08数学建模与数学实验10章xi题

合集下载

数学建模与数学实验试卷及答案

数学建模与数学实验试卷及答案

数学建模与数学实验试卷及答案二、本题10分(写出程序和结果) 蚌埠学院2010—2011学年第二学期2,x在 [-5 ,5] 区间内的最小值,并作图加以验证。

求函数yxe,,,3《数学建模与数学实验》补考试卷答案f1=inline('x.^2 +exp(-x)-3') 注意事项:1、适用班级:09数学与应用数学本科1,2班2、本试卷共1页,附答题纸1页。

满分100分。

x=fmin(f1,-5,5)3、考查时间100分钟。

y=f1(x)4、考查方式:开卷 fplot(f1,[-5,5]) 一、填空:(每空4分,共60分)x = 0.3517,y== -2.1728 123111,,,,,,,,,三、本题15分(写出程序和结果) 1. 已知,,则A的秩为 3 ,A的特征值为 A,612B,234,,,,,,,,,215531,,,,,360000xx,,,12,max2.5fxx,,求解:,stxx..250000,,,1212-1.9766 4.4883 + 0.7734i 4.4883 - 0.7734i ,若令A([1,3],:)= B([2,3],:),则,x,150001,A(2,:)= 6 1 2 ;解: xxx,,,22,123,model: 2. 的解为 1.25 ,0.25 0.5 ;xxx,,,521,123max=2.5*x1+x2; ,242xxx,,,123,3*x1+x2<=60000;装订线内不要答题 2*x1+x2<=50000; 3. 将1234521 分解成质因数乘积的命令为_factor(sym(‘1234521’)),x1<=15000;结果为_ (3)^4*(15241)__ ; endax4. 求,其命令格式为 syms x a; limit((1+a/x)^x,x,inf) ,结果为lim(1),max=55000 x1=10000 x2=30000 ,,xxexp(a) ; 四、本题15分(写出程序及结果)xx,31已知: x=1: 0.5 : 5, y=[ 3. 2, 6. 1, 7, 7. 3, 7. 6, 8,7.9,9, 10 ] dx5. 求积分的命令格式为syms x; int((x^3+x)/(x+1),x,0,1); ,x,10求4阶拟合多项式,并画图比较. ( vpa(ans,6)), 积分结果为 11/6-2*log(2) (化简为0.44704) ;clear all 5326. 求多项式的根,其命令格式为p=[5, 0,-8,12,0,-1]fxxxx()58121,,,,x=1: 0.5 : 5; y=[ 3.2,6.1,7,7.3,7.6,8,7.9,9,10];x=roots(p),结果为-1.7194 0.8317 + 0.8110i 0.8317 - 0.8110i 0.3230 -0.2669; p=polyfit(x,y,4);x1=1:0.1:5;y1=polyval(p,x1);7. 求解方程lnx+2x-1= 0的命令为 solve('log(x) +2*x - 1 = 0');vpa(ans) ,结果为 0.6874_; plot(x,y,'.b',x1,y1,'-r') ,n8. =(2*a+2)*(1/2/a^2/(a+1)-1/2/(a+1)) 。

数学建模与数学实验课后习题答案

数学建模与数学实验课后习题答案

P594.学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。

学生要组织一个10人的委员会,使用Q 值法分配各宿舍的委员数。

解:设P 表示人数,N 表示要分配的总席位数。

i 表示各个宿舍(分别取A,B,C ),i p 表示i 宿舍现有住宿人数,i n 表示i 宿舍分配到的委员席位。

首先,我们先按比例分配委员席位。

A 宿舍为:A n =365.2100210237=⨯B 宿舍为:B n =323.3100210333=⨯C 宿舍为:C n =311.4100210432=⨯现已分完9人,剩1人用Q 值法分配。

5.9361322372=⨯=A Q7.9240433332=⨯=B Q2.9331544322=⨯=C Q经比较可得,最后一席位应分给A 宿舍。

所以,总的席位分配应为:A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

商人们怎样安全过河由上题可求:4个商人,4个随从安全过河的方案。

解:用最多乘两人的船,无法安全过河。

所以需要改乘最多三人乘坐的船。

如图所示,图中实线表示为从开始的岸边到河对岸,虚线表示从河对岸回来。

商人只需要按照图中的步骤走,即可安全渡河。

总共需要9步。

P60液体在水平等直径的管内流动,设两点的压强差ΔP 与下列变量有关:管径d,ρ,v,l,μ,管壁粗糙度Δ,试求ΔP 的表达式解:物理量之间的关系写为为()∆=∆,,,,,μρϕl v d p 。

各个物理量的量纲分别为[]32-=∆MT L p ,[]L d =,[]M L 3-=ρ,[]1-=LT v ,[]L l =,[]11--=MT L μ,Δ是一个无量纲量。

⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⨯0310100011110010021113173A其中0=Ay 解得()Ty 00012111---=,()Ty 00101102--=,()Ty 01003103--=,()Ty 10000004=所以l v d 2111---=ρπ,μρπ112--=v ,p v ∆=--313ρπ,∆=4π因为()0,,,,,,=∆∆p l v d f μρ与()0,,,4321=ππππF 是等价的,所以ΔP 的表达式为:()213,ππψρv p =∆P771. 在一块边长为m 6的正方形空地上建造一个容积为350m ,深m 5的长方体无盖水池,如果池底和池壁的造价每平方米分别为137元和100元,那么水池的最低总造价为多少元?设:建立优化模型。

2007-2008(2)数学建模与实验复习

2007-2008(2)数学建模与实验复习

浙江工业大学浙西分校 2007-2008学年第二学期《数学建模与数学实验》复习卷一、判断题:(对的打√,错的打×.)主要内容:MATLAB 基础知识、函数、运算符、命令使用(格式、作用、结果等)例: (1) 用户需要对矩阵预定义才可使用-----------( )(2) diag(X, 1) 命令表示抽取矩阵X 的主对角线下方第1条对角线元素 -------------------------------------------------------------- ( )(3) 求矩阵中的最小值只需用一次min ()命令就可以做到------( )(4) regress 和ployfit 都可以进行一元线性回归--------( )(5)拟合曲线必定过所有已知的数据点. ---------------------------( )二、用MATLAB 命令完成矩阵操作主要内容:矩阵的输入、生成、赋值、裁减、提取、访问、运算等例:(1)创建3阶随机矩阵A;(2)求A 的所有元素的平均值;(3)取出A 的第2行所有元素和第1列所有元素,分别赋给B 和C;(4)求A 的逆矩阵.三、四、MATLAB 编程主要内容:选择、循环及其嵌套、二维、三维作图例:(1)在同一窗口中画出下列三个函数的图象:]2,0[,2cos sin )1ln(π∈==+=x x y x y x y 、、(2)使用循环结构,设计一段程序,求1+2+3+----------+100的和。

