初中数学图形的相似知识点总结
人教版初中数学第二十七章相似知识点
第二十七章相似一、目标与要求1.掌握相似多边形的定义、表示法,并能根据定义判断两个多边形是否相似.2.能根据相似比进行计算.3.通过与相似多边形有关概念的类比,得出相似三角形的定义,领会特殊与一般的关系.4.能根据定义判断两个多边形是否相似,训练学生的判断能力.5.能根据相似比求长度和角度,培养学生的运用能力.6.通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.二、知识框架三、重点、难点1.理解并相似三角形的判定与性质2.位似图形的有关概念、性质与作图.3.利用位似将一个图形放大或缩小.4.用图形的坐标的变化来表示图形的位似变换.5.把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.四、中考所占分数与题型分布本章会出1-2道选择、填空题,简答题必有一道三角形和相似形的综合题,本章约占15-20分.第二十七章相似27.1 图形的相似1.每组图形中的两个图形形状相同,大小不同,具有相同形状的图形叫相似图形.2.相似图形强调图形形状相同,与它们的位置、颜色、大小无关.3.相似图形不仅仅指平面图形,也包括立体图形相似的情况.4.我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.5.若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.例1:1.从哈哈镜和平面镜中看见不同的镜像,是否相似?2.从放大镜或者望远镜中看见不同的镜像,是否相似?6.相似多边形对应角相等,对应边的比相等.对应边的比称为相似比.例2:在比例尺为1:10000000的地图上,量的A、B两地的距离为10cm,求两地的实际距离.解:地图与实际的环境是相似的,因此地图中的1cm相当于实际10000000cm,即100km.A、B两地相距10cm,相当于1000km.例3:如图27.1-1,四边形ABCD和EFGH相似,求角α、β的大小和EH的长度x.图27.1-1解:四边形ABCD 和EFGH 相似,他们的对应角相等,因此可得83o C α∠=∠=,118o A E ∠=∠=在四边形ABCD 中,四边形ABCD 和EFGH 相似,他们的对应边相等,由此可得EH EF AD AB =,即242118x = 解得28x cm =27.2 相似三角形27.2.1 相似三角形的判定在△ABC 和△A ‘B ‘C ’中,如果''',,A A B B C C ∠=∠∠=∠∠=∠,''''''=AB BC AC k A B B C AC==,我们就说△ABC 和△A ‘B ‘C ’相似,记作△ABC ∽△A ‘B ‘C ’,k 就是他们的相似比.对应角相等,对应边成比例的两个三角形叫做相似三角形. 成比例线段〔简称比例线段〕:对于四条线段a 、b 、c 、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a =c b d〔或a :b=c :d 〕,那么,这四条线段叫做成比例线段,简称比例线段. 例1.如图27.2-1,在△ABC 中,点D 是边AB 的中点,DE//BC,DE 交AC 于点E,△ADE 与△ABC 有什么关系? 解:在△ADE 与△ABC 中,A A ∠=∠DE//BC过点E 作EF//AB,EF 交BC 于点F.在□BFED 中,DE=BF,DB=EF又1,2A C ∠=∠∠=∠∴△ADE ∽△EFCAE=EC=在此处键入公式。
2020-2021年九年级数学上册单元复习一遍过:第一章 图形的相似【知识梳理】
初中上册单元复习一遍过Unit 1 of junior high school精品资源·备战中考第一章《图形的相似》(知识梳理)【思维导图】【知识清单】知识点一:比和比例的有关概念(一)比和比例1.表示两个比相等的式子叫作比例式,简称比例.2.第四比例项:若a cb d=或a:b=c:d ,那么d 叫作a 、b 、c 的第四比例项.3.比例中项:若a b b c =或a:b=b:c ,b 叫作a ,c 的比例中项.4.黄金分割:把一条线段(AB )分割成两条线段,使其中较长线段(AC )是原线段AB 与较短线段(BC )的比例线段,就叫作把这条线段黄金分割.