人教版九年级数学上课件:24-1-2垂直于弦的直径2
新人教版九年级上24.1.2垂径定理(第一课时)

活动二
如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E. (1)圆是轴对称图形吗?如果是,它的对称轴是什么? (2)你能发现图中有那些相等的线段和弧?为什么?
(1)是轴对称图形.直径CD所在的 直线是它的对称轴 (2) 线段: AE=BE 弧:AC=BC,AD=BD
A
C
⌒ ⌒⌒ ⌒
·
O
C
A
M└
●
B O
你可以写出相应的命题吗? 相信自己是最棒的!
D
C
垂径定理及推论
条件 ①② ①③ 结论 命题
A
M└
●
B
O
③④⑤ 垂直于弦的直径平分弦,并且平分弦所的两条弧. D ②④⑤ 平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.
①④
①⑤ ②③ ②④ ②⑤
②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的 ②③④ 另一条弧.
⌒ 在直径是20cm的⊙O中,AB的度数是60˙,
那么弦AB的弦心距是_____
5 3cm
O D A B
弓形的弦长为6cm,弓形的高为2cm,则 这弓形所在的圆的半径为
13 cm . 4
C A D O B
已知P为⊙O内一点,且OP=2cm,如果⊙O 的半径是3cm,那么过P点的最短的弦等 于_______ 2 5cm
E
B D
把圆沿着直径CD折叠时,CD两侧的两个 半圆重合,点A与点B重合,AE与BE重合, ⌒ ⌒ AC , ⌒ ⌒ AD分别与BC 、BD重合.
C
即直径CD垂直于弦AB,平分弦AB, ⌒ ⌒ 并且平分AB及ACB
·
O
E A B D
垂径定理:垂直于弦的直径平分 弦,并且平分弦所对的两条弧.
人教版九年级数学上册24.垂径定理课件

方法归纳:
解决有关弦的问题时,
经常连结半径;过圆心
作一条与弦垂直的线段
等辅助线,为应用垂径
E
定理创造条件。
2m
垂径定理经常和勾股定 理结合使用。
在⊙O中,若⊙O的半径r、圆心到弦的
距离d、弦长a、弓形高h中,任意知道
两个量,可根据 垂径定理 构造直角
三角形求出其余两个量。
C
(a)2 d 2 r2
• 学习目标: 1.理解圆的轴对称性,会运用垂径定理解决有 关的证明、计算和作图问题; 2.感受类比、转化、数形结合、方程等数学思 想和方法,在实验、视察、猜想、抽象、概括、 推理的过程中发展逻辑思维能力和识图能力.
• 学习重点: 垂径定理及其推论.
实践探究 把一个圆沿着它的任意一条直径对折,
重复几次,你发现了什么?由此你能得到什 么结论?
r
2
O
或( a )2 (r h)2 r 2 2
rd A ha
B
D
例2.如图,在⊙O中,AB、AC为互相垂直且相 等的两条弦,OD⊥AB于D,OE⊥AC于E,求证: 四边形ADOE是正方形.
C
E
·O
A
D
B
小结评学
1、圆是轴对称图形,任何一条直径所在直线都 是它的对称轴.
