分式方程应用题2

合集下载

分式方程应用题

分式方程应用题

分式方程应用题分式方程是一个含有分式的方程,其中包含未知数。

它通常涉及到实际问题的解决,可以用数学的方法进行求解。

本文将给出几个关于分式方程的应用题,以解释如何将实际问题转化为分式方程,并通过解方程来求解问题。

1. 题目:小明去超市买水果,他买了苹果和梨,苹果的价格是每斤3元,梨的价格是每斤4元。

小明买了6斤苹果和8斤梨,他支付了52元。

问苹果和梨的总重是多少斤?解法:假设苹果的总重量为x斤,梨的总重量为y斤。

根据题意,可以列出两个方程:3x + 4y = 52 (总支付金额为52元)x + y = 14 (总重量为14斤)将第二个方程乘以3,然后与第一个方程相减,消去x的系数,可以得到y的值。

将y的值带入第二个方程,可以得到x的值。

2. 题目:甲乙两个人一起修一段公路,甲单独修需要4天,乙单独修需要5天。

甲乙一起修需要2.5天。

问甲单独修这段公路需要多少天?解法:假设甲单独修这段公路需要x天,乙单独修这段公路需要y天。

根据题意,可以列出两个方程:1/x + 1/y = 1/2.5 (甲乙一起修的速度)1/x = 1/4 (甲单独修的速度)将第二个方程代入第一个方程,可以解得y的值,然后将y的值代入第二个方程,可以解得x的值。

3. 题目:一辆汽车以每小时60公里的速度行驶,与一辆自行车相向而行,两车相距240公里。

两车相遇后,汽车停下休息,自行车还行10小时才能到达目的地。

问自行车的速度是多少?解法:假设自行车的速度为x公里/小时。

根据题意,可以列出两个方程:60t + x(t+10) = 240 (两车相遇的距离为240公里)x(t+10) = 600 (自行车到达目的地所需的时间)将第一个方程进行整理,消去t的项,可以解得x的值。

通过以上应用题的解法,我们可以看到分式方程在解决实际问题时的应用。

通过将问题转化为方程,然后通过解方程可以求得问题的解答。

这种方法在实际生活中有着广泛的应用,特别是在物理、经济等领域。

分式方程应用题

分式方程应用题

分式方程应用题
题目描述
某公司的销售中心在某个月的第一天开始营业,每天的销售额相较前一天增加1/4。

假设第一天的销售额为100元,请编写一个分式方程求出第n天的销售额。

解题思路
首先定义一个变量n,表示第n天的销售额。

根据题目描述,每天的销售额相较前一天增加1/4,可以得出如下关系式:
n = 100 + (n-1) * 1/4
其中100表示第一天的销售额,n-1表示前一天的销售额。

将上述方程进行化简,得到:
n = 400/3 + n/4 - 1/4
将方程两边都乘以12,消除分母,得到:
12n = 1600 + 3n - 3
再进行进一步的化简:
9n = 1597
最后求解n的值:
n = 1597/9
结果验证
将n带入最初的方程进行验证:
n = 100 + (n-1) * 1/4
带入n = 1597/9,得到:
1597/9 = 100 + (1597/9-1) * 1/4
经过计算可以得到等式两边的值相等,证明了解的正确性。

结论
通过分式方程的应用,可以得到第n天的销售额为1597/9元。

这个方程可以用来求解其他类似的问题。

初中数学分式方程的应用基础训练2(附答案详解)

初中数学分式方程的应用基础训练2(附答案详解)
9.(用方程解决问题)新冠疫情期间,N95口罩每只的进价比一次性医用口罩每只进价多10元,某药店分别花20000元和60000元购进一次性医用口罩和N95口罩,购进的一次性医用口罩的数量是N95口罩数量的2倍.
(1)求N95口罩进价每只多少元?
(2)国家规定:N95口罩销售价不得高于30元/只.根据市场调研:N95口罩每天的销量y(只)与销售单价x(元/只)之间的函数关系式为y=-10x+500,该药店决定对一次性医用口罩按进价销售,但又想销售口罩每天获利2400元,该药店需将N95口罩的销售价格定为每只多少元?
26.商合杭高铁是国内高速铁路网“八纵八横”主通道的重要组成部分,预计于2020年6月建成通车,建成之后相比普通列车,芜湖到合肥的时间将缩短1个小时,已知芜湖与合肥相距约 ,普通列车速度为 ,则商合杭高铁设计时速为多少?
27.一艘轮船在静水中的最大航速为35千米/时,当江水匀速流动时,这艘轮船以最大航速沿江顺流航行120千米所用时间,与以最大航速沿江逆流航行90千米所用时间相同,求江水的流速.
23.为厉行节能减排,倡导绿色出行,我市推行“共享单车”公益活动.某公司在小区分别投放A、B两种不同款型的共享单车,其中A型车的投放量是B型车的投放量的 倍,B型车的成本单价比A型车高20元,A型、B型单车投放总成本分别为30000元和26400元,求A型共享单车的成本单价是多少元?
24.2019年10月17日是我国第6个扶贫日,也是第27个国际消除贫困日.为组织开展好铜陵市2019年扶贫日系列活动,促进我市贫困地区农产品销售,增加贫困群众收入,加快脱贫攻坚步伐.我市决定将一批铜陵生姜送往外地销售.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20箱生姜,且甲种货车装运1000箱生姜所用车辆与乙种货车装运800箱生姜所用车辆相等.

人教版八年级上册 第15章《分式》 实际方程类应用题专项练习(二)【有答案】

人教版八年级上册 第15章《分式》 实际方程类应用题专项练习(二)【有答案】

第15章《分式》实际方程类应用题专项练习(二)1.某市地铁1号线全长约60km,市政府通过招标,甲、乙两家地铁工程公司承担了施工任务,根据招标合同可知,甲公司每月计划施工效率是乙公司的1.2倍,则乙公司单独施工比甲公司单独施工多用10个月,且市政府需要支付给甲公司的施工费用为6亿元/km,乙公司的施工费用为5亿元/km.(1)甲、乙两家地铁工程公司每月计划施工各为多少km?(2)由于设备和施工现场只能供一家地铁工程公司单独施工的原因,现计划甲、乙两家公司共用55个月恰好完成施工任务(每家公司施工时间不足一个月按照一个整月计算),且甲公司施工时间不得少于乙公司的两倍,应如何安排才能使市政府支付给两家地铁工程公司的总费用最少?2.在抗击新冠肺炎疫情期间,市场上防护口罩出现热销.某药店用3000元购进甲,乙两种不同型号的口罩共1100个进行销售,已知购进甲种口罩与乙种口罩的费用相同,购进甲种口罩单价是乙种口罩单价的1.2倍.(1)求购进的甲,乙两种口罩的单价各是多少?(2)若甲,乙两种口罩的进价不变,该药店计划用不超过7000元的资金再次购进甲,乙两种口罩共2600个,求甲种口罩最多能购进多少个?3.在我市雨污分流工程中,甲、乙两个工程队共同承担茅洲河某段720米河道的清淤任务,已知甲队每天能完成的长度是乙队每天能完成长度的2倍,且甲工程队清理300米河道所用的时间比乙工程队清理200米河道所用的时间少5天.(1)甲、乙两工程队每天各能完成多少米的清淤任务;(2)若甲队每天清淤费用为2万元,乙队每天清淤费用为0.8万元,要使这次清淤的总费用不超过60万元,则至少应安排乙工程队清淤多少天?4.“青山一道同云雨,明月何曾是两乡”我国新冠疫情基本控制,境外疫情肆虐.为了帮助全球抗疫,某厂接到在规定时间内生产1500台呼吸机支援境外抗疫.在生产了300台呼吸机后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务.求原来每天生产多少台呼吸机?5.为了迎接“5.1”小长假的购物高峰,大冶雨润某运动品牌服装店准备购进甲、乙两种服装,已知每件甲服装进价比每件乙服装进价多20元,售价在进价的基础上加价50%,通过初步预算,若以4800元购进的甲服装比以4200元购进乙服装的件数少10件.(1)求甲、乙两种服装的销售单价.(2)现老板计划购进两种服装共100件,其中甲种服装不少于65件,若购进这100件服装的费用不超过7500元,则甲种服装最多购进多少件?6.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款2.4万元,乙工程队工程款1万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用12天;(3)若甲,乙两队合做6天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.7.某商场进货部预测一种衬衫款能畅销市场,就用80000元购进一批衬衫,面市后果然供不应求,商场又用176000元购进第二批这种衬衫,所购数量是第一批的购进量的2倍,但单价贵了4元,商场按每件58元销售,销路很好,最后剩下的150件按八折销售,很快销售完,问商场这笔生意赢利多少元?8.某服装加工厂甲、乙两个车间共同加工一款休闲装,且每人每天加工的件数相同,甲车间比乙车间少10人,甲车间每天加工服装400件,乙车间每天加工服装600件.(1)求甲、乙两车间各有多少人;(2)甲车间更新了设备,平均每人每天加工的件数比原来多了10件,乙车间的加工效率不变,在两个车间总人数不变的情况下,加工厂计划从乙车间调出一部分人到甲车间,使每天两个车间加工的总数不少于1314件,求至少要从乙车间调出多少人到甲车间.9.一个批发兼零售的文具店规定:凡一次购买铅笔300支以上(不包括300支),可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,小明来该店购买铅笔,如果给学校九年级学生每人购买1支,那么只能按零售价付款,需用150元;如果多购买60支,那么可以按批发价付款,同样需用150元.(1)这个学校九年级的学生总数在什么范围内?(2)如果按批发价购买360支与按零售价购买300支所付款相同,那么这个学校九年级学生有多少人?10.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,长沙某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.(1)求甲、乙两厂房每天各生产多少箱口罩;(2)已知甲、乙两厂房生产这种口罩每天的生产费分别是1500元和1200元,现有30000箱口罩的生产任务,甲厂房单独生产一段时间后另有安排,剩余任务由乙厂房单独完成.如果总生产费不超过78000元,那么甲厂房至少生产了多少天?参考答案1.解:(1)设乙公司每月计划施工xkm,则甲公司每月施工1.2xkm,根据题意,得,解得,x=1,经检验,x=1是原方程的根,∴1.2x=1.2×1=1.2km,答:甲公司每月计划施工1.2km,乙公司每月施工1km;(2)设甲公司施工了m个月,则乙公司施工(55﹣m)个月,共支付的总费用为w亿元,由题意可得:w=1.2×6•m+1×5•(55﹣m)=7.2m+275﹣5m=2.2m+275,∵k=2.2>0,w随着m的增大而增大,∵甲公司施工时间不得少于乙公司的两倍,∴m≥2(55﹣m),∴,∴当m=37时,w有最小值,∴55﹣37=18,答:甲公司施工37个月,乙公司施工18个月,总费用最少.2.解:(1)3000÷2=1500(元).设乙种口罩的单价为x元,则甲种口罩的单价为1.2x元,依题意,得:,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴1.2x=3.答:甲种口罩的单价为3元,乙种口罩的单价为2.5元.(2)设该药店购进甲种口罩a只,则购进乙种口罩(2600﹣a)只,依题意,得:3a+2.5(2600﹣a)≤7000,解得:a≤1000.答:甲种口罩最多购进1000只.3.解:(1)设乙工程队每天能完成x米的清淤任务,则甲工程队每天能完成2x米的清淤任务,依题意,得:﹣=5,解得:x =10,经检验,x =10是原方程的解,且符合题意,∴2x =20.答:甲工程队每天能完成20米的清淤任务,乙工程队每天能完成10米的清淤任务.(2)设应安排乙工程队清淤m 天,则安排甲工程队清淤天, 依题意,得:0.8m +2×≤60, 解得:m ≥60.答:至少应安排乙工程队清淤60天.4.解:设原来每天生产x 台呼吸机,则提高工作效率后每天生产1.5x 台呼吸机,依题意,得:﹣=4, 解得:x =100,经检验,x =100是原分式方程的解,且符合题意.答:原来每天生产100台呼吸机.5.解:(1)设每件乙服装的进价为x 元,则每件甲服装的进价为(x +20)元,依题意,得:﹣=10, 化简,得:x 2+80x ﹣8400=0,解得:x 1=﹣140,x 2=60,经检验,x 1=﹣140,x 2=60是原方程的解,x 1=﹣140不符合题意,舍去,x 2=60符合题意,∴x +20=80,∴(1+50%)×60=90(元),(1+50%)×80=120(元).答:每件甲服装的销售单价为120元,每件乙服装的销售单价为90元.(2)设购进m 件甲种服装,则购进(100﹣m )件乙种服装,依题意,得:,解得:65≤m ≤75.答:甲种服装最多购进75件.6.解:设规定日期为x天.由题意得:++=1,6(x+12)+x2=x(x+12),6x=72,解之得:x=12.经检验:x=12是原方程的根.方案(1):12×2.4=28.8(万元);方案(2)比规定日期多用12天,显然不符合要求;方案(3):2.4×6+1×12=26.4(万元).∵28.8>26.4,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.7.解:设第一批衬衫的进价为x元,则第二批衬衫的进价为(x+4)元,依题意,得:2×=,解得:x=40,经检验,x=40是原方程的解,且符合题意,∴第一次购进==2000(件),第二次购进2000×2=4000(件).总利润(2000+4000﹣150)×58+150×58×0.8﹣80000﹣176000=90260(元).答:商场这笔生意赢利90260元.8.解:(1)设甲车间有x人,乙车间有(x+10)人,则:,解得:x=20,经检验:x=20是原分式方程的解.答:甲车间有20人,乙车间有30人.(2)设从乙车间调a人到甲车间;则:(a+20)×(+10)+(30﹣a)×≥1314,解得:a≥11.4.因为a为正整数,所以a的最小值为12.答:从乙车间至少调12人到甲车间.9.解:(1)设这个学校九年级学生有x人,依题意,得:,解得:240<x≤300.答:这个学校九年级的学生总数大于240且小于等于300.(2)设铅笔的零售价为y元,则批发价为y元,依题意,得:﹣=60,解得:y=,经检验,y=是原分式方程的解,且符合题意,∴=300.答:这个学校九年级学生有300人.10.解:(1)设乙厂房每天生产x箱口罩,则甲厂房每天生产1.5x箱口罩,依题意,得:﹣=5,解得:x=400,经检验,x=400是原分式方程的解,且符合题意,∴1.5x=600.答:甲厂房每天生产600箱口罩,乙厂房每天生产400箱口罩.(2)设甲厂房生产了m天,则乙厂房生产了天,依题意,得:1500m+1200×≤78000,解得:m≥40.答:甲厂房至少生产了40天.。

