七年级下数学期末模拟试题3含答案
2021年初中数学七年级下期末经典测试题(答案解析)(3)
一、选择题 1.116的平方根是( ) A .±12 B .±14 C .14 D .122.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折3.已知方程组276359632713x y x y +=⎧⎨+=-⎩的解满足1x y m -=-,则m 的值为( ) A .-1B .-2C .1D .2 4.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣5 5.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( ) A .491b a -=B .321a b +=C .491b a -=-D .941a b += 6.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个7.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3--B .()4,2C .()0,1D .()1,88.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180°9.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)10.不等式组3(1)112123x x x x -->-⎧⎪--⎨≤⎪⎩的解集在数轴上表示正确的是( ) A .B .C .D .11.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A .(2,1)B .(﹣2,﹣1)C .(﹣2,1)D .(2,﹣1)12.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度 13.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°14.若x <y ,则下列不等式中不成立的是( )A .x 1y 1-<-B .3x 3y <C .x y 22<D .2x 2y -<-15.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( ) A .8 B .6 C .4 D .2二、填空题16.27的立方根为 .17.如图,大矩形长是10厘米,宽是8厘米,阴影部分宽为2厘米,则空白部分面积__________.18.如果不等式组213(1)x x x m->-⎧⎨⎩<的解集是x <2,那么m 的取值范围是_____ 19.若3的整数部分是a ,小数部分是b ,则3a b -=______.20.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.21.用适当的符号表示a 是非负数:_______________.22.若二元一次方程组3354x y x y +=⎧⎨-=⎩的解为x a y b =⎧⎨=⎩,则a ﹣b=______. 23.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打_____折.24.不等式30x -+>的最大整数解是______25.如果点M (a-1,a+1)在x 轴上,则a 的值为___________.三、解答题26.国家规定,中小学生每天在校体育活动时间不低于1h .为此,某县就“你每天在校体育活动时间是多少”的问题,随机调查了辖区内300名初中学生.根据调查结果绘制成统计图如图所示,其中A 组为0.5t h <,B 组为0.51h t h ≤<,C 组为1 1.5h t h ≤<,D 组为1.5t h ≥.请根据上述信息解答下列问题:(1)本次调查数据的中位数落在______组内,众数落在______组内;(2)若该辖区约4000名初中生,请你估计其中达到国家规定体育活动时间的人数; (3)若A 组取0.25t h =,B 组取0.75t h =,C 组取 1.25t h =,D 组取2t h =,试计算这300名学生平均每天在校体育活动的时间.27.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=,60B ∠=,45D E ∠=∠=.(1)若150BCD =∠,求ACE ∠的度数;(2)试猜想BCD ∠与ACE ∠的数量关系,请说明理由;(3)若按住三角板ABC 不动,绕顶点C 转动三角板DCE ,试探究BCD ∠等于多少度时,CD AB ,并简要说明理由.28.问题情境:如图1,//AB CD ,128PAB ∠=︒,124PCD ∠=︒,求APC ∠的度数.小明的思路是过点P 作//PE AB ,通过平行线性质来求APC ∠.(1)按照小明的思路,写出推算过程,求APC ∠的度数.(2)问题迁移:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由.(3)在(2)的条件下,当点P 在线段OB 上时,请直接写出APC ∠与α、β之间的数量关系.29.如图,在平面直角坐标系中,点A ,B 的坐标分别为(a ,0),(b ,0),且满足()()22130a b ++-=现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .(1)求点C ,D 的坐标及四边形ABDC 的面积;(2)在y 轴上是否存在一点M ,连接MA ,MB ,使S △MAB =S 四边形ABDC ?若存在这样一点,求出点M 的坐标;若不存在,试说明理由;(3)点P 是射线BD 上的一个动点(不与B ,D 重合),连接PC ,PA ,求∠CPA 与∠DCP 、∠BAP 之间的关系.30.补充完成下列解题过程:如图,已知直线a 、b 被直线l 所截,且//a b ,12100∠+∠=°,求3∠的度数.解:1∠与2∠是对顶角(已知),12∠∠∴=( )12100∠+∠=︒(已知),得21100∠=︒(等量代换).1∴∠=_________( ).//a b (已知),得13∠=∠( ).3∴∠=________(等量代换).【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.A2.B3.A4.A5.D6.C7.C8.D9.D10.B11.C12.B13.D14.D15.D二、填空题16.3【解析】找到立方等于27的数即可解:∵33=27∴27的立方根是3故答案为3考查了求一个数的立方根用到的知识点为:开方与乘方互为逆运算17.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=18.m≥2【解析】【分析】先解第一个不等式再根据不等式组的解集是x<2从而得出关于m的不等式解不等式即可【详解】解:解第一个不等式得x<2∵不等式组的解集是x<2∴m≥2故答案为m≥2【点睛】本题是已知19.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为120.100【解析】【分析】根据对顶角相等求出∠AOC再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA平分∠COE∴∠AOE=∠AOC=40°∴∠COE=821.a≥0【解析】【分析】非负数即大于等于0据此列不等式【详解】由题意得a≥0故答案为:a≥022.【解析】【分析】把xy的值代入方程组再将两式相加即可求出a﹣b的值【详解】将代入方程组得:①+②得:4a﹣4b=7则a﹣b=故答案为【点睛】本题考查二元一次方程组的解解题的关键是观察两方程的系数从而23.【解析】【分析】本题可设打x折根据保持利润率不低于5可列出不等式:解出x的值即可得出打的折数【详解】设可打x折则有解得即最多打7折故答案为7【点睛】考查一元一次不等式的应用读懂题目找出题目中的不等关24.2【解析】解不等式-x+3>0可得x<3然后确定其最大整数解为2故答案为2点睛:此题主要考查了不等式的解法和整数解得确定解题关键是利用不等式的基本性质3解不等式然后才能从解集中确定出最大整数解25.-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值【详解】∵点M(a-1a+1)在x轴上∴a+1=0解得a=-1故答案为:-1【点睛】本题考查了点的坐标熟记x轴上的点的纵坐标等于0三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】根据平方根的性质:一个正数的平方根有两个,它们互为相反数计算即可.【详解】14,14的平方根是12±,12±,故选A.【点睛】本题考查平方根的性质,一个正数的平方根有两个,它们互为相反数,0的平方根还是0,熟练掌握相关知识是解题关键.2.B解析:B【解析】【详解】设可打x折,则有1200×10x-800≥800×5%,解得x≥7.即最多打7折.故选B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.3.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.4.A解析:A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.5.D解析:D【解析】【分析】把3{2xy=-=-,代入1{2ax cycx by+=-=,即可得到关于,,a b c的方程组,从而得到结果.【详解】由题意得,321322a cc b--=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963 644a cc b--=⎧⎨-+=⎩③④-④③得941a b+=,故选:D.6.C解析:C【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C .【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.C解析:C【解析】【分析】根据点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D 的对应点的坐标.【详解】点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B (-4,-1)的对应点D 的横坐标为-4+4=0,点D 的纵坐标为-1+2=1,故D (0,1).故选C .【点睛】此题考查了坐标与图形的变化----平移,根据A (-2,3)变为C (2,5)的规律,将点的变化转化为坐标的变化是解题的关键.8.D解析:D【解析】【分析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D 选项中邻补角的和为180°一定正确.【详解】1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12l l //时,故A 、B 、C 选项不一定成立,∵1∠与4∠是邻补角,∴∠1+∠4=180°,故D 正确.故选D.【点睛】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.9.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.10.B解析:B【解析】【分析】首先解两个不等式求出不等式组解集,然后将解集在数轴上的表示出来即可.【详解】解:3(1)112123x xx x-->-⎧⎪⎨--≤⎪⎩①②,解不等式①得:x<2,解不等式②得:x≥-1,在数轴上表示解集为:,故选:B.【点睛】本题考查了解一元一次不等式组及在数轴上表示不等式组解集,解题关键是熟练掌握确定不等式组解集的方法:同大取大、同小取小、大小小大中间找、大大小小无解了. 11.C解析:C【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.12.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.13.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.14.D解析:D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x <y ,则x ﹣1<y ﹣1,选项A 成立;若x <y ,则3x <3y ,选项B 成立;若x <y ,则x 2<y 2,选项C 成立; 若x <y ,则﹣2x >﹣2y ,选项D 不成立,故选D .【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.15.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值.【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题16.3【解析】找到立方等于27的数即可解:∵33=27∴27的立方根是3故答案为3考查了求一个数的立方根用到的知识点为:开方与乘方互为逆运算解析:3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算17.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S 空白部分=(10-2)×(8-2)=解析:48cm 2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移,这样空白部分就变成了了一个矩形,然后利用矩形面积公式计算即可.【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=48(cm2)故答案为48 cm2.【点睛】本题考查了平移. 通过平移,把不规则的几何图形转化为规则的几何图形,然后根据面积公式进行计算.18.m≥2【解析】【分析】先解第一个不等式再根据不等式组的解集是x<2从而得出关于m的不等式解不等式即可【详解】解:解第一个不等式得x<2∵不等式组的解集是x<2∴m≥2故答案为m≥2【点睛】本题是已知解析:m≥2.【解析】【分析】先解第一个不等式,再根据不等式组()2131x xx m⎧->-⎨<⎩的解集是x<2,从而得出关于m的不等式,解不等式即可.【详解】解:解第一个不等式得,x<2,∵不等式组()2131x xx m⎧->-⎨<⎩的解集是x<2,∴m≥2,故答案为m≥2.【点睛】本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.19.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】3a,小数部分为b,∴a=1,b31,-b1)=1.故答案为1.20.100【解析】【分析】根据对顶角相等求出∠AOC再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA平分∠COE∴∠AOE=∠AOC=40°∴∠COE=8解析:100【解析】【分析】根据对顶角相等求出∠AOC,再根据角平分线和邻补角的定义解答.【详解】解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°,∴∠COE=80°.∴∠DOE=180°-80°=100°故答案为:100.【点睛】本题考查了对顶角相等的性质,角平分线、邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.21.a≥0【解析】【分析】非负数即大于等于0据此列不等式【详解】由题意得a≥0故答案为:a≥0解析:a≥0【解析】【分析】非负数即大于等于0,据此列不等式.【详解】由题意得a≥0.故答案为:a≥0.22.【解析】【分析】把xy的值代入方程组再将两式相加即可求出a﹣b的值【详解】将代入方程组得:①+②得:4a﹣4b=7则a﹣b=故答案为【点睛】本题考查二元一次方程组的解解题的关键是观察两方程的系数从而解析:7 4【解析】【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【详解】将x a y b =⎧⎨=⎩代入方程组3354x y x y +=⎧⎨-=⎩,得:3354a b a b +=⎧⎨-=⎩①②, ①+②,得:4a ﹣4b=7, 则a ﹣b=74, 故答案为74. 【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a ﹣b 的值. 23.【解析】【分析】本题可设打x 折根据保持利润率不低于5可列出不等式:解出x 的值即可得出打的折数【详解】设可打x 折则有解得即最多打7折故答案为7【点睛】考查一元一次不等式的应用读懂题目找出题目中的不等关 解析:【解析】【分析】本题可设打x 折,根据保持利润率不低于5%,可列出不等式:12008008005%10x ,⨯-≥⨯ 解出x 的值即可得出打的折数. 【详解】 设可打x 折,则有12008008005%10x ,⨯-≥⨯ 解得7.x ≥即最多打7折.故答案为7.【点睛】考查一元一次不等式的应用,读懂题目,找出题目中的不等关系,列出不等式是解题的关键. 24.2【解析】解不等式-x+3>0可得x <3然后确定其最大整数解为2故答案为2点睛:此题主要考查了不等式的解法和整数解得确定解题关键是利用不等式的基本性质3解不等式然后才能从解集中确定出最大整数解解析:2【解析】解不等式-x+3>0,可得x <3,然后确定其最大整数解为2.故答案为2.点睛:此题主要考查了不等式的解法和整数解得确定,解题关键是利用不等式的基本性质3解不等式,然后才能从解集中确定出最大整数解.25.-1【解析】【分析】根据x 轴上的点纵坐标等于0列出方程求解得到a 的值【详解】∵点M(a-1a+1)在x轴上∴a+1=0解得a=-1故答案为:-1【点睛】本题考查了点的坐标熟记x轴上的点的纵坐标等于0 解析:-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值.【详解】∵点M(a-1,a+1)在x轴上,∴a+1=0,解得a=-1,故答案为:-1.【点睛】本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.三、解答题26.(1)C,C;(2)2400;(3)7 6 h.【解析】【分析】(1)根据中位数的概念即中位数应是第150、151人时间的平均数和众数的定义即可得出答案;(2)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数;(3)根据t的取值和每组的人数求出总的时间,再除以总人数即可.【详解】解:(1)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;C组出现的人数最多,则众数再C组;故答案为:C,C;(2)达到国际规定体育活动时间的人数约12060100%60% 300+⨯=,则达国家规定体育活动时间的人约有4000×60%=2400(人);(3)根据题意得:(20×0.25+100×0.75+120×1.25+60×2)÷300=7 (h) 6,【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.27.(1)30°; (2)答案见解析;(3)答案见解析.【解析】【分析】(1)由∠BCD =150°,∠ACB =90°,可得出∠DCA 的度数,进而得出∠ACE 的度数;(2)根据(1)中的结论可提出猜想,再由∠BCD =∠ACB +∠ACD ,∠ACE =∠DCE−∠ACD 可得出结论;(3)根据平行线的判定定理,画出图形即可求解.【详解】解:(1)∵90BCA ECD ∠=∠=︒,150BCD ∠=︒,∴1509060DCA BCD BCA ∠=∠-∠=︒-︒=︒,∴906030ACE ECD DCA ∠=∠-∠=︒-︒=︒;(2)180BCD ACE ∠+∠=︒,理由如下:∵90BCD ACB ACD ACD ∠=∠+∠=︒+∠,90ACE DCE ACD ACD ∠=∠-∠=︒-∠,∴180BCD ACE ∠+∠=︒;(3)当120BCD ∠=︒或60︒时,CD AB .如图②,根据同旁内角互补,两直线平行,当180B BCD ∠+∠=︒时,CD AB ,此时180********BCD B ∠=︒-∠=︒-︒=︒; 如图③,根据内错角相等,两直线平行,当60B BCD ∠=∠=︒时,CD AB .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.28.(1)108°;(2)∠APC=α+β,理由见解析;(3)∠APC=β-α.【解析】【分析】(1)过P 作PE ∥AB ,先推出PE ∥AB ∥CD ,再通过平行线性质可求出∠APC ; (2)过P 作PE ∥AB 交AC 于E ,先推出AB ∥PE ∥DC ,然后根据平行线的性质得出α=∠APE ,β=∠CPE ,即可得出答案;(3)过点P作PE∥AB交OA于点E,同(2)中方法根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=128°,∠PCD=124°,∴∠APE=52°,∠CPE=56°,∴∠APC=∠APE+∠CPE=108°;(2)∠APC=α+β.理由如下:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)∠APC=β-α.理由如下:过点P作PE∥AB交OA于点E,同(2)可得,α=∠APE,β=∠CPE,∴∠APC=∠CPE-∠APE=β-α.【点睛】本题主要考查了平行线的性质与平行公理,解题的关键是过拐点作平行线,利用平行线的性质解决问题.29.(1)C(0,2),D(4,2),S四边形ABDC=8;(2)M(0,4)或(0,-4);(3)∠CPA=∠BAP+∠DCP或∠CPA= ∠BAP-∠DCP.【解析】【分析】(1)由题意根据非负数的性质求出A 、B 坐标,进而分析得出C 、D 坐标,继而即可求出四边形ABDC 的面积;(2)由题意可知以AB 为底边,设点M 到AB 的距离为h 即三角形MAB 的高,求得h 的值即可得出点M 的坐标;(3)根据题意分当点P 在线段BD 上时以及当点P 在BD 延长线上时,利用平行线的性质进行分析即可.【详解】解: (1)由()()22130a b ++-=得a=-1,b=3,则A(-1,0),B(3,0),∵点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,如图,∴C(0,2),D(4,2),∴S 四边形ABDC =AB×OC=4×2=8. (2)存在.设点M 到AB 的距离为h ,S △MAB =12×AB×h=2h , 由S △MAB =S 四边形ABDC ,得2h=8,解得h=4,可知这样的M 点在y 轴上有两个,∴M(0,4)或(0,-4).(3) ①当点P 在线段BD 上时:∠CPA=∠DCP+∠BAP ,理由如下:过P 点作PE ∥AB 交OC 与E 点,∵AB ∥CD , PE ∥AB ,∴AB ∥PE ∥CD ,∴∠DCP=∠CPE,∠BAP=∠APE,∵∠CPA=∠CPE+∠APE,∴∠CPA=∠DCP+∠BAP;②当点P在BD延长线上时:∠CPA= ∠BAP-∠DCP,理由如下:过P点作PE∥AB,∵AB∥CD,PE∥AB,∴AB∥PE∥CD,∴∠DCP=∠CPE,∠BAP=∠APE,∵∠CPA= ∠APE-∠CPE。
七年级下数学期末复习测试题(三)
七年级下数学期末复习测试题(三)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列计算正确的是()A.a3+a2=a5B.a2•a3=a6C.2a﹣3a=﹣a D.(3a)2=6a2 2.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.3.(3分)若2x=m,2y=n,则2x﹣y等于()A.B.mn C.2mn D.m+4.(3分)用科学记数法表示0.000532正确的是()A.5.32×10﹣6B.5.32×10﹣5C.5.32×10﹣4D.0.532×10﹣5 5.(3分)在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,3cm,6cmC.2cm,5cm,6cm D.5cm,6cm,7cm6.(3分)直角三角板和直尺如图放置,若∠1=25°,则∠2的度数为()A.50°B.45°C.40°D.35°7.(3分)已知△ABC≌△DEF,∠A=60°,∠E=70°,那么∠C等于()A.40°B.50°C.60°D.70°8.(3分)如图,用不同的代数式表示图中阴影部分的面积,可得等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2+2ab﹣b2C.(a+b)(a﹣b)=a2﹣b2D.(a﹣b)2=a2﹣2ab+b29.(3分)如图,在2×2网格中放置了三枚棋子,在其他格点处再放置1枚棋子,使图形中的四枚棋子成为轴对称图形的概率是()A.B.C.D.10.(3分)如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论:①AE平分∠BAC;②△ABD是等边三角形;③DE垂直平分线段AC;④△BCD是等腰三角形,其中正确的个数是()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.(3分)计算:(2π﹣6.28)0+(﹣)﹣2=.12.(3分)如图,∠ABC=∠DCB,只需补充条件,就可以根据“AAS”得到△ABC≌△DCB.13.(3分)等腰三角形ABC中,∠A=44°,则∠B的度数是.14.(3分)如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD ∥BE,∠1=20°,则∠2的度数是.15.(3分)如图,在△ABC中,AB=AC,∠B=50°,以点C为圆心,CA长为半径作弧,交直线BC于点P,连结AP,则∠BAP的度数是.16.(3分)港珠澳大桥全长近55km,汽车行驶完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的关系式为.三.解答题(共8小题,满分72分)17.(10分)计算(1)2(x2)3•x3﹣(3x3)3+(5x)2•x7(2)(6x4﹣8x3)÷(﹣2x)2 18.(7分)化简求值[(xy+2)(xy﹣2)﹣2x2y2+4]÷xy,其中x=10,y=.19.(7分)一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当角∠CAE=60°时,BC∥DE.求其它所有可能符合条件的角∠CAE(0°<∠CAE<180°)的度数,画出对应的图形并证明.20.(8分)如图,直线l1,l2,l3表示三条相互交叉的公路,现计划建一个加油站P,要求它到三条公路的距离相等,请用尺规画出可供选择的其中一个P点的位置(不写作法,保留作图痕迹)21.(8分)如图,地面上有一个不规则的封闭图形,为求得它的面积,小明在此封闭图形内画出一个边长为0.5米的正方形后,在附近闭上眼睛向封闭图形内掷小石子(可把小石子近似看成点),记录如下:掷小石子所落的总次数(小石子所落的50150300600…有效区域内,含边界)m103578149…小石子落在正方形内(含正方形边上)的次数nn:m0.2000.2330.2570.248…(1)根据如表,如果你掷一次小石子,那么小石子落在正方形内(含正方形边上)的概率约为(精确到0.01);(2)当掷小石子所落的总次数m=1000时,小石子落在正方形内(含正方形边上)的次数n最可能为;A.105B.249C.518D.815(3)请你利用(1)中所得概率,估计整个不规则封闭图形的面积约是多少平方米?22.(10分)甲、乙两地相距200km,早上8:00货车从甲地出发将一批物资运往乙地,途中货车出现了故障,已知货车离甲地的路程y(km)与行驶时间x(h)的关系如图所示.①求货车出现故障前的速度;②若货车司机经过24分钟维修排除了故障,继续运送物资去乙地,现要求该批物货运到乙地必须在当天中午12:00,那么货车的速度应该提高到多少?23.(10分)如图,要测量河两岸相对两点A、B间的距离,在河岸BM上截取BC=CD,作ED⊥BD交AC的延长线于点E,垂足为点D.(DE≠CD)(1)线段的长度就是A、B两点间的距离(2)请说明(1)成立的理由.24.(12分)尺规作图之旅如图1是一副纯手绘的画作,其中用到的主要工具就是直尺和圆规,在数学中,我们也能通过尺规作图创造出许多带有美感的图形.尺规作图起源于古希腊的数学课题,只允许使用圆规和直尺,来解决平面几何作图问题.(1)(作图原理)在两年的数学学习里中,我们认识了尺规作图,并学会用尺规作图完成一些作图问题,请仔细思考回顾,判断以下操作能否通过尺规作图实现,可以实现的画√,不能实现的画×.①过一点作一条直线.②过两点作一条直线.③画一条长为3cm的线段.④以一点为圆心,给定线段长为半径作圆.(2)(回顾思考)还记得我们用尺规作图完成的第一个问题吗?那就是“作一条线段等于已知线段”,接着,我们学习了使用尺规作图作线段的垂直平分线,作角平分线,过直线外一点作垂线……而这些尺规作图的背后都与我们学习的数学原理密切相关,下面是用尺规作一个角等于已知角的方法及说理,请补全过程.已知:如图2,∠AOB.求作:∠A′O′B′使∠A′O′B′=∠AOB作法:①如图,以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;③以点C′为圆心,;(3)如图3,4,过点D′画射线O′B′,则∠A′O′B′=∠AOB.说理:由作法得已知:OC=O′C′,OD=O′D′,CD=C′D′求证:∠A′O′B′=∠AOB证明:∵∴△OCD≌△O′C′D′()所以∠A′O′B′=∠AOB()(4)(小试牛刀)请按照上面的范例,完成尺规作图并说理:过直线外一点作已知直线的平行线.已知:如图5,直线l与直线外一点A.求作:过点A的直线l′,使得l∥l′.(5)(创新应用)现实生活中许多图案设计都蕴含着数学原理,如图6是一个常见商标的设计示意图.假设你拥有一家书店,请利用你手中的刻度尺和圆规,为你的书店设计一个图案.要求保留作图痕迹,并写出你的设计意图.。
