大数据
什么是大数据?
什么是大数据?什么是大数据?大数据(Big Data)是指规模巨大、种类繁多的数据集合,无法用常规的数据处理工具进行管理和处理。
这些数据通常以超过传统数据处理能力的速度,并展现出高度的多样性、复杂性和实时性。
大数据的处理需要借助于先进的数据分析和处理技术,以从中挖掘出有价值的信息和洞察力。
⒈大数据的特点⑴规模巨大:大数据所涉及的数据集合非常庞大,通常以TB、PB甚至EB为单位计算。
⑵多样性:大数据包含不同类型和来源的数据,例如结构化数据、半结构化数据和非结构化数据。
⑶实时性:大数据的速度很快,需要实时处理和分析,以快速反应市场变化和数据趋势。
⒉大数据的应用领域⑴企业管理和决策:大数据分析可以帮助企业了解市场需求、消费者行为和竞争对手情况,优化产品设计和营销策略。
⑵社会公共管理:大数据可以用于城市交通管理、环境监测、智慧城市等领域,提高公共服务效率。
⑶医疗卫生:通过对大数据的分析,可以发现疾病的模式和趋势,帮助医生做出准确的诊断和预测治疗效果。
⑷金融行业:大数据分析可以用于风险评估、欺诈检测、个性化产品推荐等,提高金融机构的运营效率和风险管理能力。
⒊大数据的处理技术⑴数据采集与存储:包括数据抓取、数据清洗和数据存储等技术,确保数据的准确性和完整性。
⑵数据分析与挖掘:通过技术工具和算法,对大数据进行分析和挖掘,以发现数据中隐藏的模式和关联关系。
⑶可视化和报告:将分析结果以可视化的方式呈现,提供直观的数据展示和报告。
⑷机器学习和:通过机器学习和技术,对大数据进行预测和决策支持。
附件:本文档未涉及附件。
法律名词及注释:⒈数据隐私:保护个人数据不被未经授权的访问和使用。
⒉数据保护法:规定了个人数据的处理和保护规则。
⒊数据安全:保障数据不受损坏、丢失、泄露等威胁。
什么是大数据?
什么是大数据?大数据(Big Data)一词,最早来源于商业领域,是指由于数据产生、获取、存储、处理等技术的快速发展,导致企业、政府及其它组织机构日益积累的结构化和非结构化数据量非常庞大,处理及分析这些数据的技术和方法也在迅速发展。
随着社会的发展,大数据的应用越来越广泛,从商业、医疗、航空、旅游等领域到城市管理、气象、能源等领域都有大数据的运用。
为什么出现大数据?1.数据的爆炸式增长在互联网、物联网、智能手机等技术的推动下,各行各业日积月累产生着大量数据,其速度、数量、种类等多元化特征,异于传统数据的规模,这也是大数据产生的原因之一。
2.技术的升级和进步与十年前相比,计算机的速度快了数千倍,数据存储的成本也大幅降低,各种软件和工具的涌现是支撑大数据应用的技术支撑。
3.社会的数字化社会在数字化的过程中呈现出几种特点,如人们的行为和思想逐渐通过互联网体现出来,数据集中存储在电脑或其它设备中等,这些因素都推动了大数据的快速发展。
如何应用大数据?1.商业领域大数据应用于商业领域,除了能够预测人们的消费喜好,还能从中探测出市场的趋势,为企业制定商业决策提供重要的数据支持。
2.城市管理在城市建设方面,利用大数据的实时监测和分析,在城市规划、城市管理、交通运输等方面都有重要的应用价值,帮助城市实现精细管理和科学规划。
3.医疗领域利用大数据分析技术可以对医学研究和用户需求进行更准确的预测,还可以帮助医疗工作者实现更精准的诊断和疾病预测。
总结大数据的出现改变了我们日常生活和工作的方式,大数据的应用有望推动各行各业创新发展,它也是新时代的机遇之一。
未来,大数据技术将会越来越普及,越来越深入到我们生活、工作、学习的各个领域,它将为我们生活带来更多机遇与挑战。
大数据是什么
大数据是什么大数据(Big Data)是指规模庞大、复杂度高且难以用传统数据处理工具进行捕捉、管理和处理的数据集合。
这些数据集合通常包含结构化数据(如关系数据库中的数据)和非结构化数据(如文本、音频、视频等),并且具有高速度、高密度和高多样性的特点。
大数据的特点1. 体量巨大:大数据的数据量通常以TB(1TB=1024GB)或PB(1PB=1024TB)为单位,甚至更高。
2. 多样性:大数据可以包含来自各种来源和格式的数据,如传感器数据、社交媒体数据、图像和视频数据等。
3. 时效性:大数据的生成速度非常快,需要实时或近实时处理,以便及时获取有用的信息。
4. 真实性:大数据通常是从真实世界中收集的,具有较高的真实性和代表性。
5. 不确定性:大数据中的数据质量和准确性往往难以保证,需要进行数据清洗和预处理。
大数据的应用1. 商业决策:大数据分析可以帮助企业了解市场趋势、消费者行为和竞争对手情况,从而做出更明智的商业决策。
2. 金融风控:通过对大数据的分析,可以识别潜在的风险和欺诈行为,提高金融机构的风险管理能力。
3. 医疗健康:利用大数据分析技术,可以挖掘医疗数据中的潜在关联和模式,提高疾病诊断和治疗效果。
4. 智慧城市:通过对城市中各种传感器和设备产生的大数据进行分析,可以优化城市交通、能源利用和公共服务等方面的运行效率。
5. 社交媒体分析:大数据分析可以帮助企业了解用户在社交媒体上的行为和偏好,从而改进产品和服务。
6. 物流管理:通过对物流数据的分析,可以优化运输路线、减少物流成本,提高物流效率。
7. 科学研究:大数据分析在天文学、生物学、气象学等领域有着广泛的应用,帮助科学家发现新的规律和知识。
大数据的处理技术1. 数据采集:通过传感器、日志文件、网络爬虫等方式收集大数据。
2. 数据存储:使用分布式文件系统(如Hadoop HDFS)或NoSQL数据库(如MongoDB)等技术进行大数据的存储。
大数据知识点全面总结
大数据知识点全面总结目录一、什么是大数据1.1 大数据的定义1.2 大数据的特点1.3 大数据的价值二、大数据的应用场景2.1 金融领域2.2 零售领域2.3 医疗健康领域2.4 交通领域2.5 农业领域三、大数据的技术工具3.1 Hadoop3.2 Spark3.3 Flink3.4 Kafka3.5 Elasticsearch四、大数据的挑战与解决方案4.1 数据存储与管理4.2 数据处理与分析4.3 数据安全与隐私4.4 数据可视化与决策支持五、大数据未来发展趋势5.1 人工智能与大数据的融合5.2 云计算与大数据的融合5.3 边缘计算与大数据的融合5.4 行业应用与大数据的融合六、结语一、什么是大数据1.1 大数据的定义大数据是指规模巨大、种类繁多、处理速度快的数据集合。