(3)使用循环结构,设计一段程序,求∏=+-1000432n n n 。

(4)画出曲面)(2222)(y x e y x z +-+=的图象(5)一个三位整数各位数字的立方和等于该数本身则称该数为水仙花数。

输出全部水仙花数。

五、六、模型建立与MATLAB 命令(程序)求解主要内容:规划与优化、微分方程、、回归方程、拟合、模拟例:(1)某昼夜服务的公交线路每天各时间区段内需司机和乘务人员如下:班 次 时 间 所需人数1 6:00~10:00 602 10:00~14:00 703 14:00~18:00 605 22:00~2:00 206 2:00~6:00 30设司机和乘务人员分别在各时间区段一开始时上班,并连续工作八小时,问该公交线路至少配备多少名司机和乘务人员。

数学建模与数学实验习题答案

数学建模与数学实验习题答案

数学建模与数学实验习题答案数学建模与数学实验习题答案数学建模和数学实验习题是数学学习中的重要组成部分,通过这些习题,我们可以更好地理解和应用数学知识。

本文将介绍数学建模和数学实验习题的一些答案和解题方法,帮助读者更好地掌握数学学习。

一、数学建模数学建模是将数学方法和技巧应用于实际问题的过程。

在数学建模中,我们需要将实际问题抽象为数学模型,并通过数学方法进行求解和分析。

下面是一个简单的数学建模问题和其解题过程。

问题:某工厂生产产品A和产品B,每天的产量分别为x和y。

产品A的生产成本为10x+20y,产品B的生产成本为15x+10y。

如果工厂每天的总成本不超过5000元,且产品A的产量必须大于产品B的产量,求工厂一天最多能生产多少个产品。

解题过程:首先,我们需要建立数学模型来描述这个问题。

设产品A的产量为x,产品B的产量为y,则问题可以抽象为以下数学模型:10x+20y ≤ 5000x > y接下来,我们需要解决这个数学模型。

首先,我们可以通过图像法来解决这个问题。

将不等式10x+20y ≤ 5000和x > y转化为直线的形式,我们可以得到以下图像:(图像略)从图像中可以看出,不等式10x+20y ≤ 5000和x > y的解集为图像的交集部分。

通过观察图像,我们可以发现交集部分的最大值为x=250,y=125。

因此,工厂一天最多能生产250个产品A和125个产品B。

除了图像法,我们还可以通过代数法来解决这个问题。

将不等式10x+20y ≤ 5000和x > y转化为等式的形式,我们可以得到以下方程组:10x+20y = 5000x = y通过求解这个方程组,我们可以得到x=250,y=125。

因此,工厂一天最多能生产250个产品A和125个产品B。

二、数学实验习题数学实验习题是通过实际操作和实验来学习数学知识和技巧的一种方式。

下面是一个关于概率的数学实验习题和其答案。

习题:一枚硬币抛掷10次,求出现正面的次数为偶数的概率。

数学建模与实验习题库a

数学建模与实验习题库a

1《数学建模与实验》习题库a 感谢信息与计算科学02级的五位同学作为毕业设计英文翻译任务完成了此习题库的构建工作他她们的工作分别为: 刘静: 第1 4章朱佳琦: 第2 3 6章李新颖: 第5 7章朱晓强: 第8 9 10章甘永生: 第11 12章. 参考文献数学建模英文版机械工业出版社北京2003. 5. 经典原版书库原书名: A First Course in Mathematical Modeling Third Edition by Frank R. Giordano Maurice D. Weir William P. Fox. 第1章1.1习题1.写出下列序列的前五项40aa?? a 1na30a0a1 b 1na20a6 0a0 c 1na 2nana3 0a4 d 1na2na0a1 2.求序列第n项的公式a 33333…b141664256… c214181161321… d1371531… 差分方程3.考察下列序列写出差分方程以表示作为序列中前一项的函数的第n个区间上的变化. 4.写出满足下列差分方程的序列前五项动力系统5.代入n0123写出下列动力系统表示的前四个代数方程. 6.写出你认为可以用动力系统来建模的若干行为的名称. 确切地对变化建摸对问题7-10写出能对所述情景的变化建模的动力系统的公式7.目前你在储蓄帐户上有月息为0.5的5000存款你每个月再存入200. 8.你的信用卡上有月息1.5的欠款500美元你每月偿还50并且没有新的欠款. 9.你的父母在考虑一项贷款期限30年每月要支付0.5利息的100000美元抵押贷款.试建立一个每月还款p且能够在360次负费后还清抵押贷款借款的模型.提示:如果na表示n个月后的欠款那么0a和360a表示什么呢10.你的祖父母有一份年金.每月把上一个月结余的1作为利息自动存入年金.你的祖父母每月初要取出1000美元作为生活费。

目前他们的年金为50000美元.试用动力系统对年金建模年金会用光吗什么时候用光提示:当年金用光时na的值为多少1.1研究课题1 你希望买一辆新车而且选择范围仅限于SaturnCavalier和Hyundai.每家公司都向你提供2最优惠的交易条件: Saturn 车价13990 预付1000 月利率3.5直到60个月Cavalier 车价13550 预付1500 月利率4.5直到60个月Hyundai 车价12400 预付500 月利率6.5直到48个月你每个月为买车最多能付475美元。

《数学建模与数学实验》期末考查试卷

《数学建模与数学实验》期末考查试卷

《数学建模与数学实验》考查方案教学部门及专业数学学院11级数学与应用数学专业课程名称数学建模与数学实验教学班级2011级数学与应用数学1、2班考查时间第 19 周考核方式试卷□ 过程评价□ 作业或调查□ 作品 项目任务□ □√一、必做题:(60分)1、简答题:(20分)(1)通过《数学建模与数学实验》课程的学习,请谈谈对数学建模和数学实验的认识,学习《数学建模与数学实验》课程的收获。

(不少于500字)(15分)(2)简要说明数学建模的一般过程或步骤。

(5分)2、(40分) 一阶常微分方程模型——人口模型与预测下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(),0=t 万人。

1016540=N 年198219831984198519861987198819891990人口(万)101654103008104357105851107507109300111026112704114333年19911992199319941995199619971998人口(万)115823117171118517119850121121122389123626124810要求:(1)建立中国人口的指数增长模型,用数据拟合求相应的参数,并用该模型进行预测,与实际人口数据进行比较。

(2)建立中国人口的Logistic 模型,用数据拟合求相应的参数,并用该模型进行预测,与实际人口数据进行比较。

(3)利用MATLAB 图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。

(4)利用MATLAB 图形,画出两种预测模型的误差比较图,并分别标出其误差。

(5)用两个模型估计2015年中国人口。

二、选作题:(40分)(在如下问题中任选一题做建模解答)第1题 送货模型某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C 从某港口(编号⑨)分别运往各个公司。

路线是唯一的双向道路(如图1)。

数学建模与数学实验答案

数学建模与数学实验答案

数学建模与数学实验答案【篇一:数学建模与数学实验报告】>指导教师__成绩____________组员1:班级:工管0803 姓名:何红强学号:20083416组员2:班级:工管0801姓名:陈振辉学号:20085291实验1.(1)绘制函数y?cos(tan(?x))的图像,将其程序及图形粘贴在此。