2022—2023年人教版七年级数学下册期末模拟考试(带答案)
2022—2023年人教版七年级数学下册期末模拟考试(带答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .3.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( )A .x =-4B .x =-3C .x =-2D .x =-14.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >05.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.当a <0,n 为正整数时,(-a )5·(-a )2n 的值为( )A .正数B .负数C .非正数D .非负数8.64的立方根是( )A .4B .±4C .8D .±89.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1 B .﹣52 C .±1 D .±5210.如图所示的几何体的主视图是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.如果方程(m-1)x |m|+2=0是表示关于x 的一元一次方程,那么m 的取值是________.5.若264a =3a =________.6.如果20a b --=,那么代数式122a b +-的值是________.三、解答题(本大题共6小题,共72分)1.解不等式组,并将解集在数轴上表示出来.273(1)15(4)2x x x x -<-⎧⎪⎨-+≥⎪⎩①②2.已知A =3x 2+x+2,B =﹣3x 2+9x+6.(1)求2A ﹣13B ; (2)若2A ﹣13B 与32C -互为相反数,求C 的表达式; (3)在(2)的条件下,若x =2是C =2x+7a 的解,求a 的值.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,在平面直角坐标系中,点A 、C 分别在x 轴上、y 轴上,CB //OA ,OA =8,若点B 的坐标为(a ,b ),且b 444a a --.(1)直接写出点A 、B 、C 的坐标; (2)若动点P 从原点O 出发沿x 轴以每秒2个单位长度的速度向右运动,当直线PC 把四边形OABC 分成面积相等的两部分停止运动,求P 点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、B5、C6、C7、A8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()2 x x y-2、55°3、(3,7)或(3,-3)4、-15、±26、5三、解答题(本大题共6小题,共72分)1、原不等式组的解集为﹣4<x≤2,在数轴上表示见解析.2、(1)7x2﹣x+2;(2)﹣14x2+2x﹣1;(3)﹣5773、(1)证明见解析;(2)∠FAE=135°;4、(1)A(8,0),B(4,4),C(0,4);(2)t=3;(3)存在;点Q坐标(0,12)或(0,−4)5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、①上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;②当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;③32厘米.。
七年级下学期数学期末模拟试题(3)
七年级下学期数学期末模拟试题(3)一、单选题每小题3分,共30分)1.如图所示的图案分别是大众、奥迪、奔驰、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是( )A B C D2.在实数﹣,,0,,﹣π,中,无理数的个数是( ) A .1个 B .2个C .3个D .4个 3.在平面直角坐标系中,点(3,﹣2)在( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知 是方程 的一组解,则a 的值分别是( ) A .1 B .3 C .-3 D .-15. 下列计算正确的是( )A .√25=±5B .√(−6)2=−6C .√−273=−3D .−√9=36. 不等式2x -7≤5的正整数解有( )。
A .7个B .6个C .5个D .4个7. 如图,点E 在AC 的延长线上,若BD ∥AE ,则下列结论错误的是( )A .∠3=∠4B .∠1=∠2C .∠D =∠DCE D .∠D +∠ACD =180°8.已知方程组⎩⎨⎧=++=+my x m y x 332223中未知数x +y =2,求m 的值是( ) 第7题图 A .0 B .1 C .2 D .39.如果不等式组8x x m <⎧⎨>⎩无解,那么m 的取值范围是( ) A .m >8 B .m≥8 C .m <8 D .m≤810.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,第n⎩⎨⎧-==11y x 32=-ay x次移动到A n ,则△OA 3A 2020的面积是( )A .504.5m 2B .505m 2C .505.5m 2D D .1010m 2二、填空题(每小题3分,共30分)11.64的平方根为 .12.把命题“对顶角相等”改写成“如果…那么…”的式 .13.写出一个以 ⎩⎨⎧==1-4y x 为解的二元一次方程组:______________. 14.一个正数的两个平方根分别为a +3和2a +3,则a = .16.王老师对本班40个学生所穿校服尺码的数据统计如下:则该班学生所穿校服尺码为“L”的人数为________17.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为(3,2),则B 点坐标为 . 18.如图,在△ABC 中,∠B+∠C=110°,AD 平分∠BAC ,交BC 于D ,DE ∥AB ,交AC 于点E ,则∠ADE 的大小是_____.第18题图 第19题图 第20题图19.如图,将三角形ABC 沿射线BC 方向平移3cm 得到三角形DEF .若三角形ABC 的周长为14cm ,则四边形ABFD 的周长为.20.如图,直线AB 和直线CD 相交于点O ,∠BOE =90°,有下列结论:①∠AOC 与∠COE 互为余角;②∠AOC =∠BOD ;③∠AOC =∠COE ;④∠COE 与∠DOE 互为补角;⑤∠AOC 与∠DOE 互为补角;⑥∠BOD 与∠COE 互为余角.其中错误的有 .(填序号)三、解答题(本大题8个小题,共60分)21.(4分) 计算 :5-5-28-1-3100++)(22.(8分)解方程:(1)4(x -2)2-36=0. (2)(x+1)3+64=0.23.(10分)解方程组及不等式组.⎩⎨⎧-=-+=53x 2x 1y 1y )(⎩⎨⎧-=-=+53x 2-13y x 2y )((3)解不等式组 并把它的解集在数轴上表示出来.24.(6分)在平面直角坐标系中,三角形ABC 的三个顶点分别是A (﹣2,0),B (0,5).(1)在所给的网格图中,画出这个平面直角坐标系;(2)将三角形ABC 平移得到三角形A 1B 1C 1,顶点A 、B 、C 分别对应顶点A 1、B 1、C 1,此时点B 1(3,7). ⎪⎩⎪⎨⎧-≤-->+x x x x 2371211315)(①画出平移后的三角形A1B1C1,点C1的坐标为;②请你描述三角形ABC经过怎样的平移后得到三角形A1B1C1③求出四边形BB1C1C的面积.25.某学校为了解该校七年级学生的身高情况,抽样调查了部分同学,将所得数据处理后,如图,制成扇形统计图和频数分布直方图(部分)如下(每组只含最低值不含最高值,身高单位:cm,测量时精确到1cm):(1)该校七年级有多少人?(2)请根据所提供的信息补全频数直方图;(3)155~160cm之间这一组的频数是多少?26.(6分)已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.①求证:BD∥CE.②若∠A=40°,求∠F的值.27.(本题10分)天水某交公司淘汰某一条线路上“冒黑烟“较严重的公交车,计划购买A 型和B 型两种环保节能公交车共10辆,若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元。
2023年人教版七年级数学下册期末模拟考试及完整答案
2023年人教版七年级数学下册期末模拟考试及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.-5的相反数是( )A .15-B .15C .5D .-52.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC=EC ,∠B=∠EB .BC=EC ,AC=DC C .BC=DC ,∠A=∠D D .∠B=∠E ,∠A=∠D6.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-37.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图所示,直线a ∥b ,∠1=35°,∠2=90°,则∠3的度数为( )A .125°B .135°C .145°D .155°9.如图,直线l 1∥l 2,∠α=∠β,∠1=50°,则∠2的度数为( )A .130°B .120°C .115°D .100°10.将一个四边形截去一个角后,它不可能是( )A .六边形B .五边形C .四边形D .三角形二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.式子3x -在实数范围内有意义,则 x 的取值范围是________.3.已知23的整数部分为a ,小数部分为b ,则a -b =________.4.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是________.5.若x=2是关于x 的方程2x+3m ﹣1=0的解,则m 的值等于_________.6.如果20a b --=,那么代数式122a b +-的值是________.三、解答题(本大题共6小题,共72分)1.解方程31571 46x x---=2.若关于x、y的二元一次方程组325233x y ax y a-=-⎧⎨+=+⎩的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.3.如图,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF(1)求证:∠DAF=∠F;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.4.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.6.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的13.请设计出最省钱的购买方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、C5、C6、B7、C8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、x≥33、4、40°5、﹣16、5三、解答题(本大题共6小题,共72分)1、x=﹣12、(1)a>1;(2)2;(3)a的值是2.3、(1)略;(2)与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.4、(1) 4s;(2) 9s;(3) t=323s或16s5、(1)a=20,m=960;(2)网购软件的人均利润为160元/人,视频软件的人均利润为140元/人;(3)安排9人负责网购、安排1人负责视频可以使总利润增加60万元.6、(1)A的单价30元,B的单价15元(2)购买A奖品8个,购买B奖品22个,花费最少。
初中数学人教七年级下册期末试卷(3)(附答案)
期末数学试卷一、选择题1.9的算术平方根是()A.±3 B.3 C.D.2.坐标平面内下列各点中,在x轴上的点是()A.(0,3) B.(﹣3,0)C.(﹣1,2)D.(﹣2,﹣3)3.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣2 C.1 D.﹣14.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>5.在图中,∠1和∠2是对顶角的是()A.B.C.D.6.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠57.下列调查中,适宜采用全面调查(普查)方式的是()A.对一批圆珠笔使用寿命的调查B.对全国九年级学生身高现状的调查C.对某品牌烟花爆竹燃放安全的调查D.对一枚用于发射卫星的运载火箭各零部件的检查8.方程组的解为,则a、b分别为()A.a=8,b=﹣2 B.a=8,b=2 C.a=12,b=2 D.a=18,b=89.若不等式组的解集为0<x<1,则a、b的值分别为()A.a=2,b=1 B.a=2,b=3 C.a=﹣2,b=3 D.a=﹣2,b=110.下列说法:①带根号的数是无理数;②不含根号的数一定是有理数;③无理数是开方开不尽的数;④无限小数是无理数;⑤π是无理数,其中正确的有()A.4个 B.3个 C.2个 D.1个二、填空题11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.12.如图所示,由三角形ABC平移得到的三角形有个.13.已知(a﹣2)2+|b+3|=0,则点P(﹣a,﹣b)在第象限.14.满足不等式的非正整数x共有个.15.如果的平方根是±3,则=.16.已知点A(﹣1,b+2)不在任何象限,则b=.17.不等式的解集是.18.已知x满足(x+3)3=27,则x等于.19.已知y=kx+b,当x=1时,y=﹣1;当x=3时,y=﹣5,则k=,b=.20.如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是.三、解答题21.解方程组:.22.计算:﹣|﹣3|+.23.解不等式组:并把解集在数轴上表示出来.24.已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.25.如图所示,把三角板的直角顶点放在直尺的一边上,若∠1=30°,求∠2的度数.26.如图是根据某乡2009年第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图,请根据统计图提供的信息解答下列问题:(1)第一季度购买的“家电下乡”产品的总台数为;(2)把两幅统计图补充完整.27.去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果今年(365天)这样的比值要超过70%,那么今年空气质量良好的天数比去年至少要增加多少天?28.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,求∠1、∠2的度数.29.某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?参考答案与试题解析一、选择题(每小题3分,共30分)1.9的算术平方根是()A.±3 B.3 C.D.【考点】22:算术平方根.【分析】根据开方运算,可得算术平方根.【解答】解:9的算术平方根是3,故选:B.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.2.坐标平面内下列各点中,在x轴上的点是()A.(0,3) B.(﹣3,0)C.(﹣1,2)D.(﹣2,﹣3)【考点】D1:点的坐标.【分析】根据点在x轴上的坐标特点解答即可.【解答】解:∵在x轴上的点的纵坐标是0,∴结合各选项在x轴上的点是(﹣3,0).故选B.【点评】本题主要考查了点在x轴上的点的坐标特点:纵坐标为0.3.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣2 C.1 D.﹣1【考点】92:二元一次方程的解.【专题】11 :计算题;521:一次方程(组)及应用.【分析】把x与y的值代入方程计算即可求出k的值.【解答】解:把代入方程得:2k﹣1=3,解得:k=2,故选A【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>【考点】C2:不等式的性质.【分析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案.【解答】解:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.【点评】此题考查了不等式的性质,掌握不等式的性质是解题的关键,不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.在图中,∠1和∠2是对顶角的是()A.B.C.D.【考点】J2:对顶角、邻补角.【分析】根据对顶角的定义对各图形判断即可.【解答】解:A、∠1和∠2不是对顶角;B、∠1和∠2是对顶角;C、∠1和∠2不是对顶角;D、∠1和∠2不是对顶角.故选:B.【点评】本题考查了对顶角相等,是基础题,熟记概念并准确识图是解题的关键.6.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠5【考点】J9:平行线的判定.【专题】121:几何图形问题.【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:∵∠1=∠2,∴BC∥AD(内错角相等,两直线平行).故选C.【点评】解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放型题目,能有效地培养“执果索因”的思维方式与能力.7.下列调查中,适宜采用全面调查(普查)方式的是()A.对一批圆珠笔使用寿命的调查B.对全国九年级学生身高现状的调查C.对某品牌烟花爆竹燃放安全的调查D.对一枚用于发射卫星的运载火箭各零部件的检查【考点】V2:全面调查与抽样调查.【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、对一批圆珠笔使用寿命的调查,由于具有破坏性,应当使用抽样调查,故本选项错误;B、对全国九年级学生身高现状的调查,人数太多,不便于测量,应当采用抽样调查,故本选项错误;C、对某品牌烟花爆竹燃放安全的调查,由于具有破坏性,应当使用抽样调查,故本选项错误;D、对一枚用于发射卫星的运载火箭各零部件的检查,只有做到全面调查才能做到准确无误,故必须全面调查,故此选项正确.故选:D.【点评】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.8.方程组的解为,则a、b分别为()A.a=8,b=﹣2 B.a=8,b=2 C.a=12,b=2 D.a=18,b=8【考点】97:二元一次方程组的解.【专题】11 :计算题.【分析】将x与y的值代入方程组即可求出a与b的值.【解答】解:将x=5,y=b代入方程组得:,解得:a=12,b=2,故选C【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.若不等式组的解集为0<x<1,则a、b的值分别为()A.a=2,b=1 B.a=2,b=3 C.a=﹣2,b=3 D.a=﹣2,b=1【考点】CB:解一元一次不等式组.【分析】先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.【解答】解:,由①得,x>2﹣a,由②得,x<,故不等式组的解集为;2﹣a<x<,∵原不等式组的解集为0<x<1,∴2﹣a=0,=1,解得a=2,b=1.故选A.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.下列说法:①带根号的数是无理数;②不含根号的数一定是有理数;③无理数是开方开不尽的数;④无限小数是无理数;⑤π是无理数,其中正确的有()A.4个 B.3个 C.2个 D.1个【考点】26:无理数.【分析】根据无理数的三种形式求解.【解答】解:①带根号的数不一定是无理数,如;②不含根号的数不一定是有理数,如无限不循环小数;③开方开不尽的数是无理数;④无限不循环小数是无理数;⑤π是无理数,该说法正确.故选D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.二、填空题(每小题3分,共30分)11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为4.【考点】C6:解一元一次不等式.【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【解答】解:去分母得,x﹣m>3(3﹣m),去括号得,x﹣m>9﹣3m,移项,合并同类项得,x>9﹣2m,∵此不等式的解集为x>1,∴9﹣2m=1,解得m=4.故答案为:4.【点评】考查了解一元一次不等式,解答此题的关键是掌握不等式的性质,(1)不等式两边同加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边同乘(或同除以)同一个正数,不等号的方向不变;(2)不等式两边同乘(或同除以)同一个负数,不等号的方向改变.12.如图所示,由三角形ABC平移得到的三角形有5个.【考点】Q2:平移的性质.【分析】平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,据此判断出由三角形ABC平移得到的三角形有哪些即可.【解答】解:如图1,,由三角形ABC平移得到的三角形有5个:△DBE、△BHI、△EFG、△EIM、△IPN.故答案为:5.【点评】此题主要考查了平移的性质和应用,要熟练掌握,解答此题的关键是要明确:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.13.已知(a﹣2)2+|b+3|=0,则点P(﹣a,﹣b)在第二象限.【考点】D1:点的坐标;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【分析】根据非负数的性质求出a、b,再根据各象限内点的坐标特征解答.【解答】解:由题意得,a﹣2=0,b+3=0,解得a=2,b=﹣3,所以,点P(﹣a,﹣b)即(﹣2,3)在第二象限.故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.满足不等式的非正整数x共有3个.【考点】2B:估算无理数的大小.【分析】根据﹣3<<﹣2和3<<4求出符合条件的非正整数,即可得出答案.【解答】解:不等式的非正整数有﹣2,﹣1,0,共3个,故答案为:3.【点评】本题考查了估算无理数大小,实数的大小比较的应用,关键是确定﹣和的范围.15.如果的平方根是±3,则=4.【考点】24:立方根;21:平方根;22:算术平方根.【分析】求出a的值,代入求出即可.【解答】解:∵的平方根是±3,∴=9,∴a=81,∴==4,故答案为:4.【点评】本题考查了平方根、算术平方根,立方根定义的应用,关键是求出a 的值.16.已知点A(﹣1,b+2)不在任何象限,则b=﹣2.【考点】D1:点的坐标.【分析】根据坐标轴上的点的坐标特征方程求解即可.【解答】解:∵点A(﹣1,b+2)不在任何象限,∴b+2=0,解得b=﹣2.故答案为:﹣2.【点评】本题考查了点的坐标,熟记坐标轴上点的坐标特征是解题的关键.17.不等式的解集是x<6.【考点】C6:解一元一次不等式.【分析】利用不等式的基本性质,先去分母,然后把不等号右边的x移到左边,合并同类项即可求得原不等式的解集.【解答】解:去分母得:2x﹣2﹣3x﹣4>﹣12,移项得:﹣x>﹣6,系数化为1得:x<6.故答案为:x<6.【点评】本题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.18.已知x满足(x+3)3=27,则x等于0.【考点】24:立方根.【分析】首先根据立方根的定义可求出27的立方根,即可求得x的值.【解答】解:∵27的立方根为3,∴x+3=3,∴x=0.故答案为0.【点评】此题主要考查了立方根的定义和性质,注意本题答案不唯一.求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.19.已知y=kx+b,当x=1时,y=﹣1;当x=3时,y=﹣5,则k=﹣2,b=1.【考点】98:解二元一次方程组.【专题】11 :计算题.【分析】把x与y的两对值代入y=kx+b,列出方程组,求出方程组的解得到k与b的值即可.【解答】解:把x=1,y=﹣1;x=3,y=﹣5代入y=kx+b中,得:,解得:k=﹣2,b=1.故答案为:﹣2;1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是130°.