概率论与数理统计1.复习(修改)

合集下载

概率论与数理统计复习题1-知识归纳整理

概率论与数理统计复习题1-知识归纳整理

概率论与数理统计复习题(一)A. 古典概型挑选题1. 在所有两位数(10-99)中任取一两位数,则此数能被2或3整除的概率为 ( ) A. 6/5 B . 2/3 C. 83/100 D.均不对2. 对事件A,B.下列正确的命题是 ( ) A .如A,B 互斥,则A ,B 也互斥B. 如A,B 相容,则A ,B 也相容C. 如A,B 互斥,且P(A)>0,P(B)>0,则A.B 独立 D . 如A,B 独立,则A ,B 也独立3. 掷二枚骰子,事件A 为闪现的点数之和等于3的概率为 ( ) A.1/11 B . 1/18 C. 1/6 D. 都不对5. 甲,乙两队比赛,五战三胜制,设甲队胜率为0.6,则甲队取胜概率为( ) A. 0.6B. C 35*0.63*0.42C. C 350.63*0.42+C 45*0.64*0.4D .C 35*0.63*0.42+C 45*0.64*0.4+0.656. 某果园生产红富士苹果,一级品率为0.6,随机取10个,恰有6个一级品之概率( ) A. 1B. 0.66C . C 466104.06.0D.(0.6)460.4)(7. 一大楼有3层,1层到2层有两部自动扶梯,2层到3层有一部自动扶梯,各扶梯正常工作的概率为 P ,互不影响,则因自动扶梯不正常不能用它们从一楼到三楼的概率为( ) A.(1-P )3 B. 1-P 3C . 1-P 2(2-P )D.(1-P )(1-2P )8. 甲,乙,丙三人共用一打印机,其使用率分别p, q, r ,三人打印独立,则打印机空暇率为( ) A. 1-pqr B . (1-p )(1-q )(1-r ) C. 1-p-q-r D. 3-p-q-r 9. 事件A,B 相互独立, P(A)=0.6, P( A B )=0.3, 则 P(AB)=( ) A . 0.15 B. 0.2 C. 0.25 D. 0.110. 甲,乙各自射击一目标,命中率分别为0.6和0.5,已知目标被击中一枪,则此枪为甲命中之概率 ( ) A . 0.6 B. 0.3 C. 0.5 D. 0.55 11. 下列命题中,真命题为 ( )A. 若 P (A )=0 ,则 A 为不可能事件知识归纳整理B .若A,B 互不相容,则1BA P )=( C.若 P(A)=1,则A 何必然事件D.若A,B 互不相容,则 P(A)=1-P(B)12. A,B 满足P(A)+P(B)>1,则A,B 一定( )A. 不独立B. 独立C. 不相容 D . 相容13. 若 ( ),则〕〕〔=〔)P(B)-1P(A)-1B A P( A. A,B 互斥 B. A>B C. 互斥,B A D . A,B 独立14. 6本中文书,4本外文书放在书架上。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。

-频率和概率的关系,概率的基本性质。

-古典概型和几何概型的概念。

-条件概率和乘法定理。

-全概率公式和贝叶斯公式。

-随机变量和概率分布函数的概念。

-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。

2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。

-协方差、相关系数和线性变换的数学期望和方差公式。

-两个随机变量的和、差、积的数学期望和方差公式。

3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。

-中心极限定理的概念和中心极限定理的两种形式。

4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。

-样本统计量和抽样分布的概念。

-点估计和区间估计的概念。

-假设检验的基本思想和步骤。

-正态总体的参数的假设检验和区间估计。

5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。

-矩估计的原理和方法。

-最小二乘估计的原理和方法。

-一般参数的假设检验和区间估计。

6.相关分析和回归分析-相关系数和线性相关的概念和性质。

-回归分析的一般原理。

-简单线性回归的估计和检验。

7.非参数统计方法-秩和检验和符号检验的基本思想和应用。

-秩相关系数的计算和检验。

8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。

-正态总体参数的拟合优度检验。

-贝叶斯估计的基本思想和方法。

9.时间序列分析和质量控制-时间序列的基本性质和分析方法。

-时间序列预测的方法和模型。

-质量控制的基本概念和控制图的应用。

以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。

概率论与数理统计复习资料

概率论与数理统计复习资料

自考04183概率论与数理统计(经管类)笔记-自考概率论与数理统§1.1 随机事件1.随机现象:确定现象:太阳从东方升起,重感冒会发烧等;不确定现象:随机现象:相同条件下掷骰子出现的点数:在装有红、白球的口袋里摸某种球出现的可能性等;其他不确定现象:在某人群中找到的一个人是否漂亮等。

结论:随机现象是不确定现象之一。

2.随机试验和样本空间随机试验举例:E1:抛一枚硬币,观察正面H、反面T出现的情况。

E2:掷一枚骰子,观察出现的点数。

E3:记录110报警台一天接到的报警次数。

E4:在一批灯泡中任意抽取一个,测试它的寿命。

E5:记录某物理量(长度、直径等)的测量误差。

E6:在区间[0,1]上任取一点,记录它的坐标。

随机试验的特点:①试验的可重复性;②全部结果的可知性;③一次试验结果的随机性,满足这些条件的试验称为随机试验,简称试验。

样本空间:试验中出现的每一个不可分的结果,称为一个样本点,记作。

所有样本点的集合称为样本空间,记作。

举例:掷骰子:={1,2,3,4,5,6},=1,2,3,4,5,6;非样本点:“大于2点”,“小于4点”等。

3.随机事件:样本空间的子集,称为随机事件,简称事件,用A,B,C,…表示。

只包含一个样本点的单点子集{}称为基本事件。

必然事件:一定发生的事件,记作不可能事件:永远不能发生的事件,记作4.随机事件的关系和运算由于随机事件是样本空间的子集,所以,随机事件及其运算自然可以用集合的有关运算来处理,并且可以用表示集合的文氏图来直观描述。

(1)事件的包含和相等包含:设A,B为二事件,若A发生必然导致B发生,则称事件B包含事件A,或事A包含于事件B,记作,或。

性质:例:掷骰子,A:“出现3点”,B:“出现奇数点”,则。

注:与集合包含的区别。

相等:若且,则称事件A与事件B相等,记作A=B。

(2)和事件概念:称事件“A与B至少有一个发生”为事件A与事件B的和事件,或称为事件A与事件B的并,记作或A+B。

概率论与数理统计(经管类)复习要点 第1章 随机事件与概率

概率论与数理统计(经管类)复习要点 第1章 随机事件与概率

第一章随机事件与概率1. 从发生的必然性角度区分,现象分为确定性现象和随机现象。

随机现象:在一定条件下,可能出现这样的结果,也可能出现那样的结果,预先无法断言。

统计规律性:在大量重复试验或观察中所呈现的固有规律性。

概率论与数理统计就是研究和揭示随机现象统计规律的一门数学学科,随机现象是概率论与数理统计的主要对象。

(1)概率论:从数量上研究随机现象的统计规律性的科学。

(2)数理统计:从应用角度研究处理随机性数据,建立有效的统计方法,进行统计推理。

2. (1)试验的可重复性——可在相同条件下重复进行;(2)一次试验结果的随机性——一次试验之前无法确定具体是哪种结果出现,但能确定所有的可能结果;(3)全部试验结果的可知性——所有可能的结果是预先可知的。

