智能水凝胶薄膜1
水凝胶作为电池隔膜的原理
水凝胶作为电池隔膜的原理主要是利用其独特的物理和化学性质来起到隔离正负极并保持离子传输的作用。
以下是具体的原理:
水凝胶是由高分子聚合物交联形成的三维网络结构,具有优良的吸水性和保水性。
在电池中,水凝胶可以吸收电解质溶液,从而保持离子在正负极之间的传输。
同时,由于水凝胶的物理阻隔作用,它可以防止正负极直接接触,从而避免短路。
另外,水凝胶的电导率较低,可以抑制电子的传输,进一步提高了电池的安全性。
当电池温度升高时,水凝胶中的水分会蒸发,降低其吸水性和保水性,从而抑制离子的传输。
这有助于防止电池过热和起火爆炸等安全问题。
总之,水凝胶作为电池隔膜的原理是通过保持离子传输、防止正负极直接接触和抑制电子传输等作用来提高电池的安全性和稳定性。
同时,水凝胶的吸水性和保水性可以在一定程度上缓解电池的容量衰减问题。
pnipam水凝胶的导热系数-概述说明以及解释
pnipam水凝胶的导热系数-概述说明以及解释1.引言1.1 概述PNIPAM水凝胶是一种具有独特温敏性质的材料,其在低温下呈现出疏水性质,而在高温下则呈现出亲水性质。
这种特殊性质使得PNIPAM水凝胶在生物医学领域、智能材料领域以及传感器技术等方面具有广泛的应用前景。
为了更好地利用PNIPAM水凝胶的特性,研究其导热性质是至关重要的。
本文旨在探讨PNIPAM水凝胶的导热系数及其影响因素,为进一步的应用研究提供参考和指导。
1.2 文章结构:本文主要分为三个部分:引言、正文和结论。
在引言部分中,将对PNIPAM水凝胶的导热系数做简要概述,并介绍文章的结构和目的。
正文部分将包括PNIPAM水凝胶的制备方法、导热机理以及影响其导热系数的因素等内容。
结论部分将对前文所述内容进行总结,展望PNIPAM水凝胶导热系数研究的未来方向,并提出结论。
通过以上结构,全面讨论PNIPAM水凝胶的导热系数及其相关研究,为该领域的深入了解和探讨提供参考。
1.3 目的本文旨在研究PNIPAM水凝胶的导热系数,探讨其在科学和工程领域的应用潜力。
通过分析PNIPAM水凝胶的制备方法、导热机理以及影响其导热系数的因素,我们希望能够深入了解这种智能水凝胶材料的热传导特性,并为其更广泛的应用提供理论支持和实验依据。
通过本文的研究,我们也希望能够为智能水凝胶材料的设计和性能优化提供一定的参考和指导。
2.正文2.1 PNIPAM水凝胶的制备方法PNIPAM水凝胶是一种温度敏感型聚合物凝胶,具有在温度变化下可逆可控的特性,因此在生物医药、化学传感等领域具有广泛的应用价值。
制备PNIPAM水凝胶的方法主要包括自由基聚合法、反应凝胶法和原位聚合法等。
自由基聚合法是较为常用的制备PNIPAM水凝胶的方法之一。
其具体步骤包括:首先,将N-异丙基丙烯酰胺(NIPAM)单体与交联剂如N,N-亚甲基双丙烯酰胺(BIS)混合溶解于水相溶液中;接着,加入引发剂如過硫酸铵(APS)和N,N,N',N'-四甲基乙二胺(TEMED),在氮气气氛下进行聚合反应;最后,将得到的凝胶进行洗涤和干燥处理,即可得到PNIPAM水凝胶。
光响应高分子水凝胶
光响应高分子水凝胶随着科技的不断发展,高分子材料的应用越来越广泛。
其中,光响应高分子水凝胶作为一种新型材料,具有独特的光学特性和多功能性,受到了广泛关注和研究。
光响应高分子水凝胶是一种由高分子材料构成的水凝胶,其特点是在受到外界光照的刺激下,能够发生可逆的体积变化和形状变化。
这种材料的响应性质使其在光学、光电子学、生物医学和传感器等领域具有广泛的应用前景。
光响应高分子水凝胶的光学特性是其独特之处。
通过改变材料的光学性质,可以实现对光的吸收、散射和透射的控制。
这使得光响应高分子水凝胶在光学器件和光学传感器的制备中具有重要的应用价值。
例如,利用光响应高分子水凝胶制备的光学器件可以根据外界光照的强弱实现光的开关和调制,从而实现光信号的控制和传输。
除了光学特性外,光响应高分子水凝胶还具有多功能性。
通过改变材料的化学组成和结构,可以实现材料的多种功能。
例如,将具有特定功能的分子或纳米材料引入光响应高分子水凝胶中,可以实现材料的光控释放、光控传感和光控反应等功能。
这使得光响应高分子水凝胶在生物医学和传感器领域有着广泛的应用前景。
光响应高分子水凝胶的制备方法多种多样,常见的方法包括自组装法、原位聚合法和交联法等。
其中,自组装法是一种简单有效的制备方法,通过在水溶液中加入适量的高分子材料和交联剂,经过适当的条件调控,可以得到具有一定结构和形状的光响应高分子水凝胶。
这种方法具有操作简单、成本较低的优点,适用于大规模生产和应用。
除了制备方法外,光响应高分子水凝胶的性能调控也是研究的重要方向之一。
通过改变高分子材料的交联程度、交联剂的类型和添加剂的种类等因素,可以调控材料的光学特性和响应性能。
这为实现材料的具体应用提供了可能。
在实际应用中,光响应高分子水凝胶还面临一些挑战和问题。
例如,材料的稳定性、光响应速度和光学性能的一致性等问题需要进一步研究和解决。
此外,材料的可重复性和可控性也是研究的重点之一。
光响应高分子水凝胶作为一种新型材料,在光学、光电子学、生物医学和传感器等领域具有广泛的应用前景。
基于电场敏感的智能水凝胶研究进展
基于电场敏感的智能水凝胶研究进展作者:孟鑫刘勇王富平刘澜陈忠敏来源:《新材料产业》2017年第12期一、前言水凝胶以水为分散介质,具有一定的含水量和灵活性[1]。
在外界环境下受到如温度[2]、酸碱度(pH值)[3]、磁场[4]、电[5]、光[6]、力的某种刺激时,能够发生自身形态可逆变化的水凝胶称为智能水凝胶。
由于智能水凝胶在外部刺激时会发生突跃式变化,即体积相转变,因此在灵敏传感领域具有广阔的应用前景[7]。
与其他刺激因素相比,电场刺激操作简单且易调控,所以具有电场敏感性的智能水凝胶相比于其他类型水凝胶具有较大的优势。
在电场作用下,电场敏感型水凝胶产生收缩变形,将电能转化为机械能。
这种功能使得电敏水凝胶可以应用在仿生驱动器、药物缓释以及人工肌肉等领域。
本文介绍了近几年来电场敏感水凝胶的制备原料与方法、电场敏感水凝胶响应机理以及其在人工肌肉、药物缓释等方面的应用。
