2013届人教A版理科数学课时试题及解析(36)空间几何体的结构特征及三视图和直观图

合集下载

空间几何体的结构及视图金题讲义及参考答案

空间几何体的结构及视图金题讲义及参考答案

空间几何体的结构及视图金题讲义及参考答案考点梳理一、第一章《空间几何体》的知识结构本讲知识内容:柱、锥、台、球的结构特征;空间几何体三视图和直观图,能识别三视图所表示的空间几何体。

二、知识梳理1.空间几何体的结构特征(1)棱柱的结构特征(2)棱锥的结构特征定义:有一个面是多边形,其余各面都是有一个公共顶点....的三角形,由这些面所围成的几何体叫做棱锥。

(3)圆柱的结构特征定义:以矩形的一边所在的直线为轴旋转,其余三边旋转形成的面所围成的旋转体叫圆柱.(4)圆锥的结构特征定义:以直角三角形的一条直角边所在的直线为轴旋转,其余两边旋转形成的面所围成的旋转体叫圆锥.(5)棱台的结构特征概念:棱锥被平行于棱锥底面的平面所截后,截面和底面之间的部分(6)圆台的结构特征定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分(7)球的结构特征定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体,叫球体,简称球.2.空间几何体的投影和三视图⎧⎪⎨⎪⎩正视图:光线从几何体的前面向后面正投影.三视图左视图:光线从几何体的左面向右面正投影.俯视图:光线从几何体的上面向下面正投影,规律:(1)正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;(2)俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;(3)左视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度.金题精讲题一题面:下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④题二题面:如果一个空间几何体的正视图与侧视图均为全等的等边三角形,俯视图为一个圆及其圆心,那么这个几何体为( )A.棱锥B.棱柱C.圆锥D.圆柱 题三题面:某几何体的三视图如图所示,那么这个几何体是( )A.三棱锥B.四棱锥C.四棱台D.三棱台 题四题面:用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A.8B.7C.6D.5 题五题面:将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )ABCD O EA 1B 1C 1D 1题六题面:下列有关棱柱的说法:①棱柱的所有的面都是平的;②棱柱的所有的棱长都相等;③棱柱的所有的侧面都是长方形或正方形;④棱柱的侧面的个数与底面的边数相等;⑤棱柱的上、下底面形状、大小相等. 正确的有__________. 题七题面:如图,E 、F 分别为正方体的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的射影可能是图的 (要求:把可能的图的序号都.填上).题八题面:如图所示,O 是正方体ABCD -A 1B 1C 1D 1对角线A 1C 与AC 1的交点,E 为棱BB 1的中点,则空间四边形OEC 1D 1在正方体各面上的正投影不可能...是( ) EF DIA H GBCEF DAB C侧视 图1 图2BEA .BEB .BEC .BED .题九题面:如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥P ABC -的主视图与左视图的面积的比值为______.课后练习注:此部分为老师根据本讲课程内容为大家精选的课下拓展题目,故不在课堂中讲解,请同学们课下自己练习并对照详解进行自测. 题一题面:一个凸多面体有8个顶点,①如果它是棱锥,那么它有 条棱, 个面;②如果它是棱柱,那么它有 条棱 个面。

【走向高考】(2013春季发行)高三数学第一轮总复习 9-1空间几何体的结构特征及其直观图、三视图 新人教A版

【走向高考】(2013春季发行)高三数学第一轮总复习 9-1空间几何体的结构特征及其直观图、三视图 新人教A版

9-1空间几何体的结构特征及其直观图、三视图基础巩固强化1.(文)(2011·合肥市质检)下图是一个几何体的三视图,其中正(主)视图和侧(左)视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是( )A .6πB .12πC .18πD .24π[答案] B[解析] 由三视图知,该几何体是两底半径分别为1和2,母线长为4的圆台,故其侧面积S =π(1+2)×4=12π.(理)一个几何体的三视图如图所示,正视图上部是一个边长为4的正三角形,下部是高为3两底长为3和4的等腰梯形,则其表面积为( )A.31π2B.63π2C.π4(57+737) D.π4(41+737) [答案] D [解析]由三视图知,该几何体是一个组合体,上部是底半径为2,高为23的圆锥,下部是两底半径分别为2和32,高为3的圆台,其表面积S =π×2×4+π(2+32)×372+π·(32)2=π4(41+737),故选D. 2.如图所示是水平放置三角形的直观图,D 是△ABC 的BC 边中点,AB 、BC 分别与y ′轴、x ′轴平行,则三条线段AB 、AD 、AC 中( )A .最长的是AB ,最短的是AC B .最长的是AC ,最短的是AB C .最长的是AB ,最短的是AD D .最长的是AC ,最短的是AD [答案] B[解析] 由条件知,原平面图形中AB ⊥AC ,从而AB <AD <AC .3.(文)(2012·河南六市联考)如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的全面积为( )A.14 3 B.6+2 3 C.12+2 3 D.16+2 3 [答案] C[解析] 该几何体是一个正三棱柱,设底面正三角形边长为a,则32a=3,∴a=2,又其高为2,故其全面积S=2×(34×22)+3×(2×2)=12+2 3.(理)(2011·北京西城模拟)一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆;④椭圆.其中正确的是( )A.①②B.②③C.③④D.①④[答案] B[解析] 根据三视图画法规则“长对正,高平齐、宽相等”,俯视图应与正视图同长为3,与侧视图同宽为2,故一定不可能是圆和正方形.4.(文)(2011·广东文,9)如下图,某几何体的正视图(正视图),侧视图(侧视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .4 3B .4C .2 3D .2[答案] C[解析] 由三视图知该几何体是四棱锥,底面是菱形,其面积S =12×23×2=23,高h =3,所以V =13Sh =13×23×3=2 3.(理)(2012·保定市一模)一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的体积是(单位:m 3).( )A .4+2 6B .4+ 6 C.23 D.43[答案] D[解析] 由侧视图和俯视图是全等的等腰三角形,及正视图为等腰直角三角形可知,该几何体可看作边长AB =BC =3,AC =1的△ABC 绕AC 边转动到与平面△PAC 位置(平面PAC ⊥平面ABC )所形成的几何体,故其体积V =13×(12×2×2)×2=43.5.(文)(2011·广东省东莞市一模)一空间几何体的三视图如图所示,该几何体的体积为12π+853,则正视图与侧视图中x 的值为( )A .5B .4C .3D .2 [答案] C[解析] 根据题中的三视图可知,该几何体是圆柱和正四棱锥的组合体,圆柱的底半径为2,高为x ,四棱锥的底面正方形对角线长为4,四棱锥的高h =32-22=5,其体积为V =13×8×5+π×22×x =12π+853,解得x =3. (理)(2011·新课标全国理,6)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )[答案] D [解析]由正视图知该几何体是锥体,由俯视图知,该几何体的底面是一个半圆和一个等腰三角形,故该几何体是一个半圆锥和一个三棱锥组成的,两锥体有公共顶点,圆锥的两条母线为棱锥的两侧棱,其直观图如图,在侧视图中,O 、A 与C 的射影重合,侧视图是一个三角形△PBD ,OB =OD ,PO ⊥BD ,PO 为实线,故应选D.6.(文)(2012·河北郑口中学模拟)某几何体的正视图与侧视图如图所示,若该几何体的体积为13,则该几何体的俯视图不可以是( )[答案] D[解析] 由正视图及俯视图可知该几何体的高为1,又∵其体积为13,故为锥体,∴S 底=1,A 中为三角形,此时其底面积为12,舍去;B 为14个圆,底面积为π4,也舍去,C 为圆,其面积为π舍去,故只有D 成立.[点评] 如果不限定体积为13,则如图(1)在三棱锥P -ABC 中,AC ⊥BC ,PC ⊥平面ABC ,AC =BC =PC =1,则此三棱锥满足题设要求,其俯视图为等腰直角三角形A ;如图(2),底半径为1,高为1的圆锥,被截面POA 与POB 截下一角,OA ⊥OB ,则此时几何体满足题设要求,其俯视图为B ;如图(3),这是一个四棱锥,底面是边长为1的正方形,PA ⊥平面ABCD ,此几何体满足题设要求,其俯视图为D.(理)(2012·大同市调研)已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是( )A .8 B.203 C.173D.143[答案] C[解析] 由题可知,原正方体如图所示,被平面EFB 1D 1截掉的几何体为棱台AFE -A 1B 1D 1,则所求几何体的体积V =23-V A 1B 1D 1-AEF =23-13×(2+12+2×12)×2=173,故选C.7.已知一个几何体的三视图如图所示(单位:cm),其中正(主)视图是直角梯形,侧(左)视图和俯视图都是矩形,则这个几何体的体积是________cm 3.[答案] 32[解析] 依据三视图知,该几何体的上、下底面均为矩形,上底面是边长为1的正方形,下底面是长为2,宽为1的矩形,左侧面是与底面垂直的正方形,其直观图如图所示,易知该几何体是四棱柱ABCD -A 1B 1C 1D 1,其体积V =S 梯形ABCD ·AA 1=1+2×12×1=32cm 3. 8.(2011·皖南八校联考)已知三棱锥的直观图及其俯视图与侧视图如下,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图面积为________.[答案] 2[解析] 由条件知,该三棱锥底面为正三角形,边长为2,一条侧棱与底面垂直,该侧棱长为2,故正视图为一直角三角形,两直角边的长都是2,故其面积S =12×2×2=2.9.(2011·安徽知名省级示范高中联考)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,过对角线BD 1的一个平面交AA 1于E ,交CC 1于F ,得四边形BFD 1E ,给出下列结论:①四边形BFD 1E 有可能为梯形; ②四边形BFD 1E 有可能为菱形;③四边形BFD 1E 在底面ABCD 内的投影一定是正方形; ④四边形BFD 1E 有可能垂直于平面BB 1D 1D ; ⑤四边形BFD 1E 面积的最小值为62. 其中正确的是________.(请写出所有正确结论的序号) [答案] ②③④⑤[解析] ∵平面ADD 1A 1∥平面BCC 1B 1,平面BFD 1E ∩平面ADD 1A 1=D 1E ,平面BFD 1E ∩平面BCC 1B 1=BF ,∴D 1E ∥BF ;同理BE ∥FD 1,∴四边形BFD 1E 为平行四边形,①显然不成立;当E 、F 分别为AA 1、CC 1的中点时,易证BF =FD 1=D 1E =BE ,∴EF ⊥BD 1,又EF ∥AC ,AC ⊥BD ,∴EF⊥BD ,∴EF ⊥平面BB 1D 1D ,∴平面BFD 1E ⊥平面BB 1D 1E ,∴②④成立,四边形BFD 1E 在底面的投影恒为正方形ABCD .当E 、F 分别为AA 1、CC 1的中点时,四边形BFD 1E 的面积最小,最小值为62. 10.在如图所示的几何体中,四边形 ABCD 是正方形,MA ⊥平面ABCD ,PD ∥MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且AD =PD =2MA .(1)求证:平面EFG ⊥平面PDC ;(2)求三棱锥P -MAB 与四棱锥P -ABCD 的体积之比. [解析] (1)证明:∵MA ⊥平面ABCD ,PD ∥MA , ∴PD ⊥平面ABCD ,又BC ⊂平面ABCD ,∴PD ⊥BC , ∵四边形ABCD 为正方形,∴BC ⊥DC . ∵PD ∩DC =D ,∴BC ⊥平面PDC .在△PBC 中,因为G 、F 分别为PB 、PC 的中点, ∴GF ∥BC ,∴GF ⊥平面PDC .又GF ⊂平面EFG ,∴平面EFG ⊥平面PDC .(2)不妨设MA =1,∵四边形ABCD 为正方形,∴PD =AD =2, 又∵PD ⊥平面ABCD ,所以V P -ABCD =13S 正方形ABCD ·PD =83.由于DA ⊥平面MAB ,且PD ∥MA , 所以DA 即为点P 到平面MAB 的距离, 三棱锥V P -MAB =13×⎝ ⎛⎭⎪⎫12×1×2×2=23.所以V P -MAB :V P -ABCD =1:4.能力拓展提升11.(2011·湖南六市联考)一个几何体的三视图如下图所示,其中正视图中△ABC 是边长为2的正三角形,俯视图为正六边形,那么该几何体的侧视图的面积为( )A.32B.12 C .1 D .2[答案] A[解析] 由三视图知,该几何体是正六棱锥,底面正六边形的边长为1,侧棱长为2,故侧视图为一等腰三角形,底边长3,高为正六棱锥的高3,故其面积为S =12×3×3=32. 12.(2011·皖南八校联考)已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为( )[答案] B [解析]由三视图间的关系,易知其侧视图是一个底边为3,高为2的直角三角形,故选B. [点评] 由题设条件及正视图、俯视图可知,此三棱锥P -ABC 的底面是正△ABC ,侧棱PB ⊥平面ABC ,AB =2,PB =2.13.(2012·内蒙包头市模拟)一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是________.[答案] 16π[解析] 由三视图知,该几何体是一个正三棱柱,底面正三角形边长为3,高为2,故其外接球半径R 满足R 2=(22)2+(23×32×3)2=4,∴R =2,∴S 球=4πR 2=16π.14.(2011·南京市调研)如图,已知正三棱柱ABC-A1B1C1的底面边长为2cm,高为5cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为________cm.[答案] 13[解析] 如图,将三棱柱侧面A1ABB1置于桌面上,以A1A为界,滚动两周(即将侧面展开两次),则最短线长为AA″1的长度,∴AA1=5,AA″=12,∴AA″1=13.15.圆台侧面的母线长为2a,母线与轴的夹角为30°,一个底面的半径是另一个底面半径的2倍.求两底面的半径长与两底面面积的和.[解析] 如图所示,设圆台上底面半径为r,则下底面半径为2r,且∠ASO =30°, 在Rt △SA ′O ′中,rSA ′=sin30°, ∴SA ′=2r ,在Rt △SAO 中,2rSA=sin30°,∴SA =4r .∵SA -SA ′=AA ′,即4r -2r =2a ,r =a . ∴S =S 1+S 2=πr 2+π(2r )2=5πr 2=5πa 2.∴圆台上底面半径为a ,下底面半径为2a ,两底面面积之和为5πa 2.16.(文)(2011·青岛质检)如下的三个图中,上面是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积. [解析] (1)如图.(2)所求多面体体积V =V 长方体-V 正三棱锥 =4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843(cm 3). (理)多面体PABCD 的直观图及三视图如图所示,E 、F 分别为PC 、BD 的中点.(1)求证:EF ∥平面PAD ; (2)求证:PA ⊥平面PDC .[解析] 由多面体PABCD 的三视图知,该几何体是四棱锥,四棱锥P -ABCD 的底面ABCD 是边长为2的正方形,侧面PAD 是等腰直角三角形,PA =PD =2,且平面PAD ⊥平面ABCD .(1)连接AC ,则F 是AC 的中点, 又∵E 是PC 的中点, ∴在△CPA 中,EF ∥PA , 又PA ⊂平面PAD ,EF ⊄平面PAD , ∴EF ∥平面PAD .(2)∵平面PAD ⊥平面ABCD , 平面PAD ∩平面ABCD =AD , 又CD ⊥AD ,∴CD ⊥平面PAD , ∴CD ⊥PA .∵△PAD 是等腰直角三角形,且∠APD =π2.即PA ⊥PD .又CD ∩PD =D ,∴PA ⊥平面PDC .1.(2011·宁夏银川一中检测)如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h随时间t变化的可能图象是( )[答案] B[分析] 可以直接根据变化率的含义求解,也可以求出函数的解析式进行判断.[解析] 容器是一个倒置的圆锥,由于水是均匀注入的,故水面高度随时间变化的变化率逐渐减少,表现在函数图象上就是其切线的斜率逐渐减小,故选B.[点评] 本题在空间几何体三视图和函数的变化率交汇处命制,重点是对函数变化率的考查,这种在知识交汇处命制题目考查对基本概念的理解与运用的命题方式值得重视.2.(2011·惠州模拟)用若干个体积为1的正方体搭成一个几何体,其正视图、侧视图都是如图所示的图形,则这个几何体的最大体积与最小体积的差是( )A.6 B.7 C.8 D.9[答案] A3.(2011·河源模拟)如图所示,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的正视图是( )[答案] B[解析] 箭头所指正面的观察方向与底面直角三角形边长为4的边平行,故该边的射影为一点,与其垂直的直角边的长度3不变,高4不变,故选B.4.(2011·辽宁文,8)一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如右图所示,侧视图是一个矩形,则这个矩形的面积是( )A .4B .2 3C .2 D. 3[答案] B[解析] 由题意可设棱柱的底面边长为a ,则其体积为34a 2·a =23,得a =2. 由俯视图易知,三棱柱的侧视图是以2为长,3为宽的矩形.∴其面积为2 3.故选B.5.(2011·天津理,10)一个几何体的三视图如下图所示(单位:m),则该几何体的体积为________m3.[答案] π+6[解析] 根据三视图知该几何体是一个长方体上面放一个圆锥.因而V=V长方体+V圆锥,又知长方体长、宽、高分别为3、2、1,圆锥的底面半径为1,高为3,从而求出体积为(π+6)m3.6.下图是一几何体的直观图和三视图.(1)若F为PD的中点,求证:AF⊥平面PCD;(2)求几何体BEC-APD的体积.[解析] (1)证明:由几何体的三视图可知,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,PA=2EB=4.∵PA=AD,F为PD的中点,∴PD⊥AF.又∵CD⊥DA,CD⊥PA,∴CD⊥AF.∴AF ⊥平面PCD .(2)V BEC -APD =V C -APEB +V P -ACD =13×12×(4+2)×4×4+13×12×4×4×4=803.。

