毕 业 设 计论文

合集下载

计算机毕业论文及设计

计算机毕业论文及设计
计算机毕业论文及设计
计算机毕业生培养方案的必修环节01 论文写作03源自完成环节 05 写作指导目录
02 论文构成 04 基本步骤 06 论文答辩
即全日制本科高校计算机专业毕业生在毕业前写的论文以及设计创作出来的相关实体。毕业论文与设计是评 判一个毕业生是否达到毕业条件的重要指标,同时也是其是否能获得学位的基本依据。
完成环节
一.实践环节 1、计算机专业实践环节形式:毕业设计 2、毕业论文实践环节应注意的事项 (1)、“毕业论文”实践环节在全部毕业学分中占有一定学分; (2)、“毕业论文”实践环节从起步到毕业答辩结束历时至少4周以上; (3)、“毕业论文”实践环节包括两部分内容:① 完成“毕业论文”所开发的应用程序;② 针对所开发 的应用程序书写“毕业论文”说明书(即论文); 3、毕业论文实践环节应先完成的工作在毕业论文实践环节之前,应向有关主管设计工作的单位或老师上报如 下材料: (1)《毕业论文实践环节安排意见》(包括领导小组名单,毕业班专业、级别、性质、工作计划安排、实践 环节工作步骤,指导教师名单,学生分组名单)、 (2)《毕业论文(论文)审批表》一式两份(要求认真审核、填写指导教师资格,包括职称、从事专业、有
基本步骤
1.确定毕业设计论文的课题 选题是毕业设计论文的关健。一个良好的课题,能强化理论知识及实践技能,使学生充分发挥其创造力,圆 满地完成毕业设计。毕业设计的课题可从以下几个方面综合考虑: (1)有利于综合学生所学知识。 (2)能结合学科特点。 (3)尽可能联系实际。 (4)有一定的应用价值。 根据以上要求,可以考虑从下面一些角度挖掘课题: (1)学科教学的延伸。例如:结合电气控制线路,要求学生设计机械动力头控制电路并安装调试。结合数字 电路进行逻辑电路的设计与装接。 (2)多学科的综合。结合某专业学科确定一个综合课题,假如课题较大,可分解为几个子课题,交由不同的 小组完成,最后再整合成一个完整的课题。例如,机电专业可设计以下课题:大型城市的交通信号灯指示。

本科毕业论文(设计)写作规范

本科毕业论文(设计)写作规范

宝鸡文理学院本科毕业论文(设计)写作规范(试行)毕业论文(设计)(以下简称“论文”)写作是本科教学的重要环节,旨在培养本科生的创新意识及其发现问题、分析问题和解决问题的能力。

为进一步规范论文撰写,保证论文质量,特制定本写作规范,请参照执行。

一、论文的基本结构毕业论文(设计)由封面封底、学位论文原创性声明(学位论文知识产权及使用授权声明书)、中英文摘要、关键词、目录、正文、参考文献、致谢和附录等9个部分组成。

文科类论文字数(正文)应在8000字(或4000英文单词)以上;理科类、工科类论文字数(正文)应在5000字以上。

艺术类论文可以创作设计、创作说明相结合,论文字数(正文)应在4000字以上。

二、各部分具体要求1.封面论文封面封底采用全校统一格式(学校统一印发)。

内容包括题目、姓名、学号、学院、专业班级、指导教师等基本信息。

论文题目应既能概括整个论文的中心内容,又能引人注目。

论文题目字数不得超过25个汉字。

封面打印要求:论文题目用四号黑体加粗、居中、1.5倍行距、段前段后0行;其余部分均使用四号楷体_GB2312、居中、1.5倍行距、段前段后0行。

2.学位论文原创性声明(学位论文知识产权及使用授权声明书)学位论文原创性声明和学位论文知识产权及使用授权声明书,打印格式:首行缩进2字符、小四号宋体,1.5倍行距;段前段后均为0行。

必须学生和导师本人签字。

3.摘要(中、英文)摘要是全篇论文的缩影,应具有独立性和自明性,要求能够体现论文的基本结构和主要观点。

着重叙述结论和结果。

摘要的篇幅应限制在300~500字。

中文摘要的撰写要简明、扼要、完整,只表示新情况、新内容,过去的研究细节可取消,未来的研究计划不要纳入摘要,取消或尽量减少背景信息。

中文摘要正文主要包括如下四部分内容:①论文研究的目的和重要性;②研究的内容及方法;③获得的基本结论;④主要研究成果。

“摘要:”采用左顶格、小四号黑体加粗、中间空两格,冒号同前;中文摘要正文采用小四号宋体,1.5倍行距,两端对齐,段前段后均为0行。

计量专业毕业论文(5篇)

计量专业毕业论文(5篇)

计量专业毕业论文(5篇)第一篇:计量专业毕业论文计量专业的研究是促进计量学科不断发展的关键。

下面就随小编一起去阅读计量专业毕业论文,相信能带给大家启发。

计量专业毕业论文一摘要:用电稽查工作在供电企业运营中是极为重要的工作环节。

供电企业需要以用电稽查来维护良好的供电秩序,对用电过程进行监督管理,防治偷漏电情况发生。

随着社会不断发展,经济增长推动了用电量的增加,偷电的情况较之以往更多也更有技术性。

供电企业需要将电能计量技术运用于用电稽查工作当中,提高营销人员的技术能力,避免点电量流失。

关键词:电能计量;用电稽查;应用随着当前社会经济不断发展你,对于电能的需求量不断提升,也让能源紧缺成为了当前国民都非常重视的问题。

为了满足经济发展的需要,电力企业要不断提高自身的技术能力,减少资源浪费,提高资源利用率。

电力企业要加强电能计量技术在用电稽查工作中的运用,防止偷电行为发生,改善电力营销工作中存在的漏洞,保证用电稽查科学合理,准确度高。

一、电能计量技术的涵义电能计量技术的发展关系到电力生产,营销以及整个电网顺利运行,是电力企业要不断提升的重要技术环节。

从电力企业发电到电网传输,到人们生产生活用电,各个环节都需要运用到电能计量技术,保证电能准确测量。

电能计量技术目前已经运用信息技术,实现了数字化测量,并且可以通过设备进行远程控制。

在当前科技发展的支持下,电能计量技术的精准度较高,灵敏度提高,测量稳定性也不断加强。

过去的电能计量工作,由人工进行,人为因素干扰较多,运用远程控制技术之后,能够集中搜集电表数据,有效防止偷电行为。

在用电稽查工作中,电能计量技术的重要作用主要表现在以下方面:首先是数字化技术保证了电能计量技术的可靠性,运用数字化技术进行电能计量,保证了用电稽查准确度高;其次是运用远程控制技术帮助用电稽查,抄表不再需要人工进行,后方监督即可,迅速发现违章用电行为并进行定位和纠正。

二、当前用电稽查工作常见的问题电力企业要加强用电管理工作,采用用电稽查保证生产生活用电的有序进行,减少资源浪费,保障用电安全,对于违法用电行为及时查明处理,促进用电工作的正常有序,合理进行。

毕业设计论文选题报告撰写要求

毕业设计论文选题报告撰写要求

毕业设计选题要求●物理学专业:由学生结合实习单位物理教学热点、难点和教材等问题,与指导教师一道进行商定。

●电子信息类专业:测控技术与仪器、电子信息科学与技术专业选题要求如下:一、选题原则1.毕业设计题目应满足本专业培养目标的基本要求。

体现专业基础理论、基本知识和基本技能的容,使学生得到全面、综合的训练。

毕业设计容必须符合本专业的培养目标,尽量涵盖本专业的主干课程(3门及以上)或专业研究方向,从而有利于学生综合、巩固和吸收四年来所学的知识,达到灵活运用所学知识的目的。

