七年级下册数学期末试卷及答案
2024新人教版七年级数学下册期末试卷及答案
2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。
2. 已知一个数的平方等于36,则这个数是______或______。
3. 下列各数中,是无理数的是______、______、______。
4. 一个等边三角形的周长为15,则它的边长是______,面积是______。
5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。
三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。
2. (10分)解方程:2x - 5 = 3x + 1。
3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。
数学七年级下学期《期末测试卷》含答案
人 教 版 数 学 七 年 级 下 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A. 2- B. 0 C. 1 D. 382. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生视力情况,采用抽样调查的方式4. 如图,将△ABC 平移后得到△DEF ,若∠A =44°,∠EGC =70°,则∠ACB 的度数是( )A. 26°B. 44°C. 46°D. 66°5. 若(m –2018)x |m|–2017+(n+4)y |n|–3=2018是关于x ,y 的二元一次方程,则( )A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=46. 对于任意实数m,点P(m-2,9-3m)不可能()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -119. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤010. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.) 13. 3-7的相反数是____;|2-3|=____.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19. (1)2(32)32--(2)25{342x y x y -=+= 20. 解不等式组323(1){12123x x x x x +≥---+->-,并把解集数轴上表示出来. 21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?22. 如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.23. 已知在平面直角坐标系中有A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A, B, C 的位置. (2)画出ABC关于直线x=-1对称的111A B C∆,并写出111A B C∆各点坐标. (3)在y轴上是否存在点P,使以A,B, P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.参考答案本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A.B. 0C. 1D. 【答案】A【解析】【分析】根据各项数字的大小排列顺序,找出最小的数即可.【详解】由题意得:01<<<最小的数为:故选A.【点睛】本题考查了实数大小的比较,解题的关键是理解正数大于0,0大于负数的知识.2. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 【答案】D【解析】【分析】利用不等式的性质判断即可得到结果.【详解】解:若x >y ,则有x-3>y-3;33x y >;-2x <-2y ; 3-x <3-y 故选D .【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解本题的关键.3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生的视力情况,采用抽样调查的方式【详解】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选D.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 如图,将△ABC平移后得到△DEF,若∠A=44°,∠EGC=70°,则∠ACB 的度数是()A. 26° B. 44° C. 46° D. 66°【答案】A【解析】【分析】由平移前后对应角相等及三角形的一个外角等于与它不相邻的两个内角的和得出.【详解】∵△ABC平移后得到△DEF,∴∠EDF=∠A=44°,∴∠ACB=∠EGC−∠EDF=26°.故选:A.【点睛】本题主要考查了平移的基本性质:①平移不改变图形的形状、大小和方向;②经过平移,对应点所连的线段平行或在同一直线上,对应线段平行且相等,对应角相等.同时考查了三角形的外角性质.5. 若(m–2018)x|m|–2017+(n+4)y|n|–3=2018是关于x,y的二元一次方程,则()A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=4【分析】依据二元一次方程的定义求解即可.【详解】解:()()m 2017n 3m 2018x n 4y 2018---++=是关于x ,y 的二元一次方程,20180201714031m m n n -≠⎧⎪-=⎪∴⎨+≠⎪⎪-=⎩, 解得:m 2018=-、n 4=,故选D .【点睛】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.依据二元一次方程的定义求解即可.6. 对于任意实数m ,点P (m -2,9-3m )不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不能在这个象限.【详解】A 、当点在第一象限时 20930m m -⎧⎨-⎩>>,解得2<m <3,故选项不符合题意; B 、当点第二象限时20930m m -⎧⎨-⎩<>,解得m <3,故选项不符合题意; C 、当点在第三象限时,20930m m -⎧⎨-⎩<<,不等式组无解,故选项符合题意; D 、当点在第四象限时20930m m -⎧⎨-⎩><,解得m >0,故选项不符合题意. 故选:C .【点睛】本题考查了点的坐标,理解每个象限中点的坐标的符号是关键.7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°【答案】C【解析】【分析】先由对顶角及直角三角形两锐角互余求出∠CFM=40°,再由折叠的性质求出∠EFC′的度数,进而求出∠EFD的度数,然后根据两直线平行内错角相等即可求出结论.【详解】∵∠B′MD=50°,∴∠C′FM=40°,∴∠EFC=∠EFC′=(180°+40°) ÷2=110°,∴∠EFD=110°-40°=70°.∵AB∥CD,∴∠BEF=∠EFD=70°.故选C.【点睛】本题主要考查了矩形性质,折叠的性质,及平行线的性质,熟练掌握相关的性质是解题的关键.8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -11 【答案】A【解析】【分析】由x与y互为相反数,得到y=-x,代入方程组计算即可求出m的值.【详解】解:由题意得:y= -x,代入方程组得:33221x x mx x m-++⎧⎨-⎩=①=②,消去x得:32123m m+-=,即3m+9=4m-2,解得:m=11.故选A.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤0【答案】A【解析】【分析】首先解关于x的不等式,不等式在实数范围内有解,则两个不等式的解集有公共部分,据此即可列出关于a的不等式,从而求得a的范围.【详解】解1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩①②,解①得:x≤3a+1,解②得:x>1.根据题意得:3a+1>1,解得:a>0.故选:A.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.10. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°【答案】B【解析】【详解】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个【答案】D【解析】【分析】根据题意设出未知数,找出不等关系列出相应的不等式即可.【详解】设这批闹钟至少有x个,根据题意得5500×60+5000(x-60)>550000∴5000(x-60)>5500×40x-60>44∴x>104答:这批闹钟最少有105个.故选D.【点睛】本题考查了实际问题与一元一次不等式,解题的关键是理解题意,根据不等关系列出相应的不等式.12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)【答案】B【解析】【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2017的坐标.【详解】通过观察可得数字是4的倍数的点在第三象限,数字是4的倍数余1的点在第四象限,数字是4的倍数余2的点在第一象限,数字是4的倍数的点在第二象限,且各个点分别位于象限的角平分线上(A1和第四象限内的点除外),∵2017÷4=504…1,∴点A2017在第四象限,点A2016在第三象限,∵20164=504,∴A2016是第三象限的第504个点,∴A2016的坐标为(−504,−504),∴点A2017的坐标为(505,-504).故选:B.【点睛】此题主要考查了点的坐标,属于规律型题目,解答此类题目一定要先注意观察,本题第三象限的点的坐标特点比较好判断,我们可以利用这一点达到简化步骤的效果.卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.)13. 3-7的相反数是____;2____.【答案】(1). 37(2). 2【解析】【详解】分析:根据相反数的定义,绝对值的性质和立方根的定义分别计算即可求解. 详解:3-7的相反数是37;因为2 1.4143≈< ,所以|2-3|=-(2-3),故答案为 (1).37 (2). 3-2. 点睛:本题考查了实数的性质,主要利用了绝对值的性质,相反数的定义,属于基础题.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC ∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.【答案】80°【解析】【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD =∠CAD =50︒,进而得出答案.【详解】∵∠BAC 的平分线交直线b 于点D ,∴∠BAD =∠CAD ,∵直线a ∥b ,∠1=50︒,∴∠BAD =∠CAD =50︒,∴∠2=180︒−50︒−50︒=80︒故答案为:80︒.【点睛】此题主要考查了平行线的性质,正确得出∠BAD =∠CAD =50︒是解题关键.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 【答案】126【解析】【分析】两式相加求出+a b =5,两式相减求出-a b =1,代入即可求解.【详解】解32132312a b a b +=⎧⎨+=⎩①②,①+②得5a+5b=25 ∴+a b =5,①-②得-a b =1∴3100()()a b a b ++-=53+1100=126.【点睛】此题主要考查二元一次方程的求解,解题的关键是熟知加减消元法的运用.16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 【答案】≥-1【解析】 【详解】分析:根据题意中的不等关系,列不等式可求解.详解:由题意可得-53x +1≤12x +-1 解不等式可得x≥-1故答案为≥-1.点睛:此题主要考查了一元一次不等式的应用,解不等式即可求出x 的范围,关键是根据题目的不等关系列不等式.17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.【答案】2【解析】【分析】根据第二象限角平分线上的点的横坐标与纵坐标互为相反数,可得答案.【详解】由题意,得-3+m+1=0,解得m =2,故答案为:2.【点睛】本题考查了点的坐标,利用第二象限角平分线上的点的横坐标与纵坐标互为相反数得出方程是解题关键.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.【答案】12【解析】【分析】由条件可得到|x−2|+|y−1|=3,分四种情况:①x−2=±3,y−1=0,②x−2=±2,y−1=±1,③x−2=±1,y−1=±2,④x−2=0,y−1=±3,进行讨论即可求解.【详解】依题意有|x−2|+|y−1|=3,①x−2=±3,y−1=0,解得11xy-⎧⎨⎩==,51xy⎧⎨⎩==;②x−2=±2,y−1=±1,解得xy⎧⎨⎩==,2xy⎧⎨⎩==,4xy⎧⎨⎩==,42xy⎧⎨⎩==;③x−2=±1,y−1=±2,解得11xy⎧⎨-⎩==,13xy⎧⎨⎩==,31xy⎧⎨-⎩==,33xy⎧⎨⎩==;④x−2=0,y−1=±3,解得22xy⎧⎨-⎩==,24xy⎧⎨⎩==.故满足条件的点P有12个.故答案为:12.【点睛】考查了两点间的距离公式,本题为新概念题目,理解题目中所给新定义是解题的关键,注意分类讨论思想的应用.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤)19. (1)2-(2)25 {342 x yx y-=+=【答案】(1)2(2)21 xy=⎧⎨=-⎩【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据加减消元法即可求解.【详解】(1)2-2=2(2)解:25 342 x yx y-=⎧⎨+=⎩①②①×4,得:8x-4y=20③③+②,得11x=22,x=2将x=2代入①,得y=-1所以方程组的解是21 xy=⎧⎨=-⎩.【点睛】此题主要考查实数的运算及二元一次方程的求解,解题的关键是熟知实数的运算及二元一次方程的求解方法.20. 解不等式组323(1) {12 123x xx xx+≥---+->-,并把解集数轴上表示出来.【答案】x≥0;作图见解析【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:323(1)12123x xx xx+≥--⎧⎪⎨-+->-⎪⎩①②解不等式①,得:x≥0解不等式②,得x>-5把不等式组的解集在数轴上表示如下:∴不等式组的解集为x≥0.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?【答案】(1)30;(2)①补图见解析;②120;③70人.【解析】【详解】分析:(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.详解:(1)本次调查的好友人数为6÷20%=30人,故答案为30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×1030=120°, 故答案为120; ③估计大约6月1日这天行走的步数超过10000步的好友人数为150×12230 =70人. 点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22. 如图,已知BC∥GE ,AF∥DE ,∠1=50°.(1)求∠AFG 的度数;(2)若AQ 平分∠FAC ,交BC 于点Q,且∠Q=15°,求∠ACB 的度数.【答案】(1)50°;(2)80°.【解析】【分析】(1)先根据BC ∥EG 得出∠E=∠1=50°,再由AF ∥DE 可知∠AFG=∠E=50°;(2)作AM ∥BC ,由平行线的传递性可知AM ∥EG ,故∠FAM=∠AFG ,再根据AM ∥BC 可知∠QAM=∠Q ,故∠FAQ=∠AFM+∠FAQ ,再根据AQ 平分∠FAC 可知∠MAC=∠QAC+∠QAM=80°,根据AM ∥BC 即可得出结论.【详解】(1)∵BC ∥EG ,∴∠E=∠1=50°.∵AF ∥DE ,∴∠AFG=∠E=50°;(2)作AM ∥BC ,∵BC ∥EG ,∴AM ∥EG ,∴∠FAM=∠AFG=50°.∵AM ∥BC ,∴∠QAM=∠Q=15°,∴∠FAQ=∠AFM+∠MAQ=65°.∵AQ 平分∠FAC ,∴∠QAC=∠FAQ=65°,∴∠M AC=∠QAC+∠QAM=80°.∵AM ∥BC ,∴∠ACB=∠MAC=80°.考点:平行线的性质.23. 已知在平面直角坐标系中有 A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A , B , C 的位置.(2)画出ABC 关于直线x=-1对称的111A B C ∆,并写出111A B C ∆各点坐标.(3)在y 轴上是否存在点P ,使以A ,B , P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标:若不存在,请说明理由.【答案】(1)画图见解析;(2)画图见解析;(3)存在,P 点为(0,5)或(0,-3);【解析】【分析】(1)首先在坐标系中确定A 、B 、C 三点位置,然后再连接即可;(2)首先确定A 、B 、C 三点关于x=-1的对称点位置,然后再连接即可;(3)详细见解析;【详解】解:(1)如图:△ABC 即为所求;(2)如图:111A B C ∆即为所求;各点坐标分别为:1A (0,1),1B (-51),,1C (43)-,; (3)解:设P (0,y ),∵A(-2,1),B(3,1),∴AB=5, ∴151=122ABP S AB y y ∆=⨯--, ∵ABP S ∆=10, ∴51=102y -, ∴1=4y -,∴y=5或y=-3;∴P(0,5)或(0,-3);【点睛】本题主要考查了作图-轴对称变换,掌握作图-轴对称变换是解题的关键.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【答案】(1)清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元(2)方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【解析】【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40−m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.【详解】解:(1)设清理养鱼网箱和捕鱼网箱的人均支出费用分别为x元、y元.根据题意,得15957000 101668000x yx y+=⎧⎨+=⎩解得20003000 xy=⎧⎨=⎩答:清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元.(2)设分配a人清理养鱼网箱,则分配(40-a)人清理捕鱼网箱.根据题意,得20003000(40)102000 40a aa a+-⎧⎨<-⎩解得18≤a<20.∵a为正整数,∴a=18或19∴一共有2种分配方案,分别为:方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【点睛】本题主要考查二元一次方程组和一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程或不等式组.25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)见解析;(3)105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行解答即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α, ∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,在△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】此题考查平行线的判定与性质,余角和补角,解题关键在于作出辅助线,灵活运用所学知识进行求解.。