分式方程及应用题

分式方程及应用题

5
添加标题
放射性衰变是一个自然过程,其衰变规
律可以用分式方程来描述。
6
添加标题
在物理中,分式方程可以用来描述物体
运动的速度和加速度随时间的变化关系。
化学问题
01 化学反应速率
在化学反应中,分式方程可 以用来描述反应速率与反应 物浓度的关系。
03
药物代谢
药物在体内的代谢过程可以 用分式方程来描述,以便更 好地了解药物的作用和效果。
含有多个未知数的分式方程。
高次分式方程
未知数的最高次数大于二次的分式方程。
分式方程的应用题
单击此处添加文本具体内容,简明扼要地 阐述你的观点
速度、时间、距离问题
题目
甲、乙两地相距100千米,一辆汽车从甲地开往乙地,已经行驶了全 程的$frac{1}{4}$,若保持匀速行驶,则还需多少时间才能到达乙地?
6
添加标题
注意定义域的连续性
化简问题
1
添加标题
合并同类项
2
添加标题
在解分式方程时,需要将同类项合并,
简化方程。
3
添加标题
分解因式
4
添加标题
对于某些复杂的分式方程,可以通过分
解因式的方法来简化。
5
添加标题
约分
6
添加标题
在解分式方程时,可以通过约分进一步
简化方程。
检验问题
检验解的合理性
在得到分式方程的解后,需要进行检验,确保解的合 理性。
解答
设选出男生代表$a$人,女生代表$b$人。根据题意,有$a + b = 3$且$a geq 1, b geq 1$。列举出所有 可能的组合:$(a=1, b=2)$,$(a=2, b=1)$。共有$2$种选法。

专题训练(二)分式方程应用题(打印)

专题训练(二)分式方程应用题(打印)

x x 6828-x5.1828专题训练(二)分式方程的应用分式方程解应用题的六步骤:1、审:分析问题,寻找已知量、未知量及等量关系;2、设:设恰当的未知数;3、列:根据等量关系列出分式方程;4、解:求出所列方程的根(把分式方程转化为整式方程)5、验:先检验所求的根是不是所列方程的根,再检验所求的根是否与实际相符;6、答:写出答案。

一、行程问题例1 甲、乙两个车站相距96千米,快车和慢车同时从甲站开出,1小时后快车在慢车前12千米,快车比慢车早40分钟到达乙站,快车和慢车的速度各是多少?等量关系:例2 甲、乙两地相距828km ,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h ,比普通快车早4h 到达乙地,求两车的平均速度.解:设普通快车车的平均速度为x km /h ,则直达快车的平均速度为1.5x km /h ,依题意,得 = 解得46x =,经检验,46x =是方程的根,且符合题意. ∴46x =,1.569x =,∴普通快车车的平均速度为46km /h ,直达快车的平均速度为69km /h .试一试:1、某客车从甲地到乙地走全长480Km 的高速公路,从乙地到甲地走全长600Km 的普通公路。

又知在高速公路上行驶的平均速度比在普通公路上快45Km ,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。

二、工程问题例1 甲乙两个工程队合作一项工程,两队合作2天后,由乙队单独做1天就完成了全部工程。

已知乙队单独做所需天数是甲队单独做所需天数的倍,问甲乙单独做各需多少天?分析:等量关系:例2 甲、乙两个学生分别向计算机输入1500个汉字,乙的速度是甲的3倍,因此比甲少用20分钟完成任务,他们平均每分钟输入汉字多少个?等量关系:试一试:1、某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天? 1122.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.三、销售问题例1 某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每千克少3元,比乙种原料每千克多1元,问混合后的单价每千克是多少元?试一试:1、某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共赢利多少元。

分式方程的典型应用题

分式方程的典型应用题

分式方程的典型应用题用于过关检测一工程问题1.甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与乙班种66棵树所用的时间相等,求甲乙两班每小时各种多少棵树?2.某市为了缓解交通拥堵现象,决定修建一条市中心到飞机场的轻轨铁路,为使工程提前3个月完成,需要将原定的工作效率提高12℅,问原计划完成这项工程需用多个月?3.某项工程在工程招标时,接到甲、乙两个工程队投标书,施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元,工程领导小组根据甲乙两的投标书预算,有如下方案:(1)甲队单独完成这项工程刚好如期成完成;(2)乙队单独完成这项工程要比规定的日期多用6天;(3)若甲乙两合做3天,余下的的工程由乙队单独做也正好如期完成.那么在不耽误工期的前提下,你觉得那一种施工方案最节省工程款?请说明理由.4.丽园开发工司的960件新产品需要精加工才能投放市场,现有甲乙两个工厂都想加工这批产品,已知甲工厂单独加工这批产品比乙工厂单独加工这批产品多用20天,且甲工厂每天加工的数量是乙工厂每天加工的数量的,公司需付甲工厂加工费用每天80元,乙工厂加工费用每天120元。

(1)甲、乙两工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由两个工厂单独完成,也可以由两个工厂合作完成,在加工的过程中,公司派一名工程师每天到厂家进行技术指导,并负担每天5元的午餐补助,请帮公司选择一种即省时又省钱的加工方案。

二行程问题5.八(1)班同学周末乘汽车到游览区游览,游览区距学校120千米,一部分学生乘慢车先行,出发后1小时后,另一部分学生乘快车前往,结果他们同时到达游览区,已知快车的速度是快车的速度的1.5倍,求快车的速度.6.小明7:20分离家上学去,走到距离家500米的商店时,买学习用品用了5分钟从商店出来,小明发现按原来的速度还要30分钟才能到学校,为了8:00之前赶到学校,小明加快了速度每分钟比原来多走25 米,求小明从商店到学校的速度。

分式方程应用题2

分式方程应用题2
x
2 2、 进入防汛期后, 某地对河堤进行了加固. 该地驻军在河堤加固的工程中出色完成了任务. 这 是记者与驻军工程指挥官的一段对话: 你们是用 9 天完成 4800 米 长的大坝加固任务的? 我们加固 600 米后,采用新的加固模式, 这样每天加固长度是原来的 2 倍.
知识点一<路程问题>
想一想 甲、乙二人都要走 15 千米的路,甲的速度是乙的速度的 1.2 倍,甲比乙少用 0.5 小时。甲、 乙二人的速度各是多少?
练习 2 在 5 月汛期,从前那个某沿江村庄因洪水而沦为孤岛,当时洪水流速为 10 千米/时,张 师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行 2 千米所用时间,与以最大速 度逆流航行 1.2 千米所用时间相等,请你计算出该冲锋舟在静水中的最大航速。
编写人:陈金海 核对人:姜晓华 加固 x 米,则可列方程为_______________________ 3.轮船先顺水航行 46 千米再逆水航行 34 千米所用的时间,恰好与它在静水中航行 80 千米 所用的时间相等,水的流速是每小时 3 千米,则轮船在静水中的速度是多少千米/时?
4.甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做 2 天后,再由两队合 议一议 列分式方程解应用题的基本步骤是什么? 作 10 天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程 4 所需天数的 ,求甲、乙两个施工队单独完成此项工程各需多少天? 5
练习(只列方程不求解) 1.甲、乙两个火车站相距 720 千米,火车提速后,行驶速度是原来速度的 1.2 倍,从甲站到 乙站的时间缩短 1.2 小时,求火车原来的速度。
知识点二<工程问题>
例 2. 某项工程如果甲单独作,刚好在规定的日期内完成,如果乙单独做要超过日期的 3 天, 现在甲乙两人合作 2 天,剩下的工程由乙单独做,刚好在规定的日期内完成,问规定日期是 几天?

