表格分析法解一元一次方程应用题(通用型)

合集下载

一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题(含详细答案)

—元一次方程的实际应用题题型一:利率问题利率问题利息二本金X利率X期数本利和二本金十利息二本金X (1+利率X期数)利息税二利息X税率税后利息二利息一利息税二利息X (】-税率)税后本利和二本金+税后利息【总结】若利率是年利率,期数以“年”为单位计数,若是月利率,则期数以“月”为单位计数,解题时要注意.【例1】某人把若干元按三年期的定期储蓄存入银行,假设年利率为3. 69% ,到期支取时扣除所得税实得利息2 103.3元,求存入银行的本金.(利息税为5%)【答案】设存入银行的本金为x元,根据题意,得xx(3x3.69%)x(l-5%) = 2103.3xx0.105165 = 2103.3x = 20000,因此,存入银行的本金是20000元.【总结】利息二本金x利率x期数x利息税题型二:折扣问题利润额二成本价x利润率售价二成本价+利润额新售价二原售价x折扣【例2J小丽和小明相约去书城买书,请你根据他们的对话容(如图),求出小明上次所买书籍的原价.图6_4_1【分析】设小明上次购买书籍的原价是x元,由题意,得0.8.v+20 = x-12 , 解得x = 160.因此,小明上次所买书籍的原价是160元,【答案】160元.1:一件衣服按标价的八折出售,获得利润】8元,占标价的】0%,问该衣服的买入价?分析:本金:标价利率:-20%利息:成交价-标价=买入价+利润-标价解:设该衣服的买入价为x元x+18-18/10%= 18/10%x (80%- 1)当然,这道题这样解是一种方法,还可以按照我们常规的算术方法解来,倒也简单,因此, 列方程解应用题是针对过程清楚的问题比较简单方便。

2. 一家商店将某种服装按进价提高40%后标价,又以8折优恵卖出,结果每件仍获利15 元,这种服装每件的进价是多少?[分析]探究题目中隐含的条件是关键,可直接设出成本为X元等量关系:(利润二折扣后价格一进价)折扣后价格-进价二15解:设进价为X 元,80%X (1+40%) —X=15, X=125答:进价是125元。

一元一次方程典型例题

一元一次方程典型例题

典型例题例1. 已知方程2x m-3+3x=5是一元一次方程,则m= .例2. 已知2x=-是方程ax2-(2a-3)x+5=0的解,求a的值. 例3. 解方程2(x+1)-3(4x-3)=9(1-x).例4. 解方程175321416181=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛+-x.例5. 解方程4 1.550.8 1.20.50.20.1x x x----=.例6. 解方程1. 6122030x x x x+++=例7. 参加某保险公司的医疗保险,住院治疗的病人可享受分段报销,•保险公司制度的报销细则如下表,某人今年住院治疗后得到保险公司报销的金额是1260元,那么此人的实际医疗费是()A. 2600元B. 2200元C. 2575元D. 2525元例8. 我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费. 如果某户居民今年5月缴纳了17元水费,那么这户居民今年5月的用水量为__________立方米.例9. 足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分,一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分,请问:⑴前8场比赛中,这支球队共胜了多少场?⑵这支球队打满14场比赛,最高能得多少分?⑶通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标,请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标?例10. 国家为了鼓励青少年成才,特别是贫困家庭的孩子能上得起大学,设置了教育储蓄,其优惠在于,目前暂不征收利息税. 为了准备小雷5年后上大学的学费6000元,他的父母现在就参加了教育储蓄,小雷和他父母讨论了以下两种方案:⑴先存一个2年期,2年后将本息和再转存一个3年期;⑵直接存入一个5年期.你认为以上两种方案,哪种开始存入的本金较少?[教育储蓄(整存整取)年利率一年:2. 25%;二年:2. 27%;三年:3. 24%;五年:3. 60%. ]例11. 扬子江药业集团生产的某种药品包装盒的侧面展开图如图所示. 如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积.例12. 某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.例13. 某市参加省初中数学竞赛的选手平均分数为78分,其中参赛的男选手比女选手多50%,而女选手的平均分比男选手的平均分数高10%,那么女选手的平均分数为____________.四、数学思想方法的学习1. 解一元一次方程时,要明确每一步过程都作什么变形,应该注意什么问题.2. 寻找实际问题的数量关系时,要善于借助直观分析法,如表格法,直线分析法和图示分析法等.3. 列方程解应用题的检验包括两个方面:⑴检验求得的结果是不是方程的解;⑵是要判断方程的解是否符合题目中的实际意义.【模拟试题】一、选择题:1. 几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是( )A 、28B 、33C 、45D 、572. 已知y=1是方程2-y y m 2)(31=-的解,则关于x 的方程m (x+4)=m (2x+4)的解是( )A 、x=1 B 、x=-1 C 、x=0 D 、方程无解3 某种商品的进价为1200元,标价为1750元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5﹪,则至多可打( )A 、6折B 、7折C 、8折D 、9折4. 下列说法中,正确的是( )A 、代数式是方程B 、方程是代数式C 、等式是方程D 、方程是等式5. 一个数的31与2的差等于这个数的一半.这个数是( )A 、12B 、–12C 、18D 、–186. 母亲26岁结婚,第二年生了儿子,若干年后,母亲的年龄是儿子的3倍. 此时母亲的年龄为( )A 、39岁B 、42岁C 、45岁D 、48岁7. A 、B 两地相距240千米,火车按原来的速度行驶需要4小时到达目的地,火车提速后,速度比原来加快30%,那么提速后只需要( )即可到达目的地。