2023-2024学年山东省济南市历下区七年级(下)期末数学试卷及答案解析
2023-2024学年山东省济南市历下区七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)9的算术平方根是()A.3B.﹣3C.±3D.2.(4分)中国汉字文化源远流长,篆书是汉字古代书体之一,下列篆体字“大”“美”“泉”“城”中,不是轴对称图形的是()A.B.C.D.3.(4分)估计的值是在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间4.(4分)如图,把两根木条AB和AC的一端A用螺栓固定在一起,木条AC自由转动至AC′位置.在转动过程中,下面的量是常量的为()A.∠BAC的度数B.BC的长度C.△ABC的面积D.AC的长度5.(4分)关于整式的运算,下列正确的是()A.(a+b)2=a2+b2B.a6÷a2=a3C.a4•a3=a12D.(a3)3=a96.(4分)“七年级下册数学课本共170页,某同学随手翻开,恰好翻到第63页”,这个事件是()A.必然事件B.不可能事件C.随机事件D.以上都不正确7.(4分)如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N作直线MN交AB于点D,连接CD.若AB=8,AC=4,则△ACD的周长为()A.11B.12C.13D.148.(4分)如图,为测量桃李湖两端AB的距离,南开中学某地理课外实践小组在桃李湖旁的开阔地上选了一点C,测得∠ACB的度数,在AC的另一侧测得∠ACD=∠ACB,CD=CB,再测得AD的长,就是AB的长,那么判定△ABC≌△ADC的理由是()A.SAS B.SSS C.ASA D.AAS9.(4分)勾股定理是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端,下面四幅图中不能证明勾股定理的是()A.B.C.D.10.(4分)如图,在△ABC,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C,正确的是()A.1B.2C.3D.4二、填空题(本大题共5个小题,每小题4分,共20分.)11.(4分)动车上二等座车厢每排都有A,B,C,D,F五个座位,其中A和F是靠窗的座位.若购票时系统随机为每位乘客分配座位,则座位是靠窗的概率为.12.(4分)如图,在△ABC中,CD是边AB上的中线,AE⊥BC,若BC=4,S△ACD=3,则AE=.13.(4分)若一个数的两个平方根分别是a+3和2a﹣15,则这个数为.14.(4分)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,BC 恰好平分∠ABF,AE=2BF.若CE=2,则AB=.15.(4分)如图,三角形纸片ABC中,∠BAC=90°,AB=3,AC=5,沿过点A的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C与点D重合,若折痕与AC的交点为E,则DE=.三、解答题(本大题共10个小题,共90分.请写出文字说明或演算步骤.)16.(7分)计算:(1);(2).17.(7分)如图,∠A=∠B,AE=BE,点D在AC边上,∠CED=∠AEB,AE交BD于点F.试说明:∠EDB=∠C.18.(7分)先化简,再求值:[(2x+y)(2x﹣y)﹣y(6x﹣y)]÷2x,其中,y=1.19.(8分)如图,在正方形网格上,△ABC各顶点均为格点,且每个小正方形的边长为1.(1)作出△ABC关于直线l对称的图形△A1B1C1;(2)在边AC上找一点D,连接BD,使BD平分△ABC的面积,请作出线段BD(不写作法);(3)在直线l上找一点P,使得AP+CP的值最小(保留作图痕迹),这一最小值为.20.(8分)如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(点A、H、B在同一条直线上),并新修一条路CH,测得CB=1.5km,CH=1.2km,HB=0.9km.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)已知新的取水点H与原取水点A相距0.5千米,则新路CH比路CA少多少千米?21.(9分)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,过点A作AE⊥BD交延长线于点E.若∠BAC=2∠DAE,求∠DAE的度数.22.(10分)“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图1是由边长为cm 的正方形薄板分为7块制作成的“七巧板”,分别是五块等腰直角三角形、一块正方形和一块平行四边形,图2是一个用该“七巧板”拼成的“台灯”形状装饰图,放入长方形ABCD 中,装饰图中三角形的顶点F 在边AB 上,三角形的边MN 和PQ 分别在边AD 、BC 上,使得AB =BC .(1)通过观察图形得到AB =;(2)一只蚂蚁在长方形ABCD 内爬行,已知它停在长方形内任意一点的可能性相同,那么它停在“台灯”上与空白区域的可能性相同吗?请通过计算说明.23.(10分)数学兴趣小组利用所学数学知识来解决实际问题,实践报告如下:活动课题风筝离地面垂直高度探究问题背景风筝由中国古代劳动人民发明于东周春秋时期,距今已2000多年,相传墨翟以木头制成木鸟,研制三年而成,是人类最早的风筝起源.兴趣小组在放风筝时想测量风筝离地面的垂直高度.测量数据抽象模型小组成员测量了相关数据,并画出了如图所示的示意图,测得水平距离BC 的长为15米,根据手中剩余线的长度计算出风筝线AB 的长为17米,牵线放风筝的手到地面的距离为1.5米.问题产生经过讨论,兴趣小组得出以下问题:(1)运用所学勾股定理相关知识,根据测量所得数据,计算出风筝离地面的垂直高度.(2)如果想要风筝沿DA 方向再上升12米,且BC 长度不变,则他应该再放出多少米线?问题解决……该报告还没有完成,请你帮助兴趣小组解决以上问题.24.(12分)甲骑电动车,乙骑自行车从公园门口出发沿同一路线匀速游玩,甲、乙两人距出发点的路程S(km)与乙行驶的时间x(h)的关系如图①所示,其中l1表示甲运动的图象,甲、乙两人之间的路程差y(km)与乙行驶的时间x(h)的关系如图②所示,请你解决以下问题:(1)图②中的自变量是,因变量是;(2)甲的速度是km/h,乙的速度是km/h;(3)结合题意和图①,可知图②中:a=,b=;(4)求乙出发多长时间后,甲、乙两人的路程差为7.5km?25.(12分)在学习全等三角形的知识时,数学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化时,始终存在一对全等三角形.通过查询资料,他们得知这种模型称为“手拉手模型”,兴趣小组进行了如下操作:(1)观察猜想:如图1,在△ABC中,分别以AB,AC为边向外作等腰直角△ABD和等腰直角△ACE,∠BAD=∠CAE=90°,连接BE,CD,则BE与CD的数量关系为,位置关系为;(2)类比探究:如图2,在△ABC中,分别以AB,AC为边作等腰直角△ABD和等腰直角△ACE.∠BAD=∠CAE=90°,点D,E,C在同一直线上,AM为△ACE中CE边上的高,猜想DC,BC,AM 之间的数量关系并说明理由;(3)解决问题:运用(1)(2)中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点D,C的距离,已经测得∠ACB=45°,∠DAB=90°,AB=AD,米,BC=40米,CD的长为米.2023-2024学年山东省济南市历下区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【分析】根据算术平方根的定义求解即可.【解答】解:9的算术平方根是3,故选:A.【点评】本题考查算术平方根的求解,熟练掌握算术平方根的定义是解题的关键.2.【分析】在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此进行判断即可.【解答】解:篆书中大,美,泉是轴对称图形,城不是轴对称图形,故选:D.【点评】本题考查轴对称图形的识别,熟练掌握其定义是解题的关键.3.【分析】求出的范围是<<,求出后即可得出答案.【解答】解:∵<<,∴2<<3,∴在2到3之间,故选:B.【点评】本题考查了估算无理数的大小,关键是得出<<,题目比较典型,难度不大.4.【分析】根据常量和变量的定义进行判断.【解答】解:木条AC绕点A自由转动至AC′过程中,AC的长度始终不变,故AC的长度是常量;而∠BAC的度数、BC的长度、△ABC的面积一直在变化,均是变量.故选:D.【点评】本题考查常量和变量,理解题意,确定变与不变是求解本题的关键.5.【分析】根据整式相关运算法则逐项判断即可.【解答】解:(a+b)2=a2+2ab+b2,故选项A错误,不符合题意;a6÷a2=a4,故选项B错误,不符合题意;a4•a3=a7,故选项C错误,不符合题意;(a3)3=a9,故选项D正确,符合题意;故选:D.【点评】本题考查整式的混合运算,解题的关键是掌握整式相关的运算法则.6.【分析】根据事件发生的可能性大小判断即可.【解答】解:七年级下册数学课本共170页,某同学随手翻开,恰好翻到第63页”,这个事件是随机事件.故选:C.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.【分析】利用基本作图可判定MN垂直平分BC,则DC=DB,然后利用等线段代换得到△ACD的周长=AB+AC,再把AB=8,AC=4代入计算即可.【解答】解:由作法得MN垂直平分BC,则DC=DB,所以△ACD的周长=CD+AC+AD=DB+AD+AC=AB+AC=8+4=12.故选:B.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.8.【分析】利用∠ACD=∠ACB,CD=CB,加上公共边可根据“SSS”判断△ABC≌△ADC.【解答】解:在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故选:A.【点评】本题考查了全等三角形的应用:一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.9.【分析】先用不同方法表示出图形中各个部分的面积,利用面积不变得到等式,变形再判断即可.【解答】解:A.大正方形的面积等于四个矩形的面积的和,∴(a+b)2=a2+2ab+b2,以上公式为完全平方公式,∴A选项不能说明勾股定理;B.由图可知三个三角形的面积的和等于梯形的面积,∴ab+ab+c2=(a+b)(a+b),整理得a2+b2=c2,∴B选项可以证明勾股定理;C.大正方形的面积等于四个三角形的面积加小正方形的面积,∴4×ab+c2=(a+b)2,整理得a2+b2=c2,∴C选项可以证明勾股定理;D.整个图形的面积等于边长为b的正方形的面积+边长为a的正方形面积+2个直角三角形的面积,也等于边长为c的正方形面积+2个直角三角形的面积,∴b2+a2+2×ab=c2+2×ab,整理得a2+b2=c2,∴D选项可以证明勾股定理,故选:A.【点评】本题主要考查勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.【分析】①根据BD⊥FD,FH⊥BE和∠FJD=∠BJH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③证明∠DBE=∠BAC﹣∠C,根据①的结论,证明结论正确;④根据角平分线的定义和三角形外角的性质证明结论正确.【解答】解:①∵BD⊥FD,∴∠FGD+∠F=90°∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,∴∠F=(∠BAC﹣∠C);③正确;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确,故选:D.【点评】本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分.)11.【分析】由题意知,共有5种等可能的结果,其中座位是靠窗的结果有2种,利用概率公式可得答案.【解答】解:由题意知,共有5种等可能的结果,其中座位是靠窗的结果有2种,∴座位是靠窗的概率为.故答案为:.【点评】本题考查列表法与树状图法、概率公式,熟练掌握概率公式是解答本题的关键.12.【分析】首先根据CD是边AB上的中线得S△ACD=S△BCD=3,进而得S△ABC=6,然后根据三角形的面积公式可求出AE的长.【解答】解:∵CD是边AB上的中线,∴AD=BD,∴△ACD和△BCD等底同高,∴S△ACD=S△BCD=3,∴S△ABC=6,∴,∴,∴AE=3.故答案为:3.【点评】此题主要考查了三角形的面积,解答此题的关键是理解同底(等底)同高(等高)的两个三角形的面积相等.13.【分析】根据平方根的性质建立等量关系,求出a的值,再求出这个数的值.【解答】解:由题意得:a+3+(2a﹣15)=0,解得:a=4.∴(a+3)2=72=49.故答案为:49.【点评】本题考查了平方根,先根据平方根互为相反数,求出a的值再求出这个数是解题的关键.14.【分析】根据平行线的性质得到∠C=∠CBF,根据角平分线的定义得到∠ABC=∠CBF,推出AB=AC,根据角平分线的性质得到DC=BD,根据全等三角形的性质得到DE=DF,CE=BF=2,于是得到结论.【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD平分∠BAC,∴DC=BD,在△CDE与△DBF中,,∴△CDE≌△DBF(ASA)∴DE=DF,CE=BF=2,∵AE=2BF,∴AC=3BF,∴AB=3BF=6,故答案为:6.【点评】本题考查了角平分线的性质,全等三角形的判定和性质,等腰三角形的性质,平行线的性质,熟练掌握角平分线的性质是解题的关键.15.【分析】由∠BAC=90°,得∠B+∠C=90°,由折叠得AD=AB=3,DE=CE,∠ADB=∠B,∠EDC =∠C,∠ADB+∠EDC=∠B+∠C=90°,所以∠ADE=90°,于是得32+DE2=(5﹣DE)2,求得DE =,于是得到问题的答案.【解答】解:∵∠BAC=90°,AB=3,AC=5,∴∠B+∠C=90°,由折叠得AD=AB=3,DE=CE,∠ADB=∠B,∠EDC=∠C,∴∠ADB+∠EDC=∠B+∠C=90°,AE=5﹣CE=5﹣DE,∴∠ADE=180°﹣(∠ADB+∠EDC)=90°,∴AD2+DE2=AE2,∴32+DE2=(5﹣DE)2,解得DE=,故答案为:.【点评】此题重点考查翻折变换的性质、直角三角形的两个锐角互余,勾股定理等知识,证明∠ADE =90°是解题的关键.三、解答题(本大题共10个小题,共90分.请写出文字说明或演算步骤.)16.【分析】(1)利用平方差公式进行计算,即可解答;(2)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答.【解答】解:(1)=18﹣3=15;(2)=3﹣2+=2.【点评】本题考查了二次根式的混合运算,平方差公式,准确熟练地进行计算是解题的关键.17.【分析】根据∠CED=∠AEB得∠CEA=∠DEB,进而可依据“ASA”判定△ACE和△BDE全等,然后根据全等三角形的性质可得出结论.【解答】解:∵∠CED=∠AEB,∴∠CED+∠AED=∠AEB+∠AED,即∠CEA=∠DEB,在△ACE和△BDE中,,∴△ACE≌△BDE(ASA),∴∠C=∠EDB,即∠EDB=∠C.【点评】此题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解决问题的关键.18.【分析】先利用平方差公式,单项式乘多项式的法则计算括号里,再算括号外,然后把x,y的值代入化简后的式子进行计算,即可解答.【解答】解:[(2x+y)(2x﹣y)﹣y(6x﹣y)]÷2x=(4x2﹣y2﹣6xy+y2)÷2x=(4x2﹣6xy)÷2x=2x﹣3y,当,y=1时,原式=2×(﹣)﹣3×1=﹣1﹣3=﹣4.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.19.【分析】(1)根据轴对称的性质作图即可.(2)取AC的中点D,连接BD即可.(3)连接A1C,交直线l于点P,此时AP+CP的值最小,最小值为A1C的长,利用勾股定理计算即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,取AC的中点D,连接BD,则BD即为所求.(3)连接A1C,交直线l于点P,连接AP,此时AP+CP=A1P+CP=A1C,为最小值,由勾股定理得,A1C==,∴AP+CP的最小值为.故答案为:.【点评】本题考查作图﹣轴对称变换、轴对称﹣最短路线问题、勾股定理,熟练掌握轴对称的性质、勾股定理是解答本题的关键.20.【分析】(1)利用勾股定理的逆定理证明∠CHB=90°,根据垂线段最短,即可得出结论;(2)先求出∠CHA=90°,再利用勾股定理求出AC的长度,减去CH的长度即可.【解答】解:(1)CH是村庄C到河边最近的路;理由如下:∵CH2+HB2=1.22+0.92=2.25,CB2=1.52=2.25,∴CH2+HB2=CB2,∴△CHB是直角三角形,且∠CHB=90°,∴CH⊥AB,∵垂线段最短,∴CH是村庄C到河边最近的路;(2)∵∠CHB=90°,∴∠CHA=90°,∴AC2=AH2+CH2,∴AC===1.3(千米),∴AC﹣CH=0.1km,答:新路CH比路CA少0.1千米.【点评】本题考查了勾股定理及其逆定理的应用,掌握勾股定理及其逆定理是解决问题的关键.21.【分析】设∠DAE=x°,则∠BAC=2x°,由等腰三角形的性质求出∠ABC=×(180°﹣2x°)=90°﹣x°,由角平分线定义得到∠ABE=∠ABC=45°﹣x°,由直角三角形的性质得到45°﹣x°+2x°+x°=90°,求出x=18,即可得到∠DAE=18°.【解答】解:设∠DAE=x°,则∠BAC=2x°,∵AB=AC,∴∠ABC=∠ACB=×(180°﹣2x°)=90°﹣x°,∵BD平分∠ABC,∴∠ABE=∠ABC=45°﹣x°,∵AE⊥BD,∴∠ABE+∠BAE=90°,∴45°﹣x°+2x°+x°=90°,∴x=18,∴∠DAE=18°.【点评】本题考查等腰三角形的性质,关键是由等腰三角形的性质,直角三角形的性质列出关于x的方程.22.【分析】(1)观察可以发现AB正好等于正方形的对角线长,利用勾股定理求出对角线长即可;(2)根据几何概率公式分别求出它停在“台灯”上与空白区域的概率,即可作出判断.【解答】解:(1)对比图2与图1,可以发现AB正好等于正方形的对角线长,∵正方形的边长为cm,∴对角线长为=12(cm),故答案为:12cm,(2)不相同.说明:∵AB=BC.AB=12cm,∴BC=16cm,∴P(它停在“台灯”上)==,P(它停在空白区域)=,∵≠,∴它停在“台灯”上与空白区域的可能性不相同,【点评】本题通过七巧板考查正方形的性质,勾股定理,几何概率,理解题意,发现AB与图1中的正方形对角线间的关系,以及掌握几何概率公式是解题的关键.23.【分析】(1)在Rt△ABC中,利用勾股定理求出的AC长,即可得到结论;(2)在Rt△A′BC中,根据勾股定理求出A′B,即可得到结论.