【考点】JA:平行线的性质.【分析】首先根据平行线的性质可得∠B=∠C=50°,再根据BC∥DE可根据两直线平行,同旁内角互补可得答案.【解答】解:∵AB∥CD,∴∠B=∠C=50°,∵BC∥DE,∴∠C+∠D=180°,∴∠D=180°﹣50°=130°,故答案为:130°.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.两直线平行,内错角相等.三、解答题(60分)21.解方程组:.【考点】98:解二元一次方程组.【专题】11 :计算题.【分析】解此题时先找出某个未知数系数的最小公倍数,用加减消元法进行解答.【解答】解:原方程组变形为:,(1)﹣(2)得:y=﹣,代入(1)得:x=6.所以原方程组的解为.【点评】此题较简单,只要明白二元一次方程及方程组的解法就可.22.计算:﹣|﹣3|+.【考点】2C:实数的运算.【分析】根据立方根、绝对值,算术平方根进行计算即可.【解答】解:原式=4+﹣3+6=7+.【点评】本题考查了实数的运算,用到的知识点为立方根、绝对值,算术平方根.23.(6分)解不等式组:并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:∵由①得:x>﹣2.5,由②得x≤4,∴不等式组的解集为﹣2.5<x≤4,在数轴表示为:.【点评】本题考查解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.24.(6分)已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.【考点】21:平方根.【分析】根据一个正数的两个平方根互为相反数,可知2m﹣3=4m﹣5或2m﹣3=﹣(4m﹣5),解得m的值,继而得出答案.【解答】解:当2m﹣3=4m﹣5时,m=1,∴这个正数为(2m﹣3)2=(2×1﹣3)2=1;当2m﹣3=﹣(4m﹣5)时,m=∴这个正数为(2m﹣3)2=[2×﹣3]2=故这个正数是1或.【点评】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.25.(6分)如图所示,把三角板的直角顶点放在直尺的一边上,若∠1=30°,求∠2的度数.【考点】JA:平行线的性质.【分析】先根据补角的定义求出∠BAD的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=30°,∠BAC=90°,∴∠BAD=180°﹣90°﹣∠1=180°﹣90°﹣30°=60°,∵EF∥AD,∴∠2=∠BAD=60°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.26.(7分)如图是根据某乡2009年第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图,请根据统计图提供的信息解答下列问题:(1)第一季度购买的“家电下乡”产品的总台数为500;(2)把两幅统计图补充完整.【考点】VC:条形统计图;VB:扇形统计图.【专题】27 :图表型.【分析】由统计图可知:(1)根据条形统计图可知电视机是175台,根据扇形图可知电视占总产品的35%,即可求得产品的总数;(2)冰箱的台数为500×10%=50台;电脑的台数为500×5%=25台;则热水器的台数为500﹣50﹣25﹣175﹣150=100台,占的百分比为100÷500=20%;洗衣机占百分比为150÷500=30%.据此即可把两幅统计图补充完整.【解答】解:(1)175÷35%=500(个);(2)图如下面.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.(8分)去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果今年(365天)这样的比值要超过70%,那么今年空气质量良好的天数比去年至少要增加多少天?【考点】C9:一元一次不等式的应用.【分析】设今年比去年空气质量良好的天数增加了x天,根据“今年(365天)这样的比值要超过70%,”列出不等式解答即可.【解答】解:设今年比去年空气质量良好的天数增加了x天,依题意,得x+365×60%>365×70%解这个不等式,得x>36.56.由x应为正整数,得x≥37答:今年空气质量良好的天数比去年至少要增加37,才能使这一年空气质量良好的天数超过全年天数的70%.【点评】此题考查一元一次不等式的实际运用,找出题目蕴含的不等关系是解决问题的关键.28.(9分)如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,求∠1、∠2的度数.【考点】PB:翻折变换(折叠问题).【分析】由平行线的性质知∠DEF=∠EFB=55°,由题意知∠GEF=∠DEF=55°,则可求得∠2=∠GED=110°.由邻补角的性质可求得∠1的值.【解答】解:∵AD∥BC∴∠DEF=∠EFB=55°(2分)由对称性知∠GEF=∠DEF∴∠GEF=55°∴∠GED=110°∴∠1=180°﹣110°=70°(4分)∴∠2=∠GED=110°(5分)【点评】本题考查了翻折的性质,对应角相等及平行线的性质、邻补角的性质.29.(12分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?【考点】9A:二元一次方程组的应用.【分析】(1)设购买一个足球需要x元,购买一个篮球需要y元,根据购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元,列方程组求解;(2)设购买a个篮球,则购买(96﹣a)个足球,根据总费用不超过5720元,列不等式求出最大整数解.【解答】解:(1)设购买一个足球需要x元,购买一个篮球需要y元,根据题意得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元;(2)设购买a个篮球,则购买(96﹣a)个足球,根据题意得:80a+50(96﹣a)≤5720,解得:a≤,∵a是整数,∴a≤30,答:最多可以购买30个篮球.【点评】本题考查了二元一次方程组的应用和一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解.。
华师大版数学七年级下册期末复习试题(三)(有答案)
华师大版数学七年级下册期末复习试题(三)一、选择题(3分×8=24分)1、如果2(23)3250a b c a b c+-+-+=,那么ab的值为()A 、1B 、-1C 、5 D、-52、已知方程组325a xb y mc xd y n+=⎧⎨-=⎩的解是21xy=⎧⎨=-⎩,则方程组(2)3(3)2(2)5(3)a xb y mc xd y n++-=⎧⎨+--=⎩的解是()A21xy=⎧⎨=-⎩B42xy=⎧⎨=⎩C2xy=⎧⎨=⎩D4xy=⎧⎨=-⎩3、小亮在计算多边形内角和时,先测量各个内角的度数,再求和,结果得1570°,下列说法中错误的是()A 、小亮多加了一个内角,这个内角的度数是130°;B 、小亮少加了一个内角,这个内角的度数是50°;C 、小亮测量的多边形的边数可能是10;D、小亮测量的多边形的边数一定是11;4、已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是().A 、k<-3B、1≤ k<3 C 、-3≤k<-1D、k≥-35、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
下列说法错误的是()A 、2秒或5秒时,甲到A、B、C的距离和为40个单位;B 、若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲、乙在数轴上相遇点代表的数是-10.4;C 、若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,当甲到A、B、C的距离和为40个单位时,甲调头返回。
甲、乙在数轴上相遇点代表的数是-44;D、若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,当甲到A、B、C的距离和为40个单位时,甲调头返回。
甲、乙在数轴上相遇点代表的数是-8;6、点A1、A2、A3、……A n(n为正整数)都在数轴上,点A1在原点O的左边,且A1A O=1,点A2在点A1的右边,且A2A1=2,点A3在点A2的左边,且A3A2=3,点A4在点A3的右边,且A4A3=4,……,依照上述规律点A2008、A2009所表示的数分别为()。
人教版七年级数学下册期末综合复习训练试题(三)及答案
期末综合复习训练试题(三)一.选择题1.在数轴上,点A,B分别表示实数a,b,将点A向左平移1个单位长度得到点C,若点C,B关于原点O对称,则下列结论正确的是()A.a+b=1 B.a+b=﹣1 C.a﹣b=1 D.a﹣b=﹣12.若关于x、y的二元一次方程有公共解3x﹣y=7,2x+3y=1,y=﹣kx﹣9,则k的值是()A.﹣3 B.C.2 D.﹣43.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°4.关于x的一元一次方程x+m﹣2=0的解是负数,则m的取值范围是()A.m>2 B.m<2 C.m>﹣2 D.m<﹣25.已知△ABC内一点P(a,b)经过平移后对应点P′(c,d),顶点A(﹣2,2)在经过此次平移后对应点A′(5,﹣4),则a﹣b﹣c+d的值为()A.13 B.﹣13 C.1 D.﹣16.某校七(二)班班长统计了今年1﹣8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了折线统计图,下列说法错误的是()A.阅读量最多的是8月份B.阅读量最少的是6月份C.3月份和5月份的阅读量相等D.每月阅读量超过40本的有5个月二.填空题7.已知|x+1|++(x+y﹣z)2=0,x+y+z的立方根是.8.若点P(2﹣a,2a+5)到两坐标轴的距离相等,则a的值为.9.体育老师从七年级学生中抽取40名参加全校的健身操比赛.这些学生身高(单位:cm)的最大值为186,最小值为155.若取组距为3,则可以分成组.10.如图,直线AB、CD相交于点O,∠AOE=90°,∠EOD=50°,则∠BOC的度数为.11.若关于x、y的二元一次方程组的解是二元一次方程的2x+3y=18的解,则的平方根.12.不等式组的最小整数解是.13.体育馆的环形跑道长400米,甲、乙分别以一定的速度练习长跑和骑自行车.如果同向而行80秒乙追上甲一次;如果反向而行,他们每隔30秒相遇一次;求甲、乙的速度分别是多少?如果设甲的速度是x米/秒,乙的速度是y米/秒,所列方程组是.14.已知点P的坐标为(2m+1,m﹣4)并且满足点P到两坐标轴的距离相等,则点P的坐标是.三.解答题15.计算:16.解下列方程组:(1)(2)17.解不等式组,并把解集在数轴上表示出来.18.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED=°;(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED =22°,∠I=20°,求∠EKD的度数.四.解答题19.已知坐标平面内的三个点A(1,3)、B(3,1)、O(0,0).(1)求△ABO的面积;(2)平移△ABO至△A1B1O1,当点A1和点B重合时,点O1的坐标是;(3)平移△ABO至△A2B2O2,需要至少向下平移超过单位,并且至少向左平移个单位,才能使△A2B2O2位于第三象限.20.如图,已知∠1+∠2=180°,∠AED=∠C,试判断∠3与∠B的大小关系,并对结论进行说理.(可不写根据)21.已知关于x,y的二元一次方程组的解满足x=y,求m的值.22.元旦期间,前往参观盐城人民公园的人非常多.这期间某一天某一时段,小王随机调查了部分入园游客,统计了进园前等侯检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10mi而小于20min,其他类同.(1)这里采用的调查方式是(填“普查”或“抽样调查”),样本容量是;(2)表中a=,b=,并补全频数分布直方图:(3)在调查人数里,若将时间分段内的人数绘成扇形统计图,则“40~50”的圆心角的度数是;时间分段/min频数/人数频率10~20 8 0.20020~30 14 a30~40 10 0.25040~50 b0.12550~60 3 0.075合计40 1.000五.解答题23.已知关于x、y的方程组.(1)当m=2时,请解关于x、y的方程组;(2)若关于x、y的方程组中,x为非负数、y为负数,①试求m的取值范围;②当m取何整数时,不等式3mx+2x>3m+2的解为x<1.24.已知点P(8﹣2m,m﹣1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.六.解答题25.解不等式组并写出它的正整数解.26.为支持抗震救灾,我市A、B两地分别有赈灾物资100吨和180吨,需全部运往重灾区C、D两县,根据灾区的情况,这批赈灾物资运往C县的数量比运往D县的数量的2倍少80吨.(1)求这批赈灾物资运往C、D两县的数量各是多少吨?(2)设A地运往C县的赈灾物资数量为x吨(x为整数).若要B地运往C县的赈灾物资数量大于A地运往D县赈灾物资数量的2倍,且要求B地运往D县的赈灾物资数量不超过63吨,则A、B两地的赈灾物资运往C、D两县的方案有几种?参考答案一.选择题1.A.2.D.3.C.4.A.5.B.6.D.二.填空7.28.﹣1或﹣7.9.11.10.140°.11.±2.12.013..14.(﹣9,﹣9)或(3,﹣3).三.解答题15.解:=﹣3+2+1=16.解:(1)将②代入①得:2x+3(4x﹣5)=﹣1解得:x=1③将③代入②得:y=4×1﹣5=﹣1∴方程组的解为:.(2)①×5+②×2得:15x+8x=100+38∴x=6③将③代入①得:3×6+2y=20∴y=1∴原方程组的解为:.17.解:,解第一个不等式得x≥﹣1,解第二个不等式得x<3,则不等式组的解集为﹣1≤x<3,将解集表示在数轴上如下:18.解:(1)如图,延长DE交AB于H,∵AB∥CD,∴∠D=∠AHE=40°,∵∠AED是△AEH的外角,∴∠AED=∠A+∠AHE=30°+40°=70°,故答案为:70;(2)∠EAF=∠AED+∠EDG.理由:∵AB∥CD,∴∠EAF=∠EHC,∵∠EHC是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵∠EAI:∠BAI=1:2,∴设∠EAI=α,则∠BAE=3α,∵∠AED=22°,∠I=20°,∠DKE=∠AKI,又∵∠EDK+∠DKE+∠DEK=180°,∠KAI+∠KIA+∠AKI=180°,∴∠EDK=α﹣2°,∵DI平分∠EDC,∴∠CDE=2∠EDK=2α﹣4°,∵AB∥CD,∴∠EHC=∠EAF=∠AED+∠EDG,即3α=22°+2α﹣4°,解得α=18°,∴∠EDK=16°,∴在△DKE中,∠EKD=180°﹣16°﹣22°=142°.四.解答题19.解:(1)△ABO的面积=×1×3+×(1+3)×2﹣×3×1=4;(2)点A1和点B重合时,需将△ABC向右移2个单位,向下移2个单位,∴点O的对应点O1的坐标是(2,﹣2),故答案为:(2,﹣2);(3)平移△ABO至△A2B2O2,需要至少向下平移超过3单位,并且至少向左平移超过3个单位,才能使△A2B2O2位于第三象限.故答案为:3,3.20.解:∠3=∠B.理由如下:∵∠1+∠2=180°,∠1+∠4=180°∴∠2=∠4,∴EF∥AB,∠3=∠ADE,又∵∠AED=∠C,∴DE∥BC,∴∠B=∠ADE,∴∠3=∠B.21.解:∵关于x,y的二元一次方程组的解满足x=y,∴,故=2m,解得:m=10.22.解:(1)这里采用的调查方式是抽样调查;样本容量是:8÷0.200=40;故答案为:抽样调查,40;(2)a=1﹣0.200﹣0.250﹣0.125﹣0.075=0.350;b=40×0.125=5;补图如下:故答案为:0.350,5;(3)“40~50”的圆心角的度数是0.125×360°=45°.故答案为:45°.五.解答23.解:(1)把m=2代入方程组中得:,①+②得:2x=10,x=5,①﹣②得:﹣2y=8,y=﹣4,∴方程组的解为:;(2)①,①+②得:2x=18﹣4m,x=9﹣2m,①﹣②得:﹣2y=4+2m,y=﹣2﹣m,∵x为非负数、y为负数,∴,解得:﹣2<m≤;②3mx+2x>3m+2,(3m+2)x>3m+2,∵不等式3mx+2x>3m+2的解为x<1,∴3m+2<0,∴m<﹣,由①得:﹣2<m≤,∴﹣2<m<﹣,∵m整数,∴m=﹣1;即当m=﹣1时,不等式3mx+2x>3m+2的解为x<1.24.解:(1)∵点P(8﹣2m,m﹣1)在x轴上,∴m﹣1=0,解得:m=1;(2)∵点P到两坐标轴的距离相等,∴|8﹣2m|=|m﹣1|,∴8﹣2m=m﹣1或8﹣2m=1﹣m,解得:m=3或m=7,∴P(2,2)或(﹣6,6).六.解答题25.解:∵解不等式①得:x≥﹣1,解不等式②得:x<3,∴不等式组的解集是:﹣1≤x<3,即不等式组的正整数解是1,2.26.解:(1)设运往C县的物资是a吨,D县的物资是b吨,根据题意得,,解得,答:这批赈灾物资运往C、D两县的数量各是160吨,120吨;(2)设A地运往C县的赈灾物资数量为x吨,则B地运往C县的物资是(160﹣x)吨,A地运往D县的物资是(100﹣x)吨,B地运往D县的物资是120﹣(100﹣x)=(20+x)吨,根据题意得,,解不等式①得,x>40,解不等式②得,x≤43,所以,不等式组的解集是40<x≤43,∵x是整数,∴x取41、42、43,∴方案共有3种,分别为:方案一:A地运往C县的赈灾物资数量为41吨,则B地运往C县的物资是119吨,A地运往D县的物资是59吨,B地运往D县的物资是61吨;方案二:A地运往C县的赈灾物资数量为42吨,则B地运往C县的物资是118吨,A地运往D县的物资是58吨,B地运往D县的物资是62吨;方案三:A地运往C县的赈灾物资数量为43吨,则B地运往C县的物资是117吨,A地运往D县的物资是57吨,B地运往D县的物资是63吨.。
2023年人教版七年级数学下册期末模拟考试(加答案)
2023年人教版七年级数学下册期末模拟考试(加答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b,c是三角形的三边,那么代数式a2-2ab+b2-c2的值()A.大于零B.等于零C.小于零D.不能确定2.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E 处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°3.若多项式32281x x x-+-与多项式323253x mx x+-+的差不含二次项,则m 等于()A.2 B.-2 C.4 D.-44.下列图形具有稳定性的是()A.B.C.D.5.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<06.设x y z234==,则x2y3zx y z-+++的值为()A.27B.23C.89D.577.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.13208.若长度分别为,3,5a的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.8 9.已知(m-n)2=8,(m+n)2=2,则m2+n2=()A.10 B.6 C.5 D.3 10.化简()23x-的结果是()A.6x-B.5x-C.6x D.6二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:x2-2x+1=__________.2.若关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,则关于a、b的二元一次方程组3()()=52()()6a b m a ba b n a b+--⎧⎨++-=⎩的解是________.3.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=________.4.若+x x -有意义,则+1x =___________.5.若x=2是关于x 的方程2x+3m ﹣1=0的解,则m 的值等于_________.6.一个正多边形的一个外角为30°,则它的内角和为________.三、解答题(本大题共6小题,共72分)1.解方程(1)3x -7(x -1)=3-2(x +3) (2)12x -=413x --12.已知22(4)(2)80m x m x --++=是关于未知数x 的一元一次方程,求代数式199()(2)m x m x m -+-+的值.3.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s 甲,s 乙与时间t 的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距 千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为 小时;(3)乙从出发起,经过 小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?4.如图①,在△ABC 中,∠ABC 与∠ACB 的平分线相交于点P .(1)如果∠A =80°,求∠BPC 的度数;(2)如图②,作△ABC 外角∠MBC ,∠NCB 的角平分线交于点Q ,试探索∠Q 、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.5.四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.6.某水果批发市场苹果的价格如表购买苹果不超过2020千克以上但不超40千(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次购买苹果_____千克,第二次购买_____千克.(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克?(列方程解应用题)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、A5、A6、C7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、(x-1)2.2、3212 ab⎧=⎪⎪⎨⎪=-⎪⎩3、15°4、15、﹣16、1800°三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)x=1.2、15943、(1)10;(2)1;(3)3;(4)不一样,理由略;4、(1)130°.(2)∠Q==90°﹣12∠A;(3)∠A的度数是90°或60°或120°.5、(1)50; 32;(2)16;10;15;(3)608人.6、(1)16,4;(2)第一次购买16千克苹果,第二次购买84千克苹果或第一次购买32千克苹果,第二次购买68千克苹果.。
河南省河师大附中2020-2021学年七年级下学期期末全真模拟数学试卷3(带答案解析)
2020-2021学年河南省河师大附中人教版七年级(下)期末数学全真模拟试卷3(带答案解析)一、选择题(本大题共10小题,共30.0分)1.已知关于x的方程2k−3x=−6的解是非负数,则k的取值范围是()A. k≥−3B. 1≤k<3C. −3<k<2D. k>−32.手电筒发射出来的光线,类似于几何中的()A. 线段B. 射线C. 直线D. 折线3.方程|2x−6|=0的解是()A. x=3B. x=−3C. x=±3D. x=134.如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为()A. 44cm2B. 36cm2C. 96cm2D. 84cm25.某篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在本赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的本赛季比赛中胜x场,要达到目标,x应满足().A. 2x+(32−x)≥48B. 2x−(32−x)≥48C. 2x+(32−x)≤48D. 2x≥486.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,连接CD、CE,若△ACD的面积为10,则△BCE的面积为()A. 5B. 6C. 10D. 47.已知a>b,c≠0,则下列关系一定成立的是()A. c+a>c+bB. ac <bcC. c−a>c−bD. ac<bc8.若(x+y−1)2+|x−y+5|=0,则x=()A. −2B. 2C. 1D. −19.我国明代数学家程大位所著《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完.大和尚1人分3个馒头,小和尚3人分一个馒头.问大、小和尚各有多少人?若大和尚有x人,小和尚有y人.则下列方程或方程组中:①{x+y=10013x+3y=100;②{x+y=1003x+13y=100;③3x+13(100−x)=100;④13(100−y)+3y=100正确的是()A. ①③B. ①④C. ②③D. ②④10.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A. 10°B. 15°C. 20°D. 25°二、填空题(本大题共5小题,共15.0分)11.由3x−y=2,得到用x的代数式表示y的式子为:______.12.已知x、y满足方程组{x+3y=−1,2x+y=3,,则x+y的值为______.13.已知如下图是关于x的不等式2x−a>−3的解集,则a的值为____.14.如图,将正方形ABCD的一角折叠,折痕为AE,点B恰好落在点B′处,∠B′AD比∠BAE大45°.设∠BAE和∠B′AD的度数分别为x°和y°,那么所适合的一个方程组是______.15.如图,已知直线l1,l2被直线l3,l4所截,∠1=55∘,∠3=32∘,∠4=148∘,则∠2=.第2页,共17页三、计算题(本大题共1小题,共10.0分)16.某教育行政部门计划今年暑假组织部分教师到外地学习,预订宾馆住宿时,有住宿条件一样的甲,乙两家宾馆供选择,两家宾馆房源都很充足,其收费标准均为每人每天160元,并且各自推出不同的优惠方案,甲宾馆是20人(含20人)以内的按标准收费,超过20人的,超出部分按九折收费;乙宾馆是25人(含25人)以内的按标准收费,超过25人的,超出部分按八折收费.(1)当人数超过多少人时,选乙宾馆更实惠些?(2)此行教师人数不到50人,选择住乙宾馆比选择住甲宾馆可节省300多元,问此行教师有多少人?四、解答题(本大题共6小题,共65.0分)17.解方程或方程组:(1)x−73−1+x2=1.(2){x+y3+x−y2=63(x+y)−2(x−y)=2818.(1)解不等式x+12≥3(x−1)−4,并指出该不等式的非负整数解.(2)解不等式组:{2x+3≤x+112x+53−1>4−x,并将解集表示在数轴上.19.林华在2017年共两次到某商场按照标价购买了A,B两种商品,其购买情况如下表:(1)分别求出A,B两种商品的标价;(2)最近商场实行“迎2018新春”的促销活动,A,B两种商品都打折且折扣数相同,于是林华前往商场花1062元又购买了9个A商品和8个B商品,试问本次促销活动中A,B商品的折扣数都为多少?在本次购买中,林华共节省了多少钱?20.