2020年广州市中考数学答案详解
2020年广东省广州市中考数学试卷(含解析)打印版
2020年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105 B.15.233×106C.1.5233×107D.0.15233×1082.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四3.(3分)下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x104.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形B.该圆锥的主视图是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形6.(3分)一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.(3分)如图,Rt△ABC中,∠C=90°,AB=5,cos A=,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定8.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm9.(3分)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个10.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD 于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知∠A=100°,则∠A的补角等于°.12.(3分)化简:﹣=.13.(3分)方程=的解是.14.(3分)如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为.15.(3分)如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为.16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=mm 时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.18.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.19.(10分)已知反比例函数y=的图象分别位于第二、第四象限,化简:﹣+.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区676873757678808283848585909295乙社区666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=(x>0)的图象经过点A(3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).2020年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:15233000=1.5233×107,故选:C.2.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四【分析】根据条形统计图得出即可.【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.3.(3分)下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x10【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.4.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°【分析】根据三角形的中位线定理得到DE∥BC,根据平行线的性质即可求得∠AED=∠C=68°.【解答】解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形B.该圆锥的主视图是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形【分析】圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,从而得出答案.【解答】解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.6.(3分)一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x1+1<x2+2即可得出结论.【解答】解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x2+2,∴y3<y2<y1,故选:B.7.(3分)如图,Rt△ABC中,∠C=90°,AB=5,cos A=,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定【分析】根据三角函数的定义得到AC,根据勾股定理求得BC,和⊙B的半径比较即可.【解答】解:∵Rt△ABC中,∠C=90°,AB=5,cos A=,∴==,∴AC=4,∴BC==3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.8.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm【分析】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而可得出CD的长.【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=AB=×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD===10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C.9.(3分)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个【分析】利用一次函数的性质得到a≤0,再判断△=22﹣4a>0,从而得到方程根的情况.【解答】解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是二次方程,∵△=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.10.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD 于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD=S△AOE+S△DOE,即可得到OE+EF 的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知∠A=100°,则∠A的补角等于80°.【分析】根据补角的概念求解可得.【解答】解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.12.(3分)化简:﹣=.【分析】此题先把二次根式化简,再进行合并即可求出答案.【解答】解:﹣=2=.故填:.13.(3分)方程=的解是x=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程=,去分母得:2x=3,解得:x=,经检验x=是分式方程的解.故答案为:x=.14.(3分)如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为(4,3).【分析】根据平移的性质得出四边形ABDC是平行四边形,从而得A和C的纵坐标相同,根据四边形ABDC的面积求得AC的长,即可求得C的坐标.【解答】解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).15.(3分)如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为16.【分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=10.0mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.【分析】构建二次函数,利用二次函数的性质即可解决问题.【解答】解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x =﹣=10.0时,y有最小值,设w=(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2=nx2﹣2(x1+x2+…+x n)x+(x12+x22+…+x n2),∵n>0,∴当x =﹣=时,w有最小值.故答案为10.0,.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.【分析】根据不等式的性质求出两个不等式的解集,进而求出不等式组的解集即可.【解答】解:解不等式①得:x≥3,解不等式②得:x>2,所以不等式组的解集为:x≥318.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.【分析】运用SAS公理,证明△ABC≌△ADC,得到∠D=∠B=80°,再根据三角形内角和为180°即可解决问题.【解答】解:在△ABC与△ADC 中,,∴△ABC≌△ADC(SAS),∴∠D=∠B=80°,∴∠BCA=180°﹣25°﹣80°=75°.19.(10分)已知反比例函数y =的图象分别位于第二、第四象限,化简:﹣+.【分析】由反比例函数图象的性质可得k<0,化简分式和二次根式,可求解.【解答】解:∵反比例函数y =的图象分别位于第二、第四象限,∴k<0,∴k﹣1<0,∴﹣+=+=k +4+=k+4+|k﹣1|=k+4﹣k+1=5.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社676873757678808283848585909295区乙社666972747578808185858889919698区根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.【分析】(1)根据中位数、众数的意义和计算方法分别求出结果即可;(2)用列表法表示所有可能出现的结果情况,从而求出两人来自同一社区的概率.【解答】解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)==.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y =(x>0)的图象经过点A(3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.【分析】(1)利用待定系数法求出k,再利用平行四边形的性质,推出AM=CM,推出点M的纵坐标为2.(2)求出点C的坐标,求出OA,OC的长即可解决问题.【解答】解:(1)∵点A(3,4)在y=上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA==5,∴平行四边形ABCD的周长为2(5+9)=28.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【分析】(1)根据今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%,列出算式即可求解;(2)根据“某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场”列出方程求解即可.【解答】解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.【分析】(1)根据点关于直线的对称点的画法,过点A作BD的垂线段并延长一倍,得对称点C;(2)①根据菱形的判定即可求解;②过B点作BF⊥AD于F,根据菱形的性质,直角三角形的性质,勾股定理,三角形面积公式即可求解.【解答】解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC==12,∴OA=12,∵四边形ABCD是菱形,∴AD=13,∴BF=×12×5×2×2÷13=,故点E到AD的距离是.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.【分析】(1)由等边三角形的性质可得∠ABC=∠BAC=∠ACB=60°,圆周角定理可得∠ADC=∠BDC =60°,可得结论;(2)将△ADC绕点逆时针旋转60°,得到△BHC,可证△DCH是等边三角形,可得四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,即可求解;(3)作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,由轴对称的性质可得EM=DM,DN=NF,可得△DMN的周长=DM+DN+MN=FN+EM+MN,则当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,即最小值为EF=t,由轴对称的性质可求CD=CE=CF,∠ECF=120°,由等腰三角形的性质和直角三角形的性质可求EF=2PE=EC=CD=t,则当CD为直径时,t有最大值为4.【解答】证明:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵∠ADC=∠ABC=60°,∠BDC=∠BAC=60°,∴∠ADC=∠BDC,∴DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数,理由如下:如图1,将△ADC绕点逆时针旋转60°,得到△BHC,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,∴S=x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=EC,PE=PC=EC,∴EF=2PE=EC=CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).【分析】(1)将点A坐标代入解析式可求解;(2)由三角形面积关系,可得BE=CE+1,由对称轴为x=3,可求BC中点M的坐标(3,3),由线段的数量关系,可求EM=,可求解;(3)先求出点F坐标,点D坐标可求直线DF解析式,可得点E坐标,可求DE解析式,可得c=9a,由二次函数的性质可求解.【解答】解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B(x1,3),C(x2,3),线段BC上有一点E,∴S1=×BE×3=BE,S2=×CE×3=CE,∵S1=S2+.∴CE+=BE,∴BE=CE+1,∵b=﹣6a,∴抛物线G:y=ax2﹣6ax+c,∴对称轴为x==3,∴BC的中点M坐标为(3,3),∵BE=BM+EM,CE=CM﹣EM,BM=CM,BE=CE+1,∴EM=,∴点E(,3)或(,3);(3)∵直线DE与抛物线G:y=ax2﹣6ax+c的另一个交点F的横坐标为+3,∴y=a()2﹣6a×(+3)+c=﹣9a+c,∴点F(+3,﹣9a+c),∵点D是抛物线的顶点,∴点D(3,﹣9a+c),∴直线DF的解析式为:y=6x﹣18+c﹣9a,∴点E坐标为(,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a.。
2020年广东广州中考数学试卷及参考答案
2020年广州市初中毕业生学业考试数 学题序一二三四五六七八总分得分满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1. 将图1所示的图案通过平移后可以得到的图案是( A )2. 如图2,AB ∥CD ,直线l 分别与AB 、CD 相交,若∠1=130°,则∠2=( C )(A )40° (B )50° (C )130° (D )140° 3. 实数a 、b 在数轴上的位置如图3所示,则a 与b 的大小关系是( C )(A )b a < (B )b a = (C )b a > (D )无法确定4. 二次函数2)1(2+-=x y 的最小值是( A ) (A )2 (B )1 (C )-1 (D )-2 5. 图4是广州市某一天内的气温变化图,根据图4,下列说法中错误..的是( D ) (A )这一天中最高气温是24℃(B )这一天中最高气温与最低气温的差为16℃(C )这一天中2时至14时之间的气温在逐渐升高(D )这一天中只有14时至24时之间的气温在逐渐降低6. 下列运算正确的是( B )(A )222)(n m n m -=- (B ))0(122≠=-m m m (C )422)(mn n m =⋅ (D )642)(m m =7. 下列函数中,自变量x 的取值范围是x ≥3的是( D ) (A )31-=x y (B )31-=x y(C )3-=x y (D )3-=x y8. 只用下列正多边形地砖中的一种,能够铺满地面的是( C ) (A )正十边形 (B )正八边形 (C )正六边形 (D )正五边形9. 已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图5)所示),则sin θ的值为( B ) (A )125 (B )135 (C )1310 (D )131210. 如图6,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=24,则ΔCEF 的周长为( A ) (A )8 (B )9.5 (C )10 (D )11.5二、填空题(本大题共6小题,每小题3分,满分18分) 11. 已知函数xy 2=,当x =1时,y 的值是________2 12. 在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是________9.3 13. 绝对值是6的数是________+6,-614. 已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:________________________________略15. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________2n+516. 如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由________块长方体的积木搭成4三、解答题(本大题共9小题,满分102分。
广东省2020年中考数学试题(解析版)