表格分析法解一元一次方程应用题教学设计(通用型)

表格分析法解一元一次方程应用题教学设计(通用型)

表格分析法解一元一次方程应用题教学设计【教学目标】〖知识与技能〗1、能根据具体问题中的数量关系,利用表格分析法正确地列出一元一次方程并解决实际问题;2、掌握表格分析法列一元一次方程解决实际问题的基本方法和步骤。

〖过程与方法〗能结合具体情景,利用表格分析法解决数学问题,提高分析问题和解决问题的能力。

〖情感、态度与价值观〗经历“问题情景——建立数学模型——解释、应用与拓展”的过程,体会表格分析法是我们处理信息的一种重要方法,体会数学的应用价值。

【教学重点】用列表法分析题目信息,学生自主独立设计、调整、填充完成表格,分析完成一元一次方程应用题。

【教学难点】掌握表格分析法解一元一次方程应用题的方法与步骤,设计表格清晰地解读一元一次方程应用题。

【教学问题诊断分析】在本课学习之前,学生们已经掌握了一元一次方程的解法,对不同类型的一元一次方程应用题的数量关系及基本等量关系也有了一定的认识。

但受阅读能力,分析能力的制约;怎样从实际问题中提取数学信息,并转化为数学语言,对初一的学生来说是个难点。

同时由于一元一次方程应用题涉及到的数量较多,而七年级的学生分析问题、寻找数量关系的能力较差,所以在学习的过程中,会经常出现一些意想不到的错误。

如:不同对象的数量“张冠李戴”,等量关系找不清,列不出方程等;所以我们在教学中应加以引导、启发,努力使学生理解、掌握表格分析法解一元一次应用题的基本思路和方法。

基于以上分析,本节课的教学难点是:深化对表格分析法的理解与应用。

【教学背景】一元一次方程应用题是七年级数学学习的基础,也是学生学习的难点,通常问题中涉及到的数量较多,应该遵循“分散难点,各个击破”的原则进行教学。

本人通过长期的教学实践发现借助表格分析法可帮助学生更好地将题目的已知量与求解目标分列出来,使数量关系明朗化,方便根据等量关系建立方程。

从而使得解一元一次方程应用题变得既简洁明了,又直观高效。

【课时安排】4课时【教学过程】一、情境导入一只青蛙1张嘴,2只眼睛,4条腿;两只青蛙2张嘴,4只眼睛,8条腿;三只青蛙3张嘴,6只眼睛,12条腿;四只青蛙4张嘴,8只眼睛,16条腿;······歌谣中的三种器官(嘴、眼睛、腿)的数量能否形象直观的展示呢?【学生活动】从表格中读取数据,并填写表格的最后一行。

列表法解应用题

列表法解应用题

列表分析法解一元一次方程应用题1、弄清应用题的类型(行程、工程、经济、几何问题等)。

2、设计表格。

涉及几个事物,每个事物相关的量有几个。

题目中分几种情况,就应该设计几张表格。

【例1】某文艺团体为“希望工程”募捐组织了一场义演,共售出了1000张票,筹得票款6950元.成人票和学生票各售出了多少张?(成人票:8元/张;学生票:5元/张)分析:想一想:上面问题中包含哪些等量关系?成人票数+学生票数=1000张(1)成人票款﹢学生票款=6950元(2)根据等量关系(2),可列出方程:解:设 ,则,据题意得:解:设,据题意得:练习:动物园的门票售价:成人票每张50元,儿童票每张30元。

某日动物园售出门票700张,共得29000元。

设儿童票售出x张,依题意可列出下列哪一个一元一次方程式?()A.30x+50(700-x)=29000B.50x+30(700-x)=29000C.30x+50(700+x)=29000D.50x+30(700+x)=29000【例2】甲步行每小时走4千米,甲走了2小时后,乙骑自行车用40分钟追上甲,求乙的速度。

分析:本题运用到的关系式有:甲路程=甲速度×甲时间;乙路程=乙速度×乙时间追及问题:快者路程—慢者路程=追赶时相距路程,或快者路程=慢者路程+慢者先走路程(即慢者总路程)【例3】一轮船位于两码头之间,逆水航行需10小时,顺水航行需6小时,已知该船在静水中的速度为12千米/小时。

求两码头间的距离。

根据顺流路程 = 逆流路程,可得+ 逆水速度= 2倍的静水速度,∴列方程得:【例4】在参观冰雕过程中,看到工人正在雕刻猫和老鼠,已知一个人每天只能雕刻2只猫或5只老鼠,现有18人参与雕刻,问应分配多少人雕刻猫,多少人雕刻老鼠,才能使雕刻出来的老鼠数是猫的2倍?生产总量=每人生产量×参加生产人数设有 x人去雕刻猫,则:根据老鼠总数量=2倍猫的总数量,列方程得:【例5】把一些图书分给某班学生,如果每人4本,则剩余12本,如果每人分5本,则还缺30本,问该班有多少学生?设该班有学生 x人,则:根据两种方案书的总数相同,可列方程得:练习:1、某个小组中的男女生共15人,若女生减少3人则男生的人数是女生的人数的2倍,问这个小组男女生的人数各为多少?3、某个小组中的男女生共15人,若女生减少3人则男生的人数是女生的人数的2倍,问这个小组男女生的人数各为多少?设女生有x人,则:根据变化后男生的人数=女生的人数的2倍,可列方程得:2、一艘船从A港到B港顺流行驶,用了5小时;从B港返回A港逆流而行,用了7.5小时,已知水流的速度是3千米/时,求船在静水中的速度。