二、电场敏感性水凝胶制备电场敏感性水凝胶是由聚电解质物质构成,网络中具备可离子化的基团是凝胶材料具有电敏反应的重要条件[8],分子链上具有离子基团的合成高分子或天然高分子通常可以通过共聚或共混形成电场敏感性水凝胶[9]。
根据材料来源的不同,电敏水凝胶可分为2类:一类是合成高分子材料为基材的水凝胶;另一类是天然高分子材料作为基材的水凝胶。
1.基于合成高分子的电敏水凝胶1965年,Hamlen等[10]发现制备的离子化聚乙烯醇(PVA)水凝胶在电场刺激下发生了变形,这是最早关于电敏水凝胶的报道。
后来,研究学者们对各种类型的合成高分子电敏水凝胶进行了制备并对它们在电场中的敏感行为进行了研究。
常见的聚电解质高分子材料为聚丙烯酰胺、聚丙烯酸类和碳纳米管类。
(1)聚丙烯酰胺类电场敏感水凝胶丙烯酰胺(AM)为非离子型单体,含有亲水的酰胺键,其聚合活性比较高[11]。
最早在1982年,Tanaka等[12]发现制备的聚丙烯酰胺凝胶在丙酮/水(1∶1体积比)的混合溶液中接触电场后,凝胶材料靠近电场阳极的那一端发生不连续的体积变化,因此他们认为聚丙烯酰胺是聚电解质物质,可以构成电敏水凝胶。
壳聚糖智能水凝胶
封面壳聚糖智能水凝胶作者:吴雪辰罗育阳摘要:壳聚糖智能水凝胶作为一种天然高分子材料,由于其来源于自然而具有的生物可降解性、无毒、来源广泛等优良的性能,近些年已经成为研究的热点。
而智能水凝胶本身对温度、PH、电磁性能等外界刺激能做出迅速的反应同时也收到广泛关注。
结合两者的优点合成的壳聚糖智能水凝胶更是具有了更加突出的优势。
下面从定义、制备以及应用等方面简单的对壳聚糖智能水凝胶最近几年的发展进行浅析。
关键词:壳聚糖,智能水凝胶,壳聚糖智能水凝胶,药物缓释。
1.定义甲壳素是由N-乙酰-2-氨基-D-葡萄糖以β-1,4糖苷键形式联接而成的多糖,是一种天然高分子化合物。
壳聚糖是其乙酰化产物。
壳聚糖与甲壳素结构的差别在于C2位的取代基不同,壳聚糖是氨基(—NH2),而甲壳素是乙酰氨基(—NHCOCH3)。
Fig.1是甲壳素与壳聚糖的化学结构式。
[1]脱乙酰基Fig.1水凝胶或称含水凝胶为亲水性但不溶于水的聚合物, 它们在水中可溶胀至一平衡体积仍能保持其形状。
[2]智能水凝胶一般是有机高分子水凝胶材料,其上的功能基团使水凝胶的吸水量对周围环境敏感如温度、pH、电、光或离子强度等,所以称作“智能”。
[3]壳聚糖分子由于主链或侧链上带有大量的亲水基团和有适当的交联网络结构,所以可形成智能水凝胶。
[4]2.制备(1)壳聚糖壳聚糖可通过天然的甲壳素支链水解直接制得。
(2)智能水凝胶智能水凝胶的制备方法比较复杂,可通过以下方法制得:Ⅰ.水溶性高分子的交联法[5]Ⅱ.接枝共聚法(3)壳聚糖智能水凝胶的制备翟延飞[6]研究认为壳聚糖主链上含有大量的亲水集团,尤其是2位上的氨基常作为交联点,能与甲醛、戊二醛等双官能团交联剂反应,使线性壳聚糖链间由碳氧双键交联成水凝胶。
常用的交联剂有:戊二醛,甲醛,亚甲基二丙烯酰胺,京尼平等,这种方法是化学交联法。
化学交联法制备的凝胶具有以下特点:交联均匀;通过不同的交联剂可以制备不同性质的水凝胶;制备薄膜纤维等形状;适合多糖类、蛋白质等生物天然高分子等。
智能型高分子水凝胶的应用研究现状
智能型高分子水凝胶的应用研究现状①房 喻② 胡道道 崔亚丽(陕西师范大学化学系 西安710062)提 要 介绍了智能型高分子和高分子水凝胶在分子器件、调光材料、生物医学等高新技术领域的应用研究现状。
0 引言1996年,美国麻省理工学院(M IT)的物理学家Toyoichi Tanaka因发现智能型水凝胶(Intelligent Hydrogels或Smart Hydrogels)而获当年探索者杂志新技术发现奖。
所谓智能型水凝胶是指对外来刺激具有可逆响应性、在水中可以溶胀的凝胶。
由于这类材料对外来刺激的可逆响应性使其在分子器件,调光材料,生物活性物质的温和、高效分离,酶和细胞的智能固定化以及药物可控释放等高新技术领域有广泛应用。
基于这样的认识,1992年美国著名风险投资商G eorge W Mc K inney与Tanaka合作创办了G el Sciences公司,致力于智能型水凝胶的工业应用开发。
两年后,Mc K inney联合另一位风险投资商Eyal S Ron创建了由G el Sciences控股的G elMed公司,该公司致力于智能型水凝胶的生物医学应用开发。
由于在随后的几年里G elMed的业务发展较之前者更快,因此两公司又合并为G el Sciences/ G elMed公司,以集中力量推进智能型水凝胶的生物医学应用。
智能型水凝胶的合成和应用研究涉及学科众多,具有显著的多学科交叉特点,是当今最具挑战的高新技术研究前沿领域之一。
关于智能型水凝胶的合成和性能研究已有多篇综述发表[1-4],本文重点介绍智能型水凝胶及与之密切相关的智能型大分子在高新技术领域的应用研究现状。
1 化学膜和化学阀大分子在溶液中的构象除了取决于大分子自身的结构本性外,还与大分子与大分子、大分子与溶剂之间的相互作用以及大分子溶液所处的外部环境条件有关。
对智能型大分子而言,其构象会因外部某种条件的微小变化而发生突变,而且这种变化可因外部条件变化的消失而消失。
智能水凝胶
智能水凝胶智能型水凝胶姓名:张鹏飞概述水凝胶可定义为在水中能够溶胀并保持大量水分而又不能溶解的交联聚合物。
亲水的小分子能够在水凝胶中扩散。
水凝胶具有优良的理化性质和生物学性质。
它除了具有生物粘附、可生物降解和良好的生物相容性外,还具有较高的水渗透性,有一定的强度,表面类似于生物体的软组织,这些特征使水凝胶可作为生物材料。
根据水凝胶对外界刺激的响应情况,水凝胶可以分为普通水凝胶和智能水凝胶。
普通水凝胶对环境的变化不敏感,即水凝胶的溶胀率不随外界条件的变化而变化。
智能水凝胶能感知外界环境的细微的物理化学变化,如pH、温度、压力、电场、磁场、离子强度、紫外光、可见光以及特异化学物质等的变化,并通过体积的溶胀和收缩来响应这些来自外界的刺激。
因此也称为环境敏感性水凝胶。
制备智能水凝胶材料一般是天然或合成的高聚物。
成为智能水凝胶材料必须具备: 高分子主链或侧链上带有大量的亲水基团和有适当的交联网络结构。