2020年广东省初中学业水平考试数学一、选择题(本大题10小题,每小題3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.9的相反数是( )A. 9B. 9-C. 19D. 19- 【答案】B【解析】根据相反数的定义:“只有符号不同的两个数互为相反数”可知,9的相反数是-9.故选B.2.一组数据2,4,3,5,2的中位数是( )A. 5B. 35C. 3D. 25【答案】C【解析】【分析】把这组数据从小到大的顺序排列,取最中间位置的数就是中位数.【详解】把这组数据从小到大的顺序排列:2,2,3,4,5,处于最中间位置的数是3,∴这组数据的中位数是3,故选:C .【点睛】本题考查了求中位数,熟练掌握中位数的求法是解答的关键.3.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A. (3,2)-B. (2,3)-C. (2,3)-D. (3,2)- 【答案】D【解析】【分析】利用关于x 轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可.【详解】点(3,2)关于x 轴对称的点的坐标为(3,-2),故选:D .【点睛】本题主要考查了关于坐标轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解答的关键.4.若一个多边形的内角和是540°,则该多边形的边数为( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】根据内角和公式即可求解.【详解】设这个多边形的边数为n,∴(n-2)×180°=540°解得n=5故选B .【点睛】此题主要考查多边形的内角和,解题的关键是熟知内角和公式.5.在实数范围内有意义,则x的取值范围是( )A. 2x ≠B. 2x ≥C. 2x ≤D. 2x ≠-【答案】B【解析】【分析】根据二次根式里面被开方数240x -≥即可求解.【详解】解:由题意知:被开方数240x -≥,解得:2x ≥,故选:B .【点睛】本题考查了二次根式有意义的条件,必须保证被开方数大于等于0.6.已知ABC ∆的周长为16,点D ,E ,F 分别为ABC ∆三条边的中点,则DEF ∆的周长为()A. 8B.C. 16D. 4【答案】A【解析】【分析】由D ,E ,F 分别为ABC ∆三条边的中点,可知DE 、EF 、DF 为ABC ∆的中位线,即可得到DEF ∆的周长.【详解】解:如图,∵D ,E ,F 分别为ABC ∆三条边的中点, ∴12DF BC =,12DE AC =,12EF AB =, ∵16BC AC AB ++=, ∴()1116822DF DE EF BC AC AB ++=++=⨯=, 故选:A .【点睛】本题考查了三角形的中位线,熟练掌握三角形的中位线平行于第三边且是第三边的一半是解题的关键.7.把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为( )A. 22y x =+B. 2(1)1y x =-+ C. 2(2)2y x =-+D. 2(1)3y x =-- 【答案】C【解析】【分析】 抛物线在平移时开口方向不变,a 不变,根据图象平移的口诀“左加右减、上加下减”即可解答.【详解】把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为[]22(1)12(2)2y x x =--+=-+, 故选:C .【点睛】本题考查了二次函数图象与几何变换,解答的重点在于熟练掌握图象平移时函数表达式的变化特点.8.不等式组23112(2)x x x -≥-⎧⎨-≥-+⎩的解集为( ) A. 无解B. 1x ≤C. 1x ≥-D. 11x -≤≤【答案】D【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x +2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.如图,在正方形ABCD 中,3AB =,点E ,F 分别在边AB ,CD 上,60EFD ∠=︒.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( ) A. 12 3 D. 2【答案】D【解析】【分析】由CD ∥AB 得到∠EFD=∠FEB=60°,由折叠得到∠FEB=∠FEB’=60°,进而得到∠AEB’=60°,然后在Rt △AEB’中由30°所对直角边等于斜边一半即可求解.【详解】解:∵四边形ABCD 是正方形,∴CD ∥AB ,∴∠EFD=∠FEB=60°,由折叠前后对应角相等可知:∠FEB=∠FEB’=60°,∴∠AEB’=180°-∠FEB-∠FEB’=60°,∴∠AB’E=30°,设AE=x ,则BE=B’E=2x ,∴AB=AE+BE=3x =3,∴x =1,∴BE=2x =2,故选:D .【点睛】本题借助正方形考查了折叠问题,30°角所对直角边等于斜边的一半等知识点,折叠问题的性质包括折叠前后对应边相等,对应角相等,折叠产生角平分线,由此即可解题.10.如图,抛物线2y ax bx c =++的对称轴是1x =.下列结论:①0abc >;②240b ac ->;③80a c +<;④520a b c ++>,正确的有( )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】【分析】 由抛物线的性质和对称轴是1x =,分别判断a 、b 、c 的符号,即可判断①;抛物线与x 轴有两个交点,可判断②;由12b x a =-=,得2b a =-,令2x =-,求函数值,即可判断③;令2x =时,则420y a b c =++>,令1x =-时,0y a b c =-+>,即可判断④;然后得到答案.【详解】解:根据题意,则0a <,0c >, ∵12b x a=-=, ∴20b a =->,∴0abc <,故①错误;由抛物线与x 轴有两个交点,则240b ac ->,故②正确;∵2b a =-,令2x =-时,420y a b c =-+<,∴80a c +<,故③正确;在2y ax bx c =++中,令2x =时,则420y a b c =++>,令1x =-时,0y a b c =-+>,由两式相加,得520a b c ++>,故④正确;∴正确的结论有:②③④,共3个;故选:B .【点睛】本题考查了二次函数的图像和性质,解题的关键是熟练掌握二次函数的性质,熟练判断各个式子的符号.二、填空题(本大题7小題,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy ―x =_____________.【答案】x (y -1)【解析】试题解析:xy ―x =x (y -1)12.若3m x y 与25nx y -是同类项,则m n +=___________. 【答案】3【解析】【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可求得m 和n 的值,根据合并同类项法则合并同类项即可.【详解】解:由同类项的定义可知,m=2,n=1,∴m+n=3故答案为3.13.|1|0b +=,则2020()a b +=_________.【答案】1【解析】【分析】根据绝对值的非负性和二次根式的非负性得出a ,b 的值,即可求出答案. 【详解】∵2|1|0a b -++=∴2a =,1b =-,∴2020()a b +=202011=,故答案为:1.【点睛】本题考查了绝对值的非负性,二次根式的非负性,整数指数幂,得出a ,b 的值是解题关键. 14.已知5x y =-,2xy =,计算334x y xy +-的值为_________.【答案】7【解析】【分析】将代数式化简,然后直接将5x y +=,2xy =代入即可.【详解】由题意得5x y +=,2xy =,∴3343()41587x y xy x y xy +-=+-=-=,故答案为:7.【点睛】本题考查了提取公因式法,化简求值,化简334x y xy +-是解题关键.15.如图,在菱形ABCD 中,30A ∠=︒,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD ,则EBD ∠的度数为_________.【答案】45°【解析】【分析】根据题意知虚线为线段AB 的垂直平分线,得AE=BE ,得EBA EAB ∠=∠;结合30A ∠=°,1275ABD ABC =∠=︒,可计算EBD ∠的度数. 【详解】18030150ABC ∠=-=︒︒︒1275ABD ABC =∠=︒ ∵AE EB =∴EAB EBA ∠=∠∴753045EBD ∠=-=︒︒︒故答案为:45°.【点睛】本题考查了菱形的性质,及垂直平分线的性质,熟知以上知识点是解题的关键.16.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .【答案】13【解析】【分析】连接OA ,OB ,证明△AOB 是等边三角形,继而求得AB 的长,然后利用弧长公式可以计算出BOC 的长度,再根据扇形围成圆锥底面圆的周长等于扇形的弧长即可作答.【详解】连接OA ,OB ,则∠BAO=12∠BAC=11202⨯︒=60°, 又∵OA=OB ,∴△AOB 是等边三角形,∴AB=OA=1,∵∠BAC=120°,∴OB C 的长为:120AB2 1803ππ=,设圆锥底面圆的半径为r223rππ=13r=故答案为13.【点睛】本题主要考查了弧长公式以及扇形弧长与底面圆周长相等的知识点,借助等量关系即可算出底面圆的半径.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,90ABC∠=︒,点M,N分别在射线BA,BC上,MN长度始终保持不变,4MN=,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为_________.【答案】252【解析】【分析】根据当B、D、E三点共线,距离最小,求出BE和BD即可得出答案.【详解】如图当B、D、E三点共线,距离最小,∵4MN =,E 为MN 的中点,∴2BE =,224225BD +=252DE BD BE =-=,故答案为:252.【点睛】本题考查了直角三角形斜边的中线等于斜边的一半,勾股定理,两点间的距离线段最短,判断出距离最短的情况是解题关键.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:22()()()2x y x y x y x +++--,其中2x =3y =【答案】2xy ;26【解析】【分析】根据完全平方公式、平方差公式、整式的加减运算法则进行运算即可,最后代入数据即可求解.【详解】解:原式2222222x xy y x y x =+++-- 2xy =,将2x ,3y =原式223=26=.故答案为:26【点睛】本题考查了完全平方公式、平方差公式的运算,实数的化简求值,熟练掌握公式及运算法则是解决此类题的关键.19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:等级 非常了解 比较了解 基本了解 不太了解 人数(人)24 72 18 x(1)求x 的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【答案】(1)6 (2)1440人【解析】【分析】(1)根据四个等级的人数之和为120求出x 的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例即可求出结果.【详解】(1)解:由题意得:247218120x +++=解得6x =(2)解:247218001440120+⨯=(人) 答:估算“非常了解”和“比较了解”垃圾分类知识的学生有1440人.【点睛】本题主要考查了用样本估计总体,属于基础题目,审清题意,找到对应数据是解题的关键. 20.如图,在ABC ∆中,点D ,E 分别是AB 、AC 边上的点,BD CE =,ABE ACD ∠=∠,BE 与CD 相交于点F ,求证:ABC ∆是等腰三角形.【答案】见解析【解析】【分析】先证明BDF CEF ∆∆≌,得到BF CF =,FBC FCB ∠=∠,进而得到A ABC CB =∠∠,故可求解.【详解】证明:在BDF ∆和CEF ∆中()DFB EFC FBD FCEBD CE ⎧∠=∠⎪∠=∠⎨⎪=⎩对顶角相等 ∴()BDF CEF AAS ∆∆≌∴BF CF =∴FBC FCB ∠=∠又∵ABE ACD ∠=∠∴FBC ABE FCB ACD ∠+∠=∠+∠即A ABC CB =∠∠∴ABC ∆是等腰三角形.【点睛】此题主要考查等腰三角形的判定,解题的关键是熟知全等三角形的判定与性质.四、解答题(二)(本大题3小题,每小题8分,共24分)21.已知关于x ,y的方程组4ax x y ⎧+=-⎪⎨+=⎪⎩215x y x by -=⎧⎨+=⎩的解相同. (1)求a ,b 的值;(2)若一个三角形的一条边的长为x 的方程20x ax b ++=的解.试判断该三角形的形状,并说明理由.【答案】(1)-12 (2)等腰直角三角形,理由见解析【解析】【分析】(1)关于x ,y的方程组4ax x y ⎧+=-⎪⎨+=⎪⎩215x y x by -=⎧⎨+=⎩的解相同.实际就是方程组 42x y x y +=⎧⎨-=⎩的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与判断三角形的形状.【详解】解:由题意列方程组:42x y x y +=⎧⎨-=⎩解得31x y =⎧⎨=⎩将3x =,1y =分别代入23103ax y +=-和15x by += 解得43a =-,12b =∴43a =-,12b =(2)243120x x -+=解得434848232x ±-== 这个三角形是等腰直角三角形理由如下:∵222(23)(23)(26)+=∴该三角形是等腰直角三角形.【点睛】本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.如图1,在四边形ABCD 中,//AD BC ,90DAB ∠=︒,AB 是O 的直径,CO 平分BCD ∠.(1)求证:直线CD 与O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE 上一点,1AD =,2BC =.求tan APE ∠的值.【答案】(1)证明见解析;(2)22.【解析】【分析】(1)如图(见解析),先根据平行线的性质得出OB CB ⊥,再根据角平分线的性质可得OE OB =,然后根据圆的切线的判定即可得证;(2)如图(见解析),先根据圆周角定理可得APE ABE ∠=∠,90AEB =︒∠,再根据圆的切线的判定、切线长定理可得2,1CE BC DE AD ====,然后根据相似三角形的判定与性质可得12AE DE EF CE ==,设AE a =,从而可得2EF a =,又根据相似三角形的判定与性质可得BE AE EF BE =,从而可得2BE a =,最后根据正切三角函数的定义即可得.【详解】(1)如图,过点O 作OE CD ⊥于点E∵//AD BC ,90DAB ∠=︒∴90OBC ∠=︒,即OB CB ⊥又∵CO 平分BCD ∠,OE CD ⊥∴OE OB =即OE 是O 的半径∴直线CD 与O 相切; (2)如图,连接BE ,延长AE 交BC 延长线于点F由圆周角定理得:APE ABE ∠=∠,90AEB =︒∠AB 是O 的直径,AB AD ⊥,AB BC ⊥∴AD 、BC 都是O 的切线由切线长定理得:2,1CE BC DE AD ====∵//AD BC∴DAE CFE ∠=∠在ADE 和FCE △中,AED FEC DAE CFE∠=∠⎧⎨∠=∠⎩∴ADE FCE ~ ∴12AE DE EF CE == 设(0)AE a a =>,则2EF a =90BAE ABE FBE ABE ∠+∠=∠+∠=︒BAE FBE ∴∠=∠在ABE △和BFE △中,90BAE FBE AEB BEF ∠=∠⎧⎨∠=∠=︒⎩ABE BFE ∴~BE AE EF BE ∴=,即2BE a a BE= 解得2BE a =在Rt ABE △中,2tan 2AE ABE BE a∠=== 则2tan tan 2APE ABE ∠=∠=.【点睛】本题考查了圆的切线的判定与性质、圆周角定理、切线长定理、相似三角形的判定与性质、正切三角函数等知识点,较难的是题(2),通过作辅助线,构造相似三角形是解题关键.23.某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35. (1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社拟建A ,B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.【答案】(1)5平方米;3平方米 (2)10520元【解析】【分析】(1)设A 类摊位占地面积x 平方米,则B 类占地面积()2x -平方米,根据同等面积建立A 类和B 类的倍数关系列式即可;(2)设建A 类摊位a 个,则B 类(90)a -个,设费用为z ,由(1)得A 类和B 类摊位的建设费用,列出总费用的表达式,根据一次函数的性质进行讨论即可.【详解】解:(1)设每个A 类摊位占地面积x 平方米,则B 类占地面积()2x -平方米 由题意得6060325x x =⨯- 解得5x =,∴23x -=,经检验5x =为分式方程的解∴每个A 类摊位占地面积5平方米,B 类占地面积3平方米(2)设建A 类摊位a 个,则B 类(90)a -个,费用为z∵3(90)a a ≤-∴022.5a <≤405303(90)z a a =⨯+⨯-1108100a =+,∵110>0,∴z 随着a 的增大而增大,又∵a 为整数,∴当22a =时z 有最大值,此时10520z =∴建造90个摊位的最大费用为10520元【点睛】本题考查了一次函数的实际应用问题,熟练的掌握各个量之间的关系进行列式计算,是解题的关键.五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图,点B 是反比例函数8y x =(0x >)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C ,反比例函数k y x=(0x >)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .(1)填空:k =_________;(2)求BDF ∆的面积;(3)求证:四边形BDFG 为平行四边形.【答案】(1)2 (2)3 (3)见解析【解析】【分析】(1)根据题意设点B 的坐标为(x ,8x ),得出点M 的坐标为(2x ,4x ),代入反比例函数k y x =(0x >),即可得出k ;(2)连接OD ,根据反比例函数系数k 的性质可得||12AOD k S ∆==,842AOB S ∆==,可得413BOD S ∆=-=,根据//OF AB ,可得点F 到AB 的距离等于点O 到AB 距离,由此可得出答案;(3)设(),B B B x y ,(),D D D x y ,可得8B B x y ⋅=,2D D x y ⋅=,根据B D y y =,可得4B D x x =,同理4B E y y =,可得31BE EC =,34BD AB =,证明EBD ECF ∆∆∽,可得13CF CE BD BE ==,根据43OC AB BD BD ==,得出41OC CF =,根据O ,G 关于C 对称,可得OC CG =,4CG CF =,3FG CF =,可得BD FG =,再根据//BD FG ,即可证明BDFG 是平行四边形. 