初中数学精品教案:分式方程的应用(2))

初中数学精品教案:分式方程的应用(2))

0507分式方程的应用(2)微设计教学目标:1.学会解等量关系较难寻找的分式方程;2.会解既有分式方程又有其他方程的综合性问题.重点:学会分析等量关系列分式方程.难点:例2的解法.教学过程:一、探索发现问题:某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才使挖掘出来的土能及时运走,且不窝工,解决此问题,若设派X 人挖土,其它人运土,可列方程为________________.探究:1.这个问题中给出了哪些信息?等量关系是什么?2.由题意,你将列出怎样的方程?分析:根据题意,问题中的等量关系为:“安排挖土的人数:运土的人数=3:1”,可以列出方程:372=-xx . 列分式方程解应用题时,有时需要挖掘题中所隐含的等量关系才能正确地列出方程.下面,我们一起研究等量关系较难寻找的分式方程应用题,以及与其他方程相关的综合性问题.二、例题解析例1.宁波火车站北广场将于2015年底投入使用,计划在广场内种植A 、B 两种花木共6600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A 、B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?分析:第(1)题中设B 种花木的数量是x 棵,则A 种花木的数量是,等量关系为“种植A 种花木+B 两种花木=6600棵”,容易列出方程;第(2)题中设安排y 人种植A 种花木,则安排)26(y -人种植B 种花木,题中隐含了等量关系“种植A 花木所用时间=种植B 花木所用时间”,根据等量关系可以列出方程求解.解答:(1)设B 种花木的数量是x 棵,则A 种花木的数量是)6002(-x 棵.由题意,得6600)602(=-+x x ,解得2400=x ,6002-x =4200.答:A 种花木的数量是4200棵,B 种花木的数量是2400棵.(2)设安排y 人种植A 种花木,则安排)26(y -人种植B 种花木.由题意,得)26(402400604200y y -=,解得14=y . 经检验,14=y 是原方程的根,且符合题意. 1226=-y .答:安排14人种植A 种花木,安排12人种植B 种花木,才能确保同时完成各自的任务.小结:列分式方程解应用题最关键的是:仔细审题,寻找题中隐含的等量关系列方程求解. 例2.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.分析:(1)设原计划每天生产零件x 个,根据等量关系:“原计划生产24000个零件所用时间=实际生产(24000+300)个零件所用的时间”,可列方程:303002400024000++=x x . (2)设原计划安排的工人人数为y 人,根据等量关系:“(5组机器人生产流水线每天生产的零件个数+原计划每天生产的零件个数)×(规定天数-2)=零件总数24000个”,可列方程: . 解答:(1)设原计划每天生产零件x 个,由题意,得303002400024000++=x x .解得x=2400. 经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产零件2400个,规定的天数是10天.(2)设原计划安排的工人人数为y 人,由题意,得. 解得y=480.经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数为480人.小结:列分式方程解应用题,最为关键的是寻找题中的等量关系,当数量关系错综复杂时,应逐步挖掘题中隐含的等量关系.练习.某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.24000)210(24002400%)201(205=-⨯⎥⎦⎤⎢⎣⎡+⨯+⨯⨯y 24000)210(24002400%)201(205=-⨯⎥⎦⎤⎢⎣⎡+⨯+⨯⨯y(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?分析:(1)若设乙种款型的T 恤衫购进x 件,等量关系为“甲种款型每件的进价比乙种款型每件的进价少30元”,由此可列出方程:.6400305.17800xx =+ (2)可以先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.解答:(1)设乙种款型的T 恤衫购进x 件,由题意,得.6400305.17800x x =+解得x=40.经检验,x=40是原方程的根,且符合题意.1.5x=60.答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件.(2),1606400=x160﹣30=130(元),130×60%×60+160×60%×(40÷2) -160×[1-(1+60%)×0.5] ×(40÷2)=4680+1920-640=5960(元)答:售完这批T 恤衫商店共获利5960元.三、感悟提升本节课我们重点研究了研究等量关系较难寻找的分式方程,以及与其他方程相关的综合性问题.列分式方程解应用题时,首先需要仔细审题,再设好未知数,列出方程,接着求出方程,最后检验作答.对于等量关系错综复杂的应用题,可以先划出反映等量关系的语句,再逐步挖掘题中隐含的等量关系,这是列出方程的关键步骤.。

分式方程应用题训练

分式方程应用题训练

九年级数学分式方程应用题训练1.(2018•昆明)甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.=B.=C.=D.=2.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.﹣=100 B.﹣=100C.﹣=100 D.﹣=1003.(2018•黑龙江)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3 D.m<3且m≠24(2018•衡阳)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.﹣=10 B.﹣=10C.﹣=10 D.+=105.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.2汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A.=B.=C.=D.=7.(2018•黔南州)施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=28(2018•淄博)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.9.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是元.10(2018•齐齐哈尔)若关于x的方程+=无解,则m的值为.11.(2018•嘉兴)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程:行程12.(2018•徐州)从徐州到南京可乘列车A与列车B,已知徐州至南京里程约为350km,A与B车的平均速度之比为10:7,A车的行驶时间比B车的少1h,那么两车的平均速度分别为多少?行程13.(2018•东营)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.行程14.某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?行程15.(2018•山西)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.行程.16.“2017年张学友演唱会”于6月3日在我市观山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.17.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,AC=5cm.点D在AC上,AD=1,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为xcm/s.(1)点Q的速度为cm/s(用含x的代数式表示).(2)求点P原来的速度.任务.18. (2018•桂林)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?任务19.(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?任务20.(2018•威海)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?利润21.(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?利润.22.(2018•宁波)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?与方程结合23.(2018•广东)某公司购买了一批A、B型芯片,其中A型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?与不等式结合24.(2018•贵阳)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?。

(二)分式方程应用题专题训练

(二)分式方程应用题专题训练
提 前 5天 交 货 , 每 天 应 多 做 件 ,{ 应 设 ! 『 I J 满足 的方程 为 (
A. 一 一2 7 0

A 4 . 0+ l 4 一 1 4

2l
) .

B.2 0 8 _ _ + … :1 4 X + 21
48 +
48
C一 . 0+…1 :1 l 0
级 猪 肉少 04 克 . 么今年 1 . 那 月份 的一级 猪 肉每 千 克是多少 元
2 一 项 工程 , . 甲单独 做 小 时完成 . 乙单 独做 Y小 时完 成 .则 两 人 一 起 完成 这 项 T程 需

… …
小 时.
3 今 年 以米受 各 种 素 的影 响 .猪 肉 的市场 . 价 格 仍在 不 断上 升 . 据调 查 . 年 5月 份一 今 级 猪 肉 的 价 格 是 1月 份 一 级 猪 肉 价 格 的 1 5倍.小英 同学 的妈妈 同样用 2 . 2 0兀 钱在
+ 21
B. j
+5: 48 4 + 8
D 10+_ . 4_


1 4
C.7 0 …2
. …
—— = 5
— —
7 0 2

: 1

+ 21
48
7 甲做 10个机 器零 纠 l 乙做 2 0个 机 器零 . 8 :匕 : 4
件 所用 的时 间少
) .
20 4
— = —
10 8
— 十