【解答】解:(1)在Rt△ABC中,∠ACB=90°,BC=15米,AB=17米,由勾股定理,可得AC==8米,∴AD=AC+CD=8+1.5=9.5(米),答:风筝离地面的垂直高度为9.5米;(2)如图,当风筝沿DA方向再上升12米,A'C=20米,在Rt△A′BC中,∠A'CB=90°,BC=15米,由勾股定理,可得A′B==25米,则应该再放出25﹣17=8(米),答:他应该再放出8米长的线.【点评】本题考查了用勾股定理解决实际问题,解题的关键是熟练掌握直角三角形中的三边关系.24.【分析】(1)根据函数的定义解答即可;(2)根据题意和函数图象中的数据可以求得甲乙的速度;(3)根据题意和图象中的数据,可以分别得到a、b的值;(4)由图象可知甲乙相距7.5km有两种情况,然后分别计算两种情况下乙出发的时间即可解答本题.【解答】解:(1)图②中的自变量是乙行驶的时间,因变量是甲、乙两人之间的路程差;故答案为:乙行驶的时间;甲、乙两人之间的路程差;(2)由图可得,甲的速度为:25÷(1.5﹣0.5)=25÷1=25(km/h),乙的速度为:25÷2.5=10(km/h),故答案为:25,10;(3)由图可得,b=25×(1.5﹣0.5)﹣10×1.5=10,a=1.5,故答案为:1.5,10;(4)由题意可得,前0.5h,乙行驶的路程为:10×0.5=5<7.5,则甲、乙两人路程差为7.5km是在甲乙相遇之后,设乙出发x h时,甲、乙两人路程差为7.5km,25(x﹣0.5)﹣10x=7.5,解得,x=,25﹣10x=7.5,得x=;即乙出发h或h时,甲、乙两人路程差为7.5km.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.25.【分析】(1)证△CAD≌△EAB(SAS)即可证出CD=BE,再根据8字型得∠COF=∠CAE=90°;(2)先证△ADE≌△ABC,再证EM=AM,最后通过线段和差即可得证;(3)按照前问思路构造“手拉手模型”全等,从而将CD转化到求BM上来,在利用勾股定理求BM即可.【解答】解:(1)∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∵∠BAD=∠CAE=90°,∴∠BAD+∠CAB=∠CAE+∠CAB,即∠BAE=∠CAD,在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴CD=BE,∠ACD=∠AEB,设BE与CD交于点O,AC与BE交于点F,∵∠AFE=∠OFC,∴∠COF=∠CAE=90°,∴BE⊥CD.故答案为:BE=CD,BE⊥CD.(2)DC=BC+2AM,理由如下,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∵∠BAD=∠CAE=90°,∴∠BAD﹣∠EAB=∠CAE﹣∠EAB,即∠DAE=∠BAC,在△ADE和△ABC中,,∴△ADE≌△ABC(SAS),∴DE=BC,∵AC=AE,AM⊥CE,∴EC=2EM,∵△ACE为等腰直角三角形,AM⊥CE,∴∠AEM=∠EAM=45°,∴EM=AM,∴EC=2AM,∴DC=DE+EC=BC+2AM.(3)如图,作AM⊥AC,使AM=AC,连接BM、CM,则△ACM为等腰直角三角形.按照第二问思路同理可证:△BAM≌△DAC(SAS),∴BM=CD,∵△ACM是等腰直角三角形,∴∠ACM=45°,∵∠ACB=45°,∴∠BCM=90°,∵AC=15=AM,∴CM==30,在Rt△BCM中,BC=40,∴BM==50米,∴CD=50米,故答案为:50.【点评】本题主要考查了全等三角形的判定和性质、等腰直角三角形的性质、勾股定理等内容,熟练掌握相关知识和添加合适的辅助线是解题关键。
(完整版)七年级数学下册期末测试题及答案(共五套)
李庄七年级数学下册期末测试题及答案姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A 。
16=±4B 。
±16=4 C.327-=-3 D 。
2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B ) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A 。
135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C 。
331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210。
七年级数学下册期末测试题及答案(共五套)
七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。
学号。
班级:一、选择题(共10小题,每小题3分,共30分)1.若m。
-1,则下列各式中错误的是()A。
6m。
-6B。
-5m < -5C。
m+1.0D。
1-m < 22.下列各式中,正确的是()A。
16=±4B。
±16=4C。
3-27=-3D。
(-4)^2=163.已知a。
b。
0,那么下列不等式组中无解的是()A。
{x-a。
x>-b}B。
{x>a。
x<-a。
x<-b}C。
{x>a。
xb}D。
{x-a。
x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。
先右转50°,后右转40°B。
先右转50°,后左转40°C。
先右转50°,后左转130°D。
先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。
{x-y=1.x-y=-1}B。
{x-y=1.3x+y=5}C。
{x-y=3.3x+y=-5}D。
{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。
100°B。
110°C。
115°D。
120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。
4B。
3C。
2D。
18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。
5B。
6C。
7D。
89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。
七年级下册数学期末考试卷及答案
(第8题图) 七年级数学试题(满分120分)一、选择题(每小题3分,计24分) 1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是A .某市5万名初中毕业生的中考数学成绩B .被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生 3. 下列计算中,正确的是 A . B . C . D .4.下列各式中,与相等的是A .B .C .D .5.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个 D .无数个 6. 下列语句不正确...的是 A .能够完全重合的两个图形全等B .两边和一角对应相等的两个三角形全等C .三角形的外角等于不相邻两个内角的和D .全等三角形对应边相等 7. 下列事件属于不确定事件的是A .太阳从东方升起B .2010年世博会在上海举行C .在标准大气压下,温度低于0摄氏度时冰会融化D .某班级里有2人生日相同 8.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是A .SASB .ASAC .AASD .SSS 二、填空题(每小题3分,计24分) 9.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为 cm .10.将方程2x+y=25写成用含x 的代数式表示y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的大小是 °. 12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是 °. 13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率为 。
七年级下册数学期末试卷及答案
七年级下册数学期末试卷及答案一、选择题(此题共10小题,每题3分,共30分)1.(3分)以下各数:、、0.101001…(中间0依次递增)、﹣π、是无理数的有( )A. 1个B. 2个C. 3个D. 4个考点:无理数.分析:根据无理数的定义(无理数是指无限不循环小数)判断即可.解答:解:无理数有,0.101001…(中间0依次递增),﹣π,共3个,应选C.点评:考查了无理数的应用,注意:无理数是指无限不循环小数,无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.2.(3分)(xx?北京):如图AB∥CD,CE平分∠ACD,∠A=110°,那么∠ECD等于( )A. 110°B. 70°C. 55°D. 35°考点:平行线的性质;角平分线的定义.专题:计算题.分析:此题主要利用两直线平行,同旁内角互补,再根据角平分线的概念进展做题.解答:解:∵AB∥CD,根据两直线平行,同旁内角互补.得:∴∠ACD=180°﹣∠A=70°.再根据角平分线的定义,得:∠ECD= ∠ACD=35°.应选D.点评:考查了平行线的性质以及角平分线的概念.3.(3分)以下调查中,适宜采用全面调查方式的是( )A. 了解我市的空气污染情况B. 了解电视节目《焦点访谈》的收视率C. 了解七(6)班每个同学每天做家庭作业的时间D. 考查某工厂生产的一批手表的防水性能考点:全面调查与抽样调查.分析:由普查得到的调查结果比拟准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比拟近似.解答:解:A、不能全面调查,只能抽查;B、电视台对正在播出的某电视节目收视率的调查因为普查工作量大,适合抽样调查;C、人数不多,容易调查,适合全面调查;D、数量较大,适合抽查.应选C.点评:此题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进展普查、普查的意义或价值不大时,应选择抽样调查,对于准确度要求高的调查,事关重大的调查往往选用普查.4.(3分)一元一次不等式组的解集在数轴上表示为( )A. B. C. D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得,x<2,由②得,x≥0,故此不等式组的解集为:0≤x<2,在数轴上表示为:应选B.点评:此题考查的是在数轴上表示不等式组的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原那么是解答此题的关键.5.(3分)二元一次方程2x+y=8的正整数解有( )A. 2个B. 3个C. 4个D. 5个考点:解二元一次方程.专题:计算题.分析:将x=1,2,3,…,代入方程求出y的值为正整数即可.解答:解:当x=1时,得2+y=8,即y=6;当x=2时,得4+y=8,即y=4;当x=3时,得6+y=8,即y=2;那么方程的正整数解有3个.应选B点评:此题考查了解二元一次方程,注意x与y都为正整数.6.(3分)假设点P(x,y)满足xy<0,x<0,那么P点在( )A. 第二象限B. 第三象限C. 第四象限D. 第二、四象限考点:点的坐标.分析:根据实数的性质得到y>0,然后根据第二象限内点的坐标特征进展判断.解答:解:∵xy<0,x<0,∴y>0,∴点P在第二象限.应选A.点评:此题考查了点的坐标平面内的点与有序实数对是一一对应的关系.坐标:直角坐标系把平面分成四局部,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.7.(3分)如图,AB∥CD,∠A=125°,∠C=145°,那么∠E的度数是( )A. 10°B. 20°C. 35°D. 55°考点:平行线的性质.分析:过E作EF∥AB,根据平行线的性质可求得∠AEF和∠CEF的度数,根据∠E=∠AEF﹣∠CEF即可求得∠E的度数.解答:解:过E作EF∥AB,∵∠A=125°,∠C=145°,∴∠AEF=180°﹣∠A=180°﹣125°=55°,∠CEF=180°﹣∠C=180°﹣145°=35°,∴∠E=∠AEF﹣∠CEF=55°﹣35°=20°.应选B.点评:此题考查了平行线的性质,解答此题的关键是作出辅助线,要求同学们熟练掌握平行线的性质:两直线平行,同旁内角互补.8.(3分) 是方程组的解,那么是以下哪个方程的解( )A. 2x﹣y=1B. 5x+2y=﹣4C. 3x+2y=5D. 以上都不是考点:二元一次方程组的解;二元一次方程的解.。
【人教版】七年级下册数学《期末考试卷》含答案解析
人教版数学七年级下学期期 末 测 试 卷(时间:120分钟 总分:120分) 学校________ 班级________ 姓名________ 座号________一.选择题1.下列命题不成立的是( )A. 等角的补角相等B. 两直线平行,内错角相等C. 同位角相等D. 对顶角相等 2.已知12x y =-⎧⎨=⎩是关于x 、y 的二元一次方程mx ﹣y =3的一个解,则m 的值是( ) A. ﹣1B. 1C. ﹣5D. 5 3.下列各式由左边到右边的变形中,属于分解因式的是( )A. ()a x y ax ay -=-B. 22()()a b a b a b -=+-C. 243(4)3x x x x -+=-+D. 211()a a a a+=+ 4.不等式组42x x ≤⎧⎨>⎩的解集在数轴上表示正确的是( ) A.B. C. D.5.下列运算正确的是( )A. 236x x x ⋅=B. 2242x x x +=C. 358(3)(5)15a a a -⋅-=D. 22(2)4x x -=- 6.下列多项式不能使用平方差公式的分解因式是( )A. 22m n --B. 2216x y -+C. 22b a -D. 22449a n - 7.已知a ,b ,c 是△ABC 的三条边长,化简|a +b ﹣c |+|b ﹣a ﹣c |的结果为( )A. 2a +2bB. 2a +2b ﹣2cC. 2b ﹣2cD. 2a 8.一副三角板按如图所示方式叠放在一起,则图中∠α等于( )A. 105oB. 115oC. 120oD. 135o 9.若m n >,下列不等式不一定成立的是( )A. 33m n ++>B. 33m n ﹣<﹣C. 33m n >D. 22m n > 10.若3x =15,3y =5,则3x-y 等于( )A. 5B. 3C. 15D. 1011.如果不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,m 的取值范围为( ) A .m <4B. m ≥4C. m ≤4D. 无法确定 12.计算(-2)2019+(-2)2018的值是( )A -2 B. 20182 C. 2 D. -2018213. 如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长为( )A. 6B. 8C. 10D. 1214.甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么( )A. 甲20岁,乙14岁B. 甲22岁,乙16岁C. 乙比甲大18岁D. 乙比甲大34岁 15.如图,AB//EF ,C 90∠=o ,则α、β、γ的关系为( )A. βαγ=+B. αβγ180++=oC. βγα90+-=oD. αβγ90+-=o16.如图,D 是△ABC 的边BC 上任意一点,E 、F 分别是线段AD .CE 的中点,且△ABC 的面积为20cm 2,则△BEF 的面积是( )A. 10B. 9C. 6D. 5二.填空题17.(13)0=______. 18.如果a-b=3,ab=7,那么a 2b-ab 2=______.19.一根长为1的绳子恰好围成一个三角形,则这个三角形的最长边x 的取值范围是_________.20.如图,将△ABC 沿着平行于BC 的直线DE 折叠,点A 落到点A′,若∠C=125°,∠A=20°,则∠BDA′的度数为______.21.已知:如图,∠1=∠2,∠3=∠E ,试说明:∠A=∠EBC ,(请按图填空,并补理由,)证明:∵∠1=∠2(已知),∴______∥______,________∴∠E=∠______,________又∵∠E=∠3(已知),∴∠3=∠______(等量代换),∴______∥______(内错角相等,两直线平行),∴∠A=∠EBC ,________三.解答题22.按要求解下列问题(1)计算-a3(b3)2+(2ab2)3;(2)解不等式组()2x13x1 x523⎧+≥-⎪⎨+⎪⎩<.23.解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.24.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:______;方法2:______.(2)从中你能发现什么结论?请用等式表示出来:______;(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=4,求阴影部分的面积.25.某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?26.如图,在△ABC中,AD⊥BC,AE平分∠BAC(1)若∠B=70°,∠C=30°,求;①∠BAE的度数.②∠DAE度数.(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE度数吗?若能,请你写出求解过程;若不能,请说明理由.答案与解析一.选择题1.下列命题不成立的是()A. 等角的补角相等B. 两直线平行,内错角相等C. 同位角相等D. 对顶角相等【答案】C【解析】分析:对各个命题一一判断即可.详解:A. 等角的补角相等,正确.B. 两直线平行,内错角相等,正确.C.两直线平行,同位角相等.这是平行线的性质,没有两直线平行的前提,同位角相等,错误.D.对顶角相等,正确.故选C.点睛:考查命题真假的判断.比较简单.注意平行线的性质.2.已知12xy=-⎧⎨=⎩是关于x、y的二元一次方程mx﹣y=3的一个解,则m的值是()A. ﹣1B. 1C. ﹣5D. 5 【答案】C【解析】分析】把x与y值代入方程计算即可求出m的值.【详解】把12xy=-⎧⎨=⎩代入方程得:﹣m﹣2=3,解得:m =﹣5,故选:C .【点睛】考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.下列各式由左边到右边的变形中,属于分解因式的是( )A. ()a x y ax ay -=-B. 22()()a b a b a b -=+-C. 243(4)3x x x x -+=-+D. 211()a a a a+=+ 【答案】B【解析】【分析】根据分解因式的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解,逐一判定即可.【详解】A 选项,不属于分解因式,错误;B 选项,属于分解因式,正确;C 选项,不属于分解因式,错误;D 选项,不能确定a 是否为0,错误;故选:B.【点睛】此题主要考查对分解因式的理解,熟练掌握,即可解题. 4.不等式组42x x ≤⎧⎨>⎩的解集在数轴上表示正确的是( ) A.B. C.D.【答案】C【解析】【分析】写出不等式解集,然后在数轴上表示出来.【详解】不等式组的解集为24x <≤ ∴答案选D.【点睛】本题主要考查了不等式在数轴上的表示,要注意实心与空心圆点的区别.5.下列运算正确的是( )A. 236x x x ⋅=B. 2242x x x +=C. 358(3)(5)15a a a -⋅-=D. 22(2)4x x -=-【答案】C【解析】【分析】 直接利用同底数幂的乘法运算法则.积的乘方运算法则以及单项式乘以单项式运算法则,即可得出答案.