【详解】解:(1)∵点B 在8y x =上, ∴设点B 的坐标为(x ,8x), ∴OB 中点M 的坐标为(2x ,4x), ∵点M 在反比例函数k y x=(0x >), ∴k=2x ·4x=2, 故答案为:2;(2)连接OD ,则||12AOD k S ∆==, ,∵842AOB S ∆==, ∴413BOD S ∆=-=,∵//OF AB ,∴点F 到AB 的距离等于点O 到AB 距离,∴3BDF BDO S S ∆∆==;(3)设(),B B B x y ,(),D D D x y ,8B B x y ⋅=,2D D x y ⋅=,又∵B D y y =,∴4B D x x =,同理4B E y y =,∴31BE EC =,34BD AB =, ∵//AB BC ,∴EBD ECF ∆∆∽, ∴13CF CE BD BE ==, ∵43OC AB BD BD ==, ∴41OC CF =, ∴O ,G 关于C 对称,∴OC CG =,∴4CG CF =,∴43FG CG CF OF CF CF =-=-=,又∵3BD CF =,∴BD FG =,又∵//BD FG ,∴BDFG 是平行四边形.【点睛】本题考查了反比例函数系数的性质,相似三角形的判定和性质,平行四边形的判定,平行线的性质,灵活运用知识点是解题关键.25.如图,抛物线233y x bx c +=++与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,33BO AO ==,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,3BC CD =.(1)求b ,c 的值; (2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上,当ABD ∆与BPQ ∆相似时,请直接写出所有满足条件的点Q 的坐标.【答案】(1)313--;3322-- (2)333=-y x (3)231⎛⎫- ⎪ ⎪⎝⎭,(13,0)-,431,0⎫-⎪⎪⎝⎭,(523,0)-【解析】【分析】(1)根据33BD AO ==,得出(10)A -,,(30)B ,,将A ,B 代入233y x bx c +=++得出关于b ,c 的二元一次方程组求解即可; (2)根据二次函数是2(33)33316322y x x ⎛⎫+=-+-- ⎪ ⎪⎝⎭,3BC CD =,(3,0)B ,得出D 的横坐标为,代入抛物线解析式求出(1)D ,设BD 得解析式为:y kx b =+,将B ,D 代入求解即可; (3)由题意得tan ∠tan ∠ADB=1,由题意得抛物线的对称轴为直线x=1,设对称轴与x 轴交点为M ,P (1,n )且n<0,Q (x ,0)且x<3,分①当△PBQ ∽△ABD 时,②当△PQB ∽△ABD 时,③当△PQB ∽△DAB 时,④当△PQB ∽△ABD 时四种情况讨论即可.【详解】解:(1)∵33BD AO ==,∴(10)A -,,(30)B ,, ∴将A ,B代入2y x bx c =++得030b c b c -+=++=,解得132b c ⎧=--⎪⎪⎨⎪=⎪⎩,∴13b =--,322c =--; (2)∵二次函数是2312y x x ⎛=-- ⎝⎭,BC =,(3,0)B , ∴D的横坐标为代入抛物线解析式得3312y ⎛=++ ⎝⎭312=-1=∴(1)D ,设BD 得解析式为:y kx b =+将B ,D代入得103b k b =+=+⎪⎩,解得3k b ⎧=-⎪⎨⎪=⎩,∴直线BD的解析式为=y ; (3)由题意得tan ∠tan ∠ADB=1, 由题意得抛物线的对称轴为直线x=1,设对称轴与x 轴交点为M ,P (1,n )且n<0,Q (x ,0)且x<3, ①当△PBQ ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=3, 解得tan ∠PQB=tan ∠ADB 即11n x-=-, 解得此时Q 的坐标为(,0); ②当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ADB 即2n -=1, 解得n=-2,tan ∠QPB=tan ∠ABD 即1n x --, 解得x=1-此时Q 的坐标为(1-0);③当△PQB ∽△DAB 时,tan ∠PBQ=tan ∠ABD 即2n -解得tan ∠PQM=tan ∠DAE即1n x -=-,解得x=3-1,此时Q 的坐标为(3-1,0); ④当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=1, 解得n=-2,tan ∠PQM=tan ∠DAE 即1n x -=-,解得x=5-Q 的坐标为(5-0);综上:Q 的坐标可能为13⎛⎫- ⎪ ⎪⎝⎭,(1-,1,03⎛⎫- ⎪ ⎪⎝⎭,(5-. 【点睛】本题考查了二次函数,一次函数,相似三角形的判定和性质,锐角三角函数,掌握知识点灵活运用是解题关键.。
广东省2020年数学中考试题及答案
2020年广东省数学中考试题一、选择题(本大题10小题,每小題3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.9的相反数是( )A.-9B.9C.19D.19- 2.一组数据2,4,3,5,2的中位数是( )A.5B.35C.3D.253.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A.(3,2)-B.(2,3)-C.(2,3)-D.(3,2)-4.若一个多边形的内角和是540°,则该多边形的边数为( )A.4B.5C.6D.75.若式子24x -在实数范围内有意义,则x 的取值范围是( )A.2x ≠B.2x ≥C.2x ≤D.2x ≠-6.已知ABC ∆的周长为16,点D ,E ,F 分别为ABC ∆三条边的中点,则DEF ∆的周长为( )A.8B.22C.16D.4 7.把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为( )A.22y x =+B.2(1)1y x =-+ C.2(2)2y x =-+ D.2(1)3y x =-- 8.不等式组231,12(2)x x x -≥-⎧⎨-≥-+⎩的解集为( ) A.无解 B.1x ≤ C.1x ≥- D.11x -≤≤9.如图,在正方形ABCD 中,3AB =,点E ,F 分别在边AB ,CD 上,60EFD ∠=︒.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( )A.1B.2C.3D.2 10.如图,抛物线2y ax bx c =++的对称轴是1x =.下列结论:①0abc >;②240b ac ->;③80a c +<;④520a b c ++>,正确的有( )A.4个B.3个C.2个D.1个二、填空题(本大题7小題,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy x -=_________.12.如果单项式3m x y 与35nx y -是同类项,那么m n +=_________. 13.若2|1|0a b -++=,则2020()a b +=_________.14.已知5x y =-,2xy =,计算334x y xy +-的值为_________.15.如图,在菱形ABCD 中,30A ∠=︒,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD ,则EBD ∠的度数为_________.16.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,90ABC ∠=︒,点M ,N分别在射线BA ,BC 上,MN 长度始终保持不变,4MN =,E 为MN 的中点,点D 到BA ,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为_________.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求价:22()()()2x y x y x y x +++--,其中2x =,3y =.19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解 比较了解 基本了解 不太了解 人数(人)24 72 18 x(1)求x 的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在ABC ∆中,点D ,E 分别是AB 、AC 边上的点,BD CE =,ABE ACD ∠=∠,BE 与CD 相交于点F ,求证:ABC ∆是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.已知关于x ,y 的方程组23103,4ax x y ⎧+=-⎪⎨+=⎪⎩与2,15x y x by -=⎧⎨+=⎩的解相同. (1)求a ,b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程20x ax b ++=的解.试判断该三角形的形状,并说明理由.22.如图1,在四边形ABCD 中,//AD BC ,90DAB ∠=︒,AB 是O 的直径,CO 平分BCD ∠.(1)求证:直线CD 与O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE 上一点,1AD =,2BC =.求tan APE ∠的值.23.某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35. (1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社拟建A ,B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图,点B 是反比例函数8y x =(0x >)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C ,反比例函数k y x=(0x >)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .(1)填空:k =_________;(2)求BDF ∆的面积;(3)求证:四边形BDFG 为平行四边形.25.如图,抛物线233y x bx c +=++与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,33BO AO ==,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,3BC CD =.(1)求b ,c 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上,当ABD ∆与BPQ ∆相似时,请直接写...出.所有满足条件的点Q 的坐标.答案【选择题】1.A2.C3.D4.B5.B6.A7.C8.D9.D10.B【填空题】11.(1)x y -12.43m =,1n =,4m n +=13.12a =,1b =-,202011=14.75x y +=,2xy =3343()41587x y xy x y xy +-=+-=-=15.45°18030150ABC ∠=-=︒︒︒ 1275ABD ABC =∠=︒ ∵AE EB =∴EAB EBA ∠=∠∴753045EBD ∠=-=︒︒︒16.131AB = 21203603ABC S r ππ︒=⋅=︒扇形r l 锥扇=,3S rl ππ==锥13r =17.252-B 、D 、E 三点共线,距离最小2BE =,224225BD =+=252DE BD BE =-=-18.解:原式2222222x xy y x y x =+++-- 2xy =将2x =3y =得原式223=26=19.(1)解:由题意得:247218120x +++=解得6x =(2)解:247218001440120+⨯=(人) 答:估算“非常了解”和“比较了解”垃圾分类知识的学生有1440人.20.证明:在BDF ∆和CEF ∆中()DFB EFC FBD FCEBD CE ⎧∠=∠⎪∠=∠⎨⎪=⎩对顶角相等 ∴()BDF CEF AAS ∆∆≌∴BF CF =∴FBC FCB ∠=∠又∵ABE ACD ∠=∠∴FBC ABE FCD ACD ∠+∠=∠+∠即ABC ACB ∠=∠∴ABC ∆是等腰三角形21.解:由题意列方程组:42x y x y +=⎧⎨-=⎩解得31x y =⎧⎨=⎩将3x =,1y =分别代入ax +=-15x by +=解得a =-12b =∴a =-12b =(2)2120x -+=解得x ==这个三角形是等腰直角三角形理由如下:∵222+=∴该三角形是等腰直角三角形22.(1)证明:连接过点O 作OE CD ⊥于点E∵//AD BC ,90DAB ∠=︒∴90OBC ∠=︒又∵CD 平分BCD ∠,OE CD ⊥,OB CB ⊥∴OE OB =∴直线CD 与O 相切(2)连接BE ,延长AE 交BC 延长线与点F由题意得APE ABE ∠=∠∵//AD BC∴DAE CFE ∠=∠在ADE ∆和CFE ∆中AED FEC DAE CFE∠=∠⎧⎨∠=∠⎩ ∴ADE CFE ∆∆∽ ∴12AE EF = 根据射影定理得2BE AE EF =⋅∴2tan tan 2AE ADE ABE BE ∠=∠==23.解:(1)设每个A 类摊位占地面积x 平方米,则B 类占地面积()2x -平方米 由题意得6060325x x =⨯- 解得5x =∴23x -=,经检验5x =为分式方程的解∴每个A 类摊位占地面积5平方米,B 类占地面积3平方米(2)设建A 类摊位a 个,则B 类(90)a -个,费用为z∵3(90)a a ≤-∴022.5a <≤4030(90)z a a =+-102700a =+当22a =时2920z =∴建造90个摊位的最大费用为2920元24.解:(1)2k =(2)连接OD 则||12AOD k S ∆== ∵842AOB S ∆== ∴413BOD S ∆=-=∵//OF AB∴点F 到AB 的距离等于点O 到AB 距离 ∴3BDF BDO S S ∆∆==(3)设(),B B B x y ,(),D D D x y 8B B x y ⋅=,2D D x y ⋅=又∵D B y y =∴4B D x x =同理4B E y y = ∴31BE EC =,34BD AB = ∵//AB BC ∴EBD ECF ∆∆∽ ∴13CF CE BD BE == ∵43OC AB BD BD ==∴41OC CF = ∴O ,G 关于C 对称∴OC CG = ∴4CG CF =∴43FG CG CF OF CF CF =-=-= 又∵3BD CF =∴BD FG =又∵//BD FG ∴BDFG 是平行四边形25.解:(1)∵33BD AO ==∴(1,0)A -,(3,0)B∴030b c b c +=+=解得132b c ⎧=-⎪⎪⎨⎪=-⎪⎩∴13b =--,322c =-- (2)∵二次函数是2312y x x ⎛=-- ⎝⎭∵BC =,(3,0)B∴D的横坐标为33316322y ⎛=++- ⎝⎭331222+=+--1=∴(1)D设BD :y kx b =+则103b k b =+=+⎪⎩解得3k b ⎧=-⎪⎨⎪=⎩∴直线BD的解析式为y x =+(3)(1-(5-⎫⎪⎪⎝⎭⎫⎪⎪⎝⎭。
2020年广东省广州市中考数学试卷(含解析)
2020年广东省广州市中考数学试卷(考试时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题3分,满分30分)1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×1082.某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四3.下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x104.△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°5.如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形6.一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.如图,Rt△ABC中,∠C=90°,AB=5,cosA=,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定8.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm9.直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个10.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E 作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知∠A=100°,则∠A的补角等于°.12.化简:﹣=.13.方程=的解是.14.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为.15.如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为.16.对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x =mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.三、解答题(本大题共9小题,满分102分)17.(9分)解不等式组:.18.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.19.(10分)已知反比例函数y=的图象分别位于第二、第四象限,化简:﹣+.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:67 68 73 75 76 78 80 82 83 84 85 85 90 92 95甲社区66 69 72 74 75 78 80 81 85 85 88 89 91 96 98乙社区根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=(x>0)的图象经过点A (3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).参考答案与试题解析一、选择题1.