2019学年湖北省高二上学期期末理科数学试卷【含答案及解析】

合集下载

湖北省部分重点中学2013-2014学年高二下学期期中考试理科数学试卷(解析版)

湖北省部分重点中学2013-2014学年高二下学期期中考试理科数学试卷(解析版)

湖北省部分重点中学2013-2014学年高二下学期期中考试理科数学试卷(解析版)一、选择题1( )A.【答案】B【解析】试题分析:根据题意可知条件中表示的是焦点在y轴上抛物线,2p=4,p=2,而焦点坐标为B.考点:抛物线的焦点坐标.2.下面几种推理中是演绎推理....的序号为()AB.由金、银、铜、铁可导电,猜想:金属都可导电;C.由平面三角形的性质,推测空间四面体性质;D.推测空间直角坐标系中球的方.【答案】A【解析】试题分析:根据演绎推理的定义,应该是从一般性的原理出发,推出某个特殊情况下的结论,只有A符合从特殊到一般这一特征.考点:演绎推理的定义.3( )A【答案】D【解析】试题分析:.考点:复数的运算.4.时,从)A【答案】B【解析】试题分析:当n=k时,等号左边的代数式为(k+1)(k+2) (k+k),当n=k+1时,等号左边的代数式为[(k+1)+1][(k+1)+2] [(k+1)+k-1][(k+1)+k][(k+1)+k+1]=(k+2)(k+3)(k+k)(k+k+1)(k+k+2),考点:数学归纳法从n=k到n=k+1的步骤.5R上可导A【答案】B【解析】试题分析:∵f(x)=x2x=2可得∴f(x)=x2-8x+3,∴考点:导数的运用.6)A【答案】C【解析】试题分析:∵f(x)=e x+ax,可得x=-ln(-a)>0,解得a<-1.考点:导数的运用.7P到y P( )A C【答案】D【解析】试题分析:如图,可知抛物线焦点F (2,0),准线为x=-1,根据抛物线的定义,∴d 1+d 2=PM+PN-1=PM+PF-1≥FM-1≥d-1,d 为F 到l 的距离,d 1+d 2考点:抛物线的定义求线段和差最值问题.8.下列不等式对任意的(0,)x ∈+∞恒成立的是( )A .sin 1x x >-+B .20x x ->C .x 【答案】C 【解析】试题分析:对于A ,可转化为x+sinx>1,取x=0,结合函数x+sinx 的连续性可知A 错误,对于B 取x=2,可知B 错误,对于D 取x=1,可知D 错误,对于C ,令f(x)=x-ln(1+x),则01111)('f >+=+-=xx x x ,∴f(x)在,0(+∞f(x)>f(0)=0,即x>ln(1+x)成立.考点:导数中的恒成立问题.9( )A 【答案】D 【解析】试题分析:画出如下示意图.可知0M 为△PF 1F 2的中位线,∴PF 2=2OM=2b ,∴PF 1=2a-PF 2=2a-2b ,又∵M 为PF 1的中点,∴MF 1=a-b ,∴在Rt △OMF 1中,由OM 2+MF 12=OF 12,可得(a-b)2+b 2=c 2=a 2-b 2.可得2a=3b ,进而可得离心率考点:椭圆与圆综合问题.10.定义在(0,)+∞上的单调递减函数则下列不等式成立的是( )A .3(2)2(3)f f <B .3(4)f <C .2(3)3(4)f f <D .(2)2f <【答案】A【解析】试题分析:∵f(x)∴∴g(x)∴g(2)>g(1),3f(2)<2f(3),A 正确. 考点:利用导数证明抽象函数不等式.二、填空题11的值为 .【答案】-32【解析】试题分析:由题意可得,a=2,又∵,∴c=3a=6,∴b2=c2-a2=36-4=32,而k=-b2,∴k=-32考点:双曲线离心率的计算.12.观察下列等式个等式为.【答案】n+(n+1)+(n+2)+ +(3n-2)=(2n-1)2【解析】试题分析:根据条件中所给的等式分析观察规律可得:第n个等式等号左边有第一个数字为n,依次+1递增一共有2n-1个数字,等号右边为(2n-1)2,∴第n个等式为n+(n+1)+(n+2)+ +(3n-2)=(2n-1)2.考点:归纳、观察的能力.13(下图中的阴影部分)的面积是____________.【解析】试题分析:显然,根据对称性,只需算左边阴影部分的面积即可,曲线y=sinx,y=cosx的交点坐标为(),∴左边阴影部分的面积考点:定积分求曲边图形的面积.14标为2长为 .【解析】 试题分析:∵A(x 1,y 1),B(x 2,y 2),因为AB 中点M 的纵坐标为2,∴y 1+y 2=4,而AB=AF+BF=y 121+y 2考点:抛物线的定义. 15.围是 . 【答案】【解析】2+ax-2a=a(x 2+x-2)=a(x+2)(x-1),显然a ≠0,①:若a<0,则f(x)在,上单调递减,在(-2,1)上单调递增,因此若要使f(x)图像过四个象限,a>0,则f(x)在,上单调递增,在(-2,1)上单调递减,因此若要使f(x)图像过四个象限,需a 的取值范围是. 考点:导数的运用.三、解答题16.(本小题满分12分).【答案】m ≥9. 【解析】试题分析:首先可以把p中的x的范围解出,x的范围,中x x x 的全体的子集,从而可以得到关于m的不等式,进而求得m的取值范围.分分分分.考点:1、充分条件与必要条件;2、集合间的关系.17(1)a=0时,求f(x)最小值;(2)若f(x)a的取值范围.【答案】(1)f(x)最小值是1;(2)a【解析】试题分析:(1)可以对f(x)求导,从而得到f(x)的单调性,即可求得f(x)的最小值;(2)根据条件“若f(x)单调减函数”,说明f”(x)<0成立,而f’a的取,而a的取值范围即a≤(1∴f(x)在(0,1) 1 6分(29分分考点:1、利用函数的导函数讨论函数的单调性;2、恒成立问题的处理方法.为矩形,侧棱,其中【答案】(1)详见解析;(2【解析】试题分析:(1)利用底面矩形的对角线互相平分产生一个AC的中点,从而构造出了△ANC的中位线,利用线线平行得到了线面平行;(2)此题利用传统平移的做法求异面直线的夹角略显繁琐,故可利用条件中PA⊥平面ABCD产生空间直角坐标系,利用空间向量求线线角;(3)同(2),传统做出二面角的平面角的方法比较繁琐,利用已经建好的坐标系求出法向量,进而可以得到二面角的余弦值.(1)证明:连结AC交BD于O,连结OM,∵底面ABCD为矩形,∴O为AC中点,∵M、N为侧棱PC的三等份点,∴CM=CN,∴OM//AN,∵MBD,MBD,∴AN//平面MBD 4分.(2)如图所示,以A为原点,建立空间直角坐标系A-xyz,则A(0,0,0),B(3,0,0),C(3,6,0),D(0,6,0),P(0,0,3),M(2,4,1),N(1,2,2),3AN PD=⨯,∴异面直线AN 与PD 所成角的余弦值为258分(3)∵侧棱PA 垂直底面ABCD,∴平面BCD设平面MBD 的法向量为y-1得x=2,z=-2, ∴平面MBD 的一个法向量为AP =m分由图可知二面角M-BD-C 的大小是锐角,∴二面角M-BD-C 12分. 考点:1、线面平行的证明;2、利用空间向量求线线角;3、利用空间向量求二面角.19.(1(2【答案】(1(2)直线PQ 的方程:x+y-6=0,【解析】试题分析:(1)设圆心C 的坐标为(x,y),根据题意可以得到关于x ,y 的方程组,消去参数以后即可得到x ,y 所满足的关系式,即圆心C 的轨迹M 的方程;(2)设点P 根据题意可以把l ’用含x 0的代数式表示出,由经过点A(0,6)可以求得点P 的坐标与l ’的方程,再联立(1)中M 的轨迹方程,即可求出Q 的坐标,从而得到|PQ|d 的长.(1)设动圆圆心C 的坐标为(x,y),动圆半径为R ,则|y+1|=R 2由于圆C 1在直线l 的上方,所以动圆C 的圆心C 应该在直线l 的上方,所以有y+1>0,从而C 的轨迹M 的方程. 5分(2)如图示,设点P可得直线PQ 所以直线PQA (0,6),所以有P P 坐标为(4,2),直线PQ 的方程为x+y-6=0.——9分把直线PQ 的方程与轨迹M x=-12或4分考点:1、轨迹方程的求法;2、直线与抛物线综合;.20x为BA,B 为焦点,其顶点均为坐标原点O直线P .(1)求椭圆C(2OP 垂直,且与椭圆C 交于不同的两点M,N【答案】(1)椭圆抛物线C 1C 2(2【解析】试题分析:(1)由题意可得A (a ,0),B (0,而抛物线C 1,C 2分别是以A 、B 为焦点,∴可求得C 2C 1C 1与C 2的交点在直线(2)直线OP设M、N ,将直线方程与椭圆方程联立,利用解析几何中处理直线与圆锥曲线中常用的“设而不求”思想,可以得到结合韦达定理,(1)由题意可得A (a ,0),B (0,故抛物线C 1C 2的方程分分 ∴椭圆,抛物线C 1物线C 2:分; (2)由(1)知,直线OP设M 、N分 C分∴分分考点:1、圆锥曲线解析式的求解;2、直线与椭圆相交综合题.21(1)(2)设,当若对任意存在使【答案】(1)f(x)在(0,1),1(2)【解析】试题分析:(1)根据题意可以求得,当,即f’(x)的正负性判断f(x)的单调性;在bb的取值范围,通过参变分离,可得存在2bb的范围,∴只需2b(1分f(x)的单调性如下:f(x)在(0,1),17分;(2)由(1f(x)在(0,1)上是增函数,在(1,2)上是减函数.分分2b 11分∴只需2b 12分(1,2)上单调递减,∴只需2b分考点:1、利用导数讨论函数的单调性;2、利用导数求函数的最值解决恒成立问题与存在性问题.。