制备智能水凝胶材料的起始原料可以是单体(水溶或油溶单体)、聚合物(天然或合成聚合物)或者是单体和聚合物的混合物。
1 单体的交联聚合合成水凝胶的单体大致分为中性、酸性、碱性 3 种, 表1 列出了部分单体及交联剂。
水凝胶可以由一种或多种单体采用电离辐射、紫外照射或化学引发聚合并交联而得。
一般来说, 在形成水凝胶过程中需要加入少量的交联剂。
Nogaoka等在不使用交联剂的情况下通过辐射引发使单体在水溶液中交联合成聚N-异丙基丙烯酰胺 (polyNIPAAm)水凝胶, 这种方法操作简单, 交联度可通过改变单体浓度及辐射条件来控制, 无任何添加成分, 不会污染产品, 可以一步完成产品的制备及消毒。
与传统方法相比, 铣傻哪焊?均匀, 更有利于其性质的研究及生产更方便。
2 接枝共聚法水凝胶的机械强度一般较差, 为了改善水凝胶的机械强度, 可以把水凝胶接枝到具有一定强度的载体上。
在载体表面产生自由基是最为有效的制备接枝水凝胶的技术, 单体可以共价地连接到载体上。
仿生智能高分子水凝胶材料的设计制备及其生物应用(一)
仿生智能高分子水凝胶材料的设计制备及其生物应用(一)仿生智能高分子水凝胶材料的设计制备及其生物应用什么是仿生智能高分子水凝胶材料?仿生智能高分子水凝胶材料是一种功能性高分子材料,它具有类似于生物体的响应、识别和适应性能。
这种材料特别适用于生物医药、生物传感等领域。
设计制备设计原理仿生智能高分子水凝胶材料通常由两种或多种分子组成,其中一种分子具有响应性质,如溶胀度、运动行为或化学反应;另一种分子承担结构保持和稳定性等功能。
制备过程制备过程一般包括以下步骤:1.合成响应性单体和交联剂;2.进行自组装形成结构化的高分子凝胶;3.确认凝胶的结构、力学性质和响应性。
生物应用生物医药仿生智能高分子水凝胶材料在生物医药领域中有广泛的应用,包括:1.药物缓释2.细胞分离和分化3.组织工程4.治疗性蛋白质或基因递送系统生物传感仿生智能高分子水凝胶材料也可以用于生物传感领域,例如:1.生物体内微环境的监测2.生物标记物的检测和分析发展前景仿生智能高分子水凝胶材料在医学、生物学、化学、物理学等多个领域的应用中具有很大的潜力和前景。
未来的工作重点将集中于发展更具有复杂性、功能性和多样性的材料。
发展趋势未来,仿生智能高分子水凝胶材料的发展趋势将集中于以下几个方面:1.多样性:发展更多样化的响应性和结构稳定的高分子水凝胶材料;2.复杂性:发展具有更高级别、更多功能的高分子水凝胶材料,如可逆装配或自报告材料;3.可控性:进一步提高高分子水凝胶材料对刺激的反应可控性和灵敏性,实现更精细的控制;4.应用:将高分子水凝胶材料应用于更广泛的生物医药和生物传感领域,如神经科学、心脏病学、生物成像等领域。
总结仿生智能高分子水凝胶材料的设计制备及其生物应用具有广泛的研究和应用前景。
它是将基础科学与应用科学结合的重要桥梁,在未来的应用领域中发挥着重要的作用。
磁感应水凝胶
磁感应水凝胶
磁感应水凝胶是一种智能材料,它结合了水凝胶的特性与磁性粒子的功能。
这种材料通常是由水溶性聚合物网络和分散在其中的纳米级磁性颗粒(如Fe3O4或γ-Fe2O3)组成。
在正常状态下,磁感应水凝胶具有类似于普通水凝胶的柔软、湿润及高含水量特点,但在外部磁场作用下,可以发生形状变化、体积收缩或膨胀、运动等响应。
磁感应水凝胶的应用广泛,例如:
1.生物医学领域:可用于药物控释系统,通过改变磁场来控制药物释放的速度和位置;也可制作微型机器人,在体内导航并进行靶向治疗。
2.软体机器人和驱动器:作为软体机器人的构建元件,通过外部磁场调控其变形和运动行为。
3.环境修复:用于吸附并移除污染物,当施加磁场时,能够集中收集并方便地从环境中分离出污染物。
4.智能材料:在传感器和执行器中应用,对磁场做出快速且可逆的反应,实现信号转换或力的传递等功能。
由于磁感应水凝胶的独特性质,它们在科研和工程领域都展现出了巨大的潜力和广泛应用前景。
智能薄膜材料的设计与合成
智能薄膜材料的设计与合成随着现代物理学、材料科学、纳米制造技术的发展,各种新型材料相继涌现,其中智能薄膜材料成为了一个备受关注的领域,在生命科学、电子技术、环境科学等多个领域都有广泛应用前景。
然而,智能薄膜材料的设计与合成是一个复杂的过程,需要多学科交叉的理论知识和实验技巧,本文将从材料设计、合成方法、性能研究等方面探讨智能薄膜材料的发展趋势。
一、智能薄膜材料的定义与分类智能薄膜材料是一种表现出对外部刺激响应性能的材料,其本质是光、电、热、机械等能量形式与材料结构的相互作用,通过这种相互作用实现了对外部刺激的响应。
智能薄膜材料可分为多种类型,如显示型智能薄膜、传感型智能薄膜、光学调制型智能薄膜、声波吸收型智能薄膜等,既有单一属性的智能薄膜,也有复合属性的智能薄膜。
二、智能薄膜材料的设计智能薄膜材料的设计需要考虑材料的响应形式、响应机制、响应速度、稳定性等一系列因素。
常见的设计策略包括表面修饰法、配位聚合法、光化学修饰法、自组装法等。
例如,通过表面修饰法,将功能单元化学修饰在普通薄膜的表面,使之具有响应性能。
其中,功能单元被选择为能响应外部刺激的分子,如聚合物、离子液体、蛋白质、金属离子等。
三、智能薄膜材料的合成方法智能薄膜材料合成方法和材料设计密不可分,因为材料的某些特性是由合成方法决定的。
常用的合成技术包括自组装、辐射诱导聚合、配位聚合、静电纺丝等。
其中,自组装法是一种简单而有效的策略,通过材料自身分子间作用力的作用,在溶液中形成自组装体,然后利用自组装体的特性形成智能薄膜。
辐射诱导聚合是一种现代材料制备技术,它可以通过光或电子束对分子或单体的诱导而实现聚合反应。
四、智能薄膜材料的性能研究智能薄膜材料性能研究是探究其材料的响应特性。
根据其响应性能又可分为以下几个方面:光学性能、电学性能、磁学性能、表面形貌等等。
其中光学性能主要是指智能薄膜对于入射光的响应能力,例如光学调制型智能薄膜,它可以对入射光进行干涉和准直,从而实现光调制。
《聚苯胺基导电水凝胶的制备和性能研究及其在柔性传感器的应用》
《聚苯胺基导电水凝胶的制备和性能研究及其在柔性传感器的应用》一、引言随着科技的发展,柔性电子器件在众多领域中得到了广泛的应用。
其中,柔性传感器因其独特的性能和广泛的应用前景,受到了广泛的关注。