即AC2=AB·BC ,0.618AB AB ≈;一条线段的黄金分割点有两个.(二)成比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比与另两条线段的比相等,如a :b =c :d ,我们就说这四条线段是成比例线段,简称比例线段.(三)比例的基本性质及定理1.a c ad bcb d=→=2.a c a b c d b d b d±±=→=3.(b d n 0)a c m a c m a b d n b d n b +++===+++≠→=+++ (四)平行线分线段成比例定理(1)三条平行线截两条直线,所得的对应线段成比例.(2)平行于三角形一边截其他两边(或两边的延长线),所得的对应线段成比例;(3)如果一条直线截三角形的两边(或两边的延长线),所得的对应线段成比例,那么这条直线平行于三角形的第三边;(4)平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形三边对应成比例.知识点二:相似图形(一)相似图形:在数学上,我们把形状相同的图形称为相似图形.(二)相似多边形:若两个边数相同的多边形,它们的对应角相等、对应边成比例,则这两个多边形叫做相似多边形。
16初中数学“相似图形”知识点全解析
初中数学“相似图形”知识点全解析一、引言相似图形是初中数学中一个非常重要的概念,它是几何学的基础,对于培养学生的空间观念和几何直觉具有重要的作用。
本文将详细解析相似图形的概念、性质、判定方法以及应用,帮助学生更好地理解和掌握这一知识点。
二、相似图形的概念1.定义:如果两个图形对应角相等,对应边成比例,那么这两个图形叫做相似图形。
2.术语解析:在相似图形中,对应角相等的角叫做对应角,对应边成比例的边叫做对应边。
相似比是指对应边的长度之比。
三、相似图形的性质1.对应角相等:相似图形的对应角一定相等。
2.对应边成比例:相似图形的对应边之间的比例是恒定的,这个比例称为相似比。
3.面积比与相似比的关系:如果两个相似图形的相似比是k,那么它们的面积之比等于k²。
4.周长比与相似比的关系:相似图形的周长之比也等于相似比。
四、相似图形的判定方法1.三边对应成比例:如果两个三角形的三边对应成比例,那么这两个三角形相似。
2.两边对应成比例且夹角相等:如果两个三角形有两边对应成比例且夹角相等,那么这两个三角形相似。
3.两角对应相等:如果两个三角形有两个角对应相等,那么这两个三角形相似。
4.特殊角三角形的相似性:具有特殊角的三角形(如等腰三角形、直角三角形等)在满足一定条件时也可以判定为相似。
五、相似图形的应用1.几何证明:在几何证明中,利用相似图形的性质可以解决很多问题,如证明线段的比例关系、证明角的关系等。
2.实际问题解决:在实际生活中,很多问题可以通过建立数学模型并运用相似图形的知识进行解决。
例如,在建筑设计中,可以利用相似三角形的性质计算建筑物的高度或距离;在地理学中,可以利用相似图形的原理计算地球表面两点之间的距离等。
3.数学竞赛:在数学竞赛中,相似图形经常作为难题的考点出现。
掌握这一知识点可以提高学生的数学竞赛水平。
六、解题方法与技巧1.建立数学模型:在解决问题时,首先要根据问题的实际背景和条件建立数学模型,将问题转化为数学语言进行描述。
初中数学 什么是相似图形和全等图形
初中数学什么是相似图形和全等图形初中数学中,相似图形和全等图形是几何学中重要的概念。
它们描述了图形之间的形状关系和对应关系。
本文将详细介绍相似图形和全等图形的定义、性质和判定方法。
一、相似图形相似图形是指具有相同形状但不一定相等大小的图形。
在相似图形中,对应边的比例相等,对应角度相等,但图形的大小可以不同。
相似图形的性质:1. 边长比例:相似图形的对应边之间的比例相等。
2. 角度相等:相似图形的对应角度相等。
3. 全等图形是相似图形的一种特殊情况,其比例因子为1。
相似图形的判定:1. SSS判定法:如果两个图形的相应边长之比相等,则它们是相似的。
2. SAS判定法:如果两个图形的一个角相等,并且相应边长之比相等,则它们是相似的。
3. AA判定法:如果两个图形的对应角度相等,则它们是相似的。
二、全等图形全等图形是指形状、大小和内部结构都完全相等的图形。
全等图形之间的对应边长和对应角度都相等。
全等图形的性质:1. 边长相等:全等图形的对应边长相等。