2、垂径定理及其推论:
直径平分弦
于点E,则AE=BE( √ )
4则、AE如=图BE(4,),A︵D⊙=O中B︵,D弦(AB√⊥半) 径OD于点E,
C
C
C
O
O
E A
ห้องสมุดไป่ตู้
BA E
BA
D 如图(1)
D 如图(2)
O E BA
D如图(3)
2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案)24.1.2 垂直于弦的直径教案

24.1圆的有关性质24.1.2垂直于弦的直径一、教学目标【知识与技能】1.通过观察实验,使学生理解圆的轴对称性.2.掌握垂径定理及其推论.理解其证明,并会用它解决有关的证明与计算问题.【过程与方法】通过探索垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.【情感态度与价值观】1.结合本课特点,向学生进行爱国主义教育和美育渗透.2.激发学生探究、发现数学问题的兴趣和欲望.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】垂径定理及其推论,会运用垂径定理等结论解决一些有关证明,计算和作图问题.【教学难点】垂径定理及其推论.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?(出示课件2)(二)探索新知探究一圆的轴对称性教师问:把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(出示课件4)学生通过自己动手操作,归纳出结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.出示课件5:教师问:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?学生答:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.思考:如何来证明圆是轴对称图形呢?出示课件6:已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.教师问:此图是轴对称图形吗?学生答:是轴对称图形.教师问:满足什么条件才能证明圆是轴对称图形呢?师生共同解答如下:(出示课件7)证明:连结OA、OB.则OA=OB.又∵CD⊥AB,∴直径CD所在的直线是AB的垂直平分线.∴对于圆上任意一点,在圆上都有关于直线CD的对称点,即⊙O关于直线CD对称.师生进一步认知:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.探究二垂径定理及其推论出示课件8:如图,AB是⊙O的一条弦,直径CD⊥AB,垂足为E.你能发现图中有哪些相等的线段和劣弧?为什么?学生独立思考后口答:线段:AE=BE弧:AC⌒=BC⌒,AD⌒=BD⌒学生简述理由:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A 与点B重合,AE与BE重合,重合.教师总结归纳:(出示课件9)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推导格式:∵CD是直径,CD⊥AB,∴AE=BE,AC⌒=BC⌒,AD⌒=BD⌒教师强调:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?(出示课件10)学生独立思考后口答:1图是;2图不是,因为没有垂直;3图是;4图不是,因为CD没有过圆心.教师强调:垂径定理的几个基本图形:(出示课件11)出示课件12:如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?学生思考后教师总结:深化认知:(出示课件13)如图,①CD是直径;②CD⊥AB,垂足为E;③AE=BE;④AC⌒=BC⌒;⑤AD⌒=BD⌒.举例证明其中一种组合方法.学生思考后独立解决,并加以交流,教师加以指导,并举例.(出示课件14)如图,AB是⊙O的一条弦,作直径CD,使AE=BE.(1)CD⊥AB吗?为什么?⑵AC⌒与BC⌒相等吗?AD⌒与BD⌒相等吗?为什么?证明:⑴连接AO,BO,则AO=BO,又AE=BE,OE=OE∴△AOE≌△BOE(SSS),∴∠AEO=∠BEO=90°,∴CD⊥AB.(2)由垂径定理可得AC⌒=BC⌒,AD⌒=BD⌒教师归纳总结:(出示课件15)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.思考:“不是直径”这个条件能去掉吗?如不能,请举出反例.教师强调:圆的两条直径是互相平分的.出示课件16:例1如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm.学生思考后师生共同解答:连接OA,∵OE⊥AB,巩固练习:(出示课件17)如图,⊙O 的弦AB=8cm,直径CE⊥AB 于D,DC=2cm,求半径OC 的长.学生自主思考后,独立解答如下:解:连接OA,∵CE⊥AB 于D,,∴设OC=xcm,则OD=x-2,根据勾股定理,得x 2=42+(x-2)2,∴8AE ===cm.1184(cm)22AD AB ==⨯=解得x=5,即半径OC的长为5cm.出示课件18:例2已知:⊙O中弦AB∥CD,求证:学生思考后师生共同解答.