聚苯胺基导电水凝胶作为一种新型的柔性材料,具有优异的导电性、柔韧性和生物相容性,是制备柔性传感器的重要材料之一。
本文将重点探讨聚苯胺基导电水凝胶的制备方法、性能研究及其在柔性传感器中的应用。
二、聚苯胺基导电水凝胶的制备聚苯胺基导电水凝胶的制备主要包括原料准备、化学反应和凝胶化过程。
首先,需要准备聚苯胺单体、交联剂、溶剂等原料。
然后,通过化学聚合反应将聚苯胺单体进行聚合,形成聚苯胺链。
接着,通过加入交联剂和溶剂,使聚苯胺链发生交联和凝胶化,最终形成聚苯胺基导电水凝胶。
三、聚苯胺基导电水凝胶的性能研究聚苯胺基导电水凝胶具有优异的导电性、柔韧性和生物相容性。
首先,其导电性能主要源于聚苯胺链中的π电子共轭结构,使得其具有较高的电导率。
其次,其柔韧性主要归因于水凝胶的三维网络结构,使其能够在受到外力时发生形变而不破裂。
此外,其生物相容性使其在生物医学领域具有广泛的应用前景。
通过对聚苯胺基导电水凝胶的电学性能、力学性能和生物相容性等方面进行深入研究,可以为其在柔性传感器中的应用提供重要的理论依据。
四、聚苯胺基导电水凝胶在柔性传感器中的应用聚苯胺基导电水凝胶在柔性传感器中的应用主要表现在其可以作为传感器的敏感元件。
由于聚苯胺基导电水凝胶具有优异的导电性和柔韧性,可以将其制备成薄膜、纤维等形态,用于构建柔性传感器。
在传感器中,聚苯胺基导电水凝胶可以感知外界的形变、压力、温度等物理量,并将这些物理量转化为电信号,从而实现对外界环境的感知和响应。
此外,聚苯胺基导电水凝胶的生物相容性也使其在生物医学传感器、人工皮肤等领域具有广泛的应用前景。
五、结论聚苯胺基导电水凝胶作为一种新型的柔性材料,具有优异的导电性、柔韧性和生物相容性,为柔性传感器的制备提供了新的选择。
【CN109602729A】一种与皮肤高贴合度及可促进伤口愈合的水凝胶膜的制备方法【专利】
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201910126832.0(22)申请日 2019.02.20(71)申请人 江南大学地址 214122 江苏省无锡市滨湖区蠡湖大道1800号(72)发明人 杨成 张冬梅 (74)专利代理机构 南京禹为知识产权代理事务所(特殊普通合伙) 32272代理人 王晓东(51)Int.Cl.A61K 9/70(2006.01)A61K 47/36(2006.01)A61K 47/40(2006.01)A61P 17/02(2006.01)(54)发明名称一种与皮肤高贴合度及可促进伤口愈合的水凝胶膜的制备方法(57)摘要本发明公开了一种与皮肤高贴合度及可促进伤口愈合的水凝胶膜的制备方法,其特征在于:包括,向1%透明质酸水溶液中添加1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐和1-羟基苯并三唑,调节反应体系的pH,在冰水浴中活化2h,向溶液中加入单-6-去氧-多巴胺环糊精衍生物,搅拌混合均匀,调节pH ,50℃反应48~120h,进行减压蒸馏除去溶剂,加入辣根过氧化氢酶及30%双氧水交联反应,静置过夜,透析小分子催化剂与未反应的底物,之后浇膜挥发水分,得到所述水凝胶膜。
本发明制备的水凝胶膜生物相容性优异、透气性良好,能够负载药物协同促进伤口愈合,尤其在外界环境及体内应激反应的扰动下具有与皮肤组织相应的应力应变范围。
权利要求书1页 说明书7页 附图2页CN 109602729 A 2019.04.12C N 109602729A权 利 要 求 书1/1页CN 109602729 A1.一种与皮肤高贴合度及可促进伤口愈合的水凝胶膜的制备方法,其特征在于:包括,向1%透明质酸水溶液中添加1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐和1-羟基苯并三唑,调节反应体系的pH,在冰水浴中活化2h,得透明质酸活化水溶液;再向透明质酸活化水溶液中加入单-6-去氧-多巴胺环糊精衍生物,搅拌混合均匀,调节pH,50℃反应48~120h;将反应后溶液进行减压蒸馏除去溶剂后,加入辣根过氧化氢酶及30%双氧水交联反应,静置过夜,透析小分子催化剂与未反应的底物,之后浇膜挥发水分,得到所述与皮肤高贴合度及可促进伤口愈合的水凝胶膜。
智能高分子凝胶的应用 ppt课件
ppt课件
9
2. 智能高分子凝胶的体积相转变
外界环境变化
溶胀相
收缩相
体积不连续变化 内因: 范德华力、氢键、疏水作用 及静电作用力----相互组合和竞争
Robert, P. Appdtv课an件ce in Colloid and Interface Sci , 2000 , 85 ,32 -3310
及 智能高分子 选择性渗透、选择性 选择透过膜材、传感膜材、
应
膜
吸附和分离等;膜的 仿生膜材、人工肺
组成、结构和形态的
用
变化--智能化
ppt课件
7
8.2 智能高分子凝胶
定义 体积相转变 刺激响应性与分类 制备 应用
ppt课件
8
1. 智能高分子凝胶定义
三维高分子网络与溶剂组成的体系 含有亲溶剂性基团,可被溶剂溶胀 最大的特点:体积相转变 “软湿”材料,强度低,有特殊功能 水凝胶、有机凝胶
scienceandtechnologyofadvancedmaterials2002395102智能高分子凝胶的应用化学机械器件polynipaamcorubpy3循环提供的动力自振动凝胶作成毛状传动装置17ppt课件智能高分子凝胶的应用智能药物释放系统释放机理刺激响应脉冲释放网孔的可控性18ppt课件葡萄糖响应高分子配合物形成的胰岛素释放微囊聚乙二醇感知葡萄糖浓度交换键合释放药物患者的血糖浓度维持正常水平19ppt课件凝胶用于污泥脱水过程智能高分子凝胶的应用环境工程溶胀收缩循环20ppt课件智能高分子凝胶的应用人工肌肉利用高分子凝胶的溶胀收缩设计具有肌肉功能的装置制成的机械手21ppt课件智能高分子凝胶的应用智能膜智能型高分子的构象会因外部某种条件的微小变化而发生突变而且这种变化可因外部条件变化的消失而消失
水凝胶的合成及应用
University of Science and Technology of China
Thank you!
