2016中考王中考命题研究数学:第三节视图与投影
备战中考数学分点透练真题视图与投影(解析版)
第二十四讲视图与投影命题点1 三视图的判断类型一常见几何体视图的判断1.(2021•苏州)如图,圆锥的主视图是()A.B.C.D.【答案】A【解答】解:圆锥的主视图是一个等腰三角形,故选:A.2.(2021•温州)直六棱柱如图所示,它的俯视图是()A.B.C.D.【答案】C【解答】解:从上面看这个几何体,看到的图形是一个正六边形,因此选项C中的图形符合题意,故选:C.3.(2021•湘潭)下列几何体中,三视图不含圆的是()A.B.C.D.【答案】C【解答】解:A、圆柱的俯视图是圆,故不符合题意;B、球的三视图都是圆,故不符合题意;C、正方体的三视图都是正方形,故符合题意;D、圆锥的俯视图是圆,故不符合答题,故选:C.类型二组合体不规则几何体视图的判断4.(2021•江西)如图,几何体的主视图是()A.B.C.D.【答案】C【解答】解:从正面看该组合体,长方体的主视图为长方形,圆柱体的主视图是长方形,因此选项C中的图形符合题意,故选:C.5.(2021•泰州)如图所示几何体的左视图是()A.B.C.D.【答案】C【解答】解:从左边看,是一列两个矩形.故选:C.6.(2021•聊城)如图所示的几何体,其上半部有一个圆孔,则该几何体的俯视图是()A.B.C.D.【答案】A【解答】解:从上面看该几何体,能看见的轮廓线用实线表示,看不见的轮廓线用虚线表示,因此所看到的图形与选项A中的图形相同,故选:A.7.(2021•本溪)如图,该几何体的左视图是()A.B.C.D.【答案】D【解答】解:从左面看该几何体所得到的图形是一个长方形,被挡住的棱用虚线表示,图形如下:故选:D.8.(2021•福建)如图所示的六角螺栓,其俯视图是()A.B.C.D.【答案】A【解答】解:从上边看,是一个正六边形,六边形内部是一个圆,故选:A.9.(2021•吉林)如图,粮仓可以近似地看作由圆锥和圆柱组成,其主视图是()A.B.C.D.【答案】A【解答】解:粮仓主视图上部视图为等腰三角形,下部视图为矩形.故选:A.类型四小正方体组合体视图的判断10.(2020•北碚区自主招生)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【答案】A【解答】解:从正面看有两层,底层两个正方形,上层左边一个正方形,左齐.故选:A.11.(2021•河南)如图是由8个相同的小正方体组成的几何体,其主视图是()A.B.C.D.【答案】A【解答】解:该几何体的主视图有三层,从上而下第一层主视图为一个正方形,第二层主视图为两个正方形,第三层主视图为三个正方形,且左边是对齐的.故选:A.12.(2021•随州)如图是由4个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同【答案】A【解答】解:如图所示:故该组合体的三视图中完全相同的是主视图和左视图,故选:A.13.(2021•泰安)如图是由若干个同样大小的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.【答案】B【解答】解:从左边看从左到右第一列是两个小正方形,第二列有4个小正方形,第三列有3个小正方形,故选:B.14.(2021•齐齐哈尔)由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体的个数最多为()A.7个B.8个C.9个D.10个【答案】A【解答】解:根据题意得:,则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故选:A.命题点2 三视图还原几何体及其相关计算15.(2021•安徽)几何体的三视图如图所示,这个几何体是()A.B.C.D.【答案】C【解答】解:根据该组合体的三视图发现该几何体为.故选:C.16.(2021•东营)已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为()A.214°B.215°C.216°D.217°【答案】C【解答】解:由三视图可知,该几何体为圆锥;由三视图数据知圆锥的底面圆的直径为6、半径为3,高为4,则母线长为=5,所以则该几何体的侧面展开图圆心角的度数为π×6÷(π×5)×180°=216°.故选:C.17.(2021•眉山)我国某型号运载火箭的整流罩的三视图如图所示,根据图中数据(单位:米)计算该整流罩的侧面积(单位:平方米)是()A.7.2πB.11.52πC.12πD.13.44π【答案】C【解答】解:观察图形可知:圆锥母线长为:=2(米),所以该整流罩的侧面积为:π×2.4×4+π×(2.4÷2)×2=12π(平方米).答:该整流罩的侧面积是12π平方米.故选:C.18.(2021•云南)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为.【答案】3π【解答】解:由三视图知几何体为圆柱,且底面圆的半径是1,高是3,∴这个几何体的体积为:π×12×3=3π.故答案为:3π.命题点3 立体图形的展开与折叠类型一常见几何体的展开图19.(2021•扬州)把如图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱【答案】A【解答】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选:A.20.(2021•金华)将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A.B.C.D.【答案】D【解答】解:选项A、B、C均可能是该直棱柱展开图,不符合题意,而选项D中的两个底面会重叠,不可能是它的表面展开图,符合题意,故选:D.类型二正方体的展开图21.(2021•自贡)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是()A.百B.党C.年D.喜【答案】B【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“迎”与“党”相对,面“建”与面“百”相对,“喜”与面“年”相对.故选:B.22.(2021•河北)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表【答案】A【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是3.故选:A.11。
中考数学专题复习:投影与视图
投影与试图典题探究例2 如图是由八个相同小正方体组合而成的几何体,则其左视图是( )A. B . C . D .例3 下面四个几何体中,俯视图不是圆的几何体的个数是( )A .1B .2C .3D .4例4 如图是由几个相同的小立方块组成的三视图,小立方块的个数是( )A .3个B .4个C .5个D .6个练习一 立体图形、视图和展开图A 组1.下列四个几何体中,三视图(主视图、左视图、俯视图)相同的几何体是( )2.一个几何体的三视图如右图所示,这个几何体是()A.圆锥 B.圆柱 C.三棱锥D.三棱柱3.已知一个几何体的三视图如图所示,则该几何体是()A棱柱 B圆柱 C圆锥 D球4.如图是一个几何体的三视图,则这个几何体的形状是()(A)圆柱(B)圆锥(C)圆台(D)长方体5.下列图形中,不是三棱柱的表面展开图的是()6.圆锥侧面展开图可能是下列图中的()7.右图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是()8.将左图中的正方体纸盒沿所示的粗线剪开,其平面展开图的示意图为9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()A.低B.碳C.生D.活10.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示。
如果记6的对面的数字为a,2的对面的数字为b,那么ba 的值为()A.3 B.7 C.8 D.1111.如图①放置的一个水管三叉接头,若其正视图如图②,则其俯视图是()12.左下图为主视图方向的几何体,它的俯视图是()13.如图1是一个几何体的实物图,则其主视图是DCBA14.如图所示,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图形是()B组15.右图是一个由4个相同的正方体组成的立体图形,它的三视图为()16.如图是由五个小正方体搭成的几何体,它的左视图是()17.如图所示的几何体的俯视图是().A B DC18.如图摆放的正六棱柱的俯视图是()19.沿圆柱体上底面直径截去一部分的物体如图所示,它的俯视图是( )20.下图所示几何体的主视图是()21.一个几何体的三视图如图所示,那么这个几何体是()22.下面四个图形中,是三棱柱的平面展开图的是()23.某物体的展开图如图所示,它的左视图为()练习二中心投影与平行投影A组1.下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是 ( )2.视点指的是()A.眼睛的大小 B.眼睛看到的位置C.眼睛的位置 D.眼睛没有看到的位置3.晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是()A.变长 B.变短C.先变短后变长 D.先变长后变短4.于视线的范围,下列叙述不正确的是()A.走上坡路比走平路的视线范围小B.走上坡路比走平路的视线范围大C.在船头比在船尾向前看到的范围大D.在轿车外比在轿车里看到的范围大5.如图所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)6.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()答案例2 考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可.解答:解:从左面可看到从左往右三列小正方形的个数为:2,3,1.故选B.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.例4 考点:由三视图判断几何体.分析:根据三视图的知识,可判断该几何体有两列两行,底面有3个正方形,第二层有1个.解答:解:综合三视图可看出,底面有3个小立方体,第二层应该有1个小立方体,因此小立方体的个数应该是3+1=4个.故选B.点评:本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.练习一立体图形、视图和展开图A组1.【答案】D ;2.【答案】D;3.【答案】B ;4.【答案】B ;5.【答案】D;6.【答案】D7.【答案】B;8.【答案】C;9.【答案】A ;10.【答案】B;11.【答案】A;12.【答案】D13.【答案】C ;14.【答案】AB组15.【答案】B;16.【答案】A;17.【答案】B ;18.【答案】D ;19.【答案】D20.【答案】A ;21.【答案】A;22.【答案】A ;23.【答案】B练习二中心投影与平行投影A组1.【答案】A ;2.【答案】C;3.【答案】C;4.【答案】B ;5.【答案】先连接伞兵的头和脚与对应的影子的直线,两直线的交点即为点P,过点P作过木桩顶端的直线与地面的交点即为F.6.【答案】A。
中考数学总复习:第3课时 视图与投影
【思路点拨】俯视图是从上向下看到的视图,结合选 项进行判断即可.
(2013· 潍坊)如图是常用的一种圆顶螺 杆,它的俯视图正确的是( B )
(2013· 宜宾)下列水平放置的四个几何 体中,主视图与其他三个不相同的是( D )
如图所示的几何体的左视图是 ( C )
考点二
由三视图判断几何体
(2013· 贵阳 )一个几何体的三视图如图所示, 则这个几何体摆放的位置是( A )
【思路点拨】主视图、左视图、俯视图分别是从 物体正面、左面和上面看所得到的图形,视图中虚线 是在实物中看不见的棱.结合图形,使用排除法即可 得出答案. 方法总结 柱体包括棱柱和圆柱至少有两个视图是矩形; 锥 体包括棱锥和圆锥至少有两个视图是三角形; 球体三 个视图都是圆,台体有两个视图是梯形.