证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则(垂直于弦的直径平分弦所对的弧)教师强调:平行弦夹的弧相等.师生共同归纳总结:(出示课件19)解决有关弦的问题,经常是过圆心作弦的弦心距(垂线段),或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.巩固练习:(出示课件20)如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证:四边形ADOE是正方形.学生独立解答,一生板演.证明:∵OE⊥AC,OD⊥AB,AB⊥AC,∴∠OEA=∠EAD=∠ODA=90°.∴四边形ADOE为矩形,AE=12AC,AD=12AB.又∵AC=AB,∴AE=AD.∴四边形ADOE为正方形.出示课件21:例3根据刚刚所学,你能利用垂径定理求出导入中赵州桥主桥拱半径的问题吗?教师引导学生分析题意,先把实际问题转化为数学问题,然后画出图形进行解答.解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C 是弧AB的中点,CD就是拱高.∴AB=37m,CD=7.23m.∴AD=12AB=18.5m,OD=OC-CD=R-7.23.OA2=AD2+OD2,R2=18.52+(R-7.23)2,解得R≈27.3.即主桥拱半径约为27.3m.巩固练习:(出示课件23)如图a、b,一弓形弦长为cm,弓形所在的圆的半径为7cm,则弓形的高为_______.学生独立思考后解答:如图,分两种情况,弓形的高为5cm或12cm.教师归纳:1.涉及垂径定理时辅助线的添加方法(出示课件24)在圆中有关弦长a,半径r,弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.2.弓形中重要数量关系弦a,弦心距d,弓形高h,半径r之间有以下关系:⑴d+h=r;⑵2 222a r d⎛⎫=+ ⎪⎝⎭.(三)课堂练习(出示课件25-29)1.2.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.3.⊙O的直径AB=20cm,∠BAC=30°则弦AC=.4.(分类讨论题)已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为.5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.你认为AC和BD有什么关系?为什么?6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.参考答案:1.C2.5cm3.1034.14cm或2cm5.证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.6.解:连接OC.设这段弯路的半径为Rm,则OF=(R-90)m.,OE CD ⊥ 11600300(m)22CF CD ∴==⨯=,根据勾股定理,得222,O C C F O F =+()22230090.R R =+-解得R=545.∴这段弯路的半径约为545m.(四)课堂小结通过这节课的学习,你有哪些收获和体会?(五)课前预习预习下节课(24.1.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.这节课的教学从利用垂径定理来解决赵州桥桥拱半径问题开始,引入课题从实验入手,得到圆的轴对称性,进而推出垂径定理及推论.教学设计中,从具体、简单、特殊到抽象、复杂、一般,层层递进,以利于提高学生的数学思维能力,同时,注意加强对学生的启发和引导,培养学生们大胆猜想,小心求证的科学研究素质.2.本课的教学方法是将垂径定理和勾股定理有机结合,将圆的问题转化为直角三角形,常作的辅助线是半径或垂直于弦的直径.。
九年级数学上册24.1圆垂径定理圆心角圆周角124.1.2垂径定理课件(新人教版)_1

即AE=BE
⌒ ⌒⌒ ⌒
AD=BD,AC=BC
·O
E
A
B
D
垂径定理:垂直于弦的直径平分弦,并且平分
弦所对的两条弧.
思考: 平分弦的直径垂直于这条弦吗?
平分弦的直径垂直于弦( )
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
1.被平分的
C
弦不是直径
O
A
E
D
2.被平分的弦是直径
CD是直径
AE=BE AB不是直径
⑦在圆中,如果一条直线经过圆心且平分弦,
必平分此弦所对的弧
7.2米
37.4米
1300多年前,我国隋朝建的赵州石 拱桥(如图)的桥拱是圆弧形,它的跨 度(弧所对是弦的长)为 37.4 m,拱高 为7.2m,求桥拱的半径(精确到0.1m).
问题 :你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥, 是我国 古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的 长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m,你能求出赵洲桥主桥拱 的半径吗?
实践探究
把一个圆沿着它的任意一条直径对折,重复几次,你 发现了什么?由此你能得到什么结论?
