2018届高考数学第一轮知识点梳理复习教案5(第十章统计与统计案例)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章⎪
⎪⎪
统计与统计案例 第一节 统 计
突破点(一) 随机抽样
1.简单随机抽样
(1)定义:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.
(2)最常用的简单随机抽样的方法:抽签法和随机数法. 2.系统抽样
在抽样时,将总体分成均衡的几个部分,然后按照事先确定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样方法叫做系统抽样(也称为机械抽样).
3.分层抽样
在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.
4.三种抽样方法的比较
本节主要包括2个知识点: 1.随机抽样; 2.用样本估计总体.
简单随机抽

1.抽签法的步骤
第一步,将总体中的N个个体编号;
第二步,将这N个号码写在形状、大小相同的号签上;
第三步,将号签放在同一不透明的箱中,并搅拌均匀;
第四步,从箱中每次抽取1个号签,连续抽取k次;
第五步,将总体中与抽取的号签的编号一致的k个个体取出.
2.随机数法的步骤
第一步,将个体编号;
第二步,在随机数表中任选一个数开始;
第三步,从选定的数开始,按照一定抽样规则在随机数表中选取数字,取足满足要求的数字就得到样本的号码.
[例1](1)以下抽样方法是简单随机抽样的是()
A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取
的方式确定号码的后四位为2709的为三等奖
B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格
C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见
D.用抽签方法从10件产品中选取3件进行质量检验
(2)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()
78166572080263140702436997280198
32049234493582003623486969387481
A.08
C.02 D.01
[解析](1)选项A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的;选项C不是简单随机抽样,因为总体的个体有明显的层次;选项D是简单随机抽样.
(2)由题意知前5个个体的编号为08,02,14,07,01.
[答案](1)D(2)D
系统抽

系统抽样的步骤
(1)先将总体的N个个体编号;
(2)确定分段间隔k(k∈N*),对编号进行分段.当N
n(n是样本容量)是整数时,
取k=N n;
(3)在第1段用简单随机抽样确定第1个个体编号l(l≤k);
(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.
[例2] (1)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )
A .11
B .12
C .13
D .14
(2)中央电视台为了解观众对《中国好歌曲》的意见,准备从502名现场观众中抽取10%进行座谈,现用系统抽样的方法完成这一抽样,则在进行分组时,需剔除________个个体,抽样间隔为________.
[解析] (1)由系统抽样定义可知,所分组距为840
42=20,每组抽取一人,因为
包含整数个组,所以抽取个体在区间[481,720]的数目为(720-480)÷20=12.
(2)把502名观众平均分成50组,由于502除以50的商是10,余数是2,所以每组有10名观众,还剩2名观众,采用系统抽样的方法抽样时,应先用简单随机抽样的方法从502名观众中抽取2名观众,这2名观众不参加座谈;再将剩下的500名观众编号为1,2,3,…,500,并均匀分成50段,每段含500
50=10个个体.所
以需剔除2个个体,抽样间隔为10.
[答案] (1)B (2)2 10 [易错提醒]
用系统抽样法抽取样本,当N
n 不为整数时,取k =⎣⎢⎡⎦
⎥⎤N n ,即先从总体中用简单随
机抽样的方法剔除(N -nk )个个体,且剔除多余的个体不影响抽样的公平性.
分层抽