【详解】解:A .x 2•x 3=x 5,故此选项错误;B .x 2+x 2=2x 2,故此选项错误;C .(-3a 3)•(-5a 5)=15a 8,故此选项正确;D .(-2x )2=4x 2,故此选项错误;故选:C .【点睛】此题考查用同底数幂的乘法运算,积的乘方运算和单项式乘以单项式运算,正确掌握相关运算法则是解题关键.6.下列多项式不能使用平方差公式的分解因式是( )A. 22m n --B. 2216x y -+C. 22b a -D. 22449a n -【答案】A【解析】【分析】原式各项利用平方差公式的结构特征即可做出判断.【详解】下列多项式不能运用平方差公式分解因式的是22m n --.故选A .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.7.已知a ,b ,c 是△ABC 的三条边长,化简|a +b ﹣c |+|b ﹣a ﹣c |的结果为( )A. 2a +2bB. 2a +2b ﹣2cC. 2b ﹣2cD. 2a 【答案】D【解析】【分析】先根据三角形三条边的关系判断a+b-c 和b-a-c 的正负,然后根据绝对值的定义化简即可.【详解】解:∵a 、b 、c 为△ABC 的三条边长,∴a +b ﹣c >0,b ﹣a ﹣c <0,∴原式=a +b ﹣c ﹣(b ﹣a ﹣c )=a +b ﹣c +c +a ﹣b =2a .故选:D .【点睛】本题考查了三角形三条边的关系,以及绝对值的定义,熟练掌握三角形三条边的关系是解答本题的关键. 三角形任意两边之和大于第三边,任意两边之差小于第三边.8.一副三角板按如图所示方式叠放在一起,则图中∠α等于( )A. 105oB. 115oC. 120oD. 135o【答案】A【解析】【分析】 利用三角形内角和定理计算即可.【详解】解:由三角形的内角和定理可知:α=180°﹣30°﹣45°=105°,故选A .【点睛】本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考基础题.9.若m n >,下列不等式不一定成立的是( )A. 33m n ++>B. 33m n ﹣<﹣C. 33m n >D. 22m n >【答案】D【解析】【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,即可得到答案.【详解】解:A 、不等式的两边都加3,不等号的方向不变,故A 错误;B 、不等式的两边都乘以﹣3,不等号的方向改变,故B 错误;C 、不等式的两边都除以3,不等号的方向不变,故C 错误;D 、如2223m n m n m n =,=﹣,>,<;故D 正确;故选D .【点睛】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.10.若3x=15,3y=5,则3x-y等于()A. 5B. 3C. 15D. 10【答案】B【解析】试题分析:3x-y=3x÷3y=15÷5=3;故选B.考点:同底数幂的除法.11.如果不等式组26x xx m-+<-⎧⎨>⎩的解集为x>4,m的取值范围为()A. m<4B. m≥4C. m≤4D. 无法确定【答案】C【解析】【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m的范围即可.【详解】解不等式﹣x+2<x﹣6得:x>4,由不等式组26x xx m-+<-⎧⎨>⎩的解集为x>4,得到m≤4,故选C.【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.12.计算(-2)2019+(-2)2018的值是()A.-2B. 20182C. 2D. -20182【答案】D 【解析】【分析】直接利用提取公因式法分解因式进而计算得出答案.【详解】解:(-2)2019+(-2)2018=(-2)2018×(-2+1)=-22018.故选:D.【点睛】此题考查提取公因式法分解因式,正确找出公因式是解题关键.13. 如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A. 6B. 8C. 10D. 12【答案】C【解析】解:根据题意,将周长为8个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选C.14.甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么()A. 甲20岁,乙14岁B. 甲22岁,乙16岁C. 乙比甲大18岁D. 乙比甲大34岁【答案】A【解析】【分析】设甲现在的年龄为x岁,乙现在的年龄为y岁,根据题意列出二元一次方程组即可求解.【详解】设甲现在的年龄为x岁,乙现在的年龄为y岁.依题意得()8()26y x yx x y--=⎧⎨+-=⎩,解2014xy=⎧⎨=⎩.故选A【点睛】此题主要考查二元一次方程组的应用,解题的关键根据题意找到等量关系列方程求解.15.如图,AB//EF,C90∠=o,则α、β、γ的关系为()A. βαγ=+B. αβγ180++=oC. βγα90+-=oD. αβγ90+-=o【答案】D【解析】解:方法一:延长DC 交AB 于G ,延长CD 交EF 于H .直角BGC V 中,190α∠=︒-;EHD △中,2βγ∠=-.因为AB EF P ,所以12∠=∠,于是90αβγ︒-=-,故90αβγ+-=︒.故选D .方法二:过点C 作CM AB ∥,过点D 作DN AB ∥,则由平行线的性质可得:BCM α∠=∠,NDE γ∠=,MCD CDN ∠=∠,∴90αβγ︒-∠=∠-∠,故90αβγ∠+∠-∠=︒,故选D 项.点睛:本题考查通过构造辅助线,同时利用三角形外角的性质以及平行线的性质建立角之间的关系. 16.如图,D 是△ABC 的边BC 上任意一点,E 、F 分别是线段AD .CE 的中点,且△ABC 的面积为20cm 2,则△BEF 的面积是( )A. 10B. 9C. 6D. 5 【答案】D【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】解:∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC,∴S△ABE+S△ACE=12S△ABC=12×20=10cm2,∴S△BCE=12S△ABC=12×20=10cm2,∵点F是CE的中点,∴S△BEF=12S△BCE=12×10=5cm2.故选:D.【点睛】此题考查三角形的面积,解题关键在于利用三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.二.填空题17.(13)0=______.【答案】1【解析】【分析】根据零指数幂的性质计算.【详解】解:原式=1故答案为:1【点睛】此题考查零指数幂,解题关键在于掌握运算法则.18.如果a-b=3,ab=7,那么a2b-ab2=______.【答案】21【解析】【分析】直接将原式提取公因式ab,进而将已知代入数据求出答案.【详解】解:∵a-b=3,ab=7,∴a2b-ab2=ab(a-b)=3×7=21.故答案为:21.【点睛】此题考查提取公因式分解因式,正确分解因式是解题关键.19.一根长为1的绳子恰好围成一个三角形,则这个三角形的最长边x的取值范围是_________.【答案】11 32x≤<【解析】【分析】设其他两边的边长分别为y、z,然后根据三角形三边关系和x为最长边,列出不等式可得出结论. 【详解】设其他两边的边长分别为y、z,∵三角形周长为1,∴x+y+z=1,由三角形三边关系可得y+z>x,即1-x>x,解得12x<,又∵x为最长边,∴x≥y,x≥z,∴2x≥y+z,即2x≥1-x,解得13 x≥,综上可得11 32x≤<.【点睛】本题考查三角形的三边关系,掌握两较短边之和大于最长边是本题的关键.20.如图,将△ABC沿着平行于BC的直线DE折叠,点A落到点A′,若∠C=125°,∠A=20°,则∠BDA′的度数为______.【答案】110°【解析】【分析】根据三角形的内角和等于180°求出∠B,根据两直线平行,同位角相等可得∠ADE=∠B,再根据翻折变换的性质可得∠A′DE=∠ADE,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠C=125°,∠A=20°,∴∠B=180°-∠A-∠C=180°-20°-125°=35°,∵△ABC沿着平行于BC的直线折叠,点A落到点A′,∴∠ADE=∠B=35°,∴∠A′DE=∠ADE=35°,∴∠A′DB=180°-35°-35°=110°.故答案为:110°.【点睛】此题考查平行线的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.21.已知:如图,∠1=∠2,∠3=∠E,试说明:∠A=∠EBC,(请按图填空,并补理由,)证明:∵∠1=∠2(已知),∴______∥______,________∴∠E=∠______,________又∵∠E=∠3(已知),∴∠3=∠______(等量代换),∴______∥______(内错角相等,两直线平行),∴∠A=∠EBC,________【答案】 (1). DB (2). EC (3). 内错角相等,两直线平行 (4). 4 (5). 两直线平行,内错角相等 (6). 4 (7). AD (8). BE (9). 两直线平行,同位角相等【解析】【分析】根据平行线的判定得出DB ∥EC ,根据平行线的性质得出∠E=∠4,求出∠3=∠4,根据平行线的判定得出AD ∥BE 即可.【详解】证明:∵∠1=∠2(已知),∴DB ∥EC (内错角相等,两直线平行),∴∠E=∠4(两直线平行,内错角相等),又∵∠E=∠3(已知),∴∠3=∠4( 等量代换),∴AD ∥BE (内错角相等,两直线平行),∴∠A=∠EBC (两直线平行,同位角相等),故答案为:DB ,EC ,内错角相等,两直线平行,4,两直线平行,内错角相等,4,AD ,BE ,两直线平行,同位角相等.【点睛】此题考查平行线的性质和判定定理,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.三.解答题22.按要求解下列问题(1)计算-a 3(b 3)2+(2ab 2)3;(2)解不等式组()2x 13x 1x 523⎧+≥-⎪⎨+⎪⎩<. 【答案】(1)7a 3b 6;(2)x <1.【解析】【分析】(1)根据整式的运算法则即可求出答案;(2)根据不等式组的解法即可求出答案.【详解】解:(1)原式=-a 3b 6+8a 3b 6=7a 3b 6(2)()2x13x1x523⎧+≥-⎪⎨+⎪⎩①<②,由①得:x≤3,由②得:x<1,∴不等式组的解集为:x<1.【点睛】此题考查整式的加减运算,解一元一次不等式组,解题的关键是熟练运用运算法则,本题属于基础题型.23.解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.【答案】(1)(x﹣y)(3a+2b)(3a﹣2b);(2)m=6,n=9,(x+3)2.【解析】【分析】(1)用提取公因式和平方差公式进行因式分解即可解答;(2)根据已知条件分别求出m和n的值,然后进行因式分解即可解答.【详解】解:(1)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)∵(x+2)(x+4)=x2+6x+8,甲看错了n,∴m=6.∵(x+1)(x+9)=x2+10x+9,乙看错了m,∴n=9,∴x2+mx+n=x2+6x+9=(x+3)2.【点睛】本题考查了用提取公因式和平方差公式进行因式分解,熟练掌握解题的关键.24.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:______;方法2:______.(2)从中你能发现什么结论?请用等式表示出来:______;(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=4,求阴影部分的面积.【答案】(1)a2+b2,(a+b)2-2ab;(2)a2+b2=(a+b)2-2ab;(3)阴影部分的面积=2.【解析】【分析】(1)方法1:两个正方形面积和,方法2:大正方形面积-两个小长方形面积;(2)由题意可直接得到;(3)由阴影部分面积=正方形ABCD的面积+正方形CGFE的面积-三角形ABD的面积-三角形BGF的面积,可求阴影部分的面积.【详解】解:(1)由题意可得:方法1:a2+b2方法2:(a+b)2-2ab,故答案为:a2+b2,(a+b)2-2ab;(2)a2+b2=(a+b)2-2ab,故答案为:a2+b2=(a+b)2-2ab;(3)∵阴影部分的面积=S正方形ABCD+S正方形CGFE-S△ABD-S△BGF=a2+b2-12a2-12(a+b)b∴阴影部分的面积=12a2+12b2-12ab=12[(a+b)2-2ab]-12ab,∵a+b=ab=4,∴阴影部分的面积=12[(a+b)2-2ab]-12ab=2.【点睛】此题考查完全平方公式的几何背景,用代数式表示图形的面积是解题的关键.25.某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?【答案】(1)甲120元,乙100元;(2)14件【分析】1)设甲种商品每件进价是x 元,乙种商品每件进价是y 元,根据“乙商品每件进价比甲商品每件进价多20元,若购进甲商品5件和乙商品4件共需要1000元”列出方程组解答即可;(2)设购进甲种商品a 件,则乙种商品(40﹣a )件,根据“全部售出后总利润(利润=售价﹣进价)不少于870元”列出不等式解答即可.【详解】(1)设甲商品进价每件x 元,乙商品进价每件y 元,根据题意得:20541000y x x y -=⎧⎨+=⎩解得:120100x y =⎧⎨=⎩. 答:甲商品进价每件120元,乙商品进价每件100元.(2)设甲商品购进a 件,则乙商品购进(40﹣a )件(145-120)a +(120-100)(40-a )≥870∴a ≥14.∵a 为整数,∴a 至少为14.答:甲商品至少购进14件.【点睛】本题主要考查了二元一次方程组的应用以及一元一次不等式的应用,解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式.26.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC(1)若∠B=70°,∠C=30°,求;①∠BAE 的度数.②∠DAE 的度数.(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE 的度数吗?若能,请你写出求解过程;若不能,请说明理由.【答案】(1)①∠BAE=40°;②∠DAE=20°;(2)∠DAE=20°.【解析】(1)①利用三角形的内角和定理求出∠BAC,再利用角平分线定义求∠BAE.②先求出∠BAD,就可知道∠DAE的度数.(2)用∠B,∠C表示∠DAE,即可求岀∠DAE的度数.【详解】解:(1)①∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵AE平分∠BAC,∴∠BAE=40°;②∵AD⊥BC,∠B=70°,∴∠BAD=90°-∠B=90°-70°=20°,而∠BAE=40°,∴∠DAE=20°;(2)∵AE为角平分线,∴∠BAE=12(180°-∠B-∠C),∵∠BAD=90°-∠B,∴∠DAE=∠BAE-∠BAD=12(180°-∠B-∠C)-(90°-∠B)=12(∠B-∠C),又∵∠B=∠C+40°,∴∠B-∠C=40°,∴∠DAE=20°.【点睛】此题考查了三角形内角和定理,熟练运用角平分线定义和三角形的内角和定理是解题的关键。
人教版七年级数学下册期末考试测试卷(含答案)
人教版七年级数学下册期末考试测试卷(含答案)班级:姓名:得分:时间:120分钟满分:120分一、选择题(共10小题,每题3分,共30分)1.在实数5、227、0、2π、36、-1.414中,有理数有( )A.1个 B.2个 C.3个 D.4个2.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为()A.-1<m<3B.m>3C.m<-1D.m>-13.在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为()(A)(4,3)(B)(-2,-1)(C)(4,-1)(D)(-2,3)4.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其两边平行的纸条如图所中正确的个数为()A.1 B.2 C.3 D.45.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于( )A.30° B.45° C.60° D.75°6.如果a3x b y与﹣a2y b x+1是同类项,则()A 、23xy=-⎧⎨=⎩B.23xy=⎧⎨=-⎩C.23xy=-⎧⎨=-⎩D.23xy=⎧⎨=⎩7.林老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( ).组别A 型B 型 AB 型 O 型 频率 0.40.350.10.15A.16人B.14人C.4人D.6人8.若y x 、满足0)2(|3|52=-+-+y x y x ,则有( )(A )⎩⎨⎧-=-=21y x (B )⎩⎨⎧-=-=12y x (C )⎩⎨⎧==12y x (D )⎩⎨⎧==21y x9.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有( ) A.6种 B.5种 C.4种 D.3种10.若关于x 的一元一次不等式组⎩⎨⎧>-<-01a x x 无解,则a 的取值范围是( )A . 1≥aB . 1>aC .1-≤aD . 1-<a 二、填空题(共10小题,每题3分,共30分) 11.点P (-5,1),到x 轴距离为__________.12.如图,是象棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是 。
新人教版七年级数学下册期末考试卷及答案【完整版】
新人教版七年级数学下册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在菱形ABCD 中,2,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.正五边形的内角和等于______度.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.2的相反数是________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:1314(1)(5) 243x x x⎡⎤--=+⎢⎥⎣⎦.2.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、40°3、5404、-405、﹣2.6、2或-8三、解答题(本大题共6小题,共72分)1、1x2、3 53、(1)S=ab﹣a﹣b+1;(2)矩形中空白部分的面积为2;4、(1)略;(2)略.5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。
七年级下册数学期末试卷及答案人教版
七年级下册数学期末试卷及答案人教版一、选择题(每题2分,共40分)1. 下列谁是数学家?()A. 马化腾B. 郭守敬C. 李连杰D. 阿里巴巴答案:B2. 下列哪个不属于数学中的基本运算?()A. 加法B. 除法C. 乘法D. 减法答案:B3. 一个矩形的长是3cm,宽是2cm,它的周长是()A. 8cmB. 10cmC. 6cmD. 4cm答案:10cm4. 下列哪个是质数?()A. 6B. 9C. 11D. 15答案:C5. 下列哪个不是等式?()A. 3 + 5 = 8B. 6 ÷ 2 = 2C. 7 × 1 = 7D. 9 + 3 ≠ 12答案:D6. 下列哪个数是奇数?()A. 58B. 29C. 102D. 36答案:B7. 一个三角形的三个角分别是60度、80度和()度。