2013年高考数学(理)二轮复习课件(人教A版)1.12三视图及空间几何体的计算问题

2013年高考数学(理)二轮复习课件(人教A版)1.12三视图及空间几何体的计算问题

• 求几何体的体积问题,可以多角度、 全方位地考虑问题,常采用的方法有“换底 法”、“分割法”、“补体法”等,尤其是 “等积转化”的数学思想方法应高度重视.
• 【突破训练2】 (2012·巢湖二模)如图是某三 棱柱被削去一个底面后的直观图与侧(左)视 图、俯视图.已知CF=2AD,侧(左)视图是 边长为2的等边三角形;俯视图是直角梯形, 有关数据如图所示.求该几何体的体积.
• 在空间几何体部分,主要是以空间几何体 的三视图为主展开,考查空间几何体三视图的 识别判断,考查通过三视图给出的空间几何体 的表面积和体积的计算等问题.试题的题型主 要是选择题或者填空题,在难度上也进行了一 定的控制,尽管各地有所不同,但基本上都是 中等难度或者较易的试题.
• 该部分要牢牢抓住各种空间几何体的结构 特征,通过对各种空间几何体结构特征的了 解,认识各种空间几何体的三视图和直观图, 通过三视图和直观图判断空间几何体的结构, 在此基础上掌握好空间几何体的表面积和体 积的计算方法.



(1)几何体的“分割”:几何体的分割即将 已知的几何体按照结论的要求,分割成若 干个易求体积的几何体,进而求之. (2)几何体的“补形”:与分割一样,有时 为了计算方便,可将几何体补成易求体积 的几何体,如长方体、正方体等.另外补 台成锥是常见的解决台体侧面积与体积的 方法. (3)有关柱、锥、台、球的面积和体积的计 算,
• •
几何体的切接问题 (1)球的内接长方体、正方体、正四棱柱 等关键是把握球的直径即棱柱的体对角线 长. • (2)柱、锥的内切球找准切点位置,化归 为平面几何问题.
• 必备方法 • 1.几何体中计算问题的方法与技巧:①在 正棱锥中,正棱锥的高、侧面等腰三角形的 斜高与侧棱构成两个直角三角形,有关计算 往往与两者相关;②正四棱台中要掌握对角 面与侧面两个等腰梯形中关于上底、下底及 梯形高的计算,另外,要能将正三棱台、正 四棱台的高与其斜高,侧棱在合适的平面图 形中联系起来;③研究圆柱、圆锥、圆台等 问题,主要方法是研究其轴截面,各元素之 间的关系,数量都可以在轴截面中得到;④ 多面体及旋转体的侧面展开图是将立体几何 问题转化为平面几何问题处理的重要手段.

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析1.某几何体的三视图如图所示,则该几何体的体积是()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是圆锥的四分之一,其底半径为,高为,所以其体积为,故选.【考点】1.三视图;2.几何体的体积.2.若某三棱柱截去一个三棱锥后所剩几何体的三视图如下图所示,则此几何体的体积等于()A.B.C.D.【答案】C【解析】由三视图可知,空间几体体的直观图如下图所示:所求几何体的体积故选C.【考点】1、三视图;2、空间几何体的体积.3.如图,一个几何体的三视图(正视图、侧视图和俯视图)为两个等腰直角三角形和一个边长为1的正方形,则其外接球的表面积为A.πB.2πC.3πD.4π【答案】C【解析】原几何体为有一条侧棱垂直于底面的四棱锥,且底面是边长为1的正方形,垂直于底面的侧棱长也为1,因此,该几何体可以补形为一个棱长为1的正方体,其外接球就是这个正方体的外接球,直径为正方体的对角线长,即2R=,故R=故外接球表面积为:4πR2=3π.【考点】三视图,几何体的外接球及其表面积4.如图所示,一个三棱锥的三视图是三个直角三角形(单位: cm),则该三棱锥的外接球的表面积为________cm2.【答案】29π【解析】从三棱锥的三视图可知,三棱锥有两侧面与底面垂直,把三棱锥补成长,宽,高分别为4,2,3的长方体,设外接球的半径为R,由42+22+32=4R2得,S=4πR2=29π(cm2).球5.某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4B.2C.D.8【答案】D【解析】由三视图可知,该几何体如图所示,其底面为正方形,正方形的边长为2.HD=3,BF =1,将相同的两个几何体放在一起,构成一个高为4的长方体,所以该几何体的体积为×2×2×4=8.6.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【答案】D【解析】由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示,可知左视图为等腰三角形,且轮廓线为实线,故选D.7.一个几何体的三视图如图所示,已知这个几何体的体积为,= .【答案】【解析】由三视图知,原几何体是一个四棱锥,底面是面积为的矩形,高为,所以,解得.【考点】三视图,空间几何体的体积.8.如图,水平放置的正三棱柱的主视图是一边长为2的正方形,则该三棱柱的左视图的面积为.【答案】【解析】左视图为一个矩形,长宽分别为,因此面积为.【考点】三视图9.若一个正三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为() A.B.C.D.【答案】B【解析】依题意得,该正三棱柱的底面正三角形的边长为2,侧棱长为1.设该正三棱柱的外接球半径为R,易知该正三棱柱的底面正三角形的外接圆半径是2sin 60°×=,所以R2=+=,则该球的表面积为4πR2=.10.图中的网格是边长为1的小正方形,在其上用粗线画出了某多面体的三视图,则该多面体的体积为________.【答案】16【解析】从三视图可知,这是一个四棱锥,.【考点】三视图.11.如图所示,一个空间几何体的正视图和左视图都是边长为的正方形,俯视图是一个直径为的圆,那么这个几何体的体积为 ( )A.B.C.D.【答案】B【解析】几何体是圆柱,.【考点】三视图,圆柱的体积.12.一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的体积为( )A.1B.C.D.【答案】B【解析】由三视图可知,此几何体为三棱锥,如图,其中正视图为,是边长为2的正三角形,,且,底面为等腰直角三角形,,所以体积为,故选B.13.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1B.C.D.【答案】C【解析】由题意知,正视图的最大面积为对角面的面积,最小面积为,而,故选C.【考点】三视图.14.已知某几何体的三视图如右图所示,其中俯视图是圆,且该几何体的体积为;直径为2的球的体积为.则()A.B.C.D.【答案】C【解析】由题意,该几何体是一个圆柱挖去一个圆锥得到的几何体,,,∴.选B.【考点】三视图,体积.15.三棱锥S-ABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为()A.B.C.D.【答案】B【解析】过B作BD⊥AC于点D,则BD=2,CD=2,所以BC=,因为SC⊥平面ABC,所以SC⊥BC,所以SB=,故选B.【考点】三视图、直线与平面垂直的性质.16.一个几何体的三视图如图,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是由一个半圆柱和一个三棱锥拼接而成,且半圆柱的底面是半径为的半圆,高为,其底面积为,故其体积为,三棱锥的底面是一个直角三角形,三棱锥的高也为,其底面积为,故其体积为,所以该几何体的体积为,故选A.【考点】1.三视图;2.组合体的体积17.右图为某几何体的三视图,则该几何体的体积为 .【答案】【解析】所求几何体为一个底面半径为1,高为1的圆柱与半径为1的四分之一的球的组合体,所以体积为【考点】三视图18.一个空间几何体的三视图如图所示,该几何体的体积为______.【答案】96【解析】几何体为一个三棱柱,底面为一个等腰三角形,底边长为6,底边上高为4,棱柱的高为8.因此所求体积为【考点】三视图19.把边长为1的正方形ABCD沿对角线BD折起,形成三棱锥C-ABD,它的主视图与俯视图如右上图所示,则二面角 C-AB-D的正切值为.【答案】【解析】如图所示,做BD,AB的中点分别为点E,F.则有CE面ABD,由于EF为等腰直角三角形ABD的中位线,故EF AB,则为二面角 C-AB-D的代表角,所以,故填.【考点】二面角三视图20.已知水平放置的△ABC的直观图△A′B′C′(斜二测画法)是边长为a的正三角形,则原△ABC 的面积为()A.a2B.a2C.a2D.a2【答案】D【解析】斜二测画法中原图面积与直观图面积之比为1∶,则易知S= ( a)2,∴S=a2.21.一个空间几何体的三视图如图所示,则该几何体的体积为()A.πcm3B.3πcm3C.πcm3D.πcm3【答案】D【解析】由三视图可知,此几何体为底面半径为1cm、高为3cm的圆柱上部去掉一个半径为1cm的半球,所以其体积为V=3π-π=π(cm 3).22. 右图为一简单组合体,其底面ABCD 为正方形,PD ⊥平面ABCD ,EC ∥PD ,且PD =AD =2EC =2.(1)请画出该几何体的三视图; (2)求四棱锥B-CEPD 的体积.【答案】(1)见解析 (2)2【解析】解:(1)该组合体的三视图如图所示.(2)∵PD ⊥平面ABCD , PD ⊂平面PDCE ,∴平面PDCE ⊥平面ABCD. ∵四边形ABCD 为正方形,∴BC ⊥CD ,且BC =DC =AD =2. 又∵平面PDCE∩平面ABCD =CD , BC ⊂平面ABCD. ∴BC ⊥平面PDCE.∵PD ⊥平面ABCD ,DC ⊂平面ABCD , ∴PD ⊥DC.又∵EC ∥PD ,PD =2,EC =1,∴四边形PDCE 为一个直角梯形,其面积: S 梯形PDCE = (PD +EC)·DC =×3×2=3, ∴四棱锥B-CEPD 的体积V B-CEPD =S 梯形PDCE ·BC =×3×2=2.23. 某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【答案】A【解析】将三视图还原成直观图为:上面是一个正四棱柱,下面是半个圆柱体.所以V=2×2×4+×22×π×4=16+8π.24.某几何体的三视图如图所示,则其体积为________.【答案】【解析】由三视图还原几何体为半个圆锥,高为2,底面半圆的半径r=1.∴体积V=×(π×12×2)=.25.如图所示为一个几何体的直观图、三视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形).(1)求四棱锥P-ABCD的体积;(2)若G为BC上的动点,求证:AE⊥PG.【答案】(1)(2)见解析【解析】(1)由几何体的三视图可知,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,且PA=4 ,BE=2 ,AB=4.∴VP-ABCD =PA·S四边形ABCD=×4 ×4×4=.(2)∵=,∠EBA=∠BAP=90°,∴△EBA∽△BAP,∴∠BEA=∠PBA.∴∠BEA+∠BAE=∠PBA+∠BAE=90°,∴PB⊥AE又∵BC⊥平面APEB,∴BC⊥AE.∵BC∩PB=B,∴AE⊥平面PBC.∵PG⊂平面PBC,∴AE⊥PG.26.如图所示,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为________.【答案】9【解析】由题意知,此几何体是三棱锥,其高h=3,相应底面面积为S=×6×3=9,∴V=Sh=×9×3=9.27.某几何体的三视图如图所示,主视图和侧视图为全等的直角梯形,俯视图为直角三角形.则该几何体的表面积为( )A. B. C. D【答案】B【解析】此几何体直观图如图所示。