第24章
24.1圆、、垂径定理、圆心角、圆周角(1) 24.1.2垂径定理
学习目标:
• 1.理解圆的轴对称性。 • 2.掌握垂径定理及推论,能用垂径定理及其推论进行有关
计算和证明,进一步应用垂径定理解决实际问题。 • 3.学习中通过对比理解垂径定理及其推论,应用中将实际
问题转化为数学问题,培养建模思想和提高分析问题、解 决问题的能力。
把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A与点B
人教版九年级上册数学课件:24.垂径垂径定理

O B
O ●C
垂径定理的应用:
1.在⊙O中,若CD ⊥AB于M,AB为直径,则
下列结论不正确的是( C )
A、A⌒C=A⌒D B、⌒BC=⌒BD
C、AM=OM D、CM=DM
2.已知⊙O的直径AB=10,弦CD
A
C M└
D
●O
⊥AB,垂足为M,OM=3,则
CD= 8 .
B
3.在⊙O中,CD ⊥AB于M,AB为直径,若CD=10, AM=1,则⊙O的半径是 13 .
B
。圆的任意一条直径的两个端
O
点把圆分成两条弧,每一条
A
弧叫做半圆.
大于半圆的弧(用三个点表示,如:ACB 或 BCA ), 叫做优弧;
小于半圆的弧叫做劣弧. 如: AB BC
3、等圆:能够重合的两个圆叫做等圆A, 半径相等的两个圆也是等圆;反过来, 同圆或等圆的半径相等。
B
M
●O
C
4、等弧:在同圆或等圆中,能够互相重合的弧。
解这个方程,得R 545.
这段弯路的半径约为545m .
小结: 垂径定理
解决有关弦的问题,经常是
过圆心作弦的垂线,
A
或作垂直于弦的直径,
连结半径等辅助线,
B
.
O
构成直角三角形,为应用垂径定理创 造条件。
挑 战自我
1、要把实际问题转变成一个数学问题来解决.
2、熟练地运用垂径定理及其推论、勾股定理,并用 方程的思想来解决问题.
37.4m
7.2m
C
A
E
B
O
赵州石拱桥
解:如图,用 A表B 示桥拱,A所B在圆的圆心为O,半径为Rm,
过圆心O作弦AB的垂线OD,与 A相B 交于点C. CD就是拱高. 根据垂径定理得:AD=BD。
人教版九年级上册第24章圆24.1.2垂直于弦的直径教学设计和课后反思

人教版九年级上册第24章圆24.1.2垂直于弦的直径教学设计和课后反思教材分析垂直于弦的直径是在学生学习了轴对称图形、直角三角形和圆的有关概念的基础上进行的。
在进行本节之前已通过折纸、对称、平移、旋转推理证明等方式认识了许多图形的性质,积累了一定的空间与图形的经验。
垂径定理是圆的一个重要的性质定理,它对线段的计算、证明线段相等、弧相等等问题提供了十分简便的方法。
同时通过“实验—观察—猜想—证明”的途径,培养学生的动手能力,分析、联想能力,利用圆的轴对称性,还可以对学生进行数学美的教育。
因此,本节课无论从知识上还是从学生能力的培养及情感教育方面都起着重要的作用。
学情分析学生在生活中经常遇到圆方面的图形,对本节课会比较有兴趣,并且前面已学过轴对称图形相关知识。
同时九年级的同学是比较好奇、好动、好表现的。
在本节课通过动手实验学习不难。
由于垂径定理的题设与结论比较复杂,学生容易混淆遗漏,并且对定理的证明方法“叠合法”学生不常用到,所以本节课学生的学习障碍在于对垂径定理的题设与结论的区分及证明方法的理解。
教学目标1.知识目标:①通过观察实验,使学生理解圆的轴对称性;②掌握垂径定理,理解其证明,并会用它解决有关的证明与计算问题;③掌握辅助线的作法——作弦心距。
2.能力目标:①通过定理探究,培养学生观察、分析、逻辑思维和归纳概括能力;②向学生渗透“由特殊到一般”的基本思想方法。
3.情感目标:①通过探究垂径定理的活动,激发学生探究、发现数学问题的兴趣,培养学生大胆猜想、乐于探究的良好品质;②培养学生观察能力,激发学生的好奇心和求知欲,并从数学学习活动中获得成功的体验。
教学重点和难点教学重点:垂径定理及其应用教学难点:对垂径定理题设与结论的区分及定理的证明方法演示动画:将一等腰三角形对折,启发学生共同回忆等腰三角形是轴对称图形,复习轴对称图形的概念,并提出问题:如果以这个等腰三角形的顶点为圆心,腰长为半径作圆,得到的圆是否是轴对称图形呢?轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这样的图形叫做轴对称图形通过情境设置,吸引学生的注意力,激发学生兴趣和主动学习的欲望,营造一个让学生主动思考、探索的氛围。
九年级数学上册 第24章 圆 24.1 圆的有关性质(第2课时)垂直于弦的直径

Image
12/12/2021
第十九页,共十九页。
• 学习重点: 垂径定理及其推论.