江苏省盐城市2018-2019学年高二上学期期末考试数学(理)试题-含答案解析

江苏省盐城市2018-2019学年高二上学期期末考试数学(理)试题-含答案解析

江苏省盐城市2018-2019学年高二上学期期末考试数学(理)试题一、填空题(本大题共14小题,共70.0分)1.已知复数z满足z⋅i=1+i(其中i是虚数单位),则z=______.【答案】1−i【解析】解:由z⋅i=1+i,得z=1+ii =(1+i)(−i)−i2=1−i.故答案为:1−i.把给出的等式两边同时乘以i,然后由复数代数形式的除法运算化简求值.本题考查了复数代数形式的除法运算,是基础的计算题.2.过抛物线y2=4x的焦点且与对称轴垂直的弦长为______.【答案】4【解析】解:抛物线y2=4x的焦点(1,0),可得:y2=4,解得y=±2.可得:对称轴垂直的弦长为:4.故答案为:4.求出抛物线的焦点坐标,然后求解对称轴垂直的弦长.本题考查抛物线的简单性质的应用,考查计算能力.3.命题“∀x>0,x2+3x+1>0“的否定为______.【答案】∃x∈R,x2+3x+1≤0【解析】解:∵命题“∀x>0,x2+3x+1>0”,∴命题“∀x>0,x2+3x+1>0”的否定为:∃x∈R,x2+3x+1≤0.故答案为:∃x∈R,x2+3x+1≤0.命题“∀x∈R,2x2−3x+4>0”,是一个全称命题,其否定命题一定是一个特称命题,由全称命题的否定方法,我们易得到答案.对命题“∃x∈A,P(X)”的否定是:“∀x∈A,¬P(X)”;对命题“∀x∈A,P(X)”的否定是:“∃x∈A,¬P(X)”,即对特称命题的否定是一个全称命题,对一个全称命题的否定是特称命题.4.点P(2,0)到双曲线x29−y216=1的渐近线的距离为______.【答案】85【解析】解:双曲线x29−y216=1的渐近线方程为y=±43x,即4x±3y=0,则点(2,0)到4x−3y=0的距离d=√42+(−3)2=85,故答案为:85先求出渐近线方程,再根据点到直线的距离公式即可求出.本题考查了双曲线的渐近线方程和点到直线的距离公式,属于基础题.5. 已知直线的参数方程为{x =1+12ty =1+√32t (t 为参数),则其倾斜角为______. 【答案】π3【解析】解:直线的参数方程为{x =1+12ty =1+√32t (t 为参数), 消去参数t ,化为普通方程是y −1=√3(x −1), 则该直线的斜率为√3,倾斜角为π3. 故答案为:π3.把直线的参数方程化为普通方程,求出它的斜率和倾斜角的大小. 本题考查了直线的参数方程与普通方程的转化问题,是基础题.6. 已知命题p 为真命题,命题q 为假命题,则在下列命题中:①¬q ;②p ∧q ;③p ∨q 是真命题的有______个. 【答案】2【解析】解:若命题p 为真命题,命题q 为假命题, 则¬q 是真命题,p ∧q 是假命题,p ∨q 是真命题, 则真命题的是①③,有2个, 故答案为:2根据复合命题真假关系进行判断即可.本题主要考查复合命题真假判断,根据¬p 与p 真假性相反,p ∧q 同真为真,其他为假,p ∨q 同假为假,其余为真的结论是解决本题的关键.7. p :“复数z =(m 2−m)+mi(m ∈R,i 为虚数单位)是纯虚数”是q :“m =1”的______条件.(请在“充分不必要”、“必要不充分”、“既不充分又不必要”、“充分必要”选择一个最为恰当的答案填写在横线上) 【答案】充要【解析】解:若复数z =(m 2−m)+mi(m ∈R,i 为虚数单位)是纯虚数,则{m ≠0m2−m=0,即{m ≠0m=1或m=0,得m =1,即p 是q 的充要条件, 故答案为:充要根据纯虚数的定义求出m 的取值,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合纯虚数的定义求出m是解决本题的关键.8.已知直线a,b和平面α满足:①a//b,②a⊥α,③b⊥α,若从其中选出两个作为条件,余下一个作为结论,可以得到______个真命题.【答案】3【解析】解:构成的命题有①②⇒③,①③⇒②,②③⇒①,若a//b,a⊥α,则b⊥α成立,即①②⇒③是真命题,若a//b,b⊥α,则a⊥α成立,即①③⇒②是真命题若a⊥α,b⊥α,则a//b成立,即②③⇒①是真命题,故可以得到3个真命题,故答案为:3根据条件可以构成三个命题①②⇒③,①③⇒②,②③⇒①,根据空间直线和平面平行和垂直的性质进行判断即可.本题主要考查命题的真假关系,结合空间直线平行于直线平面垂直的性质和判定定理是解决本题的关键.9.从装有大小完全相同的2个白球、3个黑球的口袋中随机取出两个小球,记取出白球的个数为随机变量ξ,则P(ξ=1)的值为______.【答案】0.6【解析】解:从装有大小完全相同的2个白球、3个黑球的口袋中随机取出两个小球,基本事件总数n=C52=10,记取出白球的个数为随机变量ξ,ξ=1包含的基本事件个数m=C21C31=6,则P(ξ=1)=mn =610=0.6.故答案为:0.6.基本事件总数n=C52=10,记取出白球的个数为随机变量ξ,ξ=1包含的基本事件个数m=C21C31=6,由此能求出P(ξ=1).本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.10.已知正方体ABCD−A1B1C1D1的棱长为2,E,F,G,H分别是四条棱AB,BC,CD,DA上的中点,则四棱锥A1−EFGH体积为______.【答案】43【解析】解:∵正方体ABCD−A1B1C1D1的棱长为2,E,F,G,H分别是四条棱AB,BC,CD,DA上的中点,∴EFGH是边长为√2的正方形,点A1到平面EFGH的距离d=AA1=2,∴四棱锥A1−EFGH体积为:V A1−EFGH =13×d×S正方形EFGH=13×2×√2×√2=43.故答案为:43.推导出EFGH是边长为√2的正方形,点A1到平面EFGH的距离d=AA1=2,由此能求出四棱锥A1−EFGH体积.本题考查四棱锥的体积的求法,考查空间中线线、线面、面面间的关系等基础知识,考查运算求解能力,是中档题.11.已知抛物线y2=16x上任意一点到双曲线x2a2−y2b2=1右焦点的距离比到左准线的距离大1,则a2=______.【答案】12【解析】解:抛物线y2=16x中,p=8,焦点为F(4,0),准线方程为x=−4;由题意知双曲线x2a2−y2b2=1的右焦点为F(4,0),左准线方程为x=−3,∴c=4,且−a2c=−3,解得a2=12.故答案为:12.利用抛物线方程求出焦点坐标与准线方程,由题意知双曲线的右焦点坐标与左准线方程,由此求出c和a2.本题考查了抛物线方程与双曲线方程的应用问题,是基础题.12.已知椭圆x2a2+y2b2=1(a>b>0)的左右两个焦点分别为F1、F2,以F1F2为斜边的等腰直角三角形PF1F2与椭圆有两个不同的交点M,N,且MN=13F1F2,则该椭圆的离心率为______.【答案】√5−√2【解析】解:∵以F1F2为斜边的等腰直角三角形PF1F2与椭圆有两个不同的交点M,N,且MN=13F1F2,∴N(13c,23c)∵PF1+PF2=√(c3−c)2+(2c3)2+√(c3+c)2+(2c3)2=2a.2√2c 3+2√5c3=2a,∴e=ca =√5+√2=√5−√2.故答案为:√5−√2.可得N(13c,23c),利用PF 1+PF 2=√(c 3−c)2+(2c 3)2+√(c 3+c)2+(2c 3)2=2a.可得2√2c 3+2√5c3=2a ,即可求解.本题考查了椭圆的离心率,属于中档题.13. 在三角形内,我们将三条边的中线的交点称为三角形的重心,且重心到任一顶点的距离是到对边中点距离的两倍类比上述结论:在三棱锥中,我们将顶点与对面重心的连线段称为三棱锥的“中线”,将三棱锥四条中线的交点称为它的“重心”,则棱锥重心到顶点的距离是到对面重心距离的______倍. 【答案】3【解析】解:在四面体ABCD 中,E 为CD 的中点,连接AE ,BE ,且M ,N 分别为△ACD ,△BCD 的重心,AN ,BM 交于点G , 在△ABE 中,M ,N 分别为AE ,BE 的三等分点,则EMAE =ENBE =13, 所以MN//AB ,AB =3MN , 所以AG =3GN ,故棱锥重心到顶点的距离是到对面重心距离的3倍, 故答案为:3由类比推理及线线平行的判定及运用可得:在△ABE 中,M ,N 分别为AE ,BE 的三等分点,则EMAE =ENBE =13,即MN//AB ,AB =3MN ,即AG =3GN ,故棱锥重心到顶点的距离是到对面重心距离的3倍,得解. 本题考查了类比推理及线线平行的判定及运用,属中档题.14. 已知椭圆x 24+y 23=1的右焦点为F ,A 为椭圆在第一象限内的点,连接AF 并延长交椭圆于点B ,连接AO(O 为坐原点)并延长交椭圆于点C ,若S △ABC =3,则点A 的坐标为______. 【答案】(1,32)【解析】解:由题意可得F(1,0),设AB 的方程为x =my +1, 联立椭圆方程可得(4+3m 2)y 2+6my −9=0, 设A(x 1,y 1),B(x 2,y 2),可得y 1+y 2=−6m4+3m 2,y 1y 2=−94+3m 2,|y 1−y 2|2=(y 1+y 2)2−4y 1y 2=36m 2(4+3m 2)2+364+3m 2, 由O 为AC 的中点,且△ABC 的面积为3, 可得△ABO 的面积为32,S △ABO =S △AOF +S △BOF =12⋅|OF|⋅|y 1−y 2|=32, 即有|y 1−y 2|=3, 可得36m 2(4+3m 2)2+364+3m 2=9, 化为9m 4+m 2=0,即m =0,则AB⊥x轴,可得A(1,32),故答案为:(1,32).求得F(1,0),),设AB的方程为x=my+1,联立椭圆方程,运用韦达定理,以及完全平方公式,结合题意可得S△ABO=S△AOF+S△BOF=12⋅|OF|⋅|y1−y2|=32,即有|y1−y2|=3,平方.后由韦达定理,解方程可得m=0,可得A的坐标本题考查椭圆的方程和运用,注意联立直线方程和椭圆方程,运用韦达定理和弦长公式,考查化简整理的运算能力,属于中档题.二、解答题(本大题共9小题,共130.0分)15.已知直线l:{y=1+2tx=1+t(t为参数),曲线C:ρ2−8ρsinθ+15=0.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)求曲线C上的点到直线l距离的最小值.【答案】解:(1)∵直线l:{y=1+2tx=1+t(t为参数),∴直线l的普通方程为2x−y−1=0,∵曲线C:ρ2−8ρsinθ+15=0.∴曲线C的直角坐标方程为x2+y2−8y+15=0.(2)曲线C是以C(0,4)为圆心,以r=12√64−60=1为半径的圆,圆心C(0,4)到直线l的距离d=|2×0−4−1|√4+1=√5,∴曲线C上的点到直线l距离的最小值为√5−1.【解析】(1)直线l的参数方程消去参数,能求出直线l的普通方程,由曲线C的极坐标方程能求出曲线C的直角坐标方程.(2)曲线C是以C(0,4)为圆心,以r=1为半径的圆,圆心C(0,4)到直线l的距离d=√5,由此能求出曲线C上的点到直线l距离的最小值.本题考查直线的普通方程、曲线的直角坐标方程的求法,考查极坐标方程、普通方程、直角坐标方程的互化等基础知识,考查运算求解能力,是中档题.16.如图所示,在直三棱柱ABC−A1B1C1中,CA=CB,点M,N分别是AB,A1B1的中点.(1)求证:BN//平面A1MC;(2)若A1M⊥AB1,求证:AB1⊥A1C.【答案】证明:(1)因为ABC−A1B1C1是直三棱柱,所以AB//A1B1,且AB=A1B1,又点M,N分别是AB、A1B1的中点,所以MB=A1N,且MB//A1N.所以四边形A1NBM是平行四边形,从而A1M//BN.又BN⊄平面A1MC,A1M⊂平面A1MC,所以BN//平面A1MC;(2)因为ABC−A1B1C1是直三棱柱,所以AA1⊥底面ABC,而AA1⊂侧面ABB1A1,所以侧面ABB1A1⊥底面ABC.又CA=CB,且M是AB的中点,所以CM⊥AB.则由侧面ABB1A1⊥底面ABC,侧面ABB1A1∩底面ABC=AB,CM⊥AB,且CM⊂底面ABC,得CM⊥侧面ABB1A1.又AB1⊂侧面ABB1A1,所以AB1⊥CM.又AB1⊥A1M,A1M、MC平面A1MC,且A1M∩MC=M,所以AB1⊥平面A1MC.又A1C⊂平面A1MC,所以AB⊥A1C.【解析】(1)欲证明BN//平面A1MC,只需推知A1M//BN;(2)根据直三棱柱的特征和线面垂直的判定与性质来证明线线垂直.本题考查的知识点是直线与平面垂直的性质,直线与平面平行的判定,其中熟练掌握空间直线与平面间垂直、平行的判定、性质、定义是解答本题的关键.17.设f(x)=x2−2ax+1,g(x)=sinx.(1)若∀x∈[0,1]都有f(x)≥0恒成立,求实数a的取值范围;],都有f(x1)≥g(x2)恒成立,求实数a的取值范围.(2)若∃x1∈(0,1],使得对∀x2∈[0,π2【答案】解:(1)∀x∈[0,1]都有f(x)≥0恒成立,故x2−2ax+1≥0对∀x∈[0,1]恒成立,①x=0时,1≥0恒成立,故a∈R,②x∈(0,1]时,2a≤x+1对∀x∈(0,1]恒成立,x故2a≤2(当且仅当x=1时“=”成立),故a≤1,综上,a≤1;],g(x)=sinx,(2)∵x2∈[0,π2故g(x2)的最大值是1,],都有f(x1)≥g(x2)恒成立,∵∃x1∈(0,1],使得对∀x2∈[0,π2∴∃x1∈(0,1],使得f(x1)≥1恒成立,即∃x1∈(0,1],使得x12−2ax1+1≥1恒成立,故∃x1∈(0,1],使得x1≥2a成立,即2a≤1,解得:a≤1.2【解析】(1)问题转化为x2−2ax+1≥0对∀x∈[0,1]恒成立,通过讨论x的范围,结合不等式的性质求出a 的范围即可;(2)求出g(x)的最大值,问题转化为∃x∈(0,1],使得x2−2ax+1≥1恒成立,求出a的范围即可.本题考查了函数的单调性,最值问题以及函数恒成立问题,考查转化思想,分类讨论思想,是一道综合题.18. 设(1+2x)n =a 0+a 1x +a 2x 2+⋯+a n x n ,若展开式中第4项与第5项二项式系数最大.(1)求n ;(2)求最大的系数a i ;(3)是否存在正整数m ,使得a m+2+4a m =4a m+1成立?若存在,求出m 的值;若不存在,请说明理由.【答案】解:(1)若展开式中第4项与第5项二项式系数最大,即C n 3=C n 4,则n =7. (2)设(1+2x)7展开式中第r +1项T r+1是系数最大的项,则T r+1=C 7r 2r x r , 由不等式组{C 7r 2r≥C 7r−12r−1C 7r 2r≥C 7r+12r+1,解得{r ≤163r≥133,且r ∈N ,∴r =5,所以a i =C 7525=672.(3)因为(1+2x)n =a 0+a 1x +a 2x 2+⋯+a n x n ,所以a m =C 7m 2m , 因为a m+2+4a m =4a m+1,所以C 7m+22m+2+4C 7m 2m =4C 7m+12m+1, 所以7!(m+2)!(5−m)!2m+2+47!m!(7−m)!2m =47!(m+1)!(6−m)!2m+1, 由此方程可得:1(m+1)(m+2)+1(6−m)(7−m)=2(m+1)(6−m), 解得:m =1或4.综上:存在m =1或4,使得a m+2+4a m =4a m+1成立. 【解析】(1)由题意利用二项式系数的性质,求得n 的值.(2)展开式中第r +1项T r+1是系数最大的项,列出不等式组求得r 的值,可得最大的系数a i . (3)假设存在正整数m ,使得a m+2+4a m =4a m+1成立,解出m 的值,可得结论.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,组合数的计算公式,属于中档题.19. (请用空间向量求解)已知正四棱柱ABCD −A 1B 1C 1D 1中,AB =1,AA 1=3,E ,F 分别是棱AA 1,CC 1上的点,且满足AE =2EA 1,CF =2FC 1. (1)求异面直线EC 1,DB 1所成角的余弦值; (2)求面EB 1C 1与面FAD 所成的锐二面角的余弦值.【答案】解:(1)在正四棱柱ABCD −A 1B 1C 1D 1中,DD 1⊥平面ABCD ,底面ABCD 是正方形, 所以AD ,DC ,DD 1两两垂直,以A 为原点,DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系,……………………………………………………………………(2分)又因AB =1,AA 1=3,E ,F 分别是棱AA 1,CC 1上的点, 且满足AE =2EA 1,CF =2FC 1AB =1,AA 1=3,所以D(0,0,0),E(1,0,2),C 1(0,1,3),B(1,1,3),A(1,0,0),F(0,1,2),B 1(1,1,3),所以EC 1⃗⃗⃗⃗⃗⃗⃗ =(−1,1,1),DB 1⃗⃗⃗⃗⃗⃗⃗ =(1,1,3),…………………………………………………(4分) 设异面直线EC 1,DB 1所成角为θ,θ∈(0,π2], 所以cosθ=|cos〈EC 1⃗⃗⃗⃗⃗⃗⃗ ,DB 1⃗⃗⃗⃗⃗⃗⃗ 〉|=|−1+1+3|√3√1+1+9=√3311,………………………………(7分) 所以异面直线EC 1,DB 1所成角的余弦值为√3311. ………………………………………………(8分)(2)EC 1⃗⃗⃗⃗⃗⃗⃗ =(−1,1,1),EB 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1),DA ⃗⃗⃗⃗⃗ =(1,0,0),DF ⃗⃗⃗⃗⃗ =(0,1,2), 设平面EB 1C 1的一个法向量为n 1⃗⃗⃗⃗ , 则{EB 1⃗⃗⃗⃗⃗⃗⃗ ⊥n 1⃗⃗⃗⃗ EC 1⃗⃗⃗⃗⃗⃗⃗ ⊥n 1⃗⃗⃗⃗ ,所以{−x 1+y 1+z 1=0y 1+z 1=0,令z 1=1,所以n 1⃗⃗⃗⃗ =(0,−1,1),……(10分)平面FAD 的一个法向量为n 2⃗⃗⃗⃗ ,则{DA ⃗⃗⃗⃗⃗ ⊥n 2⃗⃗⃗⃗ DF ⃗⃗⃗⃗⃗ ⊥n 2⃗⃗⃗⃗ ,所以{y 2+2z 2=0x 2=0,令z 2=1,所以n 1⃗⃗⃗⃗ =(0,−2,1),…………(12分) 所以cos〈n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ 〉=|0+2+1|√2√5=3√1010,………………………………………………(14分) 所以面EB 1C 1与面FAD 所成的锐二面角的余弦值为3√1010.………………………(15分) 【解析】(1)推导出AD ,DC ,DD 1两两垂直,以A 为原点,DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系,利用向量法能求出异面直线EC 1,DB 1所成角的余弦值.(2)求出平面EB 1C 1的一个法向量和平面FAD 的一个法向量,利用向量法能求出面EB 1C 1与面FAD 所成的锐二面角的余弦值.本题考查异面直线所成角的余弦值的求法,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20. 甲乙二人进行定点投篮比赛,已知甲、乙两人每次投进的概率均为12,两人各投一次称为一轮投篮.(1)求乙在前3次投篮中,恰好投进2个球的概率;(2)设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量ξ,求ξ的分布列与期望. 【答案】解:(1)乙在前3次投篮中,恰好投进2个球为事件A ,则P(A)=C 32(12)2(1−12)=38;……………………………………(3分)答:乙在前3次投篮中,恰好投进2个球的概率为38;………………………………(4分) (2)设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量ξ, 则ξ的取值为0,1,2,3;设前3轮投篮中,甲进球个数为X ,则X 的取值为0,1,2,3,计算P(X =0)=(1−12)3=18,P(X =1)=C 31⋅12⋅(1−12)2=38, P(X =2)=C 32⋅(12)2⋅(1−12)=38,P(X =3)=(12)3=18;所以P(ξ=0)=(18)2+(38)2+(38)2+(18)2=516,………………………………(6分) P(ξ=1)=2×18×38+2×38×(18+38)=1532,……………………………………(8分) P(ξ=2)=4×18×38=316,………………………………………(10分) P(ξ=3)=2×18×18=132;………………………………………(12分)所以ξ的分布列为; ξ 0 12 3 P5161532316132数学期望为E(ξ)=1532+38+332=1516.………………………………………………(15分) 【解析】(1)利用n 次独立重复实验恰有k 次发生的概率公式计算即可; (2)由题意知随机变量ξ的取值,计算对应的概率值, 写出分布列,再求出数学期望值.本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.21. 已知点P(1,2)是抛物线y 2=4x 上的一点,过点P 作两条直线l 1与l 2,分别与抛物线相交于异于点P 的A 、B 两点.(1)若直线AB 过点(2,0)且△PAB 的重心G 在x 轴上,求直线AB 的斜率; (2)若直线AB 的斜率为1且△PAB 的垂心H 在x 轴上,求直线AB 的方程.【答案】解:(1)设直线AB的方程为x=my+2,设A,B两点的坐标分别为(x1,y1),(x2,y2)因为△PAB的重心G在x轴上,所以y1+y2=−2,将直线AB代入抛物线y2=4x方程可得:y2−4my−8=0,所以y1+y2=4m=−2,解得:m=−12,所以直线AB的斜率是−2.(2)若直线AB的斜率为1,则直线PH的方程是y−2=−(x−1),所以H(3,0),若直线AB的斜率为1,则设直线AB的方程为x=y+t,将直线AB代入抛物线y2=4x方程可得:y2−4y−4t=0,所以y1+y2=4,y1y2=−4t,且△=16+16t>0,因为BH⊥AP,所以y2x2−3⋅y1−2x1−1=−1(∗),将x1=y1+t,x2=y2+t代入(∗)得2y1y2+(t−3)(y1+y2)+t2−4t+3=0,将y1+y2=4,y1y2=−4t代入上面方程可得:t2−8t−9=0,由此方程解得:t=9或t=−1(舍),所以直线AB的方程是x−y−9=0.【解析】(1)设直线AB的方程为x=my+2,设A,B两点的坐标分别为(x1,y1),(x2,y2),根据重心的性质,以及根与系数,根据斜率公式即可求出,(2)分类讨论,根据韦达定理和斜率公式即可求出.本题考查直线与抛物线的位置关系的应用,直线系方程的应用,考查分析问题解决问题的能力,属于中档题.22.已知A,B分别为椭圆C:x2a2+y2b2=1(a>b>0)右顶点和上顶点,且直线AB的斜率为−√22,右焦点F到直线AB的距离为√6−√33.(1)求椭圆C的方程;(2)若直线l:y=kx+m(m>1)与椭圆交于M,N两点,且直线BM、BN的斜率之和为1,求实数k的取值范围.【答案】解:(1)∵k AB=ba =√22,∴a=√2b,则b=c,直线AB:bx+ay−ab=0,∴|b−√2b|√3=√6−√33,∴a=√2,b=1.因此,椭圆C的方程为x22+y2=1;(2)设点M(x 1,y 1)、N(x 2,y 2),将直线l 的方程与椭圆C 的方程联立{y =kx +m x 22+y 2=1,消去y 并整理得(2k 2+1)x 2+4kmx +2m 2−2=0, ∴△>0,由韦达定理得x 1+x 2=−4km 2k 2+1,x 1x 2=2m 2−22k 2+1. ∵k BM +k BN =2kx 1x 2+(m−1)(x 1+x 2)x 1x 2=1,∴(2k −1)x 1x 2+(m −1)(x 1+x 2)=0,∴2k =m +1>2,∴k >1,又∵△>0,∴2k 2>m 2−1,综上所述,0<k <2.因此,实数k 的取值范围是(0,2).【解析】(1)先由直线AB 的斜率得出a =√2b ,于是得出c =b ,再由点F 到直线AB 的距离,得出b 的值,从而可求出a 的值,从而可写出椭圆C 的方程;(2)设点M(x 1,y 1)、N(x 2,y 2),将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由直线BM 、BN 的斜率之和为1,结合韦达定理得出k 与m 所满足的关系式,结合m 的范围,可得出k 的范围,再由△>0,得出k 的另一个范围,两者取交集可得出实数k 的取值范围.本题考查直线与椭圆的综合问题,考查椭圆的方程以及韦达定理设而不求法在椭圆综合问题中的应用,考查计算能力,属于中等题.23. 已知平面上一个圆可以将平面分成两个部分,两个圆最多可以将平面分成4个部分,设平面上n 个圆最多可以将平面分成f(n)个部分.(1)求f(3),f(4)的值;(2)猜想f(n)的表达式并证明;(3)证明:2n ≥f(n).【答案】解:(1)由已知有:f(3)=8,f(4)=14,(2)f(n)=n 2−n +2下面用数学归纳法证明:①当n =1时,f(1)=12−1+2=2结论成立;②假设n =k 时,结论成立,即平面上k 个圆最多可以将平面分成k 2−k +2个部分,那么当n =k +1时,第k +1个圆与前k 个圆最多有2k 个交点,即此第k +1个圆最多被这2k 个交点分成2k 条圆弧段,由于每增加一个圆弧段,可将原来的区域分成两个区域,因此第k +1个圆使平面增加了2k 个区域,所以f(k +1)=f(k)+2k =k 2−k +2+2k =(k +1)2−(k +1)+2,综合①②得:即平面上n 个圆最多可以将平面分成n 2−n +2个部分,即命题得证(3)证明:①当n =1或2或3时,2n −n 2+n −2=0,即2n ≥f(n),②n ≥4且n ∈N ∗时,设a n =n 2−n+22n ,则a n+1−a n=(n+1)2−(n+1)+22n+1−n2−n+22n=−n2+3n2n+1,设g(n)=−n2+3n=−(n−32)2+94,因为n≥4,所以g(n)≤−42+3×4=−4<0,所以a n+1−a n=−n2+3n2n+1<0所以n≥4时,数列{a n}是单调递减数列,所以a n=n2−n+22n ≤42−4+224=1416<1,所以2n>n2+n−2,综合①②得:2n≥n2+n−2.故不等式得证.【解析】(1)由题意可知:f(3)=8,f(4)=14,(2)猜想f(n)=n2−n+2并用数学归纳法证明可得解:(3)证明:讨论①当n=1或2或3时,2n−n2+n−2=0,②n≥4且n∈N∗时,用数列单调性的证明方法定义法证明即可本题考查了归纳推理、数学归纳法及数列单调性的证明,属难度较大的题型.。

人教A版2019-2020学年湖北省黄冈市高三上学期期末数学试卷(理科)(解析版)

人教A版2019-2020学年湖北省黄冈市高三上学期期末数学试卷(理科)(解析版)