——
8 0元 购 进 甲种 零 件 的数 量 与 用 1 0元 购 0 进 乙种零 件 的数 量 相 同 . : 个 甲种 零 求 每

10.5 分式方程(应用题篇)解答题训练(二)2020-2021学年苏科版八年级下册数学

10.5 分式方程(应用题篇)解答题训练(二)2020-2021学年苏科版八年级下册数学

八年级下册数学10.5:分式方程(应用题篇)解答题训练(二)1.某地有甲、乙两家口罩厂,已知甲厂每天能生产口罩的数量是乙厂每天胎生产口罩数量的1.5倍,并且乙厂单独完成60万只口罩生产的时间比甲厂单独完成同样数量的口罩生产的时间要多用5天.(1)将60万只用科学记数法表示为只;(2)求甲、乙两厂每天分别可以生产多少万只口罩?2.为响应“地球熄灯一小时”的号召,某饭店在当天晚上推出烛光晚餐活动.计划用2000元购进一定数量的蜡烛,因为是批量购买,每支蜡烛的价格比原价低20%,结果用相同的费用比原计划多购进25支,则每支蜡烛的原价为多少?3.在今年的3月12日第43个植树节期间,某校组织师生开展了植树活动.在活动之前,学校决定购买甲、乙两种树苗.已知用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗比甲种树苗每棵少6元.(1)求甲种树苗每棵多少元;(2)若准备用7600元购买甲、乙两种树苗共200棵,则至少要购买乙种树苗多少棵?4.甲、乙两个施工队共同完成某区域绿化改造工程,乙队先单独做3天后,再山两队合作7天完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的2倍,求甲、乙两个施工队单独完成此项工程各需多少天?5.为打赢“扶贫攻坚战”,某单位计划选购甲、乙两种果树苗送给贫困户,已知甲种果树苗单价比乙种果树苗的单价高10元,若用500元单独购买甲种果树苗与300元单独购买乙种果树苗的数量相同.(1)请问甲,乙两种果树苗的单价各为多少元?(2)如果该单位计划购买甲,乙两种水果树苗共5500棵,总费用不超过92500元,则甲种果树苗最多可以购买多少棵?6.在新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.2元,且用7000元购买A型口罩的数量与用4200元购买B 型口罩的数量相同.(1)A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,该公司需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过3960元,则增加购买A型口罩的数量最多是多少个?7.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元;两种机器人的单价与每小时分拣快递的数量如下表:甲型机器人乙型机器人购买单价(万元/台)m n每小时拣快递数量(件)1200 1000(1)求购买甲、乙两种型号的机器人所需的单价m和n分别为多少万元/台?(2)若该公司计划购买这两种型号的机器人共8台,购买总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有几种购买方案?哪种方案费用最低,最低费用是多少万元?8.列方程或不等式解应用题:新冠肺炎疫情防控期间,学校为做好预防性消毒工作,开学初购进A、B两种消毒液,其中A消毒液的单价比B消毒液的单价多40元,用3200元购买B消毒液的数量是用2400元购买A消毒液数量的2倍.(1)求两种消毒液的单价;(2)学校准备用不多于6800元的资金购买A、B两种消毒液共70桶,问最多购买A 消毒液多少桶?9.某商店第一次用600元购进某种型号的水笔若干支,第二次又用600元购进该款水笔,但每支水笔的进价比第一次贵1元,所以购进数量比第一次少了30支.问第一次每支水笔的进价为多少元.10.广州某公交线路日均运送乘客总量为15600人次,实施5G快速公交智能调度后,每趟车平均运送乘客量比智能调度前增加了20%.若日均运送乘客总量保持不变,则每日发车数量比智能调度前减少26趟.求实施智能调度前每趟车平均运送乘客量为多少人次.11.某中学九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.12.某校九年级两个班在“慈善一日捐”活动中各捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少5人,请你根据上述信息提出一个用分式方程解决的问题,并写出解题过程.13.为了加强疫情防控,某学校购进了部分N95口罩和一次性医用口罩,已知购买N95口罩共花费2000元,购买一次性医用口罩共花费1000元,购买一次性医用口罩数量是购买N95口罩数量的2.5倍,且购买一个N95口罩比购买一个一次性医用口罩多花4元.(1)求购买一个N95口罩、一个一次性医用口罩各需多少元?(2)该单位决定再次购买N95口罩和一次性医用口罩共3000个,恰逢该商场对两种口罩的售价进行调整,N95口罩售价比第一次购买时降低了20%,一次性医用口罩售价比第一次购买时降低了50%,如果此次购买N95口罩和一次性医用口罩的总费用不超过3250元,那么该单位至少可购买多少个一次性医所口罩?14.2020年12月以来,各地根据疫情防控工作需要,为尽快完成检测任务,我市组织甲、乙两支医疗队开展检测工作,甲队比乙队每小时多检测15人,甲队检测600人比乙队检测500人所用的时间少10%.问甲队每小时检测多少人?15.接种疫苗是阻断病毒传播的有效途经,为了保障人民群众的身体健康,我国目前正在开展新冠疫苗大规模接种工作,现有A、B两个社区疫苗接种点,已知A社区疫苗接种点每天接种的人数是B社区疫苗接种点每天接种人数的1.2倍,A社区疫苗接种点种完6000支疫苗的时间比B社区疫苗接种点种完6000支疫苗的时间少1天.(1)求A、B两个社区疫苗接种点每天各接种多少人?(2)一段时间后,A社区接种点每天前来接种的人数比(1)中的人数减少了10m人,而B社区疫苗接种点由于加大了宣传力度,每天前来接种的人数增加到了(1)中A社区疫苗接种点每天接种的人数,这样A社区接种点3m天与B社区接种点(m+20)天一共种完了69000支疫苗,求m的值.参考答案1.解:(1)60万=600000=6×105,故答案是:6×105;(2)设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.答:甲厂每天能生产口罩6万只,乙厂每天能生产口罩4万只.2.解:设每支蜡烛的原价为x元,依题意得:﹣=25,解得x=20.经检验x=20是所列方程的根,且符合题意.答:每支蜡烛的原价为20元.3.解:(1)设甲种树苗每棵x元,则乙种树苗每棵(x﹣6)元.依题意列方程得,,800x﹣4800=680x,解得x=40,经检验x=40是原方程的根.答:甲种树苗每棵40元.(2)设购买乙种树苗的y棵,则购买甲种树苗的(200﹣y)棵,根据题意,得34y+40(200﹣y)≤7600,解得,∵y为整数,∴y的最小值为67.答:至少要购买乙种树苗67棵.4.解:设甲施工队单独完成此项工程需x天,则乙施工队单独完成此项工程需2x天,根据题意得:+=1.解得:x=12.经检验,x=12是原方程的解,且符合实际问题的意义,2x=24.答:甲施工队单独完成此项工程需12天,则乙施工队单独完成此项工程需24天.5.解:(1)设甲种果树苗的单价为x元,则乙种果树苗的单价为(x﹣10)元,根据题意,得=.解得x=25,经检验x=25是原方程的解.则x﹣10=15.答:甲种果树苗的单价为25元,则乙种果树苗的单价为15元.(2)设甲种果树苗可以购买y棵,根据题意,得25y+15(5500﹣y)≤92500.解得y≤1000.答:甲种果树苗最多可以购买1000棵.6.解:(1)设B型口罩的单价为x元,则A型口罩的单价为(x+1.2)元,根据题意,得:.解方程,得:x=1.8.经检验:x=1.8是原方程的根,且符合题意.所以x+1.2=3.答:A型口罩的单价为3元,则B型口罩的单价为1.8元;(2)设增加购买A型口罩的数量是a个,则购买B型口罩的数量是2a个.根据题意,得:3a+1.8×2a≤3960.解不等式,得:m≤600.答:增加购买A型口罩的数量最多是600个.7.解:(1)根据题意得:,解得:,答:甲、乙两种型号的机器人每台价格分别是6万元、4万元.(2)设该公可购买甲型机器人a台,乙型机器人(8﹣a)台,根据题意得:,解得:≤a≤,∵a为正整数,∴a的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台,设该公司的购买费用为w万元,则w=6a+4(8﹣a)=2a+32,∵k=2>0,∴w随a的增大而增大,当a=2时,w最小,w最小=2×2+32=36(万元),∴该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元.8.解:(1)设B消毒液的单价为x元,则A消毒液的单价为(x+40)元,依题意得:=2×,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴x+40=120.答:A消毒液的单价为120元,B消毒液的单价为80元.(2)设购进A消毒液m桶,则购进B消毒液(70﹣m)桶,依题意得:120m+80(70﹣m)≤6800,解得:m≤30.答:最多购买A消毒液30桶.9.解:设第一次每支水笔的进价为x元,则第二次每支水笔的进价为(x+1)元,依题意得:﹣=30,整理得:x2+x﹣20=0,解得:x1=4,x2=﹣5,经检验,x1=4,x2=﹣5是原方程的解,x1=4符合题意,x2=﹣5不符合题意,舍去.答:第一次每支水笔的进价为4元.10.解:设限行期间这路公交车每天运行x车次,+26=,解得:x=100,经检验x=100是原分式方程的根,答:实施智能调度前每趟车平均运送乘客量为100人次.11.解:设骑车学生的速度为xkm/h,由题意得,﹣=,解得:x=15.经检验:x=15是原方程的解.答:骑车学生的速度为15km/h.12.问题:两班各有多少人?解:设2班有x人,则1班有(x+5)人,依题意得:﹣=4,依题意得:x2+5x﹣2250=0,解得:x1=45,x2=﹣50.经检验,x1=45,x2=﹣50是原方程的解,x1=45符合题意,x2=﹣50不符合题意,舍去,∴x+5=50(人).答:1班有50人,2班有45人.13.解:(1)设购买一个一次性医用口罩需x元,则购买一个N95口罩需(x+4)元.列方程:×2.5=,解得:x=1.经检验x=1是原方程的解,∴x+4=5.答:购买一个普通口罩需1元,购买一个N95口罩需5元.(2)设购买一次性医用口罩y个.则购买N95口罩(3000﹣y)个,依题意得:1×(1﹣50%)y+5×(1﹣20%)(3000﹣y)≤3250.解得:y≥2500.∴该单位至少可购买2500个一次性医所口罩.14.解:设甲队每小时检测x人,则乙队每小时检测(x﹣15)人,由题意可得,=×(1﹣10%).解得x=60.经检验x=60是原方程的解,且符合题意.答:甲队每小时检测60人.15.解:(1)设B社区疫苗接种点每天各接种x人,则A社区疫苗接种点每天各接种1.2x 人,根据题意,得+1=.解得x=1000.经检验x=1000是原方程的解,且符合题意.所以1.2x=1200.答:A社区疫苗接种点每天各接种1200人,B社区疫苗接种点每天各接种1000人;(2)根据题意,得(1200﹣10m)•3m+1200(m+20)=69000,整理,得m2﹣160m+1500=0.解得m1=150(舍去),m2=10,答:m的值是10.。

人教版八年级数学上册第15章《分式》应用题解答题拔高训练(二)

人教版八年级数学上册第15章《分式》应用题解答题拔高训练(二)