将一张长方形纸片按如图所示的方式折叠,EF为折痕,点B落在点G处,FH平分∠EFC.第4页,共17页(1)如图1,若点G恰好落在FH上,求∠EFH的度数;(2)如图2,若∠EFG=32°,求∠GFH的度数.21.如图1,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°(1)观察猜想将图1中的三角尺OCD沿AB的方向平移至图②的位置,使得点O与点N重合,CD与MN相交于点E,则∠CEN=______°.(2)操作探究将图1中的三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图3,且OD恰好平分∠MON,CD与NM相交于点E,求∠CEN的度数;(3)深化拓展将图1中的三角尺OCD绕点O按沿顺时针方向旋转一周,在旋转的过程中,当边OC旋转______°时,边CD恰好与边MN平行.(直接写出结果)22.某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需490元,购买2个足球和5个篮球共需730元.(1)求购买一个足球、一个篮球各需多少元?(2)根据该中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共80个,要求购买足球和篮球的总费用不超过7810元.这所中学最多可以购买多少个篮球?第6页,共17页答案和解析1.【答案】A【解析】【分析】本题考查的是解一元一次不等式和一元一次方程,熟知解一元一次不等式的基本步骤是解答此题的关键.先把k当作已知条件表示出x的值,再由方程的解为非负数求出k的取值范围即可.【解答】,解:解方程2k−3x=−6,得:x=2k+63∵方程的解是非负数,≥0,∴2k+63解得k≥−3,故选A.2.【答案】B【解析】【分析】此题考查直线、线段、射线问题,射线:将线段向一个方向无限延长就形成了射线.用射线的概念解答.【解答】解:手电筒发射出来的光线,给我们的感觉是手电筒是射线的端点,光的传播方向是射线的方向,故给我们的感觉是射线.故选:B.3.【答案】A第8页,共17页本题考查含有绝对值的一元一次方程.根据0的绝对值是0,先去绝对值,再解方程即可. 【解答】解:∵|2x −6|=0,∴2x −6=0解得:x =3. 故选A .4.【答案】A【解析】解:设小长方形的长为xcm ,宽为ycm , 依题意,得:{x +3y =14x +y −2y =6,解得:{x =8y =2,∴14×(6+2×2)−6×8×2=44(cm 2).故选:A .设小长方形的长为xcm ,宽为ycm ,观察图形,可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再利用阴影部分的面积=大长方形的面积−6×小长方形的面积,即可求出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.【答案】A【解析】 【分析】此题主要考查了由实际问题抽象出一元一次不等式有关知识,这个队在将要举行的比赛中胜x 场,则要输(32−x)场,胜场得分(2x)分,输场得分(32−x)分,根据胜场得分+输场得分≥48可得不等式. 【解答】解:这个队在将要举行的比赛中胜x 场,则要输(32−x)场,由题意得: 2x +(32−x)≥48,【解析】解:∵△ABC沿直线AB向右平移后到达△BDE的位置,∴AB=BD,BC//DE,∴S△ABC=S△BCD=12S△ACD=12×10=5,∵DE//BC,∴S△BCE=S△BCD=5.故选:A.根据平移的性质得到AB=BD,BC//DE,利用三角形面积公式得到S△BCD=12S△ACD=5,然后利用DE//BC得到S△BCE=S△BCD=5.本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或在同一直线上)且相等.7.【答案】A【解析】解:A、在不等式a>b的两边同时加上c,不等式仍然成立,即a+c>b+c;故本选项正确;B、当c>0时,不等式a>b的两边同时除以正数c,则不等号的方向不发生改变,ac >bc,故本选项错误;C、在不等式a>b的两边同时乘以负数−1,则不等号的方向发生改变,即−a<−b;然后再在不等式的两边同时加上c,不等号的方向不变,即c−a<c−b,故本选项错误;D、当c>0时,不等式a>b的两边同时乘以正数c,则不等号的方向不发生改变,即ac>bc.故本选项错误;故选:A.根据不等式的基本性质进行判断即可.此题主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.第10页,共17页(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.8.【答案】A【解析】解:∵(x +y −1)2+|x −y +5|=0, ∴{x +y −1=0x −y +5=0, 解得:{x =−2y =3,故选:A .由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 即可.此题考查了非负数的性质、解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.【答案】C【解析】解:设大和尚有x 人,小和尚有y 人, 依题意,得:{x +y =1003x +13y =100, ∴y =100−x ,∴3x +13(100−x)=100.∴②③正确. 故选:C .设大和尚有x 人,小和尚有y 人,根据100个和尚分100个馒头且大和尚1人分3个馒头、小和尚3人分一个馒头,即可得出关于x ,y 的二元一次方程组,变形后可得出3x +13(100−x)=100,此题得解.本题考查了由实际问题抽象出二元一次方程组以及由实际问题抽象出一元一次方程,找准等量关系,正确列出二元一次方程组(或一元一次方程)是解题的关键.10.【答案】A【解析】 【分析】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等与三角形外角的性质.由DE//AF 得∠AFD =∠CDE =40°,再根据三角形的外角性质可得答案.【解答】解:由题意知DE//AF,∴∠AFD=∠CDE=40°,∵∠B=30°,∴∠BAF=∠AFD−∠B=40°−30°=10°,故选A.11.【答案】y=3x−2【解析】解:方程3x−y=2,解得:y=3x−2,故答案为:y=3x−2把x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是把x看做已知数求出y.12.【答案】1【解析】【分析】本题考查了解二元一次方程组,整式的求值的应用,求得x、y的值是解此题的关键.求出方程组的解,代入求解即可.【解答】解:{x+3y=−1 ①2x+y=3 ②,①×2−②得:5y=−5,解得:y=−1,①−②×3得:−5x=−10,解得:x=2,则x+y=2−1=1,故答案为1.13.【答案】1【解析】【分析】此题主要考查了解一元一次不等式,在数轴上表示不等式的解集,解不等式2x−a>−3第12页,共17页得到不等式的解集,根据数轴也能够得到不等式的解集,从而得到关于a 的一元一次方程,解出方程即可得到答案.【解答】解:2x −a >−32x >a −3,x >a−32,根据数轴得:x >−1,∴a−32=−1,解得:a =1,故答案为1.14.【答案】{y −x =45y +2x =90【解析】解:设∠BAE 和∠B′AD 的度数分别为x°和y°,根据题意可得:{y −x =45y +2x =90. 故答案是:{y −x =45y +2x =90. 设∠BAE 和∠B′AD 的度数分别为x ,y ,根据将正方形ABCD 的一角折叠,折痕为AE ,∠B′AD 比∠BAE 大45°可列出方程组.本题考查由实际问题抽象出二元一次方程组,以及翻折变换的问题,关键知道正方形的四个角都是直角. 15.【答案】55∘【解析】略16.【答案】解:(1)依题意得:要想乙宾馆更实惠,人数首先要超过25人,设人数为x 人.甲宾馆收费为:160×20+(x −20)×160×0.9=144x +320,乙宾馆收费为:160×25+(x −25)×160×0.8=128x +800,要乙宾馆更实惠些,则144x +320>128x +800,∴x >30,当人数超过30人时,选乙宾馆更实惠些.(2)∵住乙宾馆比选甲宾馆可节省300多元,∴(144x +320)−(128x +800)>300,∴x >4834, 又∵x <50,∴x =49.答:此行教师有49人.【解析】(1)设人数为x 人.得出甲宾馆收费为144x +320,乙宾馆收费为128x +800,列出不等式可得出答案;(2)由题意列出不等式可得出答案.本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.17.【答案】解:(1)x−73−1+x 2=1去分母得:2(x −7)−3(1+x )=6去括号得:2x −14−3−3x =6移项合并得:−x =23系数化为1,得x =−23(2){x +y 3+x −y 2=63(x +y )−2(x −y )=28, 整理,得:{5x −y =36①x +5y =28②, 由①得:y =5x −36③,把③代入到②中,得:x +5(5x −36)=28,解得x =8,把x =8代入到③中,得:y =5x −36=5×8−36=4,∴方程组的解为{x =8y =4.【解析】此题考查了解一元一次方程以及解二元一次方程组,掌握消元的思想和消元的方法是解题的关键,消元的方法有:代入消元法与加减消元法.(1)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(2)把原方程组整理后,再利用代入消元法解答即可.18.【答案】解:(1)去分母,得x +1≥6(x −1)−8,第14页,共17页去括号,得x +1≥6x −6−8,移项,合并同类项,得−5x ≥−15,系数化为1,得x ≤3,不等式的非负整数解为0,1,2,3.(2){2x +3≤x +11 ①2x +53−1>4−x ② 由①得,x ≤8,由②得,x >2,不等式组的解集是2<x ≤8,在数轴上表示为:.【解析】(1)不等式去分母、去括号、移项合并、系数化为1即可求出不等式的解集;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集即可. 此题考查了解一元一次不等式(组),以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.19.【答案】解:(1)设A 商品的标价为x 元,B 商品的标价为y 元,依题意,得:{6x +5y =11403x +7y =1110, 解得:{x =90y =120. 答:A 商品的标价为90元,B 商品的标价为120元.(2)设折扣数为m ,依题意,得:(90×9+120×8)×m10=1062,解得:m =6,∴90×9+120×8−1062=708(元).答:本次促销活动中A ,B 商品的折扣数都为6,在本次购买中,林华共节省了708元钱.【解析】(1)设A 商品的标价为x 元,B 商品的标价为y 元,根据总价=单价×数量结合前两次购买情况表,可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设折扣数为m,根据现支付总价=原总价×折扣率,即可得出关于m的一元一次方程,解之即可得出m的值,再利用节省的钱数=原总价−现支付总价,即可求出结论.本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.20.【答案】解:(1)由折叠知∠BFE=∠EFG,∵FH平分∠EFC,∴∠EFH=∠HFC,∴∠BFE=∠EFH=∠CFH,∵∠BFE+∠EFH+∠CFH=180∘,∴∠EFH=60∘;(2)由折叠知∠BFE=∠EFG,∵∠EFG=32∘,∴∠BFE=32∘,∠EFC=180∘−32∘=148∘,∵FH平分∠EFC,∴∠EFH=∠HFC=12∠EFC=74∘,∴∠GFH=∠EFH−∠EFG=74∘−32∘=42∘.【解析】本题主要考查图形的折叠、角平分线的定义,掌握折叠的性质是解题的关键.(1)根据折叠的性质以及角平分线的定义,得到∠BFE=∠EFH=∠CFH,,从而求出∠EFH的度数;(2)根据折叠的性质得到∠BFE的度数,进而求出∠EFC、∠EFH的度数,最终求出∠GFH 的度数.21.【答案】(1)105;(2)∵OD平分∠MON,∴∠DON=12∠MPN=12×90°=45°,∴∠DON=∠D=45°,∴CD//AB,∴∠CEN=180°−∠MNO=180°−30°=150°;(3)75或255 .【解析】解:(1)∵∠ECN=45°,∠ENC=30°,∴∠CEN=105°.故答案为:105°.(2)见答案;(3)如图1,CD在AB上方时,设OM与CD相交于F,∵CD//MN,∴∠OFD=∠M=60°,在△ODF中,∠MOD=180°−∠D−∠OFD,=180°−45°−60°,=75°,当CD在AB的下方时,设直线OM与CD相交于F,∵CD//MN,∴∠DFO=∠M=60°,在△DOF中,∠DOF=180°−∠D−∠DFO=180°−45°−60°=75°,∴旋转角为75°+180°=255°,综上所述,当边OC旋转75°或255°时,边CD恰好与边MN平行.故答案为:75或255.【分析】(1)在△CEN中,依据三角形的内角和定理求解即可;(2)根据角平分线的定义求出∠DON=45°,利用内错角相等两直线平行求出CD//AB,再根据两直线平行,同旁内角互补求解即可;(3)当CD在AB上方时,CD//MN,设OM与CD相交于F,根据两直线平行,同位角相等可得∠OFD=∠M=60°,然后根据三角形的内角和定理列式求出∠MOD,即可得解;当CD在AB的下方时,CD//MN,设直线OM与CD相交于F,根据两直线平行,内错角相等可得∠DFO=∠M=60°,然后利用三角形的内角和定理求出∠DOF,再求出旋转角即可.本题考查了旋转的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,熟记各性质并熟悉三角板的度数特点是解题的关键.第16页,共17页22.【答案】(1)解:设购买一个足球需要x 元,购买一个篮球需要y 元.根据题意,列方程组得{3x +2y =4902x +5y =730, 解这个方程组,得{x =90y =110. 答:购买一个足球需要90元,购买一个篮球需要110元.(2)解:设购买a 个篮球,则购买(80−a)个足球.根据题意列不等式,得110a +90(80−a)≤7810,解这个不等式,得a ≤3012,∵a 为整数,∴a 最多是30.答:这所中学最多可以购买30个篮球.【解析】(1)设购买一个足球需要x 元,购买一个篮球需要y 元,根据:①3个足球费用+2个篮球费用=490元,②2个足球费用+5个篮球费用=730元,据此列方程组求解即可;(2)设购买a 个篮球,则购买(80−a)个足球,根据购买足球和篮球的总费用不超过7810元建立不等式求出其解即可.本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答本题时找到建立方程的等量关系和建立不等式的不等关系是解答本题的关键.。
最新人教版七年级数学下册期末测试题及答案详解(共五套)
人教版七年级数学下学期末模拟试题(一)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A.6m>-6 B .-5m<-5 C .m+1>0 D .1-m<2 2.下列各式中,正确的是( )A.16=±4 B .±16=4 C.327-=-3 D .2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A.⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C.⎩⎨⎧-<>b x a x D.⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A ) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D .2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠AB C=500,∠ACB=800,BP 平分∠AB C,CP 平分∠ACB ,则∠BPC 的大小是( )A.1000B.1100 C .1150 D.1200PBA小刚小军小华(1) (2) (3) 7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B.3 C .2 D.1C 1A 1A BB 1CD8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5 B.6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 c m2,则四边形A 1DC C1的面积为( )A.10 cm 2 B .12 c m 2 C.15 cm 2D .17 c m210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4) B.(4,5) C.(3,4) D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x -9≤3(x +1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠AB C=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DA C=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上)18.若│x 2-25│0,则x =_______,y =_______. 三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.CBAD20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, A D∥BC , A D平分∠EAC,你能确定∠B 与∠C的数量关系吗?请说明理由。
2022-2023学年七年级数学下册期末模拟测试卷 解析卷
2022-2023学年七年级数学下册期末模拟测试卷一、选择题(本大题共10小题,每一小题3分,共30分)1.在实数中,无理数是( )A.B .C .D .【答案】B【分析】无限不循环小数就是无理数,根据定义可得答案.【详解】解:无限不循环小数就是无理数,根据定义可得:是无理数.故选B.【点睛】本题考查的是无理数的认识,掌握无理数的定义即表现形式是解题关键.2.9的平方根是()A 、3B 、C 、D 、【答案】B.【解析】试题分析:此题主要考查了平方根的定义,易错点正确区别算术平方根与平方根的定义.根据平方根的定义:若一个数的平方等于a ,那么这个数就是数a 的平方根.∵(±3)2=9,∴±3是9的平方根.故选B.考点:平方根的定义.3.根据下列表述,能确定位置的是()A .人民剧院6排B .某市青年路C .北偏东50°D .东经118°,北纬38°【答案】D【解析】【分析】根据位置的确定需要两个条件对各选项分析判断即可得解.【详解】解:A 、人民剧院6排,没有说明列数,具体位置不能确定,故本选项错误;B 、某市青年路,没有具体位置(如多少号之类的信息)不能确定,故本选项错误;C 、北偏东50°,没有具体距离,位置不能确定,故本选项错误;D 、东经118°,北纬38°,位置明确,能确定位置,故本选项正确;1, 3.14,03-13 3.14-03±33±故选D .【点睛】本题考查了坐标确定位置,理解位置的确定需要两个条件是解题的关键.4.如图,,交于,,则的度数为( )A .54°B .46°C .45°D .44°【答案】D【分析】根据邻补角的定义可得,再根据两直线平行,同位角相等求解.【详解】解:∵,,∴,∵,∴.故选:D .【点睛】本题考查了平行线的性质和邻补角的定义,正确观察图形,熟练掌握平行线的性质是解题的关键.5.如图所示,把44张形状、大小完全相同的小长方形(长是宽的2倍)卡片既不重叠又无空隙地放在一个底面为长方形(长与宽的比为)的盒子底部边沿,则盒子底部未被卡片覆盖的长方形的长与宽的比为( )A .B .C .D .【答案】C【分析】设在长上放了x 张小长方形卡片,在宽上放了y 张小长方形卡片,根据四边共放了44张小长方形卡片且长与宽的比为6:5,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入【详解】解:设在长上放了x 张小长方形卡片,在宽上放了y张小长方形卡片,//AB CD AE CD C 136ECF ∠=︒A ∠18044ECD ECF ∠=︒-∠=︒180ECD ECF ∠+∠=︒136ECF ∠=︒18044ECD ECF ∠=︒-∠=︒//AB CD 44A ECD ∠=∠=︒6:55:410:914:137:6依题意,得:,解得:,∴盒子底部未被卡片覆盖的长方形的长与宽的比===,故选:C .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.6.在新型冠状病毒疫情期间,为阻断疫情向校园蔓延,确保师生生命安全和身体健康,全区坚持做到“停课不停学、学习不延期”,帮助学生制定科学的生活指南和学习指南,通过钉钉、微信、电子教材、在线课堂、网上批阅和答疑等现代信息技术手段帮助、指导学生在家有效复习和预习,确保学习成效.为最大限度地减轻延期开学对学生学业的影响,研究高效的在线课堂,某校数学教研组从全校名学生中随机抽取了部分学生对试行的某一课堂进行了“在线课堂学习效果”调查研究,把学习效果分成“优、良、中、差”四个等级,并进行统计,绘制了如图所示的两幅统计图,下列四个选项中错误的是( )A .抽取的样本容量为B .C .得到“良”和“中”的总人数占抽取人数的百分比为D .全校得到“差”的人数估计有人【答案】D【分析】由条形图可知总人数即可判断A ;由优的人数总人数再乘以360度可求得优的圆心角,即可判断B ;由良和中的人数和总人数再乘以100%可求得百分比,即可判断C ;由差的人数除以总人数再乘以全校总人数可求得答案,即可判断D .【详解】解:A.由图知,共有:7+10+8+5=30,此项正确;22444265x y x y +-=⎧⎪⎨=⎪⎩915x y =⎧⎨=⎩()222x y --()292152⨯--141315003084a =o 60%300÷÷B.,此项正确;C. 得到“良”和“中”的总人数占抽取人数的百分比为,此项正确;D. 全校得到“差”的人数估计有人,此项错误.故选D .【点睛】本题考查了条形图及扇形统计图的综合,能够从图中得出相关信息是解题的关键.7.若m <n ,则下列不等式不成立的是( )A .B .C .D .【答案】B【解析】【分析】根据不等式的基本性质分别对每一项进行分析,即可得出答案.【详解】A .∵m <n ,∴1+m <1+n ,∴1+m <2+n ,正确,不合题意;B .∵m <n ,∴2﹣m >2﹣n ,故此选项错误,符合题意;C .∵m <n ,∴3m <3n ,正确,不合题意;D .∵m <n ,∴,正确,不合题意.故选B .【点睛】本题考查了不等式的基本性质.掌握不等式的基本性质是本题的关键,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.8.如图,一个机器人从点O 出发,向正西方向走2m 到达点A 1;再向正北方向走4m 到达点A 2,再向正东方向走6m 到达点A 3,再向正南方向走8m 到达点A 4,再向正西方向走10m 到达点A 5,按如此规律走下去,当机器人走到点A 9时,点A 9在第( )象限7=360=8430α∠⨯︒︒108100%=60%30+⨯51500=25030⨯1m 2n+<+2m 2n -<-3m 3n <m n 55<55m n <A .一B .二C .三D .四【答案】C【分析】每个象限均可发现点A 脚标的规律,再看点A 9符合哪个规律即可知道在第几象限.【详解】由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n ;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n ;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n ;第四象限的规律为:4,8,12,16,20,24,…,4n ;所以点A 9符合第三象限的规律.故选:C .【点睛】本题考查规律型:点的坐标问题,解题的关键是发现规律,利用规律解决问题,本题的突破点是判定A 9在第三象限,属于中考常考题型.9.二元一次方程组的解为( )A .B .C .D .【答案】C【解析】试题分析:根据加减消元法,可得方程组的解.①+②,得 3x=9,解得x=3,把x=3代入①,得3+y=5,y=2,所以原方程组的解为考点:二元一次方程组的解.10.如果关于的不等式组仅有四个整数解:-1,0,1,2,那么适合这个为等式组的整数组成的有序实数对最多共有()x 2030x m n x -≥⎧⎨-≥⎩m n 、(),m nA .2个B .4个C .6个D .9个【答案】C【分析】先求出不等式组的解集,得出关于m 、n 的不等式组,求出整数m 、n 的值,即可得出答案.【详解】∵解不等式得:,解不等式得:,∴不等式组的解集是,∵关于x 的不等式组的整数解仅有-1,0,1,2,∴,,解得:,,即的整数值是-3,-2,的整数值是6,7,8,即适合这个不等式组的整数m ,n 组成的有序数对(m ,n)共有6个,是(-3,6),(-3,7),(-3,8),(-2,6),(-2,7),(-2,8).故选:C .【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出m 、n 的值.二、填空题(本大题共6小题,每一小题3分,共18分)11.某数的平方根是2a+3和a-15,则这个数为______ .【答案】49【分析】一个正数有两个平方根,且互为相反数,由于互为相反数的两个数相加得0,因此列出关于a 的方程,求出方程的解得到a 的值,确定出平方根的值,即可求出这个数.【详解】解:根据题意得:2a+3+a−15=0,解得:,当时,,所以这个数为49.故答案为49.20x m -≥2m x ≥30n x -≥3n x ≤23m n x ≤≤212m -<≤-233n ≤<42m -<≤-69n ≤<m n 4a =4a =212417a -=⨯-=【点睛】本题主要考查了平方根,熟练掌握平方根的定义是解题的关键.12.已知点,点的坐标为,直线轴,则的值是__________.【答案】【分析】根据AB ∥y 可知,A 点和B 点横坐标相等,然后把B 点横坐标代入A 点即可求出a 值.【详解】根据AB ∥y 可知,A 点和B 点横坐标相等,都为1,所以a-2=1,a=3【点睛】本题考查直线与坐标的位置关系,学生们掌握当与y 轴平行时,横坐标是相等的.13.某校学生来自A 、B 、C 三个地区,其人数比是2:5:3,如图,扇形图表示上述分布情况,代表C 地区扇形圆心角是_____.【答案】108°【分析】用C 地区所占百分比乘以360°即可求得答案.【详解】解:代表C 地区扇形圆心角的度数为:故答案为:108°.【点睛】本题考查扇形统计图、解题的关键是熟练掌握基本知识,属于中考基础题.14.若关于,的方程组的解满足,则的值为_____.【答案】3【分析】把方程组的两个方程相加,得到3x+3y=6m ,结合x+y=6,即可求出m 的值.【详解】∵,(2,27)A a a -+B (1,5)//AB y a 33360108,253︒⨯=︒++x y 225y x m x y m +=⎧⎨+=⎩6x y +=m 225y x m x y m +=⎧⎨+=⎩∴3x+3y=6m,∴x+y=2m,∵x+y=6,∴2m=6,∴m=3,故答案为3.