2019-2020学年高三第一学期期末数学试卷(理科)一、选择题(本题共12小题)1.已知集合,集合B={x|x﹣x2<0},则A∩B=()A.∅B.{x|x<1} C.{x|0<x<1} D.{x|x<0}2.复数z=的虚部为()A.i B.﹣i C.﹣1 D.13.若直线x+y+a=0平分圆x2+y2﹣2x+4y+1=0的面积,则a的值为()A.1 B.﹣1 C.2 D.﹣24.已知向量,,若,则=()A.5 B.C.6 D.5.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若AD=5,BD=3,则在整个图形中随机取点,此点来自中间一个小正三角形(阴影部分)的概率为()A.B.C.D.6.若x、y满足约束条件,则z=3x﹣2y的最小值为()A.B.﹣C.﹣5 D.57.将甲、乙、丙、丁四人分配到A,B,C三所学校任教,每所学校至少安排1人,则甲不去A学校的不同分配方法有()A.18种B.24种C.32种D.36种8.已知实数x>0,y>0,则“xy≤1”是“2x+2y≤4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.将函数的图象向左平移个单位,再向上平移1个单位,得到g (x)的图象.若g(x1)•g(x2)=9,且x1,x2∈[﹣2π,2π],则x1﹣x2的最大值为()A.πB.2πC.3πD.4π10.关于函数有下列结论:①图象关于y轴对称;②图象关于原点对称;③在(﹣∞,0)上单调递增;④f(x)恒大于0.其中所有正确结论的编号是()A.①③B.②④C.③④D.①③④11.已知抛物线C:x2=2py的焦点为F,定点,若直线FM与抛物线C相交于A,B两点(点B在F,M中间),且与抛物线C的准线交于点N,若|BN|=7|BF|,则AF 的长为()A.B.1 C.D.12.如图,在△ABC中,,点D在线段BC上,且BD=3DC,,则△ABC的面积的最大值为()A.B.4 C.D.二、填空题(本大题共4小题,每题5分,共20分)13.在log20.2,20.2,0.20.3三个数中,则最大的数为.14.已知F是双曲线C:的一个焦点,点P在C上,O为坐标原点,若|OP|=|OF|,则△OPF的面积为.15.设数列{a n}满足a1=a,(a n+1﹣1)(1﹣a n)=2a n(n∈N*),若数列{a n}的前2019项的乘积为3,则a=.16.已知函数f(x)=(x+1)sin x+cos x,若对于任意的(x1≠x2),均有|f(x1)﹣f(x2)|<a||成立,则实数a的取值范围为.三、解答题:本大题有6小题,共60分,解答应写出文字说明、证明过程或演算步骤. 17.已知函数.(1)求的值;(2)求f(x)的最小正周期及单调增区间.18.已知数列{a n}满足a1=1,a n+a n+1=4n﹣1,n=1,2,3…,(1)求数列{a n}的通项;(2)设S n=a1a2﹣a2a3+a3a4﹣a4a5+…+a2n﹣1a2n﹣a2n a2n+1,求S n.19.已知f(x)=kx﹣sin2x+a sin x(k,a为实数).(1)当k=0,a=2时,求f(x)在[0,π]上的最大值;(2)当k=4时,若f(x)在R上单调递增,求a的取值范围.20.已知椭圆Γ:的离心率为,点A为该椭圆的左顶点,过右焦点F(c,0)的直线l与椭圆交于B,C两点,当BC⊥x轴时,三角形ABC的面积为18.(1)求椭圆Γ的方程;(2)如图,当动直线BC斜率存在且不为0时,直线x=c分别交直线AB,AC于点M、N,问x轴上是否存在点P,使得PM⊥PN,若存在求出点P的坐标;若不存在说明理由.21.黄冈“一票通”景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程,持有旅游年卡一年内可不限次畅游全市19家签约景区.为了解市民每年旅游消费支出情况(单位:百元),相关部门对已游览某签约景区的游客进行随机问卷调查,并把得到的数据列成如表所示的频数分布表:(1)求所得样本的中位数(精确到百元);(2)根据样本数据,可近似地认为市民的旅游费用支出服从正态分布N(45,152),若该市总人口为750万人,试估计有多少市民每年旅游费用支出在7500元以上;(3)若年旅游消费支出在40(百元)以上的游客一年内会继续来该景点游玩现从游客中随机抽取3人,一年内继续来该景点游玩记2分,不来该景点游玩记1分,将上述调查所得的频率视为概率,且游客之间的选择意愿相互独立,记总得分为随机变量X,求X 的分布列与数学期望.(参考数据:P(μ﹣σ<X<μ+σ)≈0.6827,P(μ﹣2σ<X<μ+2σ)≈0.9545;P (μ﹣3σ<X<μ+3σ)≈0.9973)22.已知函数f(x)=alnx﹣(x﹣1)e x,其中a为非零常数.(1)讨论f(x)的极值点个数,并说明理由;(2)若a>e,(i)证明:f(x)在区间(1,+∞)内有且仅有1个零点;(ii)设x0为f(x)的极值点,x1为f(x)的零点且x1>1,求证:x0+2lnx0>x1.参考答案一、选择题(本题共12小题)1.已知集合,集合B={x|x﹣x2<0},则A∩B=()A.∅B.{x|x<1} C.{x|0<x<1} D.{x|x<0}【分析】可以求出集合A,B,然后进行交集的运算即可.解:∵A={x|x≤1},B={x|x<0或x>1},∴A∩B={x|x<0}.故选:D.2.复数z=的虚部为()A.i B.﹣i C.﹣1 D.1【分析】直接由复数代数形式的乘除运算化简复数z,则答案可求.解:z==,则复数z=的虚部为:﹣1.故选:C.3.若直线x+y+a=0平分圆x2+y2﹣2x+4y+1=0的面积,则a的值为()A.1 B.﹣1 C.2 D.﹣2【分析】根据题意,由圆的方程分析圆的圆心,进而分析可得圆心在直线x+y+a=0上,将圆心坐标代入直线方程可得a﹣2﹣1=0,解可得a的值,即可得答案.解:根据题意,圆的方程为x2+y2﹣2x+4y+1=0,其圆心为(1,﹣2),若直线x+y+a=0平分圆x2+y2﹣2x+4y+1=0的面积,则圆心在直线x+y+a=0上,则有a+1﹣2=0,解可得a=1;故选:A.4.已知向量,,若,则=()A.5 B.C.6 D.【分析】通过向量的数量积求解x,然后求解向量的模.解:向量,,若,可得﹣x﹣10=﹣7,解得x=﹣3,所以=(﹣4,3),则||==5.故选:A.5.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若AD=5,BD=3,则在整个图形中随机取点,此点来自中间一个小正三角形(阴影部分)的概率为()A.B.C.D.【分析】求得∠ADB=120°,在△ABD中,运用余弦定理,求得AB,以及DE,根据三角形的面积与边长之间的关系即可求解.解:∵∠ADB=180°﹣60°=120°,在△ABD中,可得AB2=AD2+BD2﹣2AD•BD•cos∠ADB,即为AB2=52+32﹣2×5×3×(﹣)=49,解得AB=7,∵DE=AD﹣BD=2;∴==.故选:B.6.若x、y满足约束条件,则z=3x﹣2y的最小值为()A.B.﹣C.﹣5 D.5【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.解:由约束条件作出可行域如图:联立,解得A(﹣1,1).化目标函数z=3x﹣2y为y=,由图可知,当直线y=过A时,直线在y轴上的截距最大,z有最小值为﹣5.故选:C.7.将甲、乙、丙、丁四人分配到A,B,C三所学校任教,每所学校至少安排1人,则甲不去A学校的不同分配方法有()A.18种B.24种C.32种D.36种【分析】根据题意,分两种情况讨论:①其他三人中有一个人与甲在同一个学校,②没有人与甲在同一个学校,由加法原理计算可得答案.解:根据题意,分两种情况讨论,①其他三人中有一个人与甲在同一个学校,有C31A21A22=12种情况,②没有人与甲在同一个学校,则有C21C32A22=12种情况;则若甲要求不到A学校,则不同的分配方案有12+12=24种;故选:B.8.已知实数x>0,y>0,则“xy≤1”是“2x+2y≤4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】通过举反例得到“xy≤1”推不出“2x+2y≤4”;再由“2x+2y≤4”⇒“xy≤1”.能求出结果.解:∵实数x>0,y>0,∴当x=3,y=时,2x+2y=23+>4,∴“xy≤1”推不出“2x+2y≤4”;反之,实数x>0,y>0,“2x+2y≤4”⇒“xy≤1”.∴实数x>0,y>0,则“xy≤1”是“2x+2y≤4”的必要不充分条件.故选:B.9.将函数的图象向左平移个单位,再向上平移1个单位,得到g (x)的图象.若g(x1)•g(x2)=9,且x1,x2∈[﹣2π,2π],则x1﹣x2的最大值为()A.πB.2πC.3πD.4π【分析】首先利用函数的关系式的平移变换的应用求出新函数的关系式,进一步利用函数的最值的应用求出结果.解:函数的图象向左平移个单位,得到y=2sin()的图象,再向上平移1个单位,得到g(x)=2sin(2x+)+1的图象,由于若g(x1)•g(x2)=9,且x1,x2∈[﹣2π,2π],所以函数在x=x1和x2时,函数都取得最大值.所以(k∈Z),解得,由于且x1,x2∈[﹣2π,2π],所以,同理,所以.故选:C.10.关于函数有下列结论:①图象关于y轴对称;②图象关于原点对称;③在(﹣∞,0)上单调递增;④f(x)恒大于0.其中所有正确结论的编号是()A.①③B.②④C.③④D.①③④【分析】利用函数的奇偶性、单调性直接求解.解:函数,在①中,f(﹣x)=(1+)=﹣(1+)=(+)=(1+)=f(x).∴函数是偶函数,图象关于y轴对称,故①正确;在②中,函数是偶函数,图象关于y轴对称,故②错误;在③中,在(﹣∞,0)上任取x1,x2,令x1<x2<0,f(x2)﹣f(x1)=﹣(1+)=+>0,∴函数在(﹣∞,0)上单调递增,故③正确;在④中,当x>0时,>0,1+>0,f(x)>0,当x<0时,<0,1+<0,f(x)>0.∴f(x)恒大于0,故④正确.故选:D.11.已知抛物线C:x2=2py的焦点为F,定点,若直线FM与抛物线C相交于A,B两点(点B在F,M中间),且与抛物线C的准线交于点N,若|BN|=7|BF|,则AF 的长为()A.B.1 C.D.【分析】由题意画出图形,求出AB的斜率,得到AB的方程,求得p,可得抛物线方程,联立直线方程与抛物线方程,求解A的坐标,再由抛物线定义求解AF的长.解:如图,过B作BB′垂直于准线,垂足为B′,则|BF|=|BB′|,由|BN|=7|BF|,得|BN|=7|BB′|,可得sin,∴cos∠BNB′=﹣,tan∠BNB′=﹣,又M(,0),∴AB的方程为y=﹣,取x=0,得y=,即F(0,),则p=1,∴抛物线方程为x2=2y.联立,解得.∴|AF|=.故选:C.12.如图,在△ABC中,,点D在线段BC上,且BD=3DC,,则△ABC的面积的最大值为()A.B.4 C.D.【分析】设∠BAD=θ,则0<θ<∠BAC,根据三角形的面积公式求出AC,AB,然后由S△ABC=AB•AC•sin∠BAC=[4sin(2θ+φ)﹣1],根据三角函数的性质求出面积的最大值.解:设∠BAD=θ,则0<θ<∠BAC.∵BD=3DC,,∴S△ABD=S△ABC,∴,∴,同理AB=8sin(∠BAC﹣θ),∴S△ABC====(其中tanφ=),∵0<θ<∠BAC,∴当2θ+φ=时,sin(2θ+φ)max=1,∴.故选:C.二、填空题(本大题共4小题,每题5分,共20分)13.在log20.2,20.2,0.20.3三个数中,则最大的数为20.2.【分析】利用对数函数和指数函数的性质求解.解:∵log20.2<log21=0,∴log20.2<0,∵20.2>20=1,∴20.2>1,∵0<0.20.3<0.20=1,∴0<0.20.3<1,∴20.2最大,故答案为:20.2.14.已知F是双曲线C:的一个焦点,点P在C上,O为坐标原点,若|OP|=|OF|,则△OPF的面积为.【分析】由题意画出图形,不妨设F为双曲线C:的右焦点,P为第一象限点,求出P点坐标,再由三角形面积公式求解.解:如图,不妨设F为双曲线C:的右焦点,P为第一象限点.由双曲线方程可得,a2=1,b2=3,则c=2,则以O为圆心,以2为半径的圆的方程为x2+y2=4.联立,解得P(,).∴S△OPF=×2×=.故答案为:.15.设数列{a n}满足a1=a,(a n+1﹣1)(1﹣a n)=2a n(n∈N*),若数列{a n}的前2019项的乘积为3,则a= 2 .【分析】本题先根据递推式的特点可知a n≠1,然后将递推式可转化为a n+1=.再根据a1=a逐步代入前几项即可发现数列{a n}是以最小正周期为4的周期数列.再算出一个周期内的乘积为1,即可根据前2019项的乘积为3求出a的值.解:由题意,根据递推式,a n≠1.故递推式可转化为a n+1=.∵a1=a,∴a2=,a3===﹣,a4===,a5===a.∴数列{a n}是以最小正周期为4的周期数列.∴a1•a2•a3•a4=a••(﹣)•=1.∵2019÷4=504…3,∴a1•a2…a2019=a1•a2•a3=a••(﹣)==3,解得a=2.故答案为:2.16.已知函数f(x)=(x+1)sin x+cos x,若对于任意的(x1≠x2),均有|f(x1)﹣f(x2)|<a||成立,则实数a的取值范围为[1,+∞).【分析】求导可知函数f(x)在上为增函数,进而原问题等价于对于任意的(x1≠x2),均有,构造函数h(x)=f(x)﹣ae x,则函数h(x)在上为减函数,求导后转化为最值问题求解即可.解:f'(x)=sin x+(x+1)cos x﹣sin x=(x+1)cos x,任意的(x1≠x2),f'(x)>0恒成立,所以f(x)单调递增,不妨设x1<x2,则f(x1)<f(x2),又,故|f(x1)﹣f(x2)|<a||等价于,即,设,易知函数h(x)在上为减函数,故h′(x)=(x+1)cos x﹣ae x≤0在上恒成立,即在上恒成立,设,则=,故函数g(x)在上为减函数,则g(x)max=g(0)=1,故a≥1.故答案为:[1,+∞).三、解答题:本大题有6小题,共60分,解答应写出文字说明、证明过程或演算步骤. 17.已知函数.(1)求的值;(2)求f(x)的最小正周期及单调增区间.【分析】(I)结合和差角公式及二倍角,辅助角公式对已知函数进行化简,然后直接代入即可求解,(2)结合正弦函数的性质即可求解.解:(Ⅰ)因为,=所以,(2)f(x)的最小正周期.令,解得所以f(x)的单调增区间为.18.已知数列{a n}满足a1=1,a n+a n+1=4n﹣1,n=1,2,3…,(1)求数列{a n}的通项;(2)设S n=a1a2﹣a2a3+a3a4﹣a4a5+…+a2n﹣1a2n﹣a2n a2n+1,求S n.【分析】(1)利用数列的递推关系式推出a n+1﹣a n﹣1=4,通过当n为奇数,当n为偶数,,分别求解通项公式.(2)化简S n=a2(a1﹣a3)+a4(a3﹣a5)+…+a2n(a2n﹣1﹣a2n+1),然后求解数列的和即可.解:(1)∵a n+a n+1=4n﹣1,n=1,2,3…①,∴a n﹣1+a n=4(n﹣1)﹣1,n=2,3,4…②①﹣②得a n+1﹣a n﹣1=4,n=2,3…当n为奇数,,当n为偶数,所以.(2)S n=a1a2﹣a2a3+a3a4﹣a4a5+…+a2n﹣1a2n﹣a2n a2n+1,S n=a2(a1﹣a3)+a4(a3﹣a5)+…+a2n(a2n﹣1﹣a2n+1)=.19.已知f(x)=kx﹣sin2x+a sin x(k,a为实数).(1)当k=0,a=2时,求f(x)在[0,π]上的最大值;(2)当k=4时,若f(x)在R上单调递增,求a的取值范围.【分析】(1)求导后,列表得x,f′(x),f(x)的变化情况,进而求得最大值;(2)依题意,4cos2x﹣a cos x﹣6≤0恒成立,换元后利用二次函数的图象及性质得解.解:(1)当k=0,a=2时,f(x)=﹣sin2x+2sin xf′(x)=﹣2cos2x+2cos x=﹣4cos2x+2cos x+2=2(2cos x+1)(1﹣cos x),则x,f′(x),f(x)的变化情况如下:∴=.(2)f(x)在R上单调递增,则f′(x)=4﹣2(cos2x﹣sin2x)+a cos x≥0对∀x∈R 恒成立.得4cos2x﹣a cos x﹣6≤0,设t=cos x∈[﹣1,1],g(t)=4t2﹣at﹣6,则g(t)≤0在[﹣1,1]上恒成立,由二次函数图象,得﹣2≤a≤2.20.已知椭圆Γ:的离心率为,点A为该椭圆的左顶点,过右焦点F(c,0)的直线l与椭圆交于B,C两点,当BC⊥x轴时,三角形ABC的面积为18.(1)求椭圆Γ的方程;(2)如图,当动直线BC斜率存在且不为0时,直线x=c分别交直线AB,AC于点M、N,问x轴上是否存在点P,使得PM⊥PN,若存在求出点P的坐标;若不存在说明理由.【分析】(1)由离心率及三角形ABC的面积和a,b,c之间的关系求出椭圆方程;(2)由(1)知A的坐标,设直线BC的方程,及B,C的坐标,进而写直线AB,AC的方程,与直线x=c联立求出M,N的坐标,假设存在P点,是PM⊥PN,使数量积等于零,求出P点坐标.【解答】解(1)由已知条件得,解得;所以椭圆Γ的方程为;(2)设动直线BC的方程为y=k(x﹣2),B(x1,y1),C(x2,y2),则直线AB、AC的方程分别为和,所以点M、N的坐标分别为,联立得(3+4k2)x2﹣16k2x+16k2﹣48=0,所以;于是,假设存在点P(t,0)满足PM⊥PN,则(t﹣2)2+y M y N=0,所以t=﹣1或5,所以当点P为(﹣1,0)或(5,0)时,有PM⊥PN.21.黄冈“一票通”景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程,持有旅游年卡一年内可不限次畅游全市19家签约景区.为了解市民每年旅游消费支出情况(单位:百元),相关部门对已游览某签约景区的游客进行随机问卷调查,并把得到的数据列成如表所示的频数分布表:(1)求所得样本的中位数(精确到百元);(2)根据样本数据,可近似地认为市民的旅游费用支出服从正态分布N(45,152),若该市总人口为750万人,试估计有多少市民每年旅游费用支出在7500元以上;(3)若年旅游消费支出在40(百元)以上的游客一年内会继续来该景点游玩现从游客中随机抽取3人,一年内继续来该景点游玩记2分,不来该景点游玩记1分,将上述调查所得的频率视为概率,且游客之间的选择意愿相互独立,记总得分为随机变量X,求X 的分布列与数学期望.(参考数据:P(μ﹣σ<X<μ+σ)≈0.6827,P(μ﹣2σ<X<μ+2σ)≈0.9545;P (μ﹣3σ<X<μ+3σ)≈0.9973)【分析】(1)设样本的中位数为x,可得,解得x.(2)μ=45,σ=15,μ+2σ=75,旅游费用支出在7500元以上的概率为P(x≥μ+2σ)=,即可估计有多少万市民旅游费用支出在7500元以上.(3)由表格知一年内游客继续来该景点游玩的概率为,X可能取值为3,4,5,6,利用二项分布列即可得出.解:(1)设样本的中位数为x,则,解得x=45,所得样本中位数为45(百元).(2)μ=45,σ=15,μ+2σ=75,旅游费用支出在7500元以上的概率为P(x≥μ+2σ)==,0.0228×750=17.1,估计有17.1万市民旅游费用支出在7500元以上.(3)由表格知一年内游客继续来该景点游玩的概率为,X可能取值为3,4,5,6.,,,,故其分布列为.22.已知函数f(x)=alnx﹣(x﹣1)e x,其中a为非零常数.(1)讨论f(x)的极值点个数,并说明理由;(2)若a>e,(i)证明:f(x)在区间(1,+∞)内有且仅有1个零点;(ii)设x0为f(x)的极值点,x1为f(x)的零点且x1>1,求证:x0+2lnx0>x1.【分析】(1)先对函数求导,然后结合导数与单调性的关系,对a进行分类讨论即可求解函数的单调性,进而可确定极值,(2)(i)转化为证明f′(x)=0只有一个零点,结合函数与导数知识可证;(ii)由题意可得,,代入可得,,结合函数的性质可证.解:(1)解:由已知,f(x)的定义域为(0,+∞),∵,①当a<0时,a﹣x2e x<0,从而f′(x)<0,所以f(x)在(0,+∞)内单调递减,无极值点,②当a>0时,令g(x)=a﹣x2e x,则由于g(x)在[0,+∞)上单调递减,g(0)=a>0,,所以存在唯一的x0∈(0,+∞),使得g(x0)=0,所以当x∈(0,x0)时,g(x)>0,即f′(x)>0;当x∈(x0,+∞)时,g(x)<0,即f′(x)<0,所以当a>0时,f(x)在(0,+∞)上有且仅有一个极值点.(2)证明:(i)由(1)知.令g(x)=a﹣x2e x,由a>e得g(1)=a﹣e>0,所以g(x)=0在(1,+∞)内有唯一解,从而f′(x)=0在(0,+∞)内有唯一解,不妨设为x0,则f(x)在(1,x0)上单调递增,在(x0,+∞)上单调递减,所以x0是f(x)的唯一极值点.令h(x)=lnx﹣x+1,则当x>1时,<0,故h(x)在(1,+∞)内单调递减,从而当x>1时,h(x)<h(1)=0,所以lnx<x﹣1.从而当a>e时,lna>1,且f(lna)=aln(lna)﹣(lna﹣1)e lna<a(lna﹣1)﹣(lna ﹣1)a=0又因为f(1)=0,故f(x)在(1,+∞)内有唯一的零点.(ii)由题意,即,从而,即.因为当x1>1时,lnx1<x1﹣1,又x1>x0>1,故,即,两边取对数,得lne,于是x1﹣x0<2lnx0,整理得x0+2lnx0>x1.。