建立m文件fun1.m 解:x=linspace(0, pi,30);y=cos(tan(pi*x)); plot(x,y)x=linspace(0, pi,30); y=cos(tan(pi*x)); plot(x,y)(2)用surf,mesh命令绘制曲面z?2x?y,将其程序及图形粘贴在此。

(注:图形注意拖放,不要太大)(20分)建立m文件fun3.m 解:x=-3:0.1:3; y=1:0.1:5;[x,y]=meshgrid(x,y); z=2*x.^2+y.^2; mesh(x,y,z)2214实验2.1、某校60名学生的一次考试成绩如下:93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 551)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分)解:1)建立数据文件chengji.mat,和m文件tjl.m 代码:load chengji mean=mean(x) std=std(x)range=range(x)skewness=skewness(x) kurtosis=kurtosis(x) hist(x,10)运行得:mean =80.1000 std =9.7106 range =44skewness =-0.46822结论:从上图图形形态来看符合正态分布3)假设正态分布的参数为:mu=80sigma=10 检验:首先取出数据,用以下命令:load chengji.mat 然后用以下命令检验[h,sig,ci] = ztest(price1,80,10)返回:h =0 sig = 0.9383 ci =[77.5697 , 82.6303]检验结果: 1. 布尔变量h=0, 表示不拒绝零假设. 说明提出的假设均值80是合理的.2. sig-值为0.8668, 远超过0.5, 不能拒绝零假设3. 95%的置信区间为[77.5697 , 82.6303], 它完全包括80, 且精度很高.实验3. 在研究化学动力学反应过程中,建立了一个反应速度和反应物含量的数学模型,形式为x1x235y?1??2x1??3x2??4x3其中?1,?,?5是未知参数,x1,x2,x3是三种反应物(氢,n戊烷,异构戊烷)的含量,y是反应速度.今测得一组数据如表4,试由此确定参数?1,?,?5,并给出置信区间.?1,?,?5的参考值为(1,0.05, 0.02, 0.1, 2).(20分)序号 1 2 3 4 5 6 7 8 9 10 11 12 13反应速度y 8.55 3.79 4.82 0.02 2.75 14.39 2.54 4.35 13.00 8.50 0.05 11.32 3.13氢x1 470 285 470 470 470 100 100 470 100 100 100 285 2853n戊烷x2300 80 300 80 80 190 80 190 300 300 80 300 190异构戊烷x310 10 120 120 10 10 65 65 54 120 120 10 120解:先建立vol.m文件代码如下:function y=vol(beta,x)beta=[beta(1) beta(2) beta(3) beta(4)beta(5)];x1=x(:,1);x2=x(:,2);x3=x(:,3);y=(beta(1)*x2-x3./beta(5))./(1+beta(2)*x1+beta(3)*x2+beta(4)*x3);然后建立ll1.m文件代码如下:x=[470 285 470 470 470 100 100 470 100 100 100 285 285 300 80 300 80 80 190 80 190 300 300 80 300 190 10 10 120 120 10 10 65 65 54 120 120 10 120];y=[8.55 3.79 4.82 0.02 2.75 14.39 2.54 4.35 13.00 8.50 0.05 11.32 3.13]; beta0=[1 0.05 0.02 0.1 2];[beta,r,j]=nlinfit(x , y,vol,beta0); beta运行结果为:beta =1.2526 0.0628 0.0400 0.1124 1.1914实验4.某设备上安装有四只型号规格完全相同的电子管,已知电子管寿命为1000--2000小时之间的均匀分布。

2008年全国大学生数学建模竞赛选拔试题

2008年全国大学生数学建模竞赛选拔试题

2008年全国大学生数学建模竞赛选拔试题时量:180分钟 满分:200分系别: 专业: 学号: 姓名:一、数学模型部分(每题10分,共90分)1、 简述数学建模论文的基本结构。

答:应该主要包含论文标题,摘要,问题重述,问题分析,模型建立,模型求解,模型验证,模型分析与改进,模型评价,参考文献等内容。

2、 简述数学建模论文摘要的要求及其应包含的主要内容。

答:应该主要包含论文建立的模型,模型的求解,模型验证,模型的分析与改进,模型的评价等的简要说明,以及论文的主要创新点和模型的优势。

3、 简述插值和拟合的区别,并简要介绍常用的插值方法和拟合方法及其基本理论和Matlab 命令。

答:插值是指根据已有的数据(自变量及对应的因变量)计算一些新的自变量对应的因变量的值;而拟合则是指根据已有的数据(自变量及对应的因变量),确定自变量与因变量之间最为恰当的一个函数关系式。

4、 请把1~9共9个数字填入3乘以3的正方形格子,使3个行中每个行的数字总和为15,3个列中每个列的数字总和也15,两条对角线数字总和也15。

(1) 中间格的数字应该为多少?并证明之。

(2) 用推理或建立模型方法求出其它数字(建模只说明求解,不求具体解),最终结果请填入右图。

解:(略)5、 设一个鞋店平均每天卖出鞋100双,批发一次差旅费为每次200元 ,每双鞋每存储一天的费用为0.01元。

请建立数学模型寻求最佳进货方式。

即该鞋店每隔多少天批发一次,每次进货量为多少时,使费用最少。

解:设鞋店第隔x 天批发一次货,每次进货量为y ,则在一个进货周期内的费用共有:∑=-+=xi i y y x C 0)100(01.0200),(只考虑不允许缺货的情况,即x y 100=,则平均每天的费用有:2100*01.0200),(xx x y x C +=, 考虑上式,当且仅当20100*01.0200*2==x (天)时,平均每天的费用最小,此时每次进货2000(双)。

数学建模与数学实验习题

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结第一章1.简述数学建模的一般步骤。

2.简述数学建模的分类方法。

3.简述数学模型与建模过程的特点。

第二章4.抢渡长江模型的前3问。

5.补充的输油管道优化设计。

6.非线性方程(组)求近似根方法。

第三章7.层次结构模型的构造。

8.成对比较矩阵的一致性分析。

第五章9.曲线拟合法与最小二乘法。

10 分段插值法。

第六章11 指数模型及LOGISTIC模型的求解与性质。

12.VOLTERRA模型在相平面上求解及周期平均值。

13 差分方程(组)的平衡点及稳定性。

14 一阶差分方程求解。

15 养老保险模型。

16 金融公司支付基金的流动。

17 LESLLIE 模型。

18 泛函极值的欧拉方法。

19 最短路问题的邻接矩阵。

20 最优化问题的一般数学描述。

21 马尔科夫过程的平衡点。

22 零件的预防性更换。

练习集锦1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵31/52a b P c d e f ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,(1)确定矩阵P 的未知元素。

(2)求P 模最大特征值。

(3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。

2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵322P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,(1)将矩阵P 元素补全。

(2)求P 模最大特征值。

(3)分析矩阵P 的一致性是否可以接受。

3.考虑下表数据(1)用曲改直的思想确定经验公式形式。

(2)用最小二乘法确定经验公式系数。

4.. 考虑微分方程(0.2)0.0001(0.4)0.00001dxx xy dtdy y xy dtεε⎧=--⎪⎪⎨⎪=-++⎪⎩(1)在像平面上解此微分方程组。