它包括结构化数据、半结构化数据和非结构化数据。
结构化数据是以表格形式存储的数据,如关系数据库中的数据;半结构化数据是具有一定组织结构但不符合传统关系数据库模式的数据,如XML、JSON格式的数据;非结构化数据是没有固定结构的数据,如文本、图像、音频、视频等。
1.2 大数据的特点大数据具有5V特征:Volume(数据量大)、Velocity(处理速度快)、Variety(种类繁多)、Veracity(真实性)、Value(价值高)。
Volume:大数据的数据量通常以TB、PB、甚至EB计算,远超传统数据库能力。
Velocity:大数据的处理速度要求非常高,需要能够实时或近实时地处理数据。
Variety:大数据的数据种类繁多,包括结构化数据、半结构化数据和非结构化数据。
Veracity:大数据的真实性要求高,需要通过数据清洗、质量控制等手段保证数据的准确性和一致性。
Value:大数据的价值非常大,可以挖掘出隐藏在其中的商业洞见和价值。
1.3 大数据的价值大数据具有重要的商业价值。
通过对大数据的分析和挖掘,可以为企业带来以下益处:- 更好的决策支持- 更精准的市场营销- 更高效的运营管理- 更好的客户服务- 更快的产品创新二、大数据的应用场景2.1 金融领域在金融领域,大数据被广泛用于风险管理、信用评估、欺诈检测、投资决策等。
什么是大数据?
什么是大数据?1. 大数据的概念大数据是指数据量大、处理难度大、价值密度低的数据。
其中,数据量大是指数据量极其巨大,难以用常规的数据库和处理工具进行处理;处理难度大是指需要高级算法和处理技术来处理数据;价值密度低是指数据中包含了大量的噪声数据,需要通过数据挖掘来发现有用的信息。
2. 大行业应用大数据已经在各个行业得到了广泛的应用。
其中,金融行业是大数据应用的先锋,通过对海量交易数据进行分析,可以发现隐藏在数据背后的金融规律,帮助企业制定更加科学的战略和决策;医疗行业通过对海量病例数据的分析,可以为医生提供更好的诊断方案和治疗方法;物流行业通过对供应链数据的分析来提高效率和降低成本;零售行业通过对消费者数据的分析来提高销售额和客户忠诚度。
3. 大数据的挑战随着大数据时代的来临,也带来了一系列的挑战。
首先,数据的可靠性和隐私性成为了人们关注的焦点。
随着数据的增长,如何保证数据安全成为了重要的问题;其次,数据处理的技术和算法需要不断发展和改进,才能更好地应对大数据的挑战;最后,大数据带来了巨大的信息不对称问题,那些掌握大数据的企业和机构将会掌握更多的信息资源,造成良莠不齐的后果。
4. 大数据的未来随着各种技术的不断更新和发展,大数据的应用前景也将越来越广泛。
未来,大数据将成为各行业发展的核心竞争力,同时也将带来一系列的变革和挑战。
大数据分析的能力将成为企业必备的核心竞争力,数据分析人才也将成为越来越紧俏的人才。
同时,需要建设数据开放平台,促进数据共享和流通,不断拓展大数据应用领域,实现产业的快速升级和转型。
总之,大数据已经成为未来发展的重要趋势,随着科技的进步,大数据的应用前景也将更加广阔。
同时,我们也需要不断地探索和创新,带来更加美好的未来。
大数据是什么
大数据是什么引言概述:随着科技的飞速发展,大数据成为了一个热门话题。
人们对于大数据的理解和应用越来越广泛。
本文将从五个大点出发,详细阐述大数据的定义、特点、应用领域、挑战和未来发展趋势。
正文内容:1. 大数据的定义:1.1 数据规模:大数据是指数据量巨大,无法使用常规的数据处理工具进行处理和分析的数据集合。
1.2 数据速度:大数据的产生速度非常快,需要实时处理和分析。
1.3 数据多样性:大数据包含结构化数据和非结构化数据,如文本、图象、音频等。
2. 大数据的特点:2.1 数据价值:大数据中蕴含着丰富的信息和价值,可以匡助企业做出更准确的决策。
2.2 数据来源:大数据来自各种渠道,如社交媒体、传感器、日志文件等。
2.3 数据质量:大数据的质量不一致,需要进行数据清洗和处理。
2.4 数据分析:大数据需要使用专业的数据分析工具和算法进行挖掘和分析。
2.5 隐私和安全:大数据的使用涉及到个人隐私和数据安全的问题,需要严格保护。
3. 大数据的应用领域:3.1 商业决策:大数据可以匡助企业分析市场趋势、消费者行为等,提供决策支持。
3.2 金融行业:大数据可以匡助银行和保险公司进行风险评估、反欺诈等工作。
3.3 医疗健康:大数据可以匡助医院分析患者数据,提供个性化的医疗服务。
3.4 城市管理:大数据可以匡助城市进行交通管理、环境监测等工作。
3.5 科学研究:大数据可以匡助科学家进行天文、地质、生物等领域的研究。
4. 大数据的挑战:4.1 数据存储和处理:大数据的存储和处理需要庞大的计算资源和存储空间。
4.2 数据质量和一致性:大数据的质量和一致性对于分析结果的准确性至关重要。
4.3 隐私和安全:大数据的使用涉及到个人隐私和数据安全的问题,需要加强保护。
4.4 技术人材:大数据的分析和应用需要专业的技术人材,人材供给不足。
5. 大数据的未来发展趋势:5.1 人工智能与大数据的结合:人工智能技术的发展将进一步推动大数据的应用和发展。
大数据是什么
大数据是什么大数据(Big Data)是指规模庞大、复杂度高且难以通过传统数据处理工具进行捕捉、管理和处理的数据集合。
大数据的特点主要包括四个方面:数据量大、数据类型多样、数据生成速度快以及数据价值密度低。
数据量大:大数据的数据量通常以TB(Terabytes)或者PB(Petabytes)为单位进行衡量。
这些数据可以来自各种来源,包括传感器、社交媒体、电子商务、医疗保健等领域。
数据类型多样:大数据不仅包含结构化数据(如数据库中的表格数据),还包括非结构化数据(如文本、图像、音频、视频等)。