《易错题》七年级数学上册第三单元《一元一次方程》-解答题专项知识点总结(含解析)

《易错题》七年级数学上册第三单元《一元一次方程》-解答题专项知识点总结(含解析)

一、解答题1.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表:已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人?解析:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【分析】首先根据题中表格数据得出有一个班的人数大于35人,接着设大于35人的班有学生x 人,根据等量关系列出方程,求解即可.【详解】⨯=解:∵67604020>40203650∴所以一定有一个班的人数大于35人.设大于35人的班有学生x人,则另一班有学生(67-x)人,依题意得+-=x x5060(67)3650-=x6730答:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.解析:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【解析】试题分析:首先设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,然后根据两本书的售价总和为80元列出一元一次方程,从而求出x的值,得出答案.试题设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,根据题意得:50%x+60%(150﹣x)=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.3.解下列方程:(1)15(x+15)=1231-(x-7).(2)2110121364x x x-++-=-1.解析:(1)x=-516;(2)x=16.【分析】(1)直接根据解一元一次方程的步骤进行即可;(2)直接根据解一元一次方程的步骤进行即可.【详解】解:(1)15(x+15)=1231-(x-7).去分母,得6(x+15)=15-10(x-7).去括号,得6x+90=15-10x+70.移项及合并同类项,得16x=-5.系数化为1,得x=-5 16.(2)2110121 364x x x-++-=-1去分母,得4(2x-1)-2(10x+1)=3(2x+1)-12.去括号,得8x-4-20x-2=6x+3-12.移项,得8x-20x-6x=3-12+4+2.合并同类项,得-18x=-3.系数化为1,得x=16.【点睛】此题主要考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.4.解下列方程:(1)2(x-1)=6;(2)4-x=3(2-x);(3)5(x+1)=3(3x+1)解析:(1)x=4;(2)x=1;(3)x=1 2【分析】(1)方程去括号,移项合并,将未知数系数化为1,即可求出解;(2)方程去括号,移项合并,将未知数系数化为1,即可求出解;(3)方程去括号,移项合并,将未知数系数化为1,即可求出解;【详解】(1)去括号,得2x-2=6.移项,得2x=8.系数化为1,得x=4.(2)去括号,得4-x=6-3x.移项,得-x+3x=6-4.合并同类项,得2x=2.系数化为1,得x=1.(3)去括号,得5x+5=9x+3.移项,得5x-9x=3-5.合并同类项,得-4x=-2.系数化为1,得x=1 2 .【点睛】此题考查了解一元一次方程,其步骤为:去括号,移项合并,将未知数系数化为1,求出解.5.解下列方程(1)-9x-4x+8x=-3-7;(2)3x+10x=25+0.5x.解析:(1)x=2;(2)x=2【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解.【详解】解:(1)合并同类项,得,-5x=-10系数化为1,得,x=2(2)移项,得3x+10x-0.5x=25合并同类项,得12.5x=25系数化为1,得,x=2【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.6.运用等式的性质解下列方程:(1)3x=2x-6;(2)2+x=2x+1;(3)35x-8=-25x+1.解析:(1)x=-6;(2)x=1;(3)x=9【分析】(1)根据等式的性质:方程两边都减2x,可得答案;(2)根据等式的性质:方程两边都减x,化简后方程的两边都减1,可得答案.(3)根据等式的性质:方程两边都加25x,化简后方程的两边都加8,可得答案.【详解】(1)两边减2x,得3x-2x=2x-6-2x.所以x=-6.(2)两边减x,得2+x-x=2x+1-x.化简,得2=x+1.两边减1,得2-1=x+1-1所以x=1.(3)两边加25 x,得35x-8+25x=-25x+1+25x.化简,得x-8=1.两边加8,得x-8+8=1+8.所以x=9.【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.7.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行.(1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离;(3)求两船从开始航行到两船相距12海里,需要多长时间?解析:(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时.【分析】(1)根据1h后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得;(2)根据2h后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得;(3)可分相遇前与相遇后两种情况讨论即可解答.【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h后甲、乙间的距离=60-25×1-15×1=20海里;(2)2h 后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t 小时则12=60-(25+15)t ,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t 1小时则12+60=(25+15)t 1,求得t 1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.8.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?” 解析:x =60【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则65234x x x ++= 解得:x =60;∴有60个客人.【点睛】 本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元.(2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由.解析:(1)134元,520元;(2)54元;(3)见解析【分析】(1)先判断两次是否优惠,若优惠,在哪一档优惠;(2)用商品标价减去实际付款可求节省的钱数;(3)先计算两次物品合起来一次购买实际付款,在与134+466比较即可.【详解】解:(1)∵200×90%=180元>134元,∴134元的商品未优惠;∵500×0.9=450元<466元,∴466元的商品的标价超过了500元.设其标价x元,则500×0.9+(x-500)×0.8=466,解得x=520,所以物品不打折时的分别值134元,520元;故答案为:134元,520元;(2)134+520-134-466=54,所以省了54元;(3)两次物品合起来一次购买更节省.两次合起来一次购买支付500×0.9+(654-500)×0.8=573.2元,573.2<134+466=600,所以两次物品合起来一次购买更节省.【点睛】此题主要考查了一元一次方程的应用中实际生活中的折扣问题,关键是运用分类讨论的思想,分析清楚付款打折的两种情况.10.小丽用的练习本可以从甲乙两家商店购买,已知两家商店的标价都是每本 2 元,甲商店的优惠条件是:购买十本以上,从第 11 本开始按标价的 70%出售;乙商店的优惠条件是:从第一本起按标价的80%出售。