第15章《分式》应用题解答题拔高训练(二)1.高邮市为了彰显特色生态,打造环湖旅游,原计划在“湖上花海”景区栽种油菜2000亩.为保证景区准时开园,实际栽种时工作效率提高了30%,结果比原计划提前4天完成,并且多栽种油菜80亩,原计划栽种油菜多少天?2.列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格.3.近年来,随着我国的科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国智造”,高铁事业是“中国智造”的典范.一般的高铁包括G字头的高速动车组以及D 字头的动车组.由长沙到北京的高铁G84的平均速度是动车D928的平均速度的1.2倍,行驶相同的路程1500千米,G84少用1个小时.(1)求动车D928的平均速度.(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式,现阶段D928二等座的票价为491元/张,G84二等座的票价为649元/张,如果你有机会给有关部门提一个合理化建议,使G84的性价比与D928的性价比相近,你如何建议,为什么?4.某商场计划购进冰箱、彩电相关信息如表:进价/(元/台)冰箱a彩电a﹣400若商场用80000元购进冰箱的数量与用64000元购进彩电的数量相等,求表中a的值.5.某学校组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90千米,队伍8:00从学校出发.辅导员因有事请,8:30从学校自驾小车以大巴车1.5倍的速度追赶,结果同时达到目的地.求大巴车与小车的平均速度各是多少?6.某校服厂准备加工500套运动服,在加工200套后,改进工艺,使得工作效率比原计划提高20%,结果共用15天完成任务.问校服厂原计划每天加工多少套?7.列方程,解应用题甲乙两人相约周末到影院看电影,他们的家分别距离影院1200米和2000米,两人分别从家中同时出发,已知甲和乙的速度比是3:4,结果甲比乙提前4分钟到达影院.(1)求甲、乙两人的速度?(2)在看电影时,甲突然接到家长电话让其15分钟内赶回家,时间紧迫改变速度,比来时每分钟多走25米,甲是否能按要求时间到家?8.某班级准备购买一些奖品来奖励春季运动会表现突出的同学,奖品分为甲、乙两种,已知购买一个甲奖品要比购买一个乙奖品多用20元,若用400元购买甲奖品的个数是用160元购买乙奖品个数的一半.(1)求购奖一个甲奖品和一个乙奖品各需多少元?(2)经商谈,商店决定给予该班级每购买甲奖品3个就赠送一个乙奖品的优惠,如果该班级需要乙奖品的个数是甲奖品个数的2倍还多8个,且该班级购买两种奖项奖品的总费用不超过640元,那么该班级最多可购买多少个甲奖品?9.列方程解应用题:为缓解交通拥堵问题,小李将上班方式由自驾车改为骑电动车.他从家到达上班地点,自驾车要走的路程为10千米,骑电动车要走的路程为8千米,已知小李自驾车的速度是骑电动车速度的1.5倍,他由自驾车改为骑电动车后,时间多用了6分钟.求小李自驾车和骑电动车的速度分别是多少?10.春节即将来临,根据习俗每家每户都会在门口挂红灯笼和贴对联.某商店看准了商机,准备购进一批红灯笼和对联进行销售,已知对联的进价比红灯笼的进价少10元,若用720元购进对联的数量比用720元购进红灯笼的数量多50件.(1)对联和红灯笼的单价分别为多少?(2)由于销售火爆,第一批售完后,该商店以相同的进价再购进300幅对联和200个红灯笼,已知对联的销售价格为12元一幅,红灯笼的销售价格为24元一个销售一段时间后发现对联售出了总数的,红灯笼售出了总数的,为了清仓,该店老板决定对剩下的红灯笼和对联以相同的折扣数打折销售,并很快全部售出,问商店最低打几折,才能使总的利润率不低于20%?11.12月初,西雅中学初二年级前往距离学校20km的莲花镇基地研学.学生乘坐大巴,刘老师自行驾车前往,已知刘老师自行驾车的速度是大巴速度的1.5倍,他们同时从学校出发,结果刘老师比学生早10min到达目的地,(1)求大巴的速度;(2)如果刘老师到基地后不停留,直接驾车到离基地2km的药店购买常用药以备不时之需,再赶回基地,其中在药店买药用时5分钟.请问刘老师能在大巴到达之前赶回基地吗?12.某小区响应县政府提出的“名县美城”建设新征程号召,购买了银杏树和玉兰树共200棵用来美化小区环境,购买银杏树用了10000元,购买玉兰树用了9000元,已知玉兰树的单价是银杏树单价的1.5倍,求银杏树和玉兰树的单价各是多少?13.如图,在边长为x米的正方形场地上,修建三条宽5米的甬道,其余部分种草.(1)求草坪(阴影部分)的面积,(用含x的式子表示);(2)当x=90时,草坪面积是平方米;(3)在(2)的条件下,由甲乙两组工人铺设草坪,乙组每天种草面积是甲组每天种草面积的1.5倍,甲乙两组共同完成一半后,剩余由甲组单独完成,结果前后共用14天完成种植.求甲、乙两组每天分别能种草多少平方米?14.某工厂生产某种型号的螺母和螺钉两种零件,每名工人平均每天生产的螺母比螺钉多800个,1个螺钉需要配2个螺母,生产50000个螺母和生产30000个螺钉所用的时间相同.(1)求每名工人平均每天生产螺母和螺钉各多少个?(2)若该车间有工人22名,如何分配使每天生产的螺钉和螺母刚好配套?15.小童和小郑相约周末同时各自从家出发去图书馆看书,小童家离图书馆2千米,小郑家离图书馆3千米.小童步行,小郑骑自行车,结果小童比小郑晚到15分钟,已知骑自行车的速度是步行速度的3倍.(1)求小童步行、小郑骑自行车平均每小时各行多少千米?(2)在图书馆看完书后,他们同时从图书馆回家,小郑仍骑自行车,小童原速步行到800米处正好遇上骑电动自行车的爸爸,爸爸带上小童原路回家,结果他们与小郑同时到达各自家中,求小童爸爸骑电动自行车的平均速度.16.某中学计划购进甲、乙两种学具,已知一件甲种学具的进价与一件乙种学具的进价的和为40元,用90元购进甲种学具的件数与用150元购进乙种学具的件数相同.(1)求每件甲种、乙种学具的进价分别是多少元?(2)该学校计划购进甲、乙两种学县共100件,此次进货的总资金不超过2000元,求最少购进甲种玩具多少?17.五月初,某地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共4000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用450元购买甲种物品的件数恰好与用400元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格分别是多少元?(2)经调查,灾区对乙种物品件数需求量是甲种物品件数的3倍,若该爱心组织按照此求的比例购买这4000件物品,而筹集资金多少元?18.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?19.某社区去年购买了A、B两种型号的共享单车,购买A种单车共花费15000元,购买B 种单车共花费14000元,购买A种单车的数量是购买B种单车数量的1.5倍,且购买一辆A种单车比购买一辆B种单车少200元.(1)求去年购买一辆A种和一辆B种单车各需要多少元?(2)为积极响应政府提出的“绿色发展•低碳出行”号召,该社区决定今年再买A、B两种型号的单车共60辆,恰逢厂家对A、B两种型号单车的售价进行调整,A种单车售价比去年购买时提高了10%,B种单车售价比去年购买时降低了10%,如果今年购买A、B两种单车的总费用不超过34000元,那么该社区今年最多购买多少辆B种单车?20.为了迎接“六一”国际儿童节,某童装品牌专卖店准备购进甲、乙两种童装,这两种童装的进价和售价如下表:价格甲乙进价(元/件)m m+20售价(元/件)150 160 如果用5000元购进甲种童装的数量与用6000元购进乙种童装的数量相同.(1)求m的值;(2)要使购进的甲、乙两种童装共200件的总利润(利润=售价﹣进价)不少于8980元,且甲种童装少于100件,问该专卖店有哪几种进货方案?参考答案1.解:设原计划栽种油菜x天,则实际栽种油菜(x﹣4)天,依题意,得:=(1+30%)×,解得:x=20,经检验,x=20是所列分式方程的解,且符合题意.答:原计划栽种油菜20天.2.解:设每套《三国演义》的价格为x元,则每套《西游记》的价格为(x+40)元,依题意,得:=2×,解得:x=80,经检验,x=80是所列分式方程的解,且符合题意.答:每套《三国演义》的价格为80元.3.解:(1)设动车D928的平均速度为x千米/时,则高铁G84的平均速度为1.2x千米/时,依题意,得:﹣=1,解得:x=250,经检验,x=250是所列方程的解,且符合题意.答:动车D928的平均速度为250千米/时.(2)∵491×1.2=589.2(元),∴建议G84二等座的票价为589元/张,这样才能使得这两种列车的性价比相近.4.解:依题意,得:=,解得:a=2000,经检验,a=2000是原方程的解,且符合题意.答:表中a的值为2000.5.解:设大巴车的平均速度为x千米/时,则小车的平均速度为1.5x千米/时,依题意,得:﹣=,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴1.5x=90.答:大巴车的速度为60千米/时,小车的速度为90千米/时.6.解:设原计划每天加工x套运动服,则采用了新技术每天加工(1+20%)x套运动服,由题意得,+=15,解得:x=30,经检验:x=30是原分式方程的解,答:原计划每天加工30套运动服.7.解:(1)设甲的速度为3x米/分,则乙的速度为4x米/分,根据题意得:=4,解得:x=25,经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:甲的速度是75米/分,乙的速度是100米/分.(2)∵,所以甲能按要求时间到家.8.解:(1)设购买一个乙奖品需x元,则购买一个甲奖品品需(x+20)元,根据题意得:=×,解得:x=5,经检验,x=5是原分式方程的解,∴x+20=25.答:购买一个乙奖品需5元,购买一个甲奖品需25元.(2)设该学校可购买a个甲奖品,则可购买(2a+8﹣)个乙奖品,根据题意得:25a+5(2a+8﹣)≤640,解得:a≤18.答:该学校最多可购买18个甲奖品.9.解:设小李骑电动车的速度为x千米/小时,则自驾车的速度为1.5x千米/小时,依题意,得:﹣=,解得:x=,经检验:x=是方程的解,且符合题意,∴1.5x=20.答:小李骑电动车的速度为千米/小时,则自驾车的速度为20千米/小时.10.解:(1)设对联的进货单价为x元/幅,则红灯笼的进货单价为(x+10)元/个,依题意,得:﹣=50,解得:x=8,经检验,x=8是所列分式方程的解,且符合题意,∴x+10=18.答:对联的进货单价为8元/幅,红灯笼的进货单价为18元/个.(2)设该店老板决定对剩下的红灯笼和对联打y折销售,依题意,得:×300×(12﹣8)+×200×(24﹣18)+×300×(12×﹣8)+×200×(24×﹣18)≥(300×8+200×18)×20%,解得:y≥5.答:商店最低打5折,才能使总的利润率不低于20%.11.解:(1)设大巴车速度为xkm/h,则,两边同时乘以6x得:120﹣80=x,解得:x=40,经检验:x=40是原方程的解.答:大巴车速度为40km/h;(2)∵分钟.∴老师能在大巴到达之前赶回基地.12.解:设银杏树单价为x元,则玉兰树的单价为1.5x元,根据题意可得:+=200,解得:x=80,检验得:x=80是原方程的解,故1.5x=120,答:银杏树单价为80元,则玉兰树的单价为120元.13.解:(1)六块草坪可合成长为(x﹣5)米、宽为(x﹣5×2)的长方形,∴草坪的面积=(x﹣5)×(x﹣5×2)=(x2﹣15x+50)平方米.(2)当x=90时,x2﹣15x+50=902﹣15×90+50=6800.故答案为:6800.(3)设甲组每天能种草y平方米,则乙组每天能种草1.5y平方米,依题意,得:+=14,解得:y=404,经检验,y=404是原方程的解,且符合题意,∴1.5y=607.答:甲组每天能种草404平方米,乙组每天能种草607平方米.14.解:(1)设每名工人平均每天生产螺母x个,螺钉(x﹣800)个,根据题意得:解得:x=2000当x=2000时,x(x﹣800)≠0,∴x﹣800=1200个,∴每名工人平均每天生产螺母2000个,螺钉1200个;(2)设x个工人生产螺钉,y个工人生产螺母,根据题意得:解得答:10个工人生产螺钉,12个工人生产螺母.15.解:(1)设小童步行的平均速度为x千米/小时,列方程:,解得:x=4,经检验x=4是原方程的解,答:小童步行、小郑骑自行车平均每小时分别为4千米/小时,12千米/小时;(2)设小童爸爸骑电动自行车的平均速度为y千米/小时列方程,得:+=,解方程得:y=24,经检验y=24是原方程的解,答:小童爸爸骑电动自行车的平均速度为24千米/小时.16.解:(1)设甲种学具进价x元/件,则乙种学具进价为(40﹣x)元/件,可得:解得:x=15,经检验x=15是原方程的解.故40﹣x=25.答:甲,乙两种学具分别是15元/件,25元/件;(2)设购进甲种学具y件,则购进乙种学具(100﹣y)件,15y+25(100﹣y)≤2000解得:50≤y.答:甲种学具最少购进50个;17.解:(1)设甲种救灾物品每件的价格x元/件,则乙种救灾物品每件的价格为(x﹣10)元/件,可得:,解得:x=90,经检验x=90是原方程的解,答:甲单价 90 元/件、乙 80 元/件.(2)设甲种物品件数y件,可得:y+3y=4000,解得:y=1000,所以筹集资金=90×1000+80×3000=330000 元,答:筹集资金330000 元.18.解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.19.解:(1)设购买一辆B型单车的成本为x元,则购买一辆A型单车的成本为(x﹣200)元,可得:解得:x=700,经检验x=700是原方程的解,700﹣200=500,答:去年购买一辆A种和一辆B种单车各需要500元,700元;(2)设购买B型单车m辆,则购买A型单车(60﹣m)辆,可得;700×(1﹣10%)m+500×(1+10%)(60﹣m)≤34000,解得:m≤12.5,∵m是正整数,∴m的最大值是12,答:该社区今年最多购买多少辆B种单车12辆.20.解:(1)根据题意可得:,解得:m=100,经检验m=100是原方程的解;(2)设甲种童装为x件,可得:,解得:98≤x<100,因为x取整数,所以有两种方案:方案一:甲98,乙102;方案二:甲99,乙101;。

