零基础小白STATA数据分析实用常见命令整理
stata入门常用命令
stata入门常用命令Stata是一种统计分析软件,在社会科学、医学等研究领域很常用。
以下是Stata入门常用命令:1.数据加载use "文件路径":加载Stata数据,文件路径为数据文件所在的路径。
describe:显示数据集的变量名、数据类型、缺失值和数据分布等。
2.变量处理generate 变量名=表达式:生成新变量(如指数变量),并可以使用算数、统计和逻辑运算。
replace 变量名=新值:替换某变量中的指定值(如缺失值)为新值。
drop 变量名:删除数据集中的变量。
rename 旧变量名 = 新变量名...:将变量改名。
recode 变量名(包含的值) = 新值:根据变量取值对其离散化。
3.数据子集sort 变量名...:按指定变量排序数据。
by 变量名:...:在一个或多个变量上划分数据集,然后对每个子集应用命令。
if (条件):指定一个条件,只选取满足条件的数据记录。
merge 命令:将两个或多个数据集根据指定变量进行合并。
4.数据汇总summarize:按变量计算数值统计(如平均值、标准差、中位数和四分位数)。
tabulate 变量名:对变量进行交叉分析,并产生表格输出。
5.数据可视化histogram 变量名:绘制直方图。
scatter 变量名1 变量名2:绘制散点图。
graph 命令:绘制多种类型的图表,例如线图和条形图。
6.线性回归regress 因变量自变量1 自变量2...:通过最小二乘法拟合多元线性回归模型。
test 命令:进行t检验、F检验、方差分析等统计检验。
predict 新变量名:计算回归模型的预测值或残差值,并存储在新的变量中。
7.度量方法计算correlate 命令:计算并存储所有变量的相关系数矩阵。
haase 命令:计算哈斯变换矩阵。
Inflate 命令:计算一个变量的方差膨胀因子和条件数。
8.模态分析(模拟)simulate 命令:用随机抽样模拟数据,计算一个或多个变量的特定函数或方程,并存储结果。
STATA入门命令归纳
STATA入门命令归纳stata作为一款短小而精悍的统计分析软件,深受广大使用者喜爱。
本文就平时所学的一些小技巧,常用命令进行归纳总结,并必要时附一定例子,力求简洁明白易操作。
1.reg y x1 x2predict xxx 返回先前回归中因变量的拟合值,xxx随意变量名。
predict newvar, stdp 预测拟合值的标准差predict aaa,re 返回先前回归中因变量的残差,aaa为随意变量名。
predict newvar, stdr 预测残差的标准差test x1 检验变量x1的显著性,返回当X1系数为零时的F值,F值为回归报告中t值平方。
test x1=x2 检验x1 x2变量的系数是否相等。
test x1*a=x2*b a,b为任意常数,检验变量x1与x2是否存在某种线性关系。
2.tab x1,gen(x1) 产生x1的虚拟变量。
gen fsize1=fize==1 产生虚拟变量,如果family size为1,则令fsize1=1,否则为零。
下同。
gen fsize2=fsize==2gen fsize3=fsize==3gen fsize4=fsize==4gen fsize5=fsize>=53.reg y x1 x2 x3,level(99) 返回回归报告中99%的置信区间。
set level 97 在以后的回归中都默认返回97的置信区间。
reg y x1 x2 x3,noconstant 无常数回归。
4.display fprob(q, n-k-1, F 返回值为F,分子自由度为q,分母自由度为n-k-1的p值di tprob(n-k-1,t) 返回值为t,自由度为n-k-1的p值5.stata中缺失值为无穷大值。
reg bwght cigs parity faminc if fatheduc<. & motheduc<.6.标准化变量egen stdprice=std(price)/可以添加语句:egenstdprice=std(price),mean(0)std(0)/reg y x1 x2 x3,beta7. 将回归结果输入到test.docreg bwght cigs famincoutreg2 using test.doc, nolabel replacereg bwghtlbs cigs famincoutreg2 using test.doc, nolabel appendreg bwght packs famincoutreg2 using test.doc, nolabel append8.逻辑表达式:缺失值用“.”表示关系运算符:==,!=(不等于),~=(约等于),>,<,<=,>=逻辑运算符:&(与),|(或),~(非)9.对现有变量重新赋值replace oldvar =exp [if] [in] [, nopromote]10.describe:报告样本容量、变量个数、变量名称等11.sort x1 x2 依次按升序排列gsort -x1 按x1降序排列12.excle转为stata时日期变量的处理gen date(或任一新变量名)=date(‘原变量名’,‘YMD’/'DMY'/..) form date %td12. 删掉重复记录duplicates drop13.独立样本均值差异检验ttest。
stata基础命令
stata基础命令Stata基础命令Stata是一种功能强大的统计分析软件,广泛应用于学术研究和商业分析领域。
本文将介绍Stata的一些基础命令,帮助读者快速掌握Stata的使用方法。
1. 数据导入与查看命令在Stata中,可以使用"import"命令将外部数据导入到Stata的工作环境中。
例如,可以使用"import excel"命令导入Excel表格中的数据,或使用"import delimited"命令导入以逗号分隔的文本文件。
导入数据后,可以使用"browse"命令查看数据集的内容,或使用"describe"命令查看数据集的结构信息。
2. 数据清洗与变量处理命令在进行数据分析之前,通常需要对数据进行清洗和变量处理。
Stata 提供了一系列命令来完成这些任务。
例如,可以使用"drop"命令删除不需要的变量或观察值,使用"rename"命令修改变量名,使用"generate"命令创建新的变量,使用"recode"命令对变量进行重新编码等。