4.由三种视图还原几何体 由三种视图描述几何体,一般先根据各视图想象 从各个方向看到的几何体的形状,然后综合起来确定 几何体的形状,再根据“长对正、高平齐、宽相等” 的关系,确定轮廓线的位置以及各个面的尺寸,最后 画出还原的几何体.
考点一 ( B )
立体图形的三视图
(2013· 青岛 )如图所示的几何体 的俯视图是
(2013· 遵义)一个几何体的三视图如图 所示,则这个几何体是( D )
(2013· 云南 ) 图为某个几何体的三视 图,则该几何体是( D )
考点三 由三视图求几何体的体积、表面积及棱长
(2013· 济宁 )三棱 柱的三视图如图 所示, △ EFG 中, EF= 8 cm, EG= 12 cm,∠ EGF= 30° , 则 AB 的长为 6 cm.
第3课时
视图与投影
1 . (2013· 台州 ) 有一篮球如图放置,其主视图为 ( B )
中考数学复习视图与投影PPT课件
要点梳理
1.三视图: (1)主视图:从 正面 看到的图; (2)左视图:从 左面 看到的图; (3)俯视图:从 上面 看到的图.
2.画“三视图” 的原则: (1)位置:主视图;左视图; 俯视图. (2)大小:长对正,高平齐,宽相等. (3)虚实:在画图时,看得见部分的轮廓通常画成实线, 看不见部分的轮廓线通常画成虚线.
பைடு நூலகம்
3.一个正方体的每个面都写有一个汉字,其平面展开图如
图所示,则在该正方体中,和“崇”相对的面上写的汉字
是( )
A.低
B.碳
C.生
D.活
答案 A 解析 假设“崇”为正方体的前面,则“尚”、“碳”是 这个正方体的右面与左面,正方体的后面是“低”.
易错警示
对峙体图形展开后的邻面、对面视察不仔细 试题 如图,A、B、C三个立方体中,有一个立方体展开后
探究提高 掌握从不同方向看物体的方法和画几何体三视图 的要求,通过仔细视察、比较、分析,可选出正确答案.
知能迁移1 (1)根据下面的三视图描述所对应的物体. 解 长方体上放置一个圆锥.
(2)(2011·安徽)下图是五个相同的小正方体搭成的几何体,其 左视图是( )
答案 A
题型二 由三视图确定原几何体的构成
基础自测
1.(2011·福州)在下列几何体中,主视图、左视图与俯视图 都是相同的圆,该几何体是( )
答案 A 解析 几何体A的三视图都是圆形,故选A.
2.(2011·金华)如图是六个棱长为1的立方块组成的一个几何
体,其俯视图的面积是( )
A.6
B.5
C.4
D.3
答案 B 解析 该几何体的俯视图如图所示,
知能迁移2 (1)下图是几何体的俯视图,所标数字为该位置 立方体的个数,请补全该几何体的主视图和左视图.
中考数学-投影与视图(解析版)
专题29投影与视图知识点一:与投影有关的基本概念1.投影:用光线照射物体,在某个平面上得到的影子叫做物体的投影。
2.平行投影:由平行光线形成的投影是平行投影。
3.中心投影:由同一点发出的光线形成的投影叫做中心投影。
4.正投影:投影线垂直于投影面产生的投影叫做正投影。
知识点二:与视图有关的基本概念1.视图:从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图。
视图可以看作物体在某一方向光线下的正投影。
2.主视图、俯视图、左视图(1)对一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;(2)在水平面内得到的由上向下观察物体的视图,叫做俯视图;(3)在侧面内得到的由左向右观察物体的视图,叫做左视图。
主视图与俯视图的长对正;主视图与左视图的高平齐;左视图与俯视图的宽相等。
知识点三:视图知识的应用1.通过三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。
2.由三视图判断几何体形状主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.本章内容要求学生经历实践探索,了解投影、投影面、平行投影和中心投影的概念。
通过下面知识导图加深对本章内容的了解。
【例题1】一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()A B C D【答案】B.【解析】本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键.根据看等边三角形木框的方向即可得出答案.竖直向下看可得到线段,沿与平面平行的方向看可得到C,延与平面不平行的方向看可得到D,不论如何看都得不到一点.【例题2】(2020广元)如图所示的几何体是由5个相同的小正方体组成,其主视图为()A. B. C. D.【答案】D【解析】根据从正面看得到的图形是主视图,可得答案.从正面看第一层是一个小正方形,第二层是三个小正方形,∴主视图为:【点拨】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.【例题3】(2020湖南岳阳)如图,由4个相同正方体组成的几何体,它的左视图是()A. B.C. D.【答案】A【解析】根据左视图是从左面看得到的图形,结合所给图形以及选项进行求解即可.观察图形,从左边看得到两个叠在一起的正方形,如下图所示:【点拨】本题考查了简单几何体的三视图,解题的关键是掌握左视图的观察位置.【例题4】(2020苏州)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A. B. C. D.【答案】C【解析】根据组合体的俯视图是从上向下看的图形,即可得到答案.组合体从上往下看是横着放的三个正方形.【点拨】本题主要考查组合体的三视图,熟练掌握三视图的概念,是解题的关键.《投影与视图》单元精品检测试卷本套试卷满分120分,答题时间90分钟一、选择题(每小题3分,共30分)1.(2020成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是()A. B. C. D.【答案】D【解析】根据左视图的定义“从主视图的左边往右边看得到的视图就是左视图”进一步分析即可得到答案.【详解】从主视图的左边往右边看得到的视图为:【点拨】本题考查了左视图的识别,熟练掌握相关方法是解题关键.2.(2020山东济宁)已知某几何体的三视图(单位:cm)如图所示,则该几何体的侧面积等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm2【答案】B【解析】由三视图可知这个几何体是圆锥,高是4cm,底面半径是5=(cm),∴侧面积=π×3×5=15π(cm2),故选B.3.(2020山东菏泽)一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为()A. B. C. D.【答案】A【解析】从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出主视图图形即可.从正面看所得到的图形为A选项中的图形.【点拨】考查几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.4.(2020哈尔滨)五个大小相同的正方体塔成的几何体如图所示,其左视图是()A. B. C. D.【答案】C【解析】根据从左边看得到的图形是左视图,可得答案.从左边看第一层有两个小正方形,第二层右边有一个小正方形,【点拨】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.(2020河南)如下摆放的几何体中,主视图与左视图有可能不同的是()A. B.C. D.【答案】D【解析】分别确定每个几何体的主视图和左视图即可作出判断.A.圆柱的主视图和左视图都是长方形,故此选项不符合题意;B.圆锥的主视图和左视图都是三角形,故此选项不符合题意;C.球的主视图和左视图都是圆,故此选项不符合题意;D.长方体的主视图是长方形,左视图可能是正方形,故此选项符合题意,【点拨】本题考查了简单几何体的三视图,熟练掌握确定三视图的方法是解答的关键.6.(2020甘肃武威)下列几何体中,其俯视图与主视图完全相同的是()A. B. C. D.【答案】C【解析】俯视图是指从上面往下看,主视图是指从前面往后面看,根据定义逐一分析即可求解.选项A:俯视图是圆,主视图是三角形,故选项A错误;选项B:俯视图是圆,主视图是长方形,故选项B错误;选项C:俯视图是正方形,主视图是正方形,故选项C正确;选项D:俯视图是三角形,主视图是长方形,故选项D错误.【点拨】本题考查了视图,主视图是指从前面往后面看,俯视图是指从上面往下看,左视图是指从左边往右边看,熟练三视图的概念即可求解.7.(2020福建)如图所示的六角螺母,其俯视图是()A. B. C. D.【答案】B【解析】根据图示确定几何体的三视图即可得到答案.由几何体可知,该几何体的三视图依次为.主视图为:左视图为:俯视图为:【点拨】此题考查简单几何体的三视图,掌握三视图的视图方位及画法是解题的关键.8.(2020新疆兵团)如图所示,该几何体的俯视图是()A. B. C. D.【答案】C【解析】根据俯视图是从上边看的到的视图,可得答案.从上边可以看到4列,每列都是一个小正方形,故C符合题意;【点拨】本题考查了简单组合体的三视图,从上边看的到的视图是俯视图.掌握俯视图的含义是解题的关键.9.(2020贵州黔东南)桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A.12个B.8个C.14个D.13个【答案】D【解析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.【点拨】本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需正方体的个数.10.(2020贵州黔西南)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A. B. C. D.【答案】D【解析】找到从上面看所得到的图形即可.解:从上面看可得四个并排的正方形,如图所示:【点拨】本题考查了三视图的知识,.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.二、填空题(每空3分,共30分)11.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为cm.【答案】4.【解析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm)12.如图所示,一个空间几何体的主视图和左视图都是边长为l的正三角形,俯视图是一个圆及圆心,那么这个几何体的侧面积是.【答案】见解析。
中考数学热点题型专练:投影与视图
精品基础教育教学资料,仅供参考,需要可下载使用!中考数学热点题型专练:热点18 投影与视图【命题趋势】投影与视图这部分内容是一个小的考点,必考内容之一,一般为一个选择题,分值3—4分,一般解答题很少考到。
可能很多同学会忽视这部分内容,感觉投影与视图又简单,考的又少,所以在复习时往往会忽略这部分内容,这是严重错误的想法,就因为它考的不多,又简单,所以我们才应该认真对待这部分内容,拿好拿稳这几分。