这些数据类型多样,需要使用不同的方法和工具进行处理和分析。
数据生成速度快:大数据的生成速度非常快,需要即时处理和分析。
例如,社交媒体上每秒钟产生的数据量非常庞大,需要实时监测和分析用户的行为和情绪。
数据价值密度低:大数据中往往包含了大量的噪音和冗余信息,数据的价值并不都是显而易见的。
因此,需要通过数据挖掘和分析技术,从大数据中提取出有价值的信息和洞察。
大数据的应用领域广泛,包括但不限于以下几个方面:1. 商业智能和市场分析:通过分析大数据,企业可以了解消费者的行为和偏好,优化产品设计和市场营销策略,提高销售和客户满意度。
2. 金融风险管理:银行和金融机构可以通过分析大数据,识别潜在的风险和欺诈行为,提高风险管理和预测能力。
3. 医疗保健:大数据可以帮助医疗机构分析患者的病历、病情和治疗效果,提供个性化的医疗服务和药物推荐。
4. 城市规划和交通管理:通过分析大数据,城市可以优化交通流量,提高公共交通的效率,减少交通事故和拥堵。
5. 农业和环境保护:通过分析气象数据、土壤数据和植物生长数据,农业和环保部门可以制定更科学的农作物种植计划和环境保护措施。
为了处理和分析大数据,需要使用一些特殊的技术和工具,包括:1. 分布式存储和计算:大数据通常存储在多个服务器上,需要使用分布式存储系统(如Hadoop)进行管理和处理。
大数据是什么
大数据是什么大数据(Big Data)是指规模巨大、复杂度高且难以用传统软件工具进行处理和管理的数据集合。
它具有三个主要特征:数据量大、数据类型多样、数据处理速度快。
大数据的产生源自于互联网、社交媒体、传感器技术等各个领域,它们产生的数据量庞大且呈指数级增长。
大数据的特征:1. 数据量大:大数据以TB、PB、甚至EB为单位进行计量,远远超过传统数据处理能力。
2. 数据类型多样:大数据不仅包括结构化数据(如关系数据库中的表格数据),还包括非结构化数据(如文本、图像、音频、视频等)。
3. 数据处理速度快:大数据需要在短时间内进行高速处理和分析,以获取有用的信息和洞察。
大数据的应用:1. 商业智能:通过对大数据的分析,企业可以了解市场趋势、消费者行为,从而制定更有效的商业策略。
2. 金融风控:银行和金融机构可以利用大数据分析客户的信用风险,预测市场波动,提高风险管理能力。
3. 医疗健康:通过分析大数据,医疗机构可以实现个性化诊疗,提高疾病预测和治疗效果。
4. 城市管理:政府可以利用大数据分析城市交通流量、环境污染等信息,优化城市规划和资源分配。
5. 物联网:大数据与物联网的结合可以实现智能家居、智慧交通、智能制造等领域的创新应用。
大数据的处理技术:1. 分布式存储:大数据需要分布式存储系统,如Hadoop和HDFS,将数据分散存储在多台服务器上,提高数据的可靠性和可扩展性。
2. 分布式计算:大数据需要分布式计算框架,如MapReduce和Spark,将计算任务分解为多个子任务,分布在多台服务器上并行处理,提高处理速度和效率。
3. 数据挖掘与机器学习:通过数据挖掘和机器学习算法,可以从大数据中提取有用的信息、模式和规律,用于预测、分类和优化决策。
4. 可视化技术:通过可视化工具和技术,将大数据转化为直观、易于理解的图表、图像和动画,帮助用户更好地理解和分析数据。
大数据的挑战:1. 数据隐私与安全:大数据中可能包含敏感信息,如个人身份、财务数据等,保护数据的隐私和安全是一个重要挑战。
大数据是什么
大数据是什么引言概述:随着信息技术的迅猛发展,大数据已经成为当今社会的热门话题。
大数据指的是那些规模庞大、复杂多样的数据集合,这些数据无法用传统的数据处理工具进行处理和分析。
本文将详细介绍大数据的定义、特点以及其在各个领域的应用。
一、大数据的定义1.1 数据量巨大:大数据的最显著特点就是数据量巨大。
传统的数据处理工具往往无法处理这些海量数据,因此需要借助新的技术和工具来进行处理。
1.2 多样性:大数据不仅仅包括结构化数据,还包括非结构化和半结构化数据,如文本、图片、音频、视频等。
这些数据的多样性使得大数据的处理更加复杂和难点。
1.3 实时性:大数据的产生速度非常快,需要实时进行处理和分析。
传统的批处理方式已经无法满足对实时性的要求,因此需要引入流式处理技术。
二、大数据的特点2.1 高速性:大数据的处理需要在很短的时间内完成,因此对计算和存储的速度要求非常高。
2.2 多样性:大数据包含各种类型的数据,需要使用多种技术和工具进行处理和分析。
2.3 不确定性:大数据中包含不少噪声和异常值,需要通过数据清洗和预处理来提高数据的质量和准确性。
三、大数据在商业领域的应用3.1 市场营销:通过对大数据的分析,企业可以了解消费者的行为和偏好,从而精准定位目标客户,并制定有效的营销策略。
3.2 供应链管理:大数据可以匡助企业实时监控和管理供应链,提高物流效率和降低成本。
3.3 金融风控:通过对大数据的分析,金融机构可以识别潜在的风险,及时采取措施进行风险管理和防范。
四、大数据在科学研究领域的应用4.1 生物医学研究:大数据可以匡助科学家分析大量的基因组数据,从而发现疾病的原因和治疗方法。
4.2 天文学研究:通过对大数据的分析,天文学家可以发现新的星系和行星,探索宇宙的神奇。
4.3 气象预测:大数据可以匡助气象学家预测天气变化,提高预报准确性。
五、大数据面临的挑战与未来发展5.1 隐私保护:大数据的处理和分析涉及大量的个人隐私信息,需要加强对数据的保护和合规性监管。
什么是大数据
什么是大数据大数据是指规模庞大、传统数据处理方法难以高效处理的数据集合。
这些数据通常具有三个特点:数据量大、数据类型多样、数据处理速度快。
大数据的产生主要源于网络、传感器、移动设备等现代科技的普及与应用,以及互联网、社交媒体等数字化平台的广泛使用。
为了更好地理解大数据,可以从以下几个方面进行详细介绍:1.大数据的特征1.1 数据量大:大数据的主要特征之一是数据量庞大,通常以TB、PB、EB甚至更大的单位来衡量。