2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019—2020学年第二学期南昌市八一中学高二理科数学期中考试试卷第Ⅰ卷(选择题:共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足1i 1i z +=-,则||z =( ) A. 2iB. 2C. iD. 1 【★答案★】D【解析】【分析】 根据复数的运算法则,求得复数zi ,即可得到复数的模,得到★答案★. 【详解】由题意,复数11i i z +=-,解得()()()()111111i i i z i i i i +++===--+,所以1z =,故选D . 【点睛】本题主要考查了复数的运算,以及复数的模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.2. 已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【★答案★】B【解析】【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可.【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立,当αβ⊥时,l β⊥不一定成立,即“l β⊥”是“αβ⊥”的充分不必要条件,故选:B .【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.3. 已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A′O′=32,那么原△ABC的面积是( )A. 3B. 22C.32D.34【★答案★】A【解析】【分析】先根据已知求出原△ABC的高为AO=3,再求原△ABC的面积. 【详解】由题图可知原△ABC的高为AO=3,∴S△ABC=12×BC×OA=12×2×3=3,故★答案★为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.4. 某几何体的三视图如图所示,则这个几何体的体积等于()A. 4B. 6C. 8D. 12【★答案★】A【解析】由三视图复原几何体,是如图所示的四棱锥,它的底面是直角梯形,梯形的上底长为2,下底长为4,高为2,棱锥的一条侧棱垂直底面高为2,所以这个几何体的体积:12422432V+=⨯⨯⨯=,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5. 下列命题中,正确的是()A. 经过不同的三点有且只有一个平面B. 分别在两个平面的两条直线一定是异面直线C. 垂直于同一个平面的两条直线是平行直线D. 垂直于同一个平面的两个平面平行【★答案★】C【解析】【分析】根据不在一条直线上的三点确定一个平面,来判断A是否正确;根据分别在两个平面内的两条直线的位置关系不确定,来判断B是否正确;根据垂直于同一平面的两直线平行,来判断C是否正确;根据垂直于同一条直线的两条直线的位置关系是平行、相交或异面,来判断D是否正确.【详解】解:对A,当三点在一条直线上时,平面不唯一,∴A错误;对B,分别在两个平面内的两条直线的位置关系不确定,∴B错误;对C,根据垂直于同一平面的两直线平行,∴C正确;对D,垂直于同一平面的两平面的位置关系是平行、相交,∴D错误.故选C.【点睛】本题考查了空间直线与直线的位置关系及线面垂直的判定与性质,考查了学生的空间想象能力.6. 实数a 使得复数1a i i +-是纯虚数,10b xdx =⎰,1201c x dx =-⎰则a ,b ,c 的大小关系是( ) A. a b c <<B. a c b <<C. b c a <<D. c b a <<【★答案★】C【解析】【分析】 利用复数的乘除运算求出a ,再利用微积分基本定理以及定积分的定义即可求出b ,c ,从而比较其大小关系. 【详解】()()()()11111122a i i a i a a i i i i +++-+==+--+, 1a i i +-是纯虚数, 102a -∴=,1a , 121001122b xdx x ⎛⎫===⎪⎝⎭⎰, 1201c x dx =-⎰表示是以()0,0为圆心, 以1为半径的圆在第一象限的部分与坐标轴围成的14个圆的面积, 21144c ππ∴=⨯⨯=,所以b c a <<. 故选:C【点睛】本题考查了复数的乘除运算、微积分基本定理求定积分、定积分的定义,考查了基本运算求解能力,属于基础题.7. 已知正四棱柱''''ABCD A B C D -的底面是边长为1的正方形,若平面ABCD 内有且仅有1个点到顶点A '的距离为1,则异面直线,AA BC '' 所成的角为 ( ) A. 6π B. 4π C. 3π D. 512π 【★答案★】B【解析】由题意可知,只有点A 到'A 距离为1,即高为1,所以该几何体是个正方体,异面直线11,AA BC 所成的角是4π,故选B.8. 函数3xeyx=的部分图象可能是()A. B.C. D.【★答案★】C【解析】分析:根据函数的奇偶性,及x=1和x=2处的函数值进行排除即可得解.详解:易知函数3xeyx=为奇函数,图象关于原点对称,排除B,当x=1时,y=<1,排除A,当x=4时,4112ey=>,排除D,故选C.点睛:已知函数的解析式判断函数的图象时,可从以下几个方面考虑:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.9. 如图所示,三棱锥P ABC -的底面在平面α内,且AC PC ⊥,平面PAC ⊥平面PBC ,点P A B ,,是定点,则动点C 的轨迹是( )A. 一条线段B. 一条直线C. 一个圆D. 一个圆,但要去掉两个点【★答案★】D【解析】 因为平面PAC⊥平面PBC ,AC⊥PC,平面PAC∩平面PBC=PC ,AC ⊂平面PAC ,所以AC⊥平面PBC.又因为BC ⊂平面PBC ,所以AC⊥BC.所以∠ACB=90°.所以动点C 的轨迹是以AB 为直径的圆,除去A 和B 两点.选D.点睛:求轨迹实质是研究线面关系,本题根据面面垂直转化得到线线垂直,再根据圆的定义可得轨迹,注意轨迹纯粹性.10. 如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①BD ⊥AC ;②△BAC 等边三角形;③三棱锥D -ABC 是正三棱锥;④平面ADC ⊥平面AB C.其中正确的是( )A. ①②④B. ①②③C. ②③④D. ①③④【★答案★】B【解析】【分析】根据翻折后垂直关系得BD ⊥平面ADC ,即得BD ⊥AC ,再根据计算得△BAC 是等边三角形,最后可确定选项.【详解】由题意知,BD ⊥平面ADC ,故BD ⊥AC ,①正确;AD 为等腰直角三角形斜边BC 上的高,平面ABD ⊥平面ACD ,所以AB =AC =BC ,△BAC 是等边三角形,②正确;易知DA =DB =DC ,又由②知③正确;由①知④错.故选B .【点睛】本题考查线面垂直判定与性质,考查推理论证求解能力,属中档题.11. 如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A. 12πB. 32πC. 36πD. 48π【★答案★】C【解析】分析】 根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积.【详解】∵M ,N 分别为棱SC ,BC 的中点,∴MN ∥SB∵三棱锥S −ABC 为正棱锥,∴SB ⊥AC (对棱互相垂直)∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A ,∴MN ⊥平面SAC ,∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴236R SA ==,∴R =3,∴V =36π.故选:C【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键. 12. 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率e 的取值范围为( ) A. 2,312⎡⎤-⎢⎥⎣⎦B. 2,12⎡⎫⎪⎢⎪⎣⎭C. 23,22⎡⎤⎢⎥⎣⎦D. 36,33⎡⎤⎢⎥⎣⎦【★答案★】A【解析】【分析】 根据直角三角形性质得A 在圆上,解得A 点横坐标,再根据条件确定A 横坐标满足条件,解得离心率.【详解】由题意得OA OB OF c ===,所以A 在圆222=x y c +上,与22221x y a b +=联立解得22222()Aa cb xc -=, 因为ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦, 所以22sin 22sin ()2sin [,]A A a a c a c a c AF c e x c x c e e eααα---=∴-=∴=∈因此2222222()()()a c a c b a c e c e---≤≤, 解得22222222(2)()(2)2()a c c b a c a c c a a c -≤-≤--≤-≤-,,即222,20a c a c ac ≤--≥,即2212,120312e e e e ≤--≥∴≤≤-,选A. 【点睛】本题考查椭圆离心率,考查基本分析化简求解能力,属中档题.第Ⅱ卷(非选择题:共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将★答案★填在答题卡的相应位置.13. ()ππsin cos x x dx -+=⎰__________. 【★答案★】0【解析】【分析】求出被积函数的原函数,然后分别代入积分上限和积分下限作差得出★答案★.【详解】()()ππsin cos cos sin x x dx x x ππ--+=-+⎰()()()cos sin cos sin 110ππππ=-+---+-=-=⎡⎤⎣⎦.故★答案★为:0【点睛】本题主要考查了定积分的计算,解题的关键是确定原函数,属于基础题.14. 在三棱锥P ABC -中,6,3PB AC ==,G 为PAC ∆的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC ,则截面的周长为_________.【★答案★】8【解析】【分析】如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F .过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .可得四点EFMN 共面,进而得到23EF MN AC AC ==,根据比例可求出截面各边长度,进而得到周长. 【详解】解:如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .由作图可知:EN ∥FM ,∴四点EFMN 共面可得MN ∥AC ∥EF ,EN ∥PB ∥FM . ∴23EF MN AC AC == 可得EF =MN =2.同理可得:EN =FM =2.∴截面的周长为8.故★答案★为:8.【点睛】本题考查了三角形重心的性质、线面平行的判定与性质定理、平行线分线段成比例定理,属于中档题.15. 已知一个正三棱柱,一个体积为4π3的球体与棱柱的所有面均相切,那么这个正三棱柱的表面积是______. 【★答案★】183【解析】【分析】由球的体积可以求出半径,从而得到棱柱的高;由球体与棱柱的所有面均相切,得出球的半径和棱柱底面正三角形边长的关系,求出边长,即求出底面正三角形的面积,得出棱柱的表面积.【详解】由球的体积公式可得24433R ππ=,1R ∴=, ∴正三棱柱的高22h R ==,设正三棱柱的底面边长为a , 则其内切圆的半径为:13132a ⋅=,23a ∴=,∴该正三棱柱的表面积为:21333226183222a R a a a a ⋅+⨯⨯=+=. 故★答案★为:183【点睛】本题考查了球的体积公式、多面体的表面积求法,属于基础题.16. 如图,在矩形ABCD 中,E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆.若M 为线段1A C 的中点,则在ADE ∆翻转过程中,正确的命题是______.(填序号)①BM 是定值;②点M 在圆上运动;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使MB平面1A DE .【★答案★】①②④【解析】【分析】取DC 中点N 再根据直线与平面的平行垂直关系判断即可.【详解】对①, 取DC 中点N ,连接,MN BN ,则1//MN A D ,//NB DE .因为MN NB N ⋂=,1A D DE D ⋂=,故平面1//MNB A DE .易得1MNB A DE ∠=∠为定值,故在ADE ∆翻转过程中MNB ∆的形状不变.故BM 是定值.故①正确.对②,由①得, 在ADE ∆翻转过程中MNB ∆沿着NB 翻折,作MO NB ⊥交NB 于O ,则点M 在以O 为圆心,半径为MO 的圆上运动.故②正确.对③,在DE 上取一点P 使得AP DE ⊥,则1A P DE ⊥,若1DE A C ⊥则因为111A P A C A ⋂=,故DE ⊥面1A CP ,故DE PC ⊥,不一定成立.故③错误.对④,由①有1//MNB A DE ,故MB平面1A DE 成立.综上所述,①②④正确.故★答案★为:①②④ 【点睛】本题主要考查了翻折中线面垂直平行的判定,需要画出对应的辅助线分析平行垂直关系,属于中等题型.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .【★答案★】见解析【解析】试题分析:连接AF 并延长交BC 于M .连接PM ,因为AD ∥BC ,∴BF MF FD FA =,又BF PE FD EA =,∴PE MF EA FA=, 所以EF ∥PM ,从而得证.试题解析:连接AF 并延长交BC 于M .连接PM .因为AD ∥BC ,所以=. 又由已知=,所以=. 由平面几何知识可得EF ∥PM ,又EF ⊄平面PBC ,PM ⊂平面PBC ,所以EF ∥平面PBC .18. 如图所示,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .【★答案★】证明见解析【解析】【分析】通过长方体的几何性质证得11BM A B ⊥,通过计算证明证得1BM B M ⊥,由此证得BM ⊥平面11A B M ,从而证得平面ABM ⊥平面11A B M .【详解】由长方体的性质可知A 1B 1⊥平面BCC 1B 1,又BM ⊂平面BCC 1B 1,∴A 1B 1⊥BM .又CC 1=2,M 为CC 1的中点,∴C 1M =CM =1.在Rt△B 1C 1M 中,B 1M 2212C M CM =+=, 同理BM 222BC CM =+=,又B 1B =2, ∴B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M .又A 1B 1∩B 1M =B 1,∴BM ⊥平面A 1B 1M ,∵BM ⊂平面ABM ,∴平面ABM ⊥平面A 1B 1M .【点睛】本小题主要考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19. 以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为()1,0,若直线l 的极坐标方程为2cos 104ρθπ⎛⎫+-= ⎪⎝⎭,曲线C 的参数方程是244x m y m ⎧=⎨=⎩,(m 为参数).(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于,A B 两点,求11MA MB +. 【★答案★】(1)10x y --=,24y x =;(2)1【解析】【试题分析】(1) 2cos 104πρθ⎛⎫+-= ⎪⎝⎭展开后利用公式直接转化为直角坐标方程.对C 消去m 后得到直角坐标方程.(2)求出直线l 的参数方程,代入抛物线,利用直线参数的几何意义求得11MA MB+的值. 【试题解析】(1)由2cos 104πρθ⎛⎫+-= ⎪⎝⎭,得cos sin 10ρθρθ--=, 令cos x ρθ=,sin y ρθ=,得10x y --=.因为244x m y m⎧=⎨=⎩,消去m 得24y x =, 所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =.(2)点M 的直角坐标为()1,0,点M 在直线l 上. 设直线l 的参数方程为21222t x ty ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入24y x =,得24280t t --=.设点,A B 对应的参数分别为1t ,2t ,则1242t t +=,128t t =-,所以121211t t MA MB t t -+== ()21212224323218t t t t t t +-+==. 20. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,090ADC ∠=,平面PAD ⊥底面ABCD ,为AD 中点,M 是棱PC 上的点,.(1)求证:平面POB ⊥平面PAD ;(2)若点M 是棱的中点,求证://PA 平面.【★答案★】(1)见解析;(2)见解析【解析】【详解】(1)证明: ∵AD 中点,且,∴DO BC =又//AD BC ,090ADC ∠=,∴ 四边形BCDO 是矩形,∴BO OD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD OD =,BO ⊂平面ABCD ,∴BO ⊥平面PAD ,又BO ⊂平面POB ,∴ 平面POB ⊥平面PAD .(2)如下图,连接AC 交BO 于点E ,连接EM ,由(1)知四边形BCDO 是矩形,∴//OB CD ,又为AD 中点,∴E 为AC 中点,又是棱AC 的中点,∴//EM PA ,又EM ⊂平面,平面, ∴//PA 平面21. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//AB CD ,223AB DC ==,AC BD F ⋂=.且PAD ∆与ABD ∆均为正三角形,E 为AD 的中点,G 为PAD ∆重心.(1)求证://GF 平面PDC ;(2)求异面直线GF 与BC 的夹角的余弦值.【★答案★】(1)证明见解析;(2)33952. 【解析】试题分析:(1)连接AG 交PD 于H ,连接GH ,由重心性质推导出GFHC ,根据线面平行的判定定理可得GF 平面PDC ;(2)取线段AB 上一点Q ,使得13BQ AB =,可证GFQ ∠ 即是异面直线GF 与BC 的夹角,由余弦定理可得结果.试题解析:(1)方法一:连AG 交PD 于H ,连接CH .由梯形ABCD ,//AB CD 且2AB DC =,知21AF FC = 又E 为AD 的中点,G 为PAD ∆的重心,∴21AG GH =,在AFC ∆中,21AG AF GH FC ==,故GF //HC . 又HC ⊆平面PCD ,GF ⊄ 平面PCD ,∴GF //平面PDC .方法二:过G 作//GN AD 交PD 于N ,过F 作//FM AD 交CD 于M ,连接MN ,G 为PAD ∆的重心,23GN PG ED PE ==,22333GN ED ∴==,又ABCD 为梯形,//AB CD ,12CD AB =,12CF AF ∴=13MF AD ∴=,233MF ∴= ∴GN FM = 又由所作,//FM AD 得GN //FM ,GNMF ∴为平行四边形.//GN AD //,GF MN GF PCD MN PCD ⊄⊆面,面,∴ //GF 面PDC(2) 取线段AB 上一点Q ,使得13BQ AB =,连FQ ,则223FQ BC ==, 1013,33EF GF ==,1316,33EQ GQ == ,在GFQ ∆中 222339cos 2?52GF FQ GQ GFQ GF FQ +-∠== ,则异面直线GF 与BC 的夹角的余弦值为33952. 角函数和等差数列综合起来命题,也正体现了这种命题特点.【方法点晴】本题主要考查线面平行的判定定理、异面直线所成的角、余弦定理,属于中挡题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.22. 已知函数()1ln (2)(1),f x a x a a R x=+-+∈.(Ⅰ)试求函数()f x 的单调区间;(Ⅱ)若不等式()(ln )x f x a x e ≥-对任意的(0,)x ∈+∞恒成立,求实数a 的取值范围. 【★答案★】(1) 见解析(2) 1,1e ⎡⎫+∞⎪⎢-⎣⎭【解析】 【详解】(Ⅰ)因为()()1ln 21,(,0).f x a x a a R x x ⎛⎫=+-+∈> ⎪⎝⎭所以()()2211.ax a a a f x x x x'-++=-= ①若10a -≤≤,则()0f x '<,即()f x 在区间∞(0,+)上单调递减; ②若0a >,则当10a x a +<<时,()0f x '< ;当1a x a +>时,()0f x '>; 所以()f x 在区间10,a a +⎛⎫ ⎪⎝⎭上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; ③若1a <-,则当10a x a +<<时,()0f x '>;当1a x a+>时,()0f x '<; 所以函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. 综上所述,若10a -≤≤,函数在区间上单调递减;; 若,函数在区间上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; 若1a <-,函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. (Ⅱ)依题意得()()()1ln 210x x f x a x e ae a x ⎛⎫≥-⇔+-+≥ ⎪⎝⎭, 令()()121x h x ae a x ⎛⎫=+-+ ⎪⎝⎭.因为()10h ≥,则()11a e -≥,即101a e ≥>-. 于是,由()1210x ae a x ⎛⎫+-+≥ ⎪⎝⎭,得1201x a e a x +-≥+, 即211x a x a xe-≥+对任意0x >恒成立. 设函数()21(0)x x F x x xe -=>,则()()()2211x x x F x x e +-='-. 当01x <<时,()0F x '>;当1x >时,()0F x '<;所以函数()F x 在()0,1上单调递增,在()1,+∞上单调递减;所以()()max 11F x F e ⎡⎤==⎣⎦. 于,可知11a a e ≥+,解得11a e ≥-.故a 的取值范围是1,1e ⎡⎫+∞⎪⎢-⎣⎭感谢您的下载!快乐分享,知识无限!不积跬步无以至千里,不积小流无以成江海!。