2. 角度相等:全等图形的对应角度相等。
3. 全等图形之间可以进行平移、旋转、翻转等变换。
全等图形的判定:1. SSS判定法:如果两个图形的相应边长相等,则它们是全等的。
2. SAS判定法:如果两个图形的一个角相等,并且相应边长相等,则它们是全等的。
3. ASA判定法:如果两个图形的两个角和一个边相等,则它们是全等的。
总结:本文详细介绍了初中数学中的相似图形和全等图形的定义、性质和判定方法。
相似图形是指具有相同形状但不一定相等大小的图形,其边长比例相等,角度相等。
全等图形是指形状、大小和内部结构都完全相等的图形,其对应边长和对应角度都相等。
相似图形可以通过SSS、SAS和AA判定法进行判定,而全等图形可以通过SSS、SAS和ASA判定法进行判定。
通过深入理解和应用这些概念和判定方法,学生可以更好地判断、证明和应用相似图形和全等图形的性质和关系,并在实际生活中应用它们解决几何问题。
初中数学图形的相似知识点总结
初中数学图形的相似知识点总结:
图形相似:图形的形似是平面几何中极为重要的内容,是中考数学中的重点考察内容。
一般分值约为6-12分,题型以选择,填空,解答综合题目为主,难易度属于难。
考察内容是:①相似三角形的性质和判别方法,是重点。
②相似多边形的认识,黄金分割的应用。
③相似形与三角形,平行四边形的综合性题目是难点。
突破方法:①运用相似的知识解决一些实际问题,要能够在理解题意的基础上,把它转化为纯数学知识的问题,要注意培养数学建模思想。
②在综合题中,注意相似知识的领会运用,binary熟练掌握等线段代换,等比代换,等两代换技巧的应用,培养综合运用知识的能力。
③判定相似三角形的几条思路:1°条件中若有平行线,可采用相似三角形的基本定理;2°条件中若有一对的等角,可再找一对等角,利用判定1或再找家变成比例用判定2 ;3°条件中若有一对直角,可考虑再找一对等角或证明斜边,直角边对应成比例;④条件中若有的等腰关系,可找顶角相等,可找一对底角相等,也可以找底和腰对应成比例。
人教版相似知识点总结
人教版相似知识点总结一、相似三角形在平面几何中,相似三角形是指有相同形状但不一定相同大小的三角形。
相似三角形的性质和判定方法是初中数学重要的知识点之一。
1. 相似三角形的性质a. 性质1:对应角相等两个相似三角形的对应角相等,即如果两个三角形ABC和A'B'C'相似,则∠A=∠A',∠B=∠B',∠C=∠C'。
b. 性质2:对应边成比例两个相似三角形的对应边成比例,即如果两个三角形ABC和A'B'C'相似,则AB/A'B'=BC/B'C'=AC/A'C'。
c. 性质3:相似三角形的面积成比例如果两个三角形ABC和A'B'C'相似,则它们的面积之比等于边长之比的平方,即S(ABC)/S(A'B'C')=(AB/A'B')^2=(BC/B'C')^2=(AC/A'C')^2。
2. 相似三角形的判定方法a. 直角三角形的判定方法:两个直角三角形如果有一个角相等,则它们相似;或者两个直角三角形的三条边分别成比例,则它们相似。
b. 三边成比例的判定方法:两个三角形的三条边分别成比例,则它们相似。
c. 边角边(或角边角)的判定方法:两个三角形的两个角分别相等,且夹在两边成比例,则它们相似。
d. 已知相似三角形内部某个角相等的判定方法:如果两个三角形相似且三角形内部有一个角相等,则其他两个角也相等。
相似三角形的性质和判定方法在初中数学中具有重要的理论和实际应用价值,对于几何图形的相似性质和相关计算都有重要的指导作用。
二、比例比例是数学中重要的概念,主要用来描述两个量之间的相对关系。
在人教版初中数学中,比例是一个重要的知识点,包括比例的性质、比例的计算、比例的应用等内容。
1. 比例的性质a. 比例的传递性:如果a:b=c:d,则a/c=b/d;如果a/c=b/d,则a:b=c:d。
初中数学中的图形的相似变换
初中数学中的图形的相似变换在初中数学的广阔领域中,图形的相似变换是一个极为重要的概念,它就像是一把神奇的钥匙,能帮助我们打开理解和解决许多几何问题的大门。
相似变换,简单来说,就是指两个图形在形状上相同,但大小可能不同。
这种相似关系在我们的生活中随处可见。
比如,不同尺寸的照片、放大或缩小的地图,这些都是相似图形的实际应用。
相似变换包括了三种基本的操作:平移、旋转和缩放。
平移,就是将图形沿着某个方向移动一段距离,移动后的图形与原图形的形状和大小完全相同,只是位置发生了改变。