1.2 数据类型多样:大数据可以包含结构化、半结构化和非结构化数据,如文本、图像、音频、视频等多种类型的数据。
1.3 数据处理速度快:大数据的处理速度要求较高,需要能够快速获取、存储和分析数据,以实现实时或近实时的数据处理。
2.大数据的应用领域2.1 商业智能与决策支持:通过分析海量的销售数据、市场趋势等,可以了解消费者需求,提高销售效益和决策效果。
2.2 金融风控与欺诈检测:大数据分析可以帮助金融机构预测风险,识别异常行为,以提高风险管理和欺诈检测能力。
2.3 健康医疗与生命科学:通过分析大量的健康数据和生物信息,可以加速药物研发、个性化医疗等领域的发展。
2.4 城市管理与智慧交通:通过大数据分析,可以实现城市交通、能源、环境等方面的智能管理和优化。
3.大数据的处理技术3.1 分布式存储与计算:大数据处理需要借助分布式存储与计算技术,如Hadoop、Spark等,以实现高效的数据存储和处理。
3.2 数据挖掘与机器学习:通过数据挖掘和机器学习算法,可以从大数据中挖掘出有用的信息和模式,以支持决策和预测。
3.3 云计算与虚拟化:利用云计算和虚拟化技术,可以实现弹性的资源分配和管理,以满足大数据处理的需求。
附件:本文档附带一个大数据案例分析报告,以供参考。
法律名词及注释:1.GDPR(General Data Protection Regulation):《通用数据保护条例》,是欧洲联盟制定的一项关于个人数据保护的法规,其目的是保护个人数据在数字环境中的隐私和安全。
大数据的概念
大数据的概念概述:大数据是指规模庞大、复杂度高且难以处理的数据集合。
这些数据集合通常包含结构化数据(如数据库中的表格数据)和非结构化数据(如文本、图象、音频和视频等)。
大数据的特点包括数据量大、速度快、种类多、价值密度低等。
大数据的概念与处理方法是信息技术领域的重要研究领域,对于企业和组织来说,利用大数据可以获得更深入的洞察力,提高决策效果和业务竞争力。
一、大数据的特征1. 数据量大:大数据的最显著特征就是数据量巨大。
这些数据可能来自各种来源,包括传感器、社交媒体、交易记录等。
数据量的增加对传统数据处理技术提出了挑战,需要采用新的技术和工具来处理和分析。
2. 速度快:大数据的生成速度非常快,数据源源不断地涌入系统。
例如,社交媒体上的实时数据、物联网设备的传感器数据等都需要实时处理和分析。
3. 种类多:大数据不仅包含结构化数据,还包括非结构化数据。
非结构化数据的特点是格式多样、难以直接处理,如文本、图象、音频和视频等。
4. 价值密度低:大数据中的信息价值密度较低,其中大部份数据可能是噪声或者无用信息。
因此,从大数据中提取有价值的信息需要进行有效的数据分析和挖掘。
二、大数据的应用领域1. 商业和市场营销:大数据分析可以匡助企业了解消费者的需求和行为,提供个性化的产品和服务。
通过分析大数据,企业可以预测市场趋势、优化供应链管理、改善客户关系等,从而提高竞争力和市场份额。
2. 金融服务:大数据分析在金融领域的应用非常广泛。
银行和保险公司可以利用大数据分析客户信用风险、欺诈检测、投资策略等。
同时,大数据还可以用于预测市场波动、优化交易策略等。
3. 医疗保健:利用大数据分析医疗数据可以改善临床决策、提高疾病预测和诊断的准确性。
此外,大数据还可以用于疾病监测、药物研发等方面。
4. 城市规划和交通管理:大数据分析可以匡助城市规划者和交通管理者更好地理解城市居民的出行习惯、交通流量等,从而提供更高效的交通系统和城市规划方案。
大数据是什么
大数据是什么大数据是什么引言大数据是指规模庞大、结构多样、更新速度快的数据集合,它的处理和分析超出了传统数据库和数据处理软件的能力。
随着信息技术的发展,大数据逐渐成为企业和组织获取洞察力和实现业务增长的重要工具。
本文将详细介绍大数据的定义、特征、应用领域以及相关技术和挑战。
1.大数据的定义1.1 定义大数据是指规模超过传统数据库和数据处理软件处理能力的数据集合。
它具有三个主要特征:数据量大、数据类型多样、数据速度快。
大数据通常是由企业和组织内部数据、互联网数据和社交媒体数据等多个来源产生的。
1.2 特征1.2.1 数据量大大数据的主要特点之一是数据量巨大。
传统数据库和数据处理软件往往无法存储和处理大规模的数据集合。
大数据的出现使得企业和组织可以处理更多的数据,从而发现隐藏在海量数据中的有价值信息。
1.2.2 数据类型多样大数据集合中的数据类型多样,包括结构化数据和非结构化数据。
结构化数据是具有明确数据模式和格式的数据,如数据库中的表格数据。
非结构化数据是指无固定格式的数据,如文本、图像、视频等。
大数据的分析需要处理各种类型的数据,使得传统的数据处理技术变得不够高效。
1.2.3 数据速度快随着互联网和移动设备的普及,数据的速度越来越快。
例如,社交媒体每天产生大量的用户评论和分享内容。
大数据的处理需要及时获取和处理实时数据,以便及时更新和响应业务需求。
2.大数据的应用领域大数据的应用涵盖了各个领域和行业。
以下是几个典型的大数据应用领域:2.1 市场研究和营销利用大数据分析用户行为和消费喜好,帮助企业制定精确的市场营销策略。
通过对海量的社交媒体数据和消费者数据的分析,企业可以更好地了解市场趋势和消费者需求,提高销售和营销效益。
2.2 医疗保健大数据在医疗保健领域的应用广泛。
通过对大量的病例数据和生物信息数据的分析,可以发现疾病的早期迹象、预测病情发展趋势,为医生提供更准确的诊断和治疗方案。
2.3 金融服务金融机构利用大数据分析客户行为、市场趋势和风险,提高风险管理、投资决策和反欺诈能力。
大数据是什么
大数据是什么随着科技的不断进步和互联网的普及,大数据已经成为了当今社会热议的话题之一。
那么,什么是大数据?本文将详细探讨大数据的定义、特点以及其在各个领域的应用。
一、什么是大数据大数据(Big Data)指的是规模庞大、复杂多样的数据集合。
这些数据往往无法通过传统的数据处理工具进行获取、存储、管理和分析。