2019学年湖北省高二上学期期末数学试卷【含答案及解析】

2019学年湖北省高二上学期期末数学试卷【含答案及解析】

2019学年湖北省高二上学期期末数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. (2013•宣武区校级模拟)用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的机率是()A. B. C. D.2. (2015•安徽模拟)已知α,β表示两个不同的平面,l为α内的一条直线,则“α ∥ β是“l ∥ β” 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3. (2010•云南模拟)已知向量 =(1,1,0), =(﹣1,0,2),且与互相垂直,则k的值是()A.1 B. C. D.4. (2015秋•黄冈校级期末)为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立地作10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1 和l 2 .已知在两个人的试验中发现对变量x的观测数据的平均值恰好相等,都为s,对变量y的观测数据的平均值也恰好相等,都为t.那么下列说法正确的是()A.直线l 1 和l 2 相交,但是交点未必是点(s,t)B.直线l 1 和l 2 有交点(s,t)C.直线l 1 和l 2 由于斜率相等,所以必定平行D.直线l 1 和l 2 必定重合5. (2015秋•黄冈校级期末)“若a≠0或b≠0,则ab≠0”的否命题为()A.若a≠0或b≠0,则ab=0B.若a≠0且b≠0,则ab=0C.若a=0或b=0,则ab=0D.若a=0且b=0,则ab=06. (2014•开福区校级模拟)若椭圆和双曲线的共同焦点为F 1 ,F 2 ,P是两曲线的一个交点,则|PF 1 |•|PF 2 |的值为()A. B.84 C.3 D.217. (2015秋•黄冈校级期末)在一次歌手大奖赛上,七位评委为歌手打出的分数(满分10分)茎叶图如图:去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A.9.4,0.484 B.9.4,0.016 C.9.5,0.04 D.9.5,0.0168. (2011•洛阳二模)巳知F 1 ,F 2 是椭圆(a>b>0)的两焦点,以线段F 1 F 2 为边作正三角形PF 1 F 2 ,若边PF 1 的中点在椭圆上,则该椭圆的离心率是()A.﹣1 B. +1 C. D.9. (2015秋•黄冈校级期末)某人有5把钥匙,其中2把能打开门.现随机取钥匙试着开门,不能开门就扔掉.则恰好在第3次才能开门的概率为()A. B. C. D.10. (2015秋•黄冈校级期末)已知双曲线的一条渐近线方程为3x﹣2y=0.F 1 、F 2 分别是双曲线的左、右焦点,过点F 2 的直线与双曲线右支交于A,B 两点.若|AB|=10,则△ F 1 AB的周长为()A.18 B.26 C.28 D.3611. (2015秋•黄冈校级期末)如图,△ ADP 为正三角形,四边形ABCD为正方形,平面PAD ⊥ 平面ABCD.M为平面ABCD内的一动点,且满足MP=MC.则点M在正方形ABCD 内的轨迹为(O为正方形ABCD的中心)()A. B. C.D.12. (2013•绍兴一模)如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为45°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值等于()A. B. C. D.二、填空题13. (2015秋•黄冈校级期末)阅读如图所示的程序,当输入a=2,n=4时,输出s=___________ .14. (2015秋•黄冈校级期末)在半径为r的圆周上任取两点A,B,则|AB|≥r的概率为_________ .15. (2015秋•黄冈校级期末)已知三棱锥S﹣ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC=2,AB=2,设S、A、B、C四点均在以O为球心的某个球面上,则点O到平面ABC的距离为_________ .16. (2015秋•黄冈校级期末)已知F是双曲线C:x 2 ﹣y 2 =2的右焦点,P是C的左支上一点,A(0,2).当△ APF 周长最小时,该三角形的面积为___________ .三、解答题17. (2015秋•黄冈校级期末)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…[80,90),[90,100 ] .(Ⅰ )根据频率分布直方图,估计该企业的职工对该部门评分的平均值;(Ⅱ )从评分在[40,60)的受访职工中,随机抽取2人,求此2人评分都在[40,50)的概率.18. (2015秋•黄冈校级期末)命题p:∃ x ∈ R,ax 2 +ax﹣1≥0,q:>1,r:(a﹣m)(a﹣m﹣1)>0.(1)若¬p ∧ q为假命题,求实数a的取值范围;(2)若¬q是¬r的必要不充分条件,求m的取值范围.19. (2015秋•黄冈校级期末)在棱长为1的正方体ABCD﹣A 1 B 1 C 1 D 1 中,E,F分别为A 1 D 1 和A 1 B 1 的中点.(Ⅰ )求二面角B﹣FC 1 ﹣B 1 的余弦值;(Ⅱ )若点P在正方形ABCD内部及边界上,且EP ∥ 平面BFC 1 ,求|EP|的最小值.20. (2015秋•黄冈校级期末)已知抛物线y 2 =2px(p>0)的焦点为F,准线为l,准线l与坐标轴交于点M,过焦点且斜率为的直线交抛物线于A,B两点,且|AB|=12.(Ⅰ )求抛物线的标准方程;(Ⅱ )若点P为该抛物线上的动点,求的最小值.21. (2013•绍兴一模)如图,在梯形ABCD中,AB ∥ CD ,AB ⊥ AD ,AD=4,点P在平面ABCD上的射影中点O,且,二面角P﹣AD﹣B为45°.(1)求直线OA与平面PAB所成角的大小;(2)若AB+BP=8求三棱锥P﹣ABD的体积.22. (2015•湖南)已知抛物线C 1 :x 2 =4y的焦点F也是椭圆C 2 : + =1(a>b>0)的一个焦点,C 1 与C 2 的公共弦的长为2 ,过点F的直线l与C 1 相交于A,B两点,与C 2 相交于C,D两点,且与同向.(Ⅰ )求C 2 的方程;(Ⅱ )若|AC|=|BD|,求直线l的斜率.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】。

湖北省武汉市二中2014-2015学年高二上学期期中考试理科数学试卷(解析版)

湖北省武汉市二中2014-2015学年高二上学期期中考试理科数学试卷(解析版)

湖北省武汉市二中2014-2015学年高二上学期期中考试理科数学试卷(解析版)一、选择题1.直线043:=-+y x l 与圆4:22=+y x C 的位置关系是 ( ) A.相交且过圆心 B.相交不过圆心 C.相切 D.相离 【答案】C 【解析】试题分析:∵圆C 的圆心为(0,0),半径2r =,而圆心到直线l 的距离2d r ===所以直线l 与圆C 相切考点:直线与圆的位置关系,点到直线的距离公式 2.已知y x ,之间的几组数据如下表假设根据上表数据所得线性回归方程为11a x b y +=, 某同学根据上表中前两组数据 求得的直线方程为22a x b y +=, 则以下结论正确的是 ( ) A.2121,a a b b >> B.2121,a a b b <> C.2121,a a b b >< D.2121,a a b b << 【答案】C 【解析】试题分析:由题意可知6n =,713,26x y == 12713043121524666267351491625366()2b +++++-⨯⨯==+++++-⨯,122930a =, 而由直线方程的求解可得22b =,把(1,0)代入可得22a =-, ∴1212,b b a a <>考点:线性回归方程的求解3.下图是一个程序框图, 则输出的结果为 ( )A.20B.14C.10D.7 【答案】A 【解析】试题分析:由程序框图知:第一次循环1,5i a ==; 第二次循环2,14i a ==; 第三次循环3,7i a ==; 第四次循环4,20i a ==; 第五次循环5,10i a ==;第六次循环6,5i a ==;……,输出的a 值的周期为5∵跳出循环的i 值为2015,∴第2014次循环的20a =. 考点:循环结构的程序框图4.统计中国足球超级联赛甲、乙两支足球队一年36次比赛中的结果如下 甲队平均每场比赛丢失5.1个球, 全年比赛丢失球的个数的标准差为2.1; 乙队全年丢失了79个球, 全年比赛丢失球的个数的方差为6.0.据此分析 ①甲队防守技术较乙队好; ②甲队技术发挥不稳定; ③乙队几乎场场失球;④乙队防守技术的发挥比较稳定. 其中正确判断的个数是 ( ) A.1 B.2 C.3 D.4 【答案】D 【解析】试题分析:因为甲队平均每场比赛丢失1.5个球,乙队全年丢失了79个球,乙队平均每场比赛丢失7912, 所以甲队技术比乙队好,故①正确;因为甲队比赛丢失球的个数的标准差为1.2,全年比赛丢失球的个数的方差为0.6.所以乙队发挥比甲队稳定,故②正确;乙队几乎场场失球,甲队表现时好时坏,故③④正确, 考点:平均数,方差,标准差5.题文天气预报说, 在今后的三天中, 每三天下雨的情况不完全相间, 每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率 用1, 2, 3, 4表示下雨, 从下列随机数表的第1行第2列开始读取直到末尾从而获得N 个数据.据此估计, 这三天中恰有两天下雨的概率近似为 ( )19 07 96 61 91 92 52 71 93 28 12 45 85 69 19 16 83 43 12 57 39 30 27 55 64 88 73 01 13 53 79 89 A.236 B.216C.41D.非ABC 的结果【答案】C【解析】 试题分析:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下36组随机数, 在20组随机数中表示三天中恰有两天下雨的有:192、193、281、245、393、125、302、011、353,共9组随机数,所以所求概率为90.2536= 考点:随机数的含义与应用6.如果圆8)()(22=-+-a y a x 上总存在到原点的距离为2的点, 则实数a 的取值范围是 ( )A.)3,1()1,3(⋃--B.)3,3(-C.[-1, 1]D.]3,1[]1,3[⋃-- 【答案】D 【解析】试题分析:圆22()()8x a y a -+-=的圆心(,)a a ,半径r =由于圆22()()8x a y a -+-=∴≤≤∴1||a ≤≤解得13a ≤≤或31a -≤≤-∴实数a 的取值范围是[3,1][1,3]-- 考点:点到直线的距离公式,圆的标准方程7.若P (A ∪B )=P (A )+P (B )=1,则事件A 与B 的关系是 ( )A.互斥不对立B.对立不互斥C.互斥且对立D.以上答案都不对 【答案】D 【解析】试题分析:若是在同一试验下,由P (A ∪B )=P (A )+P (B )=1,说明事件A 与事件B 一定是对立事件;但若在不同实验下,虽有P (A ∪B )=P (A )+P (B )=1,但事件A 和B 不一定对立,所以事件A 与B 的关系是不确定的 考点:互斥事件与对立事件 8.已知直线1+=bkxb y 与圆10022=+y x 有公共点, 且公共点的横坐标和纵坐标均为整数,那么这样的直线共有 ( )A.60条B.66条C.70条D.71条 【答案】A 【解析】 试题分析:22100x y +=,整点为(0,10)±,(6,8)±±,(8,6)±±,(10,0)±,如图,共12个点,直线1x ya b+=(a,b 为非零实数),∴直线与x,y 轴不平行,不经过原点,任意两点连线有212C 条,与x,y 轴平行的有14条,经过原点的有6条,其中有两条既过原点又与x,y 轴平行,所以共有212C +12-14-6+2=60考点:圆与圆锥曲线综合 9.我班制定了数学学习方案 星期一和星期日分别解决4个数学问题, 且从星期二开始, 每天所解决问题的个数与前一天相比, 要么“多一个”要么“持平”要么“少一个”.在一周中每天所解决问题个数的不同 方案共有( )A.50种B.51种C.140种D.141种 【答案】D【解析】 试题分析:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,所以后面六天中解决问题个数“多一个”或“少一个”的天数可能是0、1、2、3天,共四种情况,所以共有01122336656463141C C C C C C C +++=种考点:排列组合问题10.如图, 在四面体ABCD 中, E, F 分别为AB, CD 的中点, 过EF 任作一个平面α分别与直线BC, AD相交于点G, H, 有下列四个结论, 其中正确的个数是( )①对于任意的平面α, 都有直线GF, EH, BD 相交于同一点;②存在一个平面0α, 使得点G 在线段BC 上, 点H 在线段AD 的延长线上;③对于任意的平面α, 它把三棱锥的体积分成相等的两部分 A.0 B.1 C.2 D.3 【答案】B 【解析】试题分析:①取AD 的中点H ,BC 的中点G ,则EGFH 在一个平面内,此时直线GF ∥EH ∥BD ,因此不正确;②不存在一个平面0α,使得点G 在线段BC 上,点H 在线段AD 的延长线上;③对于任意的平面α,当G ,H 在线段BC ,AD 上时,可以证明几何体AC-EGFH 的体积是四面体ABCD 体积的一般,故③正确. 考点:棱柱、棱台、棱锥的体积二、填空题 11.武汉2中近3年, 每年有在校学生2222人, 每年有22人考取了北大清华, 高分率稳居前“2”, 展望未9年前景美好.把三进制数3)22222222(化为九进制数的结果为 . 【答案】9(8888) 【解析】试题分析:012345673(22222222)23232323232323236560=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=∵0123656089898989=⨯+⨯+⨯+⨯,∴把三进制数3(22222222)化为九进制数的结果是9(8888)考点:进位制 12.某人有4把钥匙, 其中2把能打开门, 现随机地取1把钥匙试着开门, 不能开门就把钥匙放在旁边, 他第二次才能打开门的概率是 . 【答案】13【解析】试题分析:第二次打开门,说明第一次没有打开门,故第二次打开门的概率为221433⨯= 考点:相互独立事件的概率乘法公式 13.已知)1,0(,∈y x , 则1212222222+-+++-+++x y x y y x y x 22222+--++y x y x 的最小值为 .【答案】【解析】试题分析:从所给式子的几何意义考虑,即找点(,)x y 到(0,0),(0,1),(1,0),(1,1)四点的距离之和最小(其中)1,0(,∈y x ),显然当2x =,2y =时距离之和最小为考点:两点间距离公式的应用14.集合}1)1()1(|),{(},1|1||||),{(22≤-+-=≤-+-=y x y x B y a x y x A ,若集合∅=B A , 则实数a 的取值范围是 . 【答案】[1,3] 【解析】试题分析:先分别画出集合{(,)||||1|1}A x y x a y =-+-≤,22{(,)|(1)(1)1}B x y x y =-+-≤表示的平面图形,集合A 表示一个正方形,集合B 表示一个圆.如图所示,其中(1,1)A a +,(1,1)B a -,欲使A B =∅,只须A 或B 点在圆内即可,∴22(11)(11)1a +-+-≤或22(11)(11)1a --+-≤,解得:11a -≤≤或13a ≤≤,即13a -≤≤ 考点:简单的线性规划问题15.如图, P 为60的二面角βα--l 内一点, P 到二面角两个面的距离分别为2、3, A 、B 是二面角的两个面内的动点,则△PAB 周长的最小值为 .【答案】 【解析】 试题分析:如图,作出P 关于两个平面,αβ的对称点M 、N ,连接MN ,线段MN 与两个平面的交点坐标分别为C ,D ,连接MP ,NP ,CP ,DP ,则△PAB 的周长L=PA+PB+AB=AM+AB+BN,当A 与C 重合,B 与D 重合时,由两点只见线段最短可以得出MN 即为△PAB 周长的最小值,根据题意可知:P 到二面角两个面的距离分别为2、3,∴MP=4,NP=6,∵大小为60°的二面角l αβ--,∴∠EOF=60°,∴∠MPN=120° 根据余弦定理有:2222MN MP NP MP NP COS MPN =+-⋅⋅∠22146246()762=+-⨯⨯⨯-=∴MN =∴△PAB 周长的最小值等于考点:三角形周长的最小值求法,二面角的定义和求法.三、解答题 16.(本小题满分12分)下图是调查某地某公司1000名员工的月收入后制作的直方图.(1)求该公司员工的月平均收入及员工月收入的中位数;(2)在收入为1000至1500元和收入为3500至4000元的员工中用分层抽样的方法抽取一个容量15的样本, 员工甲、乙的月收入分别为1200元、3800元, 求甲乙同时被抽到的概率.【答案】(1)平均收入为2400,中位数为2400; (2)甲、乙同时被抽到的概率为1001【解析】试题分析:(1)利用组中值,可得该公司员工的月平均收入及员工月收入的中位数;(2)月收入在1000至1500元之间的有100人,月收入在3500元至4000元之间的有50人,由分层抽样可知甲、乙同时被抽到的概率. 试题解析:(1)可求出第一个小矩形的高度为0.0002 平均收入为=⨯+⨯+⨯+⨯+⨯+⨯375005.0325015.0275025.0225025.017502.012501.02400元 中位数为2400元(面积分为相等的两部分; (3分)(2)月收入在1000至1500元之间的有100人, 月收入在3500元至4000元之间的有50人, 由分层抽样可知, 甲、乙同时被抽到的概率为1001 考点:频率分布直方图 17.(本小题满分12分)标号为0到9的10瓶矿泉水.(1)从中取4瓶, 恰有2瓶上的数字相邻的取法有多少种? (2)把10个空矿泉水瓶挂成如下4列的形式, 作为射击的靶子, 规定每次只能射击每列最下面的一个(射中后这个空瓶会掉到地下), 把10个矿泉水瓶全部击中有几种不同的射击方案?(3)把击中后的矿泉水瓶分送给A 、B 、C 三名垃圾回收人员, 每个瓶子1角钱.垃圾回收人员卖掉瓶子后有几种不同的收入结果? 【答案】(1)35种;(2)25200;(3)66. 【解析】 试题分析:(1)取4张红卡,其中2张连在一起,组成3个组合卡,6张白卡排成一排,插入3个组合卡,有3537=C 种方法,即可得出结论;(2)一种射击方案对应于从0至9共十个数字中取2个、3个、3个、2个数字的组合,因为每组数的数字大小是固定的,数字小的挂下面,可得结论;(3)由于A 、B 、C 所得钱数与瓶子编号无关,他们所得钱数只与所得瓶子个数有关,即可得出结论 试题解析:(1)取4张红卡, 其中有2张连在一起, 组成3个组合卡, 6张白卡排成一排, 插入3个组合卡, 有3537=C 种方法, 然后在卡片上从左到右依次编号, 取出红色卡, 一种插法对应一种取数字的方法, 所以共有35种.(2)一种射击方案对应于从0至9共十个数字中取2个、3个、3个、2个数字的组合, 因为每组数的数字大小是固定的, 数字小的挂下面.所以共有252003538210=C C C .(3)由于A 、B 、C 所得钱数与瓶子编号无关, 他们所得钱数只与所得瓶子个数有关.所以66212=C .考点:考查排列、组合的实际应用18.(本小题满分12分)如图, 已知圆M ()2244x y +-=, 直线l 的方程为20x y -=,点P 是直线l 上一动点, 过点P 作圆的切线PA 、PB , 切点为A 、B .(1)当P 的横坐标为165时, 求∠APB 的大小; (2)求证 经过A 、P 、M 三点的圆N 必过定点, 并求出所有定点的坐标. 【答案】(1)∠APB =60°;(2)84(0,4),,55⎛⎫⎪⎝⎭. 【解析】试题分析:(1)由题设可知,圆M 的半径2r =,168(,)55P ,∠MAP=90°,根据MP=2r ,可得∠MPA=30°,从而可求∠APB 的大小;(2)设P 的坐标,求出经过A 、P 、M 三点的圆的方程即可得到圆过定点. 试题解析:解 (1)由题可知, 圆M 的半径r =2, 168(,)55P , 因为PA 是圆M 的一条切线, 所以∠MAP =90°又因MP=4==2r, 又∠MPA =30°, ∠APB =60°; (6分)(2)设P (2b, b ), 因为∠MAP =90°, 所以经过A 、P 、M 三点的圆N 以MP 为直径, 方程为 ()()222244424b b b x b y +-+⎛⎫-+-=⎪⎝⎭即()22(24)40x y b x y y +--+-= 由2224040x y x y y +-=⎧⎨+-=⎩, 解得04x y =⎧⎨=⎩或8545x y ⎧=⎪⎪⎨⎪=⎪⎩, 所以圆过定点84(0,4),,55⎛⎫ ⎪⎝⎭ 考点:直线与圆的综合问题,圆过定点,19.(本小题满分12分)边长为2的正方形ABCD 中, BC F AB E ∈∈,(1)如果E 、F 分别为AB 、BC 中点, 分别将△AED 、△DCF 、△BEF 沿ED 、DF 、FE 折起, 使A 、B 、C 重合于点P.证明 在折叠过程中, A 点始终在某个圆上, 并指出圆心和半径.(2)如果F 为BC 的中点, E 是线段AB 上的动点, 沿DE 、DF 将△AED 、△DCF 折起,使A 、 C 重合于点P, 求三棱锥P -DEF 体积的最大值.【答案】(1)证明见解析,A 在以M 为圆心, AM 为半径的圆上.(2 【解析】试题分析:(1)根据三角形在折叠过程的点的变化,即可得到结论.(2)根据线面垂直的性质,结合三棱锥的体积公式即可得到结论.试题解析:(1)解:∵E 、F 分别为正方形边AB 、BC 中点, 在平面图中连接AF, BD 交于O 点, AF 交DE 于M, 可知O为三角形DEF 的垂心.三角形AED 在沿DE 折叠过程中, AM 始终垂直于DE, ∴A 在过M 且与DE 垂直的平面上, 又AM =52, ∴A 在以M 为圆心, AM 为半径的圆上. (2)∵PD ⊥PF, PD ⊥PE, ∴PD 垂直于平面PEF, 所以当三角形PEF 面积最大时, 三棱锥P -DEF 体积最大.设PE =t,α=∠EPF ,αcos 211)2(22t t t -+=+-,tt 22cos -=α 48321)22(12122-+-=--=∆t t t t t S PEF , 当34=t 时932max =V . 考点:空间几何体的折叠问题,三棱锥的体积计算20.(本小题满分14分)已知四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是边长为2的菱形, AC∩BD=O,AA 1=23, BD ⊥A 1A, ∠BAD=∠A 1AC=60°, 点M 是棱AA 1的中点.(1)求证 A 1C ∥平面BMD;(2)求证 A 1O ⊥平面ABCD;(3)求直线BM 与平面BC 1D 所成角的正弦值.【答案】(1)(2)证明详见试题分析(3【解析】试题分析:(1)连结MO ,由已知条件推导出MO//A1C,由此能证明(2)由已知条件推导出BD ⊥面A1AC ,12AO AC == (3)通过作辅助线确定直线MB 与平面1BDC 所成的角,然后求出其正弦值试题解析:(1)证明:连结MO ,∵1,AM MA AO OC ==,∴MO ∥1AC ,∵MO ⊂平面BMD ,1AC ⊄平面BMD ∴A 1C ∥平面BMD.(2)证明:∵1BD AA ⊥,BD AC ⊥,∴BD ⊥平面1A AC于是1BD AO ⊥,AC BD O =,∵AB=CD=2,∠BAD=60°,∴AO=12又∵1AA =160o AAC ∠=,∴1AO AC ⊥, 又∵1AO BD ⊥,∴1AO ⊥平面ABCD.(3)解:如图,以O 为原点,以OA 为x 轴,OB 为y 轴,1OA 为z 轴建立空间直角坐标系,由题意知1(0,0,3)A ,A ,(C (0,1,0)B ,(0,1,0)D -,∵11(AC AC ==-,∴1(C -∵3()22M,∴3()22MB =--,(0,2,0)DB =,1(1,3)BC =--, 设平面1BC D 的法向量为(,,)nx y z =,则12030n DB y n BC y z ⎧⋅==⎪⎨⋅=--+=⎪⎩,取x =(3,0,2)n =∴332cos ,MB n --<>==∴直线BM 与平面1BC D =. 考点:立体几何的证明与求解21.(本小题满分13=5+5+3分)已知点),(00y x P 是圆:C 8)2()2(22=-+-y x 内一点(C 为圆心), 过P 点的动弦AB.(1)如果)1,1(P , 72||=AB , 求弦AB 所在直线方程.(2)如果)1,1(P , 当PAC ∠最大时, 求直线AP 的方程.(3)过A 、B 作圆的两切线相交于点M , 求动点M 的轨迹方程.【答案】(1)1=y (2)1+-=x y (3)8)2)(2()2)(2(00=--+--y y x x【解析】试题分析:(1)当x AB ⊥轴时, 72=a , 此时1:=x AB , 由对称性知另一条弦所在的直线方程为1=y ;(2)由于以PC 为直径的圆在圆C 内, 所以角CAP 为锐角, 过C 作PA 的垂线, 垂足为N, 当xy zNC 最大时, 角CAP 最大;(3)求出圆C 在A 、B 处的切线方程,可得AB 的方程,点P 00(,)x y 在AB 上,即可得出结论.试题解析:(1)当x AB ⊥轴时, 72=a , 此时1:=x AB , 由对称性知另一条弦所在的直线方程为1=y(2)由于以PC 为直径的圆在圆C 内, 所以角CAP 为锐角, 过C 作PA 的垂线, 垂足为N, 当NC 最大时, 角CAP 最大, 又NC ≤PC, 所以当N 、P 重合时, PAC ∠最大, 此时PC PA ⊥, 故PA 的方程为 1+-=x y(3)因为过A 、B 的圆心的两条切线相交, 所以P 点异于圆心C.设),(,),(2211y x B y x A , ),(//y x M , 圆C 在A 、B 处的切线方程分别为 8)2)(2()2)(2(11=--+--y y x x , 8)2)(2()2)(2(22=--+--y y x x , 它们交于点M , 所以8)2)(2()2)(2(/1/1=--+--y y x x ,8)2)(2()2)(2(/2/2=--+--y y x x这两式表明 A 、B 两点在直线8)2)(2()2)(2(//=--+--y y x x 上, 即AB 的直线方程为8)2)(2()2)(2(//=--+--y y x x , P 在AB 上,所以8)2)(2()2)(2(/0/0=--+--y y x x所以M 的轨迹方程为 8)2)(2()2)(2(00=--+--y y x x考点:直线和圆的方程的应用。