【满分技巧】一、整体把握知识结构二.重点知识1.两种投影的概念与性质2.三种视图:有关视图,一般有两种类型的问题:A.由物质到视图,这种类型的问题比较简单;B.由视图想象物体的样子,这个对空间想象能力要求很高,一般比较难;这两种类型的问题,一般考查方式都是以小正方体的堆积为载体,进行考查.【限时检测】(建议用时:30分钟)一、选择题1.下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.【答案】B【解析】A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.2.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.3B.C.3D.3【答案】D【解析】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路程.设∠BAB′=n°.∠=4π,∠n=120即∠BAB′=120°.∠E为弧BB′中点,∠∠AFB=90°,∠BAF=60°,∠BF=AB•sin∠BAF=6×=3,∠最短路线长为3.故选:D.3.一个几何体的三视图如图所示,则这个几何体的表面积是()A.5cm2B.8cm2C.9cm2D.10cm2【答案】D【解析】由题意推知几何体是长方体,长、宽、高分别1cm、1cm、2cm,所以其面积为:2×(1×1+1×2+1×2)=10(cm2).故选:D.4.如图是由10个同样大小的小正方体摆成的几何体.将小正方体∠移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变【答案】A【解析】将正方体∠移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变;故选:A.5.如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图【答案】A【解析】本题考查了三视图的判断,三视图没有发生变化的是主视图和左视图,发生变化的是俯视图,故选A.6.如图,是由两个正方体组成的几何体,则该几何体的俯视图为【答案】D【解析】解析本题考查三视图,俯视图为从上往下看,所以小正方形应在大正方形的右上角,故选D7.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A.B.C.D.【答案】B【解析】从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.8.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】从左面看可得到从左到右分别是3,1个正方形.故选:B.9.下列几何体中,主视图是三角形的是()A. B. C. D.【答案】C【解析】A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.10.已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A.10B.9C.8D.7【答案】B【解析】从俯视图可得最底层有5个小正方体,由主视图可得上面一层是2个,3个或4个小正方体,则组成这个几何体的小正方体的个数是7个或8个或9个,组成这个几何体的小正方体的个数最多是9个.故选:B.11.如图是一个水平放置的全封闭物体,则它的俯视图是()A.B.C.D.【答案】A【解析】从上面观察可得到:.故选:C.12.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【答案】A【解析】从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:故选:A.13.下列几何体中,俯视图不是圆的是()A.四面体B.圆锥C.球D.圆柱【答案】A【解析】A、俯视图是三角形,故此选项正确;B、俯视图是圆,故此选项错误;C、俯视图是圆,故此选项错误;D、俯视图是圆,故此选项错误;故选:A.14.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.【答案】A【解析】分析根据俯视图即从物体的上面观察得得到的视图,进而得出答案A故选:A.15.)如图为正方体的一种平面展开图,各面都标有数字,则数字为﹣2的面与其对面上的数字之积是()A.﹣12B.0C.﹣8D.﹣10【答案】A【解析】分析根据正方体的平面展开图的特征知,其相对面的两个正方形之间一定相隔一个正方形,所以数字为﹣2的面的对面上的数字是6,其积为﹣12.故选:A16.如图∠是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图∠.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同【答案】A【解析】图∠的三视图为:图∠的三视图为:故选:A.17.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.【答案】C【解析】从上面看,得到的视图是:,故选:C.18.如图,圆柱底面圆半径为2,高为2,则圆柱的左视图是()A.平行四边形B.正方形C.矩形D.圆【答案】C【解析】圆柱底面圆半径为2,高为2,∴底面直径为4,∴圆柱的左视图是一个长为4,宽为2的长方形,故选:C.19.某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是()A.B.C.D.【答案】B【解析】分析主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.观察图形可知,这块西瓜的三视图是.故选:B.20.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】B【解析】左视图有3列,每列小正方形数目分别为2,1,1.故选:B.21.如图是一个几何体的三视图,则这个几何体是()A.三棱锥B.圆锥C.三棱柱D.圆柱【答案】B【解析】分析主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:B.二、填空题22.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.【答案】10【解析】设俯视图有9个位置分别为:由主视图和左视图知:∠第1个位置一定是4,第6个位置一定是3;∠一定有2个2,其余有5个1;∠最后一行至少有一个2,当中一列至少有一个2;根据2的排列不同,这个几何体的搭法共有10种:如下图所示:故答案为:10.23.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)【答案】∠∠【解析】本题考查对三视图的认识.∠长方体的主视图,俯视图,左视图均为矩形;∠圆柱的主视图,左视图均为矩形,俯视图为圆;∠圆锥的主视图和左视图为三角形,俯视图为圆.故答案为∠∠24.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为 . 【答案】(18+2)cm 2【解析】该几何体是一个三棱柱,底面等边三角形边长为2cm ,高为cm ,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm 2).故答案为(18+2)cm 2第11题图③圆锥②圆柱①长方体25.如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面.(填字母)【答案】E【解析】由题意知,底面是C,左侧面是B,前面是F,后面是A,右侧面是D,上面是E,故答案为:E.。
中考试题:视图与投影(含答案)
视图与投影中考题一、选择题1. 图1所示的几何体的右视图是2.如右图,由三个小立方体搭成的几何体的俯视图是3. 下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是A 、球B 、圆柱C 、三棱柱D 、圆锥4.“圆柱与球的组合体”如右图所示,则它的三视图是A .B .C .D .5.如图所示的正四棱锥的俯视图是6.一空间几何体的三视图如图所示,则这个几何体是A 、圆柱B 、圆锥C 、球D 、长方体7.一个几何体由一些小正方体摆成,其主(正)视图与左视图如图所示.其俯视图不可能是( )俯视图 主视图 左视图 俯视图 主视图 左视图 俯视图 主视图 左视图 俯视图 主视图 左视图 . .(第4题) · A B C D (第6题)小明从正面观察下图所示的两个物体,看到的是()。
正面 A B C D9.我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图,从图的左面看这个几何体的左视图是A B C D10.图1中几何体的主视图是( )11.下列两个图是由几个相同的小长方体堆成的物体视图,那么堆成这个物体的小长方体最多有()个(正视图)(俯视图)A、5B、6C、4D、3二、填空题12.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由个这样的正方体组成。
13、如图,有一圆锥形粮堆,其主视图是边长为6m的正三角形ABC ,母线AC 的中点P 处有一老鼠正在偷吃粮食,小猫从B 处沿圆锥表面去偷袭老鼠,则小猫经过的最短路程是 m。
(结果不取近似数)14.右图是某物体的三视图,那么物体形状是 .三、解答题15.请你在图2中补全图1所示的圆锥形纸帽的三种视图.图2 (第19题)【解】补全左视图,画出俯视图16.一个物体的正视图、俯视图如图5所示,请你画出该物体的左视图并说出该物体形状的名称.【解】左视图:该物体形状是: 圆柱 .选择题、填空题答案一、选择题1. A2.A3. A4.A5.D6.A7.C8.C9.B 10.C 11.A二、填空题12. 13 13.53 14. 圆柱.左视图左视图俯视图主视图正视图 左视图 第3题图 5俯视图正视图。
中考数学一轮复习专题视图与投影
专题26 视图与投影考点总结【思维导图】【知识要点】知识点一投影一般地,用光线照射物体,在某个平面 (地面、墙壁等) 上得到的影子叫做物体的投影。
照射光线叫做投影线,投影所在的平面叫做投影面。
平行投影概念:由平行光线形成的投影叫做平行投影。
特征:1.等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.2.等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.平行投影变化规律:1.在不同时刻,同一物体的影子的方向和大小可能不同.不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.2.在同一时刻,不同物体的物高与影长成正比例. 即:.利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.中心投影概念:由同一点 (点光源) 发出的光线形成的投影叫做中心投影。
特征:1.等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.2等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.考查题型(求点光源的位置)点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三个点的位置.中心投影与平行投影的区别与联系:正投影正投影的定义:如图所示,图(1)中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面(即投影线正对着投影面),我们也称这种情形为投影线垂直于投影面.像图(3)这样,投影线垂直于投影面产生的投影叫做正投影.1.线段的正投影分为三种情况.如图所示.①线段AB平行于投影面P时,它的正投影是线段A1B1,与线段AB的长相等;、②线段AB倾斜于投影面P时,它的正投影是线段A2B2,长小于线段AB的长;③线段AB垂直于投影面P时,它的正投影是一个点.2.平面图形正投影也分三种情况,如图所示.①当平面图形平行于投影面Q时,它的正投影与这个平面图形的形状、大小完全相同,即正投影与这个平面图形全等;②当平面图形倾斜于投影面Q时,平面图形的正投影与这个平面图形的形状、大小发生变化,即会缩小,是类似图形但不一定相似.③当平面图形垂直于投影面Q时,它的正投影是直线或直线的一部分.3.立体图形的正投影.物体的正投影的形状、大小与物体相对于投影面的位置有关,立体图形的正投影与平行于投影面且过立体图形的最大截面全等.【典型例题】1.(2019·四川中考模拟)下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是( ) A.B.C.D.【答案】A【解析】根据平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例,依次分析各选项即得结果.A、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;B、影子的方向不相同,故本选项错误;C、影子的方向不相同,故本选项错误;D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.故选A.2.(2019·广西中考模拟)如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长【答案】B【详解】晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长.故选B.3.(2019·北京清华附中中考模拟)如果在同一时刻的阳光下,小莉的影子比小玉的影子长,那么在同一路灯下()A.小莉的影子比小玉的影子长B.小莉的影子比小玉的影子短C.