在概率论中,将具有上述三个特点的试验成为随机试验,简称试验,记作E。

样本点:试验的每一个可能出现的结果称为一个样本点,记为ω。

样本空间:试验的所有可能结果所组成的集合称为试验E的样本空间,记为Ω。

3. 在一次试验中可能出现也可能不出现的事件,统称为随机事件,记作A,B,C或A1,A2,…随机事件:样本空间Ω的任意一个子集称, 简称“事件”,记作A、B、C等。

事件发生:在一次试验中,当这一子集中的一个样本点出现时。

基本事件:样本空间Ω仅包含一个样本点ω的单点子集{ω}。

两个特殊事件:必然事件Ω、不可能事件φ样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生,称为必然事件。

空集φ不包含任何样本点,它也作为样本空间Ω的子集,在每次试验中都不发生,称为不可能事件。

4. 随机事件的关系与运算(1)事件的包含与相等设A,B为两个事件,若A发生必然导致B发生,则称事件B包含A,或称事件A包含在B中,记作B⊃A,A⊂B。

①φ⊂A⊂Ω②若A⊂B且B⊂A,则称A与B相等,记作A=B。

事实上,A和B在意义上表示同一事件,或者说A和B 是同一事件的不同表述。

(2)和事件称事件“A,B中至少有一个发生”为事件A与事件B的和事件,也称为A与B的并,记作A∪B或A+B。

概率论与数理统计复习提纲

概率论与数理统计复习提纲

概率论与数理统计复习提纲概率论与数理统计总复习第⼀讲随机事件及其概率⼀随机事件,事件间的关系及运算 1.样本空间和随机事件 2.事件关系,运算和运算律⑴事件的关系和运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ?=?,B A B A ?=?;⼆概率的定义和性质 1.公理化定义(P7)2.概率的性质(P8.五个) ⑴)(1)(A P A P -=;⑵)()()()(AB P B P A P B A P -+=?;3.古典概型和⼏何概型4.条件概率 )()()|(A P AB P A B P =三常⽤的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P17-20.) 四事件的独⽴性1.定义:A 和B 相互独⽴ )()(B P A B P =或)()()(B P A P AB P ?=,2.贝努利试验在n 重贝努利试验中,事件=k A {A 恰好发⽣k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(第⼆讲随机变量及其概率分布⼀随机变量及其分布函数1.随机变量及其分布函数 )()(x X P x F ≤=)(+∞<<-∞x2.分布函数的性质(P35.四个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常⽤来确定分布函数中的未知参数)⑵)()()(a F b F b X a P -=≤<(常⽤来求概率) ⼆离散型随机变量及其分布律1.分布律2.常⽤的离散型分布三连续型随机变量 1.密度函数 ?∞-=xdt t f x F )()(2.密度函数的性质(P39.七个) ⑴1)(=?+∞∞-dx x f ;(常⽤来确定密度函数中的参数)⑵?=≤adx x f b X a P )()(;(计算概率的重要公式)⑶对R x ∈?,有0)(==c X P (换⾔之,概率为0的事件不⼀定是不可能事件). 3.常⽤连续型分布重点:正态分布:)0,(21)(22)(>=--σσµσπσµ都是常数,x ex f标准正态分布)1,0(N :2221)(x ex -=π四随机变量函数的分布1.离散情形设X 的分布律为则)(X g Y =的分布律为2.连续情形设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。

概率论与数理统计 期末复习1

概率论与数理统计 期末复习1

概率论与数理统计 期末复习(一)第二章 随机变量及其分布一、了解离散性随机变量及其概率分布:特征:可列无穷多 二、熟练掌握三种常用离散性随机变量的分布律(0-1)分布 、 二项分布、 泊松分布(泊松定理的应用) (知道:期望方差)【例1-1】某种型号器件的寿命X(以小时计)具有概率密度()⎪⎩⎪⎨⎧>=,其他00100,10002x x x f现有一大批此种器件(设备损坏与否相互独立),任取5只,问其中至少有2只寿命大于1500小时的概率.【例1-2】设顾客在某银行窗口等待服务的时间X(min)服从指数分布,其概率密度为()⎪⎩⎪⎨⎧>=-,其他00,515/x ex f x X 某顾客在窗口等待服务,若超过10min ,他就离开,他一个月要到银行5次,以Y 表示一个月内他未等到服务而从窗口离开的次数,写出Y 的分布律,并求出{}1≥Y P .【例1-3】设有80台同类型设备,各台工作是相互独立的,发生故障的概率都是0.01,且一台设备的故障能由一个人处理.考虑两种配备维修工人的方法,其一是由4人维护,每人维护20台;其二是由3人共同维护80台.试比较这两种方法在设备发生故障时不能及时维修的概率的大小.【例2-1】一电话总机每分钟收到呼唤的次数服从参数为4的泊松分布,求某一分钟内呼唤次数大于2的概率.【例2-2】保险公司在一天内承保了5000张相同年龄,为期一年的寿险保单,每人一份.在合同有效期内若投保人死亡,则公司需赔付3万元. 设在一年内,该年龄段的死亡率为0.0015,且各个投保人是否死亡相互独立. 求该公司对于这批投保人的赔付金额总数不超过30万元的概率.三、熟练掌握连续型随机变量分布函数的概念,以及概率密度和随机变量分布函数的关系要点: {}x X P x F ≤=)(;⎰=∞-xdt t f x F )()(,若)(x F 在x 点连续,则有)()('x f x F =; 概率密度的性质:⎰=≥∞∞-1)(,0)(dx x f x f 满足这两个条件的函数才可以认为是概率密度;四、熟练掌握三种连续型随机变量的分布 均匀分布、指数分布、正态分布(知道:概率密度、分布函数、期望方差) 【例3-1】设随机变量X 的分布函数为:⎪⎩⎪⎨⎧≥<≤<=e x e x x x x F X ,11,ln 1,0)((1) 求{}{}⎭⎬⎫⎩⎨⎧<<≤<<252,30,2X P X P X P ;(2) 求概率密度)(x f X .【例3-2】设随机变量X 的概率密度为:()⎪⎩⎪⎨⎧<≤-<≤=其他,,,021210x x x x x f求X 的分布函数.【例3-3】设()()x g x f ,都是概率密度函数,求证:()()()()10,1≤≤-+=αααx g x f x h 是一个概率密度函数.【例4-1】设K 在(0,5)服从均匀分布,求关于x 的方程:02442=+++K Kx x有实数根的概率.【例4-2】(记住正态分布引理) 设随机变量()22,3~N X :(1) 求{}52≤<X P ;(2) 试确定常数c,使得{}{}c X P c X P ≤=>;(3) 试确定常数d 的最小值,使得{}9.0≥>d X P .【例4-3】设顾客在某银行窗口等待服务的时间X(min)服从指数分布,其概率密度为()⎪⎩⎪⎨⎧>=-,其他00,515/x ex f x X 某顾客在窗口等待服务,若超过10min ,他就离开,他一个月要到银行5次,以Y 表示一个月内他未等到服务而从窗口离开的次数,写出Y 的分布律,并求出{}1≥Y P .五、求随机变量的函数分布的两种方法: (1)直接法:{}{})]'())[(?()())(?()()(111y g y g x f y f y g x F y x g P y Y P y F X Y X Y ---=⇒=≤=≤=(2)定理法:P52 定理直接套公式(套公式要注意在x 的定义域上)(x g y =必须是严格单调!)【例5-1】设)1,0(~N X (1) 求X e Y =的概率密度;(2) 求122+=X Y 的概率密度; (3) 求X Y =的概率密度.【例5-2】设随机变量X 的概率密度为()⎪⎩⎪⎨⎧>=-,其他00,x e x f x 求2X Y =的概率密度.【练习】1. 某人进行射击,设每次射击的命中率为0.02,独立射击400次,试估计他至少击中2次的概率.2. 设()λπ~X ,且{}{}21===X P X P ,求{}4=X P .3. 设()λπ~X ,其分布律为{},...2,1,0,!===-k k e k X P kλλ,试确定k 的值,使得{}k X P =最大.4. 设()p n b X ,~,其分布律为{}10.,...,2,1,0,)1(<<=-==-p n k p p C k X P k n kk n ,试确定k 的值,使得{}k X P =最大.5. 设连续型随机变量X 的分布函数为: ()()+∞<<∞-+=x x B A x F arctan(1) 求B A ,的值;(2) 求X 的概率密度()x f .6. 设连续型随机变量X 的概率密度为:()⎩⎨⎧<<+=其他,010,x b ax x f且8521=⎭⎬⎫⎩⎨⎧>X P ,(1) 求b a ,的值;(2) 求⎭⎬⎫⎩⎨⎧≤<2141x P ;(3) 求随机变量X 的分布函数()x F .7. 对某地区考生抽样调查的结果表明,考生的数学成绩(百分制)近似服从()2,72σN ,其中σ未知,已知96分以上的考生占总数的2.3%.试求考生的数学成绩介于60分与84分之间的概率.8. 设321,,X X X 是随机变量,且()()()232213,5~,2,0~,1,0~N X N X N X ,{}22≤≤-=x P P j ,(j=1,2,3),则( )(13-8)(A) 321P P P >> (B) 312P P P >> (C) 213P P P >> (D) 231P P P >>9. (13-14)设随机变量Y 服从参数为1的指数分布,a 为常数且大于零,则{}a Y a Y P >+≤1的值为.10. (11-8)设()()x F x F 21,为2个分布函数,其相对应的概率密度为()()x f x f 21,,其都是连续函数,则下列选项中必为概率密度的是( )(A) ()()x f x f 21 (B) ()()x F x f 122 (C) ()()x F x f 21 (D) ()()()()x F x f x F x f 1221+11. (10-8)设()x f 1为标准正态分布的概率密度,()x f 2为[-1,3]上均匀分布的概率密度,若()()())0,0(0,0,21>>⎩⎨⎧>≤=b a x x bf x x af x f 为概率密度,则b a ,应该满足( )(A) 432=+b a (B) 423=+b a (C) 1=+b a (D) 2=+b a12. (06-14)设随机变量X 服从正态分布()2111,σμN ,随机变量Y 服从正态分布()2222,σμN ,且{}{}1121<-><-μμY P X P ,则下列结论成立的是( )(A) 21σσ< (B) 21σσ> (C) 21μμ< (D) 21μμ>13. (02-21)设随机变量X 的概率密度为: ()⎪⎩⎪⎨⎧≤≤=其他,00,2cos 21πx x x f 对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.14. 设随机变量),(~σμN X ,求证:随机变量)0,(≠+=a b a b aX Y 为常数,也服从正态分布 ()2','~σμN Y ,并指出2','σμ的值.15. 设随机变量X 在区间()10,服从均匀分布. (1) 求X e Y =的概率密度;(2) 求X Y ln 2-=的概率密度.。