(2)计算0ε=时的周期平均值。

(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少?5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-=(1)求种群量增长最快的时刻。

2008全国大学生数学建模竞赛 题目汇总

2008全国大学生数学建模竞赛 题目汇总

2008高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”)A题数码相机定位数码相机定位在交通监管(电子警察)等方面有广泛的应用。

所谓数码相机定位是指用数码相机摄制物体的相片确定物体表面某些特征点的位置。

最常用的定位方法是双目定位,即用两部相机来定位。

对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。

只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。

于是对双目定位,精确地确定两部相机的相对位置就是关键,这一过程称为系统标定。

标定的一种做法是:在一块平板上画若干个点,同时用这两部相机照相,分别得到这些点在它们像平面上的像点,利用这两组像点的几何关系就可以得到这两部相机的相对位置。

然而,无论在物平面或像平面上我们都无法直接得到没有几何尺寸的“点”。

实际的做法是在物平面上画若干个圆(称为靶标),它们的圆心就是几何的点了。

而它们的像一般会变形,如图1所示,所以必须从靶标上的这些圆的像中把圆心的像精确地找到,标定就可实现。

图 1 靶标上圆的像有人设计靶标如下,取1个边长为100mm的正方形,分别以四个顶点(对应为A、C、D、E)为圆心,12mm为半径作圆。

以AC边上距离A点30mm处的B为圆心,12mm为半径作圆,如图2所示。

图 2 靶标示意图用一位置固定的数码相机摄得其像,如图3所示。

图3 靶标的像请你们:(1) 建立数学模型和算法以确定靶标上圆的圆心在该相机像平面的像坐标, 这里坐标系原点取在该相机的光学中心,x-y平面平行于像平面;(2) 对由图2、图3分别给出的靶标及其像,计算靶标上圆的圆心在像平面上的像坐标, 该相机的像距(即光学中心到像平面的距离)是1577个像素单位(1毫米约为3.78个像素单位),相机分辨率为1024×768;(3) 设计一种方法检验你们的模型,并对方法的精度和稳定性进行讨论;(4) 建立用此靶标给出两部固定相机相对位置的数学模型和方法。

08数学建模与数学实验习题6章

08数学建模与数学实验习题6章

习题:某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60台、80台.每季度的生产费用为f(x)=ax+bx^2(元),其中x是该季生产的台数.若交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c元.已知工厂每季度最大生产能力为100台,第一季度开始时无存货,设a=50、b=0.2、c=4,问工厂应如何安排生产计划,才能既满足合同又使总费用最低.讨论a、b、c变化对计划的影响,并作出合理的解释.设:第一季度生产x1台,第二季度生产x2台,第三季度生产x3台。

Min=50x1+0.2x2^2 +50x2+0.2x2 ^2+50x3+0.2x3^2+4(x1-40)+4(x1+x2-100)Stx1>=40;x1+x2>=100;x1+x2+x3=180;x1<=100;x2<=100;x3<=100;MATLAB运行:先建立M文件 cc1.m,定义目标函数:function f=cc1(x):f=50*x(1)+0.2*x(1)^2+50*x(2)+0.2*x(2)^2+50*x(3)+0.2*x(3)^2+4*(x(1)-40 )+4*(x(1)+x(2)-100);再建立M文件从此cc11.m定义非线性约束:x0=[60;60;60];A=[-1 -1 0];b=[-100];Aeq=[1 1 1];beq=[180];vlb=[40;0;0];vub=[100;100;100];[x,fval]=fmincon('cc1',x0,A,b,Aeq,beq,vlb,vub)结果:x =50.000060.000070.0000fval =11280lingo运行:model:min=50*x1+0.2*x1^2+50*x2+0.2*x2^2+50*x3+0.2*x3^2+(x1-40)*4+(x1+x2-100 )*4;x1>=40;x1+x2>=100;x1+x2+x3>=180;x1<=100;x2<=100;x3<=100;end结果:Local optimal solution found at iteration: 47Objective value: 11280.00Variable Value Reduced CostX1 50.00000 0.000000X2 60.00000 0.000000X3 70.00000 0.000000Row Slack or Surplus Dual Price1 11280.00 -1.0000002 10.00000 0.0000003 10.00000 0.0000004 0.000000 -78.000015 50.00000 0.0000006 40.00000 0.0000007 30.00000 0.000000进一步分析,讨论参数a,b,c对生产计划的影响:1)、固定b,c不变,a变化(分别取a=20、60),仍运行上述程序,结果为:由于生产总量是恒定的,而c x x x x x x b x x x a y )]100()40[()()(211232221321-++-++++++=,故a 的变化不会影响生产计划;b 是x 的二次项的系数,它反映了生产费用。

《数学建模与数学实验》期中测试题答案

《数学建模与数学实验》期中测试题答案

《数学建模与数学实验》期中测试题(开卷)答案:一.答:答:1. 命令窗口:(Command window)MATLAB的主要交互窗口。

用于输入MATLAB 命令、函数、数组、表达式等信息,并显示图形以外的所有计算结果。

还可在命令窗口输入最后一次输入命令的开头字符或字符串,然后用↑键调出该命令行。

MATLAB是标准的Windows界面,可利用菜单中的命令完成对工作窗口的操作。

其命令行功能键和快捷键与Windows 的一般应用程序相似2.工作空间窗口:(Workspace Window)用于储存各种变量和结果的空间,显示变量的名称、大小、字节数及数据类型,对变量进行观察、编辑、保存和删除。

(图示、操作演示)。

临时变量不占空间,为了对变量的内容进行观察、编辑与修改,可以用三种方法打开内存数组编辑器。

*双击变量名;*选择该窗口工具栏上的打开图标;*鼠标指向变量名,点击鼠标右键,弹出选择菜单,然后选项操作。

3.当前目录浏览器:(Current Directory)用于显示及设置当前工作目录,同时显示当前工作目录下的文件名、文件类型及目录的修改时间等信息。

只有在当前目录或搜索路径下的文件及函数可以被运行或调用。

4.命令历史窗口:(Command History)记录已运行过的MATLAB命令历史,包括已运行过的命令、函数、表达式等信息,可进行命令历史的查找、检查等工作,也可以在该窗口中进行命令复制与重运行。

二.答:a=eye(4);b=magic(4);c=zeros(4);v=[1 2 3 4];d=diag(v,0);e=rand(2,4);f=ones(2,4);g=1:3:30;g=g';h=0.1:0.1:1;h=h';i=[a,b;c,d;e,f];j=[i,g,h]三.答;绘制二维图形的一般步骤1.数据准备。

如x=pi*(0:100)/100; y=sin(x).*sin(9*x);2.选定图形窗及子图位置。

数学建模与数学实验课程设计题目与参考答案

数学建模与数学实验课程设计题目与参考答案

数学建模与数学实验课程设计题目1、一元线性回归问题在某产品表明腐蚀刻线,下表是试验活得的腐蚀时间(x)与腐蚀深度(y)间的一组数据。

试研究两变量(x,y)之间的关系。

其中:(秒)()。

要求:1)画出散点图,并观察y与x的关系;=+,求出a与b的值;2)求y关于x的线性回归方程:y a bx3)对模型和回归系数进行检验;4)预测x=120时的y的置信水平为0.95的预测区间。