进行分层抽样的相关计算时,常利用以下关系式巧解:
(1)样本容量n 总体的个数N =该层抽取的个体数该层的个体数
; (2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.
[例3] (1)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )
类别 人数
老年教师 900 中年教师 1 800 青年教师 1 600 合计
4 300 A .90 B .100 C .180
D .300
(2)(2016·东北三校联考)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n =
( )
A .54
B .90
C .45
D .126
(3)某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人).
高一 45 30 a 高二
15
10
20
学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________.
[解析] (1)设该样本中的老年教师人数为x ,由题意及分层抽样的特点得x 900=
320
1 600
,故x =180. (2)依题意得
3
3+5+7
×n =18,解得n =90,即样本容量为90.
(3)由题意知1245+15=30
45+15+30+10+a +20,解得a =30.
[答案] (1)C (2)B (3)30 [方法技巧]
分层抽样的解题策略
(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠.
(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同. (3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样. (4)抽样比=样本容量总体容量=各层样本数量
各层个体数量.
能力练通 抓应用体验的“得”与“失”
1.[考点一]某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法
①1,2,3, (100)
②001,002, (100)
③00,01,02, (99)
④01,02,03, (100)
其中正确的序号是()
A.②③④B.③④
C.②③D.①②
解析:选C根据随机数法编号可知,①④编号位数不统一.
2.[考点三]为了调查老师对微课堂的了解程度,某市拟采用分层抽样的方法从A,B,C三所中学抽取60名教师进行调查,已知A,B,C三所学校中分别有180,270,90名教师,则从C学校中应抽取的人数为()
A.10 B.12
C.18 D.24
解析:选A根据分层抽样的特征,从C学校中应抽取的人数为
90
180+270+90
×60=10.
3.[考点二]某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号学生在样本中,那么样本中还有一个学生的学号是()
A.10 B.11
C.12 D.16
解析:选D从被抽中的3名学生的学号中可以看出学号间距为13,所以样本中还有一个学生的学号是16,故选D.
4.[考点三]某市有A、B、C三所学校,共有高三文科学生1 500人,且A、B、C三所学校的高三文科学生人数成等差数列,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B校学生中抽取________人.
解析:设A、B、C三所学校高三文科学生人数分别为x,y,z,由题知x,y,z成等差数列,所以x+z=2y,又x+y+z=1 500,所以y=500,用分层抽样方法
抽取B校学生人数为120
1 500×500=40.
答案:40
5.[考点二]为了了解本班学生对网络游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…,60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.
解析:由最小的两个编号为03,09可知,抽取时的分段间隔是6.即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.
答案:57
突破点(二)用样本估计总体
1.频率分布直方图和茎叶图
(1)作频率分布直方图的步骤
①求极差(即一组数据中最大值与最小值的差);②决定组距与组数;③将数据分组;④列频率分布表;⑤画频率分布直方图.
(2)频率分布折线图和总体密度曲线
①频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.
②总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.
(3)茎叶图的优点
茎叶图的优点是可以保留原始数据,而且可以随时记录,这对数据的记录和表示都能带来方便.
2.样本的数字特征
(1)众数、中位数、平均数
①标准差:样本数据到平均数的一种平均距离,一般用s表示,s=
1
n[(x1-x)2+(x
2
-x)2+…+(x n-x)2].
②方差:标准差的平方
s2=1
n[(x1-x)2+(x
2
-x)2+…+(x n-x)2],其中x i(i=1,2,3,…,n)是样本数
据,n是样本容量,x是样本平均数.
③方差与标准差相比,都是衡量样本数据离散程度的统计量,但方差因为对标准差进行了平方运算,夸大了样本的偏差程度.
(3)平均数、方差公式的推广
若数据x1,x2,…,x n的平均数为x,方差为s2,则数据mx1+a,mx2+a,…,mx n+a的平均数为m x+a,方差为m2s2.
频率分布直
方图
[例1](1)(2016·山东高考)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()
A.56 B.60 C.120 D.140
(2)某地政府调查了工薪阶层1 000人的月工资收入,并根据调查结果画出如图所示的频率分布直方图,为了了解工薪阶层对月工资收入的满意程度,要用分层抽样的方法从调查的1 000人中抽出100人做电话询访,则(30,35](百元)月工资收入段应抽出________人.
[解析](1)由频率分布直方图知200名学生每周的自习时间不少于22.5小时的频率为1-(0.02+0.10)×2.5=0.7,则这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140,故选D.
(2)月工资收入落在(30,35](百元)内的频率为1-(0.02+0.04+0.05+0.05+0.01)×5=1-0.85=0.15,所以(30,35](百元)月工资收入段应抽出100×0.15=15(人).
[答案] (1)D (2)15 [方法技巧]
1.绘制频率分布直方图时需注意的两点
(1)制作好频率分布表后,可以利用各组的频率之和是否为1来检验该表是否正确;
(2)频率分布直方图的纵坐标是频率组距,而不是频率.
2.与频率分布直方图计算有关的两个关系式 (1)频率组距
×组距=频率; (2)频数
样本容量=频率,此关系式的变形为频数
频率=样本容量,样本容量×频率=频数.
茎叶