概率论与数理统计复习题(1)

概率论与数理统计复习题(1)

概率论与数理统计复习题(1)复习题概率论与数理统计复习题一、填空题1.已知则.2.已知,A, B两个事件满足条件,且,则。

3.设一批产品有12件,其中2件次品,10件正品,现从这批产品中任取3件,若用表示取出的3件产品中的次品件数,则.4.同时抛掷3枚硬币,以X表示出正面的个数,则X的概率分布为.5.设随机变量X的概率密度为用Y表示对X的3次独立重复观察中事件出现的次数,则。

6.设随机变量X~,且,则_________7.若二维随机变量(X, Y)的区域上服从均匀分布,则(X,Y)的密度函数为8.设二维随机变量(X,Y)的概率密度为则。

9.设随机变量X的分布律为X-202P0.40.30.3。

10.设随机变量X的概率密度为则 A = 。

11.设,则,。

12.已知离散型随机变量X服从参数为2的泊松分布,,则。

13.设,,,则.14.设总体是来自总体X的样本,则,。

15.设是总体的样本,则当常数时,是参数的无偏估计量.16.一袋中有50个乒乓球,其中20个红球,30个白球,今两人从袋中各取一球,取后不放回,则第二个人取到红球的概率为。

.17.已知、两事件满足条件,且,则= 。

18.已知,,,则、、都不发生的概率为。

.19.设一次试验中事件发生的概率为,又若已知三次独立试验中至少出现一次的概率等于,则。

.20.设事件和中至少有一个发生的概率为,和中有且仅有一个发生的概率为,那么和同时发生的概率为.21.20个运动员中有两名国家队队员,现将运动员平分为两组,则两名国家队队员分在不同的组的概率为。

.22.已知,,则.23.甲袋中有5只白球,5只红球,15只黑球,乙袋中有10只白球,5只红球,10只黑球,从两袋中各取一球,则两球颜色相同的概率为.24.设、是随机事件,,,,则,,.25.设两两相互独立的三个事件、、满足条件,,且已知,则.26.若,且,,则.27.设、为随机事件,已知,,,则.28.设,,,则0.1,0.5,.29.已知,,,则.30.设、相互独立,,,则.31.已知,,,则.32.一个实习生用同一台机器接连独立的制造了3个同种零件,第个零件不合格的概率为,以表示3零件中合格品的个数,则。