【点睛】本题主要考查了二元一次方程组的解.解答本题的关键是把方程组的两个方程相加得到x,y与m的一个关系式. 15.如图,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35°,那么∠BED的度数为_______.【答案】70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为70°.【点睛】本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题16.为积极响应党和国家精准扶贫战略计划,某公司在农村租用了 720亩闲置土地种植了乔 木型、小乔木型和灌木型三种茶树. 为达到最佳种植收益,要求种植乔木型茶树的面积是小乔木型茶树面积的2倍,灌木型茶树的面积不得超过乔木型茶树面积的倍,但种植乔木型茶树的面积不得超过270亩. 到茶叶采摘季节时,该公司聘请当地农民进行采摘,每人每天可以采摘0.4亩乔木型茶叶,或者采摘0.5亩小乔木型茶叶,或者采摘0.6亩灌木型茶叶. 若该公司聘请一批农民恰好20天能采摘完所有茶叶,则种植乔木型茶树的面积是________亩.【答案】260.【分析】设种植小乔木型茶树x 亩,根据种植乔木型茶树的面积是小乔木型茶树面积的2倍,灌木型茶树的面积不得超过乔木型茶树面积的倍列出不等式,从而求出x 的取值范围;再所设公司聘请农民m 人,采摘乔木型茶叶a 天,采摘小乔木型茶叶b 天,采摘灌木型茶叶(20-a-b )天,列出相应等式,消去a 和b 得出m 与x 关系,再代入前面所求的x 的取值范围,求出m 的取值范围,利用m 为整数的特征最终求出m 的值,再求出x 的值.【详解】解:设种植小乔木型茶树x 亩,则乔木型茶树2x 亩、和灌木型茶树(720-3x )亩;公司聘请农民m 人,采摘乔木型茶叶a 天,采摘小乔木型茶叶b 天,采摘灌木型茶叶(20-a-b )天,依题意得:解得∵每人每天可以采摘0.4亩乔木型茶叶,或者采摘0.5亩小乔木型茶叶,或者采摘0.6亩灌木型茶叶,∴∴∴∴∵m 为人数,应为整数,∴m=73∴=130∴2x=260∴种植乔木型茶树的面积是260亩.故答案为260.757577203252270x x x ⎧-≤⨯⎪⎨⎪≤⎩360013529x ≤≤()0.420.50.6207203ma x mb x m a b x ⎧=⎪=⎨⎪--=-⎩10600x m =-36001060013529m ≤-≤72.473.5m ≤≤1073600x =⨯-本题考查了不等式的实际应用,假设辅助未知数列出不等式和方程,利用未知数的整数特征是解题的关键,本题难度较大.三、解答题(本大题共9小题,其中第17、18题各6分,第19、20、21、22题各8分,第23、24题各9分,第25题10分,共72分)17.解下列方程组:(1) (2)【答案】(1);(2)【分析】(1)利用代入消元法即可容易求得;(2)整理化简后,利用加减消元法即可容易求得.【详解】(1)把,代入,可得,解得,将代入,可得.故方程组的解为.(2)把两边同时乘以6可得,与相减可得,解得;代入,可得.故方程组的解为.【点睛】本题考查方程组的求解,属基础题.18.解不等式组,并把它的解集在数轴上表示出来.【答案】2<x <4,数轴见解析21437x y x y =-⎧⎨+=⎩11233210x y x y +⎧-=⎪⎨⎪+=⎩11x y ==,30.5x y ==,21x y =-437x y +=8437y y -+=1y =1y =21x y =-1x =1.1x y =⎧⎨=⎩1123x y +-=328x y -=3210x y +=42y -=-0.5y =328x y -=3x =3.0.5x y =⎧⎨=⎩3(2)64113x x x x -->⎧⎪-⎨+>⎪⎩【分析】先求出不等式组的解集,再在数轴上表示不等式组的解集即可.【详解】∵解不等式①得:x >2,解不等式②得:x <4,∴不等式组的解集为:2<x <4,在数轴上表示为:【点睛】此题主要考查不等式组的解集以及数轴的表示,熟练掌握,正确计算是解题的关键.19.如图,将三角形ABC 向右平移3个单位长度,再向下平移2个单位长度,得到对应的三角形A 1B 1C 1.(1)画出三角形A 1B 1C 1并写出点A 1、B 1、C 1的坐标.(2)求三角形A 1B 1C 1的面积.【答案】A 1(1,3)、B 1(-2,-4)、C 1(6,1)(2)【分析】(1)根据平移规律找到A 1,B 1,C 1,顺次连接即可,(2)三角形A 1B 1C 1的面积等于矩形减去四周三个直角三角形的面积.【详解】解:见下图,3(2)64113x x x x -->⎧⎪⎨-+>⎪⎩①②412有图可知A 1(1,3)、B 1(-2,-4)、C 1(6,1)(2)S △A1B1C1=8×7---=【点睛】本题考查了三角形的平移,属于简单题,作出平移之后的图形,熟悉坐标系中三角形的面积可以通过矩形减去四周的三个直角三角形来表示是解题关键.20.年底至年初我国爆发了新冠肺炎疫情.为了增加学生对疫情和新冠肺炎预防知识的了解,某学校利用网络开展了相关知识的宣传教育活动,为了解这次的宣传效果,学校从全校名学生中随机抽取名学生进行知识测试(满分分,得分均为整数),并根据这人的测试成绩,绘制如下统计图表:名学生成绩的扇形统计图名学生成绩的频数表等级成绩/分频数/人(1)_____,_____;(2)成绩最好的等级所占的百分比______;等级在扇形图中所对应的圆心角的度数为_______.(3)如果分以上(包括分)为优秀,请估计全校名学生中成绩优秀的人数.522⨯582⨯732⨯412201920203600200100200200200E5060a ≤<20D 6070a ≤<30C 7080a ≤<m B 8090a ≤<n A90100a ≤≤30m =n =A E 80803600【答案】(1),;(2);;(3)人【分析】(1)根据扇形统计图中B 占的度数,结合题意,即可计算得n 的值;再根据随机抽取名学生进行知识测试,即可计算得m 的值;(2)等级对应学生数量和随机抽取名学生的比值,即可得成绩最好的等级所占的百分比;等级对应学生数量和随机抽取名学生的比值,乘以 ,即可得等级在扇形图中所对应的圆心角的度数;(3)根据用样本估计总体的性质计算,即可得到答案.【详解】(1)根据题意得: ∵故答案为:,;(2)成绩最好的等级所占的百分比为:等级在扇形图中所对应的圆心角的度数为;故答案为:;(3)随机抽取名学生中,分以上(包括分)的比例为: 则全校名学生中成绩优秀的人数估计为∴估计全校名学生中成绩优秀的人数为人.【点睛】本题考查了抽样调查的知识;解题的关键是熟练掌握扇形统计图、频率、样本估计总体的性质,从而完成求解.21.若关于x 、y 的二元一次方程组和有相同的解,求 的值.【答案】1.【解析】【分析】联立不含a 与b 的方程求出x 与y 的值,代入求出a 与b 的值,即可求出所求式子的值.【详解】解:由题意可知 和 408015%36︒1980200A 200A E 200360 E 14420080360n =⨯= ()2002030803020016040m =-+++=-=40m =80n =A 30100%15%200⨯=E 2036036200⨯= 15%36︒200808080301120020+=3600113600198020⨯=3600198025264x y ax by +=-⎧⎨-=-⎩35368x y bx ay -=⎧⎨+=-⎩2010(2)a b +25263536x y x y +=-⎧⎨-=⎩①②48ax by bx ay -=-⎧⎨+=-⎩将,得解得将,代入①,得∴ 将分别代入得 将,得 ⑤将,得将代入③,得∴ ∴ .故答案为:1.【点睛】本题考查二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.22.近年来,由于土地沙化日渐加剧,沙尘暴频繁,严重影响国民生活. 为了解某地区土地沙化情况,环保部门对该地区进行了连续四年跟踪观测,所记录的近似数据如下表:观测时间第1年第2年第3年第4年沙漠面积90万亩90.2万亩90.4万亩90.6万亩(1)根据表中提供的信息,在不采取任何措施的情况下, 试定出该地区沙漠面积y (万亩)与x (年数)之间的关系式(用含x 的式子表示y ),并计算到第20 年时该地区的沙漠面积;(2)为了防沙治沙,政府决定投入资金,鼓励农民植树种草,经测算,植树1亩需资金200元,种草1亩需资金100元.某组农民计划在一年内完成2400亩绿化任务.在实施中,由于实际情况所限,植树完成了计划的90%,种草超额完成了计划的20%,恰好完成了计划的绿化任务,那么所节余的资金还能植树多少亩?【答案】(1) y=0.2x+89.8, 93.8万亩;(2) 80亩.【解析】【分析】(1) 根据每过一年沙漠面积都增加0.2万亩的规律列出一次函数,再根据待定系数法求出函数,最后将x=20代入即可.+①②510x =2x =2x =6y =-26x y =⎧⎨=-⎩26x y =⎧⎨=-⎩48ax by bx ay -=-⎧⎨+=-⎩264268a b b a +=-⎧⎨-=-⎩③④3③×61812a b +=-+④⑤2020b =-1b =-1b =-1a =11a b =⎧⎨=-⎩20102010(2)(21)1a b +=-=(2)由等量关系得出方程组求出农民计划一年的植树量和种草的面积,再计算出计划和实际种树和种草所需费用的差,进而求出节余资金还能植树多少亩.【详解】(1)由表中提供的信息,可得y=90+0.2(x-1),即y=0.2x+89.8.当x=20时,y=0.2×20+89.8=93.8(万亩);(2)设该组农民1年植树x 亩,种草y 亩,依题意,得解得.由此可算出应投入资金为400000元,所用去资金为384000元,节余资金为16000元,还能植树80亩【点睛】此题考查二元一次方程和二元一次方程组的应用,解题的关键是读懂题意,得到二元一次方程和二元一次方程组.23.在括号中填写理由.如图,已知∠B+∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B+∠BCD =180°( )∴AB ∥CD ( )∴∠B = ( )又∵∠B =∠D (已知 ),∴∠D = ( )∴AD ∥BE ( )∴∠E =∠DFE ( )【答案】见详解.【分析】本题主要根据平行线的判定和性质来填写依据.【详解】证明:∵∠B+∠BCD=180°(已知),∴AB ∥CD ( 同旁内角互补,两直线平行)∴∠B=∠DCE ( 两直线平行,同位角相等)又∵∠B=∠D ( 已知 ),∴∠D=∠DCE ( 等量代换)∴AD ∥BE ( 内错角相等,两直线平行)∴∠E=∠DFE ( 两直线平行,内错角相等);故答案为:已知;同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;∠DCE;等量代换;内错角相等,2400,90%(120%)2400.x y x y +=⎧⎨∙++∙=⎩1600800x y =⎧⎨=⎩两直线平行;两直线平行,内错角相等.【点睛】解答此题的关键是注意平行线的性质和判定定理的综合运用.关键是分清角的位置关系.24.如图,点C 为线段AB 上一点,AB =30,且AC - BC =10.(1)求线段AC 、BC 的长.(2)点P 从A 点出发,以1个单位/秒的速度在线段AB 上向B 点运动,设运动时间为t 秒(),点D 为线段PB 的中点,点E 为线段PC 的中点,若CD=DE ,试求点P 运动时间t 的值.(3)若点D 为直线AB 上的一点,线段AD 的中点为E ,且,求线段AD 的长.【答案】(1);(2)或;(3)的长为:或【分析】(1)由, 再两式相加,即可得到 再求解即可;(2)以为原点画数轴,再利用数轴及数轴上线段的中点知识分别表示对应的数,由CD =DE ,利用数轴上两点之间的距离公式建立绝对值方程,解方程可得答案;(3)以为原点画数轴,分三种情况讨论,当在的左侧,当在线段上,当在的右侧,利用数轴与数轴上线段的中点知识,结合数轴上两点之间的距离分别表示 再利用建立方程,解方程即可得到答案.【详解】解:(1) AB =30,①又AC BC =10②,①+②得:20t <2512AD BD CE -=20,1014t =6t =AD 1609160.30AC BC +=10AC BC -=,AC ,BC A ,,,,,A C B P D E 25A D A D AB D B ,,AD BD CE ,1,2AD BD CE -= 30AC BC ∴+=-240,AC =20AC ∴=,10.BC ∴=(2)如图,以为原点画数轴,则对应的数分别为:,点D 为线段PB 的中点,对应的数为: 点E 为线段PC 的中点,对应的数为: , CD =DE , 或 解得:或.由,经检验:或都符合题意.(3)如图,以为原点画数轴,设对应的数为,当在的左侧时,< 舍去,当在上时,A ,,,,A P CB 0,,20,30t D ∴()1130+15,22t t =+ E ∴()1120+10,22t t =+1115205,22CD t t ∴=+-=-11111510151052222DE t t t t ⎛⎫=+-+=+--= ⎪⎝⎭ 251255,25t ∴-=⨯152,2t ∴-=1522t ∴-=152,2t -=-14t =6t =20t <14t =6t =A D m D A AD BD -0,12AD BD CE ∴-≠,D AB线段AD 的中点为E ,对应的数为: 此时在上, 当在的右侧时,如图,同理: 或 解得:(舍去),E ∴()110,22m m +=E AC ,30,AD m BD m ∴==-120,2CE m =-1,2AD BD CE -= ()113020,22m m m ⎛⎫∴--=- ⎪⎝⎭123010,4m m ∴-=-940,4m ∴=160,9m ∴=1609AD ∴=D B ,30,AD m BD m ==-120,2CE m =-1,2AD BD CE -= ()113020,22m m m ∴--=-12060,2m ∴-=120602m ∴-=12060,2m -=-80m =-160,m =160AD ∴=,综上:的长为:或【点睛】本题考查的是线段的和差问题,动点问题,数轴及数轴上线段的中点对应的数,两点之间的距离,绝对值方程,一元一次方程的应用,分类讨论的数学思想,掌握以上知识是解题的关键.25.使方程(组)与不等式(组)同时成立的末知数的值称为此方程(组)和不等式(组)的“理想解”.例:已知方程2x ﹣3=1与不等式x+3>0,当x =2时,2x ﹣3=2x2﹣3=1,x+3=2+3=5>0同时成立,则称“x =2”是方程2x ﹣3=1与不等式x+3>0的“理想解”.(1)已知①x ﹣>,②2(x+3)<4,③,试判断方程2x+3=1的解是否为它与它们中某个不等式的“理想解”;(2)若是方程x ﹣2y =4与不等式的“理想解”,求x 0+2y 0的取值范围;(3)当实数a 、b 、c 满足a <b <c 且a+b+c =0时,x =m 恒为方程ax =c 与不等式组的“理想解”,求t 、s 的取值范围.【答案】(1)方程2x+3=1的解是的“理想解”;(2)2<x 0+2y 0<8;(3)t >﹣3,s≤2.【分析】(1)先解方程2x+3=1的解为x=﹣1,再判断x=﹣1是哪些不等式的解便可得出结论;(2)把代入x ﹣2y=4得x 0与y 0的关系式,再代入不等式组求得y 0的取值范围,进而求得结果;(3)先由a <b <c 且a+b+c=0得出a 、c 的取值范围,把x=m 代入方程ax=c 中,得出m 的取值范围,把x=m 代入不等式组得m 的不等式组,进而根据m 的取值范围得出t 与s 的不等式组,进而用巧妙的办法解此不等式组便可得出答案.【详解】(1)方程2x+3=1的解为x=﹣1,当x=﹣1时,①x ﹣>不成立;②2(x+3)<4不成立;③成立;AD 1609160.1232132x -<00x x y y =⎧⎨=⎩31x y >⎧⎨<⎩1442x t s x t s -≥+⎧⎨-≤+⎩132x -<00x x y y =⎧⎨=⎩31x y >⎧⎨<⎩1442x t s x t s -≥+⎧⎨-≤+⎩1232132x -<∴方程2x+3=1的解是的“理想解”;(2)把代入x ﹣2y=4得﹣2=4,则=2+4,把=2+4代入不等式组,得,解得,﹣<<1,∴﹣1<2<2,则﹣1+4<2<2+4,∴3<x 0<6,∴2<x 0+2y 0<8;(3)∵a <b <c 且a+b+c=0,∴a <0,c >0,把x=m 代入方程ax=c 中,得m=<0,把x=m 代入不等式组得,解得,,∵x=m 恒为方程ax=c 与不等式组的“理想解”,∴x=m 使t+s+1≤m≤恒成立,∴t+s+1<0≤,∴s <﹣t ﹣1,且s≥﹣2t ﹣4或t <﹣s ﹣1,且t≥,∴﹣t ﹣1>﹣2t ﹣4或﹣s ﹣1≥,解得:t >﹣3,s≤2.【点睛】本题主要考查了不等式(组)的解法,一次方程的解法,新定义,关键是根据新定义,正确建立新的不等式组.132x -<00x x y y =⎧⎨=⎩0x 0y 0x 0y 0x 0y 31x y >⎧⎨<⎩002431y y +>⎧⎨<⎩120y 0y 04y +c a1442x t s x t s -≥+⎧⎨-≤+⎩1244m t s t s m ≥++⎧⎪⎨++≤⎪⎩2414t s t s m ++++≤≤1442x t s x t s -≥+⎧⎨-≤+⎩244t s ++244t s ++42s --42s --。
华东师大版数学七年级下册期末模拟试题50题(含答案)
华东师大版数学七年级下册期末模拟试题50题含答案(填空题+解答题)一、填空题1.已知方程2y x -=,用含x 的代数式表示y ,那么y =_______. 【答案】x +2【分析】将x 移到方程右边即可.【详解】解:方程y -x =2,移项得:y =x +2.故答案为:x +2.【点睛】本题考查的是方程的基本运算技能:移项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x 的式子表示y 的形式.2.把线段AB 平移一段距离后得到线段 A B '',若5AA '=,则 BB '=__________. 【答案】5【分析】根据平移变换只改变图形的位置不改变图形的大小与形状可得A′B′=AB ,平移的距离可得AA′=BB′=5.【详解】∵线段AB 平移一段距离后得到线段A′B′,∵AA′=BB′=5,故答案为:5.【点睛】本题考查平移的基本性质:∵平移不改变图形的形状和大小;∵经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.如图,CE 平分∵ACD ,∵A=40°,∵B=30°,∵D=104°,则∵BEC=____.【答案】57°##57度【分析】根据四边形外角的性质和角平分线的性质,再结合题意,即可得到答案.【详解】根据四边形外角的性质可得∵D =∵A+∵B+∵DCA ,∵D =∵BEC+∵B+∵ECD , 则∵DCA =∵D-(∵A+∵B )=34°,4.“x的19与7的差等于x的2倍与5的和”用方程表示为___.5.已知二元一次方程组331x myx my+=⎧⎨-=⎩的解是1x ny=⎧⎨=⎩(1)n的值为______;(2)m的值为______.【答案】12【分析】将y=1代入方程组求得:x=1,将x=1代入∵得:m=2.【详解】解:将y=1代入方程组得:331x mx m+=⎧⎨-=⎩①②,∵+∵得:4x=4,解得:x=1,将x=1代入∵得:m=2,故答案为:1;2.【点睛】本题主要考查的是二元一次方程组的解法,考查重点为:利用适当的方法解方程组.6.当x____________时,代数式2x-3的值是正数.7.关于x 的一元一次方程(2m ﹣6)x ﹣2=0 ,x =1是一元一次方程的解,则m =_____. 【答案】4【分析】将x =1代入原方程求解即可.【详解】解:将x =1代入(2m ﹣6)x ﹣2=0,2620m --=,解得:4m =,故答案为:4.【点睛】本题考查一元一次方程的解,熟练掌握解一元一次方程是解题关键. 8.从六边形的一个顶点出发,分别连接这个点与其余各顶点,可以把这个六边形分割成____________个三角形. 【答案】4【分析】根据n 边形从一个顶点出发可引出()3n -条对角线,可组成()2n -个三角形,依此可得这个六边形分成三角形的个数.【详解】解:根据n 边形从一个顶点出发可引出()3n -条对角线,可组成()2n -个三角形,∵624-=,即三角形的个数是4.故答案为:4.【点睛】本题考查了多边形的对角线,求对角线条数时,直接代入边数n 的值计算,而计算边数时,需利用方程思想,解方程求n .9.“x 的2倍与14的和小于3”用不等式表示为________.10.当5x =和5-时,代数式32ax x bx c +++的值分别为20和40.则c =___________. 【答案】5【分析】分别代入分别把5x =和5-代入32ax x bx c +++中得1252552012525540a b c a b c +++=⎧⎨-+-+=⎩,利用解方程的知识可得答案; 【详解】解:分别把5x =和5-代入32ax x bx c +++中得1252552012525540a b c a b c +++=⎧⎨-+-+=⎩ ,两方程相加得2c =10,c =5,故答案为5.【点睛】本题考查了代数式求值,分别分别把5x =和5-代入32ax x bx c +++中是解题的关键.11.把方程2311x y -+=改写成用x 的式子表示y 的形式是______.12.若一个多边形外角和与内角和相等,则这个多边形是_____.【答案】四边形【分析】根据多边形的内角和公式与多边形的外角和定理列出方程,然后解方程即可求出多边形的边数:【详解】解:设这个多边形的边数是n ,则(n ﹣2)•180°=360°,解得n=4.故答案为:四边形.【点睛】本题考查了多边形内角和公式的应用,多边形的外角和,解题的关键是要能列出一元一次方程.13.若方程组2231y x my x m-=⎧⎨+=+⎩的解x,y满足30x y+≥,则m的取值范围是______.x14.若关于x的不等式326m x-<的解集是3x>,则m的值为__________.【答案】4【分析】根据解不等式,可得不等式的解集,根据不等式的解集,可得关于m的方程,根据解方程,可得答案.【详解】解3m-2x<6,得x>1.5m-3,由不等式的解集为x>3,∴ 1.5m-3=3,解得:m=4,故答案为:4.【点睛】本题考查了不等式的解集,利用不等式的解集得出关于m的方程是解题关键.15.将含30°的三角板和一把直尺如图放置,测得125∠=︒,则2∠的度数是______.【答案】35°##35度【分析】如图,根据平行线的性质,得∵DCH=∵BAC.根据三角形外角的性质,得∵BAC=∵F+∵1,推断出∵BAC=55°,进而解决此题.【详解】解:如图.由题意得,AB∵CD,∵H=90°,∵F=30°.∵∵DCH=∵BAC,∵∵BAC=∵F+∵1,∵∵BAC=30°+25°=55°,∵∵DCH=55°,∵∵CDE=∵DCH+∵H=55°+90°=145°,∵∵2=180°-∵CDE=180°-145°=35°.故答案为:35°.【点睛】本题主要考查平行线的性质、三角形外角的性质,熟练掌握平行线的性质、三角形外角的性质是解决本题的关键.16.某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A型和B型两种分类垃圾桶,A型分类垃圾桶500元/个,B型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有________种.【答案】3【分析】设购买A 型分类垃圾桶x 个,则购买B 型分类垃圾桶()6x -个,然后根据总费用不超过3100元,列出不等式求解即可.【详解】解:设购买A 型分类垃圾桶x 个,则购买B 型分类垃圾桶()6x -个, 由题意得:()50055063100x x +-≤,解得4x ≥,又∵x 为正整数,∵x 的值可以为4、5、6,∵一共有3种购买方式,故答案为:3.【点睛】本题主要考查了一元一次不等式的实际应用,正确理解题意列出不等式是解题的关键.17.已知12x y =-⎧⎨=⎩是二元二次方程2227ax y -=-的一个解,则=a _______. 【答案】1【分析】先将12x y =-⎧⎨=⎩代入2227ax y -=-,得到关于a 的一元一次方程,然后解方程即可求解.【详解】解:将12x y =-⎧⎨=⎩代入2227ax y -=-,得: a -2×22=﹣7,解得:a =1故答案为:1【点睛】本题考查二元二次方程和根的性质定义,解题的关键是把所给的未知数的值正确代入方程得到关于a 的方程.18.ABC 的三边长为a 、b 、c ,且a 、b 满足a 2﹣4a =0,则c 的取值范围是______.【详解】解:24a a -+19.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是--------------------_____.【答案】10:21.【详解】10:2120.一个工程队计划用6天完成300土方的工程,实际上第一天就完成了60方土,因进度需要,剩下的工程所用的时间不能超过3天,那么以后几天平均至少要完成的土方数是_.2403,解得30060x-80x答:以后几天平均至少要完成的土方数是故答案为:80.【点睛】此题主要考查了一元一次不等式的应用,解本类工程问题,主要是找准正确的工程不等式(如本题603以天数作为基准列不等式)21.一个角的余角等于它补角的14,则这个角的度数是______度.,则其余角是(90°-的值即可.22.当x =_______时,代数式45x -与39x -的值互为相反数【答案】2【详解】∵代数式45x -与39x -的值互为相反数,∵45x -+39x -=0,∵x=2.故答案是:2.23.若x a y b =⎧⎨=⎩是方程231x y -=的一组解,则846a b -+=__________. 【答案】6【分析】将x a y b =⎧⎨=⎩代入方程2x -3y =1得到关于a ,b 的关系式,再将多项式适当变形后利用整体代入求代数式的值.【详解】解:将x a y b =⎧⎨=⎩代入方程2x -3y =1得: 2a -3b =1.原式=8-2(2a -3b )=8-2×1=6.故答案为:6.【点睛】本题主要考查了二元一次方程的解以及求代数式的值,将方程的解代入原方程是解题的关键.24.如图,已知AOB ∠与BOC ∠互为补角,OD 是AOB ∠的平分线,OE 在BOC ∠中,1,72,2BOE EOC DOE EOC ∠=∠∠=︒∠的度数为_______.【答案】72°25.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.现有27元钱,最多可以购买该商品的件数是________.【答案】10件【分析】设购买该商品x 件,先判断购买件数在5件之上,再根据总价=3×5+3×0.8×超过5件的数量,结合总价不超过27元,即可得出关于x 的一元一次不等式,求出x 的解集即可得出结论.【详解】解:设购买该商品x 件,因为共有27元,所以最多购买的件数超过5件,依题意得:3×5+3×0.8(x -5)≤27,解得:x ≤10,故答案为:10件.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.26.如图,在Rt ABC △中,90BAC ∠=︒,48C ∠=︒,AH ,BD 分别是ABC 高和角平分线,点E 为边BC 上一个点,当BDE 为直角三角形时,则CDE ∠=_____度.,当BDE 为直角三角形时,存在两种情况:分别根据三角形内和定理和外角的性质,即可得出结论.【详解】解:90BAC ∠=︒180BAC ︒-∠-∠BD 平分ABC ,21DBC ABC ∴∠=∠=︒ 当BDE 为直角三角形时,有以下两种情况:∵当BED ∠=48C ∠=CDE ∴∠∵当BDE ∠BED ∠=CDE ∴∠=综上,CDE ∠故答案为:【点睛】本题考查的是直角三角形的性质,角平分线的有关计算,三角形内和定理与外角的性质,熟知三角形的外角的性质是解答此题的关键.27.