一元一次方程应用题全部解法整理课件

一元一次方程应用题全部解法整理课件
九月份节约煤(1+20%)(1+25%)x公斤
依题意得:x+ (1+20%)x +(1+20%)(1+25%)x=7400 x=2000
(1+20%) (1+25%)x=3000 答:该食堂九月份节约煤3000公斤.
例2、春节前某商场搞促销活 动,降价销售,把原定价为 3860的彩电以9折优惠出售, 但仍可获利25%的利润,那 么这种彩电的进价是多少元 ?
工作总量 ———————————
完成工作总量的时间
2)工作总量=工作效率×工作时间 工作总量
3)工作时间= ————— 工作效率
4)各队合作工作效率=各队工作效率之和
5)全部工作量之和=各队工作量之和
例1 修筑一条公路,甲工程队单独承包要80天完成,乙工程队单独 承包要120天完成
1)现在由两个工程队合作承包,几天可以完成? 2)如果甲、乙两工程队合作了30天后,因甲工作队另有任务,
例3、某商店在销售商品时 ,先按进价的150%标价后 ,为了吸引消费者,再按8
折销售,此时每件仍可获 利120元,那么商品的进价 为多少元?
例4、某商品把一个书包按进价提 高50%标价,然后再按8折出售
,这样商场每卖出一个书包就可 盈利8元,这种书包的进价是多 少元?若按6折出售,商场还盈 利吗?为什么?
等量关系:60套时总利润=72套时总利润 依题意得: 60(100 - x)= 72(100 – 3 – x)
x = 82 答:每套课桌椅的成本是82元。
练习3、某商店经销一种商品,由于进货价 降低了5%,售出价 不变,使得利润率有原 来的m%提高到(m + 6)%, 求m的值。
分析: 等量关系是售出价不变,两种不同利润率下的售 价各如何表示?成本我们可以设为“1”

一元一次方程应用题8种类型解法及典型例题

一元一次方程应用题8种类型解法及典型例题

一、概述1. 介绍一元一次方程的定义和基本形式2. 引出本文将要讨论的内容二、一元一次方程的八种类型1. 类型一:简单应用题1)例题:小明买了一些苹果,一共花了20元,每个苹果2元,问他买了多少个苹果?2)解法:设苹果的数量为x,根据题意可列出方程2x=20,解得x=10。

2. 类型二:两个未知数的应用题1)例题:甲乙两地相距180公里,相对而行,甲地的时速是每小时30公里,问几小时能相遇?2)解法:设相遇时间为t小时,甲地行驶的距离为30t,乙地行驶的距离为180-30t,根据题意可列出方程30t+30t=180,解得t=3。

3. 类型三:含有括号的应用题1)例题:一个数比8大,乘以3再减去2的结果是20,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程3(x-8)-2=20,解得x=18。

4. 类型四:含有分数的应用题1)例题:某数的1/3等于它的2/5减去3,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程1/3=2/5-3,解得x=-9。

5. 类型五:含有小数的应用题1)例题:一块钢铁的重量是另一块的3/5,如果重量相差5.2公斤,问两块钢铁的重量各是多少?2)解法:设较重的钢铁重量为x,根据题意可列出方程x-x*3/5=5.2,解得x=13。

6. 类型六:含有分母的应用题1)例题:一个数加上15的4/5等于这个数的3/4,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程x+15=3x/4,解得x=60。

7. 类型七:字母表示未知数的应用题1)例题:甲乙两个数的和是50,甲是乙的2倍,问甲乙两个数各是多少?2)解法:设甲的数为x,乙的数为y,根据题意可列出方程x+y=50和x=2y,解得x=40,y=10。

8. 类型八:几何问题转化为一元一次方程1)例题:一个三角形的底边长度是两腿长度的和的2倍,底边长8米,腿长是多少?2)解法:设腿长为x,根据题意可列出方程2x+x=8,解得x=4。

一元一次方程的应用题(含解析)

一元一次方程的应用题(含解析)