A. 40B. 20C. 100D. 80答案:408. 下列哪个是正比例函数?()A. y = 2x + 1B. y = 2xC. y = x²D. y = 1/x答案:B9. 下列哪个不是平行四边形?()A. 正方形B. 长方形C. 菱形D. 梯形答案:D10. 下列哪个是数轴上的点?()A. 0.5B. 0.5cmC. 1/2D. 1:2答案:A11. 8.5 ÷ 0.5 = ()A. 17B. 1.7C. 85D. 0.85答案:1712. 下列哪个不是正整数的代表?()A. 0B. 1C. 2D. 3答案:A13. 下列哪个图形面积最大?()A. 长方形B. 正方形C. 三角形D. 圆形答案:D14. 用字母表示未知数,下列哪个是方程?()A. 3 + x = 7B. 3 > xC. 2xD. x + 3答案:A15. 下列哪个是钝角三角形?()A. 30度-60度-90度三角形B. 等腰直角三角形C. 直角三角形D. 锐角三角形答案:D二、填空题(每空2分,共40分)16. 计算$3\times(-4)=$()答案:-1217. 下列哪个角是顶角?∠ABC,∠ACD,∠BCD中,顶角是______。
七年级下册数学期末试卷试卷(word版含答案)
七年级下册数学期末试卷试卷(word 版含答案)一、选择题1.如图,1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠2.把“笑脸”进行平移,能得到的图形是( )A .B .C .D .3.平面直角坐标系中,点()2,3P -所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限4.下列命题是假命题的是( )A .垂线段最短B .内错角相等C .在同一平面内,不重合的两条直线只有相交和平行两种位置关系D .若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直 5.如图,AB //CD ,AD ⊥AC ,∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70°6.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >>7.如图,将一张长方形纸片ABCD 沿EF 折叠.使顶点C ,D 分别落在点C ',D 处,C E '交AF 于点G ,若70CEF ∠=︒,则GFD '∠=( )A .30B .40︒C .45︒D .60︒8.如图,在平面直角坐标系xOy 中,一只蚂蚁从原点O 出发向右移动1个单位长度到达点P 1;然后逆时针转向90°移动2个单位长度到达点P 2;然后逆时针转向90°,移动3个单位长度到达点P 3;然后逆时针转向90°,移动4个单位长度到达点P 4;…,如此继续转向移动下去.设点P n (x n ,y n ),n =1,2,3,…,则x 1+x 2+x 3+…+x 2021=( )A .1B .﹣1010C .1011D .2021二、填空题9.4的算术平方根是_____.10.点()4,3P 关于x 轴的对称点Q 的坐标是__________.11.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠BFD =45°;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是______(填序号).12.如图,直线m 与∠AOB 的一边射线OB 相交,∠3=120°,向上平移直线m 得到直线n ,与∠AOB 的另一边射线OA 相交,则∠2-∠1=_______º.13.如图,将长方形纸片ABCD 沿EF 折叠,使得点C 落在边AB 上的点H 处,点D 落在点G 处,若42AHG ∠=︒,则GEF ∠的度数为______.14.观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a +b 的值为____.15.若点P (2m+4,3m+3)在x 轴上,则点P 的坐标为________.16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“OA 1→A 1A 2→A 2A 3→A 3A 4→A 4A 5…”的路线运动,设第n 秒运动到点P n (n 为正整数),则点P 2020的坐标是______.三、解答题17.(133181254(2)3|12427+(32(22)3(21)-18.已知m +n =2,mn =-15,求下列各式的值. (1)223m mn n ++; (2)2()m n -.19.填空并完成以下过程:已知:点P 在直线CD 上,∠BAP +∠APD =180°,∠1=∠2. 请你说明:∠E =∠F .解:∵∠BAP +∠APD =180°,(_______) ∴AB ∥_______,(___________) ∴∠BAP =________,(__________) 又∵∠1=∠2,(已知) ∠3=________-∠1, ∠4=_______-∠2,∴∠3=________,(等式的性质) ∴AE ∥PF ,(____________)∴∠E=∠F.(___________)20.已知:如图,把△ABC向上平移4个单位长度,再向右平移3个单位长度,得到△A′B′C′,(1)画出△A′B′C′,写出A′、B′、C′的坐标;(2)点P在y轴上,且S△BCP=4S△ABC,直接写出点P的坐标.21.21212请解答下列问题:(110的整数部分是,小数部分是.(25a13b,求a+b5(3)已知103x+y,其中x是整数,且0<y<1,求x-y的相反数.二十二、解答题22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.二十三、解答题23.如图,直线AB ∥直线CD ,线段EF ∥CD ,连接BF 、CF . (1)求证:∠ABF +∠DCF =∠BFC ;(2)连接BE 、CE 、BC ,若BE 平分∠ABC ,BE ⊥CE ,求证:CE 平分∠BCD ;(3)在(2)的条件下,G 为EF 上一点,连接BG ,若∠BFC =∠BCF ,∠FBG =2∠ECF ,∠CBG =70°,求∠FBE 的度数.24.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 12CBD CBN ∠=∠,求CBN∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠,则ADB =∠_________︒;(3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n∠=∠, 1CBD CBN n ∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)25.在ABC 中,射线AG 平分BAC ∠交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作//DE AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分EDB ∠.①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.26.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处. (1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】一、选择题 1.B 解析:B 【分析】根据同位角的定义即可求出答案. 【详解】解:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角.即3∠是1∠的同位角. 故选:B . 【点睛】本题考查同位角的定义,解题的关键是:熟练理解同位角的定义.2.D 【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D . 故选:D . 【点睛】本题考查了图形的平移,图形的平移只改解析:D 【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断. 【详解】解:观察图形可知图形进行平移,能得到图形D . 故选:D . 【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小. 3.D 【分析】根据点在各象限的坐标特点即可得答案. 【详解】∵点的横坐标2>0,纵坐标-3<0, ∴点()2,3P -所在的象限是第四象限, 故选:D . 【点睛】本题考查直角坐标系,解决本题的关键是记住平面直角坐标系中各个象限内点的坐标的符号:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】根据点到直线的距离、平行线的判定定理及平行线和相交线的基本性质等进行判断即可得出答案. 【详解】A 、垂线段最短,正确,是真命题,不符合题意;B 、内错角相等,错误,是假命题,必须加前提条件(两直线平行,内错角相等),符合题意;C 、在同一平面内,不重合的两条直线只有相交和平行两种位置关系,正确,是真命题,不符合题意;D 、若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直,正确,相交所成的四个角中,形成两组对顶角,有三个角相等,则四个角一定全相等,都是90︒,所以互相垂直,不符合题意; 故选:B . 【点睛】题目主要考察真假命题与定理的联系,解题关键是准确掌握各个定理. 5.C 【分析】由平行线的性质可得∠ADC =∠BAD =35°,再由垂线的定义可得△ACD 是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD 的度数. 【详解】∵AB ∥CD ,∠BAD=35°, ∴∠ADC =∠BAD =35°, ∵AD ⊥AC ,∴∠ADC+∠ACD =90°, ∴∠ACD =90°﹣35°=55°, 故选:C . 【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键. 6.D 【分析】根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案. 【详解】解:∵3a =-,b =()22c ==--=, ∴c b a >>, 故选:D . 【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简. 7.B 【分析】根据两直线平行,内错角相等求出EFG ,再根据平角的定义求出EFD ∠,然后根据折叠的性质可得EFD EFD '∠=∠,进而即可得解. 【详解】解:∵在矩形纸片ABCD 中,//AD BC ,70CEF ∠=︒,70EFG CEF ∴∠=∠=︒, 180110EFD EFG ∴∠=︒-∠=︒,∵折叠,∴110EFD EFD ∠'=∠=︒,GFD EFD EFG ∴∠'=∠'-∠11070=︒-︒40=︒.故选:B . 【点睛】本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出EFG 是解题的关键,另外,根据折叠前后的两个角相等也很重要.8.A 【分析】根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果. 【详解】解:根据平面坐标系结合各点横坐标得出:、、、、、、解析:A 【分析】根据各点横坐标数据得出规律,进而得出128x x x ++⋯+;经过观察分析可得每4个数的和为2-,把2020个数分为505组,求出20211011x =,即可得到相应结果. 【详解】解:根据平面坐标系结合各点横坐标得出:1x 、2x 、3x 、4x 、5x 、6x 、7x 、8x 的值分别为:1,1,2-,2-,3,3,4-,4-;1284x x x ∴++⋯+=-,123411222x x x x +++=+--=-, 567833442x x x x +++=+--=-,⋯,9798991002x x x x +++=-,⋯,1220202(20204)1010x x x ∴++⋯+=-⨯÷=-, 20211011x =,12320211x x x x ∴+++⋯+=,故选:A . 【点睛】此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律.二、填空题 9.【详解】试题分析:∵,∴4算术平方根为2.故答案为2. 考点:算术平方根.解析:【详解】试题分析:∵224=,∴4算术平方根为2.故答案为2. 考点:算术平方根.10.【分析】关于x 轴对称的点横坐标不变,纵坐标互为相反数,据此可解答. 【详解】点关于轴的对称点的坐标是, 故答案为:. 【点睛】本题考查了关于x 轴对称的点的坐标,关于x 轴对称的两个点,横坐标不 解析:(4,3)-【分析】关于x 轴对称的点横坐标不变,纵坐标互为相反数,据此可解答. 【详解】点()4,3P 关于x 轴的对称点Q 的坐标是(4,3)-, 故答案为:(4,3)-. 【点睛】本题考查了关于x 轴对称的点的坐标,关于x 轴对称的两个点,横坐标不变,纵坐标互为相反数.11.①②③. 【分析】由EG ∥BC ,且CG ⊥EG 于G ,可得∠GEC =∠BCA ,由CD 平分∠BCA ,可得∠GEC =∠BCA =2∠DCB ,可判定①;由CD ,BE 平分∠BCA ,∠ABC ,根据外角性质可得∠B解析:①②③. 【分析】由EG ∥BC ,且CG ⊥EG 于G ,可得∠GEC =∠BCA ,由CD 平分∠BCA ,可得∠GEC =∠BCA =2∠DCB ,可判定①;由CD ,BE 平分∠BCA ,∠ABC ,根据外角性质可得∠BFD =∠BCF +∠CBF =45°,可判定②;根据同角的余角性质可得∠GCE =∠ABC ,由角的和差∠GCD =∠ABC +∠ACD =∠ADC ,可判定③;由∠GCE +∠ACB =90°,可得∠GCE 与∠ACB 互余,可得CA 平分∠BCG 不正确,可判定④. 【详解】解:∵EG ∥BC ,且CG ⊥EG 于G , ∴∠BCG +∠G =180°, ∵∠G =90°,∴∠BCG =180°﹣∠G =90°, ∵GE ∥BC , ∴∠GEC =∠BCA , ∵CD 平分∠BCA , ∴∠GEC =∠BCA =2∠DCB , ∴①正确.∵CD,BE平分∠BCA,∠ABC∴∠BFD=∠BCF+∠CBF=1(∠BCA+∠ABC)=45°,2∴②正确.∵∠GCE+∠ACB=90°,∠ABC+∠ACB=90°,∴∠GCE=∠ABC,∵∠GCD=∠GCE+∠ACD=∠ABC+∠ACD,∠ADC=∠ABC+∠BCD,∴∠ADC=∠GCD,∴③正确.∵∠GCE+∠ACB=90°,∴∠GCE与∠ACB互余,∴CA平分∠BCG不正确,∴④错误.故答案为:①②③.【点睛】本题考查平行线的性质,角平分线定义,垂线性质,角的和差,掌握平行线的性质,角平分线定义,垂线性质,角的和差是解题关键.12.60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m向上平移直解析:60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m向上平移直线m得到直线n,∴m∥n,∴∠ACB=∠1,∵∠3=120°,∴∠AOC =60°∵∠2=∠ACO +∠AOC =∠1+60°,∴∠2-∠1=60°.故答案为60.【点睛】本题考查了平移的性质,平行线的性质,以及三角形外角的性质,作辅助线构造三角形是解答此题的关键.13.111°【分析】结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案.【详解】根据题意,得,,,∴,∴∴∴∵解析:111°【分析】结合题意,根据轴对称和长方形的性质,得90FHG C B ∠=∠=∠=︒,HFE CFE ∠=∠,//BC AD ,GEF DEF ∠=∠,从而推导得BFH AHG ∠=∠;通过计算得CFE ∠,根据平行线同旁内角互补的性质,得DEF ∠,即可得到答案.【详解】根据题意,得90FHG C B ∠=∠=∠=︒,HFE CFE ∠=∠,//BC AD ,GEF DEF ∠=∠ ∴90BHF AHG ∠+∠=︒,90BHF BFH ∠+∠=︒∴42BFH AHG ∠=∠=︒∴180138HFE CFE BFH ∠+∠=︒-∠=︒∴69HFE CFE ∠=∠=︒∵//BC AD∴180111DEF CFE ∠=︒-∠=︒∴111GEF DEF ∠=∠=︒故答案为:111°.【点睛】本题考查了轴对称、平行线、矩形、余角的知识;解题的关键是熟练掌握轴对称和平行线的性质,从而完成求解.14.【分析】由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n﹣1+2n,即可得出答案.【详解】由图可知,每个图形的最上面的小正方形中的数字是连续奇数,所以第n解析:【分析】由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n ﹣1+2n,即可得出答案.【详解】由图可知,每个图形的最上面的小正方形中的数字是连续奇数,所以第n个图形中最上面的小正方形中的数字是2n﹣1,即2n﹣1=11,n=6.∵2=21,4=22,8=23,…,左下角的小正方形中的数字是2n,∴b=26=64.∵右下角中小正方形中的数字是2n﹣1+2n,∴a=11+b=11+64=75,∴a+b=75+64=139.故答案为:139.【点睛】本题主要考查了数字变化规律,观察出题目正方形的数字的规律是解题的关键. 15.(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P解析:(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P的坐标为(2,0),故答案为(2,0).16.【分析】先分别求出点的坐标,再归纳类推出一般规律,由此即可得出答案.【详解】解:由题意得:点的坐标是,点的坐标是,点的坐标是,点的坐标是,归纳类推得:点的坐标是,其中为正整数,因为解析:(1010,0)【分析】先分别求出点2468,,,P P P P 的坐标,再归纳类推出一般规律,由此即可得出答案.【详解】解:由题意得:点2P 的坐标是2(1,0)P ,点4P 的坐标是4(2,0)P ,点6P 的坐标是6(3,0)P ,点8P 的坐标是8(4,0)P ,归纳类推得:点2n P 的坐标是2(,0)n P n ,其中n 为正整数,因为202021010=⨯,所以点2020P 的坐标是2020(1010,0)P ,故答案为:(1010,0).【点睛】本题考查了点坐标规律探索,正确归纳类推出一般规律是解题关键.三、解答题17.(1);(2);(3)【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可.【详解】解:(1)原式(2)原式(3)原式【点睛】此题主要考查了实解析:(1)172;(22;(3)1-【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可.【详解】解:(1)原式1112577222=++=+=(2)原式1232=+-=(3)原式231=+=-【点睛】此题主要考查了实数运算,关键是掌握数的开方,正确化简各数.18.(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)====-11;(2)=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)223m mn n ++=222m mn n mn +++=()2m n mn ++=2215-=-11;(2)2()m n - =2()4m n mn +-=()22415-⨯-=464+=68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.19.