2019-2020学年湖北省荆州高二上学期期末考试数学试题(解析版

2019-2020学年湖北省荆州高二上学期期末考试数学试题(解析版

2019-2020学年湖北省荆州中学、宜昌一中两校高二上学期期末考试数学试题一、单选题 1.复数231iz i+=-(i 为虚数单位)的虚部为( ) A .12-B .12i -C .52D .52i 【答案】C【解析】根据复数的除法运算以及复数的概念即可求解. 【详解】()()()()231231511122i i i z i i i i +++===-+--+,故复数的虚部为52,故选:C 【点睛】本题考查了复数的四则运算以及复数的概念,属于基础题. 2.(2,,0)a m =,(1,3,1)b n =-,若a //b ,则m n +=( ) A .6 B .7C .8D .9【答案】B【解析】根据向量共线定理即可求解. 【详解】由a //b ,且(2,,0)a m =,(1,3,1)b n =-, 则存在非零实数λ使得λab ,即()2301m n λλλ⎧=⎪=⎨⎪=-⎩,解得6m =,1n =, 所以7m n +=. 故选:B 【点睛】本题考查了空间向量共线定理,需掌握向量共线定理的内容,属于基础题.3.椭圆2218x y m +=的焦距为4,则m 的值为( )A .12B .4C .12或4D .10或6【答案】C【解析】由椭圆的标准方程222a b c =+即可求解. 【详解】因为双曲线的焦距为24c =,则2c =, 由222a b c =+,当焦点在x 轴上时, 即28212m =+=,解得12m = 当焦点在y 轴上时,即282m =+,解得4m =. 故4m =或12. 故选:C 【点睛】本题考查了椭圆的标准方程,需熟记,,a b c 之间的关系,属于基础题. 4.曲线31233y x x =-+在点(1,43)处的切线的倾斜角为( )A .4πB .3π C .23π D .34π【答案】D【解析】首先对函数31233y x x =-+求导,求出()1f '的值,根据导数的几何意义以及倾斜角与斜率的关系即可求解. 【详解】 由31233y x x =-+,则22y x '=-, 所以21121x y ==-=-',所以切线的斜率为1-,由tan 1k α==-,所以34πα=, 故选:D 【点睛】本题考查了导数的计算以及导数的几何意义、倾斜角与斜率的关系,属于基础题. 5.已知α,β是相异两平面;,m n 是相异两直线,则下列命题中假命题的是 ( )A .若m n ,m α⊥,则n α⊥B .若m α⊥,m β⊥,则αβ∥C .若m α,n αβ=,则m nD .若m α⊥,m β⊂,则αβ⊥ 【答案】C【解析】在A 中,由直线与平面垂直的判定定理可得真假; 在B 中,由平面与平面平行的判定定理可得真假; 在C 中,m 与n 平行或异面;在D 中,由平面与平面垂直的判定定理可得真假. 【详解】解:在A 中:若m n ,m α⊥,则由直线与平面垂直的判定定理得n α⊥,故A 正确;在B 中:若m α⊥,m β⊥,则由平面与平面平行的判定定理得αβ∥,故B 正确; 在C 中:若m α,n αβ=,则m 与n 平行或异面,故C 错误;在D 中:若m α⊥,m β⊂,则由平面与平面垂直的判定定理得αβ⊥,故D 正确. 故选C . 【点睛】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.6.数列{}n a 满足112n n n a a a -+=+,n S 是数列{}n a 的前n 项和,22019,a a 是函数2()65f x x x =-+的两个零点,则2020S 的值为( )A .6B .12C .2020D .6060【答案】D【解析】根据题意判断数列{}n a 为等差数列,由函数的零点与方程根的关系可得220196a a +=,再由等差数列的性质以及等差数列的前n 和的公式即可求解. 【详解】数列{}n a 满足112n n n a a a -+=+,∴数列{}n a 为等差数列,又22019,a a 是函数2()65f x x x =-+的两个零点,即22019,a a 是方程2650x x -+=的两个根,220196a a ∴+=,()()1202022019202020202020606022a a a a S +⋅+⋅∴===,故选:D 【点睛】本题主要考查了等差中项、函数与方程的关系、等差数列的性质以及前n 和的公式,属于基本知识的考查,属于基础题.7.平面直角坐标系内,到点(2,3)A 和直线:280l x y +-=距离相等的点的轨迹是( ) A .直线 B .椭圆 C .双曲线 D .抛物线【答案】A【解析】根据已知判断点A 是否在直线上,即可结合抛物线的定义判断正确选项,据此解答此题,此题属于基础题. 【详解】由题意,点(2,3)A 在直线:280l x y +-=, 即动点到点A 的距离与动点到直线l 的距离相等, 点(2,3)A 满足直线:280l x y +-=方程, 所以动点的轨迹是一条过A 与直线垂直的直线. 故选:A 【点睛】本题考查了抛物线的定义,需注意抛物线定义中满足的条件,属于基础题.8.过点(4,2)P 作圆224x y +=的两条切线,切点分别,A B ,O 为坐标原点,则OAB∆的外接圆方程为( ) A .()()222+1=5x y -- B .()()22+2++1=20x y C .()()224+2=5x y -- D .()()22+4++2=2x y【答案】A【解析】由题意知OA PA ⊥,BO PB ⊥,四边形AOBP 的四个顶点在同一圆上,此圆的直径是OP ,AOB ∆外接圆就是四边形AOBP 的外接圆. 【详解】由题意知,OA PA ⊥,BO PB ⊥,∴四边形AOBP 有一组对角都等于90,∴四边形AOBP 的四个顶点在同一圆上,此圆的直径是OP ,OP 的中点为()2,1,25OP =,∴四边形AOBP 的外接圆方程为()()222+1=5x y --,∴AOB ∆外接圆的方程为()()222+1=5x y --.故选:A 【点睛】本题考查了圆的标准方程,需熟记圆的标准方程的形式,属于基础题.9.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,点0(2,)M y 在抛物线C 上,M 与直线l 相切于点E ,且3EMF π∠=,则M 的半径为( )A .23B .43C .83D .163【答案】C【解析】依据图像运用抛物线的定义及直线与圆相切,可得22222p p ⎛⎫-=+ ⎪⎝⎭,求出p ,进而得到M 的半径.【详解】如图所示,连接ME ,依题意ME l ⊥,过点M 作MH x ⊥轴,垂足为H , 在Rt MFH ∆中,||2||MF FH =, 由抛物线定义可得||||ME MF =,则22222p p ⎛⎫-=+ ⎪⎝⎭,解得43p =, 故M 的半径为8223p +=, 故选C . 【点睛】本题考查抛物线的性质,直线与圆相切,考查逻辑推理,数学运算的核心素养,属于中档题.10.如图,正方形ABCD 沿对角线AC 折叠之后,使得平面BAC ⊥平面DAC ,则二面角B CD A --的余弦值为( )A .2B .12C .3 D .5 【答案】C【解析】设正方形边长为a ,AC 和BD 的交点为O ,过O 作BC 的平行线OE 交CD 于E ,则二面角B CD A --就是BEO ∠,由平面BAC ⊥平面DAC ,在BEO ∆中即可求解. 【详解】设正方形边长为a ,AC 和BD 的交点为O , 过O 作BC 的平行线OE 交CD 于E , 则二面角B CD A --的平面角就是BEO ∠, 因2AO =,12OE a =,且平面BAC ⊥平面DAC ,BO AC ⊥,所以BO OE ⊥,所以222234BE BO OE a =+=,即3BE =,所以32cos 3aOE BEO BE a∠===, 故选: C 【点睛】本题主要考查面面角,解题的关键是作出二面角,考查了学生的空间想象能力,属于中档题.11.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足cos cos b cB C a+=+,8sin bcA=,则ABC ∆的周长的最小值为( ) A .3 B .332+C .4D .442+【答案】D【解析】根据正弦定理边化角求出角90A =,从而可求出8bc =,然后利用基本不等式即可求解. 【详解】 因为cos cos b c B C a +=+,根据正弦定理可得sin sin cos cos sin B CB C A+=+, 所以()()sin sin sin cos sin cos A C A B A B A C +++=+, 所以cos sin cos sin 0A C A B +=,即()cos sin sin 0A C B +=, 在ABC ∆中,sin sin 0C B +≠,故cos 0A =,90A ∴=sin 1A =,则8bc =,所以2222442a b c b c b c bc bc ++=+++≥+=+, 当且仅当b c =时取等号,综上ABC ∆的周长的最小值为442+. 故选:D 【点睛】本题主要考查正弦定理以及基本不等式求最值,注意在利用基本不等式时需验证等号成立的条件,属于基础题. 12.已知双曲线的左、右焦点分别为为双曲线上一点,为双曲线渐近线上一点,均位于第一象限,且,则双曲线的离心率为( )A .B .C .D .【答案】A 【解析】设,则,由题设可得,解之得,故,又由可知点是中点,则,代入双曲线方程可得,即,所以,应选答案A 。

2020-2021学年湖北省部分省级示范高中高二下学期期末数学试题(解析版)

2020-2021学年湖北省部分省级示范高中高二下学期期末数学试题(解析版)