想象一下,你把一本书从桌子的左边移到右边,书的形状和大小没有任何变化,这就是平移。
旋转则是围绕一个固定的点,将图形按照一定的角度进行转动。
像是公园里的旋转木马,每匹马在围绕中心轴转动的过程中,其形状和大小始终保持不变,只是方向发生了改变。
而缩放,就是将图形按照一定的比例放大或缩小。
比如说,用放大镜看一幅画,画中的图案就被放大了,但其形状依然不变。
在数学中,判断两个图形是否相似,主要依据是它们的对应角相等,对应边成比例。
这是相似图形的核心特征。
相似三角形是相似图形中的一个重要类型。
对于相似三角形,我们有着许多重要的定理和性质。
比如,“两角分别相等的两个三角形相似”,如果一个三角形的两个角分别与另一个三角形的两个角相等,那么这两个三角形就是相似的。
再比如“两边成比例且夹角相等的两个三角形相似”,如果两个三角形的两组对应边的比值相等,并且它们的夹角也相等,那么这两个三角形也是相似的。
相似三角形的性质在解决实际问题中有着广泛的应用。
例如,在测量物体的高度时,我们常常利用相似三角形的原理。
假设我们要测量一棵大树的高度,但是直接测量是很难做到的。
这时,我们可以在同一时间、同一地点,测量一根直立的小木棍的长度以及它的影子长度,同时测量大树的影子长度。
因为太阳光线是平行的,所以大树和它的影子、小木棍和它的影子构成了相似三角形。
通过小木棍和它的影子的长度比例,以及大树影子的长度,就可以计算出大树的高度。
初中九年级数学相似知识点
初中九年级数学相似知识点相似是数学中一个重要的概念,也是数学学习中的基础内容之一。
在初中九年级的数学学习中,相似是一个重要的知识点。
本文将介绍初中九年级数学中相似的相关知识点,以及相关应用。
一、相似的概念及性质相似是指两个图形的形状相同但尺寸不同。
在数学中,我们可以通过相似来解决一些几何问题。
相似的概念有以下几个性质:1. 对应角相等性质:两个相似图形的对应角相等。
2. 对应边成比例性质:两个相似图形的对应边成比例。
二、相似三角形的判定条件在初中九年级数学中,我们通常需要判断两个三角形是否相似。
以下是判定两个三角形相似的条件:1. AAA 判定相似定理:若两个三角形的三个角分别相等,则这两个三角形相似。
2. AA 判定相似定理:若两个三角形的两个角分别相等,并且对应边成比例,则这两个三角形相似。
三、相似比例相似的两个图形的对应边成比例。
在初中九年级的数学中,我们经常会涉及到相似比例的计算。
相似比例的计算方法如下:1. 如果两个图形相似,我们可以通过已知的两组对应边的长度,计算出它们的相似比例。
2. 设相似比例为k,则相似图形中相同位置的边长度之比为k。
四、相似图形的应用相似图形在实际问题中有广泛的应用。
以下是一些常见的相似图形应用:1. 测量高楼的高度:通过在两个相似的三角形之间设置高度比例,我们可以根据已知高楼和测量结果的比例,计算出高楼的实际高度。
2. 制作地图:在地图制作过程中,我们可以通过相似的关系将一个大区域缩小到合适的尺寸,以便于绘制。
3. 三角测量:在实际测量中,我们可以利用相似三角形的边长比例关系,计算得到难以直接测量的距离。
五、总结相似是数学中一个重要的概念,在初中九年级的数学学习中,相似是一个重要的知识点。
相似的性质和判定条件可以帮助我们解决实际问题,同时也为我们理解几何形状的变化提供了基础。
相似比例的应用也是数学在实际生活中的体现。
通过深入学习相似的概念和应用,我们可以更好地理解数学知识,提高我们的数学水平。
初三数学相似知识点总结
初三数学相似知识点总结学好数学要善于总结自己掌握的数学的解题方法,只有这样你才能够真正掌握了数学的解题技巧。
做到总结和归纳是学会数学的关键。
下面是整理的初三数学相似知识点,仅供参考希望能够帮助到大家。
初三数学相似知识点1 图形的相似相似多边形的对应边的比值相等,对应角相等;两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;相似比:相似多边形对应边的比值。
2 相似三角形判定:平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。
3相似三角形的周长和面积相似三角形(多边形)的周长的比等于相似比;相似三角形(多边形)的面积的比等于相似比的平方。