人教a版高考数学(理)一轮课件:8.1空间几何体的结构、三视图和直观图

人教a版高考数学(理)一轮课件:8.1空间几何体的结构、三视图和直观图

3.简单组合体 简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一 种是由简单几何体截去或挖去一部分而成,有多面体与多面体、 多面体与旋 转体、旋转体与旋转体的组合体.
4. 三视图 几何体的三视图包括正视图、侧视图、俯视图 , 分别是从几何体的 正前方、正左方、正上方观察几何体画出的轮廓线.
考纲解读
空间几何体的结构 和三视图部分 重点考 查柱、锥、台、球 的定义和以三 视图为 载体考查柱、锥、 台、球的表面 积和体 积, 难度 不大. 空间几 何体的 性质是 基础, 以它们为载体考查 线线、线面、 面面间 的 关 系 是 重点 . 三 视图 的 还 原在 各 地 高 考 试 题 中 频繁 出 现 , 已 经 成 为高 考 的 热 点 问 题, 题型 多以 选择 题和 填空 题为 主 , 有时也会作为解答题的背景出现.
三视图的长度特征: “ 长对正, 宽相等, 高平齐” , 即正视图和侧 视图一样高, 正视图和俯视图一样长, 侧视图和俯视图一样宽. 若相邻两物 体的表面相交, 表面的交线是它们的分界线, 在三视图中, 要注意实、 虚线的 画法 .
5. 空间几何体的直观图 空间几何体的直观图常用斜二测画法来画, 其规则是: (1) 原图形中 x轴、 y轴、 z轴两两垂直, 直观图中, x' 轴、 y' 轴的夹角为 45° , z' 轴与 x' 轴和 y' 轴所在平面垂直. (2) 原图形中平行于坐标轴的线段, 在直观图中仍分别平行于坐标轴. 平 行于 x轴和 z轴的线段在直观图中保持原长度不变, 平行于 y轴的线段长度 在直观图中变为原来的一半. 6. 中心投影与平行投影 (1) 平行投影的投影线互相平行, 而中心投影的投影线相交于一点. (2) 从投影的角度看, 三视图和用斜二测画法画出的直观图都是在平行 投影下画出来的图形.

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析1.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为.【答案】2.【解析】由已知几何体的视图可知,几何体为四棱锥,其中SA垂直于平面ABCD,SA=2,四边形ABCD为直角梯形,AD=1,BC=2,AB=2,所以四棱锥的体积为【考点】三视图求几何体的体积.2.右图为某几何体的三视图,则该几何体的体积为【答案】【解析】由三视图知,该几何体是底面半径为1,高为1的圆柱与半径为1的球体组成的组合体,其体积为=.【考点】简单几何体的三视图,圆柱的体积公式,球的体积公式3.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为()A.B.C.D.【答案】C【解析】由三视图可知:该几何体是一个如图所示的三棱锥P-ABC,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4.设其外接球的球心为O,O点必在高线PE上,外接球半径为R,则在直角三角形BOE中,BO2=OE2+BE2=(PE-EO)2+BE2,即R2=(4-R)2+(3)2,解得:R=,故选C.【考点】三视图,球与多面体的切接问题,空间想象能力4.如图是一个几何体的三视图,则该几何体的表面积是____________【答案】28+12【解析】这是一个侧放的直三棱柱,底面是等腰直角三角形,侧棱长为6故表面积为2×(×2×2)+(2+2+2)×6=28+12.【考点】三视图,几何体的表面积.5.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..6.某空间几何体的正视图是三角形,则该几何体不可能是()圆柱圆锥四面体三棱柱【答案】A【解析】由于圆柱的三视图不可能是三角形所以选A.【考点】三视图.7.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是________.【答案】2(π+)【解析】由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积为2;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+).8.一个锥体的主(正)视图和左(侧)视图如图所示,下面选项中,不可能是该锥体的俯视图的是()【答案】C【解析】俯视图是选项C的锥体的正视图不可能是直角三角形.另外直观图如图1的三棱锥(OP⊥面OEF,OE⊥EF,OP=OE=EF=1)的俯视图是选项A,直观图如图2的三棱锥(其中OP,OE,OF两两垂直,且长度都是1)的俯视图是选项B,直观图如图3的四棱锥(其中OP⊥平面OEGF,底面是边长为1的正方形,OP=1)的俯视图是选项D.9.如图所示,正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6B.8C.2+3D.2+2【答案】B【解析】如图,OB=2,OA=1,则AB=3.∴周长为8.10.某几何体的三视图如图所示,且该几何体的体积是2,则正(主)视图的面积等于()A.2B.C.D.3【答案】A【解析】由三视图可知该几何体是一个四棱锥,其底面积就是俯视图的面积S=(1+2)×2=3,其高就是正(主)视图以及侧(左)视图的高x,因此有×3×x=2,解得x=2,于是正(主)视图的面积S=×2×2=2.11.如图,三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥底面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图的面积为( )A. C.4 D.【答案】A【解析】侧视图也为矩形,底宽为原底等边三角形的高,侧视图的高为侧棱长,所以侧视图的面积为,故选B.【考点】三视图12.一个几何体的三视图如图所示,则该几何体内切球的体积为 .【答案】【解析】依题意可得该几何体是一个正三棱柱,底面边长为2,高为.由球的对称性可得内切球的半径为.由已知计算得底面内切圆的半径也为.所以内切球的体积为.【考点】1.三视图.2.几何体内切球的对称性.3.球的体积公式.4.空间想象力.13.已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的左视图面积的最小值是________.【答案】【解析】如图,正三棱柱中,分别是的中点,则当面与侧面平行时,左视图面积最小,且面积为.【考点】三视图.14.某几何体的三视图如图3所示,则其体积为________.【答案】【解析】原几何体可视为圆锥的一半,其底面半径为1,高为2,∴其体积为×π×12×2×=.15.已知正△ABC的边长为2,那么用斜二测画法得到的△ABC的直观图△A′B′C′的面积为()A.B.C.D.【答案】D【解析】∵正△ABC的边长为2,故正△ABC的面积S==设△ABC的直观图△A′B′C′的面积为S′则S′=S=•=故选D16.一个体积为12的正三棱柱的三视图如图所示,则这个三棱柱的侧视图的面积为()A.B.C.D.【答案】A【解析】依题意可得三棱柱的底面是边长为4正三角形.又由体积为.所以可得三棱柱的高为3.所以侧面积为.故选A.【考点】1.三视图的知识.2.棱柱的体积公式.3.空间想象力.17.某几何体的三视图如题(6)所示,其侧视图是一个边长为1的等边三角形,俯视图是两个正三角形拼成的菱形,则这个几何体的体积为()A.1B.C.D.【答案】C【解析】这是由两个三棱锥拼成的几何体,其体积为.选C.【考点】三视图及几何体的体积.18.一个四面体的顶点在空间直角坐系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()A.B.C.D.【答案】A【解析】设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O,A,B,C为顶点的四面体补成一正方体后,因为OA⊥BC,所以补成的几何体以zOx平面为投影面的正视图为A.19.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几体的体积为()A.6B.9C.12D.18【答案】B【解析】由三视图可知,此几何体为如图所示的三棱锥,其底面△ABC为等腰三角形且AB=BC,AC=6,AC边上的高为3,SB⊥底面ABC,且SB=3,因此此几体的体积为V=××6×3×3=920.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 .【答案】【解析】由三视图知,该几何体是一个圆柱,其表面积为.【考点】三视图及几何体的表面积.21.在三棱锥中,,平面ABC,.若其主视图,俯视图如图所示,则其左视图的面积为【答案】【解析】左视图是一个直角三角形,其直角边分别是2与.所以面积为.【考点】1.三视图知识.2.三角形面积的计算.22.一个几何体的三视图如图所示,则这个几何体的体积是_________.【答案】【解析】由三视图还原几何体,该几何体为底面半径为,高为的圆柱,去掉底面半径为,高为的圆锥的剩余部分,则其体积为.【考点】1、三视图;2、几何体的体积.23.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是( ).A.B.4C.D.3【答案】B【解析】如图,红色虚线表示截面,可见这个截面将正方体分为完全相同的两个几何体,则所求几何体的体积即是原正方体的体积的一半,.【考点】1.三视图;2.正方体的体积24.如图,一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积为()A.1B.2C.3D.4【答案】B【解析】由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为的正方形,故其底面积为,由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形,由于此侧棱长为,对角线长为,故棱锥的高为,此棱锥的体积为,故选B.【考点】由三视图求面积、体积.25.已知某几何体的三视图如右图所示,其中,正视图,侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C.D.【答案】C【解析】由已知的三视图可知原几何体是上方是三棱锥,下方是半球,∴,故选C.【考点】1.三视图;2.几何体的体积.26.如图是一个组合几何体的三视图,则该几何体的体积是.【答案】36+128π【解析】由三视图还原可知该几何体是一个组合体,下面是一个圆柱,上面是一个三棱柱,故所求体积为V=×3×4×6+16π×8=36+128π.27.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图可知,该几何体是三分之一个圆锥,其体积为.【考点】三视图及几何体的体积.28.某几何体的三视图(图中单位:cm)如图所示,则此几何体的体积是()A.36 cm3B.48 cm3C.60 cm3D.72 cm3【答案】B【解析】由三视图可知几何体上方是一长方体,下方是一放倒的直四棱柱,且四棱柱底面是等腰梯形,上底长为2 cm,下底长为6 cm,高为2 cm,故几何体的体积是2×2×4+×(2+6)×2×4=48(cm3),故选B.29.如图是某三棱柱被削去一个底面后的直观图、侧(左)视图与俯视图.已知CF=2AD,侧视图是边长为2的等边三角形,俯视图是直角梯形,有关数据如图所示.求该几何体的体积.【答案】3【解析】解:取CF中点P,过P作PQ∥CB交BE于Q,连接PD,QD,则AD∥CP,且AD=CP.所以四边形ACPD为平行四边形,所以AC∥PD.所以平面PDQ∥平面ABC.该几何体可分割成三棱柱PDQ-CAB和四棱锥D-PQEF,所以V=V-CAB+V D-PQEFPDQ=×22sin 60°×2+××=3.30.一个几何体的三视图如图所示,则该几何体的表面积是()A.6+8B.12+7C.12+8D.18+2【答案】C【解析】该空间几何体是一个三棱柱.底面为等腰三角形且底面三角形的高是1,底边长是2 ,两个底面三角形的面积之和是2,侧面积是(2+2+2)×3=12+6,故其表面积是12+8.31. 已知四棱锥P-ABCD 的三视图如右图所示,则四棱锥P-ABCD 的四个侧面中的最大面积是( ).A .6B .8C .2D .3【答案】A【解析】四棱锥如图所示:PM =3,S △PDC =×4×=2,S △PBC =S △PAD =×2×3=3,S △PAB =×4×3=6,所以四棱锥P-ABCD 的四个侧面中的最大面积是6.32. 若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).【答案】B【解析】分别从三视图中去验证、排除.由正视图可知,A 不正确;由俯视图可知,C ,D 不正确,所以选B.33. 一个几何体的三视图如图所示,已知这个几何体的体积为,则h________.【答案】【解析】依题意可得四棱锥的体积为.所以可得.解得.故填.本小题的是常见的立几中的三视图的题型,这类题型关键是要能还原几何体的直观图形.所以培养空间的思想很重要.【考点】1.三视图的识别.2.空间几何体的直观图.34.图中的网格纸是边长为的小正方形,在其上用粗线画出了一四棱锥的三视图,则该四棱锥的体积为()A.B.C.D.【答案】C【解析】由三视图知,该几何体是一个四棱锥,且其底面为一个矩形,底面积,高为,故该几何体的体积,故选C.【考点】1.三视图;2.锥体的体积35.已知某几何体的三视图如图,其中主视图中半圆直径为2,则该几何体的体积____________【答案】24-【解析】由三视图可知,该几何体是有长方体里面挖了一个半圆柱体,可知,长方体的长为4,宽为3,高为2,那么圆柱体的高位3,底面的半径为1,则可知该几何体的体积为,故答案为.【考点】由三视图求面积、体积.36.把边长为的正方形沿对角线折起,连结,得到三棱锥,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为()A.B.C.D.【答案】B【解析】在三棱锥中,在平面上的射影为的中点,∵正方形边长为,∴,∴侧视图的面积为.【考点】1.三视图;2.三角形的面积.37.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的()A.外接球的半径为B.体积为C.表面积为D.外接球的表面积为【答案】D.【解析】由题意设外接球半径为,则,A错误;外接球的表面积为,D正确;此几何体的体积为,故B错误;此几何体的表面积为,C错误.【考点】三视图及球的表面积公式.38.一个几何体的三视图如图所示,则该几何体的体积为( )A.4B.8C.D.【答案】B【解析】有三视图可以看出,该几何体是一个三棱锥,它的体积为.【考点】三视图,几何体的体积.39.如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为()A.B.C.4D.2【答案】A【解析】由题意易知,直三棱柱的底面是边长为2的正三角形.其侧视图为矩形,矩形的高为2,宽为底面正三角形的高.易知边长为2的正三角形的高为.所以面积为.【考点】三视图40.如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是( )A.B.21C.D.24【答案】A【解析】还原几何体,得棱长为2的正方体和高为1的正四棱锥构成的简单组合体,如图所示,=,选A.【考点】1、几何体的表面积;2、三视图.41.某几何体的三视图如图所示,则它的表面积为()A.B.C.D.【答案】A【解析】易知该三视图的直观图是倒立的半个三棱锥,其表面积由底面半圆,侧面三角形和侧面扇形,所以,故选A.【考点】1.立体几何三视图;2.表面积和体积的求法.42.一几何体的三视图如图所示,则该几何体的体积为()A.200+9πB.200+18πC.140+9πD.140+18π【答案】A【解析】通过观察三视图,易知该几何体是由半个圆柱和长方体组成的,则半个圆柱体积;长方体的体积为,所以该几何体的最终体积,故选A.【考点】1.三视图的应用;2.简单几何体体积的求解.43.一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A.B.C.D.【解析】把原来的几何体补成以为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,,,.【考点】1.补体法;2.几何体与外接球之间的元素换算.44.一个几何体的三视图如图所示,其中府视图为正三角形,则侧视图的面积为()A.8B.C.D.4【答案】B【解析】由三视图可知:该几何体是一个正三棱柱,高为4,底面是一个边长为2的正三角形.因此,侧视图是一个长为4,宽为的矩形,.【考点】三视图与几何体的关系、几何体的侧面积的求法能力.45.某几何体的三视图如图所示,则它的侧面积为()A.B.C.24D.【答案】A【解析】由三视图得,这是一个正四棱台,由条件,侧面积.【考点】1.三视图;2.正棱台侧面积的求法.46.一个几何体的三视图如图所示,其中正视图与侧视图都是底边长为6、腰长为5的等腰三角形,则这个几何体的全面积为()A.B.C.D.【解析】由三视图知,该几何体是一个圆锥,且圆锥的底面直径为,母线长为,用表示圆锥的底面半径,表示圆锥的母线长,则,,故该圆锥的全面积为.【考点】三视图、圆锥的表面积47.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为的圆,且这个几何体是球体的一部分,则这个几何体的表面积为( )A.3πB.4πC.6πD.8π【答案】B【解析】此空间几何体是球体切去四分之一的体积,表面积是四分之三的球表面积加上切面面积,切面面积是两个半圆面面积.故这个几何体的表面积是.【考点】1、几何体的三视图; 2、球的表面积公式.48.右图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为和,腰长为的等腰梯形,则该几何体的表面积是.【答案】【解析】从三视图可以看出:几何体是一个圆台,上底面是一个直径为4的圆,下底面是一个直径为2的圆,侧棱长为4.上底面积,下底面积,侧面是一个扇环形,面积为,所以表面积为.【考点】空间几何体的三视图、表面积的计算.49.某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为的圆(包括圆心),则该零件的体积是 ( )A.B.C.D.【解析】由题意易知该几何体为一半球内部挖去一圆锥所成,故体积为.故选C.【考点】1.体积; 2.三视图.50.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A.B.C.D.【答案】B【解析】由三视图可知,该四棱台的上下底面边长分别为和的正方形,高为,故,故选B.【考点】三视图与四棱台的体积51.若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A.B.C.D.【答案】B【解析】由已知底面是正三角形的三棱柱的正视图,我们可得该三棱柱的底面棱长为2,高为1,则底面外接圆半径,球心到底面的球心距,则球半径,则该球的表面积,故选B.【考点】由三视图求面积、体积.点评:本题考查的知识点是由三视图求表面积,其中根据截面圆半径、球心距、球半径满足勾股定理计算球的半径,是解答本题的关键.52.如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度随时间变化的可能图像是()A. B. C. D.【答案】B【解析】由三视图可知该几何体是圆锥,顶点在下,底面圆在上,在匀速注水过程中水面高度随着时间的增大而增大,且刚开始时截面积较小,所以高度变化较快,随着水面的升高,截面圆面积增大,高度变化速度减缓,因此函数的瞬时变化率逐渐减小,导数减小,图像为B项【考点】函数导数的定义点评:本题通过高度的瞬时变化率的变化情况得到函数的导数的大小,从而通过做出的切线斜率的变化得出正确图像53.已知一个三棱锥的主视图与俯视图如图所示,则该三棱锥的侧视图面积为()A.B.C.D.【答案】B【解析】根据题意,由于三棱锥的俯视图为直角三角形,正视图为直角三角形,且斜边长为2,直角边长为,那么结合图像可知其侧视图为底面边长为1,高为的三角形,因此其面积为,故选B.【考点】三棱锥点评:解决的关键是根据三棱锥的三视图来得到底面积和高进而求解侧视图,属于基础题。