University of Science and Technology of China
3. 合成方法实例
University of Science and Technology of China
四、水凝胶应用实例
University of Science and Technology of China
1.水凝胶伤口涂敷材料
水凝胶伤口敷料 水凝胶伤口敷料的优点 1.防止体液损失 2.透氧 3.加速伤口愈合
University of Science and Technology of China3. 水凝胶D打印美剧《西部世界》片头
University of Science and Technology of China
3. 水凝胶3D打印
水凝胶3D打印示意
University of Science and Technology of China
3.Ahmed Enas M, Aggor Fatma S, Awad Ahmed M, ElAref Ahmed T. An innovative method for preparation of nanometal hydroxide superabsorb ent hydrogel. Carbohydr Polym 2013;91:693–8.
pf127水凝胶结构
PF127水凝胶是由聚氧化乙烯(PEO)、聚氧化丙烯(PPO)和聚氧化乙烯-氧化乙烯共聚物(PEE)三种聚合物组成的三嵌段水凝胶。
其中PEO和PPO的比例为6:3,PEE的含量为10%。
PF127水凝胶的结构可以用SEM、FTIR、XRD等技术进行表征。
PF127水凝胶的结构中包含大量的亲水性官能团,如羟基、羧基等,使得其具有良好的水溶性和生物相容性。
此外,PF127水凝胶还具有一定的机械强度和可塑性,可以通过调节其交联密度和交联程度来控制其力学性能和形态结构。
PF127水凝胶的应用领域广泛,包括药物缓释、组织工程、生物传感器等方面。
其独特的结构和性能特点使得其在药物递送、生物成像等方面有着广泛的应用前景。
光响应水凝胶
光响应水凝胶
随着科技的不断发展,各种高新技术在不断涌现。
光响应水凝胶就是其中之一,它是一种能够在光照射下产生水凝胶化学反应的材料。
光响应水凝胶是一种新型的智能材料,具有很多优点。
首先,它可以根据外界光强度的变化自动调节自身的状态。
其次,光响应水凝胶具有良好的生物相容性,可以广泛应用于生物医学领域,比如用于药物释放、组织修复等方面。
此外,它还可以用于照明领域,既实用又美观。
目前,光响应水凝胶在很多领域都已有了应用。
比如,有些科学家正在探索将其用于人工智能的制造,以便在机器人和人类之间形成更加智能化的互动。
当然,光响应水凝胶还有很多其他的应用领域,随着科技的不断发展,它的应用前景会越来越广阔。
然而,光响应水凝胶在制备过程中存在一些困难。
首先,制备过程需要花费很长的时间。
其次,成本较高,制备出较大规模的水凝胶材料需要更高的成本投入。
此外,其使用范围也需要在研究中得以证明。
为了解决这些问题,有些科学家正在寻找更加高效、更加节省成本的制备方法,并通过研究促进其应用领域的扩大。
总体来说,光响应水凝胶具有很好的应用前景,并且在科技不断进步、需求不断增长的背景下,其未来的发展前景也十分广阔。
我们相信,
在各方的不断努力下,光响应水凝胶的研究和应用会不断取得新的突
破和进展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Macromolecules2009,42,5811–58175811DOI:10.1021/ma9008934 One-Pot Synthesis of Thermoresponsive PNIPAM HydrogelMicrocapsules Designed to Function in Apolar MediaMarta Horecha,Volodymyr Senkovskyy,*Manfred Stamm,and Anton Kiriy*Leibniz-Institut f::ur Polymerforschung Dresden e.V.,Hohe Strasse6,01069Dresden,GermanyReceived April24,2009;Revised Manuscript Received June5,2009ABSTRACT:Poly(N-isopropylacrylamide)(PNIPAM)hydrogel microcapsules having a hydrophobiccorona(MCs)were prepared by precipitation-polymerization performed in water-in-oil emulsion using polyethyleneoxide-polyisoprene block copolymer as macromolecular surfactant and a corona-forming compound.The resulting hydrogel MCs form stable dispersions even in highly apolar organic solvents,suchas cyclohexane,but flocculate in water.An approach to load the MCs with water,based on addition ofaqueous solutions to the dispersion of the MCs in THF followed by addition of apolar solvents to induce segregation of a water-rich phase,was developed.The water-filled hydrogel MCs show a well-pronouncedswelling/deswelling transition triggered by temperature in an environment that contains only minute amountsof water.Encapsulating capabilities of the MCs were also demonstrated.The MCs can be envisaged for applications that require controlled dispersion and release of hydrophilic species in oils.IntroductionPolymer microcapsules(MCs)attract a great attention due to their applications in drug delivery,1food technology,catalysis,2 cosmetics,sensing,3photonics,4for encapsulation of dyes,inks, and pesticides,or utilizations as containers for confined chemical reactions.5Templating against hard(solid)templates,such as layer-by-layer self-assembly of desired materials onto preformed colloidal particles followed by core removal,is one of the most common methods for preparation of hollow structures.6This approach,however,has several intrinsic disadvantages,ranging from the inherent difficulty of achieving high product yields from the multistep synthetic process to the lack of structural robustness of the shells upon template removal.Still another disadvantage of this method is that refilling the hollow interior with functional species is also challenging.In a view of these difficulties,among many other approaches to hollow structures,7emulsion poly-merizations are of the greatest interest.8The method,utilizing oil-in-oil(O/O),9water-in-oil(W/O),or oil-in-water(O/W) emulsions as flexible self-assembled templates,allows not only an easy preparation a large variety of polymeric capsules,but also permits a one-pot encapsulation of various guest species (adhesives,agrochemicals,biomolecules,flavors,fragrances, drugs,and dyes)during preparation of the capsules.10Stimuli-responsive hollow hydrogel MCs offer even greater versatility for encapsulation and triggered release,which can be controlled by changing temperature,pH,ionic strength,or other stimuli.11Poly(N-isopropylacrylamide)(PNIPAM)hydrogels undergo a sharp volume transition near the lower critical solution temperature(LCST)from a highly hydrated swollen state below LCST to a dehydrated collapsed state above the LCST.12This effect is largely exploited in“smart”PNIPAM hydrogel MCs,in which a shell permeability is modulated by temperature.Most of PNIPAM hydrogel MCs were designed for,predominantly, biomedical needs to function in water environment and therefore, featured by hydrophilic outer surfaces.13However,for many other important applications,such as in catalysis,cosmetic, agrochemistry,or for smart coatings,14complex MCs having hydrophobic outer surfaces(to provide dispersibility in organic solvents)and hydrophilic interior for encapsulation of polar compounds,are also strongly desired.In this work we aimed at the preparation of such MCs.Hydrophilic and potentially thermoresponsive PNIPAM was chosen as a material for the preparation of capsules walls,and polyisoprene,as a hydro-phobic corona-forming component.Synthesis of PNIPAM MCs via the standard W/O emul-sion polymerization using low molecular weight surfactants (e.g.,Span80)was previously reported.13a Although as-formed dispersions of these MCs were stable in the oil due to an excess of the Span80surfactant,subsequent purification of the MCs from the polymerization byproduct significantly reduced their colloidal stability in apolar solvents.In the present work,instead of easily removable small-molecule surfactants,we utilized poly-ethyleneoxide-polyisoprene block copolymer(PEO131-b-PI361) as macromolecular surfactant for W/O emulsion and prepared PNIPAM MCs that form stable dispersions in apolar solvents. Swelling behavior and encapsulated properties of the resulting MCs were preliminarily tested and the obtained results are reported herein.Experimental PartInstrumentation.Dynamic light scattering(DLS)measurements were performed by Zetasizer Nono S,(He-Ne-laser4mW, 632.8nm,back scattering,NIBS-Technology,Malvern Instru-ments).Fluorescent images were obtained using an Axio Imager Microscope with50X objective(Carl Zeiss,Jena,Germany). For data acquisition a filter set15(excitation,BP546/2;beam splitter,FT580;emission,LP590)in conjunction with a SPOT Insight camera(Diagnostic instruments inc.,Sterling Heights MI)and a MetaMorph imaging system(Molecular Devices, Downingtown,PA)were used.Scanning electron microscopy was carried out using Ultra55(Carl Zeiss SMT,Jena,Germany) operating at3kV in the secondary electron(SE)mode.TEM measurements were performed with Libra200(Carl Zeiss SMT). UV/vis measurements were carried out using Perkin-Elmer*Corresponding author.E-mail:(V.S.)senkovskyy@ipfdd.de;(A.K.)kiriy@ipfdd.de./MacromoleculesPublished on Web06/24/2009r2009American Chemical Society5812Macromolecules,Vol.42,No.15,2009Horecha et al.UV/vis spectrometer Lambda800.1H NMR spectra were recorded on a Bruker DRX-500spectrometer operating at500.13MHz for1H using CDCl3as solvent.The spectra were referenced on the solvent peak(δ(1H)=7.26ppm).GPC