1(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一; (2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据. 2.茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.
[例2]某良种培育基地正在培育一小麦新品种A,将其与原有的一个优良品种B进行对照试验,两种小麦各种植了25亩,所得亩产数据(单位:千克)如下.品种A:
357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430, 434,443,445,445,451,454
品种B:
363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407, 410,412,415,416,422,430
(1)作出数据的茎叶图;
(2)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论.
[解](1)画出茎叶图如图所示:
(2)通过观察茎叶图可以看出:①品种A的亩产平均数(或均值)比品种B高;
②品种A的亩产标准差(或方差)比品种B大,故品种A的亩产稳定性较差.
[方法技巧]
茎叶图问题的求解策略
(1)由于茎叶图完全反映了所有的原始数据,解决由茎叶图给出的统计图表问题时,要充分对这个图表提供的样本数据进行相关的计算或者是对某些问题作出判断.
(2)茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图数据求出样本数据的数字特征,进一步估计总体情况.
1
近似.实际应用中,需先计算数据的平均数,分析平均水平,再计算方差(标准差),分析稳定情况.
2.若给出图形,一方面可以由图形得到相应的样本数据,计算平均数、方差(标准差);另一方面,可以从图形直观分析样本数据的分布情况,大致判断平均数的范围,并利用数据的波动性比较方差(标准差)的大小.
考法(一)与频率分布直方图交汇命题
[例3](2016·北京高考)某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图.
(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.
[解](1)由用水量的频率分布直方图,知该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3]内的频率依次为0.1,0.15,0.2,0.25,0.15.
所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.
依题意,w至少定为3.
(2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频
率分布表如下:
组号12345678
分组[2,4](4,6](6,8](8,10](10,12
]
(12,17
]
(17,22
]
(22,27
]
频率0.10.150.20.250.150.050.050.05
4×0.1+6×0.15+8×0.2+10×0.25+12×0.15+17×0.05+22×0.05+27×0.05=10.5(元).
[方法技巧]
频率分布直方图与众数、中位数、平均数的关系
(1)最高的小长方形底边中点的横坐标为众数;
(2)中位数左边和右边的小长方形的面积和是相等的;
(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.
考法(二)与茎叶图交汇命题
[例4](1)如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,乙组数据的平均数为17.4,则x,y的值分别为()
甲组乙组
9
09
9y
6
166x
6
29
A.7,8 B.5,7 C.8,5 D.7,7
(2)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示:
877
94010x 9 1
则7个剩余分数的方差为________.
[解析](1)甲组数据的中位数为17, 故y=7,
乙组数据的平均数为3×10+20+(9+6+6+x+9)
5=17.4,
解得x=7.
(2)由图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x=
91×7,解得x=4.s2=1
7
[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]
=36
7.
[答案](1)D(2)36
7
[易错提醒]
在使用茎叶图时,一定要观察所有的样本数据,弄清楚这个图中数字的特点,
不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.
考法(三)与优化决策问题交汇
[例5]甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:
甲乙丙丁
平均环数
x
8.38.88.88.7
方差s 2
3.5 3.6 2.2 5.4
( ) A .甲 B .乙 C .丙
D .丁
[解析] 由题目表格中数据可知,丙平均环数最高,且方差最小,说明成绩好,且技术稳定,选C.
[答案] C [方法技巧]
利用样本的数字特征解决优化决策问题的依据
(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.
(2)用样本估计总体就是利用样本的数字特征来描述总体的数字特征.
能力练通 抓应用体验的“得”与“失”
1.[考点一]在样本的频率分布直方图中,共有7个小长方形,若中间一个小长方形的面积等于其他6个小长方形的面积的和的1
4,且样本容量为80,则中间一组
的频数为( )
A .0.25
B .0.5
C .20
D .16 解析:选D 设中间一组的频数为x ,依题意有
x 80=14⎝ ⎛

⎪⎫1-x 80,解得x =16. 2.[考点二]在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.
131415⎪
⎪⎪⎪
0 0 3 4 5 6 6 8 8 8 9
1 1 1
2 2 2
3 3
4 4
5 5 5
6 6
7 80 1 2 2 3 3 3
若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是()
A.3 B.4 C.5 D.6
解析:选B35÷7=5,因此可将编号为1~35的35个数据分成7组,每组有5个数据,在区间[139,151]上共有20个数据,分在20÷5=4个小组中,每组取1人,共取4人.
3.[考点一]某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则图中x的值等于()
A.0.12 B.0.012 C.0.18 D.0.018
解析:选D依题意,0.054×10+10×x+0.01×10+0.006×10×3=1,解得x=0.018.
4.[考点三·考法(二)]如图是某学校举行的运动会上七位评委为某体操项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()
79
84464
7
9 3
A.84,4.84 B.84,1.6 C.85,1.6 D.85,4
解析:选C依题意,所剩数据的平均数是80+1
5×(4×3+6+7)=85,所剩
数据的方差是1
5
×[3×(84-85)2+(86-85)2+(87-85)2]=1.6.
5.[考点三·
考法(三)]甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):
甲 10
8
9
9 9 乙 10 10 7
9
9
________. 解析:x -甲=x -乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]
=25
, s 2
乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2
]=65
>s 2甲,故甲更稳
定.
答案:甲
6.[考点三·考法(一)](2016·四川高考)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨),一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(1)求直方图中a 的值;
(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.
解:(1)由频率分布直方图可知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.
由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1,解得a=0.30.
(2)由(1)知100位居民每人的月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.
(3)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85,所以2.5≤x<3.由0.30×(x-2.5)=0.85-0.73,解得x=2.9.
所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.
7.[考点三·考法(二)]某车间20名工人年龄数据如下表:
年龄(岁)工人数(人)
19 1
28 3
29 3
30 5
31 4
32 3
40 1
合计20
(1)求这20
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)求这20名工人年龄的方差.
解:(1)由题可知,这20名工人年龄的众数是30,极差是40-19=21. (2)这20名工人年龄的茎叶图如图所示:
(3)这20名工人年龄的平均数为x =1
20(19+
3×28