并在一定程度上符合学科的发展趋势。

符合工程技术应用型人才的培养要求,提倡学生自己选择电子类产品设计开发的题目。

2.毕业设计题目应与生产、科研和教学相结合,具有一定的理论意义和实际应用价值。

提倡老师和学生结合本专业的情况,选择与生产过程有关的技术革新、技术改造的题目,包括电子技术、控制系统、检测等设计容。

鼓励教师学生将新技术、新工艺、新方法应用于生产实际中的题目。

选择与学生就业相结合的课题,鼓励学生自定毕业设计题目。

提倡不同专业(学科)互相结合,扩大专业面,开阔学生眼界,实现学科之间的互相渗透。

在满足教学基本要求的前提下,尽可能地结合生产、科研和实验室建设的实际任务。

3.毕业设计题目难易程度应适中、工作量要适当。

既要满足教学基本要求,又要培养学生综合运用所学知识分析解决实际问题的能力,同时留有创造发挥的余地。

学生在指导教师的指导下经过努力能够在规定的设计期限完成任务。

对于结合生产和科研实际的较为复杂的题目,要求取得阶段性成果。

4.毕业设计题目体现因材施教原则。

对理论知识和基本技能掌握不足的学生应安排以基本工程技术训练为主的课题,对于成绩优秀的学生安排具有一定难度的综合性课题,达到因材施教的目的。

5.充分调查市场需求,防止闭门造车,劳而无功。

要求学生选题尽量与企业生产实际接轨。

二、选题类型1.工程设计型:包括提出新建工程的设计方案;提出对现有工程实际的扩建方案;提出对现有工程实际的改进方案。

华中科技大学毕业设计论文

华中科技大学毕业设计论文

95.06 95.45 95.39
-65.67 -65.36 -65.41
-69.381 -69.588 -69.552
85.554 85.905 85.851
-74.27 -73.99 -74.04
2 -77.29 95.4 -65.40 -69.561 85.86
-74.03
1 -72.56 93.1 -68.92 -65.304 83.79
7 主楼电算 ....................................................... 168
7.1 PKPM 电算 ................................................... 168 7.2 电算、手算结果比较与分析 .................................... 177 7.3 基础设计荷载 ................................................ 183 7.4 BIS 隔震设计分析 ............................................ 184
5
-3.25 3.25
4
-4.26 4.26
3
-4.11 4.11
2
-4.13 4.13
1
-4.57 4.57
-17.40 -45.19 -15.84 -16.48 -16.74 -16.76 -17.70 -17.40 -45.19 -15.84 -16.48 -16.74 -16.76 -17.70 1.64 5.05 -0.40 0.61 0.47 0.48 0.93
组合前,应将第三章计算得的单项内力加以调整。

毕业设计(论文)工作量的原则要求

毕业设计(论文)工作量的原则要求

---------------------------------------------------------------范文最新推荐------------------------------------------------------ 毕业设计(论文)工作量的原则要求1,软件设计类: 设计说明书:字数在1万以上,软件设计文档包括有效程序软盘,原程序清单,软件设计说明书,软件测试分析报告,项目开发总结等; 文献查阅:10篇以上,翻译与课题有关的外文资料,译文字数3000以上. 2,设计类: 设计说明书:字数在1万以上,工程绘图量折合成图幅为0号图纸2张以上; 文献查阅:10篇以上,翻译与课题有关的外文资料,译文字数3000以上. 3,设计兼实物实做类: 设计说明书:字数在8000以上; 文献查阅:6篇以上,翻译与课题有关的外文资料,译文字数3000以上; 实物:能综合反映其专业水平,具有一定复杂程度的实物制品. 4,毕业论文类: 字数在1.5万以上,查阅文献10篇以上,翻译与课题有关的外文资料,译文字数5000以上.  毕业设计(论文)是教学计划中的一个有机组成部分,是完成专业培养目标的最后一个重要的实践性教学环节。

为了切实做好我校学生的毕业设计(论文)工作,进一步提高我校学生毕业设计(论文)的质量,特制订如下规定。

    第一条   毕业设计(论文)的教学基本要求    1.通过毕业设计(论文)巩固和拓展所学的基本理论和专业知识,培养学生综合应用、独1 / 19立分析和解决实际问题的能力,培养学生的创新意识和创新能力,使学生获得科学研究的基础训练。

2.培养学生正确的设计思想、理论联系实际的工作作风和严谨的工作态度。

设计类毕业论文范文

设计类毕业论文范文

设计类毕业论文范文【篇一:毕业论文范文(艺术类)】都大学(空一格,行距:单倍行距)(空四格,行距:单倍行距)题目:浅论居室空间的色彩运用学院:美术学院专业、年级:艺术设计专业2005 级4 班(环境艺术方向)姓名:学号:指导教师:职称:完成时间:年月日成都大学学士学位论文(设计)声明本人声明所呈交的设计作品及论文是本人在指导教师指导下进行的研究工作及取得的研究成果。

据我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得成都大学或其他教育机构的学位或证书而使用过的材料。

与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确说明并表示谢意。

本设计及论文成果是本人在成都大学读书期间在指导教师指导下取得的,设计及论文成果归成都大学所有,特此声明。

学生签名:指导教师签名:具、装饰物品或日常生活用品都带有色彩。

因此要对他们进行统一,使他们能在同一色调上进行细微的变化,达到和谐的效果。

色彩的运用会受到人的年龄、性别等各种因素的影响,而人的心理感受及联想与色彩的关系问题也是息息相关的。

色彩还能造成不同的空间感,每个房间都不可能单独存在一种色调,不同的区域对色彩的要求也不一样。

房间布臵时应选择适合的“快乐”色彩,会有助于下班回到家里后松弛紧张的神经,觉客厅、卧室,有时也会因居住者秉性不同而有差异。

(空一格):色彩;空间;心理;关系utilization (空一行)room places the furniture, the decoration goods or the daily life thing all have the color. therefore must carry on the unification to them, enables them to carry on the slight change in the identical tone, achieves the harmonious effect. the color utilization can receive humans age, the sex and so on each kind of factor influence, but humans psychological feeling and the association and the color relational question also is closely linked.the color also cancreate the different sense of space, each room is all impossible alone to have one kind of tone, the different region is dissimilar to the color request. when room arrangement should choose suitably #8220;joyful#8221; the color, can be helpful after gets off work gets in the home to relax the tense nerve, thought the relaxation is comfortable.the different room function is different, the color should not be same; is the same function room, like is similarly the living difference differently. (空一格)color ;space ;34 1 章前…6 2章XXXX ......................................................……… 6 、室内色调的分类和色彩的三要素…………………………………… .......................... 1 1.1室内色调的分类....................................... (1)1.2 色彩的三要素……………………………………………………………………… 1 3章结论 (8)【篇二:广告艺术设计毕业论文范文】广告艺术设计毕业论文范文摘要:我国现行学科分类是长期受计划经济模式影响的产物,既缺乏科学依据又层次混乱。

本科生毕业论文(设计)管理办法

本科生毕业论文(设计)管理办法

本科生毕业论文(设计)管理办法第一章总则第一条根据《教育部关于狠抓新时代全国高等学校本科教育工作会议精神落实的通知》(教高函〔2018〕8 号)、《教育部关于深化本科教育教学改革全面提高人才培养质量的意见》(教高〔2019〕6 号)、《关于严厉查处高等学校学位论文买卖、代写行为的通知》(教督厅函〔2018〕6号)等文件,为进一步规范本科毕业论文(设计)各环节的工作,保证本科毕业论文(设计)工作顺利进行,提高本科毕业论文(设计)质量,结合学校实际,制定本办法。