measurements were carried out on Agilent1100Series(Agilent)normal-temperature size exclusion chromatograph,equipped with refractive index detector and one column PL Gel MIXED-B(Polymer Labora-tories,U.K.),eluent=chloroform,and flow rate of1mL/min. Calibration was based on polystyrene standards obtained from Polymer Standards Service(PSS,Germany).For AFM imaging NanoScope IV-D3100(Digital Instruments,Santa Barbara, CA)was used.Imaging were performed with silicon tips with radius of10-20nm,spring constant of30N/m,and resonance frequency of250-300kHz.Materials.Polyethyleneoxide-block-polyisoprene(PEO131-b-PI361)(M n,PEO-b-PI=30400g/mol,M w,PEO-b-PI=39400g/mol, PDI PEO-b-PI=1.3;a parent PI361,M n,PI=24600g/mol,M w PI= 29000g/mol,PDI PI=1.18)was synthesized by anionic polym-erization according to the previously published protocol.15All other chemicals were purchased from Aldrich and used as received.Preparation of PNIPAM Microcapsules.First,0.15g of PEO131-b-PI361was dissolved in3mL of trimethylpentane (TMP),as the oil phase.Then,0.15g of N-isopropylacrylamide (NIPAM),0.01g(5mol%)of methylenbisacrylamide(MBA), and0.006g of potassium persulphate(KPS)(1mol%)were dissolved in0.5mL of deionized water,as the water phase. Water and oil phases were mixed in Ultra-Turax mixer(IKA, Germany)at13500rpm.The stirring was stopped after2min and the resulting emulsion was transferred into the glass tube equipped with magnetic stirrer.Temperature of the mixture was rapidly risen to80°C and the polymerization was carried out for 1h.The excess of the surfactant was washed out by repeated centrifugation and redispersion in pure TMP.The resulting particles formed stable dispersions in cyclohexane,isooctane, anhydrous THF and in THF/water mixtures with water content up to10%,but flocculated at higher water content.The MCs do not form stable dispersions in pure water and methanol. Results and DiscussionsTo prepare PNIPAM microcapsules we performed W/O emulsion copolymerization of NIPAM and water-soluble cross-linker(MBA)in the presence of a water-soluble initiator(KPS) and PEO131-b-PI361block copolymer surfactant.An important prerequisite for the formation of the capsules in this method is that the polymerization was conducted at temperature above the LCST of PNIPAM that,we believe,induced precipitation of the formed phase-separated PNIPAM at the W/O interface. Although the synthetic protocol used herein has many com-mon features with earlier reported synthetic routes to similar microcapsules,13it has few important differences.Thus,Choi et al.13b reported preparation of PNIAPM microcapsules by polymerization of NIPAM at temperature below LCST of PNIPAM in a oil-water emulsion formed in a microfluidic device.To stabilize the capsulate morphology they utilized an oil-soluble initiator that decomposed by UV-light irradiation to give radicals in the oil phase.In that case,a portion of radicals coming from the oil phase and reached the interface with water was responsible for the initiation of the polymerization selectively from the interface.Sun et al.13a applied a combination of three factors to achieve the hollow morphology for PNIPAM particles. First,according to their method initiating radicals were induced selectively at the oil-water interface by diffusion and subsequent reaction of two precursors,the first one soluble in the oil,and the second one,in the water phase.Second,they used an oil-soluble cross-linker that,as expected,diffused from the oil phase into the water droplet and cross-linked NIPAM preferentially in a vicinity to the oil-water interface.Third,the polymerization was performed at temperature above LCST of PNIPAM at which formed PNIPAM is neither soluble in water nor in oil and may precipitate at the oil-water interface.We found out that if the W/O polymerization of NIPAM is carried out at temperatures above the LCST of PNIPAM,the selective generation of radicals at the oil-water interface is unnecessary for achieving of hollow structures since the phase-separation of the forming cross-linked PNIPAM above the LCST is a sufficient factor to induce the formation of the microcapsules. Indeed,a distinct difference of our approach from the above-cited ones is that we do not apply any special measures to selectively generate initiating radicals at the oil-water interface and we do not promote stabilization of the hollow morphology inducing cross-linking selectively at the interface.In our case,the monomer,the cross-linker,and the initiator used are soluble in water and are poorly soluble or not soluble in the oil.A partition of NIPAM and KPS between the water and the oil phases(in the absence of surfactants)was determined for two temperatures:(1)room temperature,i.e.,temperature at which the emulsion for further polymerization was prepared,and (2)80°C,i.e.,polymerization temperature.We found that a content of NIPAM in the oil phase is negligible at room temperature and it growth to about20%as temperature rises up to80°C.The solubility of the KPS in the oil is negligible at both temperatures.Thus,it can be concluded that during the polymerization a major portion of the reactants is located in the water phase.It can be also assumed that at relatively high temperature used(80°C)radicals are rapidly forming in the whole volume of the water droplets and thus the formation of the cross-linked PNIPAM is expected to occur in the whole volume of the droplets,and not only at the oil-water interface.If so,no formation of hollow spheres could be expected for polymeriza-tions performed under such conditions if the formed polymer (e.g.,polyacrylamide)is miscible in the dispersed phase(i.e., water).Indeed,a control experiment demonstrated that when more polar acrylamide instead of NIPAM is polymerized under otherwise the same polymerization conditions,nonhollow poly-acrylamide hard microspheres are formed(Figure S1).Similar result could be expected for the polymerization of NIPAM below its LCST(using initiators with low decomposition temperatures). However,at temperatures above LCST of PNIPAM the polym-erization of NIPAM in aqueous solutions proceeds differently and follows a so-called precipitation-polymerization mechanism. According to it,if the polymerization is carried out in water hydrophobic PNIPAM oligomers formed at early stages of the polymerization precipitate from the aqueous medium and ag-gregate to form nuclei that further grow finally resulting into well-defined PNIPAM microspheres.16a When the polymeriza-tion of NIPAM is performed in the presence of added template particles with an appropriate surface functionality,then the precipitation of the growing PNIPAM occurs selectively on the added particles(precipitation on convex surfaces).16b We suggest that similar mechanism occurs in our experiments with the only difference that the concave surfaces of the droplets featured by the macromolecular surfactant act here as seeds for selective precipitation of the phase-separated PNIPAM leading to the microcapsulate morphology.It is likely that formed hydrophobic NIPAM oligomers preferentially accumulate at the oil-water interface rather than homogeneously nucleate in water due to a higher hydrophobicity of the continuous phase and of the block copolymer surfactant than of the water.Phenomenologically,this process is similar to the process of the formation of polymeric microcapsules in O/W miniemulsions in detail described by McDonalds et al.8a and