3. 描述性统计与绘图命令Stata提供了各种命令来计算和展示数据的描述性统计信息。
例如,可以使用"summarize"命令计算变量的均值、标准差和分位数等统计量,使用"tabulate"命令生成变量的频数表,使用"histogram"命令绘制变量的直方图,使用"scatter"命令绘制两个变量的散点图等。
4. 统计模型与假设检验命令在Stata中,可以使用各种命令来拟合统计模型和进行假设检验。
例如,可以使用"regress"命令拟合线性回归模型,使用"logit"命令拟合二元Logistic回归模型,使用"anova"命令进行方差分析,使用"ttest"命令进行两样本t检验等。
stata常用命令总结
Stata常用命令总结Stata是一种统计分析软件,广泛用于社会科学、经济学、生物医学等领域的数据分析。
它具有丰富的功能和灵活的数据处理能力,能够进行各种统计分析、数据可视化和模型建立。
本文将总结Stata的常用命令,包括重要观点、关键发现和进一步思考,帮助读者更好地理解和使用Stata。
一、数据导入和处理e命令:用于导入Stata数据文件(.dta)。
2.import命令:用于导入其他格式的数据文件(如Excel、CSV等)。
3.save命令:用于保存当前数据文件。
4.drop命令:用于删除变量或观察值。
5.keep命令:用于保留指定的变量或观察值。
重要观点:在数据导入和处理阶段,要注意数据的完整性和准确性。
需要检查数据的缺失值、异常值和数据类型,做好数据清洗和预处理工作。
二、数据描述和统计分析1.summarize命令:用于计算变量的描述性统计量,如均值、标准差、最大值、最小值等。
2.tabulate命令:用于制作交叉表和列联表。
3.correlate命令:用于计算变量之间的相关系数。
4.regress命令:用于进行线性回归分析。
5.logit命令:用于进行二分类的逻辑回归分析。
重要观点:在进行数据描述和统计分析时,要根据研究问题选择合适的方法和指标。
同时要注意解释统计结果的意义,避免过度解读和误导。
三、数据可视化1.histogram命令:用于绘制直方图。
2.scatter命令:用于绘制散点图。
3.twoway命令:用于绘制多种类型的图形,如线图、柱状图、饼图等。
4.graph export命令:用于将图形导出为图片文件。
重要观点:数据可视化是数据分析的重要手段,能够直观地展示数据的分布和关系。
在进行数据可视化时,要选择合适的图形类型和参数,使图形简洁明了,易于理解和解释。
四、面板数据分析1.xtset命令:用于设置面板数据的时间和单位。
2.xtreg命令:用于进行面板数据的固定效应或随机效应模型分析。
stata命令大全超实用(全)
表示追加 8年,用于时ห้องสมุดไป่ตู้序列 /
* 方差分解, 比如三个变量 Y,X,Z 都是面板格式的数据, 和Cov( Z,Y ) bysort year:corr Y X Z,cov
且满足 Y=X+Z,求方差 var(Y),
协方差 Cov(X,Y)
** 生产虚拟变量 * 生成年份虚拟变量 tab year,gen(yr) * 生成省份虚拟变量 tab id,gen(dum)
* ---------------------------------
* --------
固定效应模型 -----------
* ---------------------------------
* 实质上就是在传统的线性回归模型中加入
N-1 个虚拟变量,
* 使得每个截面都有自己的截距项 ,
* 截距项的不同反映了个体的某些不随时间改变的特征
*** 说明: DEA由DEAP2.1软件实现, SFA由 Frontier4.1 实现,尤其后者,侧重于比较 C-D与 Translog
生产函数,一步法与两步法的区别。常应用于地区经济差异、
FDI 溢出效应( Spillovers Effect )、
工业行业效率状况等。
* 空间计量分析: SLM模型与 SEM模型 * 说明: STATA与Matlab 结合使用 。常应用于空间溢出效应 ( R&D)、财政分权、 地方政府公共行为等。
* 散点图 +线性拟合直线 +置信区间 twoway (scatter logy h) (lfit logy h) (lfitci logy h)
* 按不同个体画出散点图和拟合线,可以以做出 twoway (scatter logy h if id<4) (lfit logy h if id<4) logy h if id==2) (lfit logy h if id==3)
stata命令总结
stata命令总结.docStata命令总结引言Stata是一款强大的统计分析软件,广泛应用于经济学、社会学、医学等领域。
Stata命令是进行数据处理、统计分析、图形展示等操作的基础。
本文将对Stata中常用的命令进行总结,以帮助用户更高效地使用Stata进行数据分析。
Stata基础命令1. 数据管理导入数据:import excel, import delimited导出数据:export excel, export delimited数据集保存:save, saveold2. 变量管理创建变量:generate, egen修改变量:replace删除变量:drop3. 数据清洗数据类型转换:destring, encode, format缺失值处理:mvdecode, drop if missing()异常值检测:tabulate, summarize描述性统计分析1. 基本统计量描述性统计:summarize频率统计:tabulate相关系数:correlate2. 分组统计分组描述:bysort, xtsum 分组汇总:collapse3. 数据转换数据长格式:reshape long 数据宽格式:reshape wide 推断性统计分析1. 假设检验t检验:ttest方差分析:anova卡方检验:tabulate, chi2 2. 回归分析线性回归:regress逻辑回归:logit泊松回归:poisson3. 时间序列分析时间序列描述:tsreport自回归模型:arima高级统计分析1. 面板数据分析面板数据描述:xtset, xtsum固定效应模型:xtreg fe随机效应模型:xtreg re2. 多层次模型多层次线性模型:xtmelogit3. 结构方程模型结构方程模型:sem绘图与可视化1. 基本图形散点图:scatter线图:line柱状图:bar2. 高级图形箱线图:boxplot直方图:histogram核密度估计图:kdensity3. 交互式图形交互式图形:twoway, graph edit编程与自动化1. 循环与条件语句循环:foreach, forvalues条件语句:if, else2. 脚本与批处理脚本编写:do-file批处理:batch3. 宏与用户定义命令宏:macro用户定义命令:program define结语Stata命令的掌握是进行高效数据分析的前提。