【解答】解:15233000=1.5233×107,故选:C.2.【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.3.【解答】解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.4.【解答】解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.5.【解答】解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.6.【解答】解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x2+2,∴y3<y2<y1,故选:B.7.【解答】解:∵Rt△ABC中,∠C=90°,AB=5,cosA=,∴==,∴AC=4,∴BC==3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.8.【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=AB=×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD===10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C.9.【解答】解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是二次方程,∵△=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.10.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.二、填空题11.【解答】解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.12.【解答】解:﹣=2=.故填:.13.【解答】解:方程=,去分母得:2x=3,解得:x=,经检验x=是分式方程的解.故答案为:x=.14.【解答】解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).15.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.16.【解答】解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x=﹣=10.0时,y有最小值,设w=(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2=nx2﹣2(x1+x2+…+x n)x+(x12+x22+…+x n2),∵n>0,∴当x=﹣=时,w有最小值.故答案为10.0,.三、解答题17.【解答】解:解不等式①得:x≥3,解不等式②得:x>2,所以不等式组的解集为:x≥318.【解答】解:在△ABC与△ADC中,,∴△ABC≌△ADC(SAS),∴∠D=∠B=80°,∴∠BCA=180°﹣25°﹣80°=75°.19.【解答】解:∵反比例函数y=的图象分别位于第二、第四象限,∴k<0,∴k﹣1<0,∴﹣+=+=k+4+=k+4+|k﹣1|=k+4﹣k+1=5.20.【解答】解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)==.21.【解答】解:(1)∵点A(3,4)在y=上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA==5,∴平行四边形ABCD的周长为2(5+9)=28.22.【解答】解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.23.【解答】解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC==12,∴OA=12,∵四边形ABCD是菱形,∴AD=13,∴BF=×12×5×2×2÷13=,故点E到AD的距离是.24.【解答】证明:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵∠ADC=∠ABC=60°,∠BDC=∠BAC=60°,∴∠ADC=∠BDC,∴DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数,理由如下:如图1,将△ADC绕点逆时针旋转60°,得到△BHC,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,∴S=x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=EC,PE=PC=EC,∴EF=2PE=EC=CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4.25.【解答】解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B(x1,3),C(x2,3),线段BC上有一点E,∴S1=×BE×3=BE,S2=×CE×3=CE,∵S1=S2+.∴CE+=BE,∴BE=CE+1,∵b=﹣6a,∴抛物线G:y=ax2﹣6ax+c,∴对称轴为x==3,∴BC的中点M坐标为(3,3),∵BE=BM+EM,CE=CM﹣EM,BM=CM,BE=CE+1,∴EM=,∴点E(,3)或(,3);(3)∵直线DE与抛物线G:y=ax2﹣6ax+c的另一个交点F的横坐标为+3,∴y=a()2﹣6a×(+3)+c=﹣9a+c,∴点F(+3,﹣9a+c),∵点D是抛物线的顶点,∴点D(3,﹣9a+c),∴直线DF的解析式为:y=6x﹣18+c﹣9a,∴点E坐标为(,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a。
2020年广东省广州市中考数学试卷及答案解析
2020年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×1082.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四3.(3分)下列运算正确的是()A.√a+√b=√a+b B.2√a×3√a=6√a C.x5•x6=x30D.(x2)5=x104.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C .该圆锥的主视图既是轴对称图形,又是中心对称图形D .该圆锥的主视图既不是轴对称图形,又不是中心对称图形6.(3分)一次函数y =﹣3x +1的图象过点(x 1,y 1),(x 1+1,y 2),(x 1+2,y 3),则( ) A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 27.(3分)如图,Rt △ABC 中,∠C =90°,AB =5,cos A =45,以点B 为圆心,r 为半径作⊙B ,当r =3时,⊙B 与AC 的位置关系是( )A .相离B .相切C .相交D .无法确定8.(3分)往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =48cm ,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm9.(3分)直线y =x +a 不经过第二象限,则关于x 的方程ax 2+2x +1=0实数解的个数是( ) A .0个B .1个C .2个D .1个或2个10.(3分)如图,矩形ABCD 的对角线AC ,BD 交于点O ,AB =6,BC =8,过点O 作OE ⊥AC ,交AD 于点E ,过点E 作EF ⊥BD ,垂足为F ,则OE +EF 的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,满分18分.) 11.(3分)已知∠A =100°,则∠A 的补角等于 °.12.(3分)化简:√20−√5= . 13.(3分)方程x x+1=32x+2的解是 .14.(3分)如图,点A 的坐标为(1,3),点B 在x 轴上,把△OAB 沿x 轴向右平移到△ECD ,若四边形ABDC 的面积为9,则点C 的坐标为 .15.(3分)如图,正方形ABCD 中,△ABC 绕点A 逆时针旋转到△AB 'C ,AB ',AC '分别交对角线BD 于点E ,F ,若AE =4,则EF •ED 的值为 .16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm )9.9,10.1,10.0,若用a 作为这条线段长度的近似值,当a = mm 时,(a ﹣9.9)2+(a ﹣10.1)2+(a ﹣10.0)2最小.对另一条线段的长度进行了n 次测量,得到n 个结果(单位:mm )x 1,x 2,…,x n ,若用x 作为这条线段长度的近似值,当x = mm 时,(x ﹣x 1)2+(x ﹣x 2)2+…+(x ﹣x n )2最小.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.) 17.(9分)解不等式组:{2x −1≥x +2x +5<4x −1.18.(9分)如图,AB =AD ,∠BAC =∠DAC =25°,∠D =80°.求∠BCA 的度数.19.(10分)已知反比例函数y =k x 的图象分别位于第二、第四象限,化简:k 2k−4−16k−4+√(k+1)2−4k.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区676873757678808283848585909295乙社区666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=kx(x>0)的图象经过点A(3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=132,BD=10,求点E到AD的距离.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧AB̂上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c ﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+3 2.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为6a+3,求y=ax2+bx+c在1<x <6时的取值范围(用含a的式子表示).参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×108【解答】解:15233000=1.5233×107,故选:C.2.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.3.(3分)下列运算正确的是()A.√a+√b=√a+b B.2√a×3√a=6√a C.x5•x6=x30D.(x2)5=x10【解答】解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.4.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°【解答】解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形【解答】解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.6.(3分)一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【解答】解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x2+2,∴y3<y2<y1,故选:B.7.(3分)如图,Rt△ABC中,∠C=90°,AB=5,cos A=45,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定【解答】解:∵Rt△ABC中,∠C=90°,AB=5,cos A=4 5,∴ACAB =AC5=45,∴AC=4,∴BC=√AB2−AC2=3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.8.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=12AB=12×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD=√OB2−BD2=√262−242=10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C .9.(3分)直线y =x +a 不经过第二象限,则关于x 的方程ax 2+2x +1=0实数解的个数是( ) A .0个B .1个C .2个D .1个或2个【解答】解:∵直线y =x +a 不经过第二象限, ∴a ≤0,当a =0时,关于x 的方程ax 2+2x +1=0是一次方程,解为x =−12, 当a <0时,关于x 的方程ax 2+2x +1=0是二次方程, ∵△=22﹣4a >0,∴方程有两个不相等的实数根. 故选:D .10.(3分)如图,矩形ABCD 的对角线AC ,BD 交于点O ,AB =6,BC =8,过点O 作OE ⊥AC ,交AD 于点E ,过点E 作EF ⊥BD ,垂足为F ,则OE +EF 的值为( )A .485B .325C .245D .125【解答】解:∵AB =6,BC =8,∴矩形ABCD 的面积为48,AO =DO =12AC =5, ∵对角线AC ,BD 交于点O , ∴△AOD 的面积为12, ∵EO ⊥AO ,EF ⊥DO ,∴S △AOD =S △AOE +S △DOE ,即12=12AO ×EO +12DO ×EF , ∴12=12×5×EO +12×5×EF ,∴5(EO+EF)=24,∴EO+EF=24 5,故选:C.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知∠A=100°,则∠A的补角等于80°.【解答】解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.12.(3分)化简:√20−√5=√5.【解答】解:√20−√5=2√5−√5=√5.故填:√5.13.(3分)方程xx+1=32x+2的解是x=32.【解答】解:方程xx+1=32x+2,去分母得:2x=3,解得:x=3 2,经检验x=32是分式方程的解.故答案为:x=3 2.14.(3分)如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为(4,3).【解答】解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).15.(3分)如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为16.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴AEDE =EFAE,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=10.0mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=x1+x2+⋯+x nnmm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.【解答】解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x =−−60.06=10.0时,y 有最小值, 设w =(x ﹣x 1)2+(x ﹣x 2)2+…+(x ﹣x n )2=nx 2﹣2(x 1+x 2+…+x n )x +(x 12+x 22+…+x n 2),∵n >0, ∴当x =−−2(x 1+x 2+⋯+x n )2n =x 1+x 2+⋯+x nn时,w 有最小值. 故答案为10.0,x 1+x 2+⋯+x nn.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.) 17.(9分)解不等式组:{2x −1≥x +2x +5<4x −1.【解答】解:{2x −1≥x +2①x +5<4x −1②解不等式①得:x ≥3, 解不等式②得:x >2, 所以不等式组的解集为:x ≥318.(9分)如图,AB =AD ,∠BAC =∠DAC =25°,∠D =80°.求∠BCA 的度数.【解答】解:在△ABC 与△ADC 中, {AB =AD∠BAC =∠DAC AC =AC, ∴△ABC ≌△ADC (SAS ), ∴∠D =∠B =80°,∴∠BCA =180°﹣25°﹣80°=75°.19.(10分)已知反比例函数y =k x 的图象分别位于第二、第四象限,化简:k 2k−4−16k−4+√(k +1)2−4k .【解答】解:∵反比例函数y =kx 的图象分别位于第二、第四象限, ∴k <0, ∴k ﹣1<0,∴k2k−4−16k−4+√(k+1)2−4k=(k−4)(k+4)k−4+√k2−2k+1=k+4+√(k−1)2=k+4+|k﹣1|=k+4﹣k+1=5.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区676873757678808283848585909295乙社区666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.【解答】解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)=412=13.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=kx(x>0)的图象经过点A(3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.【解答】解:(1)∵点A(3,4)在y=kx上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=12x上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA=√32+42=5,∴平行四边形ABCD的周长为2(5+9)=28.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【解答】解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=132,BD=10,求点E到AD的距离.