一元一次方程的应用题(一)考试要求:内容基本要求略高要求较高要求一元一了解一元一次方会根据具体问题列出一元一次方能运用整式的加减运算次方程程的有关概念程对多项式进行变形,进一步解决有关问题一元一理解一元一次方能熟练掌握一元一次方程的解会运用一元一次方程解次方程程解法中的各个法;会求含有字母系数(无需讨论)决简单的实际问题的解法步骤的一元一次方程的解例题精讲:应用题是中学数学中的一类重要问题,一般通过对问题中量的关系进行分析,适当的设未知数,找出等量关系列出方程加以解决.很多同学见到应用题就发怵,觉得题目长,文字多,关系复杂,难以把握.其实应用题关键在于读题,弄懂题意.一些常见的问题,比如行程问题、工程问题、利率问题、浓度问题等等,其中的基本关系一定要深刻理解.设未知数的方法一般来讲,有以下几种:直接设未知数解应用题:直接设未知数指题目问什么就设什么,它多适用于要求的未知数只有一个的情况;间接设未知数解应用题:设间接未知数,是指所设的不是所求的,而解得的间接未知数对确定所求的量起中介作用;引入辅助未知数解应用题:设辅助未知数,就是为了使题目中的数量关系更加明确,可以引进辅助未知数帮助建立方程.辅助未知数往往不需要求出,可以在解题时消去.解应用题的方法多种多样,除此之外,还有运用逆推法解应用题、运用整体思想解应用题、运用图形图表法解应用题等等,单纯的背这些方法是没有意义的,关键还在于提高理解能力,大量练习,从而学会快速读懂题意,综合运用各种方法去求解问题.列方程解应用题的步骤:①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为 x)③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)模块一和差倍分问题【例1】玻璃缸里养了三个品种的金鱼,分别是“水泡”“朝天龙”“珍珠”.“水泡”的条数是“珍珠”的 3 倍;“朝天龙”的条数是“珍珠”的 2 倍,且“朝天龙”比“水泡”少 1 条,这三种金鱼各有几条呢?【解析】设“珍珠”的条数为x条,则“水泡”“朝天龙”的条数分别为3x条、2x条.依题意得:3x2x1,x1,从而3x3,2x2.【答案】3,2,1x【巩固】甲队有 32 人,乙队有 28 人,现从乙队抽人到甲队,使甲队是乙队人数的 2 倍,依题意,列出方程为【解析】略【答案】32 2(28 ).x x 【巩固】汽车若干辆装运货物一批,若每辆汽车装3.5吨货物,这批货物就有 2 吨运不走;若每辆汽车装 4 吨货物,那么装完这批货物后,还可以装其他货物 1 吨,问汽车有 多少辆?这批货物有多少吨?【解析】设有汽车 辆.依题意得:3.5 2 4 1,解之得: 6 ,41 23,故汽车 x x x x x 有 6 辆,货物有 23 吨.【答案】6 ; 23【例2】 ⑴ 甲仓库有粮120吨.乙仓库有粮90 吨.从甲仓库调运剂后甲仓库存粮是乙仓库的一半.吨到乙仓库,调 ⑵ 甲乙两个圆柱体容器,底面积比为5∶3,甲容器水深20c m ,乙容器水深10c m , 再往两个容器注入同样多的水,使两个容器的水深相等,这时水深多少厘米?1【解析】⑴ 从甲仓库调运 吨到乙仓库,依题意得120 (90) ,解得 x 50 . x x x 2⑵ 设这时水深 cm ,依题意得 5( 20) 3( 10),解得 35 .若学生不好理x x x x 解,不妨多设一个底面积比为5 ∶3 .方程为5 (20) 3 ( 10) 即可. a a a x a x 【答案】50 ;352【巩固】某公司有甲乙两个工程队,甲队人数比乙队人数的 多 28 人.现因任务需要,从3乙队调走 20 人到甲队,这时甲队人数是乙队人数的 2 倍,则甲乙两队原来的人数 分别是多少人?2【解析】设乙队原来有 x 人,则甲队有 28 人.依题意可列:x 32 2 x 20 x 28 20 ,解得: 66x 3【答案】72,66【巩固】甲、乙、丙三条铁路共长1191千米,甲铁路长比乙铁路的2 倍少189千米,乙铁路长比丙铁路少8 千米,求甲铁路的长. 【解析】设丙铁路长为 千米,则乙铁路长x 8 千米,甲铁路长2 x 8 189 千x 米.依题意可列: x x 8 2 x 8189 1191【答案】499,344,352【巩固】如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长1 1度是它的 ,另一根露出水面的长度是它的 .两根铁棒长度之和为55 ,此时cm 3 木桶中水的深度是5. cm1【解析】设此时木桶中水的深度为 c m ,依题意得,两根铁棒的长度为 [ (1 )]cm 和x x 31 1 1[x (1 )]cm ,故[x (1 )] [x (1 )] 55,解得 20.x 5 3 5【答案】20【例3】 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有 100 只吧!”牧羊人答道:“如果这群 羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只 羊也算进去,才刚好凑满 100 只.”问牧羊人的这群羊共有多少只?1 2 14【解析】设这群羊共有 只,依题意,有2 1100 ,解之得 36 .x x x x x 【答案】36模块二 行程问题追击问题解决追击问题的一个最基本的公式:追击时间 速度差 追击的路程.于此相关 的问题都可以应用这一公式进行解答.【例4】 敌我两军相距 32 千米,敌军以每小时 6 千米的速度逃窜,我军同时以每小时 16 千米的速度追击在相距 2 千米的地方发生战斗,问战斗是从 开始追击后几小时发生的?【解析】根据追击问题的基本公式:追击时间 速度差 追击的路程.设战斗是从开始追击后 小时发生的.则依题意可列:166 x 32 2 , x 解得: 3. x 【答案】3【巩固】环城自行车赛,最快的人在开始 48 分钟后遇到最慢的人,已知最快的人的速度是3最慢的人速度的 倍,环城一周是 20 千米,求两个人的速度。

一元一次方程应用题(含答案解析)

一元一次方程应用题(含答案解析)