零基础小白STATA数据分析实用常见命令整理
STATA基础入门零基础实用命令整理第一章数据的读入与熟悉1.读入文件中的部分变量. use[变量] using [文件名]Eg . use age sex height weight using [文件名]2.读入文件中的部分观察量. use[文件名] in X/Y. use "I:\stata\chapter3.dta" in 601/1000软件只读入从第601个观察到第1000个观察之间的400个观察量3.描述、管理数据的基本命令命令功能. describe描述数据的基本情况:样本总量、变量总数、变量的格式等. list. list [变量名]-列出数据中所有变量的分布,从第一个样本到最后一个样本-列出选定变量的分布. list [变量名] in X/Y 列出数据中被选定的变量分布。
in限定数据的观察值范围。
比如,若只想查看第100个-200个观察值的分布,则将X/Y替换成100/200. order [变量名]按选定变量排序。
比如,样本的编号、年龄、性别、教育程度,……,等. aorder 将所有变量从 a-z 排序. label variable给变量贴上标签命令功能. sort [变量名] -将某个变量的数值进行排序。
一般情况下,排序的方式是从小到大-可同时排序多个变量-Stata将缺失值描述为最大数值,故排列在最后. sort [变量名] [in] 对某些变量的某个取值范围进行排序;没有指定的取值范围保持在原地方. gsort [+|-][变量名] -可从小到大和从大到小-若变量名前没有任何符号或加上+号,则按升序排列;若在变量名前加上-号,则按降序排列-变量可以是数值型、也可以是字符型. gsort [+|-][变量名] ,mfirst -mfirst指定将缺失值置于所有有效数值之前. gsort -age第二章变量的生成与处理1.离散和连续测量离散方式(discrete measure):由定性测量和定序测量组成;适用于低层次数据连续方式(continuous measure):由定距测量和定比测量组成。
stata入门常用命令
stata入门常用命令
Stata是一款广泛应用于数据分析、统计建模和数据可视化的软件,它具有操作简单、图形化界面、支持多种数据格式等优点,因此备受研究者和学者的青睐。
下面是一些Stata入门常用命令的介绍: 1. 数据读取命令:insheet, infile
insheet命令可以读取Excel表格中的数据,并将其导入Stata,infile命令可以读取纯文本文件中的数据。
2. 数据清理命令:drop, rename, recode, generate
drop命令可以用于删除不需要的变量和观测,rename命令可以修改变量的名称,recode命令可以将变量的取值进行重新编码,generate命令可以生成新的变量。
3. 描述性统计命令:summarize, tabulate, graph
summarize命令可以输出变量的基本统计量,如均值、中位数、标准差等,tabulate命令可以制作交叉表格,graph命令可以制作各种图形,如直方图、散点图等。
4. 回归分析命令:regress, logistic, probit
regress命令可以进行线性回归分析,logistic命令可以进行二元Logistic回归分析,probit命令可以进行二元Probit回归分析。
5. 面板数据分析命令:xtreg, xtlogit, xtpoisson
xtreg命令可以进行面板数据的线性回归分析,xtlogit命令可以进行面板数据的二元Logistic回归分析,xtpoisson命令可以进行面板数据的Poisson回归分析。
以上是一些Stata入门常用命令的介绍,这些命令可以帮助研究者和学者进行数据分析、统计建模和数据可视化等工作。
stata常用命令资料
stata常用命令资料Stata是一种广泛使用的统计分析软件,它提供了丰富的数据处理、统计计算和图形绘制功能。
下面是一些常用的Stata命令及其用法,以帮助您更好地使用Stata进行数据分析。
1. 数据导入与导出- `import excel:从Excel文件中导入数据。
- `import delimited:从文本文件中导入数据。
- `save:保存当前数据集。
- `use:加载已保存的数据集。
- `export excel:将数据导出到Excel文件。
2. 数据处理与清洗- `drop:删除变量或观察。
- `keep:保留指定变量或观察。
- `rename:重命名变量。
- `egen:生成新变量,如求和、平均值等。
- `egen group:按照指定的变量进行分组。
3. 描述统计- `summarize:计算变量的描述统计量,如均值、标准差等。
- `tabulate:制表统计,用于计算分类变量的频数和百分比。
- `histogram:绘制直方图。
- `correlate:计算变量之间的相关系数。
- `egen:生成新的汇总统计量,如总和、均值等。
4. 统计模型- `regress:线性回归分析。
- `logit:二项逻辑回归分析。
- `probit:概率回归模型。
- `ttest:单样本或双样本t检验。
- `anova:方差分析。
5. 数据可视化- `scatter:绘制散点图。
- `line:绘制折线图。
- `bar:绘制柱状图。
- `histogram:绘制直方图。
- `graph combine:将多个图形合并为一个图形。
6. 数据管理- `sort:对数据进行排序。
- `merge:合并两个数据集。
- `reshape:改变数据集的结构。
- `append:将多个数据集追加到一个数据集中。
- `collapse:将数据按照指定的变量进行折叠。
7. 循环与条件语句- `foreach:循环变量的值。
stata基本命令
stata基本命令