第六讲浙教版七年级下册分式方程应用题汇总(二)

第六讲浙教版七年级下册分式方程应用题汇总(二)
17.A、B两城铁路长240千米,为使行驶时间减少20分,需要提速10千米/时,但在现有条件下安全行驶限速100千米/时,问能否实现提速目标.
18.A、B两地间的路程为150千米,甲、乙两车分别从A、B两地同时出发,相向而行,2小时相遇;相遇后,各以原来速度继续行驶,甲车到达B地立即原路返回,返回时的速度是原来的2倍,结果甲、乙两车同时到达A地,求甲车的原速度和乙车的速度.
(2)如果甲车间的生产费用为每天6500元,乙车间的生产费用为每天4500元,有以下三种方案可供选择:
方案一:由甲车间单独生产这批产品;
方案二:由乙车间单独生产这批产品;
方案三:甲乙两车间同时合作生产这批产品.
如从节约生产费用的角度考虑,工厂应选择哪个方案?请说明理由.
7.某校初三年级学生参加赈灾义演活动,甲班捐款200元,乙班30名同学捐款200元,这样,两班人均捐款比甲班人均捐款多1元,甲班有多名学生参加这次赈灾活动?(规定班级人数不超过60人)
3.甲、乙两公司各为“希望工程”捐款20000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数比甲公司的人数少20%.问甲、乙两公司人均捐款各为多少元?
4.甲乙二人周末到惠州红花湖环湖旅行,同时从起点(0公理处)出发,环湖步行18千米后回到起点处,甲比乙每小时多走1千米,结果比乙早到36分钟.问二人每小时各走几千米?
5、甲容器中有15%的盐水30升,乙容器中有18%的盐水20升,如果向两个容器各加入等量的水,使它们的浓度相等,那么加入的水是多少升?
6、某市为治理污水,需要铺设一段全长位3000m的污水输送管道,为了尽量减少施工队城市交通所造成的影响,实际施工时每天的工效比原计划提高25%,结果提前30天完成任务。若设原计划每天铺设xm,则依题意可列方程

新版8年级分式方程应用题含答案

新版8年级分式方程应用题含答案

分式方程应用题分类解析分式方程应用性问题联系实际比较广泛,灵活运用分式的基本性质,有助于解决应用问题中出现的分式化简、计算、求值等题目,运用分式的计算有助于解决日常生活实际问题.计算、求值等题目,运用分式的计算有助于解决日常生活实际问题.一、营销类应用性问题例1 某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料0.5kg 少3元,比乙种原料0.5kg 多1元,问混合后的单价0.5kg 是多少元?是多少元?分析:市场经济中,常遇到营销类应用性问题,与价格有关的是:单价、总价、平均价等,要了解它们的意义,建立它们之间的关系式.建立它们之间的关系式.二、工程类应用性问题例2 某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元.元. ⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.分析:这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队完成这项工程所需时间分别为x 天,y 天,z 天,可列出分式方程组.天,可列出分式方程组.三、行程中的应用性问题例3 甲、乙两地相距甲、乙两地相距828km 828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h 2h,比普通快车早,比普通快车早4h 到达乙地,求两车的平均速度.到达乙地,求两车的平均速度.分析:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程= = 速度×时间,应根速度×时间,应根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等.四、轮船顺逆水应用问题例4 轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度求船在静水中的速度分析:此题的等量关系很明显:顺水航行30千米的时间千米的时间= = = 逆水中航行逆水中航行20千米的时间,即顺水航行速度千米30=逆水航行速度千米20.设船在静水中的速度为x 千米/时,又知水流速度,于是顺水航行速度、逆水航行速度可用未知数表示,问题可解决.航行速度可用未知数表示,问题可解决.五、浓度应用性问题例5 要在15%15%的盐水的盐水40千克中加入多少盐才能使盐水的浓度变为20%20%..分析:浓度问题的基本关系是:溶液溶质=浓度.此问题中变化前后三个基本量的关系如下表:浓度.此问题中变化前后三个基本量的关系如下表: 设加入盐x 千克.千克.溶液溶液 溶质溶质 浓度浓度 加盐前加盐前 40 4040××15% 15% 加盐后加盐后4040++x4040××15%15%++x20%根据基本关系即可列方程.根据基本关系即可列方程. 六、货物运输应用性问题例6 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货物量不变,且甲、乙两车单独运这批货物分别运2a 次、a 次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180t 180t;若乙、丙两车合运相同次数运完这批货物时,乙车共运了;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270t 270t..问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍;问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍;⑵现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运1t 付运费20元计算元计算) )分析:解题思路应先求出乙车与甲车每次运货量的比,再设出甲车每次运货量是丙车每次运货量的n 倍,列出分式方程.分式方程.分式方程分式方程 应用题专题应用题专题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.小时.已知福州至温州的高速公路长已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,元购进一批盒装粽子,节日期间每盒按进价增加节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是(中正确的是( )A .66602x x =- B .66602x x =- C .66602x x =+ D .66602x x=+6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程(题意,可得方程( )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话: 9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为,则得方程为 . 11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=´利润进价)12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.小时完成任务.求原计划每小时修路的长求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?后的平均时速各是多少?14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,试问该老板这两次售书总体上是赔钱了,还是赚钱了还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?赔多少?若赚钱,赚多少?你们是用9天完成4800米长的大坝加固任务的? 我们加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍. 通过这段对话,请你求出该地驻军原来每天加固的米数. 15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设已知甲工程队每周比乙工程队少铺设1公里,公里,甲工程队提前甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是千米,则轮船在静水中的速度是 千米/时.、 1、解:设通车后火车从福州直达温州所用的时间为x 小时.小时. 1分依题意,得29833122xx =´+. 5分解这个方程,得14991x =. 8分经检验14991x =是原方程的解.是原方程的解. 9分148 1.6491x =».2、解:设每盒粽子的进价为x 元,由题意得元,由题意得1分20%x ×50-(x2400-50)×5=350 4分化简得x 2-10x -1200=0 5分 解方程得x 1=40,x 2=-30(不合题意舍去)(不合题意舍去) 6分 经检验,x 1=40,x 2=-30都是原方程的解,都是原方程的解,但x 2=-30不合题意,舍去.不合题意,舍去.7分 3、解:(1)设2006年平均每天的污水排放量为x 万吨,万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得:1分341040%1.05x x-= 4分解得56x » 5分 经检验,56x »是原方程的解是原方程的解 6分 1.0559x \»(2)解:59(120%)70.8´+= 8分70.870%49.56´= 9分 49.563415.56-= 4、D5、D 6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本,本,依题意,得20030010x x =+. 3分 解得20x =.经检验20x =是原方程的解.7、C 8、解:设原来每天加固x 米,根据题意,得米,根据题意,得1分926004800600=-+xx . 3分 去分母,得去分母,得 1200+4200=18x (或18x =5400) 5分解得解得 300x=. 6分 检验:当300x =时,20x ¹(或分母不等于0). ∴300x =是原方程的解.是原方程的解. 7分9、解:设甲施工队单独完成此项工程需x 天,天,则乙施工队单独完成此项工程需45x 天,天,……………………1分根据题意,得根据题意,得 10x +1245x=1 ………………………………… 4分解这个方程,得x =25 ………………………………………6分 经检验,x =25是所列方程的根是所列方程的根 ……………………………7分当x =25时,45x =20 …………………………………………9分10、22402240220x x-=-11、解:设这种计算器原来每个的进价为x 元,元, 1分根据题意,得4848(14)1005100(14)x x x x---´+=´-%%%%%.5分解这个方程,得40x =. 8分 经检验,40x =是原方程的根.是原方程的根. 9分 12、240024008(120)x x-=+%13、 解:设第五次提速后的平均速度是x 公里/时,时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:时.根据题意,得:x1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分 经检验,x 1=160,x 2=-200都是原方程的解,都是原方程的解, 但x2=-200<0,不合题意,舍去.,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分14、解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2xx+=解得:5x=经检验5x =是原方程的解是原方程的解 6分所以第一次购书为12002405=(本). 第二次购书为24010250+=(本)(本)第一次赚钱为240(75)480´-=(元)(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40´-´+´´-´=(元)(元) 所以两次共赚钱48040520+=(元)(元)8分15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=.11818=+-x x。