12/12/2021
第二页,共十九页。
【知识链接,复习(fùxí)准备】
1.在下图中,弦有__________________;
直径(zhíjìng)是_______,半径是__________; 其中,弦AB所对的弧是_____________; 在图中作出
12/12/2021
拱高(弧的中点到弦的距离)为 7.23 m,求赵州桥主桥 拱的半径(精确到 0.1 m).
12/12/2021
第十二页,共十九页。
【典例精析,经典(jīngdiǎn)同行】
C
A
D
B
12/12/2021
O
第十三页,共十九页。
【反思(fǎn sī)总结 ,归纳方法】
内容: 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两
_________
变式2:已知⊙O的半径为5cm,圆心 O到AB的距离为3cm,则弦AB的长为
______cm.
12/12/2021
第九页,共十九页。
【利用(lìyòng)新知,解决问题】
学案(xuéàn)题组一第4题
4.如图,在⊙O中,AB、AC为互相垂直(chuízhí)且相等的
两条弦,OD⊥AB于D,OE⊥AC于E,求证四边 形 ADOE是正方形.
学案(xuéàn)题组一第5 题
5.如图,已知在两同心圆⊙O 中,大圆(dàyuán)弦 AB 交小圆 于 C,D,则 AC 与 BD 间可能存在什么关系?
A C DB O
2024年人教版九年级数学上册教案及教学反思第24章24.1.2 垂直于弦的直径

24.1 圆的有关性质24.1.2 垂直于弦的直径一、教学目标【知识与技能】1.通过观察实验,使学生理解圆的轴对称性.2.掌握垂径定理及其推论.理解其证明,并会用它解决有关的证明与计算问题.【过程与方法】通过探索垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.【情感态度与价值观】1.结合本课特点,向学生进行爱国主义教育和美育渗透.2.激发学生探究、发现数学问题的兴趣和欲望.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】垂径定理及其推论,会运用垂径定理等结论解决一些有关证明,计算和作图问题.【教学难点】垂径定理及其推论.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?(出示课件2)(二)探索新知探究一圆的轴对称性教师问:把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(出示课件4)学生通过自己动手操作,归纳出结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.出示课件5:教师问:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?学生答:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.思考:如何来证明圆是轴对称图形呢?出示课件6:已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.教师问:此图是轴对称图形吗?学生答:是轴对称图形.教师问:满足什么条件才能证明圆是轴对称图形呢?师生共同解答如下:(出示课件7)证明:连结OA、OB.则OA=OB.又∵CD⊥AB,∴直径CD所在的直线是AB的垂直平分线.∴对于圆上任意一点,在圆上都有关于直线CD的对称点,即⊙O关于直线CD对称.师生进一步认知:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.探究二垂径定理及其推论出示课件8:如图,AB是⊙O的一条弦, 直径CD⊥AB, 垂足为E.你能发现图中有哪些相等的线段和劣弧?为什么?学生独立思考后口答:线段:AE=BE弧:AC⌒=BC⌒,AD⌒=BD⌒学生简述理由:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A 与点B重合,AE与BE重合,重合.教师总结归纳:(出示课件9)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推导格式:∵CD是直径,CD⊥AB,∴AE=BE, AC⌒=BC⌒,AD⌒=BD⌒教师强调:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?