概率论与数理统计第一章期末复习

概率论与数理统计第一章期末复习

概率论与数理统计第一章期末复习(一)随机事件1.随机现象定义1在一定的条件下,并不总是出现相同结果的现象称为随机现象.定义2只有一个结果的现象称为确定性现象.2.样本空间定义3一个试验如果满足下述条件:(1)试验可以在相同的情形下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.就称这样的试验是一个随机试验,记作E.定义4随机试验E的所有可能结果组成的集合称为E的样本空间,记作Ω.样本空间的元素,即E的每个结果,称为样本点,记作ω.3.随机事件定义5随机试验的某些样本点的集合称为随机事件,简称事件,常用大写英文字母A,B,C,…表示.定义6由样本空间Ω中的单个元素组成的子集称为基本事件.而样本空间Ω的最大子集(即Ω本身)称为必然事件,样本空间Ω的最小子集(即空集∅)称为不可能事件.4.事件的关系与运算下面的讨论总是假设在同一个样本空间Ω中进行.1)包含关系⊂如果属于A的样本点必属于B,则称A包含于B或称B包含A,记作A B ⊃.用概率的语言说:事件A发生必然导致事件B发生.或B A对任一事件A,必有∅Ω⊂A.⊂2)相等关系如果属于A的样本点必属于B,且属于B的样本点必属于A,即BA⊂且=.AB⊂,则称事件A与B相等,记作A B3)互不相容(互斥)如果A 与B 没有相同的样本点,则称A 与B 互不相容(互斥).即事件A 与事件B 不可能同时发生.4)两事件的和事件“事件A 与B 中至少有一个发生”,这样的一个事件称作事件A 与B 的和(或并),记作B A .5)两事件的积事件“事件A 与B 同时发生”,这样的一个事件称作事件A 与B 的积(或交),记作B A (或AB ).6)两事件的差事件“事件A 发生而B 不发生”,这样的事件称为事件A 对B 的差,记作A B -.7)对立事件或逆事件若=AB ∅且Ω=B A ,则称A 与B 为对立事件或互为逆事件,事件A 的对立事件记作A .【例1】设A 、B 、C 是Ω中的随机事件,则(1)事件{A 发生且B 与C 至少有一个发生}可表示为:)(C B A ;(2)事件{A 与B 发生而C 不发生}可表示为:C AB ;(3)事件{A 、B 、C 中至少有两个发生}可表示为:BC AC AB ;(4)事件{A 、B 、C 中至多有两个发生}可表示为:ABC ;(5)事件{A 、B 、C 中不多于一个发生}可表示为:AB BC AC ;(6)事件{A 、B 、C 中恰有一个发生}可表示为:ABC ABC ABC .【例2】关系()成立,则事件A 与B 为对立事件.A .=AB ∅B .Ω=B AC .=AB ∅,Ω=B AD .=AB ∅,Ω≠B A 【解析】由对立事件的概念可知选项C 正确.【例3】甲、乙两人谈判,设事件A ,B 分别表示甲、乙无诚意,则B A 表示()A .两人都无诚意B .两人都有诚意C .两人至少有一人无诚意D .两人至少有一人有诚意【解析】由题可知A 与B 分别表示甲、乙有诚意,则B A 表示甲、乙两人至少有一人有诚意,故选项D 正确.5.事件的运算性质(1)交换律:A B B A =,BA AB =;(2)结合律:C B A C B A )()(=,)()(BC A C AB =;(3)分配律:()()()A B C AB AC = ,()()()A B C A C B C = ;(4)对偶律:B A B A = ,B A AB =.一些有用的等式:A A A = ,A Ω=Ω ,A A ∅= AA A =,A A Ω=,A ∅=∅A B A AB AB -=-=,A B A B A =【例4】化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .【解】(1) A B B A B A B A ==)())((ØA =;(2)AC B C A B C B B A ==)())((;(3)))(())((B A B B A B A B A B A =AB AB A A B A A === )(.(二)随机事件的概率1.概率的公理化定义定义1设E 是随机试验,Ω是它的样本空间.对于E 的每一事件A 赋予一个实数,记为)(A P ,称为事件A 的概率,如果集合函数)(⋅P 满足下列条件:(1)非负性0)(≥A P ,对Ω∈A ;(2)规范性()1P Ω=;(3)可列可加性若=j i A A ∅,j i ≠, ,2,1,=j i ,有∑+∞=+∞==11)()(i i i i A P A P .2.概率的性质性质1不可能事件的概率为0,即()0P ∅=.性质2概率具有有限可加性,即若=j i A A ∅(n j i ≤<≤1),则∑===ni i n i i A P A P 11)()( .性质3对任一随机事件A ,有()1()P A P A =-.性质4若A B ⊂,则)()()(B P A P B A P -=-.推论若A B ⊂,则)()(B P A P ≥.性质5对任意的两个事件A ,B ,有)()()(AB P A P B A P -=-.性质6对任意的两个事件A ,B ,有()()()()P A B P A P B P AB =+- .对任意三个事件A ,B ,C ,有)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= .推论对任意的两个事件A ,B ,有)()()(B P A P B A P +≤ .【例1】设A 与B 互不相容,且0)(>A P ,0)(>B P ,则下列结论正确的是()A .A 与B 为对立事件B .A 与B 互不相容C .)()()(B P A P B A P -=-D .)()(A P B A P =-【解析】因为A 与B 互不相容,所以AB =∅,0)(=AB P ,故选项A :互不相容不一定对立,故选项A 错误;选项B :互不相容不一定对立,故B A 不一定等于Ω,所以B A B A =不一定等于∅,即A 与B 不一定互不相容,故选项B 错误;选项C :)()()()(A P AB P A P B A P =-=-,故选项C 错误,进而选项D 正确.【例2】已知B A ⊂,3.0)(=A P ,5.0)(=B P ,求(A P ,)(AB P ,)(B A P 和)(B A P .【解】(1)7.0)(1)(=-=A P A P ;(2)∵B A ⊂,∴A AB =,则3.0)()(==A P AB P ;(3)2.0)()()()(=-=-=AB P B P A B P B A P ;(4))(1()(B A P B A P B A P -==5.0)]()()([1=-+-=AB P B P A P .【注】事件的概率的计算常常需要结合对偶律,应用性质3.【例3】已知事件A ,B ,B A 的概率分别是0.4,0.3,0.6,求(B A P .【解】)()()()(AB P B P A P B A P -+= )(3.04.06.0AB P -+=所以1.0)(=AB P ,则3.0)()()((=-=-=AB P A P B A P B A P .【例4】已知41)()()(===C P B P A P ,0)(=AB P ,161)()(==BC P AC P .求:(1)A ,B ,C 中至少发生一个的概率;(2)A ,B ,C 都不发生的概率.【解】(1)因为0)(=AB P ,且AB ABC ⊂,所以由概率的单调性知0)(=ABC P ;再由加法公式,得A ,B ,C 中至少发生一个的概率为)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= 8516243=-=.(2)因为{A ,B ,C 都不发生}的对立事件为{A ,B ,C 中至少发生一个},所以A ,B ,C 都不发生的概率为83851(=-=C B A P .3.古典概型定义2若随机试验E 具有下述特征:(1)样本空间的元素(即样本点)只有有限个,不妨设为n 个,并记它们为12,,,n ωωω .(2)每个样本点出现的可能性相等(等可能性),即有12()()()n P P P ωωω=== .则称这种等可能性的概率模型为古典概型.对任意一个随机事件Ω∈A ,有nk A A P =Ω=中所有样本点的个数所含有样本点的个数事件)(.【例5】袋中有大小相同的4个白球,3个黑球,从中任取3个至少有2个白球的概率为.【解析】袋中共有7个球,从中任取3个,共有37C 中取法,即样本空间Ω中共有37C 个样本点.取出的3个球中至少有2个白球,分为2个白球1个黑球和3个白球两种情况.当取出的3个球中有2个白球1个黑球时,共有1324C C 中取法;当取出的3个球中有3个白球时,共有0334C C 中取法.