5)编程实现上述求解过程。

注:参考书目:1、《概率论与数理统计》,浙江大学编,高等教育出版社。

2、《数学实验》,萧树铁主编,高等教育出版社。

2、 多元线性回归问题根据下述某猪场25头育肥猪4个胴体性状的数据资料,试进行瘦肉量y 对眼肌面积(x1)画出散点图y 与x1,y 与x2,y 与x3并观察y 与x1,x2, x3的关系;2)求y 关于x1,x2, x3的线性回归方程:0112233y a a x a x a x =+++-----(1),求出0123,,,a a a a 的值;3)对上述回归模型和回归系数进行检验;4)再分别求y 关于单个变量x1,x2, x3的线性回归方程:10111y a a x =+----(2),20222y a a x =+-----(3),30333y a a x =+--- --(4)求出ij a 的值;分别求y 关于两个变量x1,x2, x3的线性回归方程:10111122y a a x a x =++----(2’),20211222y a a x a x =++---(3’),30311322y a a x a x =++ --- --(4’)求出系数ij a 的值;并说明这六个回归方程对原来问题求解的优劣。

5)编程实现上述求解过程。

注:参考书目:1、《概率论与数理统计》,浙江大学编,高等教育出版社。

2、《数学实验》,萧树铁主编,高等教育出版社。

3、优化理论中的线性规划问题---生产安排。

数学建模08秋模拟考题二

数学建模08秋模拟考题二

数学建模08秋模拟考题二在这个模拟考题中,我们将通过解决一个数学建模问题来考察学生的数学建模能力。

请根据以下要求,对问题进行分析和求解。

问题描述:某市政府决定对市内的公共交通路线进行优化调整,以提高市民的乘坐体验和交通效率。

假设该市有N个公交车站点,每个站点之间有一定的距离。

假设公交车的速度恒定为v,而上下车的时间忽略不计。

要求:1. 给出任意两个站点之间的距离数据,假设N = 10。

2. 基于上述距离数据,建立一个简化模型,来求解在给定时间段内,乘客从A站点出发到达B站点的最短时间。

3. 利用该简化模型,给出从A站点到所有其他站点的最短时间,并列出各站点的最优路线。

4. 对模型进行评估,讨论其适用性和不足之处。

问题分析与求解:1. 距离数据的获取是解决问题的第一步。

我们可以通过实地测量或查询相关资料来得到任意两个站点之间的距离数据。

以N = 10为例,我们可以构建一个10x10的矩阵D来表示任意两个站点之间的距离,其中D[i][j]表示从第i个站点到第j个站点的距离。

2. 在建立简化模型之前,我们需要明确所求解的变量。

在该问题中,所求解的变量为乘客从A站点出发到达B站点的最短时间,我们可以用T表示。

根据问题的条件,我们可以得到T = D[a][b] / v。

3. 利用上述模型,我们可以求出从A站点到所有其他站点的最短时间。

具体过程如下:a. 初始化一个长度为N的数组T,其中T[i]表示从A站点到第i个站点的最短时间。

b. 遍历数组T,分别计算T[i]的值。

根据公式T[i] = D[a][i] / v,我们可以求得T[i]的值。

c. 找出T中的最小值和对应的站点,即为从A站点出发到其他站点的最短时间和最优路线。

4. 对模型的评估需要考虑其适用性和不足之处。

在该问题中,我们假设了公交车的速度恒定为v,并忽略了上下车时间。

这两个假设对于某些场景下可能并不准确,因此在实际应用中需要根据具体情况进行调整和改进。

数学建模与系统仿真章节测试题库及答案

数学建模与系统仿真章节测试题库及答案

数学建模与系统仿真章节测试题库及答案数学建模与系统仿真章节测试题库及答案第一章单元测试1、数学模型是对于现实世界的一个特定对象,一个特定目的,依据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.A:错B:对答案:【对】2、数学建模是利用数学方法解决实际问题的一种实践.即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解,是对实际问题的完全解答和真实反映,结果真实牢靠。

A:对B:错答案:【错】3、数学模型是用数学符号、数学公式、程序、图、表等刻画客观事物的本质属性与内在联系的理想化表述. 数学建模就是建立数学模型的全过程(包括表述、求解、解释、检验).A:对B:错答案:【对】4、数学模型(Mathematical Model):重过程;数学建模(Mathematical Modeling):重结果。

A:错B:对答案:【错】5、人口增长的Logistic模型,人口增长过程是先慢后快。

A:错B:对答案:【错】6、MATLAB的主要功能有A:符号计算B:绘图功能C:与其它程序语言交互的接口D:数值计算答案:【符号计算;绘图功能;与其它程序语言交互的接口;数值计算】7、Mathematica的基本功能有A:语言功能(Programing Language)B:符号运算(Algebric Computation)C:数值运算(Numeric Computation)D:图像处理(Graphics )答案:【语言功能(Programing Language);符号运算(Algebric Computation);数值运算(Numeric Computation);图像处理(Graphics )】8、数值计算是下列哪些软件的一个主要功能 A:MapleB:JavaC:MATLABD:Mathematica答案:【Maple;MATLAB;Mathematica】9、评阅数学建模论文的标准有:A:完全全都的结果B:表述的清晰性C:建模的制造性D:论文假设的合理性答案:【表述的清晰性;建模的制造性;论文假设的合理性】10、关于中国(全国)高校生数学建模竞赛(CUMCM)描述正确的是 A:2年举办一次B:一年举办一次C:开头于70年月初D:一年举办2次答案:【一年举办一次】其次章单元测试1、衡量一个模型的优劣在于它是否使用了高深的数学方法。

2008福大数学建模竞赛题目参考答案

2008福大数学建模竞赛题目参考答案

福州大学第四届数学建模竞赛题目参考解答A 题 供水问题某城市拟建A 、B 两个水厂。

从建造和经营两方面考虑,水厂分小、中、大三种规模,日均贮水量分别为30万吨、40万吨及50万吨。

由于水资源的原因,A 、B 两个水厂日进水量总和不超过80万吨。

A 、B 两个水厂共同担负供应六个居民区用水任务,这六个居民区的位置及拥有的家庭户数由表1给出,每户日均用水量为1.0吨,水厂供应居民点用水的成本为1.05元/吨公里。

(1)总成本最低;(2)若A 、B 两个水厂的位置尚未确定,请你确定它们的位置及供水方案使总成本最低; (3)如果该城市要在平直河岸L(设L 位于横坐标轴)上建一抽水站P ,供应同岸的A 、B 两个水厂。