已知;CD ;同旁内角互补两直线平行;∠APC ;两直线平行内错角相等;已知;∠BAP ;∠APC ;∠4;内错角相等两直线平行;两直线平行内错角相等.【分析】根据平行线的性质和判定即可解决问题;【详解析:已知;CD ;同旁内角互补两直线平行;∠APC ;两直线平行内错角相等;已知;∠BAP ;∠APC ;∠4;内错角相等两直线平行;两直线平行内错角相等.【分析】根据平行线的性质和判定即可解决问题;【详解】解:∵∠BAP +∠APD =180°(已知),∴AB ∥CD .(同旁内角互补两直线平行),∴∠BAP =∠APC .(两直线平行内错角相等),又∵∠1=∠2,(已知),∠3=∠BAP -∠1,∠4=∠APC -∠2,∴∠3=∠4(等式的性质),∴AE ∥PF .(内错角相等两直线平行),∴∠E =∠F .(两直线平行内错角相等).【点睛】本题考查平行线的判定与性质,熟记平行线的判定方法和性质是解题的关键. 20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P (0,10)或(0,-12).【分析】(1)分别作出A ,B ,C 的对应点A′,B′,C′即可解决问题;(2)设P (0,m解析:(1)作图见解析,A ′(1,5),B ′(0,2),C ′(4,2);(2)P (0,10)或(0,-12).【分析】(1)分别作出A ,B ,C 的对应点A ′,B ′,C ′即可解决问题;(2)设P (0,m ),构建方程解决问题即可.【详解】解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2);(2)设P(0,m),由题意:12×4×|m+2|=4×12×4×3,解得m=10或-12,∴P(0,10)或(0,-12).【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.21.(1)3,;(2)1;(3)【分析】(1)根据题意即可求解;(2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值;(3)根据题意确定出x与y的值,求出x-y的相反数即可.【详解解析:(1)3103;(2)1;(3312【分析】(1)根据题意即可求解;(25a13b,即可确定出a+b的值;(3)根据题意确定出x与y的值,求出x-y的相反数即可.【详解】(1)3104<<,103103;(2)253<<,5252,52a∴=,3134<<,3,3b ∴=,231a b ∴++=;(3)132<<,11,10x +y ,其中x 是整数,且0<y <1,)1,1011111111112y x x y ∴==+=∴-=-==12x y ∴-=x y ∴-的相反数是:(1212-=.【点睛】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题. 二十二、解答题22.(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为解析:(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为5am ,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1(m ),4×20=80(m ),答:原来正方形场地的周长为80m ;(2)设这个长方形场地宽为3am ,则长为5am .由题意有:3a ×5a =300,解得:a ,∵3a 表示长度,∴a >0,∴a∴这个长方形场地的周长为 2(3a +5a )=16a (m ),∵∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.二十三、解答题23.(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1)的结论和三角形的角的关系解答即可.【详解】证明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE +∠DCE =∠BEC =90°,∴∠ABE =90°﹣β,∴∠GBE =∠ABE ﹣∠ABF ﹣∠FBG =90°﹣β﹣2γ﹣2γ,∵BE 平分∠ABC ,∴∠CBE =∠ABE =90°﹣β,∴∠CBG =∠CBE +∠GBE ,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE =∠FBG +∠GBE =2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.24.(1)120º,120º;(2)160;(3)【分析】(1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果;(2)同理(1)的求法,解析:(1)120º,120º;(2)160;(3)()1360n m n -⋅- 【分析】(1)过点,C D 作CG EF ,DH EF ,根据 120FAC ACB ∠=∠=︒,平行线的性质和周角可求出120GCB ∠=︒,则 120CBN GCB ∠=∠=︒,再根据 12CAD FAC ∠=∠, 12CBD CBN ∠=∠,可得 1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒,可求出 60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,根据 ADB ADH BDH ∠=∠+∠即可得到结果;(2)同理(1)的求法,根据120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠求解即可; (3)同理(1)的求法,根据FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠, 1CBD CBN n ∠=∠求解即可;【详解】解:(1)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN , ∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒, ∵1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒ ∴60DBN CBN CBD ∠=∠-∠=︒,又∵60FAD FAC CAD ∠=∠-∠=︒,∴60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,∴120ADB ADH BDH ∠=∠+∠=︒.(2)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN ,∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒,∵1403CBD CBN ∠=∠=︒, 1403CAD FAC ∠=∠=︒∴80DBN CBN CBD ∠=∠-∠=︒,又∵80FAD FAC CAD ∠=∠-∠=︒,∴80ADH FAD ∠=∠=︒,80BDH DBN ∠=∠=︒,∴160ADB ADH BDH ∠=∠+∠=︒.故答案为:160;(3)同理(1)的求法∵EF MN ,∴EF MN CG DH , ∴ACG FAC m ∠=∠=︒,∴3603602GCB ACG ACB m ∠=︒-∠-∠=︒-︒,∴3602CBN GCB m ∠=∠=︒-︒, ∵13602m CBD CBN n n ︒-︒∠=∠=, 1m CAD FAC n n︒∠=∠= ∴()()360213602=3602m n m DBN CB D m n N n CB ︒-︒-︒-︒-︒∠-∠=-=∠︒, 又∵()1n m FAD FAC CAD m m n n -︒∠=∠-∠=︒-=︒, ∴()1n ADH FAD m n -∠=∠=︒, ()13602n BDH DBN m n-∠=∠=︒-︒, ∴()()()1113602=360n n n ADB ADH BDH m m m n n n --∠=∠+∠=-︒︒-︒︒-+︒. 故答案为:()1360n m n-⋅-. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.25.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②1902AFD B ︒∠=+∠,证明见解析;(2)1902AFD B ︒∠=-∠,证明见解析. 【解析】【分析】(1)①根据角平分线的定义求得∠CAG=12∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD 的度数即可;已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;即可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C )=12×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+12∠B ,已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC;由此可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形的内角和定理可得∠AFD=90°+12∠B;(2)∠AFD=90°-12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠NDE=12∠EDB,即可得∠FDM=∠NDE=12∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=12∠C,所以∠FDM+∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-12∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=12∠BAC=50°;∵//DE AC,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=12∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+12∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-12∠B)=90°+12∠B;(2)∠AFD=90°-12∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠NDE=12∠EDB,∴∠FDM=∠NDE=12∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=12∠C,∴∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=∠FDM +∠FMD=90°-12∠B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.26.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE -∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。
七年级下册数学期末试卷及答案
一、细心填一填〔每题2分,共计20〕1. 计算:32x x ⋅ = ;2ab b 4a 2÷= .2.如果1kx x 2++是一个完全平方法,那么k 的值是 .3.如图,两直线a 、b 被第三条直线c 所截,假设∠1=50°,∠2=130°,则直线a 、b 的位置关系是 . 4. 温家宝总理在十届全国人大四次会议上谈到解决“三农〞问题时说,202X 年中央财政用于“三农〞的支出将到达33970000万元,这个数据用科学记数法可表示为 万元. 5. 一只蝴蝶在空中飞行,然后随意落在如下图的某一方格中〔每个方格除颜色外完全相同〕,则蝴蝶停止在白色方格中的概率是 .6. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .7. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC ≌△ADE ,还需要添加的条件是 .8.现在规定两种新的运算“﹡〞和“◎〞:a ﹡b=22b a +;a ◎b=2ab,如〔2﹡3〕〔2◎3〕= 〔22+32〕〔2×2×3〕=156,则[2﹡〔-1〕][2◎〔-1〕]= .9.某物体运动的路程s 〔千米〕与运动的时间t 〔小时〕关系如下图,则当t=3小时时,物体运动所经过的路程为 千米.10.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图 所示, 则该汽车的号码是 .二、信任你的选择〔每题只有一个正确的选项,每题3分,共计30分〕11.以下图形中不是..正方体的展开图的是〔 〕A B C D 12. 以下运算正确的选项是......〔 〕 A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .044a a a =-13. 以下结论中,正确的选项是......〔 〕 A .假设22b a ,b a ≠≠则 B .假设22b a , b a >>则 C .假设b a ,b a 22±==则 D .假设b1a 1,b a >>则第5题 32 1cb a 第3题 E D C B A第7题t 〔小时〕 2 O 30 S 〔千米〕 第9题 第14题E DCB A14. 如图,在△ABC 中,D 、E 分别是AC 、BC 上的点,假设△ADB ≌△EDB ≌△EDC ,则∠C 的度数是( ) A .15° B .20° C .25° D .30° 15. 由四舍五入得到近似数3.00万〔 〕A .精确到万位,有1个有效数字B . 精确到个位,有1个有效数字C .精确到百分位,有3个有效数字D . 精确到百位,有3个有效数字 16. 观察一串数:0,2,4,6,….第n 个数应为〔 〕A .2〔n -1〕B .2n -1C .2〔n +1〕D .2n +1 17.以下关系式中,正确的选项是......〔 〕 A .()222b a b a -=- B.()()22b a b a b a -=-+C .()222b a b a +=+ D.()222b 2ab a b a +-=+18. 如图表示某加工厂今年前5的关系,则对这种产品来说,该厂〔 〕 A .1月至3月每月产量逐月增加,4、5两月产量逐月 减小B .1月至3月每月产量逐月增加,4、5两月产量与3 持平C .1月至3月每月产量逐月增加,4、5生产D . 1月至3月每月产量不变,4、5两月均停止生产 19.以下图形中,不肯定...是轴对称图形的是〔 〕 A .等腰三角形 B .线段 C .钝角 D .直角三角形20. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成〔首尾连结〕三角形的个数为〔 〕A .1B .2C . 3D .4三、精心算一算〔21题3分,22题5分,共计8分〕21.()()3426y y 2-;22.先化简()()()()1x 5x 13x 13x 12x 2-+-+--,再选取一个你喜欢的数替代x ,并求原代数式的值.四、认真画一画〔23题4分,24题4分,共计8分〕23.如图,某村庄方案把河中的水引到水池M 中,怎样开的渠最短,为什么?〔保存作图痕迹,不写作法和证明〕理由是: .24.两个全等的三角形,可以拼出各种不同的图形,如下图中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形〔所画三角形可与原三角形有重叠的局部〕,你最多可以设计出几种?〔至少设计四种〕25.在“五·在只有一个名额.小丽想出了一个方法,她将一个转盘〔均质的〕均分成6份,如下图.游戏规定:随意转动转盘,假设指针指到3,则小丽去;假设指针指到2,则小芳去.假设你是小芳,会同意这个方法吗?为什么?26. 一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27. 下面是我县某养鸡场202X ~202X 年的养鸡统计图:〔1〕从图中你能得到什么信息.〔2〕各年养鸡多少万只?〔3〕所得〔2〕的数据都是精确数吗? 〔4〕这张图与条形统计图比拟,有什么优点?28.某种产品的商标如下图,O 是线段AC 、BD 的交点,并且AC图中的两个三角形全等,他的思考过程是: 在△ABO 和△DCO 中⎪⎩⎪⎨⎧=∆≅∆−→−∠=∠=CD AB DCO ABO DOC AOB BD AC你认为小明的思考过程正确吗?如果正确,他用的是判定三 角形全等的哪个条件?如果不正确,请你增加一个条件,并 说明你的思考过程.七、探究拓展与应用〔第29小题4分,第30小题7分,共计11分〕29.如下图,要想推断AB 是否与CD说明理由.30.乘法公式的探究及应用.〔1〕如左图,可以求出阴影局部的面积是〔写成两数平方差的形式〕;〔2〕如右图,假设将阴影局部裁剪下来,重新拼成一个长方形,它的宽是 ,长是 ,面积是 〔写成多项式乘法的形式〕〔3〕比拟左、右两图的阴影局部面积,可以得到乘法公式 〔用式子表达〕. 〔4〕运用你所得到的公式,计算以下各题:①7.93.10⨯ ② )2)(2(p n m p n m +--+八、信息阅读题〔6分〕31.一农民朋友带了假设干千克的土豆进城出售,为了方便,他带了一些零钱备用.按市场售出一些后,又降价出售.售出土豆千克数x 与他手中持有的钱数y 〔含备用零钱〕的关系如下图,结合图像答复以下问题: 〔1〕农民自带的零钱是多少?〔2〕降价前他每千克土豆出售的价格是多少?〔3〕降价后他按每千克0.4元将剩余的土豆售完,这时他手中的钱〔含备用的钱〕是26元,问他一共带了多少千克的土豆?一、细心填一填〔每题2分,共计20〕1. 5x ;2a .2.±×1075.83 6.26或22㎝7. AC=AE 〔或BC=DE ,∠E=∠C ,∠B=∠D 〕 8.-20 9. 45 10.B6395二、信任你的选择〔每题只有一个正确的选项,每题3分,共计30分〕21.解:=1212y 2y- =12y ……3分22.解:=5x 5x 19x 14x 4x 222-++-+-=29x +- (3)分当x=0时,原式四、认真画一画〔23题4分,24题423.解:理由是: 垂线段最短. ……2分 作图……2分24.解每作对一个给1分五、请你做裁判!〔第25题小4分,第26小题6分,共计10分〕25.解:不会同意. ……2分 因为转盘中有两个3,一个2,这说明小丽去的可能性是3162=,而小丽去的可能性是61,所以游戏不公平. ……2分 26.解:依据小王的设计可以设宽为x 米,长为〔x +5〕米,依据题意得2x +〔x +5〕=35 解得x=10.因此小王设计的长为x +际的. ……2分依据小赵的设计可以设宽为x 米,长为〔x +2〕米,依据题意得2x +〔x +2〕=35 解得x=11.因此小王设计的长为x +2=11+2=13〔米〕,而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143〔平方米〕. ……2分六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27.解:〔1〕202X 年该养鸡场养了2万只鸡.〔答案不唯一〕〔2〕202X 年养了2万只;202X 年养了3万只;202X 年养了4万只;202X 年养了3万只;202X 年养了4万只;202X 年养了6万只.〔3〕近似数.〔4〕比条形统计图更形象、生动.〔能符合即可〕 ………〔每题1分〕 28.解:小明的思考过程不正确. …1分添加的条件为:∠B=∠C 〔或∠A=∠D 、或符合即可〕…3分在△ABO 和△DCO 中DCO ABO CD AB DOC AOB C B ∆≅∆⇒⎪⎩⎪⎨⎧=∠=∠∠=∠ …… 5分〔答案不唯一〕 七、探究拓展与应用〔第29小题4分,第30小题7分,共计11分〕29. 〔1〕∠EAB=∠C ;同位角相等,两直线平行.〔2〕∠BAD=∠D ;内错角相等,两直线平行〔3〕∠BAC +∠C=180°;同旁内角互补两直线平行.……对1个给1分,全对给4分. 30.〔1〕22b a -.〔2〕()b a -,()b a + ,()()b a b a -+ . 〔3〕()()b a b a -+=22b a -.〔4〕: 评分标准:每空1分,〔4〕小题各1分八、信息阅读题〔6分〕31.〔1〕解:由图象可以看出农民自带的零钱为5元;〔2〕()元5.030520=- 〔3〕()()千克,千克453015154.02026=+=-…各2分 答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆. …… 第〔1〕问和答各1分,〔2〕、〔3〕各2分.。