记=A {从中任取3个至少有2个白球},则事件A 中共有03341324C C C C +个样本点.因此3522)(3703341324=+=C C C C C A P .(三)条件概率1.条件概率定义1设A 与B 是样本空间Ω中的两个事件,若0)(>B P ,则称)()()(B P AB P B A P =为“在事件B 发生条件下事件A 发生的条件概率”,简称条件概率.【例1】已知31)()(==B P A P ,61)(=B A P ,求(B A P .【解】∵61)()()(==B P AB P B A P ,∴181)(=AB P ,)(1)()()()(B P B A P B P B A P B A P -== )(1)]()()([1B P AB P B P A P --+-=127=.【注】条件概率的计算通常与概率的性质结合使用.【技巧】在计算过程中,只要有概率的性质可以用,就一直用概率的性质计算,直到没有概率的性质可用时,对得到的式子进行化简整理,代入已知数据计算.2.乘法公式定理1(乘法公式)(1)若0)(>B P ,则)()()(B A P B P AB P =.(2)若0)(121>-n A A A P ,则)()()()()(12121312121-=n n n A A A A P A A A P A A P A P A A A P .【例2】一批零件共100个,次品率为10%,每次从其中任取一个零件,取出的零件不再放回,求第三次才取得合格品的概率.【解】设=i A {第i 次取得合格品},3,2,1=i .由题意知,所求概率为)(321A A A P ,易知10010)(1=A P ,999)(12=A A P ,9890)(213=A A A P .由此得)()()()(213121321A A A P A A P A P A A A P =0083.0989099910010≈⋅⋅=.3.全概率公式定义2设Ω为试验E 的样本空间,1B ,2B ,…,n B 为E 的一组事件.如果=j i B B ∅,j i ≠,n j i ,,2,1, =且Ω=n B B B 21,则称1B ,2B ,…,n B 为样本空间Ω的一个划分.定理2(全概率公式)设1B ,2B ,…,n B 为样本空间Ω的一个划分,若0)(>i B P ,n i ,,2,1 =,则对任一事件A 有)()()(1i ni i B A P B P A P ∑==.4.贝叶斯公式定理3(贝叶斯公式)设1B ,2B ,…,n B 为样本空间Ω的一个划分,若0)(>A P ,0)(>i B P ,n i ,,2,1 =,则∑==n i j j i i i B A P B P B A P B P A B P 1)()()()()(,n i ,,2,1 =.【例3】一批同型号的零件由编号为Ⅰ、Ⅱ、Ⅲ的三台机器共同生产,各台机器生产的零件占这批零件的比例分别为35%、40%和25%,各台机器生产的零件的次品率分别为3%、2%和1%.(1)求该批零件的次品率;(2)现从该批零件中抽到一颗次品,试问这颗零件由Ⅰ号机器生产的概率是多少?【解】设=A {零件是次品},=1B {零件由Ⅰ号机器生产},=2B {零件由Ⅱ号机器生产},=3B {零件由Ⅲ号机器生产},则由题设知35.0)(1=B P ,4.0)(2=B P ,25.0)(3=B P ,03.0)(1=B A P ,02.0)(2=B A P ,01.0)(3=B A P .(1)题目要求的是)(A P ,由全概率公式,得∑==31)()()(i i i B A P B P A P 021.0=.(2)题目要求的是)(1A B P ,由贝叶斯公式,得21)|()()|()()(31111==∑=i i i B A P B P B A P B P A B P .【例4】有甲、乙、丙三厂同时生产某种产品.甲、乙、丙三厂的产量之比为1:1:3,次品率分别为4%,3%,2%.(1)若从一批产品中随机抽出一件,求这件产品为次品的概率.(2)若产品的售后部门接到一名顾客投诉,说其购买的产品为次品,请问哪个厂最该为此事负责,为什么?【解】设=A {产品为次品},=1B {产品由甲厂生产},=2B {产品由乙厂生产},=3B {产品由丙厂生产},则由题设知,2.0)(1=B P ,2.0)(2=B P ,6.0)(3=B P ,04.0)(1=B A P ,03.0)(2=B A P ,02.0)(3=B A P .(1)题目要求的是)(A P ,由全概率公式,得∑==31)()()(i i i B A P B P A P 026.0=.(2)由贝叶斯公式,得134)|()()|()()(31111==∑=i i i B A P B P B A P B P A B P ,133)|()()|()()(31222==∑=i i i B A P B P B A P B P A B P ,136)|()()|()()(31333==∑=i i i B A P B P B A P B P A B P .所以在产品为次品的情况下,产品来自丙厂的可能性最大,丙厂最该负责.【注】全概率公式与贝叶斯公式通常一起考试.(四)独立性1.两个事件的独立性定义1若)()()(B P A P AB P =成立,则称事件A 与事件B 相互独立,简称A 与B 独立.否则称A 与B 不独立或相依.定理1若事件A 与B 独立,则A 与B 独立;A 与B 独立;A 与B 独立.【例1】甲、乙两人彼此独立的向同一个目标射击,甲击中目标的概率为0.9,乙击中目标的概率为0.8,求目标被击中的概率.【解】设=A {甲击中目标},=B {乙击中目标},则=B A {目标被击中}.则)()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=98.0=.【例2】若事件A 与B 相互独立,8.0)(=A P ,6.0)(=B P ,求:)(B A P 和)|(B A A P .【解】∵A 与B 相互独立,∴)()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=92.0=.)())(()|(B A P B A A P B A A P =)()()()()(B A P B P A P B A P B A P ==13.0=.【例3】设)()(B A P B A P =,证明:A 与B 相互独立.【证】因为)()(B A P B A P =,所以有)(1)()()(1)()()()()(B P AB P A P B P B A P B P B A P B P AB P --=--==,即有)]()()[()](1)[(AB P A P B P B P AB P -=-,整理得)()()(B P A P AB P =,所以A 与B 相互独立.2.多个事件的相互独立性定义2设A ,B ,C 是三个事件,若有⎪⎩⎪⎨⎧===)()()()()()()()()(C P B P BC P C P A P AC P B P A P AB P (1)第11页共11页则称A ,B ,C 两两独立.若还有)()()()(C P B P A P ABC P =,(2)则称A ,B ,C 相互独立.注意:只有(1)式与(2)式同时成立,事件A ,B ,C 才相互独立.(1)式成立不能保证(2)式成立;反过来,(2)式成立也不能保证(1)式成立.定义3设有n 个事件1A ,2A ,…,n A ,对任意的n k j i ≤<<<≤ 1,若以下等式均成立⎪⎪⎩⎪⎪⎨⎧===)()()()()()()()()()()(2121n n k j i k j i j i j i A P A P A P A A A P A P A P A P A A A P A P A P A A P 则称此n 个事件1A ,2A ,…,n A 相互独立.定理2如果n (2≥n )个事件1A ,2A ,…,n A 相互独立,则其中任何m (n m ≤≤1)个事件换成相应的对立事件,形成的n 个新的事件仍相互独立.【例4】三人独立地去破译一份密码,已知各人能译出的概率分别为51,31,41,问三人中至少有一人能将此密码译出的概率是多少?【解】设A ,B ,C 分别表示三人独立译出密码,则51)(=A P ,31)(=B P ,41)(=C P ,且A ,B ,C 相互独立,有方法1:)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= )()()()()()()()()()()()(C P B P A P C P B P C P A P B P A P C P B P A P +---++=6.0=.方法2:)(1)(C B A P C B A P -=(1C B A P -=()()(1C P B P A P -=53411)(311)(511(1=----=.。