生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,将一副学生用三角板按如图所示的方式放置.若//AE BC ,则AFD ∠的度数是__.【答案】75︒【分析】首先根据三角形内角和为180°,求得∵C 的度数,又由AE∵BC ,即可求得∵CAE 的值,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得∵AFD 的度数.【详解】解://AE BC ,45E EDC ∴∠=∠=︒,30C ∠=︒75AFD C EDC ∴∠=∠+∠=︒,故答案为75︒【点睛】本题考查三角形内角和定理,熟练掌握计算法则是解题关键.二、解答题28.解方程组225x y x y -=⎧⎨+=⎩【答案】41x y =⎧⎨=⎩. 【分析】利用加减消元法求解即可.【详解】解:225x y x y -=⎧⎨+=⎩①② 由∵-∵,得:3y =3,解得y =1,把y =1代入∵,得:x +1=5,解得:x =4,所以原方程组的解是41x y =⎧⎨=⎩. 【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.29.如图所示,有甲、乙两个容器,甲容器盛满水,乙容器里没有水,现将甲容器中的水全部倒入乙容器,问:水会不会溢出?如果不会溢出,请你求出倒入水后乙容器中的水深;如果水会溢出,请你说明理由.(容器壁厚度忽略不计,图中数据的单位:cm )【答案】水不会溢出,理由见解析【分析】根据两个圆柱体的体积进行计算即可解答本题.【详解】解:水不会溢出.设甲容器中的水全部倒入乙容器后,乙容器中的水深xcm ,由题意,得22102020x ππ⨯⨯=⨯⨯,解得5x =,所以甲容器中的水全部倒入乙容器后,乙容器中的水深5cm ,因为510cm cm <,所以水不会溢出.【点睛】本题考查圆柱体的体积,有理数的运算,关键是分别求出两个圆柱体的体积进行比较,然后再根据体积相等进行计算.30.A 、B 两市相距300千米,现有甲、乙两车从两地同时相向而行,已知甲车的速度为40千米/小时,乙车的速度为50千米/小时,请问在相遇前,出发多长时间后两车之间的距离为30千米.【答案】3小时【分析】设在相遇前,x 小时后两车之间的距离为30千米,根据路程=速度⨯时间,可列方程求解.【详解】解:设在相遇前,x 小时后两车之间的距离为30千米.()405030030x +=-,3x =.【点睛】本题考查一元一次方程的应用,正确的理解题意,并列出方程是解题的关键.31.解方程:(1)437x x -=-(2)()()423221x x x --=-(3)3252323x x x +--=- (4)0.60.50.030.290.20.063x x x ++--=32.解不等式1211232x x -≤-,并把它的解集在数轴上表示出来.【答案】x≥-3,数轴见解析.【分析】去分母得:3x-6≤4x-3,移项合并得x≥-3,正确在数轴上表示即可.【详解】解:3x-6≤4x-3∵x≥-3【点睛】本题考查解一元一次不等式.33.解下列方程:(1)2953x x -=+ (2)()32362x x x -+=- (3)122136x x -+=- (4)10.3x -﹣20.5x + 1.2=34.2020年2月,受新冠病毒影响开学延迟,我市中小学各位教师为响应上级部门的号召,积极进行了网上授课.5月全民抗疫取得了阶段性胜利,网课结束.某校对七年级200名学生进行了网课摸底考试,其中数学成绩如下表所示:(1)请根据表格信息,计算这次考试中及格人数和不及格人数各有多少;(2)该校若想在下次的考试中数学成绩的及格率不低于90%,则及格人数至少得增加多少人【答案】(1)及格人数为150人,不及格人数为50人;(2)及格人数至少得增加30人.【分析】(1) 设及格人数为x 人,不及格人数为y 人,由总人数为200人与平均分为76分,列方程组,解方程组即可得到答案;(2)设及格人数增加m 人,利用及格率不低于90%,列不等式,解不等式可得答案.【详解】(1)解:设及格人数为x 人,不及格人数为y 人,则由题意得:()200874376x y x y x y +=⎧⎨+=+⎩解得15050x y =⎧⎨=⎩. 答:及格人数为150人,不及格人数为50人.(2)设及格人数增加m 人,则由题意得,15020090%m +≥⨯,解得30≥m .∵m 为整数,∵至少增加30人.答:及格人数至少得增加30人.【点睛】本题考查的是二元一次方程组的应用,一元一次不等式的应用,掌握利用相等关系列方程组与不等关系列不等式是解题的关键.35.解不等式组:38?2(1)6x x x >--⎧⎨-≤⎩①② 【答案】24x -<≤【分析】分别解两个一元一次不等式,再写出不等式组的解集即可.【详解】解不等式∵,得2x >-,解不等式∵,得4x ≤,所以,不等式组的解集为24x -<≤.【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式的步骤是解题的关键.36.星期天,小明见爸爸愁眉苦脸在看一张图纸,他便悄悄地来到爸爸身边,想看爸爸为什么犯愁.爸爸见到他,高兴地对他说:“来帮我一个忙,你看这是一个四边形零件的平面图,它要求∵BDC 等于140°才算合格,小明通过测量得∵A =90°,∵B =19°,∵C=40°后就下结论说此零件不合格,于是爸爸让小明解释这是为什么呢?小明很轻松地说出了原因,并用如下的两种方法解出此题.请你代小明分别写出不合格的理由.(1)如图1,连结AD并延长.(2)如图2,延长CD交AB于E.【答案】(1)证明见解析;(2)证明见解析.【分析】直接利用各个图形中的外角等于与它不相邻的两个内角和可得答案;【详解】解:(1)如图1,连结AD并延长.∠=∠+∠∠=∠+∠13,24,C B∴∠=∠+∠=∠+∠+∠+∠=∠+∠+∠BDC B C B BAC C1243=︒+︒+︒=︒≠︒199040149140,所以零件不合格.(2)如图2,延长CD交AB于E.∠=∠+∠∠=∠+∠1,1,A C BDC B∴∠=∠+∠+∠=︒+︒+︒=︒≠︒BDC B A C199040149140,所以零件不合格.【点睛】要考查了三角形的内角和外角之间的关系.三角形的任意一个外角等于与它不相邻的两个内角之和.掌握以上知识是解题的关键.37.已知方程组331x y a x y a +=--⎧⎨-=+⎩的解x 为非正数,y 为负数. (1)求a 的取值范围.(2)化简:|1|2a a -++38.我们规定,若关于x 的一元一次方程ax b =的解为x b a =-,则称该方程的为差解方程,例如.932x =的解为32x =,且39322=-,则该方程932x =就是差解方程. 请根据以上规定解答下列问题:(1)若关于x 的一元一次方程51x m -=+是差解方程,则m =________;(2)若关于x 的一元一次方程231x ab a =++是差解方程,且它的解为x a =,求代数式()20222ab +的值.39.如图,已知四边形ABCD 中,,AD CB BD ∥平分,:4:1ABC A DBA ∠∠∠=.(1)求A ∠的度数;(2)如果BDC 是直角三角形,直接写出C ∠的度数.【答案】(1)120°(2)60°【分析】(1)根据平行线的判定,可得答案;(2)根据三角形的内角和,平行线的性质,可得答案.(1)解:∵AD∵CB,∵∵ABC+∵A=180°,∵BD平分∵ABC,∵∵ABC=2∵ABD.∵∵A:∵DBA=4:1,∵∵ABC+∵A=180°,∵∵A=120°.(2)解:当∵AD∵CB,∵A=120°,∵∵DBC=∵ABD=30°.由三角形的内角和,得∵C=180°-∵DBC-∵BDC=180°-30°-90°=60°.【点睛】本题考查了平行线的判定与性质,利用平行线的判定与性质是解题关键.40.把正奇数1,3,5,……,2021,2023排成如图所示的数阵,规定从上到下依次为第1行,第2行,第3行,……,从左到右依次为第1列,第2列,第3列,…….(1)∵数阵中共有___________个数,数2023在第___________行,第___________列;∵图表中第n行第8列的数可用n表示为___________;(2)按如图所示的方法用一个“L”形框框住相邻的三个数,设被框的三个数中最小的一个数为x,是否存在这样的x使得被框的三个数的和等于1471?若存在,求出x的值;若不存在,请说明理由.n ;【答案】(1)∵1012;127;4;∵161(2)不存在,理由见解析【分析】∵由第m 个正奇数可表示为21m -可列方程212023m -=,解得1012m =,可知共有1012个数,每行有8个数,则10128126 .....4 ÷=,即可得到问题的答宲; ∵先计算出从第1行第1列的数到第n 行第8列的数共有8n 个数,则281161n n ⨯-=-,所以第n 行第8列的数是161n -;(2)假设存在这样的x ,则161621471x x x +++++=,解得479x =,由21479m -=得240m =,可知479是数阵中的第240个数,而240830÷=,可知479是数阵第30行的最后一个数,说明在数阵中"L "形框框不出这样的三个数.【详解】(1)解∵∵第m 个正奇数可表示为21m -,由212023m -=得1012m =,所以数阵中共有1012个数;10128126 .....4 ÷=所以数2023在第127行第4列,故答案为:1012;127;4;∵因为每行有8个数,所以从第1行第1个数到第n 行第8列的数共8n 个数,所以第n 行第8列的数是281161n n ⨯-=-,故答案为:161n -;(2)不存在,理由∵因为被框的三个数中最小的一个数为x ,所以161621471x x x +++++=,解得479x =,由21479m -=得240m =,240830÷=(行),可见479是数阵中第30行的第8个数,所以"L "形框框不出这样的三个数,所以不存在这样的x 使得被框的三个数的和等于1471.【点睛】本题考查了解一元一次方程、列一元一次方程解应用题,掌握用代数式表示数阵中的数是关键.41.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?42.某校组织360名师生外出活动,计划租用甲、乙两种型号的客车;经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)已知师生行李打包后共有164件,若租用10辆甲、乙两种型号的客车,请你帮助设计出该校所有可行的租车方案;(2)若师生行李打包后共有m 件,且170 < m ≤ 184,如果所租车辆刚好把所有师生和行李载走(每辆车均以最多承载量载满),求m 的值. 【答案】(1)见解析;(2)176.【分析】(1)设租用甲车x 辆,则乙车()10x -辆,根据根据车辆所载人数不少于360人,行李件数不少于164可列出方程组()()403010360162010164x x x x ⎧+-≥⎪⎨+-≥⎪⎩,据此求得x 的取值范围,结合x 是整数解答即可;(2)设租用甲车y 辆,乙车z 辆,根据题意得:40y + 30z = 360,m = 16y + 20z ,化简得:4y = 36﹣3z ,代入m = 16y + 20z 得:m = 144 + 8z ,结合m 的取值范围可得出3.25 < z ≤ 5,根据z 、y 是非负整数以及4y = 36﹣3z ,求得z 、y 即可.【详解】解:(1)设租用甲车x 辆,则乙车()10x -辆.根据题意得:()()403010360162010164x x x x ⎧+-≥⎪⎨+-≥⎪⎩, 解得:6 ≤ x ≤ 9.∵x 是整数∵x = 6或7或8或9.共有四种方案:∵当甲车租6辆,则乙车租4辆;∵当甲车租7辆,则乙车租3辆;∵当甲车租8辆,则乙车租2辆;∵当甲车租9辆,则乙车租1辆;(2)设租用甲车y辆,乙车z辆,根据题意得:40y + 30z = 360,m = 16y + 20z化简得:4y = 36﹣3z,代入m = 16y + 20z得:m = 144 + 8z∵170 < m ≤ 184∵170 < 144+8z ≤ 184∵3.25 < z ≤ 5∵z、y是非负整数∵z = 4,y = 6,∵m = 176.【点睛】考查了一元一次不等式组的应用,解题的关键是读懂题意,找到关键描述句,进而找到所求的量的不等关系列出不等式,注意z、y是非负整数.43.若关于x的不等式组1532223xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有4个整数解,求a的取值范围.44.如图,在边长为1个单位长度的小正方形组成的网格中,三角形ABC的三个顶点A、B、C均在格点上,请按要求完成下列作图.(1)作出三角形ABC绕着C点逆时针旋转90°得到的三角形A1B1C1.(2)作出三角形ABC关于直线l对称的三角形A2B2C2.【答案】(1)见解析;(2)见解析【分析】(1)利用旋转变换的性质分别作出A,B,C的对应点A1,B1,C1即可.(2)利用轴对称变换的性质分别作出A,B,C的对应点A2,B2,C2即可.【详解】解:(1)如图,三角形A1B1C1即为所求.(2)如图,三角形A2B2C2即为所求.【点睛】本题考查作图-旋转变换,轴对称变换等知识,解题的关键是掌握旋转变换,轴对称变换的性质,正确作出图形.45.某水果店从水果生产基地用6400元购进了葡萄和苹果共500千克,葡萄的进价每千克20元,苹果的进价每千克8元,(1)求该水果店购进葡萄和苹果各多少千克?(2)苹果的销售价为每千克12元,在运输过程中葡萄损耗了20%、若水果店老板计划要在这次买卖中获利不少于2000元、则葡萄的售价最少应为多少?【答案】(1)该水果店购进葡萄200千克,苹果300千克;(2)萄的售价最少应为30元.【分析】(1)根据题意列出二元一次方程组求解即可;(2)根据题意设未知数列出不等式求解即可.【详解】解:(1)设该水果店购进葡萄x千克,苹果y千克,由题意列方程得:500 2086400x yx y+=⎧⎨+=⎩,解得:200300xy=⎧⎨=⎩.答:该水果店购进葡萄200千克,苹果300千克(2)设葡萄的售价为m元,根据题意列不等式得:()12300200120%64002000m⨯+⨯--≥,解得:30≥m,答:葡萄的售价最少应为30元.【点睛】此题考查了二元一次方程组和一元一次不等式的应用,解题的关键根据题意列出方程组和不等式.46.随着科技的发展,智能制造逐渐成为一种可能的生产方式.重庆某电子零部件生产商原来采用自动化程度较低的传统生产方式,工厂有熟练工人和新工人共100人,熟练工平均每天能生产30个零件,新工人平均每天能生产20个零件,所有工人刚好用30天完成了一项7.2万个零件的生产任务.(1)请问该工厂有熟练工,新工人各多少人?(请列二元一次方程组解题)(2)今年,某自动化技术团队为工厂提供了A、B两种不同型号的机器人,且两种机器人都可以单独完成零件的生产.已知A型机器人的售价为80万元/台,B型机器人的售价为120万元/台.工厂准备采购价值840万元的机器人设备,两种机器人都至少购买一台,若840万元刚好用完,求出所有可能的购买方案.(3)已知一个零件的毛利润(只扣除了原材料成本)为10元,若选择传统生产方式,熟练工每月基本工资3000元,新工人每月基本工资2000元,在基本工资之上,工厂还需额外支付计件工资5元/件,传统生产方式的设备成本忽略不计.若选择智能制造方式生产,A型机器人每月生产零件1.5万个,B型机器人每月能生产零件2.7万个,1台A 型机器人需要8名技术人员操控,一台B型机器人需要12名技术人员操控,技术人员每人工资1万元,实际生产过程中,一台A型机器人平均每月的总成本为6万元(包含所有设备成本和维护成本),一台B型机器人平均每月的总成本为8万元(包含所有设备成本和维护成本).请你比较传统的生产方式和(2)中的所有购买方案对应的智能生产方式,哪种生产方式每月的总利润最大,最大利润为多少万元?(注:每月均按30天计算)【答案】(1)该工厂有熟练工40名,新工人60名;(2)购买方案有三种,方案一:购买A型机器人3台,B型机器人5台;方案二:购买A型机器人6台,B型机器人3台;方案一:购买A型机器人9台,B型机器人1台;(3)选择智能制造生产方式获得台;(3)传统方式:每天生产零件:30×40+20×60=2400个,每月生产:2400×30=720000个=7.2万个,毛利润:7.2×10=72万元,每月的总利润:72-40×0.3-60×0.2-7.2×5=12万元;智能模式:方案一:生产零件:3×1.5+5×2.7=18万个,毛利润;18×10=180万元,每月的总利润:180-3×6-5×8-(3×8+5×12)×1=38万元;方案二:生产零件:6×1.5+3×2.7=17.1万个,毛利润;17.1×10=171万元,每月的总利润:171-6×6-3×8-(6×8+3×12)×1=27万元;方案三:生产零件:9×1.5+1×2.7=16.2万个,毛利润;16.2×10=162万元,每月的总利润:162-9×6-1×8-(9×8+1×12)×1=16万元,综上,选择智能制造生产方式获得利润最大,此时购进A 型机器人3台,B 型机器人5台,最大利润为38万元.【点睛】本题考查了二元一次方程组的应用,二元一次方程组中的方案问题,弄清题意,找准各量间的关系,认真计算是解题的关键.47.如图1,点O 为直线AB 上一点,过点O 作射线OC ,使3BOC AOC ∠=∠,将一直角三角板的直角顶点放在点O 处,边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转45︒至图2的位置,则MOC ∠=______°.(2)将图1中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在AOC ∠的内部,试探究AOM ∠与NOC ∠之间满足什么等量关系,并说明理由.(3)将图1中的三角尺绕着点O 以每秒15︒的速度按逆时针方向旋转;同时,射线OC 也绕着点O 以每秒5︒的速度按逆时针方向旋转,当一方先完成旋转一周时停止,另一方同时也停止转动,当射线OC 恰好平分MON ∠时,求此时三角板绕点O 的运动时间t 的值. 【答案】(1)90;(2)45AOM CON ∠=∠+︒;(3)18s .【分析】(1)先根据平角定义结合已知条件求出∵AOC 和∵BOC 的度数,再根据旋转角的定义即可得到结论;(2)根据余角定义把∵AOM 用∵AON 表示出来,再把∵CON 用∵AON 表示出来,求∵AOM 与∵CON 的差,即可得到结论;(3)先根据已知条件设OM 的旋转角度为15t ,OC 的旋转角度为5t ,再根据OM 比OC 多旋转180°,列出方程即可得到结论;【详解】(1)∵3BOC AOC ∠=∠,180BOC AOC ∠+∠=︒,∵3180AOC AOC ∠+∠=︒,∵45AOC ∠=︒,145BOC ∠=︒,由题意可知,45BOM ∠=︒,∵90COM BOC BOM ∠=∠-∠=︒.(2)当ON 在AOC ∠内部时,45AON CON ∠+∠=︒,。
七年级下册数学期末练习试题(三)华东师大新版(有答案)
七年级下册数学期末练习试题(三)华东师大新版(有答案)一.选择题(共12小题,满分48分,每小题4分)1.下列图形中是轴对称图形的是()A.B.C.D.2.解一元一次方程(x﹣1)=2﹣x时,去分母正确的是()A.2(x﹣1)=2﹣5x B.2(x﹣1)=20﹣5xC.5(x﹣1)=2﹣2x D.5(x﹣1)=20﹣2x3.不等式3x≤6的解集在数轴上表示为()A.B.C.D.4.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为()A.16B.14C.12D.105.如果不等式(a﹣3)x>a﹣3的解集是x<1,那么a的取值范围是()A.a>0B.a<0C.a>3D.a<36.下列说法中,①三角形的内角中最多有一个钝角;②三角形的中线将三角形分成面积相等的两部分;③从n边形的一个顶点可以引(n﹣3)条对角线,把n边形分成(n﹣2)个三角形,因此,n边形的内角和是(n﹣2)•180°;④六边形的对角线有7条,正确的个数有()A.4个B.3个C.2个D.1个7.已知关于x,y的方程组和的解相同,则(a+b)2021的值为()A.0B.﹣1C.1D.20218.已知方程mx+2y=﹣2,当x=3时y=5,那么m为()A .B .﹣C .﹣4D .9.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第n 个图案中,所包含的黑色正三角形和白色正六边形的个数总和是( )A .n 2+4n +2B .6n +1C .n 2+3n +3D .2n +410.如图所示,BD 是△ABC 的角平分线,DE ∥BC 交AB 于点E ,∠A =45°,∠BDC =60°,则∠C 的度数是( )A .100°B .105°C .110°D .115°11.某车间56名工人,每人每天能生产螺栓16个或螺母24个,每个螺栓配两个螺母;设安排x 名工人生产螺栓,才能使每天生产出来的螺栓和螺母刚好配套,下列方程中正确的是( )A .2×16x =24(56﹣x )B .2×24x =16(56﹣x )C .16x =24(56﹣x )D .24x =16(56﹣x )12.如图,△ABC 中,∠A 的平分线交BC 于D ,过点D 作DE ⊥AC ,DF ⊥AB ,垂足为点E 、F ,下面四个结论中:①∠AEF =∠AFE ;②AD 垂直平分EF ;③S △BFD :S △CED =BF :CE ;④EF ∥BC ,正确的是( )A .①②③B .①③④C .①②④D .②③④二.填空题(共6小题,满分24分,每小题4分)13.已知代数式8x﹣7与6﹣2x的值互为相反数,那么x的值等于.14.如图,E是正方形ABCD中CD边上的中点,AB=4,把△ADE绕点A顺时针旋转90°得到△ABF,若连接EF,则EF=.15.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出十二,盈八;人出十,不足六,问人数、物价各几何?译文:今有人合伙购物,每人出12钱,会多8钱;每人出10钱,又会差6钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,根据题意可列出方程组.16.不等式组的解是.17.足球比赛的计分规则为:胜一场积3分,平一场积1分,负1场积0分.初三(1)班在校足球联赛中踢了17场,其中负4场,共积31分,那么这支足球队胜了场.18.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC 绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…按此规律继续旋转,直到点P2020为止,则AP2020等于.三.解答题(共7小题,满分78分)19.解方程(组)(1)﹣=1(2).20.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)P为x轴上一动点,当AP+CP有最小值时,求这个最小值.21.在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.例如,三个内角分别为120°、40°、20°的三角形是“灵动三角形”;三个内角分别为80°、75°、25°的三角形也是“灵动三角形”等等.如图,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(规定0°<∠OAC<90°).(1)∠ABO的度数为°,△AOB.(填“是”或“不是”)“灵动三角形”;(2)若∠BAC=70°,则△AOC(填“是”或“不是”)“灵动三角形”;(3)当△ABC为“灵动三角形”时,求∠OAC的度数.22.疫情期间为了满足口罩需求,某学校决定购进A,B两种型号的口罩.若购进A型口罩10盒,B型口罩5盒,共需1000元;若购进A型口罩4盒,B型口罩3盒,共需550元,(1)求A,B两种型号的口罩每盒各需多少元?(2)若该学校决定购进这两种型号的口罩共计200盒,考虑到实际需求,要求购进A型号口罩的盒数不超过B型口罩盒数的6倍,请为该学校设计出最省钱的方案,并说明理由.23.若关于x,y的二元一次方程组与方程组有相同的解.(1)求这个相同的解;(2)求m﹣n的值.24.阅读理解若在一个两位正整数N的个位数字与十位数字之间添上数字6,组成一个新的三位数,我们称这个三位数为N的“至善数”,如34的“至善数”为364;若将一个两位正整数M加6后得到一个新数,我们称这个新数为M的“明德数”,如34的“明德数”为40.(1)30的“至善数”是,“明德数”是.(2)求证:对任意一个两位正整数A,其“至善数”与“明德数”之差能被9整除;(3)若一个两位正整数B的“明德数”的各位数字之和是B的“至善数”各位数字之和的一半,求B的最大值.25.将锐角△ABC放置在一块正方形卡纸DEFG上,使点B,C在正方形的DG和DE边上.(1)如图①,若∠A=35°,则∠ABC+∠ACB=度.∠DBC+∠DCB=度,∠ABD+∠ACD=度.(2)如图②,改变正方形卡纸DEFG的位置,请探究∠ABD+∠ACD与∠A之间存在怎样的数量关系,并验证你的结论(3)如图③,正方形卡纸的顶点D在△ABC外,且在AB边的左侧,请探究∠ABD,∠ACD,∠A三者之间存在怎样的数量关系,直接写出探究结果,不必验证.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.2.解:解一元一次方程(x﹣1)=2﹣x时,去分母正确的是5(x﹣1)=20﹣2x.故选:D.3.解:不等式解得:x≤2,表示在数轴上,如图所示,.故选:B.4.解:第三边的取值范围是大于4且小于8,又第三边是偶数,故第三边是6.则该三角形的周长是14.故选:B.5.解:∵(a﹣3)x>a﹣3的解集是x<1,∴a﹣3<0,解得a<3,故选:D.6.解:①假设一个三角形有两个钝角,那么这两个钝角的和大于180°,与三角形的内角和为180°相矛盾.故三角形的内角中最多有一个钝角,正确;②三角形的中线把三角形分成的两个三角形的底边相等,高相同,所以面积相等,正确;③因为连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.n边形的一个顶点不能与它本身及左右两个邻点相连成对角线,故从n边形的一个顶点可以引(n﹣3)条对角线,把n边形分成(n﹣2)个三角形,每一个三角形的内角和是180°,因此,n边形的内角和是(n﹣2)•180°,正确;④n边形共有条对角线,所以六边形的对角线有6×3÷2=9条,错误.故选:B.7.解:联立得:,①×5+②×3得:29x=58,解得:x=2,把x=2代入①得:y=1,代入得:,解得:,则原式=(﹣2+2)2021=0.故选:A.8.解:把x=3,y=5代入方程得:3m+10=﹣2,移项合并得:3m=﹣12,解得:m=﹣4,故选:C.9.解:由图形可知图形①的黑色正三角形和白色正六边形的个数总和=4×1+3=7个,图形②的黑色正三角形和白色正六边形的个数总和=4×2+5=13个…依此类推,图形n的黑色正三角形和白色正六边形的个数总和=4n+2n+1=6n+1个.故选:B.10.解:∵∠A=45°,∠BDC=60°,∴∠ABD=∠BDC﹣∠A=15°.∵BD是△ABC的角平分线,∴∠ABC=2∠ABD=30°,∴∠C=180°﹣∠ABC﹣∠A=180°﹣30°﹣45°=105°.故选:B.11.解:设有x 名工人生产螺栓,根据题意可得,2×16x =24(56﹣x ), 故选:A .12.解:∵∠A 的平分线交BC 于D ,DE ⊥AC ,DF ⊥AB , ∴DE =DF ,∴∠DEF =∠DFE ,又∠AED =∠AFD =90°, ∴∠AEF =∠AFE ,①正确; ∵∠AEF =∠AFE , ∴AE =AF ,又DE =DF , ∴AD 垂直平分EF ,②正确;S △BFD :S △CED =×BF ×DF :×CE ×DE =BF :CE ,③正确; EF 与BC 不一定平行,④错误, 故选:A .