大数据的特点主要体现在“3V”方面,即:数据量大(Volume)、数据类型多样(Variety)和数据速度快(Velocity)。
除了“3V”,现在也有学者提出了其他“V”,如价值(Value)、真实性(Veracity)等。
大数据的出现主要是因为互联网的迅猛发展。
各种应用平台的兴起带来了海量的数据,这些数据对于企业和组织来说具有巨大的价值。
二、大数据的特点1. 数据量大:大数据所处理的数据规模通常以亿、万亿、甚至更大的单位来衡量。
这些数据以字节、千字节、万字节的形式存在,其量级十分庞大。
2. 数据类型多样:大数据来自多个来源,包括结构化、半结构化和非结构化数据。
结构化数据是指具有明确定义的数据模型,如数据库中的表;半结构化数据则是具有标记或标签的数据,并且可以按照某种方式进行组织和处理,如XML、JSON等;非结构化数据是指无法按照常规结构进行存储和处理的数据,如文本、图片、音频和视频等。
3. 数据速度快:大数据往往以高速产生和更新,需要在较短的时间内进行处理和分析。
这种高速度的数据流动要求系统具备较高的实时性和动态性。
4. 数据价值大:大数据中蕴含着丰富的信息和知识,通过对大数据的分析和挖掘,可以发现用户的偏好、行为趋势以及市场动态等,为企业和组织决策提供重要参考。
三、大数据的应用领域1. 商业智能与市场营销:通过对大数据的分析,企业可以深入了解市场需求和用户行为,从而制定更精准的营销策略。
同时,大数据还可以为企业提供商业智能,帮助企业进行数据驱动的决策,提升市场竞争力。
2. 金融行业:大数据在金融行业的应用广泛,可以帮助银行进行客户信用评估、风险控制和反欺诈监测等工作。
什么叫做大数据
什么叫做大数据随着科技和信息技术的快速发展,我们进入了一个数字化的时代。
而在这个时代中,大数据的概念变得越来越重要。
那么,什么叫做大数据呢?在本文中,我们将深入探讨大数据的含义、特征以及对我们生活和社会的影响。
1. 大数据的定义大数据是指规模庞大、类型多样且难以通过传统方法进行处理和分析的数据集合。
它不仅包含结构化数据(比如数据库中的数据),还包括非结构化数据(比如社交媒体上的文本、图像和视频)以及半结构化数据(比如日志文件和传感器数据)。
大数据的特点主要包括数据量大、速度快、多样性和价值密度低。
2. 大数据的特征(1)数据量大:大数据的特点之一是其庞大的数据量。
与传统的数据集相比,大数据通常以TB、PB甚至EB为单位进行计量。
(2)速度快:大数据的生成速度非常快。
随着互联网的普及和移动设备的广泛应用,数据以惊人的速度不断涌入。
(3)多样性:大数据涵盖了各种类型的数据,包括文本、图像、声音、视频等。
这些数据多样性使得大数据具有更丰富的信息。
(4)价值密度低:大数据中往往包含着大量的垃圾数据和无关紧要的信息,因此需要通过高效的算法和技术将其中的有价值的信息提取出来。
3. 大数据对个人和企业的影响(1)个人层面:大数据对个人生活产生了巨大的影响。
通过大数据分析,个人可以更好地了解自己的购物习惯、喜好和需求,从而获得更个性化、更智能化的服务。
(2)企业层面:大数据对企业决策和发展战略具有重要意义。
通过分析大数据,企业可以深入了解市场需求,预测市场趋势,为产品研发、市场推广和服务优化等方面提供依据。
4. 大数据对社会的影响(1)社会经济发展:大数据的应用促进了社会经济的发展。
政府可以通过大数据来优化公共服务的提供,提高治理效能;企业可以通过大数据来提高运营效率,创新产品和服务。
(2)社会治理:大数据在社会治理中也起到了重要的作用。
通过对大数据的分析,政府可以更好地了解民意、预测社会问题的发生,从而制定更有效的政策和措施,提高社会治理的水平。
大数据是什么
大数据是什么引言概述:随着信息技术的迅速发展,大数据已成为当今社会的热门话题。
大数据是指规模巨大、类型多样且难以处理的数据集合。
它不仅仅是数据的数量,更重要的是其中蕴含的信息和价值。
本文将详细阐述大数据的定义、特点、应用领域、挑战和发展前景。
一、大数据的定义1.1 数据规模巨大:大数据是指数据量远远超过传统数据处理能力的数据集合。
它的数据量通常以TB、PB、EB等级别计量,甚至更高。
1.2 数据类型多样:大数据不仅包含结构化数据,还包括非结构化数据和半结构化数据。
它可以是文本、图象、音频、视频等多种形式的数据。
1.3 数据处理难度高:大数据的处理需要借助先进的技术和工具,传统的数据处理方法已无法胜任。
二、大数据的特点2.1 高速性:大数据的产生速度非常快,需要实时或者近实时地进行处理和分析。
2.2 多样性:大数据包含多种类型的数据,如社交媒体数据、传感器数据、日志数据等,具有多样性的特点。
2.3 价值密度低:大数据中存在着大量的冗余和噪音数据,需要通过挖掘和分析提取有价值的信息。
三、大数据的应用领域3.1 商业智能:大数据可以匡助企业进行市场分析、用户行为分析、销售预测等,提供决策支持和竞争优势。
3.2 社交网络:大数据可以分析用户在社交网络上的行为和关系,发现潜在的社交模式和趋势。
3.3 健康医疗:大数据可以用于医疗数据的分析和挖掘,匡助医生进行疾病诊断、治疗方案设计等。
四、大数据的挑战4.1 数据隐私和安全:大数据的处理涉及大量的个人隐私数据,如何保护数据的安全性和隐私性是一个重要的挑战。
4.2 数据质量和一致性:大数据中存在着大量的冗余和噪音数据,如何保证数据的质量和一致性是一个难题。
4.3 技术和人材:大数据的处理需要借助先进的技术和工具,同时也需要具备相关领域的专业人材。
五、大数据的发展前景5.1 技术进步:随着技术的不断进步,大数据的处理和分析能力将进一步提高,为更多领域的应用提供支持。
大数据是什么
大数据是什么概述:大数据是指规模庞大、复杂度高且难以处理的数据集合。
它具有三个主要特征,即数据量大、数据类型多样和数据处理速度快。
大数据的浮现和快速发展,源于互联网的普及、挪移设备的普及、物联网的兴起以及各种传感器和数据采集设备的广泛应用。
大数据的应用领域涵盖了各个行业,包括金融、零售、医疗、创造业等。