概率论与数理统计复习

概率论与数理统计复习

概率统计综合复习一一、填空:1.已知()0.3,()0.5,(/)0.2P A P B P A B ===,则()P A B ⋃= _ ___。

2.设某批产品有4%是废品,而合格品中的75%是一等品,则任取一件产品是一等品的概率是 。

3.设1231()()()3P A P A P A ===,且三事件123,,A A A 相互独立,则三事件中至少发生一个的概率为 ,三事件中恰好发生一个的概率为 。

4.袋中装有1个黑球和2个白球,从中任取2个,则取得的黑球数X 的分布函数()F x = ,()E X = 。

5.设X (4,0.5),b Y 在区间[0,2] 上服从均匀分布,已知X 与Y 相互独立,则(3)D X Y -= _ _。

6.设2(2,)X N σ ,且{0}0.2P X ≤=,那么{24}P X <<= _ ___。

7.设随机变量X 服从参数为2的泊松分布,用切比雪夫不等式估计:{24}P X -≥≤ 。

8.设一批产品的某一指标2(,)X N μσ ,从中随机抽取容量为25的样本,测得样本方差的观测值2100s =,则总体方差2σ的95%的置信区间为 。

二、单项选择:1.甲、乙二人射击,A 、B 分别表示甲、乙击中目标,则AB 表示( )。

A.两人都没击中B.至少一人没击中C.两人都击中D.至少一人击中2.设,A B 为两个随机事件,且,则下列式子正确的是( )A.()()P A B P A ⋃=B.()()P AB P A =C.(/)()P B A P B =D.()()()P B A P B P A -=- 3.设123,(,4)X X X N μμ,是来自总体的样本,未知参数的下列无偏估计量中最有效的是 ( ).A.123111424X X X ++ B. 131122X X + C. 123122555X X X ++ D. 123111333X X X ++ 4.设某种电子管的寿命X ,方差为()D X a =,则10个电子管的平均寿命X 的方差()D X 是( ) A .a B. 10a C. 0.1a D. 0.2a5.在假设检验问题中,犯第一类错误是指( )A .原假设0H 成立,经检验接受0HB .原假设0H 成立,经检验拒绝0HC .原假设0H 不成立,经检验接受0HD .原假设0H 不成立,经检验拒绝0H 三、设一批混合麦种中一、二、三、四等品分别占60%、20%、15%、5%,,四个等级的发芽率依次为,0.98,0.95,0.9,0.85 求:1.这批麦种的发芽率;2.若取一粒能发芽,它是二等品的概率是多少?四、已知随机变量X 的概率密度函数为,01()0,cx x f x ⎧≤<=⎨⎩其它,求:1.常数c ; 2.{0.40.7}P X <≤; 3.方差()D X五、设二维随机变量(,)X Y 的联合密度函数(2)2,0,0(,)0x y e x y f x y -+⎧>>=⎨⎩,其它 ,1.求,X Y 的边缘密度函数;2.判断,X Y 是否相互独立、是否不相关;3.求概率{1}P X Y +≤六、设总体X 的密度函数为(1),01()0,x x f x θθ⎧+<<=⎨⎩其它,其中0θ>是未知参数,12,,,n X X X 是从该总体中抽取的一个样本,12,,,n x x x 是其样本观测值,试求参数θ 的最大似然估计量。

概率论与数理统计第1-3章复习资料

概率论与数理统计第1-3章复习资料

其中λ = n P 例2:在例1的试验中,求: (1)A=“点数和为奇数的概率”; (2)B=“点数不同的概率” 例3:某产品40件,其中有次品3件。现从其中任取3件, 求下列事件的概率: (1)A=“3件中恰有2件次品”;(111/9880) (2)B=“ 3件中至少有1件次品”(633/2964)
xi R , i 1 , , n , n 元函数
F ( x1 ,, xn ) P( X 1 x1 ,, X n xn ) ( 是 X 1 ,, X n ) 的分布函数。
(1)’
注:r, v 取值的规律称 r, v 的分布,分布函数是描 述 r, v 的概分布的主要方法之一。 (二)分布函数的性质: 一维:1、有界性:0 F ( X ) 1
m 4、由公式 P( A) 进行计算 n
(二)几何概型 所求概率为: P(A)=[A所包含的区域度量] / [样本空间的度量] (三)条件概率及其全概率公式 1、条件概率:若P(B) >0,则
P( A B) P( AB) P( B)
2、全概率公式 如果B1,…,Bn为一完备事件组,即满足: (1) B1,…,Bn两两不相容i=1, …,n;
例4:一盒装有10只晶体管,其中有4只次品,6只正品,随 机地抽取 1只测试,直到4只次品晶体管都找到。求最后 一只次品晶体管在下列情况发现的概率: (1)A=“在第 5 次测试发现”。(2/105) (2)B=“在第10次测试发现”。(2/5) 例5:将编号1,2,3的三本书任意地排列在书架上,求事件 A=“至少有一本书自左到右的排列顺序号与它的编号相同” 的概率。 例6:五个乒乓球,其中三个旧球,二个新球,每次取一个, 共取两次,以有放回和无放回两种方式求下列事件的概率: (1)A=“两次都取到新球”; (2)B=“第一次取到新球,第二次取到旧球”; (3)C=“至少有一次取到新球”。

概率论与数理统计复习资料(改)

概率论与数理统计复习资料(改)

一、 基础理论1. 在个别试验中呈现出不确定性 ,而在大量重复试验或观察中又具有 统计规律性 的现象,称为随机现象 。

2. 随机现象的每一种结果称为随机事件 ,它的取值称为随机变量 。

3. 根据试验或观测得到的有限信息,对整体做出一定概率的推断,称为统计推断。

4. 在数理统计中常把研究对象的全体称为 总体 。

5. 从母体中抽取若干数量个体来观测母体某种数量指标的取样过程称为 抽样 。

6. 精密度 一在相同条件下,几次测定结果彼此相符合的程度,即平行测定结果相互接近程度。

7. 抽样调查是按照 随机原则 ,从总体中抽取部分单位进行观察用以推算总体数量特征的一种统计调查方式。

8. 集中趋势 是指一组数据向其中心值靠扰的倾向。

9. 总体方差是各个数据与其算术平均数 的高差平方的平均数,通常以σ2表示。

10. 按随机变量取值的特点不同,通常把随机变量分为两类,即离散型随机变量 和连续型随机变量 。

11. 设样本X1,X2,……Xn 来自N(m ,1.69),则对检验H0:m =35,采用的检验量是12. 客观现象之间的数量联系可以归纳为两种不同的类型,一种是 函数关系 ,另一种是 相关关系 。

13. 按变量之间关系的 密切程度 不同,可分为完全相关、不完全相关和不相关。

14. 相关分析 是研究一个变量一个变量与另一个变量式另一组变量之间相关方向和相关密切程度的统计分析方法。

15. 回归分析 是指根据相关关系的具体形态,选择一个适合的数学模型来近似地表达变量间平均变化关系的统计分析方法。

16. 最小二乘法 就是寻找参数β0和β1的估计值β-0和β-1。

使因变量实际值与估计值的残差平方和达到最小。

17. 略18. 略19. 根据抽取样本的方法不同,有 重复抽样 和 不重复抽样 两种具体抽样方法。

20. 以样本指标去估计总体指标有 点估计 和 区间估计 两种方法。

21. 点估计就是用样本指标去直接估计总体指标,它没有考虑抽样误差 ;而区间估计就是根据样本指标和抽样误差去推断总体指标的 可能范围 ,并能够说明估计的 可靠性 ,所以 区间估计 是样本指标推断总体指标的主要方法。

《概率论与数理统计》总复习资料

《概率论与数理统计》总复习资料

《概率论与数理统计》总复习资料概率论部分1.古典概型中计算概率用到的基本的计数方法。

例1:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数:915C n ==5005事件B 包含的样本点:563514C C C r ==240,则P (B )=240/5005=0.048例2:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数}。