二.填空题(共6小题,满分24分,每小题4分) 13.解:根据题意得:(8x ﹣7)+(6﹣2x )=0, 即8x ﹣7+6﹣2x =0, 移项合并得:6x =1, 解得:x =. 故答案为: 14.解:连接EF ,∵把△ADE 绕点A 顺时针旋转90°得到△ABF , ∴AE =AF ,∠EAF =90°, ∵四边形ABCD 是正方形, ∴AB =CD =AD =4, ∵E 是CD 的中点,∴DE=CD=2,∴AE===2,∴EF===2,故答案为:2.15.解:依题意,得:.故答案为:.16.解:解不等式2x≤6,得:x≤3,解不等式3x﹣4>2,得:x>2,则不等式组的解集为2<x≤3.故答案为:2<x≤3.17.解:设这支足球队胜了x场,平了y场,依题意,得:,解得:.故答案为:9.18.解:∵∠ACB=90°,∠B=30°,AC=1,∴AB=2,BC=,∴将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…∵2020÷3=673 (1)∴AP2020=673(3+)+2=2021+673,故答案为:2021+673三.解答题(共7小题,满分78分)19.解:(1)﹣=1,去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项得:4x﹣5x=6﹣2﹣1,合并同类项得:﹣x=3,系数化为1得:x=﹣3;(2),①+②×4得:9x=63,∴x=7,把x=7代入①得:7﹣4y=﹣1,解得:y=2,∴原方程组的解为.20.解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)如图所示:P点即为所求,当AP+CP有最小值时,这个最小值为:=.21.解:(1)∵AB⊥OM,∴∠BAO=90°,∵∠AOB=60°,∴∠ABO=90°﹣60°=30°,∵90°=3×30°,∴△AOB是“灵动三角形”.故答案为:30,是.(2)∵∠OAB=90°,∠BAC=70°,∴∠OAC=20°,∵∠AOC=60°=3×20°,∴△AOC是“灵动三角形”.故答案为:是.(3:①∠ACB=3∠ABC时,∠CAB=60°,∠OAC=30°;②当∠ABC=3∠CAB时,∠CAB=10°,∠OAC=80°.③当∠ACB=3∠CAB时,∠CAB=37.5°,可得∠OAC=52.5°.综上所述,满足条件的值为30°或52.5°或80°.22.解:(1)设购进A型口罩每盒需x元,B型口罩每盒需y元,依题意,得:,解得:.答:购进A型口罩每盒需25元,B型口罩每盒需150元.(2)设购进m盒A型口罩,则购进(200﹣m)盒B型口罩,依题意,得:m≤6(200﹣m),解得:m≤171.设该学校购进这批口罩共花费w元,则w=25m+150(200﹣m)=﹣125m+30000.∵﹣125<0,∴w随m的增大而减小,又∵m≤171,且m为整数,∴当m=171时,w取得最小值,此时200﹣m=29.∴最省钱的购买方案为:购进171盒A型口罩,29盒B型口罩.23.解:(1)∵关于x,y的二元一次方程组与方程组有相同的解,∴解得∴这个相同的解为(2)∵关于x,y的二元一次方程组与方程组有相同的解,∴解得∴m﹣n=3﹣2=1.答:m﹣n的值为1.24.解:(1)30的“至善数”是360;“明德数”是30+6=36故答案为:360;36.(2)证明:设A的十位数字为a,个位数字为b则其“至善数与“明德数”分别为:100a+60+b;10a+b+6它们的差为:100a+60+b﹣(10a+b+6)=90a+54=9(10a+6)∴其“至善数”与“明德数”之差能被9整除.(3)设B的十位数字为a,个位数字为b则B的至善数的各位数字之和是a+6+bB的明德数各位数字之和是a+b+6(当0≤b<4时)或a+1+(6+b﹣10)(当4≤b≤9时)由题意得:0≤b<4时,a+b+6=(a+6+b)∴a+b=﹣6,不符合题意;或者:当4≤b≤9时,a+1+(6+b﹣10)=(a+6+b)∴a+b=12∴当b=4,a=8时,B最大,最大值为84.25.解:(1)∵∠A=35°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣35°=145°,∵四边形DEFG为正方形,∴∠D=90°,∴∠DBC+∠DCB=90°,∴∠ABD+∠ACD=∠ABC+∠ACB﹣(∠DBC+∠DCB)=145°﹣90°=55°.故答案为:145,90,55;(2)∠ABD+∠ACD=90°﹣∠A.证明如下:∵∠ABC+∠ACB=180°﹣∠A,∴∠ABD+∠DBC+∠ACD+∠BCD=180°﹣∠A,∵四边形DEFG为正方形,∴∠BDC=90°,∴∠DBC+∠BCD=90°,∴∠ABD+∠ACD+90°=180°﹣∠A,∴∠ABD+∠ACD=90°﹣∠A.(3)∠ABD=∠A+∠ACD﹣90°.若AB,CD交于点M,∵∠DMB=∠AMC,∠D+∠DBM+∠DMB=180°,∠A+∠ACD+∠AMC=180°,∴∠D+∠ABD=∠A+∠ACD,∵∠D=90°,∴∠ABD=∠A+∠ACD﹣90°.。
2023年人教版七年级数学下册期末模拟考试【含答案】
2023年人教版七年级数学下册期末模拟考试【含答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .32 2.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF,给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有( )A .4个B .3个C .2个D .1个3.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A .45°B .60°C .75°D .85°5.如果a+b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <06.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .157.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =ACB .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC8.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A .24B .30C .36D .429.下列各组数中,互为相反数的是( )A .-(-1)与1B .(-1)2与1C .|1|-与1D .-12与1 10.解一元一次方程11(1)123x x +=-时,去分母正确的是( )A .3(1)12x x +=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-二、填空题(本大题共6小题,每小题3分,共18分)1.如图1是一个由1~28的连续整数排成的“数阵”.如图2,用2×2的方框围住了其中的四个数,如果围住的这四个数中的某三个数的和是27,那么这三个数是a ,b ,c ,d 中的________.2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A ′的位置,则点A ′表示的数是_______.3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.若x 2+kx+25是一个完全平方式,则k 的值是__________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.6.近似数2.30万精确到________位.三、解答题(本大题共6小题,共72分)1.解不等式组,并将解集在数轴上表示出来.273(1)15(4)2x x x x -<-⎧⎪⎨-+≥⎪⎩①②2.先化简,再求值:(1)3x 2-[7x -(4x -3)-2x 2],其中x =5 (2)222253[22(2)5]2xy xy xy x y xy x y ----+-,其中21|4|()02x y +++=3.已知,点A 、B 、C 在同一条直线上,点M 为线段AC 的中点、点N 为线段BC 的中点.(1)如图,当点C 在线段AB 上时:①若线段86AC BC ==,,求MN 的长度.②若AB=a ,求MN 的长度.(2)若8,AC BC n ==,求MN 的长度(用含n 的代数式表示).4.如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB=DE ,AC=DF ,BF=EC .(1)求证:△ABC ≌△DEF ;(2)指出图中所有平行的线段,并说明理由.5.小颖同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)小颖同学共调查了多少名居民的年龄,扇形统计图中a,b各等于多少?(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有1500人,请估计年龄在15~59岁的居民的人数.6.某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、C5、A6、C7、D8、B9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、a,b,d或a,c,d2、-43、724、±10.5、2或2.56、百三、解答题(本大题共6小题,共72分)1、原不等式组的解集为﹣4<x≤2,在数轴上表示见解析.2、(1)5x2-3x-3,原式=107;(2)-xy+2xy 2;原式=-4.3、(1)①7;②12a;(2)略.4、(1)详略;(2)∠ABC=∠DEF,∠ACB=∠DFE,略.5、(1)300,a=20%,b=12%;(2)答案见解析;(3)5100.6、(1)40,30;(2)购买方案见解析,方案一所需资金最少,900万元.。
人教版2020七年级数学下册期末模拟基础测试题3(附答案)
67
30
108
(1)若在 7:50~8:00 时段,经过的小轿车数量正好是电瓶车数量的 9 ,求这个时段 8
内的电瓶车通过的车辆数; (2)根据上述表格数据,求在 7:50~8:00 和 8:00~8:10 两个时段内电瓶车和货车的 车辆数; (3)据估计,在所调查的 7:50~8:00 时段内,每增加 1 辆公交车,可减少 8 辆小轿车 行驶,为了使该时段内小轿车流量减少到比公交车多 13 辆,则在该路口应再增加几辆 公交车? 22.命题“绝对值相等的两个数互为相反数”. (1)将这命题改写成“如果......那么......的形式; (2)写出这命题的题设和结论; (3)判断该命】 读懂题意,找到捐 40 元和 50 元的总人数和捐 40 元和 50 元的总钱数列出方式是解答本题的 关键. 3.B
【解析】 【分析】 根据无理数的定义即可得出答案. 【详解】 根据无理数的定义,无理数有:-π,0.121221222122221…(每两个 1 之间每次增加一个 2), 共 2 个,故答案选择 B. 【点睛】 本题考查的是无理数的定义:无限不循环小数. 4.C 【解析】 【分析】 先根据平移的性质得到 CF=AD=2cm,AC=DF,而 AB+BC+AC=16cm,则四边形 ABFD 的 周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可. 【详解】 解:∵△ABC 沿 BC 方向平移 2cm 得到△ DEF, ∴CF=AD=2cm,AC=DF, ∵△ABC 的周长为 16cm, ∴AB+BC+AC=16cm, ∴四边形 ABFD 的周长=AB+BC+CF+DF+AD =AB+BC+AC+CF+AD =16cm+2cm+2cm =20cm. 故选 C. 【点睛】 本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图 形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得 到的,这两个点是对应点.连接各组对应点的线段平行且相等. 5.D 【解析】 【分析】
人教版七年级下学期期末考试数学试题及答案三
人教版七年级下学期期末考试数学试题及答案亲爱的同学们:本次考试将实行网上阅卷,所有试题答案一律填写在答题卡上相应区域,选择题用2B铅笔在相应小框框内涂黑,要求把小框框涂满,非选择题必须填写在相应的框框内横线上,不准填写在框框外,否则不得分。
每题留下的横线可能较长,但答案可能很短。
一.选择题(每题3分,共30分)1.平方根等于它自己的数是()A.0B.1C.﹣1D.42.下列方程中,为二元一次方程的是()A.2a+1=0B.3x+y=2z C.x=3y D.xy=93.如图,在梯形ABCD中,∠B=115°,则∠C的大小是()A.50°B.65°C.75°D.85°(3题图)(4题图)(6题图)4.如图,直线AB与CD相交于点O,若∠1+∠2=80°,则∠3等于()A.100°B.120°C.140°D.160°5.在﹣,﹣,0,﹣3四个数中,满足不等式x+2>0的有()A.1个B.2个C.3个D.4个6.光线在不同介质中的传播速度不同,因此当光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,当∠1=45°,∠2=122°时,∠3和∠4的度数分别是()A.45°,68°B.45°,58°C.45°,45°D.58°,122°7.为了解某市2020年参加中考的34000名学生的视力情况,抽查了其中1800名学生的视力进行统计分析,下面叙述错误的是()A.34000名学生的视力情况是总体B.样本容量是34000C .1800名学生的视力情况是总体的一个样本D .本次调查是抽样调查 8.由方程组可得x 与y 的关系式是( ) A .3x =7+3mB .5x ﹣2y =10C .﹣3x +6y =2D .3x ﹣6y =29.已知a <b ,下列不等式成立的是( ) A .a +2<b +1B .﹣3a >﹣2bC .m ﹣a >m ﹣bD .am 2<bm 210.小明在拼图时,发现8个大小一样的小长方形恰好可以拼成一个大的长方形,如图1所示.小红看见了,说“我来试一试”,结果拼成如图2所示的正方形,中间还留有一个洞,恰好是边长为2cm 的小正方形.则每个小长方形的长和宽分别为( )A .8cm 和6cmB .12cm 和8cmC .10cm 和8cmD .10cm 和6cm二.填空题(每题3分,共15分) 11.已知x 2=64,则= .12.阅读下列材料:设=0.333…①,则10x =3.333…②,则由②﹣①得:9x =3,即.所以=0.333…=.根据上述提供的方法把下列这个数化成分数.= .13.以方程组的解为坐标的点(x ,y )在平面直角坐标系中的位置是在第 象限.14.如图,有一条直的等宽纸条按图折叠时,则图中∠α= . 15.已知02=+-n mm ,则当m ≥2时,m +n 的取值范围是 . 三.解答题(共75分) 16.(8分)解方程组时,两位同学的解法如下:解法一:由①﹣②,得3x=3解法二:由②得3x+(x﹣3y)=5③把①代入③得3x+8=5(1)上述两种消元过程是否正确?你的判定是.A.都正确B.解法一错C.解法二错D.两种都错(2)请选择一种你喜欢的方法解此方程组.17.(10分)解不等式组:,在数轴上画出它的解集并写出该不等式组的非负整数解.18.(8分)下面数据是20位同学的身高(单位:cm):159、157、164、161、167、153、166、163、162、158162、164、160、172、166、162、168、167、161、156(1)这组数据中,最大值与最小值的差是;(2)将这组数据分为4组:153≤x<158,158≤x<163,163≤x<168,168≤x<173,则组距是.(3)完成下面频数分布表,并将频数分布直方图补充完整.19.(8分)如图,这是一所学校的平面示意图.(1)若校门的坐标为(﹣2,0)、图书馆的坐标为(2,3),请在图中画出对应的坐标系,这时实验楼的坐标为;(2)以国旗杆的位置为坐标原点,校门的坐标可以不可以表示为(﹣1,0)?若可以请写出这时实验楼的坐标,若不可以请说明理由。
扬中市七年级下期末数学模拟试卷(三)含答案解析
-江苏省镇江市扬中市八桥中学七年级(下)期末数学模拟试卷(三)一、选择题(共9小题,每小题3分,满分27分)1.不等式组的解集在数轴上表示为()A.B.C.D.2.下面是一名学生所做的4道练习题:①(﹣3)0=1;②a3+a3=a6;③4m﹣4=;④(xy2)3=x3y6,他做对的个数是()A.0 B.1 C.2 D.33.把一张宽度相等的纸条按如图所示的方式折叠,则∠1的度数等于()A.65° B.55°C.45°D.50°4.若﹣≤﹣,则a一定满足()A.a>0 B.a<0 C.a≥0 D.a≤05.△ABC中,∠A=∠B=∠C,则△ABC是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形6.下列各式,能用平方差公式计算的是()A.(a﹣1)(﹣a﹣1)B.(a﹣3)(﹣a+3) C.(a+2b)(2a﹣b) D.(﹣a﹣3)2 7.已知(2x+1)x+2=1,则x的值是()A.0 B.﹣2 C.﹣2或0 D.﹣2、0、﹣18.由下面的图形得到的乘法公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)2﹣(a﹣b)2=4ab9.一个六边形ABCDEF纸片上剪去一个角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=430°,则∠BGD=()A.60° B.70°C.80°D.90°二、填空题(共9小题,每小题1分,满分10分)10.化简:(x+y)2﹣3(x2﹣2y2)=.11.如果2x÷16y=8,则2x﹣8y=.(﹣2a5)÷(﹣a)2=.12.三角形的两边长分别是3和6,第三边长为偶数,则三角形的周长为.13.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.14.如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠2=20°,则∠1的度数为度.15.分解因式:a4﹣1=.16.如图,AB∥CD,∠B=75°,∠D=35°,则∠E的度数为=.17.已知关于x、y的方程组的解是,则a+b=.18.若关于x的不等式组的整数解共有3个,则a的取值范围为.三、解答题(共7小题,满分63分)19.计算:(1)(﹣)100×3101﹣(π﹣3)0﹣(﹣2)﹣2+|﹣1|(2)(4a﹣5b)2﹣2(4a﹣5b)(3a﹣2b).(3)已知4m+n=9,2m﹣3n=1,求(m+2n)2﹣(3m﹣n)2的值.20.解方程组.21.解不等式组,并写出不等式组的正整数解..22.分解因式:(1)﹣9x3+81x(2)(a2+b2)2﹣4a2b2.23.(1)如图(1),AB∥CD,点P在AB、CD外部,若∠B=40°,∠D=15°,则∠BPD=.(2)如图(2),AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;(3)在图(2)中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图(3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度数.24.黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?25.某公司准备把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:载重量运往A地的费用运往B地的费用大车15吨/辆630元/辆750元/辆小车10吨/辆420元/辆550元/辆(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A地,其中大车有m辆,其余货车前往B地,且运往A地的白砂糖不少于115吨,①求m的取值范围;②请你设计出使总运费最少的货车调配方案,并求出最少总运费.-江苏省镇江市扬中市八桥中学七年级(下)期末数学模拟试卷(三)参考答案与试题解析一、选择题(共9小题,每小题3分,满分27分)1.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】首先分别解出两个不等式,再根据“大小小大中间找”确定解集,然后再在数轴上表示出解集即可.【解答】解:,由①得:x>1,由②得:x≤2,不等式组的解集为:1<x≤2,在数轴上表示为:,故选:C.【点评】此题主要考查了解不等式组,以及在数轴上表示解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.下面是一名学生所做的4道练习题:①(﹣3)0=1;②a3+a3=a6;③4m﹣4=;④(xy2)3=x3y6,他做对的个数是()A.0 B.1 C.2 D.3【考点】零指数幂;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】分别根据零指数幂,合并同类项的法则,负指数幂的运算法则,幂的乘方法则进行分析计算.【解答】解:①根据零指数幂的性质,得(﹣3)0=1,故正确;②根据同底数的幂运算法则,得a3+a3=2a3,故错误;③根据负指数幂的运算法则,得4m﹣4=,故错误;④根据幂的乘方法则,得(xy2)3=x3y6,故正确.故选C.【点评】本题主要考查了零指数幂,负指数幂的运算,合并同类项法则和幂的乘方法则.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.合并同类项的时候,只需把它们的系数相加减.3.把一张宽度相等的纸条按如图所示的方式折叠,则∠1的度数等于()A.65° B.55°C.45°D.50°【考点】翻折变换(折叠问题).【分析】根据对折,对折角相等,由直线平行,内错角相等,根据角的等量关系,求得∠1.【解答】解:作图如右,∵图形对折,∴∠1=∠2,∵∠1=∠3,∴∠2=∠3,∵∠2+∠3=130°,∴∠1=65°,故选A.【点评】本题考查图形的折叠与拼接,同时考查了三角形、四边形等几何基本知识,解题时应分别对每一个图形进行仔细分析,难度不大.4.若﹣≤﹣,则a一定满足()A.a>0 B.a<0 C.a≥0 D.a≤0【考点】不等式的性质.【分析】根据,所以﹣>﹣,因为﹣≤﹣,根据不等式的基本性质,所以a≤0.【解答】解:∵,∴﹣>﹣,∵﹣≤﹣∴a≤0,故选:D.【点评】本题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.△ABC中,∠A=∠B=∠C,则△ABC是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形【考点】三角形内角和定理.【分析】根据题意可设∠A=x°,则∠B=3x°,∠C=4x°,由于三角形内角和为180°,故可得到关于x 的方程:x+3x+4x=180,解方程即可得到x的值,进而可求出∠B,∠C的度数,即可得到答案.【解答】解;设∠A=x°,则∠B=3x°,∠C=4x°,x+3x+4x=180,解得:x=22.5,∴∠B=67.5°,∠C=90°,∴△ABC是直角三角形.故选:B.【点评】此题主要考查了三角形内角和定理,此题运用方程思想进行计算可以有效的简化推理过程.6.下列各式,能用平方差公式计算的是()A.(a﹣1)(﹣a﹣1)B.(a﹣3)(﹣a+3) C.(a+2b)(2a﹣b) D.(﹣a﹣3)2【考点】平方差公式.【专题】计算题.【分析】A、可以利用平方差公式化简;B、变形后利用完全平方公式化简;C、利用多项式乘以多项式法则计算;D、变形后利用完全平方公式化简.【解答】解:A、(a﹣1)(﹣a﹣1)=(﹣1+a)(﹣1﹣a)=(﹣1)2﹣a2=1﹣a2,本选项能用平方差公式计算;B、(a﹣3)(﹣a+3)=﹣(a﹣3)2=﹣a2+6a﹣9,本选项不能用平方差公式计算;C、(a+2b)(2a﹣b)=2a2﹣ab+4ab﹣2b2=2a2+3ab﹣2b2,本选项不能用平方差公式计算;D、(﹣a﹣3)2=(a+3)2=a2+6a+9,本选项不能用平方差公式计算;故选A【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.7.已知(2x+1)x+2=1,则x的值是()A.0 B.﹣2 C.﹣2或0 D.﹣2、0、﹣1【考点】零指数幂;有理数的乘方.【专题】分类讨论.【分析】根据零指数幂可得x+2=0,2x+1≠0,根据有理数的乘方可得x﹣1=1;x﹣1=﹣1,x+2为偶数,再解即可.【解答】解:由题意得:①x+2=0,2x+1≠0,解得:x=﹣2;②2x+1=1,解得:x=0;③2x+1=﹣1,x+2为偶数,无解.综上可得x的值为:﹣2或0.故选C.【点评】此题主要考查了零指数幂,以及有理数的乘方,关键是注意要分类讨论,不要漏解.8.由下面的图形得到的乘法公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)2﹣(a﹣b)2=4ab【考点】平方差公式的几何背景.【分析】根据边长为a的正方形剪掉边长为b的正方形的面积和组成的长方形的面积相等解答.【解答】解:左图:剪掉边长为b的正方形的面积为:a2﹣b2,右图:拼成长方形的面积为:(a+b)(a﹣b),所以得到的乘法公式为:a2﹣b2=(a+b)(a﹣b).故选C.【点评】本题考查了平方差公式的几何背景,根据剪拼前后图形的面积相等求解是解题的关键.9.一个六边形ABCDEF纸片上剪去一个角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=430°,则∠BGD=()A.60° B.70°C.80°D.90°【考点】多边形内角与外角.【分析】由多边形的内角和公式,即可求得六边形ABCDEF的内角和,又由∠1+∠2+∠3+∠4+∠5=430°,即可求得∠GBC+∠C+∠CDG的度数,继而求得答案.【解答】解:∵六边形ABCDEF的内角和为:180°×(6﹣2)=720°,且∠1+∠2+∠3+∠4+∠5=430°,∴∠GBC+∠C+∠CDG=720°﹣430°=290°,∴∠G=360°﹣(∠GBC+∠C+∠CDG)=70°.故选:B.【点评】此题考查了多边形的内角和公式.此题难度不大,注意掌握整体思想的应用.二、填空题(共9小题,每小题1分,满分10分)10.化简:(x+y)2﹣3(x2﹣2y2)=﹣2x2+2xy+7y2.【考点】整式的混合运算.【分析】根据整式的混合运算顺序,首先计算乘方和小括号里面的,然后合并同类项,求出算式(x+y)2﹣3(x2﹣2y2)的值是多少即可.【解答】解:(x+y)2﹣3(x2﹣2y2)=x2+2xy+y2﹣3x2+6y2=﹣2x2+2xy+7y2故答案为:﹣2x2+2xy+7y2.【点评】此题主要考查了整式的混合运算,要熟练掌握,解答此题的关键是要明确:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.11.如果2x÷16y=8,则2x﹣8y=6.(﹣2a5)÷(﹣a)2=﹣2a3.【考点】整式的除法.【分析】把2x÷16y化为2x﹣4y,把8化为23,求出x﹣4y,得到2x﹣8y的值;根据整式的运算法则先算乘方再算乘除计算得到答案.【解答】解:2x÷16y=2x÷24y=2x﹣4y=8=23,则x﹣4y=3,2x﹣8y═2(x﹣4y)=6;(﹣2a5)÷(﹣a)2=(﹣2a5)÷a2=﹣2a3.故答案为:6;﹣2a3.