Stata是一种数据分析软件,常用于统计分析、经济学和社会科学研究中。
以下是一些Stata基本命令的解释:
1. use命令:用于打开数据文件,例如:“use data.dta”。
2. describe命令:用于查看数据文件的结构和变量信息,例如:“describe data”。
3. summarize命令:用于统计变量的描述性统计量(如均值、标准差、最大最小值等),例如:“summarize var1 var2”。
4. tabulate命令:用于制作交叉表和频数表,例如:“tabulate var1 var2”。
5. regress命令:用于进行回归分析,例如:“regress depvar indepvar”。
6. scatter命令:用于制作散点图,例如:“scatter depvar indepvar”。
7. histogram命令:用于制作直方图,例如:“histogram var”。
8. twoway命令:用于制作多种类型的图表,例如:“twoway scatter
depvar indepvar”。
9. merge命令:用于将两个数据文件按照某一变量合并,例如:“merge 1:1 var using data.dta”。
10. sort命令:用于对数据文件按照某一变量进行排序,例如:“sort var”。
以上是Stata基本命令的简单解释,使用这些命令可以进行数据的读取、处理和分析。
在实际应用中,还需要结合具体情况选择合适的命令进行使用。
stata常用命令总结
stata常用命令总结Stata是一种统计分析软件,常用于数据处理、数据分析和统计建模等领域。
以下是一些常用的Stata命令的总结:1. 数据加载与保存:- `use`:加载Stata数据文件。
- `import`:导入其他文件格式的数据。
- `save`:保存当前数据文件。
- `export`:将数据导出到其他文件格式。
2. 数据处理与变量操作:- `generate`:创建新变量。
- `replace`:替换变量值。
- `drop`:删除变量或观测。
- `rename`:重命名变量。
- `sort`:对数据进行排序。
- `merge`:合并数据集。
3. 描述性统计与数据分析:- `summarize`:计算变量的描述性统计量。
- `tabulate`:制表统计。
- `regress`:进行线性回归分析。
- `logit`:进行Logistic回归分析。
- `anova`:进行方差分析。
- `ttest`:进行双样本t检验。
4. 绘图与可视化:- `histogram`:绘制直方图。
- `scatter`:绘制散点图。
- `line`:绘制折线图。
- `boxplot`:绘制箱线图。
- `graph combine`:组合多个图形。
5. 循环与条件语句:- `forvalues`:进行循环操作。
- `if`:根据条件进行数据筛选。
- `foreach`:对变量进行循环操作。
这只是一些常用的Stata命令的总结,Stata还有很多其他强大的功能和命令。
你可以参考Stata官方文档或其他相关资源,深入了解更多命令和用法。
stata常用命令总结
stata常用命令总结Stata是一款广泛应用于数据分析与统计建模的统计软件,具有强大的功能和广泛的应用领域。
在Stata中,我们可以通过命令来完成数据的读取、整理、分析和可视化等任务。
本文将对一些常用的Stata命令进行总结和介绍,以帮助读者更好地理解和应用Stata软件。
一、数据的读取与整理1. 读取数据文件:- use 文件名:读取已经存在的Stata数据文件。
- import delimited 文件名:读取以逗号、制表符或其他分隔符分隔的文本文件。
2. 显示数据:- describe:显示数据文件的基本信息,包括变量名、数据类型、有效观测数等。
- browse:以表格形式显示数据文件的部分观测值。
3. 数据整理:- generate 新变量名=计算公式:创建新的变量,并根据指定公式进行计算。
- egen 新变量名=计算函数:根据指定的计算函数对现有变量进行计算,并创建新的变量。
二、数据的统计分析与建模1. 描述性统计:- summarize 变量名:对指定变量进行描述性统计,包括均值、标准差、最小值、最大值等。
- tabulate 变量名:生成指定变量的频数表和百分比表。
2. 数据筛选与子集选择:- keep 如果条件:保留符合条件的观测值,删除不满足条件的观测值。
- drop 如果条件:删除符合条件的观测值,保留不满足条件的观测值。
- qui keep 如果条件:以无输出方式保留符合条件的观测值并生成新数据集。
- qui drop 如果条件:以无输出方式删除符合条件的观测值并生成新数据集。
3. 参数估计与假设检验:- regress 因变量自变量1 自变量2 ...:进行普通最小二乘回归分析。
- ttest 变量名, by(分组变量):进行两组样本均值差异的t检验。
4. 数据可视化:- scatter 变量1 变量2:绘制散点图。
- histogram 变量名:绘制直方图。
- graph twoway line 变量1 变量2:绘制折线图。
stata 常用命令
stata 常用命令Stata是一款经济学和统计学分析软件,它拥有一个广泛的命令库,可用于数据分析、统计建模、可视化等。
在Stata中,我们可以使用很多命令来完成各种任务。
以下是一些常用的Stata命令:1. import 命令import 命令用于导入数据到Stata中。
我们可以使用 import 命令来导入各种文件格式,如 Excel、CSV、SPSS 等。
如果我们想要导入Excel 文件,我们可以使用以下命令:import excel "data.xlsx", sheet("Sheet1") firstrow clear该命令将导入 data.xlsx 文件中的 Sheet1 中的数据到 Stata 中。
指定的 firstrow 参数将告诉 Stata 该文件中的第一行是变量名,因此我们可以让 Stata 自动读取变量名称。
2. summarize 命令summarize 命令用于计算一个或多个变量的描述性统计量,如均值、标准差、最小/最大值等。
该命令的语法如下:summarize variable1 variable2 variable3…例如,要计算变量 x 的均值、标准差和最大值,我们可以使用以下命令:summarize x, detail3. sort 命令sort 命令用于按一个或多个变量对数据进行排序。