考虑到输水管道沿线地质情况等原因,假设在修建OA 、OB 、OP 三段管道(如图1)时,每公里的耗资由相应的管道日供水量决定,参见表2。

水厂按超额加价收取水费,即每户日基本用水量为0.6 吨,每吨水费1.2元,超额用水量的水费按基本用水量的水价加价20%。

试确定该城市将供水收益全部用于偿还修建OA 、OB 、OP 三段管道投资费用的最优方案。

A 题参考解答:本问题是一个数学规划问题。

i x 1—A 厂到第i 个居民点的供水量 )6,,2,1( =i i x 2—B 厂到第i 个居民点的供水量 )6,,2,1( =ii c —第i 个居民点的用水量 )6,,2,1( =i z —供水总成本 问题(1)方案1(A 小厂,B 大厂)∑∑==-+-+-+-=6122261122))2()4()4()1((05.1min i i i i i i i i x y x x y x z (1)S.T)6,,2,1(,21 ==+i c x x i i i (2) ∑∑==≤≤61261150,30i ii i xx (3))6,,2,1(,0,021 =≥≥i x x i i (4) 方案2(A 大厂,B 小厂)只要将方案1中的约束条件(3)改成∑∑==≤≤61261130,50i ii i xx 。

数学建模习题与答案解析课后习题

数学建模习题与答案解析课后习题

第一部分 课后习题1. 学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。

学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。

(2)2.1节中的Q值方法。

(3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:1 2 3 4 5 …A 235 117.5 78.3 58.75 …B 333 166.5 111 83.25 …C 432 216 144 108 86.4将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。

你能解释这种方法的道理吗。

如果委员会从10人增至15人,用以上3种方法再分配名额。

将3种方法两次分配的结果列表比较。

(4)你能提出其他的方法吗。

用你的方法分配上面的名额。

2. 在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。

比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。

试用比例方法构造模型解释这个现象。

(1)分析商品价格C与商品重量w的关系。

价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。

(2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。

解释实际意义是什么。

3. 一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。

假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):身长(cm) 36.8 31.8 43.8 36.8 32.1 45.1 35.9 32.1 重量(g) 765 482 1162 737 482 1389 652 454 胸围(cm) 24.8 21.3 27.9 24.8 21.6 31.8 22.9 21.6 先用机理分析建立模型,再用数据确定参数4. 用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角a应多大(如图)。

《数学建模与数学实验》课程作业

《数学建模与数学实验》课程作业

《数学建模与数学实验》实验报告学院班级姓名学号二零一二年六月《数学建模与数学实验》课程作业一、简要说明MATLAB有那几个主要的界面?说明其作用是什么?1.与Windows的窗口界面类似,有File、Edit、Option、Windows、HelpFile菜单项:实现有关文件的操作。

Edit菜单项:用于命令窗口的编辑操作。

View菜单项:用于设置MATLAB集成环境的显示方式。

Web菜单项:用于设置MATLAB的Web操作。

Window菜单项:主窗口菜单栏上的Window菜单,只包含一个子菜单Close all,用于关闭所有打开的编辑器窗口,包括M-file、Figure、Model和GUI窗口。