4位似位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。
初二数学三角形知识点复习1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8.多边形的内角:多边形相邻两边组成的角叫做它的内角。
9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
初中数学图形的相似性质与应用
初中数学图形的相似性质与应用一、图形的相似性质数学中的相似性质是指两个图形在形状上相似的特征。
当两个图形的形状相似时,它们的相应角度相等,相应边长成比例,具有一定的对应关系。
图形的相似性质在初中数学中具有重要的意义,它不仅可以用于解决实际问题,还能够帮助我们更好地理解几何形状之间的关系。
相似三角形是图形相似性质的一个重要应用。
在相似三角形中,对应角相等,对应边成比例。
根据相似三角形的性质,我们可以利用已知信息来求解未知量。
例如,如果我们知道一个三角形的一个角度和两条边的比例,我们就可以利用相似三角形的特征,计算出其余未知量的值。
同样地,利用相似性质可以解决一些实际问题。
例如,在测量高塔的高度时,我们可以利用相似三角形的原理,通过测量阴影的长度和角度,推算出高塔的实际高度。
这种应用在实际生活中非常常见,帮助我们测量那些无法直接测量的物体尺寸。
二、相似图形的应用1. 测量物体的距离和高度相似性质可以广泛应用于测量物体的距离和高度。
例如,当我们要测量一座高楼的高度时,可以先测量我们自身的身高和身影的长度,然后利用测量结果与自身身高的比值,推算出高楼的高度。
同样地,当我们要测量一座桥的长度时,我们可以在桥上测量两段阴影的长度,并测量阴影和桥的夹角。
通过相似性质,我们可以根据阴影和桥的长度比例关系,计算出桥的长度。
2. 利用相似三角形进行缩放相似三角形的性质可以用于图形的缩放。
例如,我们可以通过相似性质将一个实际物体的图像缩小或放大,以满足一定的需求。
这在建筑设计、地图绘制等领域中被广泛应用。
通过相似性质进行缩放时,我们需要注意比例关系。
如果我们要将一个图形放大两倍,那么相应的边长也应该放大两倍。
这样,我们就可以保持图形的形状和比例关系,实现图形的放大或缩小。
3. 解决几何问题相似性质还可以帮助我们解决一些几何问题。
例如,在解决房屋设计中的一些布局问题时,相似性质能够帮助我们计算合适的尺寸比例和角度。
这样,我们就可以保持房屋的整体比例和美观度。
初三数学相似形的知识点
在计算面积、体积时,要注意使用相似形的性质,并正确计算对应边之比;
在解决解析几何问题时,要注意利用相似形的性质,并根据题意确定对应边。
希望以上内容能够帮助您更好地理解相似形的概念和应用。
在初中数学学习中,相似形是一个重要的概念。
1.定义:如果两个图形在同一坐标系内,且任意一个图形的任意一条边与任意一条角的对应边或对应角相等,则这两个图形为相似形。
2.相似形的性质:
两个相似形的相似比等于每对对应边之比的乘积相等;两个相似形源自面积之比等于每对对应边之比的平方相等;
两个相似形的体积之比等于每对对应边之比的立方相等。
3.相似形的判定:
两个图形相似,当且仅当它们的所有内角相等;
如果两个图形的两条对应边之比相等,则它们的所有内角相等;
如果两个图形的三条对应边之比相等,则它们的所有内角相等。
4.相似形的应用:
利用相似形的性质解决计算面积、体积的问题;
利用相似形的性质解决解析几何问题,如求线段中点、垂足等。
5.相似形的注意事项:
初中八年级数学相似图形
八年级(下)数学同步辅导第四章相似图形(§6~§9)Ⅰ. 梳理知识1.三角形相似的条件(1) ,两三角形相似.(2) ,两三角形相似.(3) ,两三角形相似.2.如何寻找和发现相似三角形两个三角形相似,一般说来必须具备下列六种图形之一:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.3.相似三角形与相似多边形的性质(1)相似三角形的性质①相似三角形的三边,三角.②相似三角形的,与都等于相似比.③相似三角形周长之比等于,相似三角形面积之比等于.(2)相似多边形的性质①相似多边形的对应边,对应角.②相似多边形的对角线之比、周长之比都等于.③相似多边形面积之比等于.4.