第二条毕业论文(设计)是本科人才培养的重要组成部分,是本科教学中重要的实践教学环节,是学生在掌握专业知识、技能和平时科研训练的基础上所进行的系统、综合的研究与训练活动,是本科学习阶段的最后总结和对本科人才培养质量的一种全面检验。

第二章组织管理机构与职责第三条毕业论文(设计)工作在分管校长的统一领导下进行,以院(部)、系(教研室)为主体,实行教务处、院(部)、系(教研室)三级管理,开展毕业论文(设计)管理和质量监控工作。

第四条教务处代表学校进行宏观管理和协调,负责组织、管理、指导与统筹全校毕业论文(设计)工作。

制定毕业论文(设计)的规章制度、工作计划和工作总体进度,汇总毕业论文(设计)题目和指导教师以及指导学生的名单,指导毕业论文(设计)工作全过程,统筹工作进度,组织评选校级优秀毕业论文(设计)。

第五条院(部)成立由院长(主任)任组长的毕业论文(设计)工作领导小组,负责毕业论文(设计)的组织、实施、协调和质量监控。

贯彻执行学校有关规定与工作要求,结合各专业的培养目标和特点,拟订具体工作计划和实施方案,做好拟题、审题工作,负责指导教师的筛选审查,进行师生动员,组织学生选题并落实工作任务,组织毕业论文(设计)初期、中期、末期工作抽查,开展学术不端论文查重、答辩资格审查、毕业论文(设计)答辩及成绩评定工作,完成相关材料的汇总与统计,撰写工作总结,进行相关资料整理归档工作,完成指导教师考核,初审并推荐校级优秀毕业论文(设计)。