【点评】本题考查的是同底数幂的除法和整式的除法,掌握同底数幂的除法法则:同底数幂相除,底数不变,指数相减是解题的关键.12.三角形的两边长分别是3和6,第三边长为偶数,则三角形的周长为13,15,17.【考点】三角形三边关系.【分析】首先设第三边为x,再根据三角形的三边关系可得6﹣3<x<6+3,再确定出x的范围,然后再确定出x的值,进而算出周长即可.【解答】解:设第三边为x,由题意得:6﹣3<x<6+3,即3<x<9,∵x为偶数,∴x=4,6,8,∴三角形的周长为:3+6+4=13,3+6+6=15,3+6+8=17,故答案为:13,15,17.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.13.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.14.如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠2=20°,则∠1的度数为100度.【考点】翻折变换(折叠问题).【专题】计算题.【分析】先根据三角形的内角和定理可出∠C=180°﹣∠A﹣∠B=180°﹣65°﹣75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.【解答】解:如图,∵∠A=65°,∠B=75°,∴∠C=180°﹣∠A﹣∠B=180°﹣65°﹣75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,∴∠3+20°+∠4+40°+40°=180°,∴∠3+∠4=80°,∴∠1=180°﹣80°=100°.故答案为100.【点评】本题考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及外角性质.15.分解因式:a4﹣1=(a2+1)(a+1)(a﹣1).【考点】因式分解-运用公式法.【专题】因式分解.【分析】运用平方差公式进行两次分解即可.【解答】解:a4﹣1,=(a2+1)(a2﹣1),=(a2+1)(a+1)(a﹣1).故答案为:(a2+1)(a+1)(a﹣1).【点评】本题考查了用平方差公式分解因式,注意利用平方差公式进行两次分解,注意分解要彻底.16.如图,AB∥CD,∠B=75°,∠D=35°,则∠E的度数为=40°.【考点】平行线的性质;三角形的外角性质.【分析】由AB∥CD,∠B=75°,根据两直线平行,同位角相等,即可求得∠1的度数,又由三角形外角的性质,即可求得∠E的度数.【解答】解:∵AB∥CD,∠B=75°,∴∠1=∠B=75°,∵∠D=35°,∴∠E=∠1﹣∠D=75°﹣35°=40°.故答案为:40°.【点评】此题考查了平行线的性质与三角形外角的性质.此题难度不大,注意掌握数形结合思想的应用.17.已知关于x、y的方程组的解是,则a+b=5.【考点】二元一次方程组的解.【专题】计算题.【分析】由x=2,y=1为方程组的解,将x=2,y=1代入方程组,求出a与b的值,即可求出a+b的值.【解答】解:将x=2,y=1代入方程组得:,解得:a=3,b=2,则a+b=2+3=5.故答案为:5【点评】此题考查了二元一次方程组的解,方程组的解即为能使两方程成立的未知数的值.18.若关于x的不等式组的整数解共有3个,则a的取值范围为﹣2<a≤﹣1.【考点】一元一次不等式组的整数解.【专题】探究型.【分析】先把a当作已知表示出不等式组的解集,再根据不等式组有3个整数解即可求出a的取值范围.【解答】解:,∵由①得,x≥a;由②得,x<2,∴不等式组的解集为:a≤x<2,∵不等式组有3个整数解,∴这三个整数解是:﹣1,0,1,∴﹣2<a≤﹣1.故答案为:﹣2<a≤﹣1.【点评】本题考查的是一元一次不等式组的整数解,先根据题意题用a表示出不等式组的解集是解答此题的关键.三、解答题(共7小题,满分63分)19.计算:(1)(﹣)100×3101﹣(π﹣3)0﹣(﹣2)﹣2+|﹣1|(2)(4a﹣5b)2﹣2(4a﹣5b)(3a﹣2b).(3)已知4m+n=9,2m﹣3n=1,求(m+2n)2﹣(3m﹣n)2的值.【考点】整式的混合运算;整式的混合运算—化简求值;零指数幂;负整数指数幂.【分析】(1)先算积的乘方、0指数幂、负整数指数幂以及绝对值,再算加减;(2)先利用完全平方公式和整式的乘法计算,再进一步合并即可;(3)由①﹣②得m+2n=4,①+②得3m﹣n=5,进一步整体代入求得答案即可.【解答】解:(1)原式=3﹣1﹣+1=;(2)原式=16a2﹣40ab+25b2﹣2(12a2﹣23ab+10b2)=16a2﹣40ab+25b2﹣24a2+46ab﹣20b2=﹣8a2+6ab+5b2;(3)∵4m+n=9,2m﹣3n=1,∴m+2n=4,3m﹣n=5,∴42﹣52=﹣9.【点评】此题考查整式的混合运算,掌握运算顺序与计算方法是解决问题的关键.20.解方程组.【考点】解二元一次方程组.【专题】计算题.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①﹣②×2得:x=﹣1,把x=10代入②得:y=5,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.解不等式组,并写出不等式组的正整数解..【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定解集中的正整数解即可.【解答】解:,解①得:x≤3,解②得:x>﹣2.则不等式组的解集是:﹣2<x≤3.则正整数解是1,2,3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.22.分解因式:(1)﹣9x3+81x(2)(a2+b2)2﹣4a2b2.【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式利用平方差公式化简,再利用完全平方公式分解即可.【解答】解:(1)原式=﹣9x(x2﹣9)=﹣9x(x+3)(x﹣3);(2)原式=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23.(1)如图(1),AB∥CD,点P在AB、CD外部,若∠B=40°,∠D=15°,则∠BPD= 25°.(2)如图(2),AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;(3)在图(2)中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图(3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度数.【考点】平行线的性质;三角形内角和定理.【分析】(1)由AB∥CD,∠B=40°,根据两直线平行,内错角相等,即可求得∠BOD的度数,又由三角形外角的性质,可求得∠BPD的度数;(2)首先过点P作PE∥AB,由AB∥CD,可得AB∥PE∥CD,然后由两直线平行,内错角相等,即可证得∠BPD=∠1+∠2=∠B+∠D;(3)首先延长BP交CD于点E,利用三角形外角的性质,即可求得∠B+∠D的度数.【解答】解:(1)∵AB∥CD,∠B=40°,∴∠BOD=∠B=40°,∴∠P=∠BOD﹣∠D=40°﹣15°=25°.故答案为:25°;(2)∠BPD=∠B+∠D.证明:过点P作PE∥AB,∵AB∥CD,∴AB∥PE∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(3)延长BP交CD于点E,∵∠1=∠BMD+∠B,∠BPD=∠1+∠D,∴∠BPD=∠BMD+∠B+∠D,∵∠BPD=90°,∠BMD=40°,∴∠B+∠D=∠BPD﹣∠BMD=90°﹣40°=50°.【点评】此题考查了平行线的性质与三角形外角的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.24.黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】应用题.【分析】设四座车租x辆,十一座车租y辆,先根据“共有70名职员”作为相等关系列出x,y的方程,再根据“公司职工正好坐满每辆车且总费用不超过5000元”作为不等关系列不等式,求x,y的整数解即可.注意求得的解要代入实际问题中检验.【解答】解:设四座车租x辆,十一座车租y辆,则有:,将4x+11y=70变形为:4x=70﹣11y,代入70×60+60x+11y×10≤5000,可得:70×60+15(70﹣11y)+11y×10≤5000,解得y≥,又∵x=≥0,∴y≤,故y=5,6.当y=5时,x=(不合题意舍去).当y=6时,x=1.答:四座车租1辆,十一座车租6辆.【点评】本题考查二元一次方程组与一元一次不等式的综合应用,将现实生活中的事件与数学思想联系起来,列出关系式即可求解.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的关系式.25.某公司准备把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:载重量运往A地的费用运往B地的费用大车15吨/辆630元/辆750元/辆小车10吨/辆420元/辆550元/辆(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A地,其中大车有m辆,其余货车前往B地,且运往A地的白砂糖不少于115吨,①求m的取值范围;②请你设计出使总运费最少的货车调配方案,并求出最少总运费.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设大车货x辆,则小货车(20﹣x)辆,根据“大车装的货物数量+小车装的货物数量=240吨”作为相等关系列方程即可求解;(2)①调往A地的大车m辆,小车(10﹣m)辆;调往B地的大车(8﹣m)辆,小车(m+2)辆,根据“运往A地的白砂糖不少于115吨”列关于m的不等式求出m的取值范围,②设总运费为W元,根据运费的求算方法列出关于运费的函数关系式W=10m+11300,再结合一次函数的单调性得出w的最小值即可求解.【解答】解:(1)设大货车x辆,则小货车有(20﹣x)辆,15x+10(20﹣x)=240,解得:x=8,20﹣x=20﹣8=12(辆),答:大货车用8辆.小货车用12辆;(2)①调往A地的大车有m辆,则到A地的小车有(10﹣m)辆,由题意得:15m+10(10﹣m)≥115,解得:m≥3,∵大车共有8辆,∴3≤m≤8;②设总运费为W元,∵调往A地的大车有m辆,则到A地的小车有(10﹣m)辆,∴到B的大车(8﹣m)辆,到B的小车有[12﹣(10﹣m)]=(2+m)辆,W=630m+420(10﹣m)+750(8﹣m)+550(2+m),=630m+4200﹣420m+6000﹣750m+1100+550m,=10m+11300.又∵W随m的增大而增大,∴当m=3时,w最小.当m=3时,W=10×3+11300=11330.因此,应安排3辆大车和7辆小车前往A地,安排5辆大车和5辆小车前往B地,最少运费为11330元.【点评】本题考查了一元一次方程、一次函数和一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出相关的式子是解题的关键.注意本题中所给出的相等关系和不等关系关键语句“现用大,小两种货车共20辆,恰好能一次性装完这批白砂糖”“运往A地的白砂糖不少于115吨”等.21 / 21。
七年级数学下册期末考试真题卷含答案解析(3)
七年级数学下册期末考试真题卷一.选择题(共10小题,满分30分)1.下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.2.永定河,“北京的母亲河”.近年来,我区政府在永定河治理过程中,有时会将弯曲的河道改直,图中A、B两地间的河道改直后大大缩短了河道的长度.这一做法的主要依据是()A.两点确定一条直线B.垂线段最短C.过一点有且只有一条直线与已知直线垂直D.两点之间,线段最短3.下列计算正确的是()A.x3÷x3=0B.(﹣3x)2=6x2C.2x﹣2=D.(x3)2=x6 4.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为()A.16B.14C.12D.105.如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有()﹣+从袋子中随机摸出一个球,摸到红球的概率是,那么=,=∠=×21.如图,已知△ABC.(1)尺规作图,画出线段AB的垂直平分线(不写作法,保留作图痕迹);(2)设AB的垂直平分线与BA交于点D,与BC交于点E,连接AE.若∠B=40°,求∠BEA的度数.22.某商场为了吸引顾客,设立了一个如图可以自由转动的转盘,并规定:顾客每购买200元的商品就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、绿或黄色区域,顾客就可以获得100元、50元,20元的购物券,(转盘被等分成20个扇形),已知甲顾客购物220元.(1)他获得购物券的概率是多少?(2)他得到100元、50元、20元购物券的概率分别是多少?(3)若要让获得20元购物券的概率变为,则转盘的颜色部分怎样修改?(直接写出修改方案即可).23.如图,在△ABC中,AB=AC,D是边BC延长线上一点,连接AD,过A作AE=AD,且∠DAE=∠BAC,连接CE交AD于点F.(1)求证:△ABD≌△ACE;(2)若∠FCD=34°,求∠B的度数.参考答案一.选择题1.D.2.D.3.D.4.B.5.C.6.C.7.C.8.C.9.C.10.B.二.填空题11.108°.12.2.13.4.14.8.15.﹣1.16.70°.17.y=x.三.解答题18.解:(1)原式=﹣a3•a2﹣9a6÷a=﹣a5﹣9a5=﹣10a5;(2)原式=20212﹣(2021+1)×(2021﹣1)=20212﹣20212+1=1.19.解:原式=x2﹣2xy﹣y2﹣(x2﹣y2)=x2﹣2xy﹣y2﹣x2+y2=﹣2xy,当x=,y=1时,原式=﹣2××1=﹣1.20.解:∵AD∥BC,(已知)∴∠1=∠B=60°.(两直线平行,同位角相等)∵∠1=∠C,(已知)∴∠C=∠B=60°.(等量代换)∵AD∥BC,(已知)∴∠C+∠ADC=180°.(两直线平行,同旁内角互补)∴∠ADC=180°﹣∠C=180°﹣60°=120°.(等式的性质)∵DE平分∠ADC,(已知)∴∠ADE=∠ADC=×120°=60°.(角平分线定义)∴∠1=∠ADE.(等量代换)∴AB∥DE.(内错角相等,两直线平行.)故答案为:B,两直线平行,同位角相等,ADC,两直线平行,同旁内角互补,ADC,角平分线定义,内错角相等,两直线平行.四.解答题21.解:(1)线段AB的垂直平分线如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE∴∠BAE=∠B=40°∴∠BEA=180°﹣∠B﹣∠BAE=180°﹣40°﹣40°=100°答:∠BEA的度数为100°22.解:(1)∵共有20种等可能事件,其中满足条件的有11种,∴P(中奖)=;(2)由题意得:共有20种等可能结果,其中获100元购物券的有2种,获得50元购物券的有4种,获得20元购物券的有5种,∴P(获得100元)==;P(获得50元)==;P(获得20元)==;(3)直接将3个无色扇形涂为黄色.23.(1)证明:∵∠DAE=∠BAC,∴∠DAE+∠DAC=∠BAC+∠DAC,即∠EAC=∠DAB,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).(2)由(1)可知∠B=∠ACB=ACE,∵∠ACB+∠ACE+∠FCE=180°,即2∠B+34°=180°,∴∠B=73°.24.解:(1)由图象可知,小钱开始营业前微信零钱有50元;(2)由图象可知,销售草莓20kg后,小钱的微信零钱为650元,∴销售草莓20kg,销售收入为650﹣50=600元,∴降价前草莓每千克售价为:600÷20=30(元);(3)降价后草莓每千克售价为:30﹣10=20元,∴小钱卖完所有草莓微信零钱为:650+5×20=750(元),答:小钱卖完所有草莓微信零钱应该有750元.25.解:(1)如图①,∵△ACB和△DCE均为等边三角形,∴AC=BC,DC=CE,∠ACB=∠DCE=60°,∵点A、D、E在同一条直线上,∴∠ADC=120°,∵∠ACB﹣∠DCB=∠DCE﹣∠DCB,∴∠ACD=∠BCE,且AC=BC,DC=CE,∴△CAD≌△CBE(SAS)(2)如图①∵△DCE为等边三角形,∴∠CDE=∠CED=60°,∵点A、D、E在同一条直线上,∴∠ADC=120°,∵△CAD≌△CBE,∴AD=BE,∠BEC=∠ADC=120°,∴∠AEB=120°﹣60°=60°,故答案为:60°,AD=BE;(3)结论:∠AEB=90°,AE=BE+2CM,理由:如图②,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°,∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°,∵CD=CE,CM⊥DE,∴DM=ME,∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.故答案为:90°,AE=BE+2CM.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中2018年春季七年级期末考试模 拟 数 学 试 题(三)说明:1. 本试卷分为第I 卷和第Ⅱ卷. 第I 卷为选择题,第Ⅱ卷为非选择题. 全卷共6页. 考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效,考试结束后,将试卷及答题卡交回.2. 本试卷满分100分,答题时间为100分钟.第Ⅰ卷 选择题(共36分)一、选择题(本大题共12个小题,每小题3分,满分36分) 在每小题给出的四个选项中,有且仅有一项是符合题目要求的. 1.下列图形中的∠1和∠2,是对顶角的是A B C D2. 下列各式中计算正确的是A.636±= B.0001.001.0=C. 211412= D.4)4(2-=-3. 某校为了了解1200名学生的视力情况,从中抽取了300名学生进行视力检查,在这个问题中,下列说法错误的是 A. 总体是1200名学生的视力情况 B. 样本是300名学生的视力情况C. 样本容量是300名D. 个体是每名学生的视力情况4. 下列各数:0.23,81,39,-722,2π,0,3.1010010001……无理数有A. 2个B. 3个C. 4个D. 5个5. 若m>n ,下列不等式不一定成立的是A. m+2>n+2B. 2m>2nC.2n>2m D. m 2 >n 26. 下列调查中,适宜采用全面调查方式的是 A. 检测一批灯泡的使用寿命 B. 了解人们对环境的保护意识C. 对乘坐飞机的乘客进行安检D. 对全国中学生健康状况的调查7. 直线a ∥b ,一块含有30°角的直角三角形板按如图放置, ∠1=35°,则∠2等于 A. 20° B. 25°C. 30°D. 35°8. 如果P (a+b ,ab )在第一象限,那么点Q (-a ,b )在第( )象限.A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 关于x,y 的方程组⎩⎨⎧=+=-n my x m y x 3的解是⎩⎨⎧==11y x ,则n m -的值是A. 5B. 3C. 2D. 110. 下列命题中,真命题的个数为 ①同位角相等; ②两直线不平行必相交;③若两条直线相交所形成的四个角相等,则这两条直线互相垂直; ④若线段AB 与CD 没有交点,则AB ∥CD ; ⑤ 过一点有且只有一条直线与已知直线平行.A. 1个B. 2个C. 3个D 4个11. 若不等式组⎩⎨⎧1m x ><1-x ,恰有两个整数解,则m 的取值范围是A. -1≤m <0B. -1<m ≤0C. -1≤m ≤0D. -1<m<012. 为保护生态环境,四川省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,求改变后林地面积和耕地面积各多少平方千米.设改变后耕地面积x 平方千米,林地面积y 平方千米,根据题意,列出如下四个方程组,其中正确的是 A. ⎩⎨⎧⋅==+%25180x y y x B.⎩⎨⎧⋅==+%25180y x y x C. ⎩⎨⎧=-=+%25180y x y x D.⎩⎨⎧=-=+%25180x y y x第Ⅱ卷 非选择题(64分)二、填空题(本大题共8个小题,每小题3分,满分24分)要求只填写最后结果.13. 七(1)班教室里的座位共有7排8列,其中小明的座位在第2排第5列,简记(2,5),王红坐在第5排第3列,则王红的座位可记作_________________.14. 把命题“内错角相等”写成“如果……,那么……”形式为: . 15. 若414.12≈,472.420≈ 那么≈2000____________. 16. 已知(x-2y-1)2+33-+y x =0,那么x+y 的平方根是___________.17. 平面直角坐标系中有点P ,它到x 轴的距离为2,到y 轴的距离为3,且点P 在y 轴的左侧,那么点P 的坐标为________________________.18. 如图,把直角三角形沿BC 方向平移4cm 得到△DEF ,若AB =8cm ,DH=3cm ,则图中阴影 部分面积为______________. 19. 如果不等式组⎩⎨⎧+3a -x >1>3a 4x 的解集为x >4,那么a 的值为____________.20. 观察下列各式:312311=+;413412=+;514513=+,请将你猜想的规律用含自然数n(n ≥1)的代数式表示出来_______________________. 三、解答题(本大题5个题,满分40分)21.(第(1)题3分,(2)小题3分,(3)小题4分,本大题满分10分) (1)计算:(-1)2017-7-+16-364;(2)解方程组:⎪⎩⎪⎨⎧=-++-=-;212332,1y x y x(3)解不等式:1423x ≤ 312-+-x ,并把解集在数轴上表示出来.22.(6分)已知:如图,AD ⊥BC ,垂足为D ,点F 是AB 上任意一点,FG ⊥BC ,垂足为G ,且∠1=∠2.求证:∠BAC =∠DEC.23.(6分)已知:如图,在平面直角坐标系中有点A(2,4).(1)在坐标系中取适当的单位长度,确定点A,再将点A先向右平移4个单位,再向下平移2个单位,得到点B,请直接写出点B的坐标;(2)连接OA、OB、AB,求出△AOB的面积.24.(9分)某种子培育基地用A 、B 、C 、D 四种型号的小麦种子共2000粒进行发芽实验,将从中选出发芽率高的种子进行推广. 通过实验,得知C 型号种子的发芽率为95%,根据实验数据绘制了如下所示的两幅尚不完整的统计图. (1)求用于实验的D 型号种子的粒数; (2)将图2的统计图补充完整; (3)应选哪一个型号的种子进行推广?注:发芽率=发芽粒数÷该型号的种子粒数.25.(9分)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买2个篮球和3个足球一共需要510元. (1)篮球和足球的进价每个各是多少元?(2)根据实际需要,学校决定购买篮球和足球共100个,其中购买篮球的数量不少于足球数量的32,学校可用于购买这批篮球和足球的资金最多为10300元,请问有几种购买方案?哪种方案所用资金最少?最少是多少?数学试卷参考答案一、选择题(本大题共12个小题,每小题3分,满分36分)二、填空题(本大题共8个小题,每小题3分,满分24分) 13. (5,3) 14. 如果两个角是内错角,那么它们相等15. 44.7216. ±1 17. (-3,2)或(-3,-2)18. 26cm 219. 120.21)1(21++=++n n n n 三、解答题(本大题共5个题,满分40分)21.(第(1)题3分,(2)小题3分,(3)小题4分,本大题满分10分)(1)计算:(-1)2017-|-7|+16-364解原式=-1-7+4-4……………………………………………………(2分) =-8. ………………………………………………………(3分)(2)解方程组:⎪⎩⎪⎨⎧=-++-=-.212332,1y x y x解:原方程组整理得:⎩⎨⎧=+-=-.832,1y x y x ………………………………(1分)①×3+②得:x=1 ……………………………………(2分)把x=1代入①得:y=2∴原方程组的解是⎩⎨⎧==.2,1y x ……………………………………(3分)(3)解不等式:1423x ≤ 312-+-x 并把解集在数轴上表示出来. 解: 4(2x-1)≤3(3x+2)-12, ………………………………………(1分)8x-4≤9x+6-12, 8x-9x ≤4+6-12, -x ≤-2,x ≥2. …………………………………………(3分)……………………………(4分)22.(6分)∵AD ⊥BC ,FG ⊥BC ,(已知)∴AD ∥FG (平行于同一条直线的两直线平行), ……(2分)①②∴∠1=∠BAD (两直线平行,同位角相等). ∵∠1=∠2(已知),∴∠2=∠BAD (等量代换), ……(4分) ∴DE ∥AB (内错角相等,两直线平行), ……(5分) ∴∠BAC=∠DEC (两直线平行,同位角相等). ……(6分) 23.(6分)解:(1)画图 …………(2分)点B (6,2 ) …………(3分)(2)过点A 作AC ∥x 轴 ,交y 轴于点C ;过点B 作BE ∥y 轴,交x 轴于点E ,与AC 交于点D.由图可知:OC=4, AC=2, AD=4, DB=2, BE=2, OE=6. …………(4分) ∴S 长方形=4×6=24, S △AOC = 21×2×4=4, S △BOE =21×2×6=6, S △ADB =21×2×4=4,∴S △AOB =24-4-6-4=10. …………(6分)24.(9分)(1)2000×(1―35%―20%―20%)=500(粒) ………………………(2分) (2)C 型号种子的发芽数:2000×20%×95%=380(粒)……5分(2分+作图1分共3分) (3)A 型号种子的发芽率:%90%352000630=⨯……(6分)B 型号种子的发芽率:%5.92%202000370=⨯ …(7分) C 型号种子的发芽率:95% D 型号种子的发芽率:%94500470= …………(8分) ∴应选C 型号的种子进行推广 …………(9分)25.(9分)(1)解:设篮球的进价为x 元/个,足球的进价为y 元/个,列方程组得: ⎩⎨⎧=+=-.51032,30y x y x …………………………………………………………(3分)解得:⎩⎨⎧==.90,120y x …………………………………………………………(4分)答:篮球单价为120元,足球单价为90元.(2)设买篮球m 个,则购买足球(100-m )个,由题可得:⎪⎩⎪⎨⎧-+-10300.≤)100(90120),100(32 ≥m m m m …………………………………………(6分) 解得:40≤x ≤3143. …………………………………………(7分)∴m 可取的整数有:40,41,42,43. ……………………………………(8分) 有以下四种方案:方案1:购买篮球40个,足球60个,所用资金=40×120+60×90=10200(元) 方案1:购买篮球41个,足球59个,所用资金=41×120+59×90=10230(元) 方案1:购买篮球42个,足球58个,所用资金=42×120+58×90=10260(元) 方案1:购买篮球43个,足球57个,所用资金=43×120+57×90=10290(元) 答:应购买篮球40个,足球60个所用资金最少,最少是10200元. ……(9分)。