Help菜单项:为MATLAB的学习提供在线和系统自带的帮助信息。

2.窗口(1)命令窗口。

用于输入命令并显示除图形以外的所有执行结果。

(2)工作空间窗口。

用于存储各种变量和结果的内存空间,显示工作空间中所有变量的名称、大小、字节数和变量类型说明,可对变量进行观察、编辑、保存和删除。

(3)当前目录窗口和搜索路径。

可以显示或改变当前目录,还可以显示当前目录下的文件并提供搜索功能。

(4)命令历史记录窗口。

自动保留自安装起所有用过的命令的历史记录,并且还标明了使用时间,从而方便用户查询。

(5)启动平台窗口。

帮助用户方便地打开和调用MATLAB的各种程序、函数和帮助文件。

二、简要说明你对数学建模的看法。

应用数学知识解决实际问题,并了解到相关数学软件的使用三、输入下面的矩阵A、B并完成相应的运算;5200210000830052A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1000120021301214B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1.求出矩阵A 的逆矩阵、矩阵A 的秩、矩阵A 所对应的行列式的值、A^2; 解:命令>> A=[5 2 0 0;2 1 0 0;0 0 8 3;0 0 5 2] A =5 2 0 0 2 1 0 0 0 0 8 3 0 0 5 2 矩阵A 的逆矩阵 >> inv(A) ans =1.0000 -2.0000 0 0 -2.0000 5.0000 0 0 0 0 2.0000 -3.0000 0 0 -5.0000 8.0000 矩阵A 的秩 >> rank(A) ans =4矩阵A 所对应的行列式的值 >> det(A)ans =1 A^2 >> A^2 ans =29 12 0 0 12 5 0 0 0 0 79 30 0 0 50 192.求出矩阵A 的伴随矩阵、矩阵A 的特征值及特征向量、矩阵A 对应的上三角矩阵和下三角矩阵及将矩阵、将矩阵A 化为最简的阶梯型矩阵;解:矩阵A 的伴随矩阵>> det(A)*inv(A)ans =1.0000 -2.0000 0 0-2.0000 5.0000 0 00 0 2.0000 -3.00000 0 -5.0000 8.0000 矩阵A的特征值及特征向量>> [V,D]=eig(A,'nobalance')V =1.0000 -0.4142 0 00.4142 1.0000 0 00 0 1.0000 -0.37980 0 0.6330 1.0000D =5.8284 0 0 00 0.1716 0 00 0 9.8990 00 0 0 0.1010 矩阵A对应的上三角矩阵>> triu(A)ans =5 2 0 00 1 0 00 0 8 30 0 0 2矩阵A对应的下三角矩阵>> tril(A)ans =5 0 0 02 1 0 00 0 8 00 0 5 2最简阶梯型矩阵>> rref(A)ans =1 0 0 00 1 0 00 0 1 00 0 0 12.完成下列矩阵的运算A*B、A/B、A\B、A.*B、A./B;解: >>A=[5 2 0 0;2 1 0 0;0 0 8 3;0 0 5 2]>>B=[1 0 0 0;1 2 0 0;2 1 3 0;1 2 1 4]>> A*Bans =7 4 0 03 2 0 019 14 27 1212 9 17 8>> A/Bans =4.0000 1.0000 0 01.5000 0.5000 0 0-3.6250 -1.9583 2.4167 0.7500-2.2500 -1.2500 1.5000 0.5000 >> A\Bans =-1.0000 -4.0000 0 03.0000 10.0000 0 01.0000 -4.0000 3.0000 -12.0000-2.0000 11.0000 -7.0000 32.0000 >> A.*Bans =5 0 0 02 2 0 00 0 24 00 0 5 8>> A./BWarning: Divide by zero.ans =5.0000 Inf NaN NaN2.0000 0.5000 NaN NaN0 0 2.6667 Inf0 0 5.0000 0.5000四、解下面的线性方程组;(1)123412423412342583692254760 x x x xx x xx x xx x x x⎧+-+=⎪--=⎪⎨-+=-⎪⎪+-+=⎩>> A=[2 1 -5 1;1 -3 0 -6;0 2 -1 2;1 4 -7 6]>> b=[8 9 -5 0]>> rank(A)ans =4>> rank([A,b'])ans =4运行结果:r(A)=r(A|b)=n,则线性方程组存在唯一解>> A\b'ans =3.0000-4.0000-1.00001.0000(2)123123123231 2252 353 x x xx x xx x x⎧++=⎪++=⎨⎪++=⎩命令>> A=[1 2 3;2 2 5;3 5 1]>> b=[1 2 3]>> rank(A)ans =3>> rank(A,b')ans =2运行结果:r(A)≠r(A|b),则线性方程组无解; 最小二乘意义上的近似解>> A\b'ans1五、解决下列高等数学中的问题;1.求出下列极限的值; (1)设1/1()1xf x e-=+,求当1,0,0,x x x x +- 时函数的极限;命令>> syms x>> f=1/(1+exp(-1/x)) f =1/(1+exp(-1/x)) >> limit(f,x,1) ans =1/(1+exp(-1))>> limit(f,x,0,'right') ans = 1>> limit(f,x,0,'left') ans = 0>> limit(f,x,inf) ans = 1/22.求出下列函数的导数值; (1)求出函数22cos x x y ee--=的一阶导数;命令>> syms x>> y=exp(-x^2)*cos(exp(-x^2)) y =exp(-x^2)*cos(exp(-x^2)) >> diff(y,x) ans =-2*x*exp(-x^2)*cos(exp(-x^2))+2*exp(-x^2)^2*sin(exp(-x^2))*x (2)求出函数(23)x y x e =+的2阶及4阶导数; 命令>> syms x>> y=(2*x+3)*exp(x (2*x+3)*exp(x) >> diff(y,2) ans =4*exp(x)+(2*x+3)*exp(x) >> diff(y,4)ans =8*exp(x)+(2*x+3)*exp(x)(3)求出函数22()2ln[()]x yz e x y+=++的2422,,,z z z zx y x y x y抖抖抖抖抖偏导数导数;命令>> syms x y z>> z=log(exp(2*(x+y^2))+(x^2+y))z =log(exp(2*x+2*y^2)+x^2+y)>> diff(z,x)ans =(2*exp(2*x+2*y^2)+2*x)/(exp(2*x+2*y^2)+x^2+y)>> diff(z,y)ans =(4*y*exp(2*x+2*y^2)+1)/(exp(2*x+2*y^2)+x^2+y)>> diff(diff(z,x),y)ans =8*y*exp(2*x+2*y^2)/(exp(2*x+2*y^2)+x^2+y)-(2*exp(2*x+2*y^2)+2*x)/(exp(2*x+2* y^2)+x^2+y)^2*(4*y*exp(2*x+2*y^2)+1)>> diff(diff(z,x,2),y,2)ans =16*exp(2*x+2*y^2)/(exp(2*x+2*y^2)+x^2+y)+64*y^2*exp(2*x+2*y^2)/(exp(2*x+2*y ^2)+x^2+y)-32*y*exp(2*x+2*y^2)/(exp(2*x+2*y^2)+x^2+y)^2*(4*y*exp(2*x+2*y^2)+1)+ 2*(4*exp(2*x+2*y^2)+2)/(exp(2*x+2*y^2)+x^2+y)^3*(4*y*exp(2*x+2*y^2)+1)^2-(4*exp( 2*x+2*y^2)+2)/(exp(2*x+2*y^2)+x^2+y)^2*(4*exp(2*x+2*y^2)+16*y^2*exp(2*x+2*y^2))-128*y^2*exp(2*x+2*y^2)^2/(exp(2*x+2*y^2)+x^2+y)^2+64*(2*exp(2*x+2*y^2)+2*x)/(exp (2*x+2*y^2)+x^2+y)^3*y*exp(2*x+2*y^2)*(4*y*exp(2*x+2*y^2)+1)-16*(2*exp(2*x+2*y^ 2)+2*x)/(exp(2*x+2*y^2)+x^2+y)^2*exp(2*x+2*y^2)-64*(2*exp(2*x+2*y^2)+2*x)/(exp(2* x+2*y^2)+x^2+y)^2*y^2*exp(2*x+2*y^2)-6*(2*exp(2*x+2*y^2)+2*x)^2/(exp(2*x+2*y^2) +x^2+y)^4*(4*y*exp(2*x+2*y^2)+1)^2+2*(2*exp(2*x+2*y^2)+2*x)^2/(exp(2*x+2*y^2)+x ^2+y)^3*(4*exp(2*x+2*y^2)+16*y^2*exp(2*x+2*y^2))3.求出下列积分的值;(1)ln tansin cosxdxx x ò命令>> syms x>> log(tan(x))/(sin(x)*cos(x)) ans =log(tan(x))/sin(x)/cos(x)>> int(f,x) ans =-dilog(1-i*exp(i*x))+dilog(exp(i*x)+1)+log(exp(i*x)+1)*log(1/2-1/2*exp(i*x)+1/2*i*(e xp(i*x)+1))+log(exp(i*x)-1)*log(i*(1-exp(i*x)^2)/(exp(i*x)^2+1))-log(exp(i*x))*log(i*(1-ex p(i*x)^2)/(exp(i*x)^2+1))-1/2*log(exp(i*x)+1)^2-log(2)*log(1/2*exp(i*x)-1/2)+log(exp(i*x)+1)*log(1/2-1/2*exp(i*x)-1/2*i*(exp(i*x)+1))+dilog(1/2-1/2*exp(i*x)-1/2*i*(exp(i*x)+1))+d ilog(1/2-1/2*exp(i*x)+1/2*i*(exp(i*x)+1))-log(exp(i*x))*log(1-i*exp(i*x))-log(exp(i*x))*log (1+i*exp(i*x))+log(exp(i*x))*log(exp(i*x)+1)-dilog(exp(i*x))-dilog(1+i*exp(i*x))+log(exp(i *x)+1)*log(i*(1-exp(i*x)^2)/(exp(i*x)^2+1))+log(exp(i*x)-1)*log(1/2+1/2*exp(i*x)-1/2*i*(e xp(i*x)-1))+log(exp(i*x)-1)*log(1/2+1/2*exp(i*x)+1/2*i*(exp(i*x)-1))-log(exp(i*x)-1)*log(1/2*exp(i*x)+1/2)+dilog(1/2+1/2*exp(i*x)+1/2*i*(exp(i*x)-1))+dilog(1/2+1/2*exp(i*x)-1/2*i *(exp(i*x)-1))-1/2*log(exp(i*x)-1)^2(2)83xdxò命令>> syms x>> f=x/(1+x)^(1/2) f =x/(1+x)^(1/2) >> int(f,x,3,8) ans = 32/3(3)计算二重积分22121x xx dydx y蝌>> syms x y 命令>> f=x^2/y^2 f =x^2/y^2>> int(int(f,y,1/x,x),x,1,2)Warning: Explicit integral could not be found. > In sym.int at 58 ans = 9/4六、绘制下列函数的图形(1)1sin(),[0.1,0.1]y x x=?命令>> x=-0.1:0.001:0.1 >> y=sin(1./x)Warning: Divide by zero. >>plot(x,y)-0.1-0.08-0.06-0.04-0.020.020.040.060.080.1-1-0.8-0.6-0.4-0.200.20.40.60.81(2)sin(cos ),[0,3]y x x x x p =++01234567891024681012命令>> x=0:pi/100:3*pi >> y=x+sin(x+cos(x)) >>plot(x,y)(3)20y x xy e +-= 命令>> syms x y>> f=x^2+x*y-exp(y) >> ezplot(f)xyx 2+x y-exp(y) = 0-6-4-20246-6-4-2246(4) 22ln(1)z x y =+- >> x=-1:0.1:1 >> y=-1:0.1:1>> [x,y]=meshgrid(x,y) >> z=log(x^2+y^2-1) >> mesh(x,y,z)-11七、谈谈你对数学建模和数学实验选修课程的看法和改进意见。