一、大数据的定义和特征1. 定义:大数据是指数据量巨大、复杂度高、处理速度快的数据集合。
它包括结构化数据(如数据库中的表格数据)、半结构化数据(如XML文件、日志文件)和非结构化数据(如文本、图象、音频、视频等)。
大数据的处理和分析需要借助于先进的技术和工具,如分布式计算、机器学习、人工智能等。
2. 特征:(1)数据量大:大数据的数据量通常以TB、PB甚至EB为单位计算,远远超过个人计算机或者传统数据库的处理能力。
(2)数据类型多样:大数据包含各种类型的数据,如结构化数据(如关系型数据库中的表格数据)、半结构化数据(如XML文件、日志文件)和非结构化数据(如文本、图象、音频、视频等)。
(3)数据处理速度快:大数据的处理需要在短期内对海量数据进行分析和提取价值信息,因此对数据处理速度有较高的要求。
二、大数据的应用领域1. 金融行业:大数据在金融行业的应用非常广泛,包括风险管理、反欺诈、信用评估、市场分析等方面。
通过对大量的金融数据进行分析,可以提高风险控制能力、减少欺诈行为、优化信用评估模型、预测市场走势等。
2. 零售行业:大数据在零售行业的应用主要体现在销售预测、商品推荐、供应链管理等方面。
通过对顾客购买行为、销售数据等进行分析,可以预测销售趋势、个性化推荐商品、优化供应链管理等,提高销售效益和顾客满意度。
3. 医疗行业:大数据在医疗行业的应用可以匡助提高疾病诊断准确性、优化治疗方案、改善医疗服务等。
通过对患者的病历数据、医学影像数据等进行分析,可以辅助医生进行疾病诊断、预测疾病发展趋势、推荐个性化治疗方案等。
什么是大数据?
什么是大数据?大数据,顾名思义,就是指规模巨大的数据集。
但是,随着大数据技术的发展,我们对于大数据的理解也在不断地丰富和深化。
那么,更深层次的问题来了:什么是大数据,它有什么特点,以及在我们的生活中有哪些应用呢?一、大数据的特点1.数据规模庞大大数据最显著的特点就是数据规模庞大。
在传统的数据处理方式中,我们主要是针对数据的单一和小规模处理,而大数据则是指我们需要处理的数据规模超过传统处理方式的极限。
2.多样性大数据不只涵盖了传统的结构化数据,还包含非结构化数据,如图像、视频、声音、文字等。
因为大数据是从各种来源收集而来,涵盖了多种类型的数据。
3.高速度大数据处理的速度非常快,可以实现秒级甚至毫秒级的响应速度。
这要求数据存储、处理、分析的技术水平都必须有大幅提升。
4.价值性大数据是以更加深入的方式去分析数据,以便我们从数据中发现更多的价值。
这使得大数据可以提高决策的准确性,而且可以在很多场景下降低成本,提升生产效率。
二、大数据的应用1.电商和互联网电商和互联网的发展已经使大数据成为了他们的核心竞争力之一。
通过大数据技术,这些企业能够更好地了解用户行为、个性化推送,以及提高营销转化率等。
2.智慧城市大数据在智慧城市中也有着广泛的应用。
例如,城市交通可以通过大数据技术分析实时道路拥堵情况,实现智能化路况引导。
同时,大数据技术可以利用传感器采集城市内各种设施和建筑的信息,实现城市管理的智能化。
3.医疗和健康大数据技术在医疗健康领域的应用,可以加强疾病预防和治疗,提供更加高效的医疗服务。
通过大数据技术,医院可以通过分析海量的医疗数据,来帮助医生精确地诊断疾病,更好地制定治疗方案。
4.教育利用大数据技术,可以实现针对不同学生的定制化学习,更好地提高学生的学习效果。
同时,大数据技术可以为学校提供更好的教学管理服务,促进教育的服务化、智能化进程。
5.金融金融领域是大数据技术最广泛的应用之一。
通过大数据技术实现对用户的全面数据分析,银行可以为不同客户提供更加个性化的服务。
大数据是什么大数据有哪几类
大数据是什么大数据有哪几类近年来,随着信息技术的快速发展,大数据逐渐成为一个炙手可热的话题。
那么,什么是大数据?大数据又可以分为哪几类呢?本文将为您着重解答这两个问题。
一、什么是大数据大数据(Big Data)是指无法采用传统数据管理和处理工具进行处理的大规模数据集合。
它具有三个关键特征:大量(Volume)、多样(Variety)和高速(Velocity)。
1. 大量(Volume)大数据采集的数据量通常非常庞大,以至于传统的数据处理工具无法胜任。
这些数据可能来自各种渠道,如传感器、社交媒体、移动设备等。
举个例子,全球每天产生的数据量相当于一个数以艾字节(Exabyte)计量单位的数字,数量之大令人咋舌。
2. 多样(Variety)大数据不仅包括结构化数据(如数据库中的表格数据),还包括半结构化和非结构化的数据(如文本、图像、音频等),甚至包括实时数据流和时序数据。
这些多样的数据形式使得分析和处理大数据变得更加困难。
3. 高速(Velocity)大数据的产生速度不断加快,从而加剧了对数据处理和分析的要求。
例如,金融交易和社交媒体上的信息更新速度非常快,需要实时或接近实时的处理和响应。
二、大数据的几类大数据根据其应用领域和特点可以分为几个主要类别,包括:商业数据、社交数据、传感器数据、网络数据和医疗数据。
1. 商业数据商业数据是企业在日常运营中产生的数据,包括销售记录、财务报表、供应链数据等。
商业数据的分析可以帮助企业了解消费者需求,预测市场趋势,优化决策流程,并提高业务效率。
2. 社交数据社交数据是由社交媒体平台和在线社区产生的数据。
这些数据包括用户个人信息、社交关系、评论、帖子等。
分析社交数据可以洞察用户喜好、社会趋势、舆论走向等,为企业和政府决策提供重要参考。
3. 传感器数据传感器数据是由各种传感器设备生成的数据,例如气象传感器、智能家居设备、工业设备等。
传感器数据的分析可以提供实时监测和预测,用于环境监测、设备维护、智能城市等领域。
大数据是什么
大数据是什么引言概述:大数据是当今社会中一个热门话题,随着信息技术的不断发展,大数据的概念也越来越受到关注。
但是,对于大多数人来说,大数据到底是什么,它有什么特点和作用,可能还存在一定的困惑。
本文将从多个角度解释大数据的概念和意义。
一、大数据的定义1.1 数据量大:大数据指的是规模庞大的数据集合,通常无法用传统的数据库工具进行处理。