七年级数学下册期末试卷测试卷 (word版,含解析)
七年级数学下册期末试卷测试卷 (word 版,含解析)一、选择题1.如图,下列结论中错误的是( )A .∠1与∠2是同旁内角B .∠1与∠4是内错角C .∠5与∠6是内错角D .∠3与∠5是同位角2.下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( )A .B .C .D . 3.若点P 在第四象限内,则点P 的坐标可能是( )A .()4,3B .()3,4-C .()3,4--D .()3,4- 4.下列四个命题:①两条直线相交,若对顶角互补,则这两条直线互相垂直;②两条直线被第三条直线所截,内错角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④经过直线外一点,有且只有一条直线与已知直线平行.其中是真命题的个数是( )A .1B .2C .3D .45.如图,//AB CD ,P 为平行线之间的一点,若AP CP ⊥,CP 平分∠ACD ,68ACD ∠=︒,则∠BAP 的度数为( )A .56︒B .58︒C .66︒D .68︒6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③33mn π-+是三次二项式;④立方根是本身的数有0和1;其中正确的是( ) A .①② B .①③ C .①②③ D .①②④ 7.如图,//AB CD ,//BC DE ,若140CDE ∠=︒,则B 的度数是( )A .40°B .60°C .140°D .160° 8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为点A 2,点A 2的友好点为点A 3,点A 3的友好点为点A 4,⋯⋯以此类推,当点A 1的坐标为(2,1)时,点A 2021的坐为( )A .(2,1)B .(0,﹣3)C .(﹣4,﹣1)D .(﹣2,3)二、填空题9.已知223130x x y -+--=,则x +y=___________10.点(m ,1)和点(2,n)关于x 轴对称,则mn 等于_______.11.如图,直线AB 与直线CD 交于点O ,OE 、OC 是AOC ∠与∠BOE 的角平分线,则AOD ∠=______度.12.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.13.如图,将一张长方形纸片沿EF 折叠后,点A ,B 分别落在A ′,B ′的位置.如果∠1=59°,那么∠2的度数是_____.14.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.15.如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_____.16.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).动点P从点A处出发,并按A﹣B﹣C﹣D﹣A﹣B…的规律在四边形ABCD的边上以每秒1个单位长的速度运动,运动时间为t秒.若t=2021秒,则点P所在位置的点的坐标是_____.三、解答题17.计算下列各题:2213-123181632163125()2-318.求下列各式中的x.(1)x2-81=0(2)(x﹣1)3=819.如图所示,已知∠1+∠2=180°,∠B=∠3,请你判断DE和BC平行吗?说明理由.(请根据下面的解答过程,在横线上补全过程和理由)解:DE∥BC.理由如下:∵∠1+∠4=180°(平角的定义),∠1+∠2=180°(),∴∠2=∠4().∴∥().∴∠3=().∵∠3=∠B(),∴=().∴DE∥BC().20.如图,在平面直角坐标系中,三角形OBC 的顶点都在网格格点上,一个格是一个单位长度.(1)将三角形OBC 先向下平移3个单位长度,再向左平移2个单位长度(点1C 与点C 是对应点),得到三角形111O B C ,在图中画出三角形111O B C ;(2)直接写出三角形111O B C 的面积为____________.21.阅读下面的文字,解答问题 22的小数部分我们不可能全部212 21,将这个数减去其整数部分,差就是小数部分. 479273, ∴7272)请解答:(157整数部分是 ,小数部分是 .(211a 7b ,求|a ﹣b 11(3)已知:5x +y ,其中x 是整数,且0<y <1,求x ﹣y 的相反数.二十二、解答题22.(1)如图1,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______cm ;(2)若一个圆的面积与一个正方形的面积都是22πcm ,设圆的周长为C 圆.正方形的周长为C 正,则C 圆______C 正(填“=”,或“<”,或“>”)(3)如图2,若正方形的面积为2900cm ,李明同学想沿这块正方形边的方向裁出一块面积为2740cm 的长方形纸片,使它的长和宽之比为5:4,他能裁出吗?请说明理由?二十三、解答题23.如图,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B 作BG AD ⊥,垂足为点G .(1)如图1,求证:90MAG PBG ∠+∠=︒;(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H 请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;24.已知//PQ MN ,将一副三角板中的两块直角三角板如图1放置,90ACB EDF ∠=∠=︒,45ABC BAC ∠=∠=︒,30DFE ∠=︒,60DEF ∠=︒.(1)若三角板如图1摆放时,则α∠=______,β∠=______.(2)现固定ABC 的位置不变,将DEF 沿AC 方向平移至点E 正好落在PQ 上,如图2所示,DF 与PQ 交于点G ,作FGQ ∠和GFA ∠的角平分线交于点H ,求GHF ∠的度数; (3)现固定DEF ,将ABC 绕点A 顺时针旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF 的一条边平行时,请直接写出BAM ∠的度数.25.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.26.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据同位角、内错角、同旁内角的定义结合图形进行判断即可.【详解】解:如图,∠1与∠2是直线a与直线b被直线c所截的同旁内角,因此选项A不符合题意;∠1与∠6是直线a与直线b被直线c所截的内错角,而∠6与∠4是邻补角,所以∠1与∠4不是内错角,因此选项B符合题意;∠5与∠6是直线c与直线d被直线b所截的内错角,因此选项C不符合题意;∠3与∠5是直线c与直线d被直线b所截的同位角,因此选项D不符合题意;故选:B.【点睛】本题主要考查同位角、内错角、同旁内角,掌握同位角、内错角、同旁内角的定义是关键.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都不是由平移得到的,D是由平移得到的.故选:D.【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都不是由平移得到的,D是由平移得到的.故选:D.【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.B【分析】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案.【详解】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有()3,4-满足要求, 故选:B .【点睛】本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键.4.C【分析】根据对顶角的性质和垂直的定义判断①;根据内错角相等的判定方法判定②;根据平行线的判定对③进行判断;根据经过直线外一点,有且只有一条直线与已知直线平行判断④即可【详解】解:两条直线相交,若对顶角互补,则这两条直线互相垂直,所以①正确;两条互相平行的直线被第三条直线所截,内错角相等;,所以②错误;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以③正确; 经过直线外一点,有且只有一条直线与已知直线平行,所以④正确.故选:C .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,熟练掌握相关性质是解题的关键.5.A【分析】过P 点作PM //AB 交AC 于点M ,直接利用平行线的性质以及平行公理分别分析即可得出答案.【详解】解:如图,过P 点作PM //AB 交AC 于点M .∵CP 平分∠ACD ,∠ACD =68°,∴∠4=12∠ACD =34°.∵AB //CD ,PM //AB ,∴PM //CD ,∴∠3=∠4=34°,∵AP ⊥CP ,∴∠APC =90°,∴∠2=∠APC -∠3=56°,∵PM //AB ,∴∠1=∠2=56°,即:∠BAP 的度数为56°,故选:A .【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.6.A【分析】根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可.【详解】①两个无理数的和可能是有理数,说法正确(0=,0是有理数②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确③3327mn mn ππ=-+-+是二次二项式,说法错误④立方根是本身的数有0和±1,说法错误综上,说法正确的是①②故选:A .【点睛】本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键.7.A【分析】根据平行线的性质求出∠C ,再根据平行线的性质求出∠B 即可.【详解】解:∵BC ∥DE ,∠CDE =140°,∴∠C =180°-140°=40°,∵AB ∥CD ,∴∠B =40°,故选:A .【点睛】本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补.8.A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A解析:A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A4(-2,3),A5(2,1),…,∴A4n+1(2,1),A4n+2(0,-3),A4n+3(-4,-1),A4n+4(-2,3)(n为自然数).∵2021=505×4+1,∴点A2021的坐标为(2,1).故选:A.【点睛】本题考查了规律型的点的坐标,从已知条件得出循环规律:每4个点为一个循环是解题的关键.二、填空题9.-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+解析:-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+(-3)=-1.故答案为:-1.【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题解析:-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握关于x轴对称点的性质是解题关键.11.60【分析】由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数.【详解】∵OE平分∠AOC,∴∠AOE=∠EOC,∵OC平分∠BOE,∴解析:60【分析】由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数.【详解】∵OE平分∠AOC,∴∠AOE=∠EOC,∵OC平分∠BOE,∴∠EOC=∠COB∴∠AOE=∠EOC=∠COB,∵∠AOE+∠EOC+∠COB=180︒∴∠COB=60°,∴∠AOD=∠COB=60°,故答案为:60【点睛】本题主要考查了角平分线的应用以及对顶角相等的性质,熟练运用角平分线的定义是解题的关键.12.70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答解析:70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为70.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.13.62°【分析】根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁解析:62°【分析】根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.:求出即可.【详解】解:∵将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,∠1=59°,∴∠EFB′=∠1=59°,∴∠B′FC=180°−∠1−∠EFB′=62°,∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠B′FC=62°,故答案为:62°.【点睛】本题考查了对平行线的性质和折叠的性质的应用,解此题的关键是求出∠B′FC的度数,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.14.或【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.15.(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),解析:(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),B(2,0),∴AB=2-1=1,∴△ABC的面积=12×1•h=2,解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4).故答案为:(0,4)或(0,-4).【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.16.(0,1)【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由题意可知P 点的运动是绕矩形ABCD的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1), B解析:(0,1)【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由题意可知P点的运动是绕矩形ABCD的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1),B(-1,1),C(-1,-2), D(1,-2)∴AB= CD= 2,AD= BC= 3,∴四边形ABCD 的周长= AB+ AD+BC+CD= 10∵P点的运动是绕矩形ABCD的周长的循环运动,且速度为每秒一个单位长度∴P点运动一周需要的时间为10秒∵2021=202×10+1∴当t=2021秒时P的位置相当于t=1秒时P的位置∵t=1秒时P的位置是从A点向B移动一个单位∴此时P点的坐标为(0,1)∴t=2021秒时P点的坐标为(0,1)故答案为:(0,1).【点睛】本题主要考查了点的坐标与运动方式的关系,解题的关键在于找出P点一个循环运动需要花费的时间.三、解答题17.(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)==5;(2)-× =-×4=-2;(3)-++=-6+5+3=2.【点睛】此题主要解析:(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解12×4=-2;【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.18.(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(解析:(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(2)方程整理得:(x-1)3=8,开立方得:x-1=2,解得:x=3.【点睛】本题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键.19.已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行【分析】求出∠2=∠4,根据平行线的判定得出AB解析:已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行【分析】求出∠2=∠4,根据平行线的判定得出AB∥EF,根据平行线的性质得出∠3=∠ADE,求出∠B=∠ADE,再根据平行线的判定推出即可.【详解】解:DE∥BC,理由如下:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知),∴∠2=∠4(同角的补角相等),∴AB∥EF(内错角相等,两直线平行),∴∠3=∠ADE (两直线平行,内错角相等),∵∠3=∠B (已知),∴∠B =∠ADE (等量代换),∴DE ∥BC (同位角相等,两直线平行),【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的性质定理及判定定理是解题的关键. 20.(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积解析:(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O 1、B 1、C 1的坐标,然后顺次连接O 1、B 1、C 1即可;(2)根据111O B C 的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可.【详解】解:(1)如图所示,111O B C 即为所求;(2)由题意得:11111143421313=5222O B C S =⨯-⨯⨯-⨯⨯-⨯⨯△. 【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法. 21.(1)7;-7;(2)5;(3)13-.【分析】(1)估算出的范围,即可得出答案;(2)分别确定出a 、b 的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y 的值,进而求解析:(1)7;(2)5;(3)【分析】(1(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求.