【解答】解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=12BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC=√BC2−OB2=12,∴OA=12,∵四边形ABCD 是菱形, ∴AD =13,∴BF =12×12×5×2×2÷13=12013, 故点E 到AD 的距离是12013.24.(14分)如图,⊙O 为等边△ABC 的外接圆,半径为2,点D 在劣弧AB ̂上运动(不与点A ,B 重合),连接DA ,DB ,DC . (1)求证:DC 是∠ADB 的平分线;(2)四边形ADBC 的面积S 是线段DC 的长x 的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M ,N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,△DMN 的周长有最小值t ,随着点D 的运动,t 的值会发生变化,求所有t 值中的最大值.【解答】证明:(1)∵△ABC 是等边三角形, ∴∠ABC =∠BAC =∠ACB =60°,∵∠ADC =∠ABC =60°,∠BDC =∠BAC =60°, ∴∠ADC =∠BDC , ∴DC 是∠ADB 的平分线;(2)四边形ADBC 的面积S 是线段DC 的长x 的函数, 理由如下:如图1,将△ADC 绕点逆时针旋转60°,得到△BHC ,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=√34CD2,∴S=√34x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=12EC,PE=√3PC=√32EC,∴EF=2PE=√3EC=√3CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4√3.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c ﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+3 2.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为6a+3,求y=ax2+bx+c在1<x <6时的取值范围(用含a的式子表示).【解答】解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B (x 1,3),C (x 2,3),线段BC 上有一点E , ∴S 1=12×BE ×3=32BE ,S 2=12×CE ×3=32CE , ∵S 1=S 2+32. ∴32CE +32=32BE ,∴BE =CE +1, ∵b =﹣6a ,∴抛物线G :y =ax 2﹣6ax +c , ∴对称轴为x =−6a−2a=3, ∴BC 的中点M 坐标为(3,3),∵BE =BM +EM ,CE =CM ﹣EM ,BM =CM ,BE =CE +1, ∴EM =12,∴点E (72,3)或(52,3);(3)∵直线DE 与抛物线G :y =ax 2﹣6ax +c 的另一个交点F 的横坐标为6a+3,∴y =a (6a+3)2﹣6a ×(6a+3)+c =36a−9a +c , ∴点F (6a+3,36a−9a +c ),∵点D 是抛物线的顶点, ∴点D (3,﹣9a +c ),∴直线DF 的解析式为:y =6x ﹣18+c ﹣9a , ∴点E 坐标为(72,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a.。
2020年广东省广州市中考数学试题及答案
2020年广州市初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试时间120分钟.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将图1所示的图案通过平移后可以得到的图案是()2.如图2,AB CD∥,直线l分别与AB CD、相交,若1130∠=°,则2∠=()A.40°B.50°C.130°D.140°3.实数a b、在数轴上的位置如图3所示,则a与b的大小关系是()A.a b<B.a b=C.a b>D.无法确定4.二次函数2(1)2y x=-+的最小值是()A.2 B.1 C.1-D.2-5.图4是广州市某一天内的气温变化图,根据图4下列说法中错误..的是()A.这一天中最高气温是24℃B.这一天中最高气温与最低气温的差为16℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中只有14时至24时之间的气温在逐渐降低6.下列运算正确的是()A.222()m n m n-=-B.221(0)m mm-=≠C.224()m n mn=g D.246()m m=7.下列函数中,自变量x的取值范围是3x≥的是()A.13yx=-B.13yx=-C.3y x=-D.3y x=-A.B.C.D.图1A BC D图212 0b a图3温度T(℃)时间t(时)图426242220181614121086422 4 6 8 10 12 14 16 18 20 22 24OA .正十边形B .正八边形C .正六边形D .正五边形 9.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图5所示),则sin θ的值为( ) A .512B .513C .1013D .121310.如图6,在ABCD Y中,69AB AD ==,,BAD ∠的平分线交BC 于点E ,交DC 的延长线于点F ,BG AE ⊥,垂足为G ,若42BG =,则CEF △的周长为( )A .8B .9.5C .10D .11.5第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.) 11.已知函数2y x=,当1x =时,y 的值是 . 12.在某校举行的“艺术节”的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是 . 13.绝对值是6的数是 .14.已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题: .15.如图7-①,7-②,7-③,7-④,……是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是 ,第n 个“广”字中的棋子个数是 .16.如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由 块长方体的积木块搭成.θ图5 A D G B C F E 图6 图7-① 图7-② 图7-③ 图7-④ …… 正 视 图 左视图俯视图三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分9分)如图9,在ABC △中,D E F 、、分别为边AB BC CA 、、的中点.证明:四边形DECF 是平行四边形.18.19.20.如图(1(2)求O ⊙的周长. AF CE D B图10有红、白、蓝三种颜色的小球各一个,它们除颜色外没有任何其他区别.现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个且只能放一个小球.(1)请用树状图或其它适当的形式列举出3个小球放入盒子的所有可能情况;(2)求红球恰好被放入②号盒子的概率.22.如图11点M(1(2(323.(1(2)若I型冰箱,政府共补贴了多少元?(结果保留2个有效数字)如图12,边长为1的正方形ABCD 被两条与边平行的线段EF GH 、分割成四个小矩形,EF 与GH 交于点P .(1)若AG AE =,证明:AF AH =;(2)若45FAH ∠=°,证明:AG AE FH +=;(3)若Rt GBF △的周长为1,求矩形EPHD 的面积.25.如图,ABC △(1(2范围;(3)A E DH G PB FC 图122009年广州市初中毕业生学业考试数学试题参考答案11.2 12.9.3 13.6±14.如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直15.179分.证法∴同理证法∴∵E∴∴18解:即3x即3x∴x∴x19分.解:(23(6)a a a=---2236a a a=--+63a=-.将12a=代入63a-,得163)3 a-=-=.20.本小题主要考查圆、等边三角形等基础知识,考查计算能力、推理能力和空间观念.满分 10 分. 解:(1)∵BC BC =, ∴60BAC BDC ∠=∠=°.(2)∵60BAC ACB ∠=∠=°, ∴60ABC ∠=°.∴ABC △是等边三角形.求O方法1∵△∴圆心在Rt △∴AE =∴AO 方法 2∵OA =∴CE =∴AE =∵∠∴Rt △在Rt △∴sin ∴OA =方法3∵O ∴∠在Rt △∴2OA=. ∴2cm OA =,即O 的半径为2cm .方法 4:连结OC OA 、,作OE AC ⊥交AC 于点E (如图2). ∵O 是等边三角形的外心,也是ABC △的角平分线的交点,∴1130OAE AE AC ∠===⨯=°,.在Rt AEO △中,设cm OE x =,则2cm OA x =, ∵222AE OE OA +=,∴222(3)(2)x x +=.解得1x =.∴2cm OA =,即O 的半径为2cm . ∴ O 的周长为2πr ,即4πcm .21.本小题主要考查概率等基本的概念,考查.满分12 分. (1)解法1:可画树状图如下:共6种情况.解法2:3个小球分别放入编号为①、②、③的三个盒子的所有可能情况为:红白蓝、红蓝白、白红蓝、白蓝红、蓝红白、蓝白红共6 种.(2)解:从(1)可知,红球恰好放入 2 号盒子的可能结果有白红蓝、蓝红白共 2种,所以红球恰好放入2号盒子的概率2163P ==. 22.本小题主要考查图形的坐标、轴对称图形、尺规作图、一次函数等基础知识,考查用 待定系数法求函数解析式的基本方法,以及从平面直角坐标系中读图获取有效信息的能 力,满分12分.解:(1)(13)A -,,(42)B -,;(2)解法1:∵直线MN 经过坐标原点, ∴设所求函数的关系式是y kx =, 又点M 的坐标为(1,2), ∴2k =.∴直线MN 所对应的函数关系式是2y x =. 解法 2:设所求函数的关系式是y kx b =+ 则由题意得:0 2.b k b =⎧⎨+=⎩,解这个方程组,得20.k b =⎧⎨=⎩,蓝 白 白 蓝 红 蓝 红 红 蓝 白 白 红 红 白 蓝 ①号盒子 ②号盒子 ③号盒子∴直线MN 所对应的函数关系式是2y x =.(3)利用直尺和圆规,作线段AB 关于直线MN 的对称图形A B '',如图所示. 23.本小题主要考查建立二元一次方程组模型解决简单实际问题的能力,考查基本的代数计算推理能力.满分12分. 解:(1)设启动活动前的一个月销售给农户的 I 型冰箱和 II 型冰箱分别为x y ,台.根据题意得960(130%)(125%)1228.x y x y +=⎧⎨+++=⎩,解得560400.x y =⎧⎨=⎩,∴启动活动前的一个月销售给农户的 I 型冰箱和 II 型冰箱分别为560台和400台. (2)I 型冰箱政府补贴金额:2298560(130%)13%217482.72⨯⨯+⨯=元, II 型冰箱政府补贴金额:1999400(125%)13%129935⨯⨯+⨯=元. ∴启动活动后第一个月两种型号的冰箱政府一共补贴金额:5217482.72129935347417.72 3.510+=⨯≈元.答:启动活动后第一个月两种型号的冰箱政府一共约补贴农户53.510⨯元.24.本小题主要考查正方形、矩形、三角形全等等基础知识,考查计算能力、推理能力和空间观念.满分14分.(1)证明1:在Rt ADH △与Rt ABF △中, ∵AD AB DH AG AE BF ====,, ∴Rt ADH △≌Rt ABF △. ∴AF AH =.证明2:在Rt AEF △中,222AF AE EF =+. 在Rt AGH △中,222AH AG GH =+∵AG AE GH EF ==,, ∴AF AH =.(2)证明1:将ADH △绕点A 顺时针旋转90°到ABM △的位置. 在AMF △与AHF △中, ∵ AM AH AF AF ==,,904545MAF MAH FAH FAH ∠=∠-∠=-==∠°°°,∴AMF AHF △≌△. ∴MF HF =.∵MF MB BF HD BF AG AE =+=+=+, ∴AG AE FH +=.证明2:延长CB 至点M ,使BM DH =,连结AM . E D GA P∵AB AD BM DH ==,, ∴Rt Rt ABM ADH △≌△.∴AM AH MAB HAD =∠=∠,. ∵45FAH ∠=°,∴904545BAF DAH BAD FAH ∠+∠=∠-∠=-=°°°.∴45MAF MAB BAF HAD BAF FAH ∠=∠+∠=∠+∠==∠°. ∴AMF AHF △≌△. ∴MF FH =.∵MF MB BF HD BF AG AE =+=+=+, ∴AG AE FH +=.12=. ∴矩形EPHD 的面积是12. 方法2:由(*)得1()2x y xy +-=, ∴矩形EPHD 的面积(1)(1)S PH EP FC AG x y ===--··1()x y xy =-++ 112=- 12= ∴矩形EPHD 的面积是12. 25. 本小题主要考查二次函数、解直角三角形等基础知识,考查运算能力、推理能力和空间观念.满分14分.解:(1∵抛物线∴210-=∴1q =-∴2y x =∵抛物线∴12x x ,求p 方法1∵△∴12OC ·∴21x x -∴2(x x -∵212112(x x -∴2211225()44x x x x +-=. ∴225()44p -+=. 解得32p =±. ∵0p <,∴32p =-. ∴所求二次函数的关系式为2312y x x =--. 方法2:由求根公式得1x =,2x =21AB x x =-==∵△∴12·∴12⨯∴2p 解得p ∵p <∴p =(2∴A ⎛ ⎝在Rt 在Rt ∵AB ∴2AC ∴∠∴△∴Rt ABC △的外接圆的圆心是斜边AB 的中点. ∴Rt ABC △的外接圆的半径524AB r ==.∵垂线与ABC △的外接圆有公共点, ∴5544m -≤≤. (3)假设在二次函数2312y x x =--的图象上存在点D ,使得四边形ACBD 是直角梯形. ①若AD BC ∥,设点D 的坐标为2000312x x x ⎛⎫-- ⎪⎝⎭,,00x >, 过D 作DE x ⊥轴,垂足为E ,如图1所示.4532⎛⎫⎪⎭,,使得四边形DACB 是直角梯形.方法2:在Rt AED △与Rt BOC △中,DAE CBO ∠=∠, ∴Rt Rt AED BOC △∽△. ∴DE OCAE OB=.∴20003112122x x x --=⎛⎫-- ⎪⎝⎭. 以下同方法1.②若AC BD ∥,设点D 的坐标为2000312x x x ⎛⎫-- ⎪⎝⎭,,00x <, 过D 作DF x ⊥轴,垂足为F ,如图2所示.2DACB 综上所述,在抛物线2312y x x =--上存在点D ,使得四边形DACB 是直角梯形,并且点D 的坐标为5322⎛⎫ ⎪⎝⎭,或592⎛⎫- ⎪⎝⎭,.。
2020年广东省中考数学试卷及答案(word解析版)
2020年广东省初中毕业生学业考试数 学说明:1本卷共四大题,27小题,全卷满分120分,考试时间为150分钟。
2,本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
题序一二三四五六七八总分得分说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B 铅笔把对应号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上. 4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2的相反数是A.21B. 21C.-2D.2 答案:C解析:2的相反数为-2,选C ,本题较简单。
2.下列几何体中,俯视图为四边形的是答案:D解析:A 、B 、C 的俯视图分别为五边形、三角形、圆,只有D 符合。
3.据报道,2020年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D. 12.6×1011元 答案:B解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 1 260 000 000 000=1.26×1012元 4.已知实数a 、b ,若a >b ,则下列结论正确的是 A.55-<-b a B.b a +<+22 C.33ba < D.b a 33> 答案:D解析:不等式的两边同时加上或减去一个数,不等号的方向不变,不等式的两边同时除以或乘以一个正数,不等号的方向也不变,所以A 、B 、C 错误,选D 。
2020年广州市中考数学24题详解
2020年广州市中考数学24. (本小题满分14分)如图,O ⊙为等边ABC 的外接圆,半径为2,点D 在劣弧AB 上运动(不与点A ,B 重合),连接DA ,DB ,DC.(1)求证:DC 是ADB ∠的平分线;(2)四边形ADBC 的面积S 是线段DC 的长x 的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点,M N 分别在线段,CA CB 上运动(不含端点),经过研究发现,点D 运动到每一个确定的位置,DMN 的周长有最小值t ,随着点D 的运动,t 的值会发生变化,求所有t 值中的最大值.()()()21,,,2,,2180,,,,.32344DBC ADC EAC ADC CDE ABC AC BC AC BC ADC BDC DC ADB DA E AE DB EC EAC DAC DBC AE DB EAC DBC AC BC EAC DBC S S S S S S x x =∴=∠=∠∴∠=∠=︒-∠=∠=∠=∠=∴≅∴=+=+==<≤证:为等边三角形,是的平分线;延长至点,使得连接如图 ()3''',3''''''.'.'''.','',''''''60120,''''''33DMN D BC AC D D C DM MN NDD M MN ND D M N D DMN t t DD D C DC DC x D CB DCB D CA DCA D CD D CB BCA D CADCB DCAD CD t D D DC =++=++∴====∠=∠∠=∠∠=∠+∠+∠=∠+︒+∠=︒===依次作点关于直线,的对称点、如图、、、共线时取最小值此时由对称性有:在等腰中,max ,4,44 3.x x t D O C t x t ∴==当取得最大值时,取得最大值,即点与共线时,取得最大值,当时,。
2020年广东省广州市中考数学试卷和答案解析