2013届人教A版理科数学课时试题及解析(36)空间几何体的结构特征及三视图和直观图(教与学)

2013届人教A版理科数学课时试题及解析(36)空间几何体的结构特征及三视图和直观图(教与学)

课时作业(三十六) [第36讲 空间几何体的结构特征及三视图和直观图]
[时间:45分钟 分值:100分]
基础热身
1.有一个几何体的三视图如图K36-1所示,这个几何体应是一个 ( )
图K36-1
A .棱台
B .棱锥
C .棱柱
D .都不对
2.如图K36-2所示几何体各自的三视图中,有且仅有两个视图相同的是( )
图K36-2
A .①②
B .①③
C .①④
D .②④
3.一个几何体的正视图和侧视图如图K36-3所示,其中正视图的底边长为1,侧视图的底边长为3、高为2,则这个空间几何体俯视图的面积是( )
A .2
B .3 C.72
D .4
图K36-3
4.已知三棱锥的俯视图与侧视图如图K36-4,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为( )
图K36-4
图K36-5
能力提升
5.将正三棱柱截去三个角(如图K36-6①所示A、B、C分别是△GHI三边的中点)得到的几何体如图K36-6②,则该几何体按图②所示方向的侧视图(或称左视图)为( )
图K36-6
图K36-7
6.若某几何体的三视图如图K36-8所示,则这个几何体的直观图可以是( )。

2013届高考一轮数学复习理科课件(人教版)第1课时 空间几何体的结构、三视图、直观图

2013届高考一轮数学复习理科课件(人教版)第1课时 空间几何体的结构、三视图、直观图

高三数学(新课标版· 理)
直角梯形 ABCD 中,AB=2, BC= 2+1,AD=1, 1 ∴面积为2(2+ 2)×2=2+ 2.
【答案】 2+ 2
第八章
第1课时
高考调研
高三数学(新课标版· 理)
第八章
第1课时
高考调研
高三数学(新课标版· 理)
2 之间的关系是 S′= 4 S,本题中直观图的面积为 a2,所 a2 以原平面四边形的面积 S= =2 2a2. 2 4
【答案】 B
第八章
第1课时
高考调研
高三数学(新课标版· 理)
探究 3 对于直观图,除了解斜二测画法的规则外, 还要了解原图形面积 S 与其直观图面积 S′之间的关系 2 S′= S,能进行相关问题的计算. 4
【解析】 根据斜二测画法画平面图形的直观图的规 则可知,在 x 轴上(或与 x 轴平行)的线段,其长度保持不 变;在 y 轴上(或与 y 轴平行)的线段,其长度变为原来的 一半,且∠x′O′y′=45° 135° (或 ),所以,若设原平面 1 2 2 图形的面积为 S, 则其直观图的面积为 S′= · · S= S. 2 2 4 可以得出一个平面图形的面积 S 与它的直观图的面积 S′
第1课时
高考调研
高三数学(新课标版· 理)
其中旋转轴叫做所围成的几何体的 轴 ;在轴上的这 条边叫做这个几何体的 高 ;垂直于轴的边旋转而成的圆 面叫做这个几何体的 底面 ;不垂直于轴的边旋转而成的 曲面叫做这个几何体的 侧面 ,无论旋转到什么位置,这 条边都叫做侧面的 母线.
第八章
第1课时
高考调研
第八章
第1课时
高考调研
高三数学(新课标版· 理)
(3)正棱锥的性质: ①各侧棱相等,各侧面都是全等的 等腰三角形 ,各 等腰三角形底边上的高相等,它叫做正棱锥的 斜高. ②棱锥的高、斜高和斜足与底面中心连线组成一个直 角三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成 一个直角三角形.

2013届人教A版理科数学课时试题及解析(37)空间几何体的表面积和体积(教与学)

2013届人教A版理科数学课时试题及解析(37)空间几何体的表面积和体积(教与学)
7.C [解析] 由题中的三视图知,该几何体是由两个长方体组成的简单组合体,下面是一个长、宽、高分别是8,10,2的长方体,上面竖着的是一个长、宽、高分别为6、2、8的长方体,那么其表面积等于下面长方体的表面积与上面长方体的侧面积之和,即S=2(8×10+8×2+10×2)+2(6×8+2×8)=360.
V圆台= ×[π×22+ +π×52]=52π,V半球= π×23× = π.
所以,旋转体的体积为V圆台-V半球=52π- π= π(cm3).
10. [解析] 这样的几何体我们没有可以直接应用的体积计算公式,根据对称性可以把它补成圆柱,这个圆柱的高是3,这个圆柱的体积是所求的几何体体积的2倍,故所求的几何体的体积是 ×π×12×3= .
A.24 B.36+6
C.36 D.36+12
图K37-3
3. 一个几何体按比例绘制的三视图如图K37-3所示(单位:m),则该几何体的体积为( )
A.4 m3B. m3
C.3 m3D. m3
4.某品牌香水瓶的三视图如图K37-4(单位:cm),则该几何体的表面积为( )
图K37-4
A. cm2B. cm2
图K37-11
12.表面积为定值S的正四棱柱体积的最大值为________.
13.在三棱柱ABC-A′B′C′中,点P,Q分别在棱BB′,CC′上,且BP=2PB′,CQ=3QC′,若三棱柱的体积为V,则四棱锥A-BPQC的体积是________.
14.(10分)如图K37-12所示的△OAB绕x轴和y轴各旋转一周,分别求出所得几何体的表面积.
C. cm2D. cm2
5. 已知一空间几何体的三视图如图K37-5所示,则该几何体的体积为( )
A. πcm3B.3πcm3

9.1空间几何体的结构特征及其三视图(学生版)

9.1空间几何体的结构特征及其三视图(学生版)