分式方程应用题专项训练2

分式方程应用题专项训练2

分式方程应用题1、块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000Kg和15000Kg,已知第一块试验田的每公顷的产量比第二块少3000Kg,分别求这块试验田每公顷的产量。

2、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的告诉公路。

某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。

3、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。

已知B的速度是A的速度的3倍,求两车的速度。

4、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。

乙型拖拉机单独耕这块地需要几天?5、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。

求A、B每小时各做多少个零件。

6、某工厂去年赢利25万元,按计划这笔赢利额应是去、今两年赢利总额的20%,今年的赢利额应是多少?7、某农场原有水田400公顷,旱田150公顷,为了提高单位面积产量,准备把部分旱田改为水田,改完之后,要求旱田占水田的10%,问应把多少公顷旱田改为水田。

8、我部队到某桥头阻击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。

9、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。

已知水流的速度是3千米/时,求轮船在静水中的速度。

10、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。

求先遣队和大队的速度各是多少?11、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。

初二分式方程应用题及答案

初二分式方程应用题及答案

初二分式方程应用题及答案
题目:某工厂生产一批零件,甲车间单独完成需要15天,乙车间单
独完成需要20天。

现在甲乙两个车间合作,共同完成这批零件的生产,问需要多少天?
解答:
设甲车间每天完成这批零件的\( \frac{1}{15} \),乙车间每天完成
这批零件的\( \frac{1}{20} \)。

设甲乙两个车间合作完成这批零件
需要\( x \)天。

根据题意,甲乙两个车间合作\( x \)天完成的零件数等于这批零件的
总数,即:
\[ \frac{1}{15}x + \frac{1}{20}x = 1 \]
为了解这个方程,我们首先找到两个分数的最小公倍数,即60,然后
将方程两边同时乘以60,得到:
\[ 4x + 3x = 60 \]
合并同类项,得到:
\[ 7x = 60 \]
解得:
\[ x = \frac{60}{7} \]
所以,甲乙两个车间合作需要\( \frac{60}{7} \)天完成这批零件的生产。

答案:甲乙两个车间合作需要\( \frac{60}{7} \)天完成这批零件的生产。

2020-2021学年八年级数学北师大版下册 5.4分式方程解答题专项练习(应用题篇)(二 )

2020-2021学年八年级数学北师大版下册 5.4分式方程解答题专项练习(应用题篇)(二 )

八年级数学北师大版下册5.4分式方程解答题专项(应用题篇)(二)1.学校田径队的小勇同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑多少米?(2)小勇同学两次慢跑的速度各是多少?2.我县为了改善县区内交通环境,对解放路进行了改造,需要铺设排污管道,其中一段长300米,铺设120米后,为了尽可能减少施工对交通所造成的影响,后来每天的工作量比原计划增加20%,结果完成这一任务共用了27天,求原计划每天铺设排污管道多少米.3.甲、乙两个工程队承担了福州市今年的旧城改造工作中的一个办公楼项目,若乙队单独工作3天后,再由两队合作7天就可以完成这个项目,已知乙队单独完成这个项目所需天数是甲队单独完成这各项目所需天数的2倍.(1)求甲,乙两个工程队单独完成这个项目各需多少天;(2)甲工程队一天的费用是7万元,乙工程队一天的费用是3万元,若甲乙合作5天后剩余工作由乙队单独完成,求这个项目总共要支出的工程费用.(单位:万元)4.某县要修筑一条长为6000米的乡村旅游公路,准备承包给甲、乙两个工程队来合作完成,已知甲队每天筑路的长度是乙队的2倍,前期两队各完成了400米时,甲比乙少用了5天.(1)求甲、乙两个工程队每天各筑路多少米?(2)若甲队每天的工程费用为1.5万元,乙队每天的工程费用为0.9万元,要使完成全部工程的总费用不超过120万元,则至少要安排甲队筑路多少天?5.我市计划对城区居民供暖管道进行改造,该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍,如果由甲乙两队先合作15天,那么余下的工程由甲队单独完成还需要5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用是6500元,乙队每天的施工费用是3500元.为了缩短工期,工程指挥部最终决定该工程由甲、乙两队合作,则该工程的施工费用是多少?6.受疫情影响,“84”消毒液需求量猛增,某商场用8000元购进一批“84”消毒液后,供不应求,商场用17600元购进第二批这种“84”消毒液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批“84”消毒液的单价;(2)商场销售这种“84”消毒液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?7.某一工程可以由甲、乙两个工程队进行施工.如果甲队单独完成这项工程刚好如期完成;如果乙队单独完成这项工程要比甲队多用4天;如果甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.请列分式方程求出规定工期为多少天?8.某扶贫干部决定引进改良的中药种子帮助贫困户脱贫.他先花8000元购买了桔梗种子,又花6000元购买了白术种子,已知他购买的这两种种子质量相等,且桔梗种子比白术种子每千克多20元,求白术种子每千克多少元?9.为了响应打赢“蓝天保卫战”的号召,张老师上下班的交通方式由驾车改为骑自行车,张老师的家距学校的路程是8千米;在相同的路线上,驾车的平均速度是骑自行车平均速度的3倍,这样,张老师每天上班要比开车早出发小时,才能按原驾车时间到达学校.(1)求张老师骑自行车的平均速度;(2)据测算,张老师的汽车在上下班行驶过程中平均每小时碳排放量约为12千克,这样张老师一天(按一个往返计算)可以减少碳排放量多少千克.10.为全面改善公园环境,现招标建设某全长960米绿化带,A,B两个工程队的竞标,A 队平均每天绿化长度是B队的2倍,若由一个工程队单独完成绿装化,B队比A队要多用6天.(1)分别求出A,B两队平均每天绿化长度.(2)若决定由两个工程队共同合作绿化,要求至多4天完成绿化任务,两队都按(1)中的工作效率绿化完2天时,现又多出180米需要绿化,为了不超过4天时限,两队决定从第3天开始,各自都提高工作效率,且A队平均每天绿化长度仍是B队的2倍,则B队提高工作效率后平均每天至少绿化多少米?11.某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共160件进行试销,其中A型商品的件数不大于B型的件数,且不小于78件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,则共有哪几种进货方案?(3)在第(2)问条件下,哪种方案利润最大?并求出最大利润.12.甲、乙两地相距300千米,一辆货车和一辆小汽车同时从甲地出发开往乙地,小汽车的速度是货车的1.2倍,结果小汽车比货车早半小时到达乙地,求两辆车的速度.13.甲、乙两人做某种机器零件,每小时乙比甲多做8个.已知甲做240个零件的时间与乙做300个零件的时间相同,求甲、乙每小时各做多少个零件.14.某校为积极响应垃圾分类的号召,从商场购进了A、B两种品牌的垃圾桶用于回收不同种类垃圾.已知B品牌垃圾桶比A品牌垃圾桶每个贵50元,用3000元购买A品牌垃圾桶的数量是用1500元购买B品牌垃圾桶数量的4倍.(1)求购买一个A品牌、一个B品牌的垃圾桶各需多少元?(2)若该中学准备再次用不超过3000元购进A、B两种品牌垃圾桶共50个,恰逢商场对两种品牌垃圾桶的售价进行了调整:A品牌按第一次购买时售价的九折出售,B品牌比第一次购买时售价提高了20%,那么该学校此次最多可购买多少个B品牌垃圾桶?15.利华机械厂为海天公司生产A、B两种产品,该机械厂由甲车间生产A种产品,乙车间生产B种产品,两车间同时生产.甲车间每天生产的A种产品比乙车间每天生产的B 种产品多2件,甲车间生产的A种产品30件的天数与乙车间生产的B种产品24件天数相同.(1)求甲车间每天生产多少件A种产品?乙车间每天生产多少件B种产品?(2)海天公司每天付给甲车间600元的工时费,每天付给乙车间400元的工时费,现海天公司一次性购买A、B两种产品共800件,海天公司购买A、B两种产品付给甲、乙两车间的总工时费用不超过42000元.求购进A种产品至多多少件.参考答案1.解:(1)400×10=4000(米),答:小勇同学一次有氧耐力训练慢跑4000米;(2)设第一次慢跑速度为x米/分,则第二次慢跑速度为1.2x米/分,由题意得:﹣=5,解得:x=,经检验:x=是原分式方程的解,且符合题意,1.2×=160,答:第一次慢跑速度为米/分,则第二次慢跑速度为160米/分.2.解:设原计划每天铺设排污管道x米,由题意可得:,解得:x=10,经检验,x=10是原方程的解,答:原计划每天铺设排污管道10米.3.解:(1)设甲工程队单独完成这个项目需要x天,则乙工程队单独完成这个项目需要2x天,依题意得:+=1,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴2x=24.答:甲工程队单独完成这个项目需要12天,乙工程队单独完成这个项目需要24天.(2)设甲乙两队合作5天后乙队还要再单独工作y天,依题意得:+=1,解得:y=9,∴7×5+3×(5+9)=77(万元).答:这个项目总共要支出的工程费用为77万元.4.解:(1)设乙队每天筑路x米,则甲每天筑路2x米.依题意,得:,解得:x=40,经检验:x=40是原分式方程的解,则2x=80答:甲每天筑路80米,乙每天筑路40米;(2)设甲筑路t天,则乙筑路天数为=(150﹣2t)天,依题意:1.5t+0.9(150﹣2t)≤120,解得:t≥50,∴甲至少要筑路50天.5.解:(1)设这项工程规定x天完成,15+5=20(天),根据题意得:,解得:x=30,经检验:x=30是原方程的解,且符合题意,答:这项工程规定30天完成.(2)总施工费用:(元),答:该工程的施工费用是180000元.6.解:(1)设该商场购进的第一批“84”消毒液单价为x元/瓶,依题意得:2×=.解得,x=10.经检验,x=10是原方程的根.所以该商场购进的第一批消毒液的单价为10元/瓶;(2)共获利:(+﹣200)×13+200×13×0.9﹣(8000+17600)=5340(元).在这两笔生意中商场共获得5340元.7.解:设规定工期为x天,则甲队单独完成这项工程需x天,乙队单独完成这项工程需(x+4)天,依题意得:+=1,整理得:x﹣12=0,解得:x=12,经检验,x=12是原方程的解,且符合题意.答:规定工期为12天.8.解:设白术种子每千克x元,根据题意,得,解得x=60,经检验,x=60是原方程的解且符合题意.答:白术种子每千克60元.9.解:(1)设张老师骑自行车的平均速度为x千米/小时,依题意有,﹣=,解得x=16,经检验,x=16是原方程的解.故张老师骑自行车的平均速度为16千米/小时,(2)由(1)可得张老师开车的平均速度为16×3=48(千米/小时),×2×12=4(千克).故可以减少碳排放量4千克.10.解:(1)设B队平均每天绿化x米,则A队平均每天绿化2x米.依题意,得:﹣=6,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴2x=160.答:A队平均每天绿化160米,B队平均每天绿化80米.(2)设B队提高工作效率后平均每天绿化y米,则A队提高工作效率后平均每天绿化2y米,依题意,得:(160+80)×2+(2y+y)×(4﹣2)≥960+180,解得:y≥110.答:B队提高工作效率后平均每天至少绿化110米.11.解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元,依题意得:=×2,解得:x=150,经检验,x=150是原方程的解且符合题意,∴x+10=160.答:一件A型商品的进价为160元,一件B型商品的进价为150元.(2)设购进A型商品m件,则购进B型商品(160﹣m)件,依题意得:,解得:78≤m≤80,又∵m为整数,∴m可以为78,79,80,∴共有3种进货方案,方案1:购进A型商品78件,B型商品82件;方案2:购进A型商品79件,B型商品81件;方案1:购进A型商品80件,B型商品80件.(3)方案1获得的利润为(240﹣160)×78+(220﹣150)×82=11980(元);方案2获得的利润为(240﹣160)×79+(220﹣150)×81=11990(元);方案3获得的利润为(240﹣160)×80+(220﹣150)×80=12000(元).∵11980<11990<12000,∴方案3购进A型商品80件,B型商品80件获得利润最大,最大利润为12000元.12.解:设货车的速度为x千米/小时,则小汽车的速度为1.2x千米/小时,依题意得:﹣=,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴1.2x=120.答:货车的速度为100千米/小时,小汽车的速度为120千米/小时.13.解:设甲每小时做x个零件,乙每小时做(x+8)个零件,由题意可得:,解得:x=32,经检验,x=32是原方程的解,∴x+8=40(个),答:甲每小时做32个零件,乙每小时做40个零件.14.解:(1)设购买一个A品牌垃圾桶需x元,则购买一个B品牌垃圾桶需(x+50)元,由题意得:=4×,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+50=100,答:购买一个A品牌垃圾桶需50元,购买一个B品牌垃圾桶需100元;(2)设该学校此次购买m个B品牌垃圾桶,则购买(50﹣m)个A品牌垃圾桶,由题意得:50×0.9×(50﹣m)+100×(1+20%)m≤3000,解得:m≤10,∴m最大值是10.答:该学校此次最多可购买10个B品牌垃圾桶.15.解:(1)设乙车间每天生产x件B种产品,则甲车间每天生产(x+2)件A种产品,由题意得:=,解得:x=8,经检验,x=8是原方程的解,且符合题意,则x+2=10,答:甲车间每天生产10件A种产品?乙车间每天生产8件B种产品;(2)设购进A种产品a件,则购进B种产品(800﹣a)件,由题意得:×600+×400≤42000,解得:a≤200,答:购进A种产品至多200件.。