几何变换(按一定的方法把一个图形变成另一个图形)(1)相似变换:保持图形的形状不变的几何变换叫做相似变换(2)位似变换①位似图形:如果两个图形不仅是图形,而且每组对应点所在的直线都,那么这样的两个图形叫做位似图形,这个点叫做,这时的相似比又称为.②位似图形的性质:位似图形上任意一对对应点到的距离之比等于位似比.5.相似三角形的应用——测量旗杆的高度(利用阳光下的影子;利用标杆;利用镜子的反射.) Ⅱ. 典例剖析例1.如图,DE∥BC,SΔDOE∶SΔCOB=4∶9,求AD∶BD.例2.如图,四边形ABCD是平行四边形,AE⊥BC于E,AF⊥CD于F.(1)ΔABE与ΔADF相似吗?说明理由.(2)ΔAEF与ΔABC相似吗?说说你的理由.例3.如图,在Rt ΔABC 中,∠C=90°,AC=4,BC=3.(1)如图(1),四边形DEFG 为ABC 的内接正方形,求正方形的边长.(2)如图(2),三角形内有并排的两个相等的正方形,它们组成的矩形内接于ΔABC ,求正方形的边长.(3)如图(3),三角形内有并排的三个相等的正方形,它们组成的矩形内接于ΔABC ,求正方形的边长.(4) 如图(4),三角形内有并排的n 个相等的正方形,它们组成的矩形内接于ΔABC ,请写出正方形的边长.Ⅲ.同步测试一、选择题(每小题3分,共30分)1、在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为2.5米,那么影长为30米的旗杆的高是( )A.20米 .B.18米C.16米D.15米2、如图,D 、E 分别是AB 、AC 上两点,CD 与BE 相交于点O ,下列条件中不能使ΔABE 和ΔACD 相似的是( )A.∠B=∠CB.∠ADC=∠AEBC.BE=CD ,AB=ACD.AD ∶AC=AE ∶AB3、如图所示,D 、E 分别是ΔABC 的边AB 、AC 上的点,DE ∥BC ,并且AD ∶BD=2,那么S ΔADE ∶S 四边形DBCE =( ) (A)32 (B)43 (C)54 (D)94 4.在矩形ABCD 中,E 、F 分别是CD 、BC 上的点,若∠AEF=90°,则一定有( )(A)ΔADE ∽ΔAEF (B)ΔECF ∽ΔAEF (C)ΔADE ∽ΔECF (D)ΔAEF ∽ΔABF(第2题图) (第3题图) (第4题图) (第5题图)5、厨房角柜的台面是三角形(如图所示),如果把各边中点连线所围成的三角形铺成黑色大理石(图中阴影部分),其余部分铺成白色大理石,则黑色大理石面积与白色大理石的面积之比是( )A.1∶2B.1∶3C.1∶4D.1∶56、如图,在大小为4×4的正方形网格中,是相似三角形的是( )① ② ③ ④A.①和②B.②和③C.①和③D.②和④7、如图是圆桌正上方的灯泡O 发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m ,桌面距离地面1m ,若灯泡O 距离地面3m ,则地面上阴影部分的面积为( )A.0.36πm 2B.0.81πm 2C.2πm 2D.3.24πm 28、如图,直线l 1∥l 2,AF ∶FB=2∶3,BC ∶CD=2∶1,则AE ∶EC 是( )A.5∶2B.4∶1C.2∶1D.3∶29、如图,三个正六边形全等,其中成位似图形关系的有( )A.4对B.1对C.2对D.3对(第7题图) (第8题图) (第9题图) (第10题图)10、平面直角坐标系中,有一条“鱼,它有六个顶点”,则( )A.将各点横坐标乘以2,纵坐标不变,得到的鱼与原来的鱼位似B.将各点纵坐标乘以2,横坐标不变,得到的鱼与原来的鱼位似C.将各点横、纵坐标都乘以2,得到的鱼与原来的鱼位似D.将各点横坐标乘以2,纵坐标乘以21,得到的鱼与原来的鱼位似 二、填空题(每小题4分,共20分) 11、两个相似多边形的一组对应边分别为3cm 和4.5cm ,如果它们的面积之和为130cm 2,那么较小的多边形的面积是 cm 2.12、如图,DE 与BC 不平行,当ACAB = 时,ΔABC 与ΔADE 相似.(第12题图) (第13题图) (第14题图) (第15题图)13、如图,AD=DF=FB ,DE ∥FG ∥BC ,则S Ⅰ∶S Ⅱ∶S Ⅲ= .14、如图,正方形ABCD 的边长为2,AE=EB ,MN=1,线段MN 的两端在CB 、CD 上滑动,当CM= 时,ΔAED 与N ,M ,C 为顶点的三角形相似.15、如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 或 时,使得由点B 、O 、C 组成的三角形与ΔAOB 相似(至少写出两个满足条件的点的坐标).