科目数学年级高三备课人高三数学组第课时9.1空间几何体的结构及其三视图和直观图考纲定位认识柱、锥、台、球及其简单组合体的结构特征,掌握柱、锥的简单几何体性质;了解空间图形的两种不同表示形式(三视图和直观图),了解三视图、直观图与它们所表示的立体模型之间的内在联系.一、基础检测1.(人教A版教材习题改编)下列说法正确的是( ).A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥D.棱台各侧棱的延长线交于一点2.以下命题:其中正确命题的个数为( ).①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台.A.0 B.1 C.2 D.33.(2012 杭州)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ).A.圆柱 B.圆锥 C.球体 D.圆柱、圆锥、球体的组合体4.(2011·浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).小结:1、空间几何体的结构特征:(1)多面体:①棱柱②棱锥③棱台(2)旋转体:①圆柱②圆锥③圆台④球2、三视图:(1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.二、典例分析例1、(2011·全国新课标)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( ).例2、(2011·陕西)某几何体的三视图如图所示,则它的体积是( ).A .8-2π3B .8-π3C .8-2π D.2π3练习:1、(2011·浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).2、(2011·天津)一个几何体的三视图如图所示(单位:m)则该几何体的体积为________m 3.3、(2011北京)某四棱锥的三视图如图所示,该四棱锥的表面积是( ).A.32B.16162+C.48D.16322+【课后反思】4俯视图侧左()视图正主()视图42。

知识讲解-空间几何体结构及其三视图(答案)

知识讲解-空间几何体结构及其三视图(答案)

空间几何体结构及其三视图【学习目标】(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,会用材料(如纸板)制作模型,并会用斜二测法画出它们的直观图.(3)通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式.(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式.【知识网络】【要点梳理】要点一.空间几何体的结构及其三视图和直观图1.多面体的结构特征(1)棱柱(以三棱柱为例)如图:平面ABC与平面A1B1C1间的关系是平行,ΔABC与ΔA1B1C1的关系是全等.各侧棱之间的关系是:A1A∥B1B∥C1C,且A1A=B1B=C1C.(2)棱锥(以四棱锥为例)如图:一个面是四边形,四个侧面是有一个公共顶点的三角形.(3)棱台棱台可以由棱锥截得,其方法是用平行于棱锥底面的平面截棱锥,截面和底面之间的部分为棱台.旋转体都可以由平面图形旋转得到,画出旋转出下列几何体的平面图形及旋转轴.要点二.空间几何体的三视图和直观图1.空间几何体的三视图空间几何体的三视图是用正投影得到,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的开关和大小是完全相同的,三视图包括正视图、侧视图、俯视图.2.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴.y轴.z轴两两垂直,直观图中,x’轴.y’轴的夹角为45o(或135o),z’轴与x’轴和y’轴所在平面垂直;(2)原图形中平行于坐标轴的线段,直观图中仍平行、平行于x轴和z轴的线段长度在直观图不变,平行于y 轴的线段长度在直观图中减半.3.平行投影与中心投影平行投影的投影线互相平行,而中心投影的投影线相交于一点.要点诠释:空间几何体的三视图和直观图在观察角度和投影效果上的区别是:(1)观察角度:三视图是从三个不同位置观察几何体而画出的图形;直观图是从某一点观察几何体而画出的图形;(2)投影效果:三视图是正投影下的平面图形,直观图是在平行投影下画出的空间图形.要点三.空间几何体的表面积和体积2.几何体的体积公式(1)设棱(圆)柱的底面积为S,高为h,则体积V=Sh;(2)设棱(圆)锥的底面积为S,高为h,则体积V=13 Sh;(3)设棱(圆)台的上.下底面积分别为S',S,高为h,则体积V=13('SS)h;(4)设球半径为R,则球的体积V=43π3R.要点诠释:1.对于求一些不规则几何体的体积常用割补的方法,转化成已知体积公式的几何体进行解决.2.重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型.3.要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.【典型例题】类型一.空间几何体的结构特征例1.若沿△ABC三条边的中位线折起能拼成一个三棱锥,则△ABC()A.一定是等边三角形B.一定是锐角三角形C.可以是直角三角形D.可以是钝角三角形【思路点拨】在三棱锥的展开图中:过底面任意一个顶点的三个角,应满足∠1+∠2>∠3,其中∠3为底面三角形的内角,进而逐一分析△ABC为不同形状时沿△ABC三条边的中位线能否拼成一个三棱锥,最后结合讨论结果,可得答案.【答案】B【解析】在三棱锥的展开图中:过底面任意一个顶点的三个角,应满足∠1+∠2>∠3,当△ABC为锐角三角形时,三个顶点处均满足此条件,故能拼成一个三棱锥,当△ABC为为直角三角形时,在斜边中点E处不满足条件,故不能拼成一个三棱锥,同理当△ABC为钝角三角形时,在钝角所对边中点处不满足条件,故不能拼成一个三棱锥,综上可得:△ABC一定是锐角三角形,故选B.【总结升华】本题考查的知识点是棱锥的结构特征,三角形形状的判断,其中正确理解:三棱锥的展开图中,过底面任意一个顶点的三个角,应满足∠1+∠2>∠3,其中∠3为底面三角形的内角,是解答的关键.举一反三:【变式】如图是长方体被一平面所截得到的几何体,四边形EFGH为截面,长方形ABCD为底面,则四边形EFGH 的形状为()A.梯形B.平行四边形C.可能是梯形也可能是平行四边形D.不确定【思路点拨】根据平面ABFE∥平面DCGH和面面平行的限制定理得EF∥GH,再由FG∥EH得四边形EFGH为平行四边形【答案】B【解析】∵平面ABFE∥平面DCGH,且平面EFGH分别截平面ABFE与平面DCGH得直线EF与GH,∴EF∥GH.同理,FG∥EH,∴四边形EFGH为平行四边形.故答案为B例2.如图所示的几何体,关于其结构特征,下列说法不正确的是()A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形【思路点拨】根据几何体的直观图,得出该几何体的结构特征,由此判断选项A、B、C正确,选项D错误.【答案】D【解析】根据几何体的直观图,得该几何体是由两个同底的四棱锥组成的几何体,且有棱MA、MB、MC、MD、AB、BC、CD、DA、NA、NB、NC和ND,共12条;顶点是M、A、B、C、D和N共6个;且有面MAB、面MBC、面MCD、面MDA、面NAB、面NBC、面NCD和面NDA共8个,且每个面都是三角形.所以选项A、B、C正确,选项D错误.故选D.【总结升华】本题考查了利用空间几何体的直观图判断几何体结构特征的应用问题.举一反三:【变式】用一个平面去截正面体,使它成为形状,大小都相同的两个几何体,则这样的平面的个数有()A.6个B.7个C.10个D.无数个【思路点拨】根据几何体的性质判断正四面体是中心对称几何体,利用中心对称几何体的性质判断即可.【答案】D【解析】∵正四面体是中心对称图形,∴平面过正四面体的中心,则分成为形状,大小都相同的两个几何体,可判断这样的平面有无数个,故选D.类型二.空间几何体的三视图例3.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为().【思路点拨】由正视图和俯视图想到三棱锥和圆锥.【解析】由几何体的正视图和俯视图可知,该几何体应为一个半圆锥和一个有一侧面(与半圆锥的轴截面为同一三角形)垂直于底面的三棱锥的组合体,故其侧视图应为D.【总结升华】(1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.举一反三:【变式】若某几何体的三视图如图所示,则此几何体的直观图是()【答案】A【解析】A中,的三视图:,满足条件;B中,的侧视图为:,与已知中三视图不符,不满足条件;C中,的侧视图和俯图为:,与已知中三视图不符,不满足条件;D中,的三视图为:,与已知中三视图不符,不满足条件;故选A例4.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()【思路点拨】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解析】由主视图和俯视图可知切去的棱锥为1D AD C -,棱1CD 在左侧面的投影为1BA ,故选B .举一反三:【变式1】某几何体的三视图如图所示,其中俯视图是半圆,则该几何体的表面积为( )A.332π+ B .3π+ C .32π D .532π+【思路点拨】三视图复原可知几何体是圆锥的一半,根据三视图数据,求出几何体的表面积. 【答案】A【解析】由题目所给三视图可得,该几何体为圆锥的一半,那么该几何体的表面积为该圆锥表面积的一半与轴截面面积的和.又该半圆锥的侧面展开图为扇形,所以侧面积为1122ππ⨯⨯⨯=,底面积为12π,观察三视图可知,轴截面为边长为2的正三角形,所以轴截面面积为1222⨯⨯=32πA .【变式2】一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是( )A .1B .2C .3D .4【思路点拨】由三视图及题设条件知,此几何体为一个四棱锥,其较长的侧棱长已知,底面是一个正方形,对角线长度已知,故先求出底面积,再求出此四棱锥的高,由体积公式求解其体积即可. 【答案】B【解析】由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为2的正方形,故其底面积为141122⨯⨯⨯=由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形23=此棱锥的体积为12323⨯⨯=故选B【总结升华】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是四棱锥的体积,其公式为13×底面积×高.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”三视图是新课标的新增内容,在以后的高考中有加强的可能.类型三.几何体的直观图例5.如图所示,正方形OABC的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6 B.8C.2+3 2 D.2+23【思路点拨】由斜二测画法的规则知在已知图形平行于x轴的线段,在直观图中画成平行于x'轴,长度保持不变,已知图形平行于y轴的线段,在直观图中画成平行于y'轴,且长度为原来一半.【答案】B【解析】根据水平放置平面图形的直观图的画法,可得原图形是一个平行四边形,如图,对角线OB=22,OA=1,∴AB=3,所以周长为8.故选B【总结升华】本题考查的知识点是平面图形的直观图,其中斜二测画法的规则,能够帮助我们快速的在直观图面积和原图面积之间进行转化.举一反三:【变式】对于一个底边在x轴上的正三角形ABC,边长AB=2,采用斜二测画法做出其直观图,则其直观图的面积是________.【思路点拨】如图所示,A'B'=AB=2,13''22O C OC==,作C'D'⊥x',可得26''''24C D O C==.因此其直观图的面积1'''' 2C D A B=⋅⋅.【答案】6 4【解析】如图所示,A 'B '=AB =2,13''22OC OC ==,作C 'D '⊥x ',则26''''24C D O C ==. ∴其直观图的面积1166''''222C D A B =⋅⋅=⨯⨯=.故答案为:6.类型四.空间几何体的表面积与体积例6.有一根长为3πcm ,底面半径为1cm 的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为多少?【思路点拨】把圆柱沿这条母线展开,将问题转化为平面上两点间的最短距离. 【解析】把圆柱侧面及缠绕其上的铁丝展开,在平面上得到矩形ABCD (如图),由题意知BC =3πcm ,AB =4πcm ,点A 与点C 分别是铁丝的起.止位置,故线段AC 的长度即为铁丝的最短长度.AC =22AB BC +5πcm ,故铁丝的最短长度为5πcm .【总结升华】把一个平面图形折叠成一个几何体,再研究其性质,是考查空间想象能力的常用方法,所以几何体的展开与折叠是高考的一个热点. 举一反三:【变式】如图是某个圆锥的三视图,请根据正视图中所标尺寸,则俯视图中圆的面积为__________,圆锥母线长为______.【答案】圆半径r =10,面积S =100π,圆锥母线2230101010l =+=.例7.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是________cm 2,体积是________cm 3.【思路点拨】由三视图可得,原几何体为由四个棱长为2 cm 的小正方体所构成的,代入体积公式和面积公式计算即可.【答案】72,32【解析】由三视图可得,原几何体为由四个棱长为2 cm 的小正方体所构成的,则其表面积为22×(24-6)=72 cm 2,其体积为4×23=32,故答案为:72,32 举一反三:【变式】如图是某简单组合体的三视图,则该组合体的体积为( )A .363(2)π+B .363(2)π+C .1083πD .108(32)π+【思路点拨】几何体是一个简单的空间组合体,前面是半个圆锥,圆锥的底面是半径为6的圆,母线长是12,后面是一个三棱锥,三棱锥的底边长是12、高为6的等腰三角形,三棱锥的高是12,求出两个几何体的体积,求和得到结果. 【答案】B【解析】由三视图知,几何体是一个简单的空间组合体,前面是半个圆锥,圆锥的底面是半径为6的圆,母线长是12,∴根据勾股定理知圆锥的高是63,∴半个圆锥的体积是21166336323ππ⨯⨯⨯⨯=, 后面是一个三棱锥,三棱锥的底是边长12、高为6的等腰三角形,三棱锥的高是63,∴三棱锥的体积是111266372332⨯⨯⨯⨯=,∴几何体的体积是363723363(2)ππ+=+, 故选B .巩固练习1.1.1 柱、锥、台、球的结构特征1.下列命题中正确的是( )A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台都有两个底面D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径2.长方体AC 1的长、宽、高分别为3、2、1,从A 到C 1沿长方体的表面的最短距离为( ) A.31+ B.102+ C.23 D.323.下面几何体中,过轴的截面一定是圆面的是( )A.圆柱B.圆锥C.球D.圆台4.一个无盖的正方体盒子展开后的平面图,如图14所示,A 、B 、C 是展开图上的三点,则在正方体盒子中∠ABC=____________.图145.有一粒正方体的骰子每一个面有一个英文字母,如图16所示.从3种不同角度看同一粒骰子的情况,请问H反面的字母是___________.图166.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.1.1.2 简单组合体的结构特征1 如图3所示,一个圆环绕着同一个平面内过圆心的直线l旋转180°,想象并说出它形成的几何体的结构特征.图3.2 已知如图5所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕BC所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.3.若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是()A.64B.66C.68D.701.2.3 空间几何体的直观图1. 关于“斜二测画法”,下列说法不正确的是()A.原图形中平行于x轴的线段,其对应线段平行于x′轴,长度不变1B.原图形中平行于y轴的线段,其对应线段平行于y′轴,长度变为原来的2C.在画与直角坐标系xOy对应的x′O′y′时,∠x′O′y′必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同2.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是( )A.16B.64C.16或64D.都不对3.一个三角形用斜二测画法画出来的直观图是边长为2的正三角形,则原三角形的面积是( ) A.62 B.64 C.3 D.都不对4.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( ) A.2221+ B.221+ C.21+ D.22+ 1.1.1 柱、锥、台、球的结构特征1.下列几个命题中,①两个面平行且相似,其余各面都是梯形的多面体是棱台;②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;③各侧面都是正方形的四棱柱一定是正方体;④分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个圆柱是两个不同的圆柱. 其中正确的有__________个.( )A.1B.2C.3D.4分析:①中两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,所以①是错误的;②中两个底面互相平行,其余四个面都是等腰梯形,也有可能两底面根本就不相似,所以②不正确;③中底面不一定是正方形,所以③不正确;很明显④是正确的.答案:A1.下列命题中正确的是( )A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台都有两个底面D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径分析:以直角梯形垂直于底的腰为轴,旋转所得的旋转体才是圆台,所以B 不正确;圆锥仅有一个底面,所以C 不正确;圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的母线长,所以D 不正确.很明显A 正确.答案:A2 长方体AC 1的长、宽、高分别为3、2、1,从A 到C 1沿长方体的表面的最短距离为( )A.31+B.102+C.23D.32答案:C3.下面几何体中,过轴的截面一定是圆面的是( )A.圆柱B.圆锥C.球D.圆台分析:圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形,球的轴截面是圆面,所以A 、B 、D 均不正确.答案:C4.(2007山东菏泽二模,文13)一个无盖的正方体盒子展开后的平面图,如图14所示,A 、B 、C 是展开图上的三点,则在正方体盒子中∠ABC=____________.图14分析:如图15所示,折成正方体,很明显点A 、B 、C 是上底面正方形的三个顶点,则∠ABC=90°.图15答案:90°5.有一粒正方体的骰子每一个面有一个英文字母,如图16所示.从3种不同角度看同一粒骰子的情况,请问H 反面的字母是___________.图16分析:正方体的骰子共有6个面,每个面都有一个字母,从每一个图中都看到有公共顶点的三个面,与标有S 的面相邻的面共有四个,由这三个图,知这四个面分别标有字母H 、E 、O 、p 、d ,因此只能是标有“p”与“d”的面是同一个面,p 与d 是一个字母;翻转图②,使S 面调整到正前面,使p 转成d ,则O 为正下面,所以H 的反面是O. 答案:O6.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.分析:这类题目应该选取轴截面研究几何关系.解:圆台的轴截面如图17,图17设圆台上、下底面半径分别为x cm 和3x cm ,延长AA 1交OO 1的延长线于S.在Rt △SOA 中,∠ASO=45°,则∠SAO=45°.所以SO=AO=3x.所以OO 1=2x. 又21(6x+2x )·2x=392,解得x=7,所以圆台的高OO 1=14 cm ,母线长l=2OO 1=214cm ,而底面半径分别为7 cm 和21 cm,即圆台的高14 cm ,母线长214cm ,底面半径分别为7 cm 和21 cm.1.1.2 简单组合体的结构特征1 如图3所示,一个圆环绕着同一个平面内过圆心的直线l 旋转180°,想象并说出它形成的几何体的结构特征.图3答案:一个大球内部挖去一个同球心且半径较小的球.2 已知如图5所示,梯形ABCD 中,AD ∥BC ,且AD <BC ,当梯形ABCD 绕BC 所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.图5 图6 解:如图6所示,旋转所得的几何体是两个圆锥和一个圆柱拼接成的组合体.3.若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是( )A.64B.66C.68D.70分析:由2、3、5的最小公倍数为30,由2、3、5组成的棱长为30的正方体的一条对角线穿过的长方体为整数个,所以由2、3、5组成棱长为90的正方体的一条对角线穿过的小长方体的个数应为3的倍数.答案:B1.2.3 空间几何体的直观图1.画水平放置的等边三角形的直观图.2.如图7所示,梯形ABCD 中,AB ∥CD ,AB=4 cm ,CD=2 cm ,∠DAB=30°,AD=3 cm ,试画出它的直观图.图7解:步骤是:(1)如图8所示,在梯形ABCD 中,以边AB 所在的直线为x 轴,点A 为原点,建立平面直角坐标系xOy.如图9所示,画出对应的x′轴,y′轴,使∠x′A′y′=45°.(2)如图8所示,过D 点作DE ⊥x 轴,垂足为E.在x′轴上取A′B′=AB=4 cm ,A′E′=AE=323cm ≈2.598 cm ;过E′作E′D′∥y′轴,使E′D′=ED 21,再过点D′作D′C′∥x′轴,且使D′C′=CD=2 cm.图8 图9 图10(3)连接A′D′、B′C′、C′D′,并擦去x′轴与y′轴及其他一些辅助线,如图10所示,则四边形A′B′C′D′就是所求作的直观图.3.关于“斜二测画法”,下列说法不正确的是( )A.原图形中平行于x 轴的线段,其对应线段平行于x′轴,长度不变B.原图形中平行于y 轴的线段,其对应线段平行于y′轴,长度变为原来的21 C.在画与直角坐标系xOy 对应的x′O′y′时,∠x′O′y′必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同分析:在画与直角坐标系xOy 对应的x′O′y′时,∠x′O′y′也可以是135°,所以C 不正确. 答案:C4.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是( )A.16B.64C.16或64D.都不对分析:根据直观图的画法,平行于x 轴的线段长度不变,平行于y 轴的线段变为原来的一半,于是长为4的边如果平行于x 轴,则正方形边长为4,面积为16,边长为4的边如果平行于y 轴,则正方形边长为8,面积是64. 答案:C5.一个三角形用斜二测画法画出来的直观图是边长为2的正三角形,则原三角形的面积是( ) A.62 B.64 C.3 D.都不对分析:根据斜二测画法的规则,正三角形的边长是原三角形的底边长,原三角形的高是正三角形高的22倍,而正三角形的高是3,所以原三角形的高为62,于是其面积为21×2×62=62. 答案:A6.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( ) A.2221+ B.221+ C.21+ D.22+ 分析:平面图形是上底长为1,下底长为21+,高为2的直角梯形.计算得面积为22+. 答案:D。