1.2 多样性:大数据不仅包含结构化数据,还包括非结构化数据,如文本、图片、视频等。
1.3 时效性:大数据处理的速度要求很高,需要实时或者近实时地处理数据。
二、大数据的特点2.1 高速性:大数据处理的速度非常快,能够在短期内处理大量数据。
2.2 多样性:大数据包含多种类型的数据,需要不同的处理方式。
2.3 价值密度低:大数据中可能包含不少无用信息,需要通过分析挖掘出实用的信息。
三、大数据的应用领域3.1 金融行业:大数据分析可以匡助金融机构进行风险管理、反欺诈等工作。
3.2 医疗保健:大数据可以匡助医疗机构进行疾病预测、个性化治疗等工作。
3.3 零售业:大数据可以匡助零售商进行市场分析、产品推荐等工作。
四、大数据的挑战4.1 数据隐私:大数据涉及大量个人信息,如何保护数据隐私是一个重要问题。
4.2 数据安全:大数据的存储和传输过程中存在安全隐患,需要加强安全措施。
4.3 技术限制:大数据处理需要高性能的计算和存储设备,技术限制可能成为发展的瓶颈。
五、大数据的未来发展5.1 人工智能结合:大数据和人工智能的结合将会成为未来的发展趋势。
5.2 边缘计算:随着物联网的发展,边缘计算将会成为大数据处理的重要手段。
5.3 数据管理:随着数据量的不断增加,数据管理将成为大数据发展的重要环节。
结语:通过以上分析,我们可以看到大数据在当今社会中具有重要的作用,它不仅可以匡助企业提高效率、降低成本,还可以为科研、医疗等领域带来新的突破。
但是,我们也需要注意大数据所带来的挑战,保护数据隐私和加强数据安全是当前亟待解决的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网络架构、数据中心、运维的挑战:
人们每天创建的数据量正呈爆炸式增长,但就数据 保存来说,我们的技术改进不大,而数据丢失的可 能性却不断增加。 如此庞大的数据量首先在存储上就会是一个非常严 重的问题,硬件的更新速度将是大数据发展的基石。
2、经典数据库技术并没有考虑数据的多类 别(variety) SQL(结构化数据查询语言),在设计的一 开始是没有考虑非结构化数据的。 3、实时性的技术挑战:
• •
大数据的应用
——未来,改变一切
未来,企业会依靠洞悉数据中的信息更加了解自己,也更加了解客户。
数据的再利用: 由于在信息价值链中的特殊位置,有些公司可能会收集到大量的数据,但他们并不急需 使用也不擅长再次利用这些数据。例如,移动电话运营商手机用户的位置信息来传输电话 信号,这对以他们来说,数据只有狭窄的技术用途。但当它被一些发布个性化位置广告服 务和促销活动的公司再次利用时,则变得更有价值。 大数据价值链的3大构成:数据本身、技能与思维 其中三者兼具的有谷歌公司,谷歌在刚开始收集数据的时候就已经有多次使用数据的想 法。比方说,它的街景采集车手机全球定位系统数据不光是为了创建谷歌地图,也是为了 制成全自动汽车以及谷歌眼镜等与实景交汇的产品。 传统行业最终都会转变为大数据行业,无论是金 融服务也、医药还是制造业。
淘宝、
ebuy
…
微博、 Apps 移动互联
…
Big Data名词由来
20世纪90年代,数据仓库之父的Bill Inmon就经常提及Big Data
2011年5 月,在“云计算相遇大数据” 为主题的EMC World 2 011 会议中,EMC 抛出了Big Data概念
大数据时代到来
新的时代,人们从信息的被动接受者变成了主动创造者
大数据的构成
大数据包括: 交易数据和交互数据 集在内的所有数据集
大数据 = 海量数据 + 复杂类型的数据
海量交易数据: 企业内部的经营交易信息主要包括联机交易数据和联机 分析数据,是结构化的、通过关系数据库进行管理和访 问的静态、历史数据。通过这些数据,我们能了解过去 发生了什么。 海量交互数据: 源于Facebook、Twitter、LinkedIn及其他来源的社交 媒体数据构成。它包括了呼叫详细记录CDR、设备和传 感器信息、GPS和地理定位映射数据、通过管理文件传 输Manage File Transfer协议传送的海量图像文件、 Web文本和点击流数据、科学信息、电子邮件等等。可 以告诉我们未来会发生什么。 海量数据处理: 大数据的涌现已经催生出了设计用于数据密集型处理的 架构。例如具有开放源码、在商品硬件群中运行的 Apache Hadoop。
多样性Variety
价值密度Value
实时分析 而非批量式分析
快速化Velocity
数据输入、处理与丢弃 立竿见影而非事后见效
“大量化(Volume)、多样化(Variety)、快速化(Velocity)、价值密度低(Value)”就是 “大数据”的显著特征,或者说,只有具备这些特点的数据,才是大数据。
大数据时代到来
数据量增加 数据结构日趋复杂
大量新数据源的出现则导致了非结构化、半结构化数据 爆发式的增长
根据IDC 监测,人类产生的数据量正在呈指数级增 长,大约每两年翻一番,这个速度在2020 年之前会 继续保持下去。这意味着人类在最近两年产生的数 据量相当于之前产生的全部数据量
TB
PB
EB
ZB
…
电子商务
社交网络
21世纪是数据信息大发展的时 代,移动互联、社交网络、电子商务 等各种数据正在迅速膨胀并变大,极 大拓展了互联网的边界和应用范围,。 互联网(社交、搜索、电商)、移动 互联网(微博)、物联网(传感器, 智慧地球)、车联网、GPS、医学影 像、安全监控、金融(银行、股市、 保险)、电信(通话、短信)都在疯 狂产生着数据。
当前云计算更偏重海量存储和计算,以及提供的云服务,运行云应用,但是缺乏盘 活数据资产的能力,挖掘价值性信息和预测性分析,为国家、企业、个人提供决策 和服务,是大数据核心议题,也是云计算的最终方向。
大数据与云计算
蓝蓝的天上白云飘
白云下面数据跑
如果数据是财富,那么大数据就是宝藏,而云计算就是挖掘和利用宝 藏的利器!没有强大的计算能力,数据宝藏终究是镜中花;没有大数 据的积淀,云计算也只能是杀鸡用的宰牛刀!