三、解答题(每小题8分,共40分)16、如图,ΔABC 中,BC=a .(1)若AD 1=31AB ,AE 1=31AC ,则D 1E 1= ; (2)若D 1D 2=31D 1B ,E 1E 2=31E 1C ,则D 2E 2= ;(3)若D 2D 3=31D 2B ,E 2E 3=31E 2C ,则D 3E 3= ; …… (4)若D n -1D n =31D n -1B ,E n -1E n =31E n -1C ,则D n E n = . 17、已知:如图,ΔABC 中,∠B=∠C=30°.请你设计三种不同的分法,将ΔABC 分割成四个三角形,使得其中两个是全等三角形,而另外两个是相似三角形但不全等的直角三角形.请画出分割线段,标出能够说明分法的所得三角形的顶点和内角度数或记号,并在各种分法的空格线上填空.(画图工具不限,不要求写出画法,不要求说明理由).分法一 分法二 分法三分法一:分割后所得的四个三角形中,Δ ≌Δ ,Rt Δ ∽Rt Δ . 分法二:分割后所得的四个三角形中,Δ ≌Δ ,Rt Δ ∽Rt Δ . 分法三:分割后所得的四个三角形中,Δ ≌Δ ,Rt Δ ∽Rt Δ .18、在比例尺为1∶5000的地图上,一块多边形地区的周长是72cm ,面积是320cm 2,求这个地区的实际周长和面积.19、如图,ΔABC 中,BD 是角平分线,过D 作DE ∥AB 交BC 于点E ,AB=5cm ,BE=3cm ,求EC 的长.20、如图,四边形ABCD 、CDEF 、EFGH 都是正方形.(1)⊿ACF 与⊿ACG 相似吗?说说你的理由.(2)求∠1+∠2的度数.五、(本题10分)21、在ΔABC 中,AB=4如图(1)所示,DE ∥BC ,DE 把ΔABC 分成面积相等的两部分,即S Ⅰ=S Ⅱ,求AD 的长. 如图(2)所示,DE ∥FG ∥BC ,DE 、FG 把ΔABC 分成面积相等的三部分,即S Ⅰ=S Ⅱ=S Ⅲ,求AD 的长.如图(3)所示,DE ∥FG ∥HK ∥…∥BC ,DE 、FG 、HK 、…把ΔABC 分成面积相等的n 部分,S Ⅰ=S Ⅱ=S Ⅲ=…,请直接写出AD 的长.。
初中数学 如何判断两个图形是否相似
初中数学如何判断两个图形是否相似要判断两个图形是否相似,我们可以考虑以下几个方法:1. 观察对应角度是否相等:如果两个图形的对应角度相等,那么它们很可能是相似的。
对应角度是指在两个图形中相同位置的角度。
例如,如果两个三角形的对应角度相等,那么它们可能是相似的。
2. 比较对应边长是否成比例:如果两个图形的对应边长成比例,那么它们可能是相似的。
对应边长是指在两个图形中相同位置的边长。
例如,如果两个三角形的对应边长成比例,那么它们可能是相似的。
3. 使用相似三角形的性质:根据相似三角形的性质,我们可以判断两个三角形是否相似。
相似三角形的性质包括对应角度相等和对应边长成比例。
如果两个三角形满足这些性质,那么它们是相似的。
4. 利用比例关系:如果我们知道一个图形的各个部分之间的比例关系,我们可以根据这个比例关系来判断另一个图形是否相似。
比例关系可以是长度比例、面积比例等。
如果两个图形的各个部分之间的比例关系相同,那么它们可能是相似的。
5. 使用相似性判定定理:相似性判定定理是几何学中用来判断两个图形是否相似的定理。
根据不同的定理,我们可以利用一些特定的条件来判断相似性。
例如,AA判定定理指出,如果两个三角形的两个对应角度相等,那么它们是相似的。
需要注意的是,判断两个图形是否相似通常需要多个条件的共同验证。
只有满足所有相似性的条件,我们才能确定两个图形是相似的。
总结一下,判断两个图形是否相似可以通过观察对应角度是否相等、比较对应边长是否成比例、使用相似三角形的性质、利用比例关系和应用相似性判定定理等方法。
在判断过程中,需要注意验证多个条件,确保满足相似性的要求。
初中数学知识归纳相似的判定与计算
初中数学知识归纳相似的判定与计算相似性是数学中一种重要的概念和判定方法。
在初中数学中,我们经常会遇到与相似有关的问题,如图形的相似判定、相似图形的计算等。
本文将对初中数学中与相似有关的知识进行归纳总结,并介绍相应的判定方法和计算技巧。