空间几何体的三视图测试(人教A版)(含答案)

空间几何体的三视图测试(人教A版)(含答案)

空间几何体的三视图测试(人教A版)一、单选题(共10道,每道10分)1.如图是某几何体的三视图,则此几何体的体积是( )A.672B.1120C.1344D.2016答案:A解题思路:试题难度:三颗星知识点:棱柱的三视图2.某几何体的三视图如图,则该几何体中最长的棱是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:棱锥的三视图3.某几何体的三视图如图所示,且该几何体的体积是3,则正视图的面积等于( )A.2B.C. D.3答案:D解题思路:试题难度:三颗星知识点:棱锥的三视图4.已知某几何体的三视图如图所示,其中正视图中半圆的半径为1,则该几何体的表面积为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:由三视图还原直观图5.已知一个几何体的三视图如图所示,则该几何体的体积为( )A.4B.2C.1D.5答案:D解题思路:试题难度:三颗星知识点:由三视图还原直观图6.有一个几何体的三视图如图所示,则该几何体的体积为( )A.16B.20C.24D.32答案:B解题思路:试题难度:三颗星知识点:由三视图还原直观图7.一空间几何体的三视图如图所示,该几何体的体积为,则正视图中的值为( )A.5B.4C.3D.2答案:B解题思路:试题难度:三颗星知识点:由三视图还原直观图8.某几何体的三视图如图所示,则它的体积是( )A.3B.5C.7D.9答案:B解题思路:试题难度:三颗星知识点:由三视图还原直观图9.一个球的表面积为,在该球的球面上有三点,且每点间的球面距离均为,则三棱锥的体积为( )A.36B.C. D.答案:A解题思路:试题难度:三颗星知识点:球面距离及相关计算10.正三棱锥的三条侧棱两两互相垂直,若侧棱长为,则该三棱锥的内切球的半径为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:多面体的内切球。