(出示课件10)学生独立思考后口答:1图是;2图不是,因为没有垂直;3图是;4图不是,因为CD没有过圆心.教师强调:垂径定理的几个基本图形:(出示课件11)出示课件12:如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?学生思考后教师总结:深化认知:(出示课件13)如图,①CD是直径;②CD⊥AB,垂足为E;③AE=BE;④AC⌒=BC⌒;⑤AD⌒=BD⌒.举例证明其中一种组合方法.学生思考后独立解决,并加以交流,教师加以指导,并举例.(出示课件14)如图,AB是⊙O的一条弦,作直径CD,使AE=BE.(1)CD⊥AB吗?为什么?⑵AC⌒与BC⌒相等吗?AD⌒与BD⌒相等吗?为什么?证明:⑴连接AO,BO,则AO=BO,又AE=BE,OE=OE∴△AOE≌△BOE(SSS),∴∠AEO=∠BEO=90°,∴CD⊥AB.(2)由垂径定理可得AC⌒=BC⌒,AD⌒=BD⌒教师归纳总结:(出示课件15)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.思考:“不是直径”这个条件能去掉吗?如不能,请举出反例.教师强调:圆的两条直径是互相平分的.出示课件16:例1 如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm.学生思考后师生共同解答:连接OA,∵OE⊥AB,巩固练习:(出示课件17)如图,⊙O的弦AB=8cm,直径CE⊥AB于D,DC=2cm,求半径OC的长.学生自主思考后,独立解答如下:解:连接OA,∵CE⊥AB于D,,∴设OC=xcm,则OD=x-2,根据勾股定理,得x2=42+(x-2)2,∴22221068AE OA OE=-=-=cm.1184(cm)22AD AB==⨯=解得x=5,即半径OC的长为5cm.出示课件18:例2 已知:⊙O中弦AB∥CD,求证:学生思考后师生共同解答.证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则(垂直于弦的直径平分弦所对的弧)教师强调:平行弦夹的弧相等.师生共同归纳总结:(出示课件19)解决有关弦的问题,经常是过圆心作弦的弦心距(垂线段),或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.巩固练习:(出示课件20)如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证: 四边形ADOE是正方形.学生独立解答,一生板演.证明:∵OE⊥AC,OD⊥AB,AB⊥AC,∴∠OEA=∠EAD=∠ODA=90°.∴四边形ADOE为矩形,AE=12AC,AD=12AB.又∵AC=AB,∴AE=AD.∴四边形ADOE为正方形.出示课件21:例3 根据刚刚所学,你能利用垂径定理求出导入中赵州桥主桥拱半径的问题吗?教师引导学生分析题意,先把实际问题转化为数学问题,然后画出图形进行解答.解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C 是弧AB的中点,CD就是拱高.∴AB=37m,CD=7.23m.AB=18.5m,OD=OC-CD=R-7.23.∴AD=12OA2=AD2+OD2,R2=18.52+(R-7.23)2,解得R≈27.3.即主桥拱半径约为27.3m.巩固练习:(出示课件23)如图a、b,一弓形弦长为,弓形所在的圆的半径为7cm,则弓形的高为_______.学生独立思考后解答:如图,分两种情况,弓形的高为5cm或12cm.教师归纳:1.涉及垂径定理时辅助线的添加方法(出示课件24)在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.2.弓形中重要数量关系弦a,弦心距d,弓形高h,半径r之间有以下关系:⑴d+h=r;⑵2 222ar d⎛⎫=+ ⎪⎝⎭.(三)课堂练习(出示课件25-29)1.2.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.3.⊙O的直径AB=20cm, ∠BAC=30°则弦AC= .4.(分类讨论题)已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为.5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.你认为AC和BD有什么关系?为什么?6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.