该命令的语法如下:sort variable1 variable2 variable3…例如,要按变量 x 排序数据集,我们可以使用以下命令:sort x4. tabulate 命令tabulate 命令用于计算一个或多个变量的频率分布表(也称为列联表)。
该命令的语法如下:tabulate varia ble1 [variable2] [variable3]…例如,要计算变量 x 和 y 的频率分布表,我们可以使用以下命令:tabulate x y5. regress 命令regress 命令用于估计回归模型。
STATA基本操作入门
STATA基本操作入门1.数据导入在STATA中,可以导入多种格式的数据文件,如Excel、CSV和文本文件。
最常用的命令是"import excel"和"import delimited"。
例如,要导入名为"data.xlsx"的Excel文件,可以使用以下命令:```import excel using "data.xlsx", sheet("Sheet1") firstrow clear```这里,"using"指定了文件路径和文件名,"sheet"指定了工作表名称(如果有多个工作表),"firstrow"表示第一行是变量名。
2.数据清洗在导入数据后,通常需要进行数据清洗,包括处理缺失值、异常值和重复值等。
STATA提供了一些常用的命令来处理这些问题。
- 缺失值处理:使用"drop"命令删除带有缺失值的观测值,使用"egen"命令创建新变量来表示缺失值。
- 异常值处理:可以使用描述性统计命令(如"summarize")来查找异常值,并使用"drop"命令删除异常值所对应的观测值。
- 重复值处理:使用"deduplicate"命令删除重复的观测值,或使用"egen"命令创建新变量来表示重复值。
3.变量操作在STATA中,可以对变量进行各种操作,如创建变量、重命名变量、计算变量和合并变量等。
- 创建变量:可以使用"generate"命令创建新变量,并赋予其数值或字符值。
- 重命名变量:使用"rename"命令将变量重命名为新的名称。
- 计算变量:使用"egen"命令计算新变量,例如,可以使用"egen mean_var = mean(var)"计算变量"var"的均值,并将结果赋值给新的变量"mean_var"。
STATA常用命令总结(34个含使用示例)
STATA常用命令总结(34个含使用示例)1. sum:计算变量的简要统计信息,如均值、标准差等。
示例:sum variable2. tabulate:生成变量的频数表。
示例:tabulate variable3. describe:显示数据集的基本信息,如变量名和数据类型。
示例:describe dataset4. drop:删除数据集中的变量。
示例:drop variable5. keep:保留数据集中的变量,删除其他变量。
示例:keep variable6. rename:重命名变量。
示例:rename variable newname7. gen:根据已有变量生成新的变量。
示例:gen newvar = expression8. egen:根据已有变量生成新的变量,可以使用更复杂的函数和运算符。
示例:egen newvar = function(variable)9. recode:对变量的取值进行重新编码。
示例:recode variable (oldvalues= newvalues) 10. dropif:根据条件删除观测。
示例:dropif condition11. keepif:根据条件保留观测。
示例:keepif condition12. sort:对数据集按指定变量进行排序。
示例:sort variable13. merge:将两个数据集按照共享变量合并。
示例:merge 1:1 variable using dataset214. reshape:将数据从宽格式转换为长格式或反之。
示例:reshape long var, i(id) j(year)15. regress:进行线性回归分析。
示例:regress dependent_var independent_vars 16. logistic:进行逻辑回归分析。
示例:logistic dependent_var independent_vars 17. probit:进行Probit回归分析。
STATA常用命令总结(34个含使用示例)
STATA常用命令总结(34个含使用示例)1. clear:清空当前工作空间中的数据。
示例:clear2. use:加载数据文件。
示例:use "data.dta"3. describe:查看数据文件的基本信息。
示例:describe4. summarize:统计数据的描述性统计量。
示例:summarize var1 var2 var35. tabulate:制作数据的列联表。
示例:tabulate var1 var26. scatter:绘制散点图。
示例:scatter x_var y_var7. histogram:绘制直方图。
示例:histogram var8. boxplot:绘制箱线图。
示例:boxplot var1 var29. ttest:进行单样本或双样本t检验。
示例:ttest var, by(group_var)10. regress:进行最小二乘法线性回归分析。
示例:regress dependent_var independent_var1 independent_var211. logistic:进行逻辑斯蒂回归分析。
示例:logistic dependent_var independent_var1 independent_var212. anova:进行方差分析。
示例:anova dependent_var independent_var13. chi2:进行卡方检验。
示例:chi2 var1 var214. correlate:计算变量之间的相关系数。
示例:correlate var1 var2 var315. replace:替换数据中的一些值。
示例:replace var = new_value if condition16. drop:删除变量或观察。
示例:drop var17. rename:重命名变量。