分式方程应用题含答案(经典)

分式方程应用题含答案(经典)

1、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量。

2、有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.3、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的,求甲、乙两个施工队单独完成此项工程各需多少天?4、我国“八纵八横”铁路骨干网的第八纵通道温(州)福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).5、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色地完成了任务,这是记者与驻军工程指挥官的一段对话:记者:你们是怎样用9天时间完成4800米长的大坝加固任务呢?指挥官:我们在加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍.通过这段对话,请你求出该地驻军原来每天加固多少米?本题主要考查了分式方程在工程问题中的运用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键6、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的,求甲、乙两个施工队单独完成此项工程各需多少天?7、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤 xm,则得方程为.8、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了 4%,但售价未变,从而使超市销售这种计算器的利润提高了 5%.这种计算器原来每个进价是多少元?9、某市在旧城改造过程中,需要整修一段全长2400m的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.10、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用15/8 小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?11、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.12、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?13、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的 2倍;甲、乙两队合作完成工程需要 20天;甲队每天的工作费用为 1000元、乙队每天的工作费用为 550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?14、A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?15、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是千米/时.。

分式方程应用题

分式方程应用题

1.甲、乙两人同时从A 、B 两地相向而行,如果都走1小时,两人之间的距离等于A 、B 两地距离的81;如果甲走3
2小时,乙走半小时,这样两人之间的距离等于A 、B 间全程的一半,求甲、乙两人各需多少时间走完全程?
2. 供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度.
3. 一船自甲地顺流航行至乙地,用5.2小时,再由乙地返航至距甲地尚差2千米处,已用了3小时,若水流速度每小时2千米,求船在静水中的速度.
4. 轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。

已知水流的速度是3千米/时,求轮船在静水中的速度。

5. 某甲有钱400元,某乙有钱150元,若乙将一部分钱给甲,此时乙的钱是甲的钱的10%,问乙应把多少钱给甲?
6. 一个两位数,个位上的数比十位上的数大4,用个位上的数去除这个两位数商是3,求这个两位数.
7.A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。

求A、B每小时各做多少个零件。

8. 有一工程需在规定日期内完成,如果甲单独工作,刚好能够按期完成;如果乙单独工作,就要超过规定日期3天.现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,求规定日期是几天?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 汽车所用的时间=自行车所用时间- 时 3
解:设自行车的速度为x千米/时,那么汽车的速度是3x千米/时, 依题意得:
15 15 2 3x x 3
5.某农场开挖一条长960米的渠道,开工后工作效率比 计划提高50%,结果提前4天完成任务。原计划每天挖 多少米?
等量关系:
计划的时间-实际的时间=4天
等量关系:
甲完成的工作量+乙完成的工作量=1
解:设甲工程队单独完成这项工程需要3x天, 则乙工程队单独完成这项程需要2x天依题意得:
1 1 6 6 ) 1 3x 2x
2.一项旧城区改造工程,如果由甲工程队单独做, 需要60天可以完成;如果由甲乙两队合作12天 后,剩下的工程由乙工程队单独做,还需20天 才能完成.求乙工程队单独完成这项工程需要多 少天? 等量关系 :
等量关系:
甲完成的工作量+乙完成的工作量=1 1 设乙队单独施工1个月完成总工程的 . x 依题意得
1 1 1 1. 5 1 3 2 x
一.由工作量的等量关系列分式方程:
1.由甲、乙两个工程队承包某校校园的绿化 工程,甲、乙两队单独完成这项工作所需 的时间比是3:2,两队共同施工6天可以完 成.求两队单独完成此项工程各需多少天?
x
D、
100
x
=
80 X- 5
等量关系:
甲种100棵的天数=乙种80棵的天
2.某班学生到距学校12千米的烈士陵园扫墓,一部分
人骑自行车先行,经0.5时后,其余的人乘汽车出发,结果他 们同时到达.已知汽车的速度是自行车的3倍,求自行车和 汽车的速度.
等量关系: 骑自行车车时间-乘汽车的时间=0.5小时
解:设自行车速度为x千米/时,则汽车速度为____30____千米/ 时 12 12 0.5 x 3x 解得:x=16 经检验: x=16是原方程的根且符合题意; 答:自行车速度是16千米/时,汽车速度是48千米/时,
练习3:甲、乙二人同时从张庄出发,步行15
千米到李庄。甲比乙每小时多走1千米,结果 比乙早到半小时。二人每小时各走多少千米?
sv 经检验 X= 是原分式方程的解 50
甲完成的工作量+乙完成的工作量=1
解:设乙工程队单独完成这项工程需要x天?,
依题意得:
1 1 12 32 1 60 x
3. 一台甲型拖拉机 4 天耕完一块耕地的一半, 一台乙型拖拉机加入合耕, 1 天耕完这块地的另 一半。乙型拖拉机单独耕这块地需要几天?
等量关系 : 甲完成的工作量+乙完成的工作量=1
等量关系: 乙时间-甲时间=0.5小时
(x-1) 千米/时 解:设甲速度为x千米/时,则乙速度为________
15 15 0.5 x 1 x
4.农机厂到距工厂15千米的向阳村检修农机,一部分人骑自行车 先走,过了40分钟,其余人乘汽车去,结果他们同时到达,已知 汽车的速度是自行车的3倍,求两车的速度。
x 18
经检验X=18是原分式方程的根,且符合题意。 由x=18得x-6=12 答:甲每小时做18个,乙每小时12个
列分式方程解应用题的一般步骤
1.审:分析题意,找出数量关系和相等关系, 列出等量关系.
2.设:选择恰当的未知数,注意单位和语言完整. 3.列:根据数量和相等关系,正确列出方程. 4.解:认真仔细解这个分式方程. 5.验:检验.(是否是分式方程的根, 是否符合题意) 6.答:注意单位和语言完整.
一.由时间的等量关系列分式方程:
1.甲乙两班参加校园植树活动,已知甲班每天比 乙班多植树10棵,甲班植100棵树所用的天数 与乙班植80棵所用的天数相等。若乙班每天 植树x棵,根据题意列方程是( C ) 100 80 100 80 A、 = x B、 x = x+5
X- 10
C、
100
X+10
=
80
解:乙型拖拉机单独耕这块地需要x天,依题意得:
1 1 5 1 1 8 x
例3.从2004年5月起某列车平均提速v千米/小时, 用相同的时间,列车提速前行驶s千米,提速后 比 提速前多行驶50千米,提速前 列 车 的 平 均 速 度 为 多少?
等量关系 :提速前的时间=提速后的时间 解:设提速前列车的平均速度为x千米/时 s s 50 x x v sv X= 50
16.3分式方程分式方 Nhomakorabea的应用引例: 甲、乙两人做某种机器零件,已知甲每小时比乙 多做6个,甲做90个零件所用的时间和乙做60个零件所 用时间相等,求甲、乙每小时各做多少个零件?
等量关系:甲用时间=乙用时间 解:设甲每小时做x个零件, 则乙每小时做( x -6)个零件,依题意得:
90 60 x x6
x(1+5 0%) 解:设原计划每天挖x米, 则实际每天挖___________ 米。
960 960 4 x 1.5 x
一.由工作量的等量关系列分式方程:
例:两个工程队共同参与一项筑路工程,甲 队单独施工1个月完成总工程的三分之一, 这时增加了乙队,两队又共同工作了半个月, 哪个队的施工速度快? 总工程全部完成.
相关文档
最新文档