参考答案:1.C2.5cm3.4.14cm或2cm5.证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.6.解:连接OC.设这段弯路的半径为Rm,则OF=(R-90)m.,OE CD ⊥11600300(m)22CF CD ∴==⨯=,根据勾股定理,得222,OC CF OF =+ ()22230090.R R =+- 解得R=545.∴这段弯路的半径约为545m.(四)课堂小结通过这节课的学习,你有哪些收获和体会?(五)课前预习预习下节课(24.1.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.这节课的教学从利用垂径定理来解决赵州桥桥拱半径问题开始,引入课题从实验入手,得到圆的轴对称性,进而推出垂径定理及推论.教学设计中,从具体、简单、特殊到抽象、复杂、一般,层层递进,以利于提高学生的数学思维能力,同时,注意加强对学生的启发和引导,培养学生们大胆猜想,小心求证的科学研究素质.2.本课的教学方法是将垂径定理和勾股定理有机结合,将圆的问题转化为直角三角形,常作的辅助线是半径或垂直于弦的直径.。
九年级上数学《24.1.2垂径定理1》课件

5
A
O
4
3
C
P
B
如图,AB为⊙O的一条直径,它把⊙O分成上、 下两个半圆,从上半圆上一点C作弦CD⊥AB, ∠OCD的平分线交⊙O于P,当点C在半圆上(不 包括A、B两点)移动时,点P的位置会发生怎样 的变化?试说明理由?
C
A
E
O
B
D P
达标检测
一、填空 1、已知AB、CD是⊙O中互相垂直的弦,并且AB把CD分成3cm和7cm 的两部分,则圆心O和弦AB的距离为 2 cm. 2、已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN 和EF之间的距离为14cm或2cm .
3、已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径 为 5cm .
4、在半径为25cm的⊙O中,弦AB=40cm,则此弦和弦所对的弧的中 点的距离是 10cm和40cm . 5、 ⊙O的直径AB=20cm, ∠BAC=30°则弦AC= 10 3 cm .
垂径定理的应用
小
结
运用垂径定理可以解决许多生产、生活实际问 题,其中弓形是最常见的图形(如图),则弦a,弦 心距d,弓形高h,半径r之间有以下关系:
B
⌒
⌒
⌒
⌒
E D
垂径定理的本质是
(1)一条直线过圆心 满足其中任两条,必 定同时满足另三条 (2)这条直线垂直于弦 (3)这条直线平分弦
(4)这条直线平分弦所对的优弧
(5)这条直线平分弦所对的劣弧
判断下列说法的正误
①平分弧的直径必平分弧所对的弦 ②平分弦的直线必垂直弦 ③垂直于弦的直径平分这条弦 ④平分弦的直径垂直于这条弦 ⑤弦的垂直平分线是圆的直径 ⑥平分弦所对的一条弧的直径必垂直这条弦 ⑦在圆中,如果一条直线经过圆心且平分弦, 必平分此弦所对的弧 ⑧分别过弦的三等分点作弦的垂线,将弦所对 的两条弧分别三等分
人教版九年级数学上册课件 《垂直于弦的直径》精品课件

②③⑤
. 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的
②③④ 另一条弧.
②③ ①④⑤ 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.
②④ ②⑤ ③④ ③⑤
①③⑤ 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平
①③④ 分弦和所对的另一条弧.
①②⑤ 平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦 ①②④ ,并且平分弦所对的另一条弧.
②两条弦在圆心的两侧
· A
OB
C
D
A
·O B
C
D
将圆沿竖直直径对折可发现,两条弦所夹的弧重合。
∴ 圆的两条平行弦所夹的弧相等。
新知讲解
温馨提示:垂径定理是圆中一个重要的定理,几种条件要相 互转化,形成整体,才能运用自如.
“知二推三” (1)垂直于弦 (2)过圆心 (3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧
直径平分弦
直径垂直于弦=> 直径平分弦所对的弧
直径垂直于弦
直径平分弦(不是直径)=> 直径平分弦所对的弧
直径平分弧所对的弦
直径平分弧 => 直径垂直于弧所对的弦
谢谢观看!