3×29+5×30+4×31+3×32+40)=30,
∴这20名工人年龄的方差为s 2=120
∑20
i =1 (x i -x )2=112+6×22+7×12+5×02+10220=252
20
=12.6.
[全国卷5年真题集中演练——明规律] 1.(2016·全国丙卷)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )
A .各月的平均最低气温都在0 ℃以上
B .七月的平均温差比一月的平均温差大
C .三月和十一月的平均最高气温基本相同
D .平均最高气温高于20 ℃的月份有5个
解析:选D 由图形可得各月的平均最低气温都在0 ℃以上,A 正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B 正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C 正确;故D 错误.
2.(2013·新课标全国卷Ⅰ)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法
中,最合理的抽样方法是()
A.简单随机抽样B.按性别分层抽样
C.按学段分层抽样D.系统抽样
解析:选C由于该地区的中小学生人数比较多,不能采用简单随机抽样,排除选项A;由于小学、初中、高中三个学段的学生视力差异性比较大,可采取按照学段进行分层抽样,而男女生视力情况差异性不大,不能按照性别进行分层抽样,排除B和D.故选C.
3.(2014·新课标全国卷Ⅰ)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值
分组[75,85)[85,95)[95,105)[105,115)
[115,12
5)
频数62638228
(1)
(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
解:(1)如图所示:
(2)质量指标值的样本平均数为
x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.
质量指标值的样本方差为
s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.
所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.
(3)质量指标值不低于95的产品所占比例的估计值为
0.38+0.22+0.08=0.68.
由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.
4.(2014·新课标全国卷Ⅱ)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:
(1)分别估计该市的市民对甲、乙两部门评分的中位数;
(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;
(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.
解:(1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.
50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本
中位数为66+68
2=67,所以该市的市民对乙部门评分的中位数的估计值是67.
(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为5 50=
0.1,8
50=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为
0.1,0.16.
(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.
5.(2013·新课标全国卷Ⅰ)为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5
2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4
服用B药的20位患者日平均增加的睡眠时间:
3.2 1.7 1.90.80.9 2.4 1.2 2.6 1.3 1.4
1.60.5 1.80.6 2.1 1.1 2.5 1.2 2.70.5
(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?
(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?
A药B药
0.
1.
2.
3.
解:(1)设A药观测数据的平均数为x,B药观测数据的平均数为y-.由观测结果可得
x-=1
20×(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,
y-=1
20×(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+
1.9+
2.1+2.4+2.5+2.6+2.7+
3.2)=1.6.
由以上计算结果可得x->y-,因此可看出A药的疗效更好.
(2)由观测结果可绘制如下茎叶图:
从以上茎叶图可以看出,A药疗效的试验结果有7
10的叶集中在茎2,3上,而B
药疗效的试验结果有7
10的叶集中在茎0,1上,由此可看出A药的疗效更好.
[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考
[练基础小题——强化运算能力]
1.某学校为了了解某年高考数学的考试成绩,在高考后对该校1 200名考生进行抽样调查,其中有400名文科考生,600名理科考生,200名艺术和体育类考生,从中抽取120名考生作为样本,记这项调查为①;从10名家长中随机抽取3名参加座谈会,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是()
A.分层抽样法,系统抽样法
B.分层抽样法,简单随机抽样法
C.系统抽样法,分层抽样法
D.简单随机抽样法,分层抽样法
解析:选B在①中,文科考生、理科考生、艺术和体育类考生会存在差异,。

相关文档
最新文档