示例:rename old_var new_var18. generate:生成新变量。
Stata小白:相见恨晚的10个常用命令
Stata⼩⽩:相见恨晚的10个常⽤命令Stata是Statacorp于1985年开发出来的统计程序,在全球范围内被⼴泛应⽤于企业和学术机构中。
许多使⽤者⼯作在研究领域,特别是在经济学、社会学、政治学及流⾏病学领域。
Stata的⼀系列功能包括:数据管理统计分析图表模拟⾃定义编程写在前⾯:Stata对于命令和变量名是区分⼤⼩写的,例如sum是概要统计的命令,⽽Sum和SUM就不是命令;price和Price是两个不同的变量。
所有命令中⽤到的符号都要在英⽂输⼊法状态下。
01.Stata的具体功能统计功能:Stata 的统计功能很强,除了传统的统计分析⽅法外,还收集了近 20 年发展起来的新⽅法,如 Cox ⽐例风险回归,指数与 Weibull 回归,多类结果与有序结果的 logistic 回归,Poisson 回归,负⼆项回归及⼴义负⼆项回归,随机效应模型等。
具体说, Stata 具有如下统计分析能⼒:数值变量资料的⼀般分析:参数估计,t检验,单因素和多因素的⽅差分析,协⽅差分析,交互效应模型,平衡和⾮平衡设计,嵌套设计,随机效应,多个均数的两两⽐较,缺项数据的处理,⽅差齐性检验,正态性检验,变量变换等。
分类资料的⼀般分析:参数估计,列联表分析 ( 列联系数,确切概率 ) ,流⾏病学表格分析等。
等级资料的⼀般分析:秩变换,秩和检验,秩相关等相关与回归分析:简单相关,偏相关,典型相关,以及多达数⼗种的回归分析⽅法,如多元线性回归,逐步回归,加权回归,稳键回归,⼆阶段回归,百分位数 ( 中位数 ) 回归,残差分析、强影响点分析,曲线拟合,随机效应的线性回归模型等。
其他⽅法:质量控制,整群抽样的设计效率,诊断试验评价, kappa 等。
作图功能:Stata 的作图模块,主要提供如下⼋种基本图形的制作 : 直⽅图 (histogram) ,条形图(bar), 百分条图 (oneway) ,百分圆图 (pie) ,散点图 (twoway) ,散点图矩阵(matrix) ,星形图(star) ,分位数图。
Stata常用15条命令
Stata常用15条命令【命令1】:导入数据一般做实证分析使用的是excel中的数据,其后缀名为.xls,需要将其修改为.csvinsheet using name.csv, clear【命令2】:删除重复变量sort var1 var2duplicatesdrop var1 var2, force【命令3】:合并数据use data1, clearmerge m:m var1 var2 using data2drop if _merge==2drop if _merge==1drop _merge【命令4】:描述性统计分析tabstat var1var2, stat(n min mean median p25 p75 maxsd), if groupvar==0 or 1输出到word中:logout, save(name) word replace: tabstat var, stat(n min mean p50 max sd) col(stat)f(%9.2g)【命令5】:结果输出安装ssc install estout, replace单个回归reg y xesttab using name.rtf, compress nogap r2 ar2 star(* 0.1 ** 0.05 *** 0.01)多个回归一起reg y x1est store m1reg y x2est store m2esttab m1 m2 using name.rtf, compress nogap r2 ar2 star(* 0.1 ** 0.05 *** 0.01)【命令6】生成虚拟变量tab year, gen(year)tab industry, gen(industry)【命令7】数据缩尾处理findit winsor2之后安装winsor2 varname, replace cut(1 99)【命令8】异方差检验怀特检验ssc install whitetstreg y x1 x2estat imtest, white处理:“OLS+稳健标准差”reg y x1 x2 x3, robust【命令9】 DW检验gen id=_ntsset idestat dwatson【命令10】计算两个日期之间的间隔天数gen td=date(trading_date,'YMD')gen ed=date(eventdate,'YMD')form td ed %tdgen d=ed-td【命令11 】生成滞后、差分数据tsset code yeargen newvarname=l.varnamegen newvarname=d.varname【命令12】多重共线检验之方差膨胀因子reg y x1 x2 x3vif【命令13】多重共线修正之逐步回归stepwise, pe(0.1): reg y x 【命令14】检验是否遗漏高次项reg y xestat ovtest或者estat ovtest, rhs【命令15】样本检验两样本均值T检验ttest var, by(groupvar)两样本中位数Z检验ranksum var, by(groupvar)。
Stata常用命令
Stata常用命令大学期间觉得学的最有用的软件之一就是stata了,对stata基本是在血和泪的尝试中爬过,到了最后基本属于只要stata不出现红字错误命令就开心得不得了。
顺便整理一下常用的stata命令如下,应该对付计量方向第一学期的入门问题不大(求stata大神不虐..),所以就只写了一部分常用的,有时间后面再补充吧。
主要就是分为基本操作和回归统计两部分:1、基本操作import/use/insheet/merge:基本常用的导入文件就是这四个了,建议直接从stata的menu菜单中导入,导入xlsx和csv这种常见的格式时还有一些备用选项可以自己体验一下(比如string和把第一行视为变量名之类)。
merge需要单独说一下,因为是将两个数据库合并为一个,原理也比较简单,两个数据库中根据一些相同的变量把其他数据“加”到原来的数据库中,也是建议直接菜单操作,不要用命令。
在Data的Combine datasets的merge two datasets中,分为1:1、m:1、1:m各种形式,基本用两次就差不多能搞懂。