2020年广东省广州市中考数学试卷和答案解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×108解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.参考答案::解:15233000=1.5233×107,故选:C.点拨:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四解析:根据条形统计图得出即可.参考答案::解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.点拨:本题考查了条形统计图,能根据图形得出正确的信息是解此题的关键.3.(3分)下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x10解析:各项计算得到结果,即可作出判断.参考答案::解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.点拨:此题考查了二次根式的混合运算,同底数幂的乘法,以及幂的乘方,熟练掌握运算法则是解本题的关键.4.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°解析:根据三角形的中位线定理得到DE∥BC,根据平行线的性质即可求得∠AED=∠C=68°.参考答案::解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.点拨:本题主要考查了三角形的中位线定理,能熟练地运用三角形的中位线定理是解此题的关键.5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形解析:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,从而得出答案.参考答案::解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.点拨:本题主要考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图及轴对称图形、中心对称图形的概念.6.(3分)一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2解析:先根据一次函数的解析式判断出函数的增减性,再根据x1<x1+1<x2+2即可得出结论.参考答案::解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x1+2,∴y3<y2<y1,故选:B.点拨:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.(3分)如图,Rt△ABC中,∠C=90°,AB=5,cosA=,以点B 为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定解析:根据三角函数的定义得到AC,根据勾股定理求得BC,和⊙B的半径比较即可.参考答案::解:∵Rt△ABC中,∠C=90°,AB=5,cosA=,∴==,∴AC=4,∴BC==3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.点拨:本题考查了直线与圆的位置关系的应用,注意:直线和圆有三种位置关系:相切、相交、相离.8.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm解析:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而可得出CD的长.参考答案::解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=AB=×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD===10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C.点拨:本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.(3分)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个解析:利用一次函数的性质得到a≤0,再判断△=22﹣4a>0,从而得到方程根的情况.参考答案::解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是二次方程,∵△=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.点拨:本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数的性质.10.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.解析:依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD =S△AOE+S△DOE,即可得到OE+EF的值.参考答案::解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.点拨:本题主要考查了矩形的性质,解题时注意:矩形的四个角都是直角;矩形的对角线相等且互相平分.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知∠A=100°,则∠A的补角等于80°.解析:根据补角的概念求解可得.参考答案::解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.点拨:本题主要考查补角,解题的关键是掌握如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.12.(3分)化简:﹣=.解析:此题先把二次根式化简,再进行合并即可求出答案.参考答案::解:﹣=2=.故填:.点拨:此题考查了二次根式的加减,关键是把二次根式化简,再进行合并.13.(3分)方程=的解是x=.解析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.参考答案::解:方程=,去分母得:2x=3,解得:x=,经检验x=是分式方程的解.故答案为:x=.点拨:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.(3分)如图,点A的坐标为(1,3),点B在x轴上,把△OAB 沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C 的坐标为(4,3).解析:根据平移的性质得出四边形ABDC是平行四边形,从而得A 和C的纵坐标相同,根据四边形ABDC的面积求得AC的长,即可求得C的坐标.参考答案::解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).点拨:本题考查了坐标与图形的变换﹣平移,平移的性质,平行四边形的性质,求得平移的距离是解题的关键.15.(3分)如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF •ED的值为16.解析:根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.参考答案::解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.点拨:本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,找出相关的相似三角形是解题的关键.16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=10.0mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x =mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.解析:构建二次函数,利用二次函数的性质即可解决问题.参考答案::解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x=﹣=10.0时,y有最小值,设w=(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2=nx2﹣2(x1+x2+…+x n)x+(x12+x22+…+x n2),∵n>0,∴当x=﹣=时,w有最小值.故答案为10.0,.点拨:本题考查二次函数的性质,解题的关键是学会构建二次函数解决最值问题.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.解析:根据不等式的性质求出两个不等式的解集,进而求出不等式组的解集即可.参考答案::解:解不等式①得:x≥3,解不等式②得:x>2,所以不等式组的解集为:x≥3点拨:本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.解析:运用SAS公理,证明△ABC≌△ADC,得到∠D=∠B=80°,再根据三角形内角和为180°即可解决问题.参考答案::解:在△ABC与△ADC中,,∴△ABC≌△ADC(SAS),∴∠D=∠B=80°,∴∠BCA=180°﹣25°﹣80°=75°.点拨:主要考查了全等三角形的判定及其性质的应用问题;应牢固掌握全等三角形的判定及其性质,这是灵活运用的基础和关键.19.(10分)已知反比例函数y =的图象分别位于第二、第四象限,化简:﹣+.解析:由反比例函数图象的性质可得k<0,化简分式和二次根式,可求解.参考答案::解:∵反比例函数y =的图象分别位于第二、第四象限,∴k<0,∴k﹣1<0,∴﹣+=+=k+4+=k+4+|k﹣1|=k+4﹣k+1=5.点拨:本题考查了反比例函数的性质,反比例函数图象的性质,平方差公式,分式和二次根式的化简等知识,确定k的取值范围是本题的关键.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲676873757678808283848585909295社区乙666972747578808185858889919698社区根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.解析:(1)根据中位数、众数的意义和计算方法分别求出结果即可;(2)用列表法表示所有可能出现的结果情况,从而求出两人来自同一社区的概率.参考答案::解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)==.点拨:本题考查中位数、众数的意义和计算方法,列表法求随机事件发生的概率,列举出所有可能出现的结果是求出概率的关键.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=(x>0)的图象经过点A (3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.解析:(1)利用待定系数法求出k,再利用平行四边形的性质,推出AM=CM,推出点M的纵坐标为2.(2)求出点C的坐标,求出OA,OC的长即可解决问题.参考答案::解:(1)∵点A(3,4)在y=上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA==5,∴平行四边形ABCD的周长为2(5+9)=28.点拨:本题考查反比例函数图象上的点的坐标特征,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.解析:(1)根据今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%,列出算式即可求解;(2)根据“某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场”列出方程求解即可.参考答案::解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.点拨:此题主要考查了一元一次方程的应用,正确找出等量关系是解题关键.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.解析:(1)根据点关于直线的对称点的画法,过点A作BD的垂线段并延长一倍,得对称点C;(2)①根据菱形的判定即可求解;②过B点作BF⊥AD于F,根据菱形的性质,直角三角形的性质,勾股定理,三角形面积公式即可求解.参考答案::解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC==12,∴OA=12,∵四边形ABCD是菱形,∴AD=13,∴BF=×12×5×2×2÷13=,故点E到AD的距离是.点拨:此题主要考查了基本作图以及轴对称变换的作法、菱形的判定与性质,直角三角形的性质,勾股定理,三角形面积等知识,得出BC,AC的长是解题关键.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.解析:(1)由等边三角形的性质可得∠ABC=∠BAC=∠ACB=60°,圆周角定理可得∠ADC=∠BDC=60°,可得结论;(2)将△ADC绕点逆时针旋转60°,得到△BHC,可证△DCH是等边三角形,可得四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,即可求解;(3)作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,由轴对称的性质可得EM=DM,DN=NF,可得△DMN 的周长=DM+DN+MN=FN+EM+MN,则当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,即最小值为EF=t,由轴对称的性质可求CD=CE=CF,∠ECF=120°,由等腰三角形的性质和直角三角形的性质可求EF=2PE=EC=CD=t,则当CD为直径时,t有最大值为4.参考答案::证明:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵∠ADC=∠ABC=60°,∠BDC=∠BAC=60°,∴∠ADC=∠BDC,∴DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数,理由如下:如图1,将△ADC绕点逆时针旋转60°,得到△BHC,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,∴S=x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=EC,PE=PC=EC,∴EF=2PE=EC=CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4.点拨:本题是圆的综合题,考查了圆的有关知识,等边三角形的性质,旋转的性质,轴对称的性质等知识,灵活运用这些性质进行推理是本题的关键.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B(x1,3),C(x2,3).顶点D 不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE 的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).解析:(1)将点A坐标代入解析式可求解;(2)由三角形面积关系,可得BE=CE+1,由对称轴为x=3,可求BC中点M的坐标(3,3),由线段的数量关系,可求EM=,可求解;(3)先求出点F坐标,点D坐标可求直线DF解析式,可得点E 坐标,可求DE解析式,可得c=9a,由二次函数的性质可求解.参考答案::解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B(x1,3),C(x2,3),线段BC上有一点E,∴S1=×BE×3=BE,S2=×CE×3=CE,∵S1=S2+.∴CE+=BE,∴BE=CE+1,∵b=﹣6a,∴抛物线G:y=ax2﹣6ax+c,∴对称轴为x==3,∴BC的中点M坐标为(3,3),∵BE=BM+EM,CE=CM﹣EM,BM=CM,BE=CE+1,∴EM=,∴点E(,3)或(,3);(3)∵直线DE与抛物线G:y=ax2﹣6ax+c的另一个交点F的横坐标为+3,∴y=a()2﹣6a×(+3)+c=﹣9a+c,∴点F(+3,﹣9a+c),∵点D是抛物线的顶点,∴点D(3,﹣9a+c),∴直线DF的解析式为:y=6x﹣18+c﹣9a,∴点E坐标为(,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a.点拨:本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,三角形面积公式,一次函数图象的性质,求出c=9a 是本题的关键.。
2020年广东省中考数学试卷和答案解析
2020年广东省中考数学试卷和答案解析2020年广东省中考数学试卷和答案解析一、选择题(本大题10小题,每小题3分,共30分)1.9的相反数是()A。
-9B。
9C。
0D。
无法确定解析:根据相反数的定义,9的相反数是-9.参考答案:A2.一组数据2,4,3,5,2的中位数是()A。
5B。
3.5C。
3D。
2.5解析:中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数。
参考答案:将数据由小到大排列得:2,2,3,4,5,因为数据个数为奇数,最中间的数是3,所以这组数据的中位数是3.答案:C3.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A。
(-3,2)B。
(-2,3)C。
(2,-3)D。
(3,-2)解析:关于x轴对称的点,横坐标相同,纵坐标互为相反数。
参考答案:点(3,2)关于x轴对称的点的坐标为(3,-2)。
答案:D4.若一个多边形的内角和是540°,则该多边形的边数为()A。
4B。
5C。
6D。
7解析:根据多边形的内角和公式(n-2)×180°列式进行计算即可求解。
参考答案:设多边形的边数是n,则(n-2)×180°=540°,解得n=5.答案:B5.若式子 $\sqrt{2x-4}$ - 1.0 在实数范围内有意义,则x的取值范围是()A。
x≠2B。
x≥2C。
x≤2D。
x≠-2解析:根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围。
参考答案:√(2x-4) - 1.0,移项得√(2x-4)。
1,两边平方得2x-4.1,解得x≥2,故选B。
答案:B6.已知三角形ABC的周长为16,点D、E、F分别为三条边的中点,则三角形DEF的周长为多少?解析:根据中位线定理可得DF=AC,DE=BC,EF=AC,结合三角形ABC的周长为16,可得出三角形DEF的周长为8.因此,选A。
2020年广东省广州市中考数学试卷(含详细解析)
(2)求明年改装的无人驾驶出租车是多少辆.