小莉的影子与小玉的影子一样长D.无法判断谁的影子长【答案】D【解析】由一点所发出的光线形成的投影叫做中心投影,而中心投影的影子长短与距离光源的距离有关,由题意可得,小莉和小玉在同一路灯下由于位置不同,影长也不相同,故无法判断谁的影子长,故选D.4.(2019·河北中考模拟)一个长方形的正投影不可能是()A.正方形B.矩形C.线段D.点【答案】D【详解】解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形.故长方形的正投影不可能是点,故选:D.5.(2019·湖北中考模拟)如图,左面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.【答案】D【解析】试题分析:根据题意:水杯的杯口与投影面平行,即与光线垂直,则它的正投影图应是D.故选D.6.(2018·广东中考模拟)下面四幅图是在同一天同一地点不同时刻太阳照射同一根旗杆的影像图,其中表示太阳刚升起时的影像图是()A.B.C.D.【答案】C【解析】解:太阳东升西落,在不同的时刻,同一物体的影子的方向和大小不同,太阳从东方刚升起时,影子应在西方.故选C.考查题型一中心投影的应用方法1.(2018·河北中考模拟)如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子( )A.越长B.越短C.一样长D.随时间变化而变化【答案】B【解析】由图易得AB<CD,那么离路灯越近,它的影子越短,故选B.2.(2020·银川外国语实验学校初三期末)如图,身高1.6米的小明站在距路灯底部O点10米的点A处,他的身高(线段AB)在路灯下的影子为线段AM,已知路灯灯杆OQ垂直于路面.(1)在OQ上画出表示路灯灯泡位置的点P;(2)小明沿AO方向前进到点C,请画出此时表示小明影子的线段CN;(3)若AM=2.5米,求路灯灯泡P 到地面的距离.【答案】(1)见解析;(2)见解析;(3)8米 【解析】()1如图:()2如图:()3//AB OP ,MAB ∴∽MOP ∆,AB AM OP OM ∴=,即1.6 2.510 2.5OP =+, 解得8OP =.即路灯灯泡P 到地面的距离是8米.3.(2019·泰兴市洋思中学初三期中)如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走3米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米.(1)求路灯A的高度;(2)当王华再向前走2米,到达F处时,他的影长是多少?【答案】(1)路灯A有6米高(2)王华的影子长83米.【解析】试题分析:22. 解:(1)由题可知AB//MC//NE,∴,而MC=NE∴∵CD=1米,EF=2米,BF=BD+4,∴BD=4米,∴AB==6米所以路灯A有6米高(2)依题意,设影长为x,则解得米答:王华的影子长83米.考查题型二利用平行投影确定影子的长度1.(2019·吉林中考模拟)如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.【答案】6.4【详解】解:由题可知:1.628树高,解得:树高=6.4米.2.(2018·四川中考模拟)如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB在阳光下的投影BC=3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为_____.【答案】10cm【详解】解:如图,在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,∵△ABC∽△DEF,AB=5m,BC=3m,EF=6m∴ABBC=DEEF∴53=6DE∴DE=10(m)故答案为10m.3.(2015·甘肃中考真题)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【答案】(1) 平行;(2)电线杆的高度为7米.【详解】(1)平行;(2)连接AM、CG,过点E作EN⊥AB于点N,过点G作GM⊥CD于点M,则BN=EF=2,GH=MD=3,EN=BF=10,DH=MG=5所以AN=10-2=8,由平行投影可知:即解得CD=7所以电线杆的高度为7m.考查题型三利用相似问题解决投影问题1.(2019·长沙市长郡双语实验中学中考模拟)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.【答案】5。
中考数学考点33视图与投影(解析版)
视图与投影【命题趋势】中考视图与投影仍是考查重点内容.尤其视图与投影与实际生活有关系的应用问题。
在中考的难度不大.分数约占3-6分左右。
【中考考查重点】一、投影二、三视图的判断三、立体图形的展开与折叠考点:投影1.投影:在光线的照射下.空间中的物体落在平面内的影子能够反映出该物体的形状和大小.这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光源下形成的物体的投影叫做中心投影.点光源叫做投影中心.【注意】灯光下的影子为中心投影.影子在物体背对光的一侧.等高的物体垂直于地面放置时.在灯光下.离点光源近的物体的影子短.离点光源远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影.在平行投影下.同一时刻两物体的影子在同一方向上.并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影.叫做正投影.1.(2021•淮南模拟)下列现象中.属于中心投影的是()A.白天旗杆的影子B.阳光下广告牌的影子C.舞台上演员的影子D.中午小明跑步的影子【答案】C【解答】解:A、白天旗杆的影子为平行投影.所以A选项不合题意;B、阳光下广告牌的影子为平行投影.所以B选项不合题意;C、舞台上演员的影子为中心投影.所以C选项符合题意;D、中午小明跑步的影子为平行投影.所以D选项不合题意.故选:C.2.(2020•南岸区模拟)如图.在直角坐标系中.点P(2.2)是一个光源.木杆AB两端的坐标分别为(0.1).(3.1).则木杆AB在x轴上的投影长为()A.3B.5C.6D.7【答案】C【解答】解:延长P A、PB分别交x轴于A′、B′.作PE⊥x轴于E.交AB于D.如图.∵P(2.2).A(0.1).B(3.1).∴PD=1.PE=2.AB=3.∵AB∥A′B′.∴△P AB∽△P A′B′.∴=.即=.∴A′B′=6.故选:C.3.(2020•青白江区模拟)如图.夜晚路灯下有一排同样高的旗杆.离路灯越近.旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化【答案】B【解答】解:由图易得AB<CD.那么离路灯越近.它的影子越短.故选:B.考点:视图1.视图:由于可以用视线代替投影线.所以物体的正投影通常也称为物体的视图.2.三视图:1)主视图:从正面看得到的视图叫做主视图.2)左视图:从左面看得到的视图叫做左视图.3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中.主视图反映物体的长和高.左视图反映了物体的宽和高.俯视图反映了物体的长和宽.3.三视图的画法1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正.主左高平齐.左俯宽相等”.2)注意实线与虚线的区别:能看到的线用实线.看不到的线用虚线.4.(2021秋•淮安期末)某物体的三视图如图所示.那么该物体形状可能是()A.圆柱B.球C.正方体D.长方体【答案】A【解答】解:根据三视图的知识.正视图以及左视图都为矩形.俯视图是一个圆.易判断该几何体是圆柱.故选:A.5.(2021秋•高州市校级期末)如图所示的几何体的左视图是()A.B.C.D.【答案】C【解答】解:根据左视图的定义可知.这个几何体的左视图是一个正方形.正方形的内部的右上角是一个小正方形.故选:C.6.(2022•本溪模拟)如图所示的移动台阶.它的左视图是()A.B.C.D.【答案】D【解答】解:从左面看.是一个矩形.矩形内部有两条横向的虚线.故选:D考点:几何体的展开与折叠1.常见几何体的展开图几何体立体图形表面展开图侧面展开图圆柱圆锥.正方体的展开图正方体有11种展开图.分为四类:第一类.中间四连方.两侧各有一个.共6种.如下图:第二类.中间三连方.两侧各有一、二个.共3种.如下图:第三类.中间二连方.两侧各有二个.只有1种.如图10;第四类.两排各有三个.也只有1种.如图11.7.(2021•宁波模拟)某几何体的三视图如图所示.则它的表面展开图是()A.B.C.D.【答案】D【解答】解:这个几何体是正三棱柱.表面展开图如下:.故选:D.8.下列图形中.不是正方体的展开图形的是()A.B.C.D.【答案】C【解答】解:正方体共有11种表面展开图.A、B、D能围成正方体;C不能.折叠后有两个面重合.不能折成正方体.故选:C.9.在图中剪去1个小正方形.使得到的图形经过折叠能够围成一个正方体.则要剪去的正方形对应的数字是()A.1B.2C.3D.4【答案】B【解答】解:由正方体的平面展开图得.要剪去的正方形对应的数字是2.、故选:B1.北京冬奥会的吉祥物是一只叫冰墩墩的熊猫.这次冰墩墩的3D设计.就是将熊猫拟人化.含义就是告诉全世界的人.中国是一个社会和谐.人们生活富裕的国家.如图是正方体的展开图.每个面内都写有汉字.折叠成立体图形后“冬”的对面是()A.奥B.会C.吉D.祥【答案】D【解答】解:∵正方体的平面展开图中.相对面的特点是之间一定相隔一个正方形.∴折叠成立体图形后“冬”的对面是“祥”.故选:D.2.(2020•安顺)下列四幅图中.能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.【答案】C【解答】解:A、两棵小树的影子的方向相反.不可能为同一时刻阳光下影子.所以A 选项错误;B、两棵小树的影子的方向相反.不可能为同一时刻阳光下影子.所以B选项错误;C、在同一时刻阳光下.树高与影子成正比.所以C选项正确.D、图中树高与影子成反比.而在同一时刻阳光下.树高与影子成正比.所以D选项错误;故选:C.3.(2017•贺州)小明拿一个等边三角形木框在太阳下玩耍.发现等边三角形木框在地面上的投影不可能是()A.B.C.D.【答案】B【解答】解:当等边三角形木框与阳光平行时.投影是A;当等边三角形木框与阳光有一定角度时.投影是C或D;投影不可能是B.故选:B.4.(2022•商城县一模)下列几何体的三视图中.俯视图与主视图一定一致的是()A.B.C.D.【答案】B【解答】解:长方体的俯视图与主视图都是矩形.但两个矩形的宽不一定相同.因此A 不符合题意;球的俯视图与主视图都是圆.因此B符合题意;圆锥的主视图是等腰三角形、俯视图都是带圆心的圆.因此选项C不符合题意;圆柱的主视图是矩形.俯视图是圆.因此D不符合题意;故选:B.5.(2022•黔东南州模拟)如图正三棱柱的左视图是()A.B.C.D.【答案】C【解答】解:从左边看.是一个矩形.故选:C.6.(2021•岳麓区校级二模)某几何体的三视图如图.则该几何体是()A.三棱柱B.长方体C.圆柱D.圆锥【答案】A【解答】解:∵几何体的主视图和左视图都是宽度相等的长方形.∴该几何体是一个柱体.又∵俯视图是一个三角形.∴该几何体是一个三棱柱.故选:A.7.(2021•吉林模拟)如图.小树AB在路灯O的照射下形成投影BC.若树高AB=2m.树影BC=3m.树与路灯的水平距离BP=4m.则路灯的高度OP为m.【答案】【解答】解:∵AB∥OP.∴△ABC∽△OPC.∴=.即=.∴OP=(m).故答案为.1.(2020•广西)下列几何体中.左视图为三角形的是()A.B.C.D.【答案】C【解答】解:A、从左边看是一个圆.故本选项不合题意;B、从左边看是一个正方形.故本选项不合题意;C、从左边看是一个三角形.故本选项符合题意;D、从左边看是一个矩形.故本选项不合题意;故选:C.2.(2021•攀枝花)如图是一个几何体的三视图.则这个几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥【答案】A【解答】解:由于俯视图为圆形可得为球、圆柱.圆锥.主视图和左视图为三角形可得此几何体为圆锥.故选:A.3.(2021•阿坝州)如图所示的几何体的左视图是()A.B.C.D.【答案】D【解答】解:从左面看.能看到上下两个小正方形.故选:D.4.(2021•兰州)如图.该几何体的主视图是()A.B.C.D.【答案】C【解答】解:从正面看.