若允许千位数为0,此时个位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个。

其中,千位数为0的“四位偶数”有多少个?此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A 种选法;从而共有428A =224个。

因此410283945)(A A A B P -==2296/5040=0.4562.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。

例1:事件A 与B 相互独立,且P (A )=0.5,P (B )=0.6,求:P (AB ),P (A -B ),P (A B )解:P (AB )=P (A )P (B )=0.3,P (A -B )=P (A )-P (AB )=0.2,P (A B )=P (A )+P (B )-P (AB )=0.8例2:若P (A )=0.4,P (B )=0.7,P (AB )=0.3,求:P (A -B ),P (A B ),)|(B A P ,)|(B A P ,)|(B A P 解:P (A -B )=0.1,P (A B )=0.8,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,|(B A P =)(1)()()(B P B A P B P B A P -==2/33.准确地选择和运用全概率公式与贝叶斯公式。

《概率论与数理统计》复习-知识归纳整理

《概率论与数理统计》复习-知识归纳整理

《概率论与数理统计》复习大纲第一章 随机事件与概率基本概念随机试验E----指试验可在相同条件下重复举行,试验的结果具有多种可能性(每次试验有且仅有一个结果闪现,且事先知道试验可能闪现的一切结果,但不能预知每次试验确实切结果。

样本点ω ---随机试验E的每一具可能闪现的结果样本空间Ω----随机试验E的样本点的全体随机事件-----由样本空间中的若干个样本点组成的集合,即随机事件是样本空间的一具子集。

必然事件---每次试验中必然发生的事件。

不可能事件∅--每次试验中一定不发生的事件。

事件之间的关系包含A⊂B相等A=B对立事件,也称A的逆事件互斥事件AB=∅也称不相容事件A,B相互独立P(AB)=P(A)P(B)例1事件A,B互为对立事件等价于( D )A、A,B互不相容B、A,B相互独立C、A∪B=ΩD、A,B构成对样本空间的一具剖分例2设P(A)=0,B为任一事件,则(C )A、A=∅B、A⊂BC、A与B相互独立D、A与B互不相容事件之间的运算事件的交AB或A ∩B 例1设事件A、B满足A B¯=∅,由此推导不出(D)A、A⊂BB、A¯⊃B¯C、A B=BD、A B=B例2若事件B与A满足B – A=B,则一定有(B)A、A=∅B、AB=∅C、AB¯=∅D、B=A¯事件的并A∪B事件的差A-B 注意:A-B= A B= A-AB = (A∪B)-BA1,A2,…,An构成Ω的一具完备事件组(或分斥)−−指A1,A2,…,An两两互不相容,且∪i=1nAi=Ω运算法则交换律A∪B=B∪A A∩B=B∩A结合律(A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C)分配律(A∪B)∩C=(AC)∪(BC) (A∩B)∪C=(A∪C)∩(B∪C) 对偶律A∪B=A∩B A∩B=A∪B文氏图事件与集合论的对应关系表记号概率论集合论Ω样本空间,必然事件全集∅不可能事件空集ω基本事件元素A 事件全集中的一具子集A A的对立事件A的补集A⊂B 事件A发生导致事件B发生A是B的子集A=B 事件A与事件B相等A与B相等A∪B 事件A与事件B至少有一具发生A与B的并集AB 事件A与事件B并且发生A与B的交集知识归纳整理A-B事件A 发生但事件B 不发生A 与B 的差集 AB=∅ 事件A 与事件B 互不相容(互斥) A 与B 没有相同的元素古典概型 古典概型的前提是Ω={ω1,ω2, ω3,…, ωn ,}, n 为有限正整数,且每个样本点ωi 出现的可能性相等。

概率论与数理统计(经管类)复习试题及答案

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解(一)单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则()A.P(B|A)=0B.P(A|B)>0C.P(A|B)=P(A)D.P(AB)=P(A)P(B)『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。

解析:A:,因为A与B互不相容,,P(AB)=0,正确;显然,B,C不正确;D:A与B相互独立。

故选择A。

提示:① 注意区别两个概念:事件互不相容与事件相互独立;② 条件概率的计算公式:P(A)>0时,。

2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=()A.Φ(0.5)B.Φ(0.75)C.Φ(1)D.Φ(3)『正确答案』分析:本题考察正态分布的标准化。

解析:,故选择C。

提示:正态分布的标准化是非常重要的方法,必须熟练掌握。

3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=()『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。

第33页解析:,故选择A。

提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=()A.-3B.-1C.-D.1『正确答案』分析:本题考察概率密度的性质。

解析:1=,所以c=-1,故选择B。

提示:概率密度的性质:1.f(x)≥0;4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。

课本第38页5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是()A.f(x)=-e-xB. f(x)=e-xC. f(x)=D.f(x)=『正确答案』分析:本题考察概率密度的判定方法。

解析:① 非负性:A不正确;② 验证:B:发散;C:,正确;D:显然不正确。

概率论与数理统计要点复习

概率论与数理统计要点复习

概率论与数理统计 复习资料第一章随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A(1) 包含:若事件A 发生,一定导致事件B 发生,那么,称事件B 包含事件A ,记作A B ⊂(或B A ⊃). (2) 相等:若两事件A 与B 相互包含,即A B ⊃且B A ⊃,那么,称事件A 与B 相等,记作A B =. (3) 和事件:“事件A 与事件B 中至少有一个发生”这一事件称为A 与B 的和事件,记作A B ⋃;“n 个事件1,2,,nA A A 中至少有一事件发生”这一事件称为1,2,,nA A A 的和,记作12n A A A ⋃⋃⋃(简记为1nii A =). (4) 积事件:“事件A 与事件B 同时发生”这一事件称为A 与B 的积事件,记作A B ⋂(简记为AB );“n 个事件1,2,,nA A A 同时发生”这一事件称为1,2,,nA A A 的积事件,记作12n A A A ⋂⋂⋂(简记为12n A A A 或1nii A =).(5) 互不相容:若事件A 和B 不能同时发生,即AB φ=,那么称事件A 与B互不相容(或互斥),若n 个事件1,2,,nA A A 中任意两个事件不能同时发生,即i j A A φ=(1≤i<j ≤几),那么,称事件 1,2,,n A A A 互不相容. (6) 对立事件:若事件A 和B 互不相容、且它们中必有一事件发生,即AB φ=且A B ⋃=Ω,那么,称A 与B 是对立的.事件A 的对立事件(或逆事件)记作A . (7) 差事件:若事件A 发生且事件B 不发生,那么,称这个事件为事件A 与B 的差事件,记作A B -(或AB ) .2.运算规则 (1)交换律:BA AB A B B A =⋃=⋃(2)结合律:)()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃ (3)分配律))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)德摩根(De Morgan )法则:B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率: 如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|((5)贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,k n k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭,7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)下列四个命题是等价的:(i) 事件A 与B 相互独立; (ii) 事件A 与B 相互独立; (iii) 事件A 与B 相互独立;(iv) 事件A 与B 相互独立.8、思考题1.一个人在口袋里放2盒火柴,每盒n 支,每次抽烟时从口袋中随机拿出一盒(即每次每盒有同等机会被拿到)并用掉一支,到某次他迟早会发现:取出的那一盒已空了.问:“这时另一盒中恰好有m 支火柴”的概率是多少?2.设一个居民区有n 个人,设有一个邮局,开c 个窗口,设每个窗口都办理所有业务.c 太小,经常排长队;c 太大又不经济.现设在每一指定时刻,这n 个人中每一个是否在邮局是独立的,每个人在邮局的概率是p .设计要求:“在每一时刻每窗口排队人数(包括正在被服务的那个人)不超过m ”这个事件的概率要不小于a (例如,0.8,0.9.95a o =或),问至少须设多少窗口? 3.设机器正常时,生产合格品的概率为95%,当机器有故障时,生产合格品的概率为50%,而机器无故障的概率为95%.某天上班时,工人生产的第一件产品是合格品,问能以多大的把握判断该机器是正常的?第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P标准正态分布的分布函数记作,即()x Φ22()t xx dt-Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; 特别的 ()()(0)P X a F a F a ==-- (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值围严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。