23.如图, 中, .
(1)作点 关于 的对称点 ;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)所作的图中,连接 , ,连接 ,交 于点 .
①求证:四边形 是菱形;
②取 的中点 ,连接 ,若 , ,求点 到 的距离.
16.对某条线段的长度进行了3次测量,得到3个结果(单位: )9.9,10.1,10.0,若用 作为这条线段长度的近以值,当 ______ 时, 最小.对另一条线段的长度进行了 次测量,得到 个结果(单位: ) ,若用 作为这条线段长度的近似值,当 _____ 时, 最小.
评卷人
得分
三、解答题
17.解不等式组: .
保密★启用前
2020年广东省广州市中考数学试卷
题号
一
二
三
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
评卷人
得分
一、单选题
1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()
A. B. C. D.
A. B. C. D.
评卷人
得分
二、填空题
11.已知 ,则 的补角等于________ .
12.计算: __________.
13.方程 的解是_______.
14.如图,点 的坐标为 ,点 在 轴上,把 沿 轴向右平移到 ,若四边形 的面积为9,则点 的坐标为_______.
15.如图,正方形 中, 绕点 逆时针旋转到 , , 分别交对角线 于点 ,若 ,则 的值为_______.
2020年广东省中考数学试题及参考答案(word解析版)
2020年广东省初中学业水平考试数学(满分为120分,考试用时为90分钟)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.9的相反数是()A.﹣9 B.9 C.D.﹣2.一组数据2,4,3,5,2的中位数是()A.5 B.3.5 C.3 D.2.53.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)4.若一个多边形的内角和是540°,则该多边形的边数为()A.4 B.5 C.6 D.75.若式子在实数范围内有意义,则x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x≠﹣26.已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8 B.2C.16 D.47.把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=(x﹣1)2﹣38.不等式组的解集为()A.无解B.x≤1 C.x≥﹣1 D.﹣1≤x≤19.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1 B.C.D.210.如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题7小题,每小题4分,共28分)11.分解因式:xy﹣x=.12.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=.13.若+|b+1|=0,则(a+b)2020=.14.已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为.15.如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)24 72 18 x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案与解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.9的相反数是()A.﹣9 B.9 C.D.﹣【知识考点】相反数.【思路分析】根据相反数的定义即可求解.【解题过程】解:9的相反数是﹣9,故选:A.【总结归纳】此题主要考查相反数的定义,比较简单.2.一组数据2,4,3,5,2的中位数是()A.5 B.3.5 C.3 D.2.5【知识考点】中位数.【思路分析】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.【解题过程】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.【总结归纳】本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解题过程】解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).故选:D.【总结归纳】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.若一个多边形的内角和是540°,则该多边形的边数为()A.4 B.5 C.6 D.7【知识考点】多边形内角与外角.【思路分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解题过程】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.【总结归纳】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.若式子在实数范围内有意义,则x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x≠﹣2【知识考点】二次根式有意义的条件.【思路分析】根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.【解题过程】解:∵在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.【总结归纳】此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8 B.2C.16 D.4【知识考点】三角形中位线定理.【思路分析】根据中位线定理可得DF=AC,DE=BC,EF=AC,继而结合△ABC的周长为16,可得出△DEF的周长.【解题过程】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=AC,DE=BC,EF=AC,故△DEF的周长=DE+DF+EF=(BC+AB+AC)=16=8.故选:A.【总结归纳】此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=(x﹣1)2﹣3【知识考点】二次函数图象与几何变换.【思路分析】先求出y=(x﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【解题过程】解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.【总结归纳】本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.不等式组的解集为()A.无解B.x≤1 C.x≥﹣1 D.﹣1≤x≤1【知识考点】解一元一次不等式组.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解题过程】解:解不等式2﹣3x≥﹣1,得:x≤1,解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,则不等式组的解集为﹣1≤x≤1,故选:D.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1 B.C.D.2【知识考点】正方形的性质;翻折变换(折叠问题).【思路分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x即可得出答案.【解题过程】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.【总结归纳】本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【知识考点】二次函数图象与系数的关系;抛物线与x轴的交点.【思路分析】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解题过程】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.【总结归纳】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.二、填空题(本大题7小题,每小题4分,共28分)11.分解因式:xy﹣x=x(y﹣1).【知识考点】因式分解﹣提公因式法.【思路分析】直接提取公因式x,进而分解因式得出答案.【解题过程】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).【总结归纳】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【知识考点】34:同类项.【思路分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.【解题过程】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.【总结归纳】本题考查同类项的定义,正确根据同类项的定义得到m,n的值是解题的关键.13.若+|b+1|=0,则(a+b)2020=1.【知识考点】16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【思路分析】根据非负数的意义,求出a、b的值,代入计算即可.【解题过程】解:∵+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.【总结归纳】本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.【知识考点】33:代数式求值.【思路分析】由x=5﹣y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)﹣4xy计算可得.【解题过程】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.【总结归纳】本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含式子x+y、xy及整体代入思想的运用.15.如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为45°.【知识考点】KG:线段垂直平分线的性质;L8:菱形的性质;N2:作图—基本作图.【思路分析】根据∠EBD=∠ABD﹣∠ABE,求出∠ABD,∠ABE即可解决问题.【解题过程】解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.【总结归纳】本题考查作图﹣基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.【知识考点】M5:圆周角定理;MP:圆锥的计算.【思路分析】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.【解题过程】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=,解得,r=,故答案为:.【总结归纳】本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2﹣2.【知识考点】KP:直角三角形斜边上的中线;M8:点与圆的位置关系.【思路分析】如图,连接BE,BD.求出BE,BD,根据DE≥BD﹣BE求解即可.【解题过程】解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.故答案为2﹣2.【总结归纳】本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.【知识考点】4J:整式的混合运算—化简求值.【思路分析】根据整式的混合运算过程,先化简,再代入值求解即可.【解题过程】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=,y=时,原式=2××=2.【总结归纳】本题考查了整式的混合运算﹣化简求值,解决本题的关键是先化简,再代入值求解.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)24 72 18 x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【知识考点】用样本估计总体.【思路分析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.【解题过程】解:(1)x=120﹣(24+72+18)=6;(2)1800×=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【总结归纳】本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【知识考点】KD:全等三角形的判定与性质;KI:等腰三角形的判定.【思路分析】先证△BDF≌△CEF(AAS),得出BF=CF,DF=EF,则BE=CD,再证△ABE≌△ACD(AAS),得出AB=AC即可.【解题过程】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.【总结归纳】本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.【知识考点】二元一次方程组的解;解二元一次方程组;一元二次方程的解;根与系数的关系.【思路分析】(1)关于x,y的方程组与的解相同.实际就是方程组的解,可求出方程组的解,进而确定a、b的值;(2)将a、b的值代入关于x的方程x2+ax+b=0,求出方程的解,再根据方程的两个解与2为边长,判断三角形的形状.【解题过程】解:(1)由题意得,关于x,y的方程组的相同解,就是程组的解,解得,,代入原方程组得,a=﹣4,b=12;(2)当a=﹣4,b=12时,关于x的方程x2+ax+b=0就变为x2﹣4x+12=0,解得,x1=x2=2,又∵(2)2+(2)2=(2)2,∴以2、2、2为边的三角形是等腰直角三角形.【总结归纳】本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.【知识考点】直角梯形;圆周角定理;切线的判定与性质;解直角三角形.【思路分析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2,则OB=,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.【解题过程】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF===2,∴AB=DF=2,∴OB=,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH==.【总结归纳】本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【知识考点】B7:分式方程的应用;C9:一元一次不等式的应用.【思路分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.【解题过程】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.【总结归纳】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.【知识考点】GB:反比例函数综合题.【思路分析】(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD,即可求解;(3)确定直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),即可求解.【解题过程】解:(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2,故答案为2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=×8﹣×2=3;(3)设点D(m,),则点B(4m,),∵点G与点O关于点C对称,故点G(8m,0),则点E(4m,),设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得,解得,故直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,则FG∥BD,故四边形BDFG为平行四边形.【总结归纳】本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.【知识考点】HF:二次函数综合题.【思路分析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.【解题过程】解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△BAD∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).【总结归纳】本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
2020年广东省广州市中考数学试卷及答案
A. 152.33 105
B. 15.233 106
C. 1.5233 107
D. 0.15233108
2.某校饭堂随机抽取了 100 名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图 的条形统计图,根据图中的信息,学生最喜欢的套餐种类是( )
A.套餐一
B.套餐二
3.下列运算正确的是( )
(2)在(1)所作的图中,连接 BC , DC ,连接 AC ,交 BD 于点 O .
①求证:四边形 ABCD 是菱形; ②取 BC 的中点 E ,连接 OE ,若 OE 13 , BD 10 ,求点 E 到 AD 的距离.
2 24.如图,O 为等边 ABC 的外接圆,半径为 2,点 D 在劣弧 AB 上运动(不与点 A, B 重合),连接 DA ,
B.1 个
C.2 个
D.1 个或 2 个
10.如图,矩形 ABCD 的对角线 AC , BD 交于点 O , AB 6 , BC 8,过点 O 作 OE AC ,交 AD 于
点 E ,过点 E 作 EF BD ,垂足为 F ,则 OE EF 的值为( )
A. 48 5
B. 32 5
C. 24 5
D.无法确定
8.往直径为 52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽 AB 48cm ,则水的最大深
度为( )
A. 8cm
B.10cm
C.16cm
D. 20cm
9.直线 y x a 不经过第二象限,则关于 x 的方程 ax2 2x 1 0 实数解的个数是( ).
A.0 个
D. 12 5
第二部分 非选择题(共 120 分)
二、填空题(本大题共 6 小题,每小题 3 分,满分 18 分.)