可得如下图形:故选:C.5.(2021•河南)如图是由8个相同的小正方体组成的几何体.其主视图是()A.B.C.D.【答案】A【解答】解:该几何体的主视图有三层.从上而下第一层主视图为一个正方形.第二层主视图为两个正方形.第三层主视图为三个正方形.且左边是对齐的.故选:A.6.(2021•随州)如图是由4个相同的小正方体构成的一个组合体.该组合体的三视图中完全相同的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同【答案】A【解答】解:如图所示:故该组合体的三视图中完全相同的是主视图和左视图.故选:A.7.(2021•泰安)如图是由若干个同样大小的小正方体所搭几何体的俯视图.小正方形中的数字表示在该位置小正方体的个数.则这个几何体的左视图是()A.B.C.D.【答案】B【解答】解:从左边看从左到右第一列是两个小正方形.第二列有4个小正方形.第三列有3个小正方形.故选:B.1.(2021•紫金县校级二模)如图所示的几何体的左视图为()A.B.C.D.【答案】C【解答】解:从物体左面看.是一个正方形.正方形内部有一条纵向的虚线.故选:C.2.(2022•大渡口区模拟)下列四个几何体中.从正面看是三角形的是()A.B.C.D.【答案】B【解答】解:A.主视图为长方形.不符合题意;B.主视图为三角形.符合题意;C.主视图为长方形.不符合题意;D.主视图为长方形.不符合题意.故选:B.3.如图.一个几何体上半部为正四棱锥.下半部为立方体.且有一个面涂有颜色.下列图形中.是该几何体的表面展开图的是()A.B.C.D.【答案】C【解答】解:A.只有三个三角形.不是该几何体的表面展开图.故本选项不合题意;B.涂有颜色的面不能与三角形的面相邻.故本选项不合题意;C.是该几何体的表面展开图.故本选项符合题意;D.涂有颜色的面不能与三角形的面相邻.故本选项不合题意;故选:C.4.(2021•腾冲市模拟)如图是一个几何体的三视图.则这个几何体的侧面积是()A.48πB.57πC.24πD.33π【答案】C【解答】解:易得此几何体为圆锥.底面直径为6.母线长为8.所以圆锥的侧面积=πrl=8×3π=24π.故选:C5.(2019•望花区三模)如图.物体在灯泡发出的光照射下形成的影子是投影.(填“平行”或“中心”).【答案】中心【解答】解:由于光源是由一点发出的.因此是中心投影.故答案为:中心.6.(2020•槐荫区模拟)如图.已知路灯离地面的高度AB为4.8m.身高为1.6m的小明站在D处的影长为2m.那么此时小明离电线杆AB的距离BD为m.【答案】4【解答】解:∵DE∥AB.∴△CDE∽△CBA.∴=.即=.∴CB=6.∴BD=BC﹣CD=6﹣2=4(m).故答案为4.。
中考数学投影和视图复习(最新整理)
(2)第七单元 第 37 课时投影和视图知识点回顾 知识点一:三视图1. 三种视图的内在联系主视图反映物体的; 俯视图反映物体的 ; 左视图反映物体的.因此,在画三种视图时,主、俯视图要长对,主、左视图要高,俯、左视图要.2. 三种视图的位置关系一般地,首先确定主视图的位置,画出主视图,然后在主视图的 画出俯视图,在主视图的画出左视图.3. 三种视图的画法首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成 线, 看不见部分的轮廓线通常画成线.例 1 画出右图 1 所示的两个几何体的三种视图.分析:这两个几何体,一个是被切去一角的三棱柱,另一个是由两个圆柱体组成的复合体,画它们的三种视图相对复杂,因此要更加仔细观察原几何体及其画三种视图的原则. 解:同步检测:1.小明从正面观察如图 1 所示的两个物体,看到的是()析解:本题是由正面观察两个物体,所以小明看到的图形应是物体的主视图.从正面看圆柱, 所得的图形是长方形;从正面看正方体,所得的图形为正方形,所以小明从正面看到的图形主视图(1)俯 视左 视 主 视左视图俯视图(1)图 1(2)应是两个,左边为长方形,右边为正方形,故选C. 2.(陕西省)如图2,水杯的俯视图是()析解:物体的俯视图就是从实物的上面看到的图形,从水杯正上面往下看,看到的一定是水杯圆形的上口和圆形的水杯底及右侧的杯柄,而不是长方形或带杯柄的长方形.观察四个选项符合题意的只有 D,故选 D.知识点二:平行投影和中心投影1.太阳光与影子太阳光线可以看成平行光线,像这样的光线所形成的投影称为.物体在太阳光照射的不同时刻,不仅影子的长短在,而且影子的方向也在改变.根据不同时刻影长的变换规律,以及太阳东西的自然规律,可以判断时间的先后顺序.分别过每个物体的顶端及其影子的顶端作一条直线,若两直线,则为平行投影;若两直线,则为中心投影,其交点就是光源的位置.灯光的光线可以看成是从发出的(即为点光源),像这样的光线所形成的投影称为中心投影.中心投影光源的确定:分别过每个物体的顶端及其影子的顶端作一条直线,这两条直线的即为光源的位置.例 2 ,与一盏路灯相对,有一玻璃幕墙,幕墙前面地面上有一盆花和一棵树,晚上,幕墙反射路灯灯光形成了那盆花的影子如图 2,树影是路灯灯光形成的,你能确定此时路灯光源的位置吗?分析:确定光源的问题,实际上是利用光线沿直线传播的性质进行作图.在这个问题中,应注意入射角等于反射角,如图 3,可以确定光源的位置为P 点.P图2图3例 3(1)如图 4 是同一时刻的两棵树及其影子,请你在图中画出形成树影的光线,并判断它是太阳光线还是灯光的光线?若是灯光的光线,请确定光源的位置.(2)请判断如图 5 所示的两棵树的影子是在太阳光下形成的,还是灯光下形成的?并画出同一时刻旗杆的影子(用线段表示).分析:本题是由树及其影子寻找光线,具体方法是过树的顶端及其影子的顶端作两条直线作为光线,若两条直线平行,则是太阳光线;若两条直线相交,则是灯光光线,其交点就是光源的位置.解:(1)如图 4 所示是灯光的光线.原因是过一棵树的顶端及其影子的顶端作一条直线, 再过另一棵树的顶端及其影子的顶端作一条直线,两直线相交,其交点就是光源的位置.(2)如图 5 所示,是太阳光的光线.原因是过一棵树的顶端及其影子的顶端作一条直线,再过另一棵树的顶端及其影子的顶端作一条直线,两直线平行.然后再过旗杆的顶端作一条与已知光线平行的直线,交地面于一点,连接这点与旗杆底端的线段就是旗杆的影子. 同步检测:在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下 ( )A 、小明的影子比小强的影子长B 、小明的影子比小强的影子短C 、小明的影子和小强的影子一样长D 、无法判断谁的影子长解:因为在同一时刻的阳光下,小明的影子比小强的影子长,因此可知小明比小强高。
初三数学:投影与视图知识点归纳
初三数学:投影与视图知识点归纳一、知识要点1、投影(1)投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影(projection),照射光线叫做投影线,投影所在的平面叫做投影面。
(2)平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。
由平行光线形成的投影是平行投影(parallel projection).(3)中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影(center projection)。
(4)正投影:投影线垂直于投影面产生的投影叫做正投影。
注:物体正投影的形状、大小与它相对于投影面的位置有关。
2、三视图(1)三视图:是指观测者从三个不同位置观察同一个空间几何体而画出的图形。
将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。
一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图--能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图--能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图--能反映物体的左面形三视图就是主视图、俯视图、左视图的总称。
(2)特点:一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。
三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。
三视图是从加速度学习网我的学习也要加速三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
二、经验之谈:多读两遍吧!有兴趣的同学可以多画图观察。
中考数学复习 《视图与投影》练习题含答案
中考数学复习视图与投影一、选择题1.正方形的正投影不可能是( D )A.线段B.矩形C.正方形D.梯形2.如图由7个小正方体组合而成的几何体,它的主视图是( A )3.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是( C )A.20B.22C.24D.264.将图①围成图②的正方体,则图①中的红心“”标志所在的正方形是正方体中的( A )A.面CDHE B.面BCEFC.面ABFG D.面ADHG5.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)( B )A.40πcm2B.65π cm2C.80π cm2D.105π cm2【解析】由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为8 cm,底面半径为10÷2=5(cm),故表面积=πrl+πr2=π×5×8+π×52=65π(cm2).故选B.6.如图是几何体的俯视图,小正方形内所表示数字为该位置小正方体的个数,则该几何体的主视图是( B )二、填空题7.某几何体的主视图和左视图如图所示,则该几何体可能是__圆柱体__.8.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小__相同__.(填“相同”“不一定相同”或“不相同”)9.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是__5__个.【解析】综合三视图,可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5(个).10.一个侧面积为162πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为__4__ cm.【解析】设底面半径为r,母线为l,∵主视图为等腰直角三角形,∴l=2r,∴侧面积S =πrl=2πr2=162π,解得r=4,l=42,∴圆锥的高h=4 cm.侧三、解答题11.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8 m,若两次日照的光线互相垂直,求树的高度.解:4 m12.如图是一张铁皮.(单位:m)(1)计算该铁皮的表面积;(2)此铁皮能否做成长方体的盒子?若能,画出它的几何图形,并求出它的体积;若不能,说明理由.解:(1)22 m2(2)能够,图略,6 m313.根据三视图求几何体的表面积,并画出物体的展开图.解:由三视图可知,该几何体由上部分是底面直径为10,高为5的圆锥和下部分是底面直径为10,高为20的圆柱组成,物体的展开图如图.圆锥、圆柱底面半径为r =5,由勾股定理得圆锥母线长R =52,S 圆锥表面积=12lR =12×10π×52=252π,∴S 表面积=π×52+10π×20+252π=225π+252π=(225+252)π14.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体上的点B 出发,沿表面爬到AC 的中点D ,请求出这个路线的最短路程.解:(1)圆锥(2)S 表=S 底+S 侧=π(42)2+π×2×6=16π(cm 2) (3)3 3 cm15.某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图),请你按照三视图确定制作每个密封罐所需钢板的面积.解:由三视图可知,密封罐的形状是正六棱柱(如图①),密封罐的高为50,底面正六边形的直径为100,边长为50,图②是它的展开图.由展开图可知,制作一个密封罐所需钢板的面积为6×50×50+2×6×12×50×50sin60°=75003+15000。
视图与投影-中考数学知识点归纳总结(沪科版)
例:长方体的主视图与俯视图如图所示, 则这个长方体的体积是 36 .