大数据的应用 ——热点:智慧城市
•
美国奥巴马政府在白宫网站发布《大数据研究和发展倡议》,提出“通过收集、处理庞大而复杂的 数据信息,从中获得知识和洞见,提升能力,加快科学、工程领域的创新步伐,强化美国国土安全, 转变教育和学习模式” ; 2012年,中国启动了国家智慧城市试点工作,首批试点城市90个。2013年,启动第二批103个试 点城市; 据了解,宁夏与北京合作建设的西部云基地为全球云计算领先企业亚马逊AWS、国内知名互联网 企业奇虎360等定制建设的大型数据中心已建成测试,标志着新一代云计算数据中心、智慧城市、 “八朵云”产生的海量数据将能被更加快速准确地分析、处理。
这些由我们创造的信息背后产生的这些数据早已经远远超越了目前人力所能处理的范畴 大数据时代已经来临..
大数据的4V特征
非结构化数据的超大规模和增长
体量Volume
总数据量的80~90% 比结构化数据增长快10倍到50倍 是传统数据仓库的10倍到50倍 大数据的异构和多样性 很多不同形式(文本、图像、视频、机器数据) 无模式或者模式不明显 不连贯的语法或句义 大量的不相关信息 对未来趋势与模式的可预测分析 深度复杂分析(机器学习、人工智能Vs传统商务智能 (咨询、报告等)
巨大的数据价值
数据采集 数据管理
数据储存
数据分析与挖掘
技术领域的挑战
技术架构的挑战: 1、对现有数据库管理技术的挑战
传统的数据库部署不能处理数TB 级别的数据,也 不能很好的支持高级别的数据分析。急速膨胀的数 据体量即将超越传统数据库的管理能力。 如何构建全球级的分布式数据库(GloballyDistributed Database) ,可以扩展到数百万的 机器,数已百计的数据中心,上万亿的行数据。
Thanks
全球每秒钟发送 2.9 百万封电子邮件,一分钟读一篇的话,足够一个人昼夜不息的读5.5 年… 每天会有 2.88 万个小时的视频上传到Youtube,足够一个人昼夜不息的观看3.3 年… 推特上每天发布 5 千万条消息,假设10 秒钟浏览一条信息,这些消息足够一个人昼夜不息的浏览16 年… 每天亚马逊上将产生 6.3 百万笔订单… 每个月网民在Facebook 上要花费7 千亿分钟,被移动互联网使用者发送和接收的数据高达1.3EB… Google 上每天需要处理24PB 的数据…
二
大数据应用
大数据要解决的问题
Streams Real time Near time Batch
Velocity 快速的数据流转
Variety 多样的数据类型
Structured Unstructured Semi-structured All the above
TB PB EB
Volume 海量的数据规模
大数据 Big Data
大数据引领我们走向数据智能化时代
目录
大数据的定义理解
大数据据的定义理解
1
大数据时代的背景
什么是大数据
2
大数据的“4V”特征
3
大数据的构成
大数据时代的背景
“大数据”的诞生:
半个世纪以来,随着计算机及互联网技术的发展,不断全面融入社会生活,信息 量在爆发式增长,而且其增长速度也在加快。天文学和基因学,创造出了“大数据”这 个概念*。如今,这个概念几乎应用到了所有人类智力与发展的领域中。
•
挑战
诸多领域的问题亟待解决,最重要的是每个人的信息都被互联网所记录和保留了下来, 并且进行加工和利用,为人所用,而这正是我们所担忧的信息安全隐患!
•
iOS被发现会按照时间顺序记录用户的位置坐标信息
•
• …
CSDN密码泄露事件
携程用户信用卡信息遭泄露
眼下中国互联网热门的话题之一就是互联网实名制问 题,我愿意相信这是个好事。毕竟我们如果明着亮出 自己的身份,互联网才能对我们的隐私给予更好保护。
大数据的应用
——企业在投入
行业拓展者,打造大数据行业基石:
IBM: • IBM大数据提供的服务包括数据分析,文本分析,蓝色云杉(混搭供电合作的网络平台); • IBM的大数据产品组合中的最新系列产品的InfoSphere bigInsights,基于Apache Hadoop。
微软: • 2011年1月与HP数据库综合应用部门合作开发了一系列能够提升生产力和提高决策速度的设备。
Oracle: • Oracle大数据机与Oracle Exalogic中间件云服务器、Oracle Exadata数据库云服务器以及Oracle Exalytics商务智能云服务器一起组成了甲骨文最广泛、高度集成化系统产品组合。 …………
大数据的应用
——政府 政府职能变革
•
• • •
重视应用大数据技术,盘活各地云计算中心资产:把原来大规模投资产 业园、物联网产业园从政绩工程,改造成智慧工程;
《大数据时代》
三
机遇与挑战
机遇
大数据赋予我们洞察未来的能力
马云成功预测2008 年经济危机 • “2008 年初,阿里巴巴平台上整个买家询盘数急剧下滑,欧美对中国采购在 下滑。海关是卖了货,出去以后再获得数据;我们提前半年时间从询盘上推 断出世界贸易发生变化了。” 通常而言,买家在采购商品前,会比较多家供应商的产品,反映到阿里巴巴 网站统计数据中,就是查询点击的数量和购买点击的数量会保持一个相对的 数值,综合各个维度的数据可建立用户行为模型。因为数据样本巨大,保证用 户行为模型的准确性。因此在这个案例中,询盘数据的下降,自然导致买盘 的下降。