help:一定第一个学的是这个!啥不会就help一下,不知道函数了就help function,不知道回归细节就help regress,多读help文件!gen/egen:最常用的建立函数的命令,这两个不同之处在于gen一般是初等函数,egen的函数会复杂一些。
常用的函数包括数学函数和其他函数,比如count/tag之类,建议直接到菜单里Data下Create data的create new variable或create new variable(extended)直接生成函数,会方便的多。
mean/abs/sqrt/max/min/sum/sd:常用数学函数,分别是求均值、绝对值、方根、最大最小、求和、方差用的。
keep if/drop if:这两个也是最常用的,在数据需要进行筛选的时候,两个命令的区别也很明显,keep是留下哪些,drop是去掉哪些。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
STATA基础入门零基础实用命令整理第一章数据的读入与熟悉1.读入文件中的部分变量. use[变量] using [文件名]Eg . use age sex height weight using [文件名]2.读入文件中的部分观察量. use[文件名] in X/Y. use "I:\stata\chapter3.dta" in 601/1000软件只读入从第601个观察到第1000个观察之间的400个观察量3.描述、管理数据的基本命令命令功能. describe描述数据的基本情况:样本总量、变量总数、变量的格式等. list. list [变量名]-列出数据中所有变量的分布,从第一个样本到最后一个样本-列出选定变量的分布. list [变量名] in X/Y 列出数据中被选定的变量分布。
in限定数据的观察值范围。
比如,若只想查看第100个-200个观察值的分布,则将X/Y替换成100/200. order [变量名]按选定变量排序。
比如,样本的编号、年龄、性别、教育程度,……,等. aorder 将所有变量从 a-z 排序. label variable给变量贴上标签命令功能. sort [变量名] -将某个变量的数值进行排序。
一般情况下,排序的方式是从小到大-可同时排序多个变量-Stata将缺失值描述为最大数值,故排列在最后. sort [变量名] [in] 对某些变量的某个取值范围进行排序;没有指定的取值范围保持在原地方. gsort [+|-][变量名] -可从小到大和从大到小-若变量名前没有任何符号或加上+号,则按升序排列;若在变量名前加上-号,则按降序排列-变量可以是数值型、也可以是字符型. gsort [+|-][变量名] ,mfirst -mfirst指定将缺失值置于所有有效数值之前. gsort -age第二章变量的生成与处理1.离散和连续测量离散方式(discrete measure):由定性测量和定序测量组成;适用于低层次数据连续方式(continuous measure):由定距测量和定比测量组成。
适用于高、低层次数据2.Stata有四个基本的生成和修改变量的命令:gen、egen、replace和recode. gen和egen分别是generate和extended generate的缩写,它们用于生成新变量. replace和recode用来改变现存变量的属性或数值. replace需要与gen一起使用;二者的区别在于,gen用于生成新变量,replace 用于重新定义已经存在的变量. recode也可以与gen一起使用3.变量生成的规则数值型变量的缺失值用一个实心小圆点(.)或在26个字母前加一个实心小圆点(如.a, .b, .c,……,.z)表示。
字符型变量的缺失值以双引号表示,引号中什么也没有。
4.系统变量_n系统变量_n表示每个观察值的位置(numbering observations)。
其原则是:当前观察值:[n]总观察值(最后一个观察值[_n]):[N]第一个观察值:[1]最后一个观察值:[N]滞后一个(lag)观察值:[n-1]前移一个(lead)观察值:[n+1]第27个观察值:[27]Eg.每个孩子在省内的排序步骤1:Sort province步骤2:By province:gen order=_n5.系统变量_N系统变量_N代表样本总数。
最后一个样本_n即是_NEg.使用前面的数据,看看每个省共有几个孩子在样本中步骤1:sort province步骤2:. by province: gen ceb=_N6.滞后变量和移前变量生成滞后(lag)变量或移前变量(lead)作为数据扩充gen a = b[_n-1]gen a = b[_n+1]①:需要生成的新变量的名称②:现有变量的名称③:将现有变量的取值下移一行([_n-1])或前移一行([_n+1])的基本命令使用系统变量_n或_N检查重复样本第一步:对关键变量(ID )进行排序第二步:使用_n 或_N 将该ID 的数值下置一行,如果下置的数值与当前ID 相等的话,则该样本是重复样本Eg.sort IID2016drop ordergen order=_ncount if IID2016[_n]== IID2016[_n -1]7.生成字符型变量Eg.gen boy="nanhai"在字符型变量中,“=”后面表达式的内容需置于双引号中并不是每个样本都是男孩,故需替代上述命令的部分结果. replace boy="nvhai"if girl==1命令replace 与if 条件句相结合,改变变量的取值。
当变量girl 的取值为1时,将变量boy 的取值替换为nvhai ,其他值不变定义缺失值. replace boy="none" if boy==" "8.生成数值变量. recode [原变量] ([原变量取值] = [新变量取值]) *= [其他取值], gen [新变量]Eg.drop edu. recode yrsch 0=0 11=1 12=2 13=3 14=4 15=5 16=6 21=7 22=8 23=9 24 27=10 25 28=11 26 29=12 31=13 32=14 *=.,gen (edu)该命令在原变量yrsch 的基础上生成一个新变量(edu)新变量对原变量的取值重新编码。