Landfester et al.8b In their cases,a hydrophobe and a monomer formed a common miniemulsion, whereas the formed polymer was immiscible with the hydrophobe and demixed throughout the polymerization to form the hollowArticle Macromolecules,Vol.42,No.15,20095813polymer structure surrounding the hydrophobe.The method developed in our work can be considered as an inverse-phase analogous of the process described by McDonalds et al.and Landfester et al.8b An important prerequisite for an efficient encapsulation of one immiscible liquid by another one both dis-persed in a third immiscible liquid according to Torza et al.,8c is that relative surface tensions between the three phases must be in a correct order.8This rule is luckily satisfied in our case since the polarity of PNIPAM above LCST falls in between a highly apolar continuous phase (isooctane)and a highly polar disperse phase (water)and thus,the encapsulation of water by PNIAPM can be expected.Another important difference from the earlier reported proto-cols is that we use the macromolecular surfactant that provides an efficient stabilization of the microcapsules in oils even after extensive purification of the microcapsules,thus demonstrating that the macromolecular surfactant is firmly attached to the microcapsules.The later effect is,most likely,due to a covalent cross-linking of the reactive PI block by radicals formed at the oil -water interface (that came from the water phase)upon NIPAM polymerization.The hollow morphology of the resulting PNIPAM structures was detected by scanning electron,transmission electron,and atomic force microscopy (SEM,TEM,and AFM,respectively,Figure 1and 2).On those images the microcapsules appear as Z-collapsed microstructures,1-3μm in a diameter,with either concave hemispherical (Figure 1a,b),or folded (Figure 1c),or toroidal (Figure 1d),or pancake (Figure 1e,f)morphologies,depending on the deposition conditions.17Obviously,the final morphology of the MCs in the dry state depends on mechanical properties of the MCs walls in different solvents.The deposition from cyclohexane leads to less collapsed hemispherical (Figure 1a,b)and folded (e.g.,marked by white arrows in Figure 1c)structures (these structures have larger heights compared to heights of the MCs deposited from other solvents).In cyclohexane the MCs walls possess,obviously,the highest mechanical strength among the solvents studied,since cyclohexane is a nonsolvent for PNIPAM that does not swell the MCs walls.Clear,such particles can be formed only from hollow microspheres upon their Z-collapse,as shown in Scheme 1,pathways i,ii,and iii.The hollow structure of these hemispheres is further confirmed by the fact that in some cases smaller hemispheres are located inside the larger ones,as marked by red arrows in Figure 1a.These hemispheres are clearly different from ones formed upon the deposition of polyacryamide microspheres that for compar-ison shown in Figure S1and Scheme 1,pathway vii.THF,which is a “good”solvent for PNIPAM,swells the MCs walls making them easily deformable.The deposition from THF results into much more flat structures compared to those formed from cyclo-hexane,but they still are not completely squashed (Figure 1d,Scheme 1,pathway iv).In this case,the toroidal morphology of the structures is given by the fact that the complete flattening of the MCs must derive rather strong deformation of the material near edges of the toroids,which,consequently,would require a much higher load than that needed to cause the collapse of central areas of the MCs.Finally,fully flat pancake structures are formed upon the deposition from THF/water mixture due to further softening of the PNIPAM walls in the aqueous solvent (Figure 1e,f and Scheme 1,pathway v).Scheme 1summarizes possible collapse scenarios occurring upon the deposition of the microcapsules from different solvents.Scheme 1(pathways vi and vii)also shows the possible morphologies of the surface structures formed upon Z-collapse of nonhollow spheres,suchasFigure 1.SEM images of the MCs deposited onto Si wafer:from a dispersion in cyclohexane (a -c);from a dispersion in THF (to get the information about the thickness of the structures,the imaging was performed for the sample tilted at 54°)(d);from a dispersion in THF/water (100/3v/v)(e,f).5814Macromolecules,Vol.42,No.15,2009Horecha et al.polyacrylamide particles (Figure S1).Obviously,most of the PNIPAM structures observed on the images Figure 1would not be formed from nonhollow spheres further confirming successful preparation of microcapsules in this work.TEM image of the microcapsules adsorbed onto amorphous carbon film is shown in Figure 2a.Areas with light-gray color (marked by arrows A)correspond to two-walls PNIPAM struc-tures.Darker spots on the TEM image can be attributed to areas in which imaging electrons transmit through thicker PNIPAM layers.This happens (i)when the microspheres overlap one with another (arrows B),(ii)or when they fold (arrow C),(iii)or on curved edges of the toroid miscrospheres (arrows D)such as shown in Figure 1d and Scheme 1,pathway iv.The structures,that do not have darker edges can be attributed to fully flat pancake particles.Thus,TEM fully corroborates with the hollow morphology of the prepared PNIPAM microparticles,since the image of a nonhollow microsphere should be darker in the center of the sphere.AFM imaging (Figure 2b,c)reveals the expected pancake-like morphology.A cross-section of the AFM topogra-phy image gives a direct information about the thickness of double-wall structures (Figure 2c).Thus,a single-wall thickness of the MCs estimated from the images is about 150/2=75nm,in a full agreement with the expected value for the water-to-mono-mers ratio used in the polymerization.It must be also emphasized that the PI shell that decorates the MCs and provides their stability in apolar solvents is not “seen”on the AFM images (on the SEM and TEM,as well),since it is too thin compared to the size of the MCs.18The size of the MCs dispersed in different environment and temperatures was further investigated by dynamic light scattering (DLS).Freshly dispersed MCs in anhydrous THF show a hydrodynamic diameter of about 1μm at room temperature (not shown).It gradually increases with time and reaches an equilibrium value of 1.8-1.9μm upon the stirring for more than one day (Figure 3,black squares).Most probably,such a long time to reach the constant size is needed for the MCs to restore the spherical shape from the collapsed hemispherical one.Addition of small amounts of water (i.e.,3-5%by volume)to the dispersion of the microcapsules equilibrated at room temperature in anhydrous THF moderately increases the size of the MCs up to 2.2μm (Figure 3,red circles).19Further increase of the water content has a little influence on the MCs size;instead,they aggregate and precipitate,as the percen-tage of water exceeds the value of 10%(vol).The later effect is,likely,due to a strongly hydrophobic character of the outer polyisoprene surface that conflicts with the increased hydrophi-licity of the environment.Even higher swelling degrees were achieve using a tertiary THF/water/cyclohexane system as a dispersion medium.In control experiments we found that addition of cyclohexane to wet THF induces a stepwise phase-separation and precipitationScheme 1.(a)Structure of the PNIPAM Microcapsule (MCs)Having a Hydrophobic Polyisoprene Corona and (b)Morphologies for CollapsedStructures Possibly Formed upon Drying of Hollow and Non-Hollow Hydrogel Particles aaForexplanation,see the text.Figure 2.