3. 常 见 几 何 体 的 三
视图常见几何体的 三视图பைடு நூலகம்知识点二 :投影
4.平行投影
由平行光线形成的投影.
5.中心投影
由同一点(点光源)发出的光线形成的投影.
在平行投影中求影长,一般把实际问题 抽象到相似三角形中,利用相似三角形 的相似比,列出方程,通过解方程求出 的影长. 例:小明和他的同学在太阳下行走,小 明身高 1.4 米,他的影长为 1.75 米,他 同学的身高为 1.6 米, 则此时他的同学的 影长为 2 米.
第 25 讲
一、 知识清单梳理 知识点一:三视图 内 容 主视图:从正面看到的图形. 俯视图:从上面看到的图形. 左视图:从左面看到的图形.
视图与投影
关键点拨
1.三视图 2. 三 视 图 的 对 应 关
系
(1)长对正:主视图与俯视图的长相等,且相互对正; (2)高平齐:主视图与左视图的高相等,且相互平齐; (3)宽相等:俯视图与左视图的宽相等,且相互平行. 正方体:正方体的三视图都是正方形. 圆柱:圆柱的三视图有两个是矩形,另一个是圆. 圆锥:圆锥的三视图中有两个是三角形,另一个是圆. 球的三视图都是圆.
初三数学——视图与投影
等相宽高平齐长对正左视图俯视图主视图(A ) (B ) (C ) (D ) (A ) (B ) (C ) (D ) 初三数学——视图与投影【视图】1、三种视图的内在联系主视图反映物体的_________;俯视图反映物体的________;左视图反映物体的_______.因此,在画三种视图时,主、俯视图要长对______,主、左视图要高_______,俯、左视图要_______.2、三种视图的位置关系一般地,首先确定主视图的位置,画出主视图,然后在主视图的______画出俯视图,在主视图的________画出左视图. 3、三种视图的画法首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成______线,看不见部分的轮廓线通常画成_______线.【题型展示】1、小明从正面观察如图1所示的两个物体,看到的是( )2、(08福州)如图所示的物体是一个几何体,其主视图是 ( )3、(08深圳) 如图,圆柱的左视图是( )4、(08贵阳)在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能...是( )(A ) (B ) (C ) (D )5、(08哈尔滨)右图是某一几何体的三视图,则这个几何体是( )(A ) 圆柱体 (B ) 圆锥体(C ) 正方体 (D ) 球体6、(08襄樊)左下图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时, 所看到的几何图形是( )7、(06·长春)正视图、左视图和俯视图完全相同的几何体是( )(A ) (B ) (C ) (D ) 8、(07淮安)下面图示的四个物体中,正视图如左图的有( )(A ) 1个 (B ) 2个 (C ) 3个 (D ) 4个 9、(06·嘉兴)若干桶方便面摆放在桌子上,实物图片 左边所给的是它的三视图,则这一堆方便面共有( )(A )5桶 (B )6桶 (C )9桶 (D )12桶从左面看A .D . B . C . 从上面看10、由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ( )11、(07 徐州)图1是由6个大小相同的正方形组成的几何体,它的俯视图是 ( )(A ) (B ) (C ) (D )12、画出下面几何体的三视图【投影】1.太阳光与影子(1)太阳光线可以看成平行光线,像这样的光线所形成的投影称为_________.(2)物体在太阳光照射的不同时刻,不仅影子的长短在_______,而且影子的方向也在改变.根据不同时刻影长的变换规律,以及太阳东____西______的自然规律,可以判断时间的先后顺序. 2.平行投影与中心投影(1)分别过每个物体的顶端及其影子的顶端作一条直线,若两直线______,则为平行投影;若两直线_______,则为中心投影,其交点就是光源的位置. (2)灯光的光线可以看成是从_______发出的(即为点光源),像这样的光线所形成的投影称为中心投影. (3)中心投影光源的确定:分别过每个物体的顶端及其影子的顶端作一条直线,这两条直线的___________即为光源的位置.【题型展示】例1:(2012·湘潭)如图,从左面看圆柱,则图中圆柱的投影是( )12321(A ) (B ) (C ) (D )A.圆 B.矩形 C.梯形 D.圆柱例2:(2006·佛山)如图,平面上两颗不同高度、笔直的小树,同一时刻在太阳光线照射下形成的影子分别是AB、DC,则()A.四边形ABCD是平行四边形 B.四边形ABCD是梯形C.线段AB与线段CD相交 D.以上三个选项均有可能例3:某天,小刚选择了三个不同的时间,在木杆南面的相同位置给木杆照了三张照片,如图所示,那么三张照片照的先后顺序正确的是()A.①②③ B.②③① C.①③② D.③①②例4:(2011·荆州)如图.位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投影三角形的对应边长为()A.8cm B.20cm C. D.10cm例5:给出以下命题,命题正确的有()①太阳光线可以看成平行光线,这样的光线形成的投影是平行投影;②物体的投影的长短在任何光线下,仅与物体的长短有关;③物体的俯视图是光线垂直照射时,物体的投影;④物体的左视图是灯光在物体的左侧时所产生的投影;⑤看书时人们之所以使用台灯是因为台灯发出的光线是平行的光线.A.1个 B.2个 C.3个 D.4个例6:如图左右并排的两颗大树的高度分别是AB=8米,CD=12米,两树的水平距离BD=5米,一观测者的眼睛高EF=,且E、B、D在一条直线上,当观测者的视线FAC恰好经过两颗树的顶端时,四边形ABDC的区域是观测者的盲区,则此时观测者与树AB的距离EB等于()A.8米 B.7米 C.6米 D.5米例7:(2006·十堰)如图所示,课堂上小亮站在座位上回答数学老师提出的问题,那么数学老师观察小亮身后,盲区是()A.△DCE B.四边形ABCD C.△ABF D.△ABE变式1、(2007茂名)上午九时,阳光灿烂,小李在地面上同时摆弄两根长度不相等的竹竿,若它们的影子长度相等,则这两根竹竿的相对位置可能是()A.两根都垂直于地面 B.两根都倒在地面上C.两根不平行斜竖在地面上 D.两根平行斜竖在地面上变式2、(2006•金华)下列四幅图形中,表示两颗圣诞树在同一时刻阳光下的影子的图形可能是()A. B. C. D变式3、(06深圳)如图,王华晚上由路灯A下的B处走到C处时,•测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,•已知王华的身高是,那么路灯A的距离AB等于()A. 米B. 6米C.D. 8米变式4、(2007•龙岩)当太阳光与地面成55°角时,直立于地面的玲玲测得自己的影长为,则玲玲的身高约为 m.(精确到)变式5、(2010•广安)甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为,那么路灯甲的高为米.甲小华乙变式6、 (07佳木斯)数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),其影长为1.2米,落在地面上的影长为2.4米,则树高为米.变式7、如图2,与一盏路灯相对,有一玻璃幕墙,幕墙前面地面上有一盆花和一棵树,晚上,幕墙反射路灯灯光形成了那盆花的影子如图2,树影是路灯灯光形成的,你能确定此时路灯光源的位置吗?变式8、(1)如图3是同一时刻的两棵树及其影子,请你在图中画出形成树影的光线,并判断它是太阳光线还是灯光的光线?若是灯光的光线,请确定光源的位置.(2)请判断如图4所示的两棵树的影子是在太阳光下形成的,还是灯光下形成的?并画出同一时刻旗杆的影子(用线段表示).变式9、已知,如右图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的影长BC =3m.⑴请你在图中画出此时DE在阳光下的影长;⑵在测量AB的影长时,同时测量出DE在阳光下的影长为6m,请你计算DE的长.变式10、李栓身高1. 88 m ,王鹏身高1.60 m ,他们在同一时刻站在阳光下,李栓的影子长为1.20 m ,求王鹏的影长。
九年级数学投影和视图知识点
九年级数学投影和视图知识点随着科技的发展和社会的进步,我们生活中的许多事物都跟几何形体有关。
为了更好地理解和描述这些物体,我们需要掌握一些数学知识,尤其是关于投影和视图的概念。
一、什么是投影?投影是指将三维空间中的物体沿某个方向投射到二维平面上的过程。
在实际生活中,我们可以用手机或相机拍摄照片,也可以用幻灯机或投影仪将图片或视频投射到屏幕上,这些都是投影。
那么,如何计算物体的投影呢?首先,我们要确定投影的方向和投影面。
然后,通过与投影面垂直的直线或射线与物体的交点,就可以确定物体的投影。
二、什么是正投影和斜投影?在正投影中,物体与投影面垂直,也就是说,投影是垂直于投影面的。
这种投影形式常常出现在我们的日常生活中,比如我们站在墙前,头上的阴影就是一种垂直投影。
而在斜投影中,物体与投影面不垂直,投影是倾斜的。
这种投影形式更贴近我们在屏幕上所看到的图像,比如电视、电影中的画面,都是通过斜投影来展示的。
三、什么是视图?视图是指通过某种角度观察物体所得到的结果。
我们可以从不同的角度观察同一个物体,得到不同的视图。
常见的视图有正视图、侧视图和俯视图。
正视图是指从物体的正面观察,得到的视图。
正视图可以清楚地看到物体的正面形状和细节。
侧视图是指从物体的侧面观察,得到的视图。
侧视图可以清楚地看到物体的侧面形状和细节。
俯视图是指从物体的上方俯视,得到的视图。
俯视图可以清楚地看到物体的顶部形状和细节。
四、如何绘制视图?为了正确地绘制视图,我们需要了解物体的投影。
以正视图为例,可以从俯视图中获取物体在平面上的投影形状和尺寸,然后根据这些投影进行绘制。
首先,我们可以在平面上绘制出物体的投影。
然后,根据投影的形状和尺寸,再根据一定的比例关系,绘制出物体的正面形状和细节。
绘制侧视图和俯视图的方法与此类似,只需根据不同的视角和投影,绘制出对应的视图即可。
五、为什么学习投影和视图?学习投影和视图的目的是为了更好地理解和描述三维空间中的物体。
新人教版初中数学——视图与投影-知识点归纳及中考典型题解析