一元一次方程应用题(含答案解析)一元一次方程应用题知能点1:市场经济、打折销售问题×100%(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,?经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,?但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,?在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50?元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1?分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。

一元一次方程应用题表格类专题训练(2)2021-2022学年人教版数学七年级上册

一元一次方程应用题表格类专题训练(2)2021-2022学年人教版数学七年级上册

人人人人人人人人人人人人人人人人人人人人人人人人人人21.某开发商按照分期付款的形式售房,小明家购了一套总共为120万的新房,购房时首付款40万元,从第二年起,以后每年应付款为:5万元房款与上一年剩余欠款的利息之和.已知剩余欠款的年利率为5.0%,按题意填写表格:(1)完成表格.(2)求第几年时小明家应付款为7万元.(3)若在购房后第12 年的时候,小明妈妈打算把剩余欠款一次性付清,请通过计算说明这样可以比原来的付款方式便宜多少万元?2.某快车的计费规则如表1,小明几次乘坐快车的情况如表2,请仔细观察分析表格解答以下问题:(1)填空:a=______,b=______;(2)列方程求解表1中的x;(3)小明的爸爸23:10打快车从机场回家,快车行驶的平均速度是100公里/小时,到家后小明爸爸支付车费603元,请问机场到小明家的路程是多少公里?(用方程解决此问题)表1:某快车的计费规则(说明:总费用=里程费+时长费+远途费)表2:小明几次乘坐快车信息3.某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其它主要参考数据如下:(1)如果A市与某市之间的距离为800千米,根据上面的表格你可以算出:选择火车运输的总费用是__________, 选择汽车运输的总费用______________.(运输的总费用=运费+损耗费用+装卸费用)(2)如果选择汽车的总费用比选择火车费用多1100元,那么本市与A市之间的路程是多少千米?4.某商场用25000元购进A、B两种新型护眼台灯共50盏,这两种台灯的进价、标价如下表所示:(1)A、B两种新型护眼台灯分别购进多少盏?(2)若A型护眼灯按标价的9折出售,B型护眼灯按标价的8折出售,那么这批台灯全部售完后,商场共获利7200元,请求出表格中m的值.5.为了鼓励市民节约用水,某市水费实行阶梯式计量水价.每户每月用水量不超过25吨,收费标准为每吨a元;若每户每月用水量超过25吨时,其中前25吨还是每吨a元,超出的部分收费标准为每吨b元.下表是小明家一至四月份用水量和缴纳水费情况.根据表格提供的数据,回答:(1)a=______;b=______;(2)若小明家五月份用水32吨,则应缴水费______元;(3)若小明家六月份应缴水费102.5元,则六月份他们家的用水量是多少吨?6.七年级一班开展了一次“纪念抗日战争胜利七十周年”知识竞赛,竞赛题一共有20道题,如表是其中四位参赛选手的答对题数和不答或答错题数及得分情况,请你根据表格中所给的信息回答下列问题:(1)问答对一题得多少分,不答或答错一题扣多少分?(2)一位同学说他得了75分,请问可能吗?请说明理由.7.如图,点A、B在数轴上表示的数分别为﹣12和8,两只蚂蚁M、N分别从A、B两点同时匀速出发,同向而行(1)请填写上表格;(2)若两只蚂蚁在数轴上点P相遇,求点P在数轴上表示的数;(3)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值.8.为了鼓励市民节约用水,某市水费实行分段计费制,每户每月用水量在规定用量及以下的部分收费标准相同,超出规定用量的部分收费标准相同.例如:若规定用量为10吨,每月用水量不超过10吨按1.5元/吨收费,超出10吨的部分按2元/吨收费,则某户居民一个月用水8吨,则应缴水费:8×1.5=12(元);某户居民一个月用水13吨,则应缴水费:10×1.5+(13-10)×2=21(元).表是小明家1至4月份用水量和缴纳水费情况,根据表格提供的数据,回答:(1)该市规定用水量为______吨,规定用量内的收费标准是______元/吨,超过部分的收费标准是______元/吨.(2)若小明家五月份用水20吨,则应缴水费______元.(3)若小明家六月份应缴水费46元,则六月份他们家的用水量是多少吨?9.某水果经销商到水果批发市场采购苹果,他看中了甲、乙两家苹果的某种品质一样的苹果,零售价都为8元/千克,批发价各不相同。

(完整版)一元一次方程应用题典型例题答案详解

(完整版)一元一次方程应用题典型例题答案详解

一元一次方程解应用题典型例题1、分配问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?设这个班有x个学生,则3x+20=4x-25x=45变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?解:设X人挖土,运土的则有(48-X)人,则:5X=3×(48-X)5X=144-3X8X=144X=1848-X=30答:应安排18人挖土,30人运土变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?解:设租x辆45做客车45x=60(x-1) -3045x=60x-9015x=90x=66X45=270人2、匹配问题:例题2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。

为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?解:设x名工人生产螺钉,则有(22-x)人生产螺母,可得:2x1200x=2000(22-x)x=10所以生产螺母的人数为:22-10=12(人)变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解:设安排生产甲零件的天数为x天,则安排生产乙零件的天数为(30-x)天,根据题意可得:2×120x=3×100(30-x),解得:x=50/3,则30-50/3=40/3(天),答:安排生产甲零件的天数为15天,安排生产乙零件的天数为12天变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。