高三数学人教版a版数学(理)高考一轮复习教案:7.1 空间几何体的结构特征及三视图与直观图 word版含答案

高三数学人教版a版数学(理)高考一轮复习教案:7.1 空间几何体的结构特征及三视图与直观图 word版含答案

第一节空间几何体的结构特征及三视图与直观图三视图与直观图(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.(3)会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).知识点一空间几何体的结构特征1.多面体的结构特征(1)棱柱的侧棱都互相平行,上下底面是全等的多边形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的形成几何体旋转图形旋转轴圆柱矩形任一边所在的直线圆锥直角三角形任一直角边所在的直线圆台直角梯形垂直于底边的腰所在的直线球半圆直径所在的直线易误提醒(1)棱台可以看成是由棱锥截得的,但截面一定与底面平行.(2)球的任何截面都是圆.球面被经过球心的平面截得的圆叫作大圆,大圆的半径等于球的半径;被不经过球心的平面截得的圆叫作小圆,小圆的半径小于球的半径.必记结论球的截面的性质(1)球心和截面(不过球心)圆心的连线垂直于截面;(2)球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r=R2-d2.[自测练习]1.关于空间几何体的结构特征,下列说法不正确的是()A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等解析:根据棱锥的结构特征知,棱锥的侧棱长不一定都相等.答案:B2.如图,在球中被平面所截面的截面小圆的半径为2,球心半径为3,则球心到截面圆心距离为________.解析:由条件知r=2,R=3,∴r2+d2=R2,∴d=R2-r2= 5.答案: 5知识点二空间几何体的三视图1.三视图的名称几何体的三视图包括:正视图、侧视图、俯视图.2.三视图的画法(1)在画三视图时,重叠的线只画一条,挡住的线要画成虚线.(2)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.易误提醒(1)画三视图时,能看见的线和棱用实线表示,不能看见的线和棱用虚线表示.(2)一物体放置的位置不同,所画的三视图可能不同.[自测练习]3.(2016·深圳调研)用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:由于三视图可见部分用实线画出,不可见部分用虚线画出,故选B. 答案:B4.某几何体的三视图如图所示,根据三视图可以判断这个几何体为( )A .圆锥B .三棱锥C .三棱柱D .三棱台解析:根据俯视图与侧视图,可得该几何体为三棱柱. 答案:C知识点三 空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是1.原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°或135°,z ′轴与x ′轴和y ′轴所在平面垂直.2.原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x 轴和z 轴的线段在直观图中保持原长度不变;平行于y 轴的线段在直观图中长度为原来的一半.必记结论 斜二测画法中的“三变”与“三不变” “三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度变为原来的一半图形改变“三不变”⎩⎪⎨⎪⎧平行性不改变与x ,z 轴平行的线段的长度不改变相对位置不改变[自测练习]5.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:根据斜二测画法的规则知,选A.答案:A考点一空间几何体的结构特征|1.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;③若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;④棱台的侧棱延长后交于一点,侧面是等腰梯形.其中正确命题的序号是()A.①②③B.②③C.③D.①②③④解析:对于①,棱柱的侧面不一定全等,故①错;对于②,截面与底面不一定平行,故②错;对于④,棱台的侧棱延长后相交于一点,但侧面不一定是等腰梯形,故④错;由面面垂直的判定及性质知③正确,故选C.答案:C2.下列结论中正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任一点的连线都是母线解析:当一个几何体由具有相同的底面且顶点在底面两侧的两个三棱锥构成时,尽管各面都是三角形,但它不是三棱锥,故A错误;若三角形不是直角三角形或是直角三角形但旋转轴不是直角边所在直线,所得几何体就不是圆锥,B错误;若六棱锥的所有棱都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,则棱长必然要大于底面边长,故C错误.答案:D解决空间几何体结构特征问题的三个策略(1)把握几何体的结构特征,提高空间想象力.(2)构建几何模型、变换模型中的线面关系.(3)通过反例对结构特征进行辨析.考点二空间几何体的三视图|(2016·温州模拟)(1)若某几何体的三视图如图所示,则此几何体的直观图是()(2)(2016·汕头模拟)如图是一正方体被过棱的中点M,N,顶点A及过N,顶点D,C1的两个截面截去两角后所得的几何体,该几何体的正视图是()[解析](1)利用排除法求解.B的侧视图不对,C图的俯视图不对,D的正视图不对,排除B,C,D,A正确,故选A.(2)能看见的轮廓线用实线,看不见的轮廓线用虚线.故选B.[答案](1)A(2)B三视图问题的求解方法(1)对于简单几何体的组合体,在画其三视图时首先应分清它是由哪些简单几何体组成的,然后再画其三视图.(2)由三视图还原几何体时,要遵循以下三步:①看视图,明关系;②分部分,想整体;③综合起来,定整体.(2015·江西师大附中模拟)已知一个三棱锥的正视图与俯视图如图所示,则该三棱锥的侧视图面积为( )A.32B.34C .1D.12解析:由三棱锥的正视图与俯视图可知,该三棱锥的侧视图是一个两条直角边长分别为32,1的直角三角形,故它的面积为12×32×1=34. 答案:B考点三 空间几何体的直观图|1.用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 2解析:依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC ,AD相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.答案:C2.已知△ABC 是边长为a 的等边三角形,则其直观图△A ′B ′C ′的面积为________.解析:如图所示,设△A ′B ′C ′为△ABC 的直观图, O ′为A ′B ′的中点. 由直观图的画法知A ′B ′=a , O ′C ′=12·3a 2=3a 4,∴S △A ′B ′C ′=12·A ′B ′·(O ′C ′·sin 45°)=12·a ·⎝⎛⎭⎫3a 4×22=6a 216. 即边长为a 的等边三角形的直观图的面积为6a 216.答案:6a 216按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S 直观图=24S 原图形.15.画三视图忽视边界线及其实虚致误【典例】 将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为( )[解析]还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线.D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.[答案] B[易误点评](1)忽视B1C是边界线致误.(2)注意了B1C是边界线,但忽视了B1C不可视,在侧视图中应为虚线,从而造成错误答案.[防范措施](1)在确定边界线时,要先分析几何体由哪些面组成,从而可确定边界线,其次要确定哪些边界线投影后与轮廓线重合,哪些边界线投影后与轮廓线不重合,不重合的是我们要在三视图中画出的.(2)在画三视图时,首先确定几何体的轮廓线,然后再确定面与面之间的边界线,再根据是否可视确定实虚.[跟踪练习](2015·张家界模拟)沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()解析:结合几何体及选项知B项正确.答案:BA组考点能力演练1.如图所示,△A′B′C′是△ABC的直观图,其中A′C′=A′B′,那么△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形解析:由题图知A′C′∥y′轴,A′B′∥x′轴,由斜二测画法知,在△ABC中,AC ∥y轴,AB∥x轴,∴AC⊥AB.又因为A′C′=A′B′,∴AC=2AB≠AB,∴△ABC是直角三角形.B项正确.答案:B2.一个几何体的三视图如图所示,其中俯视图为正三角形,则侧视图的面积为()A.8B.4 3C.4 2 D.4解析:由三视图可知,该几何体是一个正三棱柱,高为4,底面是一个边长为2的正三角形.因此,侧视图是一个长为4,宽为3的矩形,其面积S=3×4=4 3.答案:B3.(2016·武昌调研)已知以下三视图中有三个同时表示某个三棱锥,则不是该三棱锥的三视图是()解析:易知该三棱锥的底面是直角边分别为1和2的直角三角形,注意到侧视图是从左往右看得到的图形,结合B、D选项知,D选项中侧视图、俯视图方向错误,故选D.答案:D4.若一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为()A.1 B.2C.3 D.4解析:观察三视图,可得直观图如图所示.该三棱锥A-BCD的底面BCD是直角三角形,AB⊥平面BCD,CD⊥BC,侧面ABC,ABD是直角三角形,由CD⊥BC,CD⊥AB,知CD ⊥平面ABC,CD⊥AC,侧面ACD也是直角三角形,故选D.答案:D5.(2016·长沙模拟)某几何体的正视图和侧视图均为图甲所示,则在图乙的四个图中可以作为该几何体的俯视图的是()A.①③B.①③④C.①②③D.①②③④解析:若图②是俯视图,则正视图和侧视图中矩形的竖边延长线有一条和圆相切,故图②不合要求;若图④是俯视图,则正视图和侧视图不相同,故图④不合要求,故选A.答案:A6.给出下列命题:①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;③若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中正确命题的序号是________.解析:①正确,正四面体是每个面都是等边三角形的四面体,如正方体ABCD -A1B1C1D1中的四面体A -CB1D1;②错误,反例如图所示,底面△ABC为等边三角形,可令AB=VB=VC=BC=AC,则△VBC为等边三角形,△VAB和△VCA均为等腰三角形,但不能判定其为正三棱锥;③错误,必须是相邻的两个侧面.答案:①7.如图所示,△A′B′C′是△ABC的直观图,且△A′B′C′是边长为a的正三角形,则△ABC的面积为________.解析:如图所示,△A′B′C′是边长为a的正三角形,作C′D′∥A′B′交y′轴于点D′,则C′,D′到x′轴的距离为3 2a.∵∠D ′A ′B ′=45°,∴A ′D ′=62a , 由斜二测画法的法则知,在△ABC 中,AB =A ′B ′=a ,AB 边上的高是A ′D ′的二倍,即为6a ,∴S △ABC =12a ·6a =62a 2. 答案:62a 2 8.(2016·武邑一模)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为________. 解析:本题构造长方体,体对角线长为7,其在侧视图中为侧面对角线a ,在俯视图中为底面对角线b ,设长方体底面宽为1,则b 2-1+a 2-1=6,即a 2+b 2=8,利用不等式⎝⎛⎭⎫a +b 22≤a 2+b 22=4,则a +b ≤4. 答案:49.已知正四棱锥的高为3,侧棱长为7,求棱锥的斜高(棱锥侧面三角形的高). 解:如图所示,正四棱锥S -ABCD 中,高OS =3,侧棱SA =SB =SC =SD =7,在Rt △SOA 中,OA =SA 2-OS 2=2,∴AC =4.∴AB =BC =CD =DA =2 2.作OE ⊥AB 于E ,则E 为AB 中点.连接SE ,则SE 即为斜高,在Rt △SOE 中,∵OE =12BC =2,SO =3, ∴SE =5,即棱锥的斜高为 5.10.如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求P A.解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.(2)由侧视图可求得PD=PC2+CD2=62+62=6 2.由正视图可知AD=6,且AD⊥PD,所以在Rt△APD中,P A=PD2+AD2=(62)2+62=6 3 cm.B组高考题型专练1.(2014·高考新课标全国卷Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:由题中三视图可知该几何体的直观图如图所示,则这个几何体是三棱柱,故选B.答案:B2.(2014·高考湖南卷)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()A.1 B.2 C.3 D.4解析:由题图可知该几何体为三棱柱,最大球的半径为r,则8-r+6-r=82+62,得r=2.答案:B3.(2013·高考湖南卷)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于()A.32B.1 C.2+12 D. 2解析:由题意可知该正方体的放置如图所示,侧视图的方向垂直于面BDD1B1,正视图的方向垂直于面A1C1CA,且正视图是长为2,宽为1的矩形,故正视图的面积为2,因此选D.答案:D4.(2014·高考福建卷)某空间几何体的正视图是三角形,则该几何体不可能是() A.圆柱B.圆锥C.四面体D.三棱柱解析:圆柱的正视图是矩形,则该几何体不可能是圆柱.答案:A5.(2015·高考北京卷)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. 2C. 3 D.2解析:由题中三视图知,此四棱锥的直观图如图所示,其中侧棱SA⊥底面ABCD,且底面是边长为1的正方形,SA=1,所以四棱锥最长棱的棱长为SC=3,选C.答案:C。

高考数学(理)之立体几何与空间向量 专题01 空间几何体的结构及其三视图和直观图(解析版)

高考数学(理)之立体几何与空间向量 专题01 空间几何体的结构及其三视图和直观图(解析版)

立体几何与空间向量01 空间几何体的结构及其三视图和直观图【考点讲解】一、具体目标:①能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图。

②会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式。

③会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).二、知识概述:1.空间几何体的直观图简单几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面:在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高:在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.2.空间几何体的三视图三视图:几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.3.三视图中的数据与原几何体中的数据不一定一一对应,识图要注意甄别. 揭示空间几何体的结构特征,包括几何体的形状,平行垂直等结构特征,这些正是数据运算的依据.4.还原几何体的基本要素是“长对齐,高平直,宽相等”. 简单几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.三、备考策略:1.以考查三视图、几何体的结构特征以及几何体的面积体积计算为主,三视图基本稳定为选择题或填空题,难度中等以下;几何体的结构特征往往在解答题中考查,与平行关系、垂直关系等相结合.2.与立体几何相关的“数学文化”等相结合,考查数学应用的.3.备考重点:(1) 掌握三视图与直观图的相互转换方法是关键;(2)掌握常见几何体的结构特征.四、常考题型:三视图是高考重点考查的内容,考查内容有三视图的识别;三视图与直观图的联系与转化;求与三视图对应的几何体的表面积与体积.命题形式为用客观题考查识读图形和面积体积计算,解答题往往以常见几何体为载体考查空间想象能力和推理运算能力,期间需要灵活应用几何体的结构特征. 4. 三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:(1)首先看俯视图,根据俯视图画出几何体地面的直观图;(2)观察正视图和侧视图找到几何体前、后、左、右的高度;(3)画出整体,然后再根据三视图进行调整. 1. 【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324【解析】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯= ⎪⎝⎭.故选B. 【答案】B2.【2018年高考全国Ⅰ卷】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )【真题分析】A .172B .52C .3D .2【分析】该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.【解析】根据圆柱的三视图以及其本身的特征,知点M 在上底面上,点N 在下底面上,且可以确定点M 和点N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为√42+22=2√5,故选B . 【答案】B3.【2018年高考全国Ⅰ卷】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【解析】本题主要考查空间几何体的三视图.由题意知,俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A . 【答案】A4.【2018年高考浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )俯视图正视图A .2B .4C .6D .8【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上、下底分别为1,2,梯形的高为2,因此几何体的体积为()112226,2⨯+⨯⨯=故选C. 【答案】C5.【2018年高考北京卷文数】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A .1B .2C .3D .4【解析】本题要求会利用三视图的性质还原原立体图形,然后再应用立体图形的性质进行计算或验证. 由三视图可得四棱锥P ABCD -如图所示,在四棱锥P ABCD -中,2,2,2,1PD AD CD AB ====,由勾股定理可知:3,PA PC PB BC ====则在四棱锥中,直角三角形有:,,PAD PCD PAB △△△,共3个,故选C. 【答案】C6.【2017年高考全国Ⅰ卷理数】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10 B.12 C.14 D.16【解析】解决此类问题的关键是由三视图准确确定空间几何体的形状和结构特征,要求熟悉常见几何体的三视图.由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.【答案】B7.【2017年高考北京卷理数】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.B.C.D.2【解析】几何体是四棱锥P ABCD-,如图.最长的棱长为补成的正方体的体对角线,即该四棱锥的最长棱的长度为22222223l=++=,故选B.【答案】B8.【2017年高考全国Ⅱ卷】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .【答案】B9.【2017年高考浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A .12π+ B .32π+ C .312π+ D .332π+ 【解析】根据所给三视图可还原几何体为半个圆锥和半个棱锥拼接而成的组合体,所以,几何体的体积为21113(21)13222V π⨯π=⨯⨯+⨯⨯=+,故选A .【答案】A10.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=. 【答案】401.【2017北京,文6】某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.60B.30C.20D.10【解析】本题主要考查的将三视图还原成几何体后求体积的问题。

2013年高考立体几何试题赏析3页

2013年高考立体几何试题赏析3页

2013年高考立体几何试题赏析高中立体几何的核心内容是空间几何体的认识,空间点、线、面位置关系的确定以及空间几何的有关度量(包括表面积、体积、角、距离的计算.综观2013年全国各地的高考数学试卷,多数试题已经突破了传统的考查框架,在命题风格上,正逐步由封闭性向灵活性、开放性转变.盘点2013年高考立体几何试题,提炼其命题特点、亮点,希望对今后立体几何的复习教学有所裨益.1 三视图题——显常规而不拘一格例1 (2013年高考全国新课标卷Ⅱ·理11)某几何体的三视图如图1所示,则该几何体的体积为()A.16 8π+B.8 8π+C.16 16π+D.8 16π+命题意图考查空间想象力,能正确分析图形中基本元素及其相互关系,能够对空间图形进行分解与组合,同时通过对几何体面积或体积的计算,考查推理与计算能力.思路分析该几何体是个组合体,其下面是个半圆柱,上面是个长方体,如图2.点评解题关键是还原几何体,其基本要素是“长对齐、高平齐、宽相等”,能从不同角度去看几何体.体会与感悟此类题型重点考查方向:复原—能识别三视图所表示的主体模型;求积—能根据立体模型求它们的体积或表面积;识图----根据提供的部分三视图画另外的一个三视图.2 求空间角——传统与向量法兼备点评解题关键是恰当地建立空间直角坐标系,正确地写出各点坐标,准确地求出两个半平面的法向量(或直线的方向向量)的坐标,或“找”(“作”)出角,然后熟练地运用公式计算.体会与感悟空间向量在立体几何中起工具性的作用,因其避开了“作”、“找”角的难度,在代数与几何中起了承接作用,使传统法与空间向量法相辅相成.4.2 翻折例5 (2013年高考广东卷·理18)如图7,等腰三角形ABC中,90A∠=d,6BC =,D,E分别是AC,AB上的点,2CDBE==,O为BC的中点,将ADEΔ沿DE折起得到如图7所示的四棱锥ABCDE′?,其中3A D′=.(Ⅰ)证明:A O′⊥平面BCDE;(Ⅱ)求二面角ACDB′??的平面角的余弦值.命题意图考查化归与转化思想,考查空间想象能力、推理论证能力、运算求解能力思路分析(Ⅰ)根据翻折前后线线关系推导出线面垂直的条件.(Ⅱ)作出二面角,通过解三角形求解,或者建立空间直角坐标系后使用法向量求解.点评解题关键是理清折叠前后平面图形与空间几何体间的对应关系.体会与感悟在翻折问题中,要从翻折前后线线位置关系的“变”与“不变”中找到解决问题的切入点,翻折前后位于相同平面中的线线位置关系不变,位于不同平面中的线线位置关系可能发生变化.5 位置关系证明题——立体平面降维转化5.1 平行关系例8 (2013年高考安徽卷·理19)如图9圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5d,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60d.(Ⅰ)证明:平面PAB与平面PCD的交线平行于底面;(Ⅱ)求cos COD∠.命题意图本题考查空间直线、平面平行关系的性质与判定等基础知识和基本技能,意在考查考生的空间想象能力、逻辑推理能力.点评解题关键是根据题意取AB中点O,进而得到垂直关系.体会与感悟线线垂直、线面垂直、面面垂直三种关系的相互依存与相互转化是解决垂直问题的最基本方法.希望以上资料对你有所帮助,附励志名言3条:1、生命对某些人来说是美丽的,这些人的一生都为某个目标而奋斗。