2020年中考数学试题(及答案)
2020年中考数学试题(及答案)一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ). A .7710⨯﹣ B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣ 2.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯3.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数B .方差C .平均数D .中位数4.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( ) A .19B .16C .13D .235.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( ) A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0)6.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A .25°B .75°C .65°D .55°7.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为() A .()11362x x -= B .()11362x x += C .()136x x -= D .()136x x +=8.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( ) A .甲 B .乙C .丙D .一样9.下列计算错误的是( )A .a 2÷a 0•a 2=a 4 B .a 2÷(a 0•a 2)=1 C .(﹣1.5)8÷(﹣1.5)7=﹣1.5D .﹣1.58÷(﹣1.5)7=﹣1.510.下列长度的三根小木棒能构成三角形的是( )A .2cm ,3cm ,5cmB .7cm ,4cm ,2cmC .3cm ,4cm ,8cmD .3cm ,3cm ,4cm 11.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy ++=在同一坐标系内的图象大致为( )A .B .C .D .12.an30°的值为( ) A .B .C .D .二、填空题13.已知关于x 的方程3x n22x 1+=+的解是负数,则n 的取值范围为 . 14.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =k x的图象上,则k 的值为________.15.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.16.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.17.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .18.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .19.3x +在实数范围内有意义,则x 的取值范围是_____. 32x-2三、解答题21.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)22.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.23.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.24.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来25.距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据:男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184.根据统计数据制作了如下统计表:个数x150≤x<170170≤x<185185≤x<190x≥190男生5852女生38a3两组数据的极差、平均数、中位数、众数如表所示:(1)请将上面两个表格补充完整:a =____,b =_____,c =_____;(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由科学记数法知90.000000007710-=⨯; 【详解】解:90.000000007710-=⨯; 故选:D . 【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.2.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 【详解】460 000 000=4.6×108. 故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.4.C解析:C【解析】【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键.5.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】6.C解析:C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.7.A解析:A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:1x(x﹣1)=36,2故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.8.C解析:C【解析】试题分析:设商品原价为x,表示出三家超市降价后的价格,然后比较即可得出答案.解:设商品原价为x,甲超市的售价为:x(1﹣20%)(1﹣10%)=0.72x;乙超市售价为:x(1﹣15%)2=0.7225x;丙超市售价为:x(1﹣30%)=70%x=0.7x;故到丙超市合算.考点:列代数式.9.D解析:D 【解析】分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.详解:∵a 2÷a 0•a 2=a 4, ∴选项A 不符合题意; ∵a 2÷(a 0•a 2)=1, ∴选项B 不符合题意; ∵(-1.5)8÷(-1.5)7=-1.5, ∴选项C 不符合题意; ∵-1.58÷(-1.5)7=1.5, ∴选项D 符合题意. 故选D .点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.10.D解析:D 【解析】 【详解】A .因为2+3=5,所以不能构成三角形,故A 错误;B .因为2+4<6,所以不能构成三角形,故B 错误;C .因为3+4<8,所以不能构成三角形,故C 错误;D .因为3+3>4,所以能构成三角形,故D 正确. 故选D .11.D解析:D 【解析】 【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 【详解】∵二次函数图象开口方向向上, ∴a >0,∵对称轴为直线02bx a=->,二次函数图形与x 轴有两个交点,则24b ac ->0, ∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交,反比例函数a b cy x++=图象在第二、四象限, 只有D 选项图象符合. 故选:D. 【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.12.D解析:D 【解析】 【分析】直接利用特殊角的三角函数值求解即可. 【详解】 tan30°=,故选:D .【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.二、填空题13.n <2且【解析】分析:解方程得:x=n ﹣2∵关于x 的方程的解是负数∴n﹣2<0解得:n <2又∵原方程有意义的条件为:∴即∴n 的取值范围为n <2且解析:n <2且3n 2≠- 【解析】 分析:解方程3x n22x 1+=+得:x=n ﹣2, ∵关于x 的方程3x n22x 1+=+的解是负数,∴n ﹣2<0,解得:n <2. 又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠-. ∴n 的取值范围为n <2且3n 2≠-. 14.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6 【解析】设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得:()OABC 122122kS x x=⨯-⨯=菱形,解得 6.k =-15.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<. 【解析】 【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解; 【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<, ∴1k >,3k <, ∴13k <<, 故答案为:13k <<. 【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.16.5【解析】【分析】连接CC1根据M 是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5 【解析】 【分析】连接CC 1,根据M 是AC 、A 1C 1的中点,AC=A 1C 1,得出CM=A 1M=C 1M=12AC=5,再根据∠A 1=∠A 1CM=30°,得出∠CMC 1=60°,△MCC 1为等边三角形,从而证出CC 1=CM ,即可得出答案. 【详解】解:如图,连接CC 1,∵两块三角板重叠在一起,较长直角边的中点为M , ∴M 是AC 、A 1C 1的中点,AC=A 1C 1, ∴CM=A 1M=C 1M=12AC=5, ∴∠A 1=∠A 1CM=30°, ∴∠CMC 1=60°, ∴△CMC 1为等边三角形,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.17.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.18.cm【解析】试题解析:如图折痕为GH由勾股定理得:AB==10cm由折叠得:AG=BG=AB=×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G解析:cm.【解析】试题解析:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴,∴,∴GH=cm.考点:翻折变换19.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x 的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x ≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围.【详解】.在实数范围内有意义,则x +3≥0,解得:x ≥﹣3,则x 的取值范围是:x ≥﹣3.故答案为:x ≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.20.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分解析:x 1=【解析】【分析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,所以分式方程的解为x 1=,故答案为x 1=.【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.三、解答题21.123米.【解析】【分析】在Rt △ABC 中,利用tan BC CAB AB∠=即可求解. 【详解】解:∵CD∥AB,∴∠CAB=∠DCA=39°.在Rt△ABC中,∠ABC=90°,tanBC CABAB∠=.∴100123tan0.81BCABCAB==≈∠.答:A、B两地之间的距离约为123米.【点睛】本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.22.49.【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.【点睛】本题考查列表法与树状图法.23.(1)AD=95;(2)当点E是AC的中点时,ED与⊙O相切;理由见解析.【解析】【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与 O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.【详解】(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键. 24.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】解:341 {5122x xxx≥--->①②解不等式①可得x≤1,解不等式②可得x>-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.25.(1)a=6,b=179,c=188;(2)600;(3)详见解析.【解析】【分析】(1)依据中位数以及众数的定义即可将上面两个表格补充完整;(2)依据样本中能得满分(185个及以上)的同学所占的比例,即可估计该校初三年级学生中考跳绳成绩能得满分的人数;(3)依据两组数据的极差和平均数的大小,即可得到结论.【详解】(1)满足185≤x<190的数据有:186,188,186,185,186,187.∴a=6,20名男生的跳绳成绩排序后最中间的两个数据为178和180,∴b=(178+180)=179,20名男生的跳绳成绩中出现次数最多的数据为188,∴c=188,故答案为:6;179;188;(2)∵20名男生和20名女生的跳绳成绩中,185个及以上的有16个,∴该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有1500×=600(人);(3)理由:初三年级的女生跳绳成绩的极差较小,而平均数较大.【点睛】本题考查了用样本估计总体,中位数,众数,正确的理解题意是解题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.△ABC 中,点 D,E 分别是∆ABC 的边 AB,AC 的中点,连接 DE,若
∠C=68°,则∠AED=(
(A)22°
)
(B)68°
(C)96°
(D)112°
【答案】B
解析:此题考查中位线的性质. 点 D,E 分别是∆ABC 的边 AB,AC 的中点,
所以 DE 为△ABC 的中位线,DE∥BC,则∠AED=∠C=68°,故选 B.
).
(A)相离
(B)相切
(C)相交
(D)无法确定
【答案】B
4
解析:此题考察了三角函数与圆与直线的位置关系. cosA= ,
5
AB=5,则 AC=4,BC=3,当 r=3 时,⊙B 与 AC 相切,故选 B.
8.往直径为 52 cm 的圆柱形容器内装入一些水以后,截面如图 4 所示,若水
面宽 AB=48 cm,则水的最大深度为(
...第二象限,则关于 x 的方程 + 2 + 1 = 0实数解的个数
是(
).
(A)0 个
(B)1 个
(C)2 个
(D)1 个或 2 个
【答案】D
解析:此题考察了一次函数的性质与含参方程根的个数. 由题知, ≤ 0,当
= 0时, 2 + 2 + 1 = 0变成2 + 1 = 0,有一个解;当 < 0时, 2 + 2 +
. 故选 C.
5
二、填空题(本大题共 6 小题,每小题 3 分,满分 18 分.)
11.已知∠A=100°,则∠A 的补角等于_________.
【答案】80°
12.计算:√20 − √5 = __________.
【答案】√5
13.方程
+1
【答案】 =
=
3
2+2
的解是__________.
2
5.如图 2 所示的圆锥,下列说法正确的是(
).
(A)该圆锥的主视图是轴对称图形
(B)该圆锥的主视图是中心图形
(C)该圆锥的主视图既是轴对称图形,又是中心对称图形
(D)该圆锥的主视图既不是轴对称图形,又不是中心对称图形
【答案】A
解析:此题考察三视图与对称图形相关知识. 该圆锥的主视图是等腰三角形,
分别交对角线 BD 于点 E,F,若 AE=4,则 ∙ 的值为__________.
【答案】16
16.对某条线段的长度进行了 3 次测量,得到 3 个结果(单位:mm)9.9,10.1,
3
2
14.如图 6,点 A 的坐标为(1,3),点 B 在 轴上,把△OAB 沿 轴向右平移
到△ECD,若四边形 ABDC 的面积为 9,则点 C 的坐标为 __________.
【答案】(4,3)
6
15.如图 7,正方形 ABCD 中,△ABC 绕点 A 逆时针旋转到△AB’C’,AB’,AC’
).
(A) 8 cm
(B)10 cm
(C)16 cm
(D)20 cm
【答案】C
解析:此题考察了圆的性质与勾股定理. 过 O 作 OC⊥AB 交 AB 于点 C,连
接 OA. 由题知,OA=26cm,由勾股定理得 OC=10cm,因此水深为 26-10=16cm,
故选 C.
4
2
9. = + 不经过
的套餐种类是(
).
(A)套餐一
(B)套餐二
(C)套餐三
(D)套餐四
【答案】A
解析:此题考查统计与调查。由图知:50 人选择套餐一Байду номын сангаас15 人选择套餐二,
10 人选择套餐三,25 人选择套餐四. 选择套餐一的人数最多,故选 A.
1
3.下列运算正确的是(
).
(A)√ + √ = √ +
(B)2√ × 3√ = 6√
(
).
(A)
(C)
48
(B)
5
24
32
(D)
5
5
12
5
【答案】C
解析:此题考察了垂线的性质与三角形的面积.由勾股定理得 AC=10,则
1
1
1
2
2
2
AO=DO=5 , △ = 6 × 8 × × = 12 , △ = △ + △ = × 5 ×
1
1
24
2
2
5
+ × 5 × = × 5 × ( + ) = 12,所以 + =
解析:此题考察一次函数的图象与性质. 该函数 = −3,因此函数图象随着
的增大而减小,1 < 1 + 1 < 1 + 2,所以3 < 2 < 1 .
3
4
7.如图 3,Rt△ABC,∠C=90°,AB=5,cosA= ,以 B 为圆心,r 为半径⊙B,
5
当 r=3 时,⊙B 与 AC 的位置关系是(
1 = 0的根的判别式 = 4 − 4>0,有两个不相等的实数根. 综上所述,实数解
的个数是 1 个或 2 个,故选 D.
10.如图 5,矩形 ABCD 的对角线 AC,BD 交于点 O,AB=6,BC=8,过点 O 作
OE⊥AC,交 AD 于点 E,过点 E 作 EF⊥BD,垂足为 F,则 OE+EF 的值为
(A)152.33 × 105
(B)15.233 × 106
(C)1.5233 × 107
(D)0.15233 × 108
).
【答案】C
解析:此题考查科学记数法,选择 C.
2.某校饭堂随机抽取了 100 名学生,对他们最喜欢的套餐种类进行问卷调查后
(每人选一种),绘制了如图 1 的条形统计图,根据图中的信息,学生最喜欢
(C) 5 · 6 = 30
(D)( 2)5 = 10
【答案】D
解析:此题考察根式与幂的运算. √ + √无法合并,A 选项错误;2√ ×
3√ = 6,B 选项错误; 5 · 6 = 11 ,C 选项错误;( 2 )5 = 2×5 = 10,D 选
项正确,故选 D.
2020 年广州中考数学试卷
第一部分
选择题(共 30 分)
一、选择题(本大题共 10 小题,每小题 3 分,满分 30 分,在每小题给出的四
个选项中,只有一项是符合题目要求的.)
1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达
15233000 人次,将 15233000 用科学记数法表示应为(
等腰三角形是轴对称图形而不是中心对称图形,故选 A.
6.一次函数 = −3 + 1的图象上过点(1 ,1 ),(1 + 1,2 ),
(1 + 2,3 ),则(
).
(A)1 < 2 < 3
(B)3 < 2 < 1
(C)2 < 1 < 3
(D)3 < 1 < 2
【答案】B