一个盒身与两个盒底配成一套罐头盒。

现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解:设用x张做盒身,则做盒底为(100-x)张则:2×10x=30(100-x),x=60.100-x=100-60=40.答:用60张做盒身,40张做盒底.3、利润问题(1)一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______.变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为________.(2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________.变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式3:一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?解:设这种商品每件标价是x元,则x×90%-250=250×15.2%x=320变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?解:设成本为X元,则售价为X(1+50%)×80%,(获利28元,即售价-成本=28元),则X(1+50%)×80%-X=28解得X=140元。

用表格法解一元一次方程应用题

用表格法解一元一次方程应用题
方程为: 1 x3+吉(3乜)=1,答案同样正确.
【变 式练 习 2】一 件工 作 ,甲单独 做 15h完 成 ,乙单独做 12h完成 ,若 甲先做 lh,乙接着单 独 做 3h,最 后 甲 、乙 两人 合做 ,再 做 多长 时间 完成 ?
例 3 某班 学生分两组 参加 植树 活动 ,甲 组有 I7人 ,乙组 有 25人 ,后 来 由于需要 ,从 甲 组抽 调 了部分 学生去 乙组 ,结果 乙组的人数是 甲 组 的 2倍 ,则 从 甲 组 抽 调 了 多 少 学 生 去
解 :设这名教师从出发到途中与学生会合 共用了 h 艮据题意 ,得 :
5( + 24-)=15x,解得 x=O.2.
oU
答 :略 . 【点评 】本题是直线型追及 问题 ,一般根据 “两人所走路程相 等”列方程 ,但 不 同类型的行 程问题题 目还需具体分析解决. 【变式 练 习 1】甲 、乙两 人在 长为 400m的 圆形跑道上跑 步 ,已知 甲每秒跑 9m,乙每秒跑 7m.若两 人同时 同地 同向而行时 ,经过 多少秒 两 人 首 次 相 遇 ? 例 2 一项 工程 由甲单独做 需 12天 完成 , 由乙单独做 需8天完成 ,若两人合做 3天后 ,剩 下部分 由乙单独 完成 ,乙还需做 多少天? 【分析 】(1)分析各量 : ①设出未知量 :设乙还需做 天. ②填 人 已知量 :甲 、乙合做 的工作效 率和 乙的工作效 率 ,甲 、乙合做 的工作时 间和 乙后 做 的工作时 间. ③ 表示第三 量 :甲 、乙合 做的工作 量和 乙
( + 1)x3+吉 =l,解得 .
答 :略 . 【点评 】本题其实也可画出如下 的表格 :
工 作 效 率
工 作 时 间
工 作量
做田的

一元一次方程表格及例题

一元一次方程表格及例题

解方程时,表中有些变形步骤可能用不到,并且不一定按照自上而下的顺序,要根据方程的形式灵活安排求解步骤,适当进行简化。

解形如0=+b ax (其中x 是未知数,b a ,是已知数)的字母系数方程,需分类讨论:当0≠a 时,方程有惟一解a bx -=;当0,0==b a 时,00=⋅x ,方程有无数个解,且x 可为任意实数;当0,0≠=b a 时,原方程无解。

以上结论反过来也成立。

例题精讲例1 解方程 2222221212121=-⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 解:原方程可变为 422221212121=⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x ——————————————————————(注:根据方程结构特点,这里选择了先移项再去分母,同时也去掉了一个括号的方式。

若采用先去分母,去括号,则解法要复杂得多。

)例2 解方程 186432517191=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛++x 解:原方程可变为 9864325171=+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛++x ————————————————————————————————————————注:根据方程结构特点,这里选择了先去分母再移项,同时去掉一个括号的方式。

例3解方程: x x 3221221413223=-⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+ 分析:注意到23与32互为倒数,223⨯为整数,因此,解方程时先去中括号为宜。

解:原方程可变为x x 322123141=-+⎪⎭⎫ ⎝⎛+, 即x x 322123141=-++ ————————————————————————。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∙新湘教版∙ (2)两人同时出发,相向而行,经过多少时间,两人相距5千米?七年级上册
【分析】 设经过y h,两人相距5千米,填表:
找相应等量关 系,列出方程。
速度
时间
路程
小明
13
y
13y
小红
12
y
12y
解:(2)设走了y h后两人相距5千米 ②相遇后相距,
①相遇前相距,
则 13y + 12y-5 = 20
利润率是10%.已知这种商品的原价为2475元,那么这种商品
的进价是多少?
根据等量关
系列出方程。 【分析】 设这种商品的进价是为x元,填表:
售价
进价
利润
方式一 方式二
0.8×247 5 利润率
10%
x 进价
x
0.8×2475-x 利润
10%x
∙新湘教版∙
七年级上册
解:设这种商品的进价是为x元,
根据题意,得 0.8×2475-x=10%x
螺栓数∶2=螺母数∶3。
设安排x人生产螺栓,填表:(以小时计数)
生产效率/个/人
生产人数/人
螺栓
15
x
螺母
21
29- x
等量关系 的数量表现, 列方程的根
据。
生产数量/个
15x
21(29- x)
解:设安排x人生产螺栓,则(29-x)人生产螺母. 根据题意得
15x 21(29 x)
2
3
解得 x=14,
x只青蛙
嘴 1 2 3 4 ......
x
眼睛 2 4 6 8
......
2x
腿 4 8 12 16 ......
4x
合作探究
一. 和、差、倍、分问题
例1、 某文艺团体为“希望工程”募捐 组织了一场义演,共售出1000张票,筹得 票款69500元,成人票与学生票各售出多 少张?
【分析题意】题中的等量关系有: 成人票数+学生票数=1000张; 成人票款+学生票款=69500元。
总价/元 80x
50(1000- x)
设售出的成人票为x张,填写下表:
单价/元/人
数量/张
成人票
80
学生票
50
x
1000- x
∙新湘教版∙
七年级上册
总价/元 80x
50(1000- x)
根据等量关系,可列出方程:
80x+50(1000- x)=69500 。
解得x= 650 .
所以,1000- x=1000-650=350
解方程得
x=1800
答:这种商品的进价是为1800元。
要点归纳
销 售 中 的 数 量 关 系
●商品利润= 商品售价-商品进价
●进价、利润、利润率的关系:
利润率=
商品利润 商品进价
×100%
●标价、折扣数、商品售价的关系: 商品售价=标价× 折扣数 10
●商品售价、进价、利润率的关系: 商品售价= 商品进价×(1+利润率)
【分析】 设小红骑车走了x h后与小明相遇,填表:
找相应等量关 系,列出方程。
小明 小红
速度 13 12
时间 x+0.5 x
路程 13(x+0.5)
12x
∙新湘教版∙
七年级上册
解:(1)设小红骑车走了xh后与小明相遇,