毕业设计论文塑料注射成型

毕业设计论文塑料注射成型

Modeling of morphology evolution in the injection moldingprocess of thermoplastic polymersR.Pantani,I.Coccorullo,V.Speranza,G.Titomanlio* Department of Chemical and Food Engineering,University of Salerno,via Ponte don Melillo,I-84084Fisciano(Salerno),Italy Received13May2005;received in revised form30August2005;accepted12September2005AbstractA thorough analysis of the effect of operative conditions of injection molding process on the morphology distribution inside the obtained moldings is performed,with particular reference to semi-crystalline polymers.The paper is divided into two parts:in the first part,the state of the art on the subject is outlined and discussed;in the second part,an example of the characterization required for a satisfactorily understanding and description of the phenomena is presented,starting from material characterization,passing through the monitoring of the process cycle and arriving to a deep analysis of morphology distribution inside the moldings.In particular,fully characterized injection molding tests are presented using an isotactic polypropylene,previously carefully characterized as far as most of properties of interest.The effects of both injectionflow rate and mold temperature are analyzed.The resulting moldings morphology(in terms of distribution of crystallinity degree,molecular orientation and crystals structure and dimensions)are analyzed by adopting different experimental techniques(optical,electronic and atomic force microscopy,IR and WAXS analysis).Final morphological characteristics of the samples are compared with the predictions of a simulation code developed at University of Salerno for the simulation of the injection molding process.q2005Elsevier Ltd.All rights reserved.Keywords:Injection molding;Crystallization kinetics;Morphology;Modeling;Isotactic polypropyleneContents1.Introduction (1186)1.1.Morphology distribution in injection molded iPP parts:state of the art (1189)1.1.1.Modeling of the injection molding process (1190)1.1.2.Modeling of the crystallization kinetics (1190)1.1.3.Modeling of the morphology evolution (1191)1.1.4.Modeling of the effect of crystallinity on rheology (1192)1.1.5.Modeling of the molecular orientation (1193)1.1.6.Modeling of theflow-induced crystallization (1195)ments on the state of the art (1197)2.Material and characterization (1198)2.1.PVT description (1198)*Corresponding author.Tel.:C39089964152;fax:C39089964057.E-mail address:gtitomanlio@unisa.it(G.Titomanlio).2.2.Quiescent crystallization kinetics (1198)2.3.Viscosity (1199)2.4.Viscoelastic behavior (1200)3.Injection molding tests and analysis of the moldings (1200)3.1.Injection molding tests and sample preparation (1200)3.2.Microscopy (1202)3.2.1.Optical microscopy (1202)3.2.2.SEM and AFM analysis (1202)3.3.Distribution of crystallinity (1202)3.3.1.IR analysis (1202)3.3.2.X-ray analysis (1203)3.4.Distribution of molecular orientation (1203)4.Analysis of experimental results (1203)4.1.Injection molding tests (1203)4.2.Morphology distribution along thickness direction (1204)4.2.1.Optical microscopy (1204)4.2.2.SEM and AFM analysis (1204)4.3.Morphology distribution alongflow direction (1208)4.4.Distribution of crystallinity (1210)4.4.1.Distribution of crystallinity along thickness direction (1210)4.4.2.Crystallinity distribution alongflow direction (1212)4.5.Distribution of molecular orientation (1212)4.5.1.Orientation along thickness direction (1212)4.5.2.Orientation alongflow direction (1213)4.5.3.Direction of orientation (1214)5.Simulation (1214)5.1.Pressure curves (1215)5.2.Morphology distribution (1215)5.3.Molecular orientation (1216)5.3.1.Molecular orientation distribution along thickness direction (1216)5.3.2.Molecular orientation distribution alongflow direction (1216)5.3.3.Direction of orientation (1217)5.4.Crystallinity distribution (1217)6.Conclusions (1217)References (1219)1.IntroductionInjection molding is one of the most widely employed methods for manufacturing polymeric products.Three main steps are recognized in the molding:filling,packing/holding and cooling.During thefilling stage,a hot polymer melt rapidlyfills a cold mold reproducing a cavity of the desired product shape. During the packing/holding stage,the pressure is raised and extra material is forced into the mold to compensate for the effects that both temperature decrease and crystallinity development determine on density during solidification.The cooling stage starts at the solidification of a thin section at cavity entrance (gate),starting from that instant no more material can enter or exit from the mold impression and holding pressure can be released.When the solid layer on the mold surface reaches a thickness sufficient to assure required rigidity,the product is ejected from the mold.Due to the thermomechanical history experienced by the polymer during processing,macromolecules in injection-molded objects present a local order.This order is referred to as‘morphology’which literally means‘the study of the form’where form stands for the shape and arrangement of parts of the object.When referred to polymers,the word morphology is adopted to indicate:–crystallinity,which is the relative volume occupied by each of the crystalline phases,including mesophases;–dimensions,shape,distribution and orientation of the crystallites;–orientation of amorphous phase.R.Pantani et al./Prog.Polym.Sci.30(2005)1185–1222 1186R.Pantani et al./Prog.Polym.Sci.30(2005)1185–12221187Apart from the scientific interest in understandingthe mechanisms leading to different order levels inside a polymer,the great technological importance of morphology relies on the fact that polymer character-istics (above all mechanical,but also optical,electrical,transport and chemical)are to a great extent affected by morphology.For instance,crystallinity has a pro-nounced effect on the mechanical properties of the bulk material since crystals are generally stiffer than amorphous material,and also orientation induces anisotropy and other changes in mechanical properties.In this work,a thorough analysis of the effect of injection molding operative conditions on morphology distribution in moldings with particular reference to crystalline materials is performed.The aim of the paper is twofold:first,to outline the state of the art on the subject;second,to present an example of the characterization required for asatisfactorilyR.Pantani et al./Prog.Polym.Sci.30(2005)1185–12221188understanding and description of the phenomena, starting from material description,passing through the monitoring of the process cycle and arriving to a deep analysis of morphology distribution inside the mold-ings.To these purposes,fully characterized injection molding tests were performed using an isotactic polypropylene,previously carefully characterized as far as most of properties of interest,in particular quiescent nucleation density,spherulitic growth rate and rheological properties(viscosity and relaxation time)were determined.The resulting moldings mor-phology(in terms of distribution of crystallinity degree, molecular orientation and crystals structure and dimensions)was analyzed by adopting different experimental techniques(optical,electronic and atomic force microscopy,IR and WAXS analysis).Final morphological characteristics of the samples were compared with the predictions of a simulation code developed at University of Salerno for the simulation of the injection molding process.The effects of both injectionflow rate and mold temperature were analyzed.1.1.Morphology distribution in injection molded iPP parts:state of the artFrom many experimental observations,it is shown that a highly oriented lamellar crystallite microstructure, usually referred to as‘skin layer’forms close to the surface of injection molded articles of semi-crystalline polymers.Far from the wall,the melt is allowed to crystallize three dimensionally to form spherulitic structures.Relative dimensions and morphology of both skin and core layers are dependent on local thermo-mechanical history,which is characterized on the surface by high stress levels,decreasing to very small values toward the core region.As a result,the skin and the core reveal distinct characteristics across the thickness and also along theflow path[1].Structural and morphological characterization of the injection molded polypropylene has attracted the interest of researchers in the past three decades.In the early seventies,Kantz et al.[2]studied the morphology of injection molded iPP tensile bars by using optical microscopy and X-ray diffraction.The microscopic results revealed the presence of three distinct crystalline zones on the cross-section:a highly oriented non-spherulitic skin;a shear zone with molecular chains oriented essentially parallel to the injection direction;a spherulitic core with essentially no preferred orientation.The X-ray diffraction studies indicated that the skin layer contains biaxially oriented crystallites due to the biaxial extensionalflow at theflow front.A similar multilayered morphology was also reported by Menges et al.[3].Later on,Fujiyama et al.[4] investigated the skin–core morphology of injection molded iPP samples using X-ray Small and Wide Angle Scattering techniques,and suggested that the shear region contains shish–kebab structures.The same shish–kebab structure was observed by Wenig and Herzog in the shear region of their molded samples[5].A similar investigation was conducted by Titomanlio and co-workers[6],who analyzed the morphology distribution in injection moldings of iPP. They observed a skin–core morphology distribution with an isotropic spherulitic core,a skin layer characterized by afine crystalline structure and an intermediate layer appearing as a dark band in crossed polarized light,this layer being characterized by high crystallinity.Kalay and Bevis[7]pointed out that,although iPP crystallizes essentially in the a-form,a small amount of b-form can be found in the skin layer and in the shear region.The amount of b-form was found to increase by effect of high shear rates[8].A wide analysis on the effect of processing conditions on the morphology of injection molded iPP was conducted by Viana et al.[9]and,more recently, by Mendoza et al.[10].In particular,Mendoza et al. report that the highest level of crystallinity orientation is found inside the shear zone and that a high level of orientation was also found in the skin layer,with an orientation angle tilted toward the core.It is rather difficult to theoretically establish the relationship between the observed microstructure and processing conditions.Indeed,a model of the injection molding process able to predict morphology distribution in thefinal samples is not yet available,even if it would be of enormous strategic importance.This is mainly because a complete understanding of crystallization kinetics in processing conditions(high cooling rates and pressures,strong and complexflowfields)has not yet been reached.In this section,the most relevant aspects for process modeling and morphology development are identified. In particular,a successful path leading to a reliable description of morphology evolution during polymer processing should necessarily pass through:–a good description of morphology evolution under quiescent conditions(accounting all competing crystallization processes),including the range of cooling rates characteristic of processing operations (from1to10008C/s);R.Pantani et al./Prog.Polym.Sci.30(2005)1185–12221189–a description capturing the main features of melt morphology(orientation and stretch)evolution under processing conditions;–a good coupling of the two(quiescent crystallization and orientation)in order to capture the effect of crystallinity on viscosity and the effect offlow on crystallization kinetics.The points listed above outline the strategy to be followed in order to achieve the basic understanding for a satisfactory description of morphology evolution during all polymer processing operations.In the following,the state of art for each of those points will be analyzed in a dedicated section.1.1.1.Modeling of the injection molding processThefirst step in the prediction of the morphology distribution within injection moldings is obviously the thermo-mechanical simulation of the process.Much of the efforts in the past were focused on the prediction of pressure and temperature evolution during the process and on the prediction of the melt front advancement [11–15].The simulation of injection molding involves the simultaneous solution of the mass,energy and momentum balance equations.Thefluid is non-New-tonian(and viscoelastic)with all parameters dependent upon temperature,pressure,crystallinity,which are all function of pressibility cannot be neglected as theflow during the packing/holding step is determined by density changes due to temperature, pressure and crystallinity evolution.Indeed,apart from some attempts to introduce a full 3D approach[16–19],the analysis is currently still often restricted to the Hele–Shaw(or thinfilm) approximation,which is warranted by the fact that most injection molded parts have the characteristic of being thin.Furthermore,it is recognized that the viscoelastic behavior of the polymer only marginally influences theflow kinematics[20–22]thus the melt is normally considered as a non-Newtonian viscousfluid for the description of pressure and velocity gradients evolution.Some examples of adopting a viscoelastic constitutive equation in the momentum balance equations are found in the literature[23],but the improvements in accuracy do not justify a considerable extension of computational effort.It has to be mentioned that the analysis of some features of kinematics and temperature gradients affecting the description of morphology need a more accurate description with respect to the analysis of pressure distributions.Some aspects of the process which were often neglected and may have a critical importance are the description of the heat transfer at polymer–mold interface[24–26]and of the effect of mold deformation[24,27,28].Another aspect of particular interest to the develop-ment of morphology is the fountainflow[29–32], which is often neglected being restricted to a rather small region at theflow front and close to the mold walls.1.1.2.Modeling of the crystallization kineticsIt is obvious that the description of crystallization kinetics is necessary if thefinal morphology of the molded object wants to be described.Also,the development of a crystalline degree during the process influences the evolution of all material properties like density and,above all,viscosity(see below).Further-more,crystallization kinetics enters explicitly in the generation term of the energy balance,through the latent heat of crystallization[26,33].It is therefore clear that the crystallinity degree is not only a result of simulation but also(and above all)a phenomenon to be kept into account in each step of process modeling.In spite of its dramatic influence on the process,the efforts to simulate the injection molding of semi-crystalline polymers are crude in most of the commercial software for processing simulation and rather scarce in the fleur and Kamal[34],Papatanasiu[35], Titomanlio et al.