新人教版初中数学——视图与投影知识归纳及中考典型题解析一、投影1.投影在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光源下形成的物体的投影叫做中心投影,点光源叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短,离点光源远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.二、视图1.视图由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图(1)主视图:从正面看得到的视图叫做主视图.(2)左视图:从左面看得到的视图叫做左视图.(3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法(1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.(2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.三、几何体的展开与折叠1.常见几何体的展开图2.正方体的展开图正方体有11种展开图,分为四类:第一类,中间四连方,两侧各有一个,共6种,如下图:第二类,中间三连方,两侧各有一、二个,共3种,如下图:第三类,中间二连方,两侧各有二个,只有1种,如图10;第四类,两排各有三个,也只有1种,如图11.考向一三视图在判断几何体的三视图时,注意以下两个方面:(1)分清主视图、左视图与俯视图的区别;(2)看得见的线画实线,看不见的线画虚线.典例1【广西壮族自治区南宁市2019–2020学年七年级上学期期末数学试题】如图是从不同方向看某一几何体得到的平面图形,则这个几何体是A.圆锥B.长方体C.球D.圆柱【答案】D【解析】∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选D.【名师点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.1.如图所示的几何体的俯视图是A.B.C.D.考向二几何体的还原与计算解答此类问题时,首先要根据三视图还原几何体,再根据图中给出的数据确定还原后的几何体中的数据,最后根据体积或面积公式进行计算.典例2如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是A.B.C.D.【答案】D【解析】如图,左视图如下:,故选D.2.某一几何体的三视图均如图所示,则搭成该几何体的小正方体的个数为A.9 B.5C.4 D.33.如图是一零件的三视图,则该零件的表面积为A.15πcm2B.24πcm2C.51πcm2D.66πcm2考向三投影1.根据两种物体的影子判断其是在灯光下还是在阳光下的投影,关键是看这两种物体的顶端和其影子的顶端的连线是平行还是相交,若平行则是在阳光下的投影,若相交则是在灯光下的投影.2.光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终在物体的两侧.3.物体的投影分为中心投影和平行投影.典例3如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是A.①②③④B.④③②①C.④③①②D.②③④①【答案】C【解析】根据平行投影的规律以及电线杆从早到晚影子的指向规律,可知:俯视图的顺序为:④③①②,故选C.【名师点睛】本题主要考查平行投影的规律,掌握“就北半球而言,从早到晚物体影子的指向是:西–西北–北–东北–东”,是解题的关键.4.小明在太阳光下观察矩形木板的影子,不可能是A.平行四边形B.矩形C.线段D.梯形考向四立体图形的展开与折叠正方体展开图口诀:正方体展有规律,十一种类看仔细;中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐;一条线上不过四,田七和凹要放弃;相间之端是对面,间二拐角面相邻.典例4如图是一个正方体的表面展开图,把展开图折叠成正方体后,与标号为1的顶点重合的是A.标号为2的顶点B.标号为3的顶点C.标号为4的顶点D.标号为5的顶点【答案】D【解析】根据正方体展开图的特点得出与标号为1的顶点重合的是标号为5的顶点.故选D.5.如图所示正方体的平面展开图是A.B.C.D.1.如图所示几何体的主视图是A.B.C.D.2.如图的几何体是由五个相同的小正方体组合面成的,从左面看,这个几何体的形状图是A.B.C.D.3.如图是一棵小树一天内在太阳下不同时刻的照片,将它们按时间先后顺序进行排列正确的是A.③—④—①—②B.②—①—④—③C.④—①—②—③D.④—①—③—②4.如图,某一时刻太阳光下,小明测得一棵树落在地面上的影子长为2.8米,落在墙上的影子高为1.2米,同一时刻同一地点,身高1.6米他在阳光下的影子长0.4米,则这棵树的高为A.6.2米B.10米C.11.2米D.12.4米5.如图,(1)是几何体(2)的___________视图.6.如图,某长方体的底面是长为4cm,宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,那么这个长方体的体积等于__________.7.如图是一个正方体的展开图,折叠成正方体后与“创”字相对的一面上的字是__________.8.一个几何体由12个大小相同的小正方体搭成,从上面看到的这个几何体的形状图如图所示,若小正方形中的数字表示在该位置小正方体的个数,则从正面看,一共能看到________个小正方体(被遮挡的不计).9.画出如图所示物体的主视图、左视图、俯视图.10.【山东省威海市乳山市2019–2020学年九年级上学期期末数学试题】数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.1.如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为A.B.C.D.2.某几何体的俯视图如图所示,图中数字表示该位置上的小正方体的个数,则这个几何体的主视图是A.B.C.D.3.如图是一个几何体的三视图,则这个几何体是A.三棱锥B.圆锥C.三棱柱D.圆柱4.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为A.B.C.D.5.如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是A.B.C.D.6.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同7.图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x8.如图是由一个长方体和一个球组成的几何体,它的主视图是A.B.C.D.9.下列四个几何体中,主视图为圆的是A.B.C.D.10.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是A.B.C.D.11.如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变12.某个几何体的三视图如图所示,该几何体是A.B.C.D.13.下列哪个图形是正方体的展开图A.B.C.D.14.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是A.B.C.D.15.在如图所示的几何体中,其三视图中有矩形的是_________.(写出所有正确答案的序号)16.如图是一个多面体的表面展开图,如果面F 在前面,从左面看是面B ,那么从上面看是面__________.(填字母)17.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为__________.1.【答案】D【解析】根据题意得:几何体的俯视图为,故选C .【名师点睛】此题考查了简单组合体的三视图,熟练掌握几何体三视图的画法是解本题的关键.2.【答案】C【解析】从主视图看第一列有两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列有一个,说明俯视图中的右边一列有一个正方体,所以此几何体共有4个正方体.故选C.3.【答案】B【解析】由三视图知,该几何体是底面半径为3cm、高为4cm的圆锥体,则该圆锥的母线长为(cm),∴该零件的表面积为π•32+12•(2π•3)•5=9π+15π=24π(cm2),故选B.4.【答案】D【解析】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子为线段,D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等,∴得到投影不可能是梯形,故该选项符合题意,故选D.【名师点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.灵活运用平行投影的性质是解题的关键.5.【答案】B1.【答案】C【解析】从正面看,共有两列,第一列有两个小正方形,第二列有一个小正方形,在下方,只有选项C符合,故答案选择C.【名师点睛】本题考查的是三视图,比较简单,需要熟练掌握三视图的画法.2.【答案】D【解析】从左边看第一层是两个小正方形,第二层左边一个小正方形,故选D【名师点睛】本题考查了简单几何体的三视图,从左边看得到的图是左视图.3.【答案】B【解析】众所周知,影子方向的变化是上午时朝向西边,中午时朝向北边,下午时朝向东边;影子长短的变化是由长变短再变长,结合方向和长短的变化即可得出答案,故选B【名师点睛】本题主要考查影子的方向和长短变化,掌握影子的方向和长短的变化规律是解题的关键.4.【答案】D【解析】设从墙上的影子的顶端到树的顶端的垂直高度是x米,则1.60.4 2.8x,解得:x=11.2,所以树高=11.2+1.2=12.4(米),故选D.【名师点睛】本题考查的是投影的知识,解本题的关键是正确理解题意、根据同一时刻物体的高度与其影长成比例求出从墙上的影子的顶端到树的顶端的垂直高度.5.【答案】俯【解析】在图中(1)是几何体(2)的俯视图.6.【答案】24cm3【解析】根据题意,得:6×4=24(cm3),因此,长方体的体积是24cm3.故答案为:24cm3.7.【答案】园【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“创”与“园”是相对面.8.【答案】8【解析】一共看到的图形是3列,左边一列看到3个,中间一列看到2个,右边一列看到3个.则一共能看到的小正方体的个数是:3+2+3=8.故答案为:8.9.【解析】主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,据此画出看到的图形如图所示.10.【答案】3.45米【解析】延长DH交BC于点M,延长AD交BC于N.可求 3.4BM =,0.9DM =. 由1.50.92MN =,可得 1.2MN =. ∴ 3.4 1.2 4.6BN =+=. 由1.52 4.6AB =,可得 3.45AB =. 所以,大树的高度为3.45米.【名师点睛】考核知识点:平行投影.弄清平行投影的特点是关键.1.【答案】A【解析】它的俯视图为,故选A .【名师点睛】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键. 2.【答案】B【解析】从正面看去,一共两列,左边有2竖列,右边是1竖列.故选B .【名师点睛】本题考查了由三视图判断几何体,解题的关键是具有几何体的三视图及空间想象能力. 3.【答案】B【解析】由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选B .【名师点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 4.【答案】D【解析】从上面看可得四个并排的正方形,如图所示:,故选D .【名师点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图. 5.【答案】B【解析】该几何体的左视图只有一列,含有两个正方形.故选B .【名师点睛】此题主要考查了简单组合体的三视图,关键是掌握左视图所看的位置.6.【答案】C【解析】图①的三视图为:图②的三视图为:,故选C.【名师点睛】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.7.【答案】A【解析】∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选A.【名师点睛】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.8.【答案】C【解析】几何体的主视图为:,故选C.