13(0.5 + x )+12x = 20 .
解得 x= 0.54 .
答:小红骑车走0.54h后与小明相遇。
∙新湘教版∙
七年级上册
成人票 80元 学生票 50元
∙新湘教版∙
七年级上册
某文艺团体为“希望工程”募捐组织 了一场义演,共售出1000张票,筹得票款 69500元,成人票与学生票各售出多少张?
成人票 80元 学生票 50元
设售出的成人票为x张,填写下表:
单价/元/人
数量/张
成人票
ቤተ መጻሕፍቲ ባይዱ80
x
学生票
50
1000- x
∙新湘教版∙
七年级上册
利息问题中涉及的数量关系:
利息=本金×年利率×年数 本息和=本金+利息
等量关系的数量表 现,列方程的根据。
因此,售出成人票 650 张,学生票 350 张
∙新湘教版∙
七年级上册
例2、 某车间有29名工人生产螺栓和螺母,每人每小时平
均能生产螺栓15个或螺母21个,应如何分配生产螺栓和螺母的
工人,才能使螺栓和螺母正好配套(两个螺栓配三个螺母)?
【分析题意】题中的等量关系有: 生产螺栓人数+生产螺母人数=29;
∙新湘教版∙
七年级上册
情景导入
合作探究
课堂小结
跟踪练习
学习目标
∙新湘教版∙
七年级上册
1.了解表格分析法解一元一次方程应用题的方法 与步骤。(难点)
2.在具体情境中,会利用表格分析法解一元一次 方程应用题。(重点)
3.提高学生分析实际问题中数量关系的能力。
情境导入
童谣《数蛤蟆》
∙新湘教版∙
七年级上册
∙新湘教版∙
七年级上册
一只青蛙1张嘴,2只眼睛,4条腿;两只青蛙 2张嘴,4只眼睛,8条腿; 三只青蛙3张嘴,6只 眼睛,12条腿;四只青蛙4张嘴,8只眼睛,16腿 ;······
歌谣中的三种器官(嘴、眼睛、腿)的数量 能否形象直观的展示呢?
∙新湘教版∙
七年级上册
一只青蛙 两只青蛙 三只青蛙 四只青蛙 ......
设两人生产这批零件用了x 天,填表:
工作效率
工作时间

15
x

25
x
工作量 15x 25x
∙新湘教版∙
七年级上册
解:设两人生产这批零件用了x 天, 根据题意得 25x= 2×15x-30 解得 x=6,
答:两人生产这批零件用了6 天。。
三. 利润、利息问题
∙新湘教版∙
七年级上册
例5、 某商场将某种商品按原价的八折出售,此时商品的
所以 29-x=15。
答:安排14人生产螺栓,15人生产螺母才能使螺栓
和螺母正好配套。
∙新湘教版∙
七年级上册
方法归纳
∙新湘教版∙
七年级上册
1.当问题中含有两个未知量、两个等量关系时, 可以把其中一个未知量设为未知数,另一个未知量 (根据其中一个等量关系)用含未知数的代数式表示, 而另一个等量关系则用来列方程。
则 13y + 12y+5 = 20
解得 y =1
解得 y = 0.6
答:走了0.6h或1h后两人相距5千米
∙新湘教版∙
七年级上册
例4、甲、乙两人共同生产一批零件,甲每天生产15个零件,乙每
天生产25个零件,完成生产任务时乙生产的零件数比甲的2倍少30个,
求两人生产这批零件用了多少天? 【分析】
找相应等量关 系,列出方程。
2.可以采用列表格的方法搞清较复杂问题中的 各个量之间的关系。
二. 行程、工程问题
∙新湘教版∙
七年级上册
例3、小明与小红的家相距20km,小明从家里出发骑自行车去小 红家,两人商定小红到时候从家里出发骑自行车去接小明. 已知小明骑 车的速度为13 km/h,小红骑车的速度是12 km/h。 (1)如果小明先走30min,那么小红骑车要多少小时才能与小明相遇?
相关文档
最新文档