[15],Han and Wang[36],Ito et al.[37],Manzione[38],Guo and Isayev[26],and Hieber [25]adopted the following equation(Kolmogoroff–Avrami–Evans,KAE)to predict the development of crystallinityd xd tZð1K xÞd d cd t(1)where x is the relative degree of crystallization;d c is the undisturbed volume fraction of the crystals(if no impingement would occur).A significant improvement in the prediction of crystallinity development was introduced by Titoman-lio and co-workers[39]who kept into account the possibility of the formation of different crystalline phases.This was done by assuming a parallel of several non-interacting kinetic processes competing for the available amorphous volume.The evolution of each phase can thus be described byd x id tZð1K xÞd d c id t(2)where the subscript i stands for a particular phase,x i is the relative degree of crystallization,x ZPix i and d c iR.Pantani et al./Prog.Polym.Sci.30(2005)1185–1222 1190is the expectancy of volume fraction of each phase if no impingement would occur.Eq.(2)assumes that,for each phase,the probability of the fraction increase of a single crystalline phase is simply the product of the rate of growth of the corresponding undisturbed volume fraction and of the amount of available amorphous fraction.By summing up the phase evolution equations of all phases(Eq.(2))over the index i,and solving the resulting differential equation,one simply obtainsxðtÞZ1K exp½K d cðtÞ (3)where d c Z Pid c i and Eq.(1)is recovered.It was shown by Coccorullo et al.[40]with reference to an iPP,that the description of the kinetic competition between phases is crucial to a reliable prediction of solidified structures:indeed,it is not possible to describe iPP crystallization kinetics in the range of cooling rates of interest for processing(i.e.up to several hundreds of8C/s)if the mesomorphic phase is neglected:in the cooling rate range10–1008C/s, spherulite crystals in the a-phase are overcome by the formation of the mesophase.Furthermore,it has been found that in some conditions(mainly at pressures higher than100MPa,and low cooling rates),the g-phase can also form[41].In spite of this,the presence of different crystalline phases is usually neglected in the literature,essentially because the range of cooling rates investigated for characterization falls in the DSC range (well lower than typical cooling rates of interest for the process)and only one crystalline phase is formed for iPP at low cooling rates.It has to be noticed that for iPP,which presents a T g well lower than ambient temperature,high values of crystallinity degree are always found in solids which passed through ambient temperature,and the cooling rate can only determine which crystalline phase forms, roughly a-phase at low cooling rates(below about 508C/s)and mesomorphic phase at higher cooling rates.The most widespread approach to the description of kinetic constant is the isokinetic approach introduced by Nakamura et al.According to this model,d c in Eq.(1)is calculated asd cðtÞZ ln2ðt0KðTðsÞÞd s2 435n(4)where K is the kinetic constant and n is the so-called Avrami index.When introduced as in Eq.(4),the reciprocal of the kinetic constant is a characteristic time for crystallization,namely the crystallization half-time, t05.If a polymer is cooled through the crystallization temperature,crystallization takes place at the tempera-ture at which crystallization half-time is of the order of characteristic cooling time t q defined ast q Z D T=q(5) where q is the cooling rate and D T is a temperature interval over which the crystallization kinetic constant changes of at least one order of magnitude.The temperature dependence of the kinetic constant is modeled using some analytical function which,in the simplest approach,is described by a Gaussian shaped curve:KðTÞZ K0exp K4ln2ðT K T maxÞ2D2(6)The following Hoffman–Lauritzen expression[42] is also commonly adopted:K½TðtÞ Z K0exp KUÃR$ðTðtÞK T NÞ!exp KKÃ$ðTðtÞC T mÞ2TðtÞ2$ðT m K TðtÞÞð7ÞBoth equations describe a bell shaped curve with a maximum which for Eq.(6)is located at T Z T max and for Eq.(7)lies at a temperature between T m(the melting temperature)and T N(which is classically assumed to be 308C below the glass transition temperature).Accord-ing to Eq.(7),the kinetic constant is exactly zero at T Z T m and at T Z T N,whereas Eq.(6)describes a reduction of several orders of magnitude when the temperature departs from T max of a value higher than2D.It is worth mentioning that only three parameters are needed for Eq.(6),whereas Eq.(7)needs the definition offive parameters.Some authors[43,44]couple the above equations with the so-called‘induction time’,which can be defined as the time the crystallization process starts, when the temperature is below the equilibrium melting temperature.It is normally described as[45]Dt indDtZðT0m K TÞat m(8)where t m,T0m and a are material constants.It should be mentioned that it has been found[46,47]that there is no need to explicitly incorporate an induction time when the modeling is based upon the KAE equation(Eq.(1)).1.1.3.Modeling of the morphology evolutionDespite of the fact that the approaches based on Eq.(4)do represent a significant step toward the descriptionR.Pantani et al./Prog.Polym.Sci.30(2005)1185–12221191of morphology,it has often been pointed out in the literature that the isokinetic approach on which Nakamura’s equation (Eq.(4))is based does not describe details of structure formation [48].For instance,the well-known experience that,with many polymers,the number of spherulites in the final solid sample increases strongly with increasing cooling rate,is indeed not taken into account by this approach.Furthermore,Eq.(4)describes an increase of crystal-linity (at constant temperature)depending only on the current value of crystallinity degree itself,whereas it is expected that the crystallization rate should depend also on the number of crystalline entities present in the material.These limits are overcome by considering the crystallization phenomenon as the consequence of nucleation and growth.Kolmogoroff’s model [49],which describes crystallinity evolution accounting of the number of nuclei per unit volume and spherulitic growth rate can then be applied.In this case,d c in Eq.(1)is described asd ðt ÞZ C m ðt 0d N ðs Þd s$ðt sG ðu Þd u 2435nd s (9)where C m is a shape factor (C 3Z 4/3p ,for spherical growth),G (T (t ))is the linear growth rate,and N (T (t ))is the nucleation density.The following Hoffman–Lauritzen expression is normally adopted for the growth rateG ½T ðt Þ Z G 0exp KUR $ðT ðt ÞK T N Þ!exp K K g $ðT ðt ÞC T m Þ2T ðt Þ2$ðT m K T ðt ÞÞð10ÞEqs.(7)and (10)have the same form,however the values of the constants are different.The nucleation mechanism can be either homo-geneous or heterogeneous.In the case of heterogeneous nucleation,two equations are reported in the literature,both describing the nucleation density as a function of temperature [37,50]:N ðT ðt ÞÞZ N 0exp ½j $ðT m K T ðt ÞÞ (11)N ðT ðt ÞÞZ N 0exp K 3$T mT ðt ÞðT m K T ðt ÞÞ(12)In the case of homogeneous nucleation,the nucleation rate rather than the nucleation density is function of temperature,and a Hoffman–Lauritzen expression isadoptedd N ðT ðt ÞÞd t Z N 0exp K C 1ðT ðt ÞK T N Þ!exp KC 2$ðT ðt ÞC T m ÞT ðt Þ$ðT m K T ðt ÞÞð13ÞConcentration of nucleating particles is usually quite significant in commercial polymers,and thus hetero-geneous nucleation becomes the dominant mechanism.When Kolmogoroff’s approach is followed,the number N a of active nuclei at the end of the crystal-lization process can be calculated as [48]N a ;final Zðt final 0d N ½T ðs Þd sð1K x ðs ÞÞd s (14)and the average dimension of crystalline structures can be attained by geometrical considerations.Pantani et al.[51]and Zuidema et al.[22]exploited this method to describe the distribution of crystallinity and the final average radius of the spherulites in injection moldings of polypropylene;in particular,they adopted the following equationR Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3x a ;final 4p N a ;final 3s (15)A different approach is also present in the literature,somehow halfway between Nakamura’s and Kolmo-goroff’s models:the growth rate (G )and the kinetic constant (K )are described independently,and the number of active nuclei (and consequently the average dimensions of crystalline entities)can be obtained by coupling Eqs.(4)and (9)asN a ðT ÞZ 3ln 24p K ðT ÞG ðT Þ 3(16)where heterogeneous nucleation and spherical growth is assumed (Avrami’s index Z 3).Guo et al.[43]adopted this approach to describe the dimensions of spherulites in injection moldings of polypropylene.1.1.4.Modeling of the effect of crystallinity on rheology As mentioned above,crystallization has a dramatic influence on material viscosity.This phenomenon must obviously be taken into account and,indeed,the solidification of a semi-crystalline material is essen-tially caused by crystallization rather than by tempera-ture in normal processing conditions.Despite of the importance of the subject,the relevant literature on the effect of crystallinity on viscosity isR.Pantani et al./Prog.Polym.Sci.30(2005)1185–12221192rather scarce.This might be due to the difficulties in measuring simultaneously rheological properties and crystallinity evolution during the same tests.Apart from some attempts to obtain simultaneous measure-ments of crystallinity and viscosity by special setups [52,53],more often viscosity and crystallinity are measured during separate tests having the same thermal history,thus greatly simplifying the experimental approach.Nevertheless,very few works can be retrieved in the literature in which(shear or complex) viscosity can be somehow linked to a crystallinity development.This is the case of Winter and co-workers [54],Vleeshouwers and Meijer[55](crystallinity evolution can be drawn from Swartjes[56]),Boutahar et al.[57],Titomanlio et al.[15],Han and Wang[36], Floudas et al.[58],Wassner and Maier[59],Pantani et al.[60],Pogodina et al.[61],Acierno and Grizzuti[62].All the authors essentially agree that melt viscosity experiences an abrupt increase when crystallinity degree reaches a certain‘critical’value,x c[15]. However,little agreement is found in the literature on the value of this critical crystallinity degree:assuming that x c is reached when the viscosity increases of one order of magnitude with respect to the molten state,it is found in the literature that,for iPP,x c ranges from a value of a few percent[15,62,60,58]up to values of20–30%[58,61]or even higher than40%[59,54,57].Some studies are also reported on the secondary effects of relevant variables such as temperature or shear rate(or frequency)on the dependence of crystallinity on viscosity.As for the effect of temperature,Titomanlio[15]found for an iPP that the increase of viscosity for the same crystallinity degree was higher at lower temperatures,whereas Winter[63] reports the opposite trend for a thermoplastic elasto-meric polypropylene.As for the effect of shear rate,a general agreement is found in the literature that the increase of viscosity for the same crystallinity degree is lower at higher deformation rates[62,61,57].Essentially,the equations adopted to describe the effect of crystallinity on viscosity of polymers can be grouped into two main categories:–equations based on suspensions theories(for a review,see[64]or[65]);–empirical equations.Some of the equations adopted in the literature with regard to polymer processing are summarized in Table1.Apart from Eq.(17)adopted by Katayama and Yoon [66],all equations predict a sharp increase of viscosity on increasing crystallinity,sometimes reaching infinite (Eqs.(18)and(21)).All authors consider that the relevant variable is the volume occupied by crystalline entities(i.e.x),even if the dimensions of the crystals should reasonably have an effect.1.1.5.Modeling of the molecular orientationOne of the most challenging problems to present day polymer science regards the reliable prediction of molecular orientation during transformation processes. Indeed,although pressure and velocity distribution during injection molding can be satisfactorily described by viscous models,details of the viscoelastic nature of the polymer need to be accounted for in the descriptionTable1List of the most used equations to describe the effect of crystallinity on viscosityEquation Author Derivation Parameters h=h0Z1C a0x(17)Katayama[66]Suspensions a Z99h=h0Z1=ðx K x cÞa0(18)Ziabicki[67]Empirical x c Z0.1h=h0Z1C a1expðK a2=x a3Þ(19)Titomanlio[15],also adopted byGuo[68]and Hieber[25]Empiricalh=h0Z expða1x a2Þ(20)Shimizu[69],also adopted byZuidema[22]and Hieber[25]Empiricalh=h0Z1Cðx=a1Þa2=ð1Kðx=a1Þa2Þ(21)Tanner[70]Empirical,basedon suspensionsa1Z0.44for compact crystallitesa1Z0.68for spherical crystallitesh=h0Z expða1x C a2x2Þ(22)Han[36]Empiricalh=h0Z1C a1x C a2x2(23)Tanner[71]Empirical a1Z0.54,a2Z4,x!0.4h=h0Zð1K x=a0ÞK2(24)Metzner[65],also adopted byTanner[70]Suspensions a Z0.68for smooth spheresR.Pantani et al./Prog.Polym.Sci.30(2005)1185–12221193。