(a)TEM image of the MCs (see the text for the explanation).(b)AFM topography image of the MCs deposited on mica.(c)Cross-section of the AFM image performed along a line,as shown in part b.Article Macromolecules,Vol.42,No.15,20095815of a water-rich phase.Particularly,the initially clear THF/water solution containing 1mL of THF and 30μL of water becomes turbid after the addition of 150μL of cyclohexane;the addition of 250μL of cyclohexane derives a precipitation of ∼5μL of the water-rich phase that consist of ∼90%of water and ∼10%of THF (the content of cyclohexane in this phase is negligibly small).Simple calculations show that ∼15%of the whole amount of water precipitates at this point (∼85%of water still remains in the THF-rich phase).The phase-separation reaches its maximum upon addition of 600μL of cyclohexane and ∼21μL of the water-rich phase precipitates.We assumed that if a similar experiment will be performed in the presence of MCs,the phase-separating water would enter the hydrophilic interior of the MCs,inducing an additional swelling of the MCs.To verify this hypothesis,a series of experiments were conducted directly in a cuvette for DLS measurements.In a typical experiment,100μL of cyclohexane was added dropwise,or in a single portion,to the sample containing 0.5mg of the MCs dispersed in 1mL of THF and 30μL of water.The DLS measurements were started in about 10min after the cyclohexane addition,as soon as the dispersions recovered their initial appearance (the dispersions became a bit more turbid right after the addition of cyclohexane).The DLS measurements showed that the hydrodynamic diameter of the MCs increases up to 2.8-3.5μm in these experiments (Figure 3,blue triangles).Hence,it is indeed possible to reach much higher swelling degrees for the MCs in the tertiary THF/water/cyclohexane system than those achievable in binary THF/water mixtures.The diameter of the MCs swollen in the tertiary solvent mixture was found to be dependent on particular mixing conditions (rate of cyclohexane addition,stirring intensity,etc.).Rather fast addition of cyclo-hexane,generally,favors achieving of higher swelling degrees of the MCs,than the slow addition.A reason of a poor reprodu-cibility of the swelling result is not fully understood,however,we tentatively ascribe it to a complex nature of processes occurring in these experiments.Indeed,addition of cyclohexane to the THF/water mixture induces significant rearrangements in the system:a substantial portion of THF molecules that before addition of cyclohexane was solely involved in the solvation of water,is now consumed for interactions with a highly apolar cyclohexane.As a result,water molecules are no more efficiently solvated due to increased hydrophobisity of the solvent mixture and phase-separate onto the water-rich and water-poor phases.The water-rich phase has two alternative pathways to release hydrophobic surrounding:either to aggregate into macroscopic droplets and precipitate,or to enter into the hydrophilic interior of the MCs.This uncertainty might explain a poor reproducibility of theswelling process.The later pathway is associated with additional energetic barriers required for diffusion of polar water molecules through the apolar polyisoprene shell and for the penetration of the PNIPAM wall.An exact segregation scenario,i.e.,what fraction of the water-rich phase will follow the first segregation pathway and what (the second one)is a complex function of many factors (e.g.,rate of cyclohexane addition,stirring intensity,temperature,etc.),not all of which are easily controllable or even known.Therefore,more investigations are necessary to shed a light on this process.A practically important feature of the PNIPAM-based objects is their thermoresponsiveness,the property inherently associated with the interaction of PNIPAM with water.Our experiments deal with the solvent containing minute amounts of water (i.e.,3%)and thus,from the first sight,thermo-driven phase transi-tions of PNIPAM are unlikely here.Indeed,although the phase transition of PNIPAM occurs in THF/water mixtures 20and in other mixed aqueous solutions (cononsolvency effects),21a sub-stantial fraction of water in the mixed solutions is needed to ensure the thermoresponsiveness.For example,in the THF/water mixtures PNIPAM exhibits the LCST,if the water content exceeds a value of 35%,whereas THF-rich mixtures (water content <35%)are good solvents for PNIPAM.20Figure 3shows dependencies of the hydrodynamic diameter of our MCs in different environment at different temperatures,measured by DLS.As expected,in anhydrous THF (Figure 3,black squares)and in THF/water mixtures (Figure 3,red circles)the size of the MCs remains almost constant within the experi-mental error in the temperature interval from 17to 55°C.In contrast,the size of the MCs in the tertiary THF/water/cyclo-hexane system is temperature-dependent.The most pronounced changes in the MCs size were observed for highly swollen MCs with the diameter of 3.5μm obtained upon the fast addition of cyclohexane to the MCs dispersion in THF/water mixture (Figure 3,blue triangles).In this case,the rise of the temperature from 23°C up to 55°C induces continuous deswelling of the MCs to the diameter of 2μm,that is close to the MCs size in anhydrous THF.Cooling of this dispersion down to the room temperature induces reswelling of the MCs up to 3.5-3.7μm (not shown).Although the overall content of water in the system (i.e.,3%)is too low to ascribe the observed changes of the MCs size to the conventional temperature-driven phase transition of PNIPAM,after addition of cyclohexane the water-rich phase is allocated preferentially inside the MCs (water content in this phase is ∼90%).Hence,water phase directly interacts with the inner surface of the PNIPAM wall and can efficiently hydrate it.From these considerations the temperature-driven phase transition of PNIPAM in the investigating system looks feasible.In this case,the PNIPAM walls dehydrate and tend to shrink,as soon as temperature rises above 35°C.At the same time,the outside part of the MCs wall is in a contact with the THF-rich part and,hence,the walls can be reswollen with THF as soon as PNIPAM becomes dehydrated.Thus,the process occurring upon increase of temperature in this system phenomenologically can ascribed to the transition of PNIPAM from the swollen-in-water to the swollen-in-THF states 22rather than to the conventional coil-to-globule transition.The PNIPAM wall softened by THF,becomes more penetrable for solvents that facilitates the release of the water-rich phase from the MCs interior and their deswel-ling down to the size inherent to the swollen-in-THF MCs (i.e.,∼2μm).However,there is also an additional factor that further com-plicates the situation.We found that the increase of the tempe-rature significantly enhances solubility of water in the THF/cyclohexane mixture so that a predominant quantity of water segregated at room temperature upon the addition of cyclohex-ane,could be then redissolved at increased temperature.If so,anFigure 3.Dependence of the hydrodynamic diameter for the PNIPAM hydrogel MCs on temperature in different environments for MCs dispersed in:anhydrous THF (black squares);THF containing 3%of water (red circles);THF/water/cyclohexane mixture,100/3/10(bluetriangles).。