《数学建模与实验》习题库a

《数学建模与实验》习题库a

对问题 7-10,写出能对所述情景的变化建模的动力系统的公式
7.目前你在储蓄帐户上有月息为 0.5%的$5000 存款,你每个月再存入$200. 8.你的信用卡上有月息 1.5%的欠款 500 美元,你每月偿还$50 并且没有新的欠款. 9.你的父母在考虑一项贷款期限 30 年,每月要支付 0.5%利息的 100,000 美元抵押贷款.试建立
第1章
1.1 习题
1.写出下列序列的前五项 a0 − a4
(a) an+1 =3 a0 , a0 =1
(b) an+1 =2 a0 +6, a0 =0;
(c) an+1 =2 an ( an +3), a0 =4
(d) an+1 = an 2 , a0 =1
2.求序列第 n 项的公式
(a) {3,3,3,3,3,…}
(a)构建一个表示每小时浓度的模型
2
(b)建立一张浓度值表并确定何时浓度到达 100 毫克/升 7.利用习题 6,研制的模型开一个初始剂量处方,以及一个能把浓度保持在高出有效水平 500ppm(即百万分之五百,或万分之五)但低于安全水平 1000ppm 的维持剂量处方。用不 同的值来做实验,直到结果满意为止。 8.在一处古篝火遗址附近发现了一个猿人头骨。考古学家确信该头骨和古篝火是同时代的。 实验测试确定取自篝火的灰烬中,仅留存原来的碳 14 量的 1%,已知碳 14 以与其剩余量成 比例的比率衰减而且碳 14 在 5700 年里衰减掉 50%。构建一个碳 14 测定年代的模型。 9.附表的数据展示了一辆汽车的数据 n(以 5 英里/小时的增量计)以及从刹车到停止的(滑
4.对下列问题,如果存在平衡点的话,求差分方程的解及其平衡点。对各种初值讨论解的长 期行为,并把平衡点按稳定和不稳定进行分类。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、某校60名学生的一次考试成绩如下:
93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55
1)计算均值、标准差、极差、偏度、峰度,画出直方图;
3)检验分布的正态性;
3)若检验符合正态分布,估计正态分布的参数并检验参数.
1):建立存储数据文件aa:
a1=[93 75 83 93 91 85 84 82 77 76];
a2=[77 95 94 89 91 88 86 83 96 81];
a3=[79 97 78 75 67 69 68 84 83 81];
a4=[75 66 85 70 94 84 83 82 80 78];
a5=[74 73 76 70 86 76 90 89 71 66];
a6=[86 73 80 94 79 78 77 63 53 55];
a=[a1 a2 a3 a4 a5 a6];
save aa a
按(1)计算:
mean=mean(a)
std=std(a)
jicha=max(a)-min(a)
skewness=skewness(a)
kurtosis=kurtosis(a)
结果:
mean =
80.1000
std =
9.7106
jicha =
44
skewness =
-0.4682
kurtosis =
3.1529
画出直方图:
load aa
hist (a, 10)
50556065707580859095100
2):分布的正态性检验
load aa
normplot(a)
Data P r o b a b i l i t y Normal Probability Plot
3):参数估计:
load aa
[muhat,sigmahat,muci,sigmaci] = normfit(a)
结果:
muhat =
80.1000
sigmahat =
9.7106
muci =
77.5915
82.6085
sigmaci =
8.2310
11.8436
假设检验:
load aa
[h,sig,ci] = ttest(a,80.1)
结果:h =
sig =
1
ci =
77.5915 82.6085
检验结果: 1. 布尔变量h=0, 表示不拒绝零假设. 说
明提出的假设寿命均值80.1是合理的.
2. 95%的置信区间为[77.5915 82.6085], 它
完全包括80.1, 且精度很高.
3. sig-值为1, 远超过0.5, 不能拒绝零假
设.
2、据说某地汽油的价格是每加仑115美分,为了验证这种说法,一位学者开车随机选择了一些加油站,得到某年一月和二月的数据如下:一月:119 117 115 116 112 121 115 122 116 118 109 112 119 112 117 113 114 109 109 118
二月:118 119 115 122 118 121 120 122 128 116 120 123 121 119 117 119 128 126 118 125
)分别用两个月的数据验证这种说法的可靠性;
2)分别给出1月和2月汽油价格的置信区间;
3)给出1月和2月汽油价格差的置信区间.
1):建立存储数据文件:
y1=[119 117 115 116 112 121 115 122 116 118 109 112 119 112 117 113 114 109 109 118];
y2=[118 119 115 122 118 121 120 122 128 116 120 123 121 119 117 119 128 126 118 125];
save bb y1y2
1月:
参数估计:
load bb
[muhat,sigmahat,muci,sigmaci] = normfit(y1)
结果:
muhat =
115.1500
sigmahat =
3.8699
muci =
113.3388
116.9612
sigmaci =
2.9430
5.6523
假设检验:
load bb
[h,sig,ci] = ttest(y1,115)
结果:
h =
sig =
0.8668
ci =
113.3970
116.9030
检验结果: 1. 布尔变量h=0, 表示不拒绝零假设. 说
明提出的假设寿命均值115是合理的.
2. 95%的置信区间为[11
3.3970 116.9030], 它
完全包括115, 且精度很高.
3. sig-值为0.8668, 远超过0.5, 不能拒绝零假2月:
参数估计:
load bb
[muhat,sigmahat,muci,sigmaci] = normfit(y2)
结果:
muhat =
120.7500
sigmahat =
3.7116
muci =
119.0129
122.4871
sigmaci =
2.8227
5.4211
假设检验:
load bb
[h,sig,ci] = ttest(y1,115)
结果:
h = 1,sig = 4.9517e-004,ci =[116.8 120.2].
检验结果: 1. 布尔变量h=1, 表示拒绝零假设. 说明提出的假
设油价均值115是不合理的.
2. 95%的置信区间为[116.8 120.2], 它不包括
115, 故不能接受假设.
3. sig-值为
4.9517e-004, 远小于0.5, 不能接受零
假设.
2):
load bb
[h,sig,ci] = ttest2(y1,y2)
结果:
h =
1
sig =
3.6952e-005
ci =
-8.0273 -3.1727
检验结果:1. 布尔变量h=1, 表示拒绝零假设. 说明提出的
假设“油价均值相同”是不合理的.
2. 95%的置信区间为[-8.0273 -
3.1727],说明一月份油
价比二月份油价约低3.2至8.1分.
3. sig-值为3.6952e-005, 远小于0.5, 不能接受“油价均
相同”假设.。

相关文档
最新文档