毕业论文(设计)写作要求

毕业论文(设计)写作要求

毕业论文(设计)写作要求毕业论文(设计)写作要求新版毕业论文毕业论文(设计)写作要求毕业论文(设计)写作要求1、毕业论文基本要求1、毕业设计(论文)篇幅以6000字左右(不含图表、程序和计算数字)为宜。

2、毕业设计(论文)的正文用宋体小4号字(标题除外)、a4纸打印。

2、毕业论文的内容要求1、题目:应简洁、明确、有概括性,字数不宜超过20个字。

2、摘要:要有高度的概括力,语言精练、明确。

同时有中、英文对照,中文摘要约300汉字;英文摘要约250个实词。

3、关键词:从论文标题或正文中挑选3~5个最能表达主要内容的词作为关键词,同时有中、英文对照,分别附于中英、文摘要后。

4、目录:写出目录,标明页码。

5、正文:包括前言、本论、结论3个部分。

(1)前言(引言):是论文的开头部分,主要说明论文写作的目的、现实意义、对所研究问题的认识,并提出论文的中心论点等。

前言要写得简明扼要,篇幅不要太长。

(2)本论:是毕业论文的主体,包括实验材料、研究内容与方法、实验结果与分析(讨论)等。

在本部分要运用各方面的实验结果和研究方法,分析问题,论证观点,尽量反映出自己的科研能力和学术水平。

(3)结论:是毕业论文的收尾部分,是围绕本论所作的结束语。

其基本的要点就是总结全文,加深题意。

6、谢辞:简述自己通过毕业论文的体会,并应对指导教师和协助完成论文的有关人员表示谢意。

7、参考文献:在毕业论文末尾要列出在论文中参考过的专著、论文及其他资料(15篇以上),所列参考文献应按论文参考或引证的先后顺序排列。

8、注释:在论文写作过程中,有些问题需要在正文之外加以阐述和说明。

9、附录:对于1些不宜放在正文中,但有参考价值的内容,可编入附录中。

例如,公式的推演、编写的算法、语言程序等。

3、页面设置说明•页码:封面不编页。

•从目录开始编页,目录使用阿拉伯数字编码,页码编号要求居中。

;•用a4纸单面打印。

上、下各为2.5cm,左右边距为2cm;装订线为1cm。

毕业设计毕业论文DOC

毕业设计毕业论文DOC

毕业设计论文毕业设计(论文)中文摘要控制系统的设计,对硬件原理图做简洁的描述。

系统程序主要包括主程序、读出温度子程序、温度转换命令子程序、计算温度子程序、显示数据刷新子程序。

软硬件分别调试完成以后,将程序下载入单片机中,电路板接上电源,电源指示灯亮,按下开关按钮,数码管显示当前温度。

由于采用了智能温度传感器DS18B20所以本文所介绍的数字温度计与传统的温度计相比它的转换速率极快,进行读、写操作非常简便。

它具有数字化输出,可测量远距离的点温度。

系统具有微型化、微功耗、测量精度高、功能强大等特点,加之DS18B2C内部的差错检验,所以它的抗干扰能力强,性能可靠,结构简单。

关键词:单片机数字控制温度计DS18B20毕业设计(论文)外文摘要keywords: Single-chip microcomputer, digital control, thermometer, DS18B2C目录1引言 (1)1.1背景 (1)1.2设计的目的和意义 (1)2设计要求与方案论证 (2)2.1设计要求 (2)2.2方案论证 (2)2.3总体设计方案 (3)3硬件设计 (4)3.1 主要元件介绍 (4)3.1.1 主控制器 (4)3.1.2 温度传感器DS18B20 (7)3.2 显示电路 (13)3.3 DS18B20 与单片机的接口电路 (16)3.4 复位电路 (18)4 软件设计 (19)5 调试 (20)5.1 软件调试 (20)5.2 系统调试 (20)5.3 数据检测 (20)总结 (22)致谢 (23)参考文献 (23)1 引言1.1 背景单片机,更确切的应称作微控制器,是20 世纪70年代中期发展起来的一种面向控制的大规模集成电路模块,其特点是功能强大、体积小、可靠性高、价格低廉。