【详解】解:(1)∵78,∴7.故答案为:7.(2)∵34,∴a,3∵23,∴b=2∴=5(3)∵23∴11<12,∵,其中x是整数,且0﹤y<1,∴x=11,y=,∴x-y==【点睛】本题考查的是无理数的小数部分和整数部分及其运算.估算无理数的整数部分是解题关键.二十二、解答题22.(1);(2)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的解析:(12)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,设大正方形的边长为x cm ,∴22x = , ∴x∴;(2)设圆的半径为r ,∴由题意得22r ππ=, ∴r = ∴=22C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C ===<圆正 故答案为:<;(3)解:不能裁剪出,理由如下:∵正方形的面积为900cm 2,∴正方形的边长为30cm∵长方形纸片的长和宽之比为5:4,∴设长方形纸片的长为5x ,宽为4x ,则54740x x ⋅=,整理得:237x =,∴22(5)252537925900x x ==⨯=>,∴22(5)30x >,∴530x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.二十三、解答题23.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:解析:(1)证明见解析;(2)补图见解析;当点C 在AG 上时,290AHB CBG ∠-∠=︒;当点C 在DG 上时,290AHB CBG ∠+∠=︒.【分析】(1)过点G 作//GE MN ,根据平行线的性质即可求解;(2)分两种情况:当点C 在AG 上,当点C 在DG 上,再过点H 作//HF MN 即可求解.【详解】(1)证明:如图,过点G 作//GE MN ,∴MAG AGE ∠=∠,∵//MN PQ ,∴//GE PQ .∴PBG BGE ∠=∠.∵BG AD ⊥,∴90AGB ∠=︒,∴90MAG PBG AGE BGE AGB ∠+∠=∠+∠=∠=︒.(2)补全图形如图2、图3,猜想:290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒.证明:过点H 作//HF MN .∴1AHF ∠=∠.∵//MN PQ ,∴//HF PQ∴2BHF ∠=∠,∴12AHB AHF BHF ∠=∠+∠=∠+∠.∵AH 平分MAG ∠,∴21MAG ∠=∠.如图3,当点C 在AG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠+∠=∠,∵//MN PQ ,∴MAG GDB ∠=∠,2212290AHB MAG PBG CBGGDB PBG CBG CBG∴∠=∠+∠=∠+∠+∠=∠+∠+∠=︒+∠即290AHB CBG ∠-∠=︒.如图2,当点C 在DG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠-∠=∠.∴2212290AHB MAG PBG CBG CBG ∠=∠+∠=∠+∠-∠=︒-∠.即290AHB CBG ∠+∠=︒.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.24.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BC ∥DE 时,当BC ∥EF 时,当BC ∥DF 时,三种情况进行解答即可.【详解】解:(1)作EI ∥PQ ,如图,∵PQ∥MN,则PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α= DEA -∠BAC=60°-45°=15°,∵E、C、A三点共线,∴∠β=180°-∠DFE=180°-30°=150°;故答案为:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,FH分别平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)当BC∥DE时,如图1,∵∠D=∠C=90 ,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;当BC∥EF时,如图2,此时∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;当BC∥DF时,如图3,此时,AC ∥DE ,∠CAN =∠DEG =15°,∴∠BAM =∠MAN -∠CAN -∠BAC =180°-15°-45°=120°.综上所述,∠BAM 的度数为30°或90°或120°.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠; (2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.26.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。
2023年部编版七年级数学(下册)期末试卷及答案(A4打印版)
2023年部编版七年级数学(下册)期末试卷及答案(A4打印版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±1 2.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .645.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有()A.5个B.4个C.3个D.2个7.把1aa-根号外的因式移入根号内的结果是()A.a-B.a--C.a D.a-8.满足方程组35223x y mx y m+=+⎧⎨+=⎩的x,y的值的和等于2,则m的值为().A.2B.3C.4D.59.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.6 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.绝对值不大于4.5的所有整数的和为________.3.正五边形的内角和等于______度.4.若+x x -有意义,则+1x =___________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________. 6.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为________.三、解答题(本大题共6小题,共72分)1.解方程(组):(1)2321x y x y +=⎧⎨-=⎩(2)30.20.20.030.70.20.01x x ++-=2.甲、乙两名同学在解方程组5{213mx y x ny +=-=时,甲解题时看错了m ,解得7{22x y ==- ;乙解题时看错了n ,解得3{7x y ==-.请你以上两种结果,求出原方程组的正确解.3.如图,在四边形OBCA 中,OA ∥BC ,∠B=90°,OA=3,OB=4.(1)若S 四边形AOBC =18,求BC 的长;(2)如图1,设D 为边OB 上一个动点,当AD ⊥AC 时,过点A 的直线PF 与∠ODA 的角平分线交于点P ,∠APD=90°,问AF 平分∠CAE 吗?并说明理由;(3)如图2,当点D 在线段OB 上运动时,∠ADM=100°,M 在线段BC 上,∠DAO 和∠BMD 的平分线交于H 点,则点D 在运动过程中,∠H 的大小是否变化?若不变,求出其值;若变化,说明理由.4.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数5.某校为加强学生安全意识,组织全校学生参加安全知识竞赛.从中抽取部分学生成绩(得分取正整数值,满分为100分)进行统计,绘制以下两幅不完整的统计图.请根据图中的信息,解决下列问题:(1)填空:a=_____,n=_____;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,则该校安全意识不强的学生约有多少人?6.今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、B6、B7、B8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、03、5404、15、±46、36°或37°.三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2) 2.85x=-.2、n = 3 , m = 4,2 {3 xy==-3、(1)6;(2)略;(3)略.4、∠BOE的度数为60°5、(1)75,54;(2)补图见解析;(3)600人.6、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)略。
七年级下学期期末数学试卷(含答案)
七年级下学期期末数学试卷(时间:120分钟 满分:120分)亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 请认真审题,看清要求,仔细答题,要相信我能行。
一、认真填一填:(每题3分,共30分)1、剧院里5排2号可以用(5,2)表示,则(7,4)表示 。
2、不等式-4x ≥-12的正整数解为 .3、要使4 x 有意义,则x 的取值范围是_______________。
4、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_______________________.5、如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
6、等腰三角形一边等于5,另一边等于8,则周长是_________ .7、如图所示,请你添加一个条件....使得AD ∥BC , 。
8、若一个数的立方根就是它本身,则这个数是 。
9、点P (-2,1)向上平移2个单位后的点的坐标为 。
10、某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%。
问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x 名,走读学生y 名,则可列出方程组为 。
二、细心选一选:(每题3分,共30分) 11、下列说法正确的是( )A 、同位角相等;B 、在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c 。
C 、相等的角是对顶角;D 、在同一平面内,如果a ∥b,b ∥c ,则a ∥c 。
12、观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( )12.长为9,6,5,3的四根木条,选其中三根组成三角形,共有( )种选法.A .4B .3C .2D .113、有下列说法:(1) A B C DE C DBA C BA(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数; (3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学测试题
一、选择题(每题3分,共30分)
1、2012年中考已经结束,巴市教研室从各县随机抽取1000名考生的数学试卷进行调查分析,这个问题的样本是( )
A 1000
B 1000名
C 1000名学生
D 1000名考生的数学试卷
2、如图为中华人民国国旗上的一个五角星,同学们再熟悉不过了,那么它的每个角的度数为( ) A 0
45 B 0
30 C 0
36 D 0
40
3、下列调查中,适合用全面调查的是( )
A 了解某班同学立定跳远的情况
B 了解一批炮弹的杀伤半径
C 了解某种品牌奶粉中含三聚氰胺的百分比
D 了解全国青少年喜欢的电视节目 4、若m >-1,则下列各式中错误..的.
是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2
5、朱格和孔明两位小朋友为了学好英语不拉其它学科的后腿,两人开始互背单词比赛,看谁在单位时间背得单词多谁就赢,已知两人一小时之背熟了60个,而孔明背得单词量是朱格2倍少9个.则孔明与朱格每小时分别背( )
A 37,23
B 23 27
C 23,37
D 33,27 6、线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,-1),则点B (1,1)的对应点D 的坐标为( )
A (-1,-3)
B (5,3)
C (5,-3)
D (0,3) 7、已知1)2(3
2=+--y x
a a 是一个二元一次方程,则a 的值为( )
A 2±
B -2
C 2
D 无法确定 8、已知a >b >0,那么下列不等式组中无解..
的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b
x a
x
A 2局
B 3局
C 4局
D 5局
10、天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值围,在数轴上可表示为
(
)
9、中学每年都会举行乒乓球比赛,比赛规定采取积分制:赢一局得3分,
负一局扣1分. 在7局比赛中,积分超过10分的就可以晋级下一轮比赛,李胜进入了下一轮比赛,问李胜输掉的比赛最多是( )
二、填空题(每题3分,共18分)
11、│x 2-25│
则x=_______,y=_______.
12、同学们每个星期都会听着国歌升国旗,但国歌歌词有多少个可能大家都不知道.已知歌词数量是一个两位数,十位数是个位数的两倍,且十位数比个位数大4,则国歌歌词数有 个。
13、有一种感冒止咳药品的说明书上写着:“青少年每日用量80~120mg ,分3~4次服用.”
一次服用这种药品剂量的围为
.
14、在坐标平面,若点)2,3(+-x x P 在第二象限,则x 的取值围 .
15、如图,是ABC ∆的角平分线,,A E ,AB BC DE 0
45,//=∠于点交 0
60=∠BDC
则=∠BDE 度
16、如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.
17、从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.
18、下表为巴市某中学七(1)班学生将自己的零花钱捐给“春雷计划”的数目,老师将学生捐款数目按10元组距分段,统计每个分数段出现的频数,则a= ,b= ,全班总人数为 个
三、计算题(每题5分,共10分)
19、⎪⎩⎪⎨⎧-=-=-+1)1(22)1(3231y x y x 20、⎪⎩⎪
⎨⎧-+>->--1225
123)2(32x x x x
A
D
E
B
C
第15题
四、应用题(7+8+7+10+10=44分)
21、家电下乡政策是对农民购买纳入补贴围的家电产品给予一定比例(13%)的财政补贴,自从这政策施
行之后,某种型号的海尔冰箱比以前便宜了260元.求家电下乡政策施行前后该型号海尔冰箱的价格分别是多少?(7分)
22、2009年是执行法定节日的第一年,法定节日的确定为大家带来了很多便利。
我们用坐标来表示这些
节日:
用A(1,1)表示元旦(即1月1日),清明节用B(4,4)表示(即4月4日),端午节用C(5,5)表示(即5月初5)。
(9分)
(1)、请写出中秋节D(),国庆节E()。
(2)、依次边结A-B-C-D-E-A,在右图坐标系中画出来。
y
(3)、求出图形的面积。
23、如图:已知DEF ABC ∆∆与是一副三角板的拼图,在同一条线上D C E A ,,,. (8分)
(1)、求证BC EF // ; (2)、求21∠∠与的度数
24、2008年毕业于大学的爱民,第一个月领到3000元工资,自己留下500元作为生活费,剩下2500元
全部用来做以下事情:他决定拿出大于500元但小于550元的资金为他父母买礼品,感他们对自己的养育之恩,其余资金用于资助家乡汶川震中受灾的
50名小朋友,每位小朋友买一身衣服或一双鞋作为对他们的关爱和鼓励。
已知每身衣服比每双鞋贵20元,用300元恰好买到5身衣服和3双鞋。
(1)求每身衣服和每双鞋的价钱分别是多少? (4分)
第22题
第23题
E
6
人数时间/小时
(2)有几种买衣服和鞋的方案?分别为哪几种?(6分)
25、.(本题10分)
为了减轻学生的作业负担,教育局规定:初中段学生每晚的作业总量不超过1.5小时。
一个月后,七年级(1)班学习委员亮亮对本班每名同学晚上完成作业的时间进行了一次统计,并根据收集的数据绘制了下面两幅不完整的统计图(图1、图2)请你根据图中提供的信息,解答下面的问题:
1、 该班共有多少名学生?
2、 将图1中的条形图补充完整
3、如果七年级共有500名学生,请估计七年级学生完成作业时间超过1.5小时的有多少
图1 图2
答案:
一、选择题:1---5 D C A B A 6---10 C B C A A
二、填空题:11、39 12、84 13、4020≤≤x 14、32<<-x 15、0
15 16、0
1260 17、○1○2○4 18、11 0.4 50 三、计算题:
19、解:⎪⎩⎪⎨⎧-=-=-+)2(1)1(2)
1(2
)1(3
231
y x y x 20、解:⎪⎩⎪
⎨⎧-+>->--)
2(1
22
512)1(3
)2(32x x x x
由(1)得82=+y x (3) 由(1)得3<x 由(2)得12=-y x (4) 由(2)得2-<x
)3(2)4(+⨯得:2=x 所以该不等式组的解集为:2-<x
将3)4(2==y x 得代入
所以该方程组的解为:⎩⎨
⎧==3
2
y x
21、解:设家电下乡政策施行前后该型号海尔冰箱的价格分别为元元y x ,.
⎩⎨
⎧=-=-)
2()131()1(26000y
x y x
将(2)代入(1)得:26013.0=x
2000=x 所以1740=y
所以该方程组的解为⎩⎨
⎧==1740
2000
y x
22、
解:(1),中秋节D ( 8,15 ),
答:该图形的面积为49 23、
解:(1)
AD
BC AD
BC AD EF //,∴⊥⊥
(2)0
454590180180=--=∠-∠-=∠A AEP APE 0
007545301=+=∠+∠=∠∴OPF F 0
15060902=+=∠+∠=∠D DCQ
(2)如右图
(3)将图形补成一个矩形AEFG 则:126149=⨯=AEFG S 长
1414221
=⨯⨯=∆DEF S
8442
1
=⨯⨯=∆ACH S
55
102
1
)74(=⨯⨯+=CDGH S 梯形49
55814126=---=AEDC S 四
24、 解;
(1) 设每身衣服的价钱为x 元,每双鞋的价钱为y 元.
⎩⎨⎧=+=-3003520y x y x 解得⎩
⎨⎧==2545
y x
(2) 设买衣服a 件,则买鞋a -50双. ⎩⎨
⎧>---<---500
)50(25451800550
)50(25451800a a a a 解得:5.3735<<a
所以3736或=a
即(1)买衣服36件,买鞋14双 (2)买衣服37件,买鞋13双 答:(1)每身衣服的价钱为45元,每双鞋的价钱为25元.
(2)有两种方案即:1)买衣服36件,买鞋14双 2)买衣服37件,买鞋13双
25、解(1)设重大基础设施建设和城市电网改造投资为亿元x ,汶川地震灾后恢复重建投资y 亿元
⎪⎩
⎪⎨⎧=
=+2325000
y x y x 解得:⎩⎨⎧==1000015000y x (2)如右图 ,0075.3 , 0025 (3)略
租住房
户区改造
农村民生工程和
基础设施
大基础设施建设
城市电网改造
节能减排和生态
建设工程
主创新和产业
构调整
汶川地震灾
后恢复重建
2000
疗卫
生、教
文化
项目类别。