一、图形相似的判定方法在初中数学中,判定两个图形相似的方法主要有以下几种:1. 边长比较法:如果两个图形的对应边的长度之比相等,那么这两个图形是相似的。
例如,在三角形中,如果三个对应边的长度之比相等,则这两个三角形相似。
2. 角度比较法:如果两个图形的对应角度相等,那么这两个图形是相似的。
例如,在三角形中,如果三个对应角度相等,则这两个三角形相似。
3. 角边比较法:如果两个图形的一个内角相等,且两个对应边的比值相等,那么这两个图形是相似的。
例如,在三角形中,如果一个内角相等,且两个对应边的比值相等,则这两个三角形相似。
二、相似图形的计算技巧在相似图形中,我们可以利用已知信息来计算未知量,通过相似比例的性质,得出所需的答案。
下面是一些常见的相似图形计算技巧:1. 直角三角形中,根据勾股定理,可以利用已知两个边的长度求解第三边的长度。
当两个直角三角形相似时,可以通过已知一个直角三角形的两条边求解另一个直角三角形的边长。
2. 在平行四边形中,如果两个平行四边形相似,那么它们的相应边长之比等于相应的对角线之比。
所以可以根据已知信息求解未知边长或对角线的长度。
3. 在三角形中,如果两个三角形相似,那么它们的相应边长之比等于相应角度的正弦值之比。
所以可以利用已知三角形的边长和角度信息求解未知量。
三、实例分析为了更好地理解相似判定与计算,在这里我们来看一个实例:【例】已知两个三角形ABC和DEF,已知∠A=∠D,∠B=∠E,AB/DE=3/2,BC/EF=4/3,求解∠C与∠F的关系。
解:由已知条件可知,三角形ABC和DEF相似。
根据相似三角形的性质,可得:∠A=∠D∠B=∠EAB/DE=3/2BC/EF=4/3根据相似性的角度比较法,可得∠C=∠F。
相似图形初中数学模型
都经过同一个点,那么这两个图形是位似图形; ④位似图形上任意两点与位似中心的距离之比等于位似比. 其中正确命题的序号是( A ) A.②③ B.①② C.③④ D.②③④
在 Rt△BAE 中,AB=4 2,AE=2,
∴BE= AB2+AE2=6.∴AD=6.
课堂精练
(2)如图 2,连接 BE.
在
Rt△ACB
中,∠ABC=∠CED=30°,tan
30°=ABCC=CCDE=
3 3.
∵∠ACB=∠DCE=90°,∴∠BCE=∠ACD.
在△ACD 和△BCE 中,ABCC=CCDE,∠ACD=∠BCE,
当堂过关
(2)设横向影子 A′B,D′C 的长度和为 y cm. 同理可得606+0 y=115800,解得 y=12 cm.
(3)∵AD∥A′D′,∴△PAD∽△PA′D′.∴AA′DD′=PPMN . 设灯泡离地面距离为 x.由题意,得 PM=x,PN=x-a,AD=na,A′D′=na+b, ∴nan+a b=x-x a=1-xa, 即xa=1-nan+a b.∴x=na2+b ab.
DE∥AC,若S△BDE=4,S△CDE=16,则△ACD的面积为( C )
A.64 B.72 C.80 D.96
当堂过关
4.如图,在▱ABCD中,E为CD上一点,连接AE,BD,且AE, BD交于点F,S△DEF∶S△ABF=4∶25,则DE∶EC=( B )
A.2∶5
B.2∶3 C.3∶5
D.3∶2
A.1∶4
B.1∶3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学图形的相似知识点总结:
图形相似:图形的形似是平面几何中极为重要的内容,是中考数学中的重点考察内容。
一般分值约为6-12分,题型以选择,填空,解答综合题目为主,难易度属于难。
考察内容是:①相似三角形的性质和判别方法,是重点。
②相似多边形的认识,黄金分割的应用。
③相似形与三角形,平行四边形的综合性题目是难点。
突破方法:①运用相似的知识解决一些实际问题,要能够在理解题意的基础上,把它转化为纯数学知识的问题,要注意培养数学建模思想。
②在综合题中,注意相似知识的领会运用,binary熟练掌握等线段代换,等比代换,等两代换技巧的应用,培养综合运用知识的能力。
③判定相似三角形的几条思路:1°条件中若有平行线,可采用相似三角形的基本定理;2°条件中若有一对的等角,可再找一对等角,利用判定1或再找家变成比例用判定2 ;3°条件中若有一对直角,可考虑再找一对等角或证明斜边,直角边对应成比例;④条件中若有的等腰关系,可找顶角相等,可找一对底角相等,也可以找底和腰对应成比例。