它一面世便在工业控制、数据采集、智能化仪表、机电一体化、家用电器等领域得到广泛应用,极大地提高了这些领域的技术水平和自动化程度。

本科生毕业论文(设计)撰写规范及装订要求_论文格式_

本科生毕业论文(设计)撰写规范及装订要求_论文格式_

本科生毕业论文(设计)撰写规范及装订要求为了统一和规范我校本科生(设计)的写作,保证我校本科生毕业论文(设计)的质量,根据《中华人民共和国国家标准科学技术报告、学位论文和学术论文的编写格式》(国家标准GB7713-87)的规定,结合我校实际,制定《怀化学院本科毕业论文(设计)撰写规范》。

一、论文文本构成(一)、论文文本构成毕业论文(设计)文本构成包括论文部分和附件部分。

具体构成及顺序如下:论文部分:毕业论文(设计)封面毕业论文(设计)诚信声明毕业论文(设计)目录中文摘要关键词(中文)英文摘要关键词(英文)引言或前言论文主体结论参考文献致谢附录(必要时)附件部分:毕业论文(设计)任务书毕业论文(设计)书毕业论文(设计)指导教师指导情况记录表毕业论文(设计)成绩评定表(一)、(二)、(三)二、毕业论文内容要求(一)论文封面和目录部分1.封面封面格式符合学校要求,封面上的学科分类号、专业名称表述要准确。

2.目录目录包括摘要(中英文)、关键词(中英文)、论文主体、参考文献、致谢、附录。

(二)论文正文部分毕业论文(设计)正文是毕业论文(设计)文本的核心部分,一般应包括论文题目、中文摘要与英文摘要、中文关键词与英文关键词、引言或前言、论文(设计)主体、结论、参考文献等部分。

1.论文(设计)题目题目应该简短、明确、有概括性,字数一般不宜超过20字,必要时可加副标题。

学生的论文(设计)要一人一题,且选题符合专业培养目标。

封面上的毕业论文(设计)题目分别用中英文表述;题目的英文翻译恰当。

2.论文摘要摘要是对全文内容的高度概括,反映毕业论文(设计)的目的、方法、成果和结论。

摘要中不宜使用公式、图表,不标注引用文献编号。

中文摘要以200—400字为宜。

英文摘要应与中文摘要一致,符合英语语法,文字表达自然流畅。

3.关键词关键词一般为3-5个,按词条的外延层次排列,外延大的排在前面。

关键词之间用分号分开,最后一个关键词后不打标点符号。

毕业设计(论文)任务书范文

毕业设计(论文)任务书范文

毕业设计(论文)任务书范文毕业设计(论文)任务书范文一、选题背景及意义近年来,随着社会的不断发展和进步,大学生的毕业设计(论文)成为了大学教育中不可或缺的一部分。

毕业设计(论文)不仅是对学生四年学习的总结,更是学生展示自己专业水平和能力的重要机会。

因此,制定一份合理、科学的毕业设计(论文)任务书,对于指导学生顺利完成毕业设计(论文)提供了重要依据。

二、研究目的与内容本次毕业设计(论文)的研究目的旨在通过对某一特定问题(或课题)进行研究与分析,以期揭示其本质和规律性内容,从而为特定领域的相关研究提供理论支持与实践指导。

具体研究内容如下:1. 文献综述(1)回顾相关领域的研究成果和理论基础,总结前人研究经验与不足之处。

(2)剖析当前研究中存在的问题和亟待解决的难题。

2. 研究目标和方法(1)明确研究目标和需求,提出研究假设和问题。

(2)设计合理的研究方法与方案,如实证研究、实地调查、模型分析等。

3. 数据采集与分析(1)收集相关数据并进行数据处理与分析,确保数据的准确性和可信度。

(2)运用统计学方法和理论模型进行数据分析,获取定量和定性的研究结果。

4. 结果与讨论(1)根据研究结果进行系统的分析与讨论,明确结果的意义与启示。

(2)提出解决问题的建议与策略,指导实际工作中的操作和决策。

三、进度安排1. 第一阶段:研究设计和准备工作(共计X周)(1)完成选题并明确研究目标和问题。

(2)进行文献综述、理论分析和方法设计。

(3)确定数据采集计划和分析方案。

2. 第二阶段:数据采集与分析(共计X周)(1)进行实地调查(或其他数据采集方式)并整理数据。

(2)对数据进行处理和分析,获取研究结果。

3. 第三阶段:结果讨论与撰写论文(共计X周)(1)基于研究结果,进行结果讨论和分析。

(2)撰写毕业设计(论文)初稿,并进行修改和完善。

(3)完成最终版毕业设计(论文)。

四、预期成果1. 撰写完成符合学术规范的毕业设计(论文)。

毕业生毕业论文(设计)的规范要求

毕业生毕业论文(设计)的规范要求

西昌学院教务处关于本科毕业生毕业论文(设计)的规范要求一、毕业论文、毕业设计的装订顺序1、封面 2、毕业论文(设计)任务书3、开题报告 4、目录 5、毕业论文(设计)正文6、致谢词7、独撰声明 8、翻译资料 9、毕业论文(设计)指导教师指导记录表 10、指导教师的成绩评定表 11、评阅人的成绩评定表 12、答辩记录表13、答辩小组的成绩评定表14、总评成绩评定表二、毕业论文、毕业设计各项内容的要求1、封面。

由文头、论文(设计)标题、作者、专业、年级、指导教师、提交日期等项目组成。

封面采用学院编制的统一格式(见附件1)。

2、毕业论文(设计)任务书。

毕业论文(设计)任务书由指导教师填写,论文题目应确切、恰当、鲜明、简短,能概括整个论文中最主要和最重要的内容。

论文题目中所用的词一般不宜超过20字,若语意未尽,可用副标题补充说明。

副标题应处于从属地位,一般可在题目的下一行用破折号“——”引出。

毕业论文(设计)任务书按学院的统一样式填写(见附件2)。

3、开题报告。

开题报告采用学院编制的统一格式(见附件3)。

4、目录。

列出正文一二级标题、参考文献、致谢词、独撰声明及对应的页码。

“目录”两字用黑体小二号字居中,字与字之间空4个字距。

目录内容:中文全部用宋体小4号字;英文全部用times new roman小四号字。

层次标题序号一律左对齐,并标注页码,页码右对齐。

目录要求层次清晰,必须与正文标题一致。

层次标题具体格式为:文科:一理科:1(一)1.15、毕业论文、毕业设计说明书正文(其具体要求见后)。

6、致谢词。

致谢词中主要感谢指导教师和对毕业论文、设计工作有直接贡献及帮助的人员和单位。

致谢词应谦虚诚恳,实事求是,切忌浮夸与庸俗之词。

“致谢词”用小三号黑体居中,字与字之间空2个字距。

致谢内容另起行,用小四号宋体。

7、独撰声明。

独撰声明是作者对自己在论文、设计中所引用的资料所作的保证。

独撰声明采用学院编制的统一格式(见附件7)。

毕业设计(论文)和毕业答辩的有关规定

毕业设计(论文)和毕业答辩的有关规定

毕业设计(论文)和毕业答辩的有关规定毕业设计(论文)是教学计划中一个重要环节,它与其它教学环节构成一个有机的整体,也是各教学环节的继续补充、深化和检验。

1、目的和任务毕业设计(论文)应把培养人放在首位,它的基本任务是培养学生综合运用所学的基本理论、基本知识和基本技能,分析解决实际问题的能力,帮助学生建立正确的设计思想和严谨的科学作风,进一步提高外语水平、写作水平和使用计算机的能力。

通过毕业设计(论文)使学生受到专业技术人才所必须的综合训练和独立工作能力的培养。

(1)毕业设计(论文)的确定和安排毕业设计(论文)应该面向社会、面向经济建设、面向生产实际,要坚持教学与实践相结合。

毕业设计(论文)原则上由各下属教学中心统一组织,继续教育学院随时对各教学中心学生的毕业设计(论文)工作及质量进行检查。

1.毕业设计(论文)时间安排:1)各教学中心在学生进行毕业设计(论文)前应将计划报继续教育学院;2)毕业设计(论文)的时间安排,理科专业8-10周,文科专业6-8周,毕业论文的全部工作一般应在学生毕业前2周结束。