2020-2021学年湖北省部分省级示范高中高二下学期期末数学试题一、单选题1.设全集为R ,集合{}02A x x =<<,{}1B x x =≥,则()R A B = A .{}01x x <≤ B .{}01x x <<C .{}12x x ≤<D .{}02x x <<【答案】B【详解】分析:由题意首先求得R C B ,然后进行交集运算即可求得最终结果. 详解:由题意可得:{}|1R C B x x =<, 结合交集的定义可得:(){}01R A C B x =<<.本题选择B 选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.2.若复数z 满足()13i 1i z +=-(i 为虚数单位),则z 所对应的复平面内的点位于复平面的( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【分析】利用复数的除法法则计算得到12i 55z =--,得到答案.【详解】()13i 1i z +=-,故()()()()1i 13i 1i 24i 12i 13i 13i 13i 1055z -----====--++-,故对应点在第三象限. 故选:C.3.已知函数()21xf +的定义域为()3,5,则函数()21f x +的定义域为( )A .()1,2B .()9,33C .()4,16D .()3,5【答案】C【分析】计算()219,33x+∈,根据抽象函数定义域得到92133x <+<,解得答案.【详解】当()3,5x ∈时,()219,33x+∈,故92133x <+<,解得416x <<.故选:C.4.中国古代的“礼、乐、射、御、书、数”合称“六艺”.某校国学社开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课相邻排课,则“六艺”课程讲座排课顺序共有( ) A .12种 B .24种 C .36种 D .48种【答案】C【分析】先排“数”,然后排“射”和“御”,再排剩下的三门,由此计算出正确答案. 【详解】先排“数”,然后排“射”和“御”,方法有()1226+⨯=种,再排剩下的三门,方法数有336A =种,故总的方法数有6636⨯=种. 故选:C5.2021年3月20日,“沉睡三千年,一醒惊天下”的三星堆遗址向世人展示了其重大考古新发现——6个三星堆文化“祭祀坑”现已出土500余件重要文物.为推测文物年代,考古学者通常用碳14测年法推算,碳14测年法是根据碳14的衰变程度来计算出样品的大概年代的一种测量方法.2021年,考古专家对某次考古的文物样本上提取的遗存材料进行碳14年代测定,检测出碳14的残留量约为初始量的68%,已知碳14的半衰期(放射性物质质量衰减一半所用的时间)是5730年,且属于指数型衰减.以此推算出该文物大致年代是( )(参考数据:log 19034.7≈-,log 34881≈-) A .公元前1400年到公元前1300年 B .公元前1300年到公元前1200年 C .公元前1200年到公元前1100年 D .公元前1100年到公元前1000年【答案】C【分析】设样本中碳14初始值为k ,衰减率为p ,经过x 年后,残留量为y ,可得函数关系式()1xy k p =-,根据半衰期可构造方程求得1p -,由此得到函数关系式,根据(68%xkk =可求得x ,由此可推断出年代.【详解】设样本中碳14初始值为k ,衰减率为p ,经过x 年后,残留量为y ,则()1xy k p =-,碳14的半衰期是5730年,()5730112k p k ∴-=,1p ∴-=,(xy k ∴=;由(68%xkk =得:()log 0.68log log 34881219034.73188x ==-=--⨯-≈,2021年之前的3188年大致是公元前1167年,即大致年代为公元前1200年到公元前1100年之间. 故选:C.6.在平行四边形ABCD 中,113,2,,D,32AB AD AP AB AQ A ====若CP C 12,Q ⋅=则ADC ∠=A .56πB .34π C .23π D .2π 【答案】C【解析】由23CP CB BP AD AB =+=--,12CQ CD DQ AB AD =+=--,利用平面向量的数量积运算,先求得,3BAD π∠=利用平行四边形的性质可得结果.【详解】如图所示,平行四边形ABCD 中, 3,2AB AD ==, 11,32AP AB AQ AD ==, 23CP CB BP AD AB ∴=+=--, 12CQ CD DQ AB AD =+=--, 因为12CP CQ ⋅=,所以2132CP CQ AD AB AB AD ⎛⎫⎛⎫⋅=--⋅-- ⎪ ⎪⎝⎭⎝⎭22214323AB AD AB AD =++⋅222143232cos 12323BAD =⨯+⨯+⨯⨯⨯∠=, 1cos 2BAD ∠=,,3BAD π∴∠= 所以233ADC πππ∠=-=,故选C. 【点睛】本题主要考查向量的几何运算以及平面向量数量积的运算法则,属于中档题. 向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).7.在研究某高中高三年级学生的性别与是否喜欢某学科的关系时,总共调查了N 个学生(100m,N m *=∈N ),其中男女学生各半,男生中60%表示喜欢该学科,其余表示不喜欢;女生中40%表示喜欢该学科,其余表示不喜欢.若有99.9%把握认为性别与是否喜欢该学科有关,则可以推测N 的最小值为( )附22()()()()()n ad bc K a b c d a c b d -=++++,)2kA .400B .300C .200D .100【答案】B【分析】根据题目列出22⨯列联表,再根据列联表的数据计算2K 值,进而得到关于m 的关系式,求解即可.【详解】由题可知,男女各50m 人,列联表如下:()22224100900400=450505050m m m K m m-=⨯⨯⨯,有99.9%把握认为性别与是否喜欢该学科有关,410.828m ∴>,解得 2.707m >,m *∈N ,3m ∴≥,min 300N ∴=.故选:B8.过抛物线2:2(0)C y px p =>焦点的直线与抛物线C 交于,A B 两点,其中||8AB =,AD DB =,圆225:02C x y y '+-=,若抛物线C 与圆C '交于,P Q 两点,且||PQ =则点D 的横坐标为( )A .2B .3C .4D .5【答案】B【分析】设(0,0),(,),0P Q m n m >,先求得(1,2)Q ,因此可得抛物线C 的方程为24y x =,设1122(,),(,)A x y B x y ,由焦点弦长公式得到126x x +=,进而得到点D 的横坐标. 【详解】易知圆C '过原点,设(0,0),(,),0P Q m n m >,由||5PQ =,可得225m n +=,又2252m n n +=,联立可解得1,2m n ==. 将(1,2)Q 代入22y px =中,解得2p =,∴抛物线C 的方程为24y x =, 设1122(,),(,)A x y B x y ,则121212222p p AB AF BF x x x x p x x ⎛⎫⎛⎫=+=+++=++=++ ⎪ ⎪⎝⎭⎝⎭由8AB =可得126x x +=.由AD DB =可知,点D 是AB 的中点,因此,点D 的横坐标为1232x x +=. 故选:B.【点睛】结论点睛:抛物线焦点弦长公式:若AB 是过抛物线22(0)y px p =>焦点的弦,设1122(,),(,)A x y B x y ,则12AB x x p =++. 二、多选题9.已知数列{}n a 中,111,2,n n n a a a n N *+==∈,则下列说法正确的是( )A . 44a =B . {}2n a 是等比数列C . 12212n n n a a ---=D . 12122n n n a a +-+=【答案】ABC【分析】根据已知条件判断出数列{}n a 的奇数项和偶数项,分别是以2为公比的等比数列,由此对选项逐一分析,从而确定正确选项.【详解】依题意1*1N 1,2,n n n a a a n +=⋅=∈,所以122a a ⋅=,则22a =,1122n n n a a +++=⋅,11221222n n n n n n n na a aa a a +++++⋅=⇒=⋅,所以数列{}n a 的奇数项和偶数项,分别是以2为公比的等比数列. 111221222,122n n n n n n a a ----=⨯==⨯=.所以2424a ==,A 、B 正确.11221222n n n n n a a ----=-=,C 正确. 112212232n n n n n a a ---+=+=⨯,D 错误.故选:ABC10.已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭在区间[]0,π上恰能取到2次最大值,且最多有4个零点,则下列说法中正确的有( ) A .()f x 在()0,π上恰能取到2次最小值B .ω的取值范围为825,36⎡⎫⎪⎢⎣⎭C .()f x 在0,6π⎛⎫⎪⎝⎭上一定有极值D .()f x 在0,3π⎛⎫ ⎪⎝⎭上不单调【答案】BD【分析】当[]0,x π∈时,,666x πππωωπ⎡⎤-∈--⎢⎥⎣⎦,然后由条件可得62ππωπ-≥,46πωππ-<,解出ω的范围,然后注意判断即可.【详解】当[]0,x π∈时,,666x πππωωπ⎡⎤-∈--⎢⎥⎣⎦由函数()f x 在区间[]0,π上恰能取到2次最大值可得562ππωπ-≥由()f x 最多有4个零点可得46πωππ-<,所以可得82536ω≤<, 故B 正确, 当83ω=时,()f x 在()0,π上只能取到1次最小值,故A 错误当0,6x π⎛⎫∈ ⎪⎝⎭时,,6666x ππππωω⎛⎫-∈-- ⎪⎝⎭,当83ω=时,662πππω-<,()f x 无极值,故C 错误当0,3x π⎛⎫∈ ⎪⎝⎭时,,6636x ππππωω⎛⎫-∈-- ⎪⎝⎭因为8363362πππππω-≥⨯->,所以()f x 在0,3π⎛⎫⎪⎝⎭上不单调,故D 正确故选:BD【点睛】方法点睛:在处理正弦型函数的有关问题时,常把x ωϕ+当成整体处理. 11.已知偶函数()f x 满足:(2)(2)f x f x +=-,且当0≤x ≤2时,()22x f x =-,则下列说法正确的是( )A .-2≤x ≤0时,1()22xf x ⎛⎫=- ⎪⎝⎭B .点(1,0)是f (x )图象的一个对称中心C .f (x )在区间[-10,10]上有10个零点D .对任意12,x x ,都有()()122f x f x - 【答案】AC【分析】由偶函数的定义得解析式,判断A ,由[0,2]上的解析式判断B ,已知条件得2x =是一条对称轴,这样函数()f x 是周期函数,周期为4,利用周期性可判断零点个数,判断C ,由最值判断D .【详解】因为()f x 是偶函数,所以20x -≤≤时,1()()2222xx f x f x -⎛⎫=-=-=- ⎪⎝⎭,A正确;在[0,2]上,()22x f x =-不关于(1,0)对称,因此(1,0)不是()f x 的一个对称中心,B 错; 由220x -=得1x =,因此在[2,2]-上,()f x 有两个零点, 又(2)(2)f x f x +=-,所以2x =是函数图象的一条对称轴,(4)(2(2))()()f x f x f x f x +=-+=-=,所以()f x 是周期函数,周期为4,因此()f x 在[10,6],[6,2],[2,6],[6,10]----上各有2个零点,在[10,10]-上共有10个零点,C 正确;由周期性知2max ()222f x =-=,0min ()221f x =-=-,max min ()()32f x f x -=>,D 错.故选:AC .【点睛】思路点睛:本题考查函数的奇偶性、对称性与周期性,解题关键是由两个对称性得出函数具有周期性,因此只要在一个周期内确定函数的零点,从而可得函数的性质可得整个定义域上函数的性质.12.截角四面体是一种半正八面体,可由四面体经过适当的截角,即截去四面体的四个顶点所产生的多面体.如图,将棱长为3的正四面体沿棱的三等分点作平行于底面的截面得到所有棱长均为1的截角四面体,则( )A .该截角四面体一共有12条棱B .该截角四面体一共有8个面C .该截角四面体的表面积为3D 232【答案】BCD【分析】确定截角四面体是由4个边长为1的正三角形,4个边长为1的正六边形构成,然后分别求解四面体的表面积,体积即可判断选项.【详解】对于AB ,可知截角四面体是由4个边长为1的正三角形,4个边长为1的正六边形构成,故该截角四面体一共有8个面,18条棱,故A 错误,B 正确; 对于C ,边长为1的正三角形的面积133112S =⨯⨯,边长为1的正六边形的面积13336112S =⨯⨯⨯=,故该截角四面体的表面积为33344=73S =+故C正确;对于D ,棱长为1的正四面体的高2236132h ⎛⎫=-⨯= ⎪ ⎪⎝⎭四面体的体积为13613633311232=4331122V ⨯⨯⨯⨯⨯⨯=⨯故D 正确. 故选:BCD【点睛】关键点点睛:本题考查多面体的表面积及体积求法,解题的关键是审清题意,清楚截角四面体的定义及构成,考查学生的空间想象能力与运算求解能力,属于较难题. 三、填空题13.某圆柱两个底面面积之和等于其侧面面积,则该圆柱底面半径与高的比值为________. 【答案】1【分析】设圆柱底面半径为r ,高为h ,求出底面积的侧面积,即可得结论. 【详解】设圆柱底面半径为r ,高为h ,由题意222r rh ππ=,所以r h =,即1rh=. 故答案为:1.14.若12nx x ⎛⎫- ⎪⎝⎭的展开式中只有第5项的二项式系数最大,则展开式中常数项为______.(用数字作答) 【答案】358【分析】由二项式系数的性质,求出n ,再写出二项展开式的通项,由通项中x 的指数为0即可得解.【详解】12nx x ⎛⎫- ⎪⎝⎭的展开式中只有第5项的二项式系数最大,则由二项式系数性质知:展开式共有9项,则n =8,81()2x x -展开式的通项为88218811()()(,8)22r rr r r r r T C x C x r N r x --+=⋅-=-∈≤, 展开式中常数项,必有820r -=,即4r =,所以展开式中常数项为44581135()702168T C =-=⋅=. 故答案为:35815.已知定义域为R 的函数()f x 恒满足()()()22f x f x f x +=-=,且()f x 在()0,1内单调递减,写出一个满足条件的函数解析式()f x =________. 【答案】cos x π(答案不唯一)【分析】根据函数的对称性、周期性、单调性写出符合题意的()f x . 【详解】定义域为R 的函数()f x 恒满足()()()22f x f x f x +=-=, 所以()f x 的对称轴为1x =和2x =,且()f x 是以2为周期的周期函数, 结合()f x 在()0,1内单调递减,可得()f x =cos x π符合题意. 故答案为:cos x π(答案不唯一)16.在对表面为曲面的工件进行磨削时应当选用尺寸适当的圆形砂轮,如果砂轮半径太大,则磨削时工件与砂轮接触处附近的那部分会磨去太多.现有一工件,其截面内表面是一长轴长为4,离心率为12的椭圆,在对其内表面进行抛光时,所选用砂轮的半径最大为________.【答案】321.5【分析】根据实轴长和离心率得到椭圆方程为22143x y +=,设圆方程为()2222x r y r -++=,根据椭圆的圆相切得到0∆=,计算得到答案.【详解】24a =,2a =,离心率12c e a ==,故1c =,b = 不妨设椭圆方程为:22143x y +=, 设圆半径为r ,椭圆与圆相切于左顶点或者右顶点时r 有最大值, 圆方程为:()2222x r y r -++=,联立方程:()222221432x y x r y r⎧+=⎪⎨⎪-++=⎩, 消去y 得到()21227404x r x r +-+-=,()()224274230r r r ∆=--+=-=,解得32r =. 故答案为:32.四、解答题17.在①sin cos a A a C =-,②(2)sin (2)sin 2sin a b A b a B c C -+-=这两个条件中任选一个,补充在下列问题中,并解答.已知ABC 的角A B C ,,对边分别为,,,a b c c =_____. (I )求C ∠;(Ⅱ)求ABC 面积的最大值. 【答案】(I )3π;(Ⅱ【分析】(I )选①,先利用正弦定理化简可得sinA sinAcosC -,进而得到1cosC -=,结合C 的范围即可求得3C π=;选②,先利用正弦定理可得(2a ﹣b )a +(2b ﹣a )b =2c 2,再利用余弦定理可得12cosC =,结合C 的范围即可求得3C π=;(Ⅱ)由余弦定理可得223a b ab +-=,再利用基本不等式可得3ab ≤,进而求得△ABC 面积的最大值.【详解】解:(I )选①,∵a acosc =-,∴sinA sinAcosC =-,∵sin A ≠0,1cosC -=,即162sin C π⎛⎫-= ⎪⎝⎭,又0<C <π,∴5666C πππ--<<,故66C ππ-=,即3C π=;选②,∵(2a ﹣b )sin A +(2b ﹣a )sin B =2c sin C , ∴(2a ﹣b )a +(2b ﹣a )b =2c 2,即a 2+b 2﹣c 2=ab , ∴222122a b c cosC ab +-==,∵0<C <π, ∴3C π=;(Ⅱ)由(I )可知,3C π=,在△ABC 中,由余弦定理得222cos 3a b ab C +-=,即223a b ab +-=, ∴2232a b ab ab +=+≥∴3ab ≤,当且仅当那个a =b 时取等号,∴11sin 322ABC S ab C =≤⨯=△△ABC 18.已知等差数列{}n a 和等比数列{}n b 满足,12a =,11b =,23a b =,342a b =-. (1)求{}n a 和{}n b 的通项公式;(2)若数列{}n c 满足n n n c a b =,求{}n c 的前n 项之和n S .【答案】(1)2n a n =,12n n b -=(2)()1122n n S n +=-⨯+【分析】(1)根据等差数列和等比数列公式得到方程组,解得答案.(2)计算2nn c n =⋅,利用错位相减法计算得到答案.(1)23a b =,即22d q +=,342a b =-,即3222d q +=-,解得2q,2d =,故()2122n a n n =+-⨯=,11122n n n b --=⨯=.(2)1222n n n n n c a b n n -==⨯=⋅,212222n n S n =⨯+⨯+⋅⋅⋅+⨯,则231212222n n S n +=⨯+⨯+⋅⋅⋅+⨯,两式相减得到:2111112122222222212n n n n n n n S n n n ++++--=⨯++⋅⋅⋅+-⨯=-⨯=--⨯-,故()1122n n S n +=-⨯+.19.为做好精准扶贫工作,农科所经实地考察,发现某贫困村的土地适合种植药材A ,村民可以通过种植药材A 增加收入,达到脱贫标准.通过大量考察研究得到如下统计数据:药材A 的收购价格处于上涨趋势,最近五年的价格如下表: 年份 2016 2017 2018 2019 2020 年份编号x 1 2 3 4 5 单价y (元/公斤) 1820232529药材A 的亩产量在2020年的频率分布直方图如下:(1)若药材A 的单价y (单位:元/公斤)与年份编号x 间具有线性相关关系,请求出y 关于x 的回归直线方程,并估计2021年药材A 的单价;(2)利用上述频率分布直方图估计药材A 的平均亩产量(同组数据以该数据所在区间的中点值为代表);(3)称亩产量不高于390公斤的田地为“待改良田”,将频率视为概率,现农科所研究员从这个村的地中随机选取3块面积为1亩的田地进行试验,记其中“待改良田”的个数为X ,求随机变量X 的数学期望.参考公式:回归直线方程ˆˆˆybx a =+,其中1221ˆni ii nii x y nxyb xnx ==-=-∑∑,ˆˆay bx =-. 【答案】(1) 2.7149ˆ.yx =+,单价为31.1元/公斤;(2)401公斤;(3)0.9. 【分析】(1)先求出年号x ,单价y 的平均数,利用最小二乘法得回归直线方程,再由此预测得解;(2)求出频率分布直方图中各组的频率,再求出它与所对各组区间中点值的积而得解;(3)随机变量X 服从二项分布,由二项分布的期望公式求解即得. 【详解】(1)3x =,23y =,51522222222151182203234255295323ˆ 2.712345535i ii i i x y x ybx x==-⋅+⋅+⋅+⋅+⋅-⋅⋅===++++-⨯-∑∑,ˆˆ23 2.7314.9ay b x =-⋅=-⋅=,故回归直线方程为 2.7149ˆ.y x =+, 当6x =时,ˆ31.1y=,从而2021年药材A 的单价估计为31.1元/公斤; (2)组距为20,自左向右各组的频率依次为0.1,0.2,0.35,0.25,0.1,则A 药材的平均亩产量为3600.13800.24000.354200.254400.1401⨯+⨯+⨯+⨯+⨯=公斤;(3)称亩产量不高于390公斤的频率为0.3,由此估计称亩产量不高于390公斤的概率为0.3,因3块地中,任取一块地有“待改良田”和非“待改良田”两个不同结果,则随机变量()3,0.3XB ,故数学期望()30.30.9E X =⨯=.20.如图,ABC 是边长为2的等边三角形,平面ACDE ⊥平面ABC ,且AC DC DE AE ===,60ACD ∠=︒,//DF BC ,1DF =.(1)求证://EF 平面ABC ;(2)求平面ABC 与平面BEF 所成锐二面角的余弦值. 【答案】(1)证明见解析;(213. 【分析】(1)根据四边形ACDE 是菱形,得到//AC DE ,证得//DE 平面ABC ,再由//DF BC ,证得//DF 平面ABC ,进而得到平面//DEF 平面ABC ,即可证得//EF 平面ABC ;(2)取AC 中点O ,连接OB ,OD ,分别以OB ,OC ,CD 所在直线为x 轴、y 轴、z 轴建立空间坐标系,求得平面BEF 和ABC 的一个法向量,结合向量的夹角公式,即可求解.【详解】(1)因为AC DC DE AE ===,所以四边形ACDE 是菱形, 所以//AC DE ,且DE ⊄平面ABC ,所以//DE 平面ABC . 又因为//DF BC ,DF ⊄平面ABC ,所以//DF 平面ABC , 因为DFDE D =,且,DF DE ⊂平面DEF ,所以平面//DEF 平面ABC ,又因为EF ⊂平面DEF ,所以//EF 平面ABC .(2)取AC 中点O ,连接OB ,OD ,分别以OB ,OC ,CD 所在直线为x 轴、y 轴、z 轴建立空间坐标系,如图所示,则(0,1,0)B D C ,可得(3,1,0)CB =-,由131,0222DF CB ⎛⎫==- ⎪ ⎪⎝⎭,可得12F -⎝, 又由(0,2,0)DE CA ==-,可得(0,E -, 所以33(3,2,3),,,022BE EF ⎛⎫=--= ⎪⎪⎝⎭, 设平面BEF 的法向量为(,,)n x yz =,则00EF n BE n ⎧⋅=⎨⋅=⎩,可得20302y x y ⎧-=+=,取x =1y =-,所以3,n ⎛=- ⎭, 又由平面ABC 的一个法向量为(0,0,1)m =, 所以33cos,m n <>==所以平面ABC 与平面BEF .【点睛】利用空间向量计算二面角的常用方法:1、法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小;2、方向向量法:分别在二面角的两个半平面内找到与棱垂直且垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.21.已知函数()()2e 14 2.xf x m x x x =+---(1)若1m =,试求曲线()y f x =在点()()0,0f 处的切线方程; (2)讨论()f x 的单调性. 【答案】(1)21y x =-- (2)答案见解析【分析】(1)求导得到导函数,计算()02f '=-,()01f =-,得到切线方程.(2)求导得到()()()2e 2xf x x m '+-=,考虑0m ≤,202e m <<,22e m =,22e m >四种情况,根据导数的正负得到函数的单调性. (1)()()2e 142x f x x x x =+---,()()e 224x f x x x '=+--,()2204f '=-=-,()01f =-,故切线方程为:21y x =--. (2)()()2e 142x f x m x x x =+---,故()()()()e 2242e 2x x f x m x x x m =+'=+---,当0m ≤时,2e 0x m -<,当2x <-时,()0f x '>,当2x >-时,()0f x '<,故函数在(),2-∞-上单调递增,在()2,-+∞上单调递减;当0m >时,2e 0x m -=得到2ln x m=, 当22e m >时,2ln2m <-,当2,ln x m ⎛⎫∈-∞ ⎪⎝⎭和()2,x ∈-+∞时,()0f x '>,函数单调递增,当x ∈2ln ,2m ⎛⎫- ⎪⎝⎭,时,()0f x '<,函数单调递减;当22e m =时,2ln 2m=-, ()0f x '≥恒成立,函数在R 单调递增;当22e m <时,2ln2m >-,当(),2x ∞∈--和2ln ,x m ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,函数单调递增,当x ∈22,ln m ⎛⎫- ⎪⎝⎭时,()0f x '<,函数单调递减;综上所述:当0m ≤时,函数在(),2-∞-上单调递增,在()2,-+∞上单调递减;当202e m <<时,函数在(),2-∞-和2ln ,m ⎛⎫+∞ ⎪⎝⎭上单调递增, 在22,ln m ⎛⎫- ⎪⎝⎭上单调递减;当22e m =时,函数在R 上单调递增;当22e m >时,函数在2,ln m ⎛⎫-∞ ⎪⎝⎭和()2,-+∞上单调递增, 在2ln ,2m ⎛⎫- ⎪⎝⎭上单调递减.22.已知椭圆2222:1(0)x y E a b a b +=>>上任一点到两个焦点12,F F 的距离之和为轴长为4.动点M 在双曲线22142x y -=(顶点除外)上运动,直线1MF 和2MF 与椭圆E 的交点分别为AB 、和CD 、. (1)求椭圆E 的方程;(2)证明:||||AB CD +为定值,并求出此定值.【答案】(1)22184x y +=;(2)证明见解析,【分析】(1)根据题意得2a =,24b =,进而得答案; (2)由题设()()000,2M x y x ≠±,故1212MF MF k k ⋅=,进而设直线1MF 的方程为2x my =-,直线2MF 的方程为2x ny =+,且2mn =,再联立方程,结合弦长公式得)2212m AB m +=+,)2212n CD n +=+,再化简整理即可得答案.【详解】解:(1)由题意可知2a =,24b =,则a =2b =,∴椭圆E 的方程为22184x y +=(2)设()()000,2M x y x ≠±,则2200142x y -=,由题意椭圆E 的两个焦点1F ,2F 刚好是双曲线的两个顶点, 不妨取()12,0F -,()22,0F ,则()12220000220000141222442MF MF x y y y kk x x x x -⋅=⋅===+---. 故设直线1MF 的方程为2x my =-,直线2MF 的方程为2x ny =+, 则12112MF MF k k mn ⋅==,∴2mn =, 联立()22222244028x my m y my x y =-⎧⇒+--=⎨+=⎩ 设()11,A x y ,()22,B x y ,12242m y y m +=+,12242y y m =-+)212212m AB y m +=-=+,同理)2212n CD n +=+,∴))22222222222211233422224m n m n m n AB CD m n m n m n ++++++=+=+++++2222331232282m n m n ++===++∴AB CD +为定值,且定值为【点睛】本题考查椭圆的方程求解,椭圆中的定值问题,考查运算求解能力,是中档题.本题解题的关键在于发现12112MF MF k k mn ⋅==,进而设出直线1MF 的方程为2x my =-,直线2MF 的方程为2x ny =+,与椭圆联立,并结合弦长公式计算得)2212m AB m +=+,)2212n CD n +=+,再化简整理即可求解.。