新知讲解
解:如图,用AB表示主桥拱,设AB 所在圆的圆心为O,半径为R.
经过圆心O作弦AB的垂线OC垂足为 D,与弧AB交于点C,则D是AB的中 点,C是弧AB的中点,CD就是拱高.
∴ AB=37m,CD=7.23m.
∴ AD= AB=18.5m,OD=OC-CD=R-7.23.
OA2 AD2 OD2
O CB
新知讲解
自主练习:
1.判断: (1)平分弦的直径,平分这条弦所对的弧。
初中数学人教九年级上册第二十四章 圆垂直于弦的定理说课PPT

七、教学反思:
3、本节课存在一些不足之处:首先,在新课引 入部分证明直径平分弦这一结论时,不能只 局限于学生添加半径作为辅助线这一结果上 ,还可以利用这一机会帮助学生对之前所学 的证明两条线段相等的几种方法进行回顾, 以使证明方法系统化,不单纯为一节课服务 ;其次,题型设计稍显单一,课后训练题量 不够,可以再找一些基础训练和典型题型, 让学生加深对垂径定理的理解;另外,本节 课只有垂径定理推论的具体内容,但没有相 应的习题训练,可在下节课进行系统设计。
2、学生已有的生活经验:学生在生活中经常会遇到有关圆的图 形,也喜欢动手操作,会对本节课比较感兴趣。同时,学生在之 前的学习中,已明确了学习具体程序,并能充分利用导学案, 具备了学习活动的经验基础。
3、学生已有的学习方式和学习习惯:进入初三,学生思维活跃, 求知欲强,对探索问题充满好奇,但学习积极性有所减退,自 我意识增强。同时,由于我所任教的班级学生大多数来自农村, 基础不一,两极分化较明显,在合作交流、探索新知等方面发 展很不均衡,在学习的主动性、积极性等方面也有较大的差异。
22
OD=OC-CD=(R-7.23)m
C
在Rt△OAD中,由勾股定理,得
OA2=AD2+OD2 即 R2=18.52+(R-7.23)2
A
D
B
R
解得:R≈27.3
O
∴赵州桥的主桥拱半径约为27.3m.
设计意图:回到情境引入,让学生明白数学来源于生活又应用于生活.
辽宁省鞍山市第二中学九年级数学上册 24.1.2垂直于弦的直径 课件

------华罗庚
C
O
A
A
E
B
A
O
D
B
D
B
O
D
C
A
A
O
C
B
C
C
B
D
O
几何语言: ∵OE⊥AB于E点
∴AE=BE AC BC
C
O
A
E
B
几何语言: ∵OC⊥AB于C点 ∴AC=BC
A
O
Байду номын сангаас
C
B
几何语言:
∵OC⊥AB于D点
∴AD=BD AC BC
A
O
D
B
C
A
C
B
D
O
思考:若C、D为弦AB,弧AB中点呢?
对的两条弧. 垂径定理的推论:平分弦(非直径)的直径垂直
于弦,并且平分弦所对的两条弧。 ①构造直角三角形,垂径定理和勾股定理有机结合
是计算弦长、半径和弦心距等问题的方法. ②技巧:重要辅助线是过圆心作弦的垂线. 重要思路:(由)垂径定理—构造直角三角形—
(结合)勾股定理—建立方程.
新的数学方法和概念,常常比解决 数学问题本身更重要。
24.1.2 垂直于弦的直径
二中 黄雅秋
探究新知
请拿出准备好的圆形纸片,沿着它的直径翻折,重 复做几次,你发现了什么?
圆是轴对称图形,直径所在的直线是它的对称轴。
1、下列图是否具备垂径定理的条件。
c
C
A
D
B
O
O
A
E
B
A
O
C
B
A
O
D
B
C