2.确定课题原则:1)符合本专业的教学要求,且具有一定的理论水平和对实际工作有一定的指导作用;2)符合本专业的层次和要求;3)课题大小适度,具有一定的先进性;4)有指导教师指导。

3.指导教师任务:1)指导毕业设计是一项复杂而细致的工作,充分发挥指导教师的作用,是搞好毕业设计的关键;2)指导教师必须熟悉自己所指导的课题,掌握有关资料文献,提前做好各项准备工作;3)指导学生拟定毕业设计进度计划,定期进行指导和检查;4)审阅毕业设计论文,作出评语,指导学生参加答辩。

根据学生毕业设计(论文)水平给予初步评分。

4.对学生的要求:1)毕业设计(论文)是对学生所学知识的综合运用,学生应通过毕业设计(论文)进一步巩固、深化并灵活运用有关知识,培养自身分析和解决本专业实际问题的能力和从事科学研究的方法;2)刻苦钻研、努力创新,要有高度的责任感,认真、独立地完成课题;3)尊重教师、虚心向工程技术人员学习;4)爱护仪器设备,勤俭节约,注意安全;5)严禁抄袭、请人代做等弄虚作假行为,违者取消毕业设计(论文)资格。

如何设计科学合理的毕业论文研究计划

如何设计科学合理的毕业论文研究计划

如何设计科学合理的毕业论文研究计划随着高等教育的普及和发展,毕业论文成为了大学生们在完成学业的过程中必不可少的一部分。

一个科学合理的毕业论文研究计划对于学生顺利完成学业、提高科研能力至关重要。

本文将探讨如何设计科学合理的毕业论文研究计划,以帮助大学生们提高研究能力和论文质量。

一、确定研究方向和选题在开始设计研究计划之前,首先需要确定自己的研究方向和选题。

选择一个合适的研究方向和选题是毕业论文研究的基础,直接关系到后续的研究过程和成果的获取。

在确定研究方向和选题时,可以根据自己的兴趣和专业背景,结合导师的建议和指导,选择一个具有一定研究价值和实施可行性的选题。

二、制定研究目标和任务在确定研究方向和选题之后,接下来需要制定研究目标和任务。

研究目标应该明确、具体,能够准确反映研究的核心内容和价值所在。

任务则是实现研究目标的具体步骤和计划,需要详细列出每个任务的具体内容和时间节点。

合理的设置研究目标和任务可以帮助研究者在毕业论文研究中心思路、提高效率,从而更好地完成研究工作。

三、确定研究方法和技术路线确定研究方法和技术路线是进行科学研究的关键之一。

研究方法和技术路线的选择要与研究目标和任务相适应,能够有效提高研究效果和实现研究目标。

在确定研究方法和技术路线时,可以通过查阅相关的文献和资料,咨询导师和专家的意见,并根据自己的实际情况进行抉择。

同时,还需要考虑实验条件和资源的限制,以及研究成本和可行性等因素。

四、制定论文的大纲和章节安排制定论文的大纲和章节安排是整个毕业论文研究计划的重要组成部分。

论文大纲应该清晰明确,能够全面反映研究内容和论证逻辑。

章节安排应该合理有序,遵循科学论文的写作规范和结构,包括引言、文献综述、材料与方法、结果与讨论、结论等。

五、安排研究进度和时间安排在制定研究计划时,还需要合理安排研究进度和时间安排。

根据研究目标和任务的复杂程度和难易程度,合理评估完成每个任务所需的时间和资源,进而制定详细的时间安排表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大连工业大学服装学院学士学位论文论文题目:女装的造型转换设计及穿着方式的研究二级学院:服装学院专业方向:服装设计与工程(工程)班级学号:服工082—13学生姓名:王万卓课题方向:服装结构与功能指导教师:于树连教授刘旭副教授邵冰讲师2012年 6月摘要在当今的时装界,服装的批量化生产与个性化消费需求之间所存在的矛盾一直困扰着设计师。

本文通过对各类服装造型的变化的研究,结合各种服装构造模式的优势,探究“单件产品多变化模式”的服装结构设计方法。

在此基础上研究使同一款服装具有多样化的穿着方式,并从不同的穿着方式中探究穿着者的各种新鲜的穿衣方法。

同时使穿衣者在使用这些服装时可以根据不同的时间、场合或个人喜好决定如何穿着服装,并在研究怎样改变服装造型的同时提高自身的穿衣体验,使自身对服装产生浓厚兴趣,同时以满足个人的个性化及特殊需求。

这种以满足穿衣者个性化的服装可以解决服装款式单一化与个性化的问题。

本文通过从服装发展史中研究服装造型的样式与变化,结合历史上的服装着装状态与现代服装的着装状态,设计一款多样式的服装。

使服装能够通过着装者自身对服装的理解来自行进行服装样式和着装状态的设定,从而满足穿衣者对服装个性的需求。

关键词:一衣多穿;个性化;穿衣方式;历史服装造型;造型变化;多样化IAbstractThe contradictions that exist in today's fashion industry, mass production of clothing and personalized consumer demand has been plagued by designers. Changes in all kinds of costumes, combined with the advantage of the structural model of a variety of clothing, clothing structural design methods to explore the multi-change mode "one piece". On the basis of this study with a garment to diversify the way they dress, and explore from a different way of wearing the wearer fresh dressing. While allowing the wearer in the use of these garments can be depending on the time, occasion, or personal preferences to decide how to wear clothing, and how to change costumes and at the same time improve their own dressing experience, and make itself a keen interest in the clothing, while personalized to meet individual and special needs. This in order to meet the personal clothing of the wearer can solve the problem of a single style and personalized clothing. In this paper, the study of the costumes from the history of clothing styles and changes, combined with the state of the history of clothing dress state and modern clothing, dress, design a multi-style clothing. Clothing through the wearer's own understanding of the clothing from the line of clothing style and dress state set to meet the needs of the wearer of clothing personality.Key W ords:More than a clothing wear; personalized; dressing; historical costumes; shape change; diversificationII目录摘要...................................................................................................................................I Abstract................................................................................................................................. II 前言..................................................................................................................................IV 第一章绪论...................................................................................................................... - 1 -1.1 选题意义 .............................................................................................................. - 1 -1.2 与课题相关的国内外设计实例 .......................................................................... - 1 -第二章课题研究的内容、方法 ................................................................................ - 4 -2.1课题研究的内容 ..................................................................................................... - 4 -2.1.1 一衣多穿的研究 ........................................................................................ - 4 -2.1.2服装造型的研究 ......................................................................................... - 5 -2.2课题研究方法 ......................................................................................................... - 6 -第三章一衣多穿的服装设计................................................................................. - 12 -3.1 一衣多穿服装的设计思路 .................................................................................. - 12 -3.2 服装效果图设定 .................................................................................................. - 13 -第四章服装版型的制作及服装制作工艺要求................................................ - 15 -4.1 服装版型制作 ...................................................................................................... - 15 -4.2 服装制作工艺要求 .............................................................................................. - 18 -第五章课题创新点及展望........................................................................................ - 21 -5.1 课题的创新点 ...................................................................................................... - 21 -5.2课题的展望 ........................................................................................................... - 22 -结论 ................................................................................................................................. - 23 -参考文献 ............................................................................................................................. - 24 -附录A ................................................................................................................................. - 25 -致谢 ............................................................................................................................. - 29 -III前言通常情况下,服装企业力图开发多品种、少批量的服装产品来满足消费者的个性化需求。

相关文档
最新文档