五华县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

五华县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

五华县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数在区间上的最大值为5,最小值为1,则的取值范围是( )2()45f x x x =-+[]0,m m A .B .C .D .[2,)+∞[]2,4(,2]-∞[]0,22. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为()A .4B .5C .6D .93. 如图,△ABC 所在平面上的点P n (n ∈N *)均满足△P n AB 与△P n AC 的面积比为3;1,=﹣(2x n +1)(其中,{x n }是首项为1的正项数列),则x 5等于( )A .65B .63C .33D .314. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形个数为()A .0B .1C .2D .以上都不对5. 有以下四个命题:①若=,则x=y .②若lgx 有意义,则x >0.③若x=y ,则=.④若x >y ,则 x 2<y 2.则是真命题的序号为( )A .①②B .①③C .②③D .③④6. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .4B .8C .12D .20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.7. 在正方体中,是线段的中点,若四面体的外接球体积为,1111ABCD A B C D -M 11AC M ABD -36p 则正方体棱长为()A .2 B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.8. 下列判断正确的是( )A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台9. 如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A .B .C .D .10.在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是( )A .<,乙比甲成绩稳定B .<,甲比乙成绩稳定C .>,甲比乙成绩稳定D .>,乙比甲成绩稳定11.是z 的共轭复数,若z+=2,(z ﹣)i=2(i 为虚数单位),则z=()A .1+i B .﹣1﹣i C .﹣1+i D .1﹣i12.已知函数f (x )=若f (-6)+f (log 26)=9,则a 的值为( ){log 2(a -x ),x <12x ,x ≥1)A .4B .3C .2D .1二、填空题13.设是空间中给定的个不同的点,则使成立的点的个数有_________个.14.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 . 15.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .16.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.17.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .18.将曲线向右平移个单位后得到曲线,若与关于轴对称,则1:C 2sin(),04y x πωω=+>6π2C 1C 2C x ω的最小值为_________.三、解答题19.(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号.(Ⅰ)求第一次或第二次取到3号球的概率;(Ⅱ)设为两次取球时取到相同编号的小球的个数,求的分布列与数学期望.ξξ20.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围.21.已知,且.(1)求sinα,cosα的值;(2)若,求sinβ的值.22.设不等式的解集为.(1)求集合;(2)若,∈,试比较与的大小。

数学分类汇编(2)命题及其关系、充分条件与必要条件

数学分类汇编(2)命题及其关系、充分条件与必要条件

(山东省德州市2019届高三期末联考数学(理科)试题)6.设且,则是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要【答案】D【解析】【分析】由题意看命题“ab>1”与“”能否互推,然后根据必要条件、充分条件和充要条件的定义进行判断.【详解】若“ab>1”当a=﹣2,b=﹣1时,不能得到“”,若“”,例如当a=1,b=﹣1时,不能得到“ab>1“,故“ab>1”是“”的既不充分也不必要条件,故选:D.【点睛】本小题主要考查了充分必要条件,考查了对不等关系的分析,属于基础题.(辽宁省实验中学、大连八中、大连二十四中、鞍山一中、东北育才学校2019届高三上学期期末考试数学(文)试题)3.设,则“”是“函数在定义域上是奇函数”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】【分析】注意到当时,函数是奇函数,故是函数为奇函数的充分不必要条件.【详解】当时,,,函数为奇函数;当时,,,函数为奇函数.故当时,函数是奇函数,所以是函数为奇函数的充分不必要条件.故选A.【点睛】本小题主要考查充要条件的判断,考查函数奇偶性的定义以及判断,属于基础题.(四川省绵阳市2019届高三第二次(1月)诊断性考试数学理试题)4.“a=b=1”是“直线ax-y+1=0与直线x-by-1=0平行”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】【分析】a=b=1时,两条直线平行成立,但由ax-y+1=0与直线x-by-1=0平行,可得ab=1,不一定是a=b=1.【详解】a=b=1时,两条直线ax-y+1=0与直线x-by-1=0平行,反之由ax-y+1=0与直线x-by-1=0平行,可得:ab=1,显然不一定是a=b=1,所以,必要性不成立,∴“a=b=1”是“直线ax-y+1=0与直线x-by-1=0平行”的充分不必要条件.故选:A.【点睛】本题考查了直线平行的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.(湖南省长沙市2019届上学期高三统一检测理科数学试题)3.在等比数列中,“,是方程的两根”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】结合充分、必要条件判定,即可。

湖北省普通高中高二下学期期末模拟考试理科数学试题含答案

湖北省普通高中高二下学期期末模拟考试理科数学试题含答案

湖北省普通高中高二下学期期末模拟考试数学(理科)试题(考试范围:选修2-1、2-2;考试时间:120分钟)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题(50分)1.观察下图,可推断出“?”应该填的数字是 ( )?8164247594716531 A .19 B .192 C .117D .1182.函数x x x f 3cos )(=的导数是( )(A ) x x 3sin 33cos + (B ) x 3sin 31- (C) x x x 3sin 33cos - (D)x x x 3sin 3cos -3.下列说法正确的是 ( ) A .命题“R x ∈∃使得0322<++x x ”的否定是:“032,2>++∈∀x x R x ” B .a ∈R,“1a<1”是“a>1”的必要不充分条件 C .“p q ∧为真命题”是“q p ∨为真命题”的必要不充分条件 D .命题p :“2cos sin ,≤+∈∀x x R x ”,则⌝p 是真命题4.已知点P 是曲线13+-=x x e e y 上一动点,α∠为曲线在点P 处的切线的倾斜角,则α∠的最小值是 ( ) A .0B .4πC .32π D .43π 5.抛物线212y x =-的准线与双曲线22193x y -=的两渐近线围成的三角形的面积为( ) A.3 B. 23 C. 2 D.336.直线01:1=+-y x l 关于直线2:=x l 对称的直线2l 方程为 ( )A .012=--y xB .072=-+y xC .042=--y xD .05=-+y x7.一质点沿直线运动,如果由始点起经过t 秒后的位移为t t t s 833123+-=,那么速度为零的时刻是( ) A .1秒B .1秒末和2秒末C .4秒末D .2秒末和4秒末8.如下图,三棱锥P -ABC 中,三条侧棱两两垂直,且长度相等,点E 为BC 中点,则直线AE 与平面PBC 所成角的余弦值为 ( )A .33B .36C .31D .329.曲线2)(3-+=x x x f 上点0P 处的切线垂直于直线x y 41-=,则点P 0的坐标是( ) A .)0,1(-B .)2,0(-C .)4,1(--或)0,1(D .)4,1(10.已知(0,)x ∈+∞,观察下列各式:21≥+xx ,3422422≥++=+x x x x x ,4273332733≥+++=+x x x x x x ,...,类比有n xa x n ≥+(n ∈N *),则=a ( ) A .n B .2nC .2nD .n n二、填空题(25分)11.空间任一点O 和不共线三点A 、B 、C ,则)1(=++++=z y x OC z OB y OA x OP 是P ,A ,B ,C 四点共面的充要条件.在平面中,类似的定理是 . 12.已知复数z 的实部为2-,虚部为1,则225z i = .13.直线x y =是曲线kx y sin =的一条切线,则符合条件的一个实数k 值为 .14.若幂函数)(x f 的图象经过点)21,41(A ,则该函数在点A 处的切线方程为 .15.如图所示,点)1,0(),1,1(),0,1(),0,0(C B A O ,则曲线2x y =与x 轴围成的封闭图形的面积是 .三、解答题(75分)16. (满分12分)已知动点P 到定点()2,0F的距离与点P 到定直线l :22x =的距离之比为22.(1)求动点P 的轨迹C 的方程;(2)设M 、N 是直线l 上的两个点,点E 与点F 关于原点O 对称,若0EM FN =,求MN 的最小值.17.(满分12分)已知()f x '是()f x 的导函数,()ln(1)2(1),f x x m f m R '=++-∈,且函数()f x 的图象过点(0,-2)。

2019届高二上学期期末考试(理科数学试卷及答案详解)

2019届高二上学期期末考试(理科数学试卷及答案详解)

2019届高二上学期期末考试试卷数学(理科)一、选择题: 本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的。

1.已知集合},3125|{R x x x M ∈≤-≤-=,},0)8(|{Z x x x x N ∈≤-=,则=N M ( )A. )20(,B. ]20[,C. }20{,D. }210{,,2.给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间(0,1)上单调递减的函数序号是( ) A .②③ B.①② C. ③④ D. ①④3.已知变量x ,y 满足约束条件24240,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,则2z x y =+的最大值为( )A. 0B. 2C. 4D. 84.已知,l m 是直线,α是平面,且m α⊂,则“l m ⊥”是“l α⊥”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件5.等差数列{}n a 中,10a >,310S S =,则当n S 取最大值时,n 的值为( ) A. 6 B. 7 C. 6或7 D. 不存在6.已知2log 3.45a =,4log 3.65b =,3log 0.31(5c =,则( )A. a b c >>B. b a c >>C. c a b >>D. a c b >>7.已知a 是函数x x f x21log 2)(-=的零点,若a x <<00,则)(0x f 的值满足( )A. 0)(0=x fB. 0)(0<x fC. 0)(0>x fD. )(0x f 的符号不确定 8.执行如图所示程序框图所表达的算法,若输出的x 值 为48,则输入的x 值为( )A .12B .8C .6D .3 9.为了得到函数sin 3cos3y x x =+的图象,可以 将函数y x =的图象( )A.向右平移12π个单位B.向右平移4π个单位C.向左平移12π个单位D.向左平移4π个单位10.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( ) A.163πB. 83πC.D.11.直线3y kx =+与圆22(2)(3)4x y -+-=相交于M 、N 两点,若32≥MN ,则k 的取值范围是( )A. 3[,0]4-B .[C .[D .2[,0]3-12.椭圆22195x y +=的左、右焦点分别是12,F F ,弦AB 过1F ,若2ABF ∆的内切圆周长为2π,,A B 两点的坐标分别为11(,)x y ,22(,)x y ,则12||y y -的值为( ) A.2 B.3 C.4 D.5二、填空题:本大题共4小题,每小题5分,共20分。

剑阁县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

剑阁县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

剑阁县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .2. 二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( ) A .20 B .24C .30D .363. 与椭圆有公共焦点,且离心率的双曲线方程为( )A .B .C .D .4. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 25. 如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )A .B .C .D .6. 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )A .B .C .D .7. 在平行四边形ABCD 中,AC 为一条对角线,=(2,4),=(1,3),则等于( )A .(2,4)B .(3,5)C .(﹣3,﹣5)D .(﹣2,﹣4)8.沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为()A.B.C.D.9.设集合A={x||x﹣2|≤2,x∈R},B={y|y=﹣x2,﹣1≤x≤2},则∁R(A∩B)等于()A.R B.{x|x∈R,x≠0} C.{0} D.∅10.某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为()A.20+2πB.20+3πC.24+3πD.24+3π11.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m∥l,m⊥α,则l⊥α;②若m∥l,m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则l∥m.其中正确命题的个数是()A.1 B.2 C.3 D.412.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3﹣2x2,则f(2)+g(2)=()A.16 B.﹣16 C.8 D.﹣8二、填空题13.某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种.14.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB 最小则直线的方程是 .15.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2;⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.16.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 . 17.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足,则以此估计的π值为 .18.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= .三、解答题19.(本小题满分10分)选修41-:几何证明选讲如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.20.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(1)当a=2时,求不等式f(x)<g(x)的解集;(2)设a>,且当x∈[,a]时,f(x)≤g(x),求a的取值范围.21.已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R} (1)若A∩B=[0,3],求实数m的值;(2)若p是¬q的充分条件,求实数m的取值范围.22.(本小题满分12分)已知椭圆1C :14822=+y x 的左、右焦点分别为21F F 、,过点1F 作垂直 于轴的直线,直线2l 垂直于点P ,线段2PF 的垂直平分线交2l 于点M . (1)求点M 的轨迹2C 的方程;(2)过点2F 作两条互相垂直的直线BD AC 、,且分别交椭圆于D C B A 、、、,求四边形ABCD 面积 的最小值.23.已知函数f (x )的定义域为{x|x ≠k π,k ∈Z},且对定义域内的任意x ,y 都有f (x ﹣y )=成立,且f (1)=1,当0<x <2时,f (x )>0. (1)证明:函数f (x )是奇函数;(2)试求f (2),f (3)的值,并求出函数f (x )在[2,3]上的最值.24.已知函数(a ≠0)是奇函数,并且函数f (x )的图象经过点(1,3),(1)求实数a ,b 的值; (2)求函数f (x )的值域.剑阁县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2.故答案为:C2.【答案】A【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,故展开式中含x3项的系数为•(﹣1)3=﹣20,而所有系数和为0,不含x3项的系数之和为20,故选:A.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.3.【答案】A【解析】解:由于椭圆的标准方程为:则c2=132﹣122=25则c=5又∵双曲线的离心率∴a=4,b=3又因为且椭圆的焦点在x轴上,∴双曲线的方程为:故选A【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a,b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m>0,n>0,m≠n),双曲线方程可设为mx2﹣ny2=1(m>0,n>0,m≠n),由题目所给条件求出m,n即可.4.【答案】B【解析】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4πR2=6πa2.故选B5.【答案】D【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.6.【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B.7.【答案】C【解析】解:∵,∴==(﹣3,﹣5).故选:C.【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力.8.【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故B不正确故A选项正确.故选:A.【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键.9.【答案】B【解析】解:A=[0,4],B=[﹣4,0],所以A∩B={0},∁R(A∩B)={x|x∈R,x≠0},故选B.10.【答案】B【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),其底面面积S=2×2+=4+,底面周长C=2×3+=6+π,高为2,故柱体的侧面积为:(6+π)×2=12+2π,故柱体的全面积为:12+2π+2(4+)=20+3π,故选:B【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.11.【答案】B【解析】解:∵①若m∥l,m⊥α,则由直线与平面垂直的判定定理,得l⊥α,故①正确;②若m∥l,m∥α,则l∥α或l⊂α,故②错误;③如图,在正方体ABCD﹣A1B1C1D1中,平面ABB1A1∩平面ABCD=AB,平面ABB1A1∩平面BCC1B1=BB1,平面ABCD∩平面BCC1B1=BC,由AB、BC、BB1两两相交,得:若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n不成立,故③是假命题;④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则由α∩γ=n知,n⊂α且n⊂γ