原变量照旧保存着若无gen (edu )部分,则仅取代原有变量的取值*表示所有其他没有列出的数值(others )9.基本运算符及含义逻辑关系:!~竖 & 否否或和 10.生成分组变量:不重原则 Eg.按年龄划分成四组,分别是0~4 5~9 10~14 15及以上 gen agegrp=0 . replace agegrp=1 if age>=0 & age<=4 . replace agegrp=2 if age>=5 & age<=9 . replace agegrp=3 if age>=10 & age<=14 . replace agegrp=4 if age >=15 . replace agegrp=. if age == . egen agegrp = cut(age), at(0,5,10, 15,20)11.生成虚拟变量方法1:gen [新变量名] = b [限制条件]Eg. gen xiaoxue = edu<7或. gen xiaoxue =edu<=6或. gen byte xiaoxue = edu<7或. gen byte xiaoxue =edu<=6方法2:gen [变量名] =1 if[取值为1的限制条件]. replace ([变量名]=0 if[取值为0的限制条件] 关系(Relational)符号=使等号左边的值等于等号右边的值;不能用于“if ”命令中;可用于“gen ”命令中;可用于取代原来的值==等于;等号左边的值是否等于等号右边的值!=不等于,相当于~=<小于>大于>=大于或等于<=小于或等于Eg.replace xiaoxue = . if edu == . (注意空格以及edu后两个等号)12.使用egen生成分类变量egen[新变量名]=cut[旧变量名],at[旧变量取值的下限]at()指名每个组群的最小值Eg.将年龄分为四组,如2-6岁7-12岁13-20岁Egen agegrp1=cut (age),at(2,7,13,21)(注意括号和逗号)13.使用egen变量生成某一变量的均值变量egen a_mean = mean(a), by(b)该命令生成的变量是按变量b的分类计算的均值egen avg=rmean(b c)这里,rmean告诉Stata,生成一个变量b和c的行均值变量(avg),忽视缺失值。
不可与选项by连用若在rmean的后面指定两个变量,某个变量的一些观察值有缺失值,则Stata 按照没有缺失值的样本计算均值Eg.生成家庭的平均身高作为新变量egen hgtmean=mean( height ),by( hhid )egen还可以是生成其他统计量,包括min(最小值)、max(最大值)、sd (标准偏差)、median(中位数)、kurt(峰度)、iqr(四分位差)等在计算统计量时,egen可以与by选项连用14.给数据、变量和变量的属性贴标签对数据库作说明Eg . label data "Chapter4;创建于2006年9月,最近的修改日期为2007年1月“引号里的内容是对数据库说明的具体内容给变量下定义Eg . label variable province “被调查省份“引号里的内容是变量的标签给变量的属性下定义步骤1:给变量的取值贴标签. label define urban 0 "rural" 1 "urban"步骤2:将取值标签指定给变量. label values urban urban步骤3:数值与标签(可有可无). numlabel urban, add mask("#. ")第三章数据的合并与转换1.数据合并类型增加观察值(即样本量):纵向合并若有一个城市儿童数据和一个农村儿童数据,二者的内容基本相同可进行独立分析或整合后作为整体样本的次样本分析增加变量:横向合并若有一个社区数据和一个家庭数据,家庭寓于社区中,若想将二者合二为一,从而使家庭数据包含社区的基本特征,则需将数据进行横向合并2.数据合并的概念主要数据(Master dataset):指当前在Stata界面的数据,又称当前数据(current dataset)、窗口数据或记忆空间数据使用数据(using dataset):指当前不在Stata界面、但行将被合并到当前数据的数据,也称辅助数据。
该名词主要用于数据的合并关键变量(Key variables),也称标识符(identifiers)或合并变量(match variables):横向合并的专有词汇,用来合并两个数据的变量。
该变量必须同时存在于主要数据和使用数据中,且在使用前必须排序。
主要变量可以是一个,也可以是两个或多个3.纵向合并. append using [使用数据的路径和名称]②:使用数据的路径和名称(目前记忆空间的数据是主要数据). append using [使用数据的路径和名称], keep[变量名]①①:在合并使用数据时,只保留keep后面指定的变量e "E:\stata\Chapter5_umerge.dta"(使用数据)describeuse "E:\stata\Chapter5_rmerge.dta", clear(主要数据)describeappend using "E:\stata\Chapter5_umerge.dta"describelist*sort mothidsave "E:\stata\Chapter5_rumerge.dta",replace4.横向合并横向数据合并中,主要数据和使用数据都必须按照主要变量进行排序,否则合并无法进行,还会得到错误的提示,纵向数据合并无需对哪个变量进行排序横向数据合并需要关键变量,纵向数据合并无需关键变量.append将两个变量类似、但观察个案不同的数据整合在一起;.merge将具有不同变量的两个数据整合在一起步骤:先看使用数据:. use [文件路径名称]. sort [关键变量]. save [文件路径名称], replace再看主要数据:. use [文件路径名称]. sort [关键变量]. merge [关键变量] using [文件路径名称], keep [变量]关键变量即为sort后面的变量;利用该变量匹配两个数据一对一合并每个文件中同样的观察值合并Eg.先对主要数据使用数据use sort关键变量merge husbid using "I:\stata\hhwk_husb00.dta", unique(unique只适用于一对一合并)一对多合并merge mothid using “I:\stata\ru_merge.dta”,uniqmaster多对一合并merge mothid using "I:\stata\muqin_merge", uniqusing选项unique:只能用于使用关键变量的一对一的合并中。