【名师点睛】此题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.9.【答案】D【解析】A.主视图为正方形,不合题意;B.主视图为长方形,不合题意;C.主视图为三角形,不合题意;D.主视图为圆,符合题意,故选D.【名师点睛】此题考查了简单几何体的三视图,解决此类图的关键是由三视图得到立体图形.10.【答案】C【解析】几何体的俯视图是:,故选C.【名师点睛】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.11.【答案】A【解析】将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变,故选A.【名师点睛】此题主要考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键.12.【答案】D【解析】由三视图可知:该几何体为圆锥.故选D.【名师点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.13.【答案】B【解析】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.【名师点睛】此题主要考查了正方体的展开图,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.14.【答案】B【解析】选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.故选B.【名师点睛】本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.15.【答案】①②【解析】长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【名师点睛】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.16.【答案】E【解析】由题意知,底面是C,左侧面是B,前面是F,后面是A,右侧面是D,上面是E,故答案为:E.【名师点睛】考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.17.【答案】cm2【解析】该几何体是一个三棱柱,底面等边三角形的边长为2 cm,三棱柱的高为3,所以其左视图的面积为cm2),故答案为cm2.【名师点睛】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.。
北师大版-数学-九年级上册-知识归纳-视图与投影
知识归纳:视图与投影一、正确理解五个概念1.投影:物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象.2.平行投影:太阳光可以看成平行光线,像这样的光线所形成的投影称为平行投影.3.中心投影:灯光的光线可以看成是从一点发出的,像这样的光线所形成的投影称为中心投影.4.视点、视线、盲区:人在观察某个区域时,人眼睛的位置称为视点,由视点发出的线称为视线,由于物体的阻隔而看不到的部分称为盲区.5.三视图的规定我们从不同的方向观察同一物体时,可能看到不同的图形.其中,把从正面看到的图形叫做主视图,从左面看到的图形叫做左视图,从上面看到的图形叫做俯视图.二、搞清四个关系1.阳光与影子的关系(1)问题在阳光下的影长与方向随时间的变化而变化,在北半球,早上太阳刚刚从东方升起的时候,物体的影子指向正西方,影子较长;随后影子逐渐指向北方,越来越短;到正午时,物体在阳光下的影子指向正南方,影子最短;下午影子逐渐指向东方,越来越长,到太阳即将从西方落下的时候,影子指向正东方,影子较长.注意:①物体影子的变化实际上是随太阳位置的变化而变化的;②利用不同时刻影子的指向的不同可辨别方向,这是野外活动确定方向的一种重要方法.(2)在同一时刻,不同物体的高度与影子长度的比是相同的.注意:阳光下的影子的这个性质为我们提供了一种测量较高物体高度的一种重要方法,例如,我们要测量一个旗杆的高度,只需在某一时刻测出旗杆的影长,即可利用上述的比例关系算出旗杆的高度.2.灯光与影子的关系(1)在某个灯光下固定物体的影长与方向是一定的,对路灯而言,移动的物体离路灯越近,影子越短,离路灯越远,影子越长.(2)在灯光下,不同位置的物体,影子的长短和方向都是不同的,但是任何一个物体上一点与其影子上对应的连线一定经过光源所在的点.注意:由于两条直线确定一个点,所以我们只要知道了同一灯光下两个不同物体及它们的影子的特点确定这个影子是在灯光下的还是在阳光下的.3.平行投影与视图的关系物体的视图实际上就是该物体在某一平行光线照射下在平面上的投影,不同的视图只是光线照射的方向不同.4.画三视图的规律画三视图时,首先确定主视图的位置,画出主视图,然后在主视图的下面画出俯视图,在主视图的右面画出左视图.主视图反映物体的 和 ,俯视图反映物体的 和 ,左视图反映物体的 和 .因此,画三视图时,主、俯视图要长对正,主、左视图要高平齐,左、俯视图要宽相等.看得见部分的轮廊线通常画成实线,看不见部分的轮廊线通常画成虚线.三、正确地进行区分和观察1.会区分同一物体在阳光下的影子与在灯光下的影子由上述的阳光与影子的关系及灯光与影子的关系可知,物体在灯光与阳光下的影子有较大的区别,所以我们可以根据物体影子的特点确定这个影子是在灯光下的还是阳光下的.2.观测区域的选择问题人在观察某个区域时,经常营业员要观察的部分落在盲区内而看不到,这时人们需要做的就是根据需要改变观测的地点(即改变视点的位置),以求达到最好的观测效果.注意:在实际的观测中,我们要根据不同的需要来选择合理的观测点(视点).四、典例剖析例1.用小立方块搭一个几何体,使得它的主视图和俯视图如图,这样的几何体只有一种吗?它最少需要多少个小立方块?最多需要多少个小立方块?分析:根据主视图第一列有3个小立方块,可以判断,俯视图中,第一列的最大数字是3,第二列有2个小立方块,第二列的最大数字是2;第三列有1个小立方块,第二列的最大数字是1,如右图所示:①空余格内每格至少为1,因此,最少需要3+2+1+1+1+1+1=10个小立方块;②空余格内第一列两格至多为3,第二列2格至多为2.因此最多需要1+3+3+3+2+2+2=16个小立方块.解:这样的几何体不唯一,它最少需要10个小立方块,最多需要16个小立方块.主视图 俯视图点评:本题主要考查从不同角度观察物体形状的能力、构建实物模型的能力,符合《课程标准》中指出的,能辨认从不同方位看物体的形状与相对位置.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节视图与投影
,怀化七年中考命题规律)
考查.
,怀化七年中考真题及模拟) 视图的识别与相关计算(4次)
1.(2015怀化中考)如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是()
A.仅有甲和乙相同B.仅有甲和丙相同
C.仅有乙和丙相同D.甲、乙、丙都相同
2.(2014怀化中考)下列物体的主视图是圆的是()
,A),B),C),D)
3.(2010怀化中考)长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是()
A.4m2B.12m2C.1m2D.3m2
4.(2009怀化中考)如图,这是一个正三棱柱,则它的俯视图为()
,A),B),C),D)
5.(2015怀化二模)如图所示,几何体是由一些正方体组合而成的立体图形,则这个几何体的主视图是() ,A),B),C),D)
6.(2015怀化学业考试指导)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()
A.2 B.3 C.5 D.10
(第6题图)
(第7题图)
7.(2015会同模拟)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是()
A.20 B.22 C.24 D.26
8.(2015沅陵模拟)如图是某几何体的三视图,则该几何体的体积是()
A.18 3 B.54 3
C.108 3 D.216 3
9.(2015洪江模拟)如图,图1是一个底面为正方形的直棱柱,现将图1切割成图2的几何体,则图2的俯视图是()
,A),B),C),D)
10.(2015中方模拟)由一些大小相同的小正方体组成的几何体的主视图和俯视图如图所示,那么组成该几何体所需小正方体的个数最少为________.
,中考考点清单)
平行投影由平行光线照射在物体上所形成的投影,叫做平行投影
中心投影由一点射出的光线照射在物体上所形成的投影,叫做中心投影
几何体的三视图
1.一个几何体的正投影,又叫做这个几何体的视图.从正面得到的视图叫做主视图,从上面得到的视图叫做俯视图,从左面得到的视图叫做左视图.
2.三种视图的关系
(1)主视图可反映出物体的长和高,俯视图可反映出物体的长和宽,左视图可反映出物体的高和宽.
(2)在画三视图时,主、俯视图要长对正,主、左视图要高平齐,俯、左视图要宽相等,看得见的轮廓线要画成实线,看不见的轮廓线要画成虚线.
3
几何体主视图左视图俯视图
4.
2.由部分特殊图确定出实物的形状和结构.
立体图形的展开与折叠
5常见几何体
图示(
选其一种
)
一四一型
二三一型
三三型
二二二型
【警示】如下面2个图形:
图①与图②两种形式不是正方体的表面展开图.
7.立体图形的折叠
一个几何体能展开成一个平面图形,这个平面图形就可以折叠成相应的几何体,展开与折叠是一个互逆的过程.
,中考重难点突破)
几何体的三视图
【例1】(2015金华中考)一个几何体的三视图如图所示,那么这个几何体是( )
,A),B),C),D)
1.(2015怀化模拟)如图是由若干个小正方体堆成的几何体的主视图(正视图),则这个几何体是()
,A),B)
,C) ,D)
立体图形的有关计算
【例2】(2015扬州中考)如图,这是一个长方体的主视图和俯视图,由图示数据(单位:cm)可以得出该长方体的体积是________cm3.
【解析】观察其视图知:该几何体为长方体,且长方体的长为3,宽为2,高为3,故其体积为:3×3×2=18.
【学生解答】
2.(2014会同模拟)如图,是一个几何体的三视图,则这个几何体的侧面积是________cm2.
图形的展开与折叠
【例3】一个正方体的每个面分别标有数字1,2,3,4,5,6.根据如图中该正方体①、②、③三种状态所显示的数字,可推出“?”处的数字是()
A.1B.2C.3D.4
【解析】根据图①、②可知,数字4的对面是数字2,根据图③:数字5和数字3相邻,则可推出图①中数字1和数字3相对,“?”面即为图①顺时针旋转90°所得,即“?”面为数字4.
【学生解答】
3.(2015漳州中考)如下左图是一个长方体包装盒,则它的平面展开图是()
,A),B),C),D)
4.(2015菏泽中考)下列图形中,能通过折叠围成一个三棱柱的是()
,A),B),C),D)
5.(2014汕尾中考)如图是一个正方体展开图,把展开图折叠成正方体后,与“你”字一面相对的面上的字是()
A.我B.中C.国D.梦
,(第5题图)),(第6题图))
6.(2015河南中考)如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是()
A.1 B.4 C.5 D.6
7.(2015温州中考)下列各图中,经过折叠能围成正方体的是()
,A) ,B)
,C) ,D)
8.(2014随州中考)如图是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体的容积是(包装材料厚度不计)()
A.40×40×70 B.70×70×80 C.80×80×40 D.40×70×80。