考研数学(三)概率论与数理统计第一章复习重点总结

考研数学(三)概率论与数理统计第一章复习重点总结

2018考研数学(三):概率论与数理统计第一章复习重点总结一、第一章随机事件与概率1.重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式。

2.难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算。

3.常考题型事件、概率与独立性是本章给出的概率论中最基本、最重要的三个概念。

事件关系及其运算是本章的重点和难点,概率计算是本章的重点。

注意事件与概率之间的关系。

本章主要考查随机事件的关系和运算,概率的性质、条件概率和五大公式,注意事件的独立性。

近几年单独考查本章的试题相对较少,但是大多数考题中将本章的内容作为基本知识点来考查。

相当一部分考生对本章中的古典概型感到困难。

大纲只要求对古典概率和几何概率会计算一般难度的题型就可以。

考生不必可以去做这方面的难题,因为古典型概率和几何型概率毕竟不是重点。

应该将本章重点中的有关基本概念、基本理论和基本方法彻底理解和熟练掌握。

【评注】本题是典型的根据全概率公式及条件概率的解题的题型,这类题型一直都是考查的重点。

三、注意事项与线性代数一样,概率也比高数容易,花同样的时间复习概率也更为划算。

但与线代一样,概率也常常被忽视,有时甚至被忽略。

一般的数学考研参考书是按高数、线代、概率的顺序安排的,概率被放在最后,复习完高数和线代以后有可能时间所剩无多;而且因为前两部分分别占60%和20的分值,复习完以后多少会有点满足心理;这些因素都可能影响到概率的复习。

概率这门课如果有难点就应该是“记忆量大”。

在高数部分,公式、定理和性质虽然有很多,但其中相当大一部分都比较简单,还有很多可以借助理解来记忆;在线代部分,需要记忆的公式定理少,而需要通过推导相互联系来理解记忆的多,所以记忆量也不构成难点;但是在概率中,由大量的概念、公式、性质和定理需要记清楚,而且若靠推导来记这些点的话,不但难度大耗时多而且没有更多的用处(因为概率部分考试时对公式定理的内在推导过程及联系并没有什么要求,一般不会在更深的层次上出题)。

概率论与数理统计重点笔记

概率论与数理统计重点笔记

概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果.随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件.二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率.(1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+…2.性质(1) P(Φ) = 0 , 注意: A P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理)(3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) .(4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) .对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 11121 …+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数.五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0)3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P ∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==n i i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件.(1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()k k i i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2).(3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1).二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为:(1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()k n k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0) 三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << . (2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx e x f 00≤>x x 若若 (θ>0). (3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--x t dt e x 2221)(π , Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α.四.随机变量X 的函数Y= g (X)的分布1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律.2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法:(1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f k y X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y 其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数.2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) .(4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i j ij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x y y ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度.2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f . (3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2 (4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) .(X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 },{j i j i p y Y x X P ==P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律.同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i } 为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X离散型随机变量 连续型随机变量 分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛) 方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2 =E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X)1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p),}{},{•=====i j i i j i p p x X P y Y x X P2.X~ b (n,p) (0<p<1) n p n p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,…随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如: 样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==n i k i k X X n B 1)(1( k=1,2,…) 二.抽样分布 即统计量的分布 1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) . 2.χ2分布 (1)定义 若X ~N (0,1 ) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1 ),Y~ χ2(n),且X,Y 相互独立,则t=n Y X ~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时,n S X μ-~ t (n-1) . ③两个正态总体 相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点.注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③) 22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值.2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iL θ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效.(3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定.(2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间 μ σ2已知 n X σμ-~N (0,1) (2/ασz n X ±) μ σ2未知n S X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体(1)均值差μ 1-μ 2 其它参数 W 及其分布 置信区间已知2221,σσ 22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③. (2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为 ))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα 注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

事件A所含样本点数为540
例3 将6只球随机地放入3只盒子中,求每只 盒子都有球(事件A)的概率.
例4 根据以往的资料,一位母亲患有某种传 染病的概率为0.5。 当母亲患病时,她的第1,2个孩子患病的 概率都为0.5,且两个孩子均不患病的概率 为0.25; 当母亲不患病时,每个孩子必不患病。
1. 求第1个,第2个孩子患病的概率; 2. 求当第1个孩子未患病时,第2个孩子未患 病的概率; 3. 求当两个孩子均未患病时,母亲患病的概 率。
设试验为掷骰子一次, A={出现偶数点}, B={出现奇数点}
例2 盒子中有9只红球,3只白球.
1. 在盒中随机地取5只球,求其中恰好有2只白 球3只红球(事件A)的概率. 2. 在盒中取球5次,每次取1只,不放回,求其 中恰好有2只白球3只红球(事件B)的概率. 3. 在盒中取球5次,每次取1只,取后放回,求 其中恰好有2只白球3只红球(事件C)的概率.
1. 在盒中随机地取5只球,求其中恰好有2只白 球3只红球(事件A)的概率. 在盒子中取5只球,每一种取法为一个样本点
第一章 概率论的基本概念
1. 随机试验 2. 样本空间、随机事件 3. 频率与概率 4. 等可能概型(古典概型) 5. 条件概率 6. 独立性
例1 设 A, B, C, D是四个事件,用A, B, C, D 的运算关系表示下列事件. 1. 2. 3. 4. 5. A, B, C, D中仅有A发生 A, B, C, D中恰有一个发生 A, B中至少一个发生而C, D不发生 A, B, C中不多于一个发生,但D发生 A, B中至少一个发生, C, D中至少一 个发生 6. A, B, C中至少有一个不发生,D发生
例3 将6只球随机地放入3只盒子中,求每只 盒子都有球(事件A)的概率.
盒子A a
a a a
盒子B b
b b b
盒子C c (def)
d (cef) e (cdf) f (cde)
这一个样本点被计算了4次。
例3 将6只球随机地放入3只盒子中,求每只 盒子都有球(事件A)的概率.
事件A分三种情况 三只盒子的球数分别为4, 1, 1 三只盒子的球数分别为3, 2, 1 三只盒子的球数都为2
现不考虑取球的次序
1. 在盒中随机地取5只球,求其中恰好有2只白 球3只红球(事件A)的概率. 若考虑取球的次序
再将取出的5只球进行全排列
2. 在盒中取球5次,每次取1只,不放回,求其 中恰好有2只白球3只红球(事件B)的概率.
3. 在盒中取球5次,每次取1只,取后放,求 其中恰好有2只白球3只红球(事件C)的概率. 在盒中有放回地取5只球,每一种取法为一个样本点 若考虑取球的次序 因每次都有12只球供选择,
相关文档
最新文档