2013版高考数学 7.1 空间几何体的结构及其三视图和直观图课件 文 新人教A版

2013版高考数学 7.1 空间几何体的结构及其三视图和直观图课件 文 新人教A版

【提醒】1.画三视图时,分界线和可见轮廓线都用实线画出,
被遮挡住的部分的轮廓线用虚线表示.
2.严格按排列规律放置三视图,并标出长、宽、高的关系,对 准确把握几何体很有利.
【例2】(1)如图的三个图中,上面是一个长方体截去一个角后 所得多面体的直观图,它的正视图和侧视图在下面画出 (单位: cm).在正视图下面的矩形框内,按照画三视图的要求画出该多
(2)选C.由正视图和侧视图可知,此几何体为柱体,易知高 h=1,且体积V=S×h= 1 (S为底面积),得S= 1 ,结合各选项知 2 2 这个几何体的底面可以是边长为1的等腰直角三角形,故选C.
【反思·感悟】画几何体的三视图可以想象自己站在几何体的
正前方、正左方和正上方,观察它是由哪些基本几何体组成,
2.三视图的常见题型及求解策略
(1)由实物图画三视图或判断选择三视图,此时需要注意“长 对正、高平齐、宽相等”的原则; (2)由三视图还原实物图,这一题型综合性较强,解题时首先 对柱、锥、台、球的三视图要熟悉,再复杂的几何体也是由这 些简单的几何体组合而成的;其次,要明确三视图的形成原理, 并能结合空间想象将三视图还原为实物图.
第一节
空间几何体的结构及其三视图和直观图
三年17考 高考指数:★★★ 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用 这些特征描述现实生活中简单物体的结构; 2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简
易组合)的三视图,能识别上述三视图所表示的立体模型,会用
斜二测画法画出它们的直观图;
为 3 a, 2
∵∠D′A′B′=45°,∴A′D′= 由斜二测画法的法则知,
6 a, 2
在△ABC中,AB=A′B′=a,AB边上的高是A′D′的

2013高考数学人教版复习训练:第八章第1课时《空间几何体的结构特征和三视图》(含解析)

2013高考数学人教版复习训练:第八章第1课时《空间几何体的结构特征和三视图》(含解析)

1.一个简单几何体的主视图、左视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆;④椭圆.
其中正确的是()
A.①②B.②③
C.③④D.①④
解析:选B.根据画三视图的规则“长对正,高平齐,宽相等”可知,几何体的三视图不可能是圆和正方形.
2.(2011·高考课标全国卷)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()
解析:选D.由几何体的主视图和俯视图可知,该几何体的底面为半圆和等腰三角形,其侧视图可以是一个由等腰三角形及底边上的高构成的平面图形,故应选D.
3.(2011·高考江西卷)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为()
解析:选D.如图所示,点D1的投影为C1,点D的投影为C,点A的投影为B,故选D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业(三十六) [第36讲 空间几何体的结构特征及三视图和直观图]
[时间:45分钟 分值:100分]
基础热身
1.有一个几何体的三视图如图K36-1所示,这个几何体应是一个 ( )
K36-1
A .棱台
B .棱锥
C .棱柱
D .都不对
2.如图K36-2所示几何体各自的三视图中,有且仅有两个视图相同的是( )
A .①②
B .①③
C .①④
D .②④
3.一个几何体的正视图和侧视图如图K36-3所示,其中正视图的底边长为1,侧视图的底边长为3、高为2,则这个空间几何体俯视图的面积是( ) A .2 B .3 C.72 D .4
K364.已知三棱锥的俯视图与侧视图如图K36-4,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为( )
K36
K36-能力提升
5.将正三棱柱截去三个角(如图K36-6①所示A 、B 、C 分别是△GHI 三边的中点)得到的几何体如图K36-6②,则该几何体按图②所示方向的侧视图(或称左视图)为( )
图K36-6
K36-
6.若某几何体的三视图如图K36-8所示,则这个几何体的直观图可以是()
图K36-8
图K36-9
7.将长方体截去一个四棱锥,得到的几何体如图K36-10所示,则该几何体的侧视图为()
图K36-10
图K36-11 8.某几何体的三视图如图K36-12所示,那么这个几何体是()
-12
A.三棱锥B.四棱锥
C.四棱台D.三棱台
9.某几何体的一条棱长为m,在该几何体的正视图中,这条棱的投影是长为7的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为6和5的线段,则m的值为()
A.3 B.2 3 C.4 D.2 5
10.如果一个几何体的三视图如图K36-13所示,其中正视图中△ABC是边长为2的正三角形,俯视图为正六边形,那么该几何体的侧视图的面积为________.
-13
11.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于________.
12.已知一几何体的三视图如图K36-14,正视图和侧视图都是矩形,俯视图为正方形,在该几何体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是(写出所有正确结论的编号)________.
①矩形;
②不是矩形的平行四边形;
③有三个面为直角三角形,有一个面为等腰三角形的四面体;
-14
13.一个几何体的正视图和侧视图如图K36-15所示,其中正视图的底边长为1,侧视图的底边长为3、高为2,则这个空间几何体俯视图的面积是________.
K36-15
14.(10分)已知,如图K36-16是一个空间几何体的三视图.
(1)该空间几何体是如何构成的?
(2)画出该几何体的直观图;
(3)求该几何体的表面积和体积.
图K36-16
15.(13分)有一块多边形菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图K36-17所示),∠A′B′C′=45°,D′C′⊥A′D′,A′B′=A′D′=1 m,若平均每1 m2菜地所产生的经济效益是300元,则这块菜地所产生的总经济效益是多少元?(精确到1元)
图K36-17
难点突破
16.(12分)一个几何体的三视图如图K36-18所示,其中正视图和侧视图是腰长为6的两个全等的等腰直角三角形.
(1)请画出该几何体的直观图,并求出它的体积;
(2)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD-A1B1C1D1?如何组拼?试证明你的结论;
(3)在(2)的情形下,设正方体ABCD-A1B1C1D1的棱CC1的中点为E, 求平面AB1E与平面ABC所成锐二面角的余弦值.
K36-18
课时作业 (三十六)
【基础热身】
1.A [解析] 根据三视图,这个空间几何体是棱台.
2.D [解析] 正方体的三个视图都相同,而三棱台的三个视图各不相同,正确答案为
D.
3.B [解析] 这是一个将一个侧面水平放置的三棱柱,其俯视图如图,俯视图是一个边长分别为1,3的矩形,故其面积为3.
4.C [解析] 2,
正视图和俯视图“长对正”,故正视图的底面边长为2,根据侧视图中的直角说明这个空间几何体最前面的面垂直于底面,这个面遮住了后面的一个侧棱,综合这些可知,这个空间几何体的正视图可能是C.
【能力提升】
5.A [解析] 截前的侧视图是一个矩形,截后改变的只是B ,C ,F 方向上的.
6.B [解析] 由正视图可排除A ,C ;由侧视图可判断该几何体的直观图是B.
7.D [解析] 被截去的四棱锥的三条可见侧棱中有两条为正方体的面对角线,它们在右侧面上的投影与右侧面(正方形)的两条边重合,另一条为正方体的体对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图及对角线方向,只有选项D 符合.
8.B [解析] 由所给三视图与直观图的关系,可以判定对应的几何体为如图所示的四棱锥,且P A ⊥面ABCD ,AB ⊥BC ,BC ∥AD .
9.A [解析]
如图,设长方体的长,宽,高分别为a ,b ,c ,由题意得
a 2+c 2=7,
b 2+
c 2=6,a 2+b 2= 5
⇒a 2+b 2+c 2=9,所以对角线的长为a 2+b 2+c 2=3.
∴选A.
10.32
[解析] 根据三视图的信息可以知道相应的空间几何体是一个正六棱锥,结合数据可知其底面正六边形的边长为1,棱锥的高为h = 3.由于三视图中“宽相等”,那么侧视图中的三角形的底边边长与俯视图中正六边形的高相等,可得其长度为3,则该几何体的侧
视图的面积为S =12×3×3=32
. 11.22a 2 [解析] 一个平面图形的面积S 与它的直观图的面积S ′之间的关系是S ′=24S ,而直观图面积S ′=a 2.所以原平面四边形的面积为a 22
4
=22a 2. 12.①③④ [解析] 如图所示长方体为几何体的直观图.
当选择的四个点为A 、B 、C 、D
当选择B 、A 、B 1、C 时,可知③正确;
当选择A 、B 、D 、D 1时,可知④正确.
13.3 [解析] 这是一个将一个侧面水平放置的三棱柱,其俯视图如图.俯视图是一个边长分别为1,3的矩形,故其面积为3.
14.[解答] (1)2,高为1的长方体,上
半部分是一个底面各边长为2,高为1的正四棱锥.
(2)
(3)由题意可知,该几何体是B ′C ′D ′与正四棱锥P -
A ′
B ′
C ′
D ′构成的简单几何体.
由图易得:AB =AD =2,AA ′=1,PO ′=1,取A ′B ′中点Q ,连接PQ ,从而PQ =PO ′2+O ′Q 2=12+12=2,所以该几何体表面积
S =12
(A ′B ′+B ′C ′+C ′D ′+D ′A ′)PQ +(A ′B ′+B ′C ′+C ′D ′+D ′A ′)AA ′+AB ·AD =42+12.
体积V =2×2×1+13×2×2×1=163
. 15.[解答] 在直观图中,过A ′点作A ′E ⊥B ′C ′,垂足为E ,则在Rt △A ′B ′E 中,
A ′
B ′=1 m ,∠A ′B ′E =45°,∴B ′E =22
m. 而四边形A ′EC ′D ′为矩形,A ′D ′=1 m ,
∴B ′C ′=B ′E +EC ′=⎝⎛⎭
⎫22+1m. 由此可还原图形,如图所示,在原图形中,AD =1 m ,AB =2 m ,BC =⎝⎛⎭
⎫22+1m ,且AD ∥BC ,AB ⊥BC ,
∴这块菜地的面积为
S =12(AD +BC )·AB =12×1+1+22×2=⎝
⎛⎭⎫2+22(m 2), 所以这块菜地所产生的总的经济效益是300S ≈300(2+0.707)=812.1≈812(元).
【难点突破】
16.[解答] (1)该几何体的直观图如图(1)所示,它是有一条侧棱垂直于底面的四棱锥. 其
中底面ABCD 是边长为6的正方形,高为CC 1=6,故所求体积是V =13
×62×6=72. (2)依题意,正方体的体积是原四棱锥体积的3倍,故用3个这样的四棱锥可以拼成一个棱长为6的正方体,
其拼法如图(2)所示.
证明:∵面ABCD 、面ABB 1A 1、面AA 1D 1D 为全等的正方形,于是
VC 1-ABCD =VC 1-ABB 1A 1=VC 1-AA 1D 1D ,故所拼图形成立.
(3)设B 1E ,BC 的延长线交于点G ,连接GA ,在底面ABC 内作BH ⊥AG ,垂足为H ,连接HB 1,如图(2),则B 1H ⊥AG ,故∠B 1HB 为平面AB 1E 与平面ABC 所成锐二面角或其补角的平面角.
在Rt △ABG 中,AG =180,则BH =6×12180=125,B 1H = BH 2 + BB 21 = 185
, cos ∠B 1HB =HB HB 1=23
. 故平面AB 1E 与平面ABC 所成锐二面角的余弦值为23
.。

相关文档
最新文档