 0B=1, ∴B(-1,0),把A (2,-3),B(-1,0)代入y=2a 3x bx +-中, 得 4a+2b-3=-3a-b-3=0 解得a=1,b=-2抛物线的解析式为=223x x --…………………………3分 (2)作BF ⊥AC 交AC 的延长线于点F ∵ A(2,-3),C (0,-3), ∴ AF ∥x 轴, ∴ F(-1,-3), ∴ BF=3,AF=3, ∴ ∠BAC=45°,设D (0,m ),则OD=|m|, ∴ ∠BDO=∠BAC , ∴ ∠BDO=45°, ∴ OD=0B=1, ∴ |m|=1, ∴ m=±1,D(0,1),或D(0,-1);………………………………7分 (3)设M(a ,2a -2a-3),N(1,n),①以AB 为边,则AB/∥MN ,AB=MN ,过点M 作ME ⊥对称轴于点E ,AF ⊥x 轴于点F ,则△ABF ≌△NME.由(1)知抛物线对称轴为直线x=-1,B(-1,0),又∵A(2,-3),∴NE=AF=3,ME=BF=3,∴|a-1|=3,,∴a=4或a=-2,∴点M的坐标为(4,5),(-2,5),………….9分②以AB为对角线,BN=AM,BN∥AM,则点N在x轴上,M点与C点重合,∴M(0,-3)……………………………………………….10分综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,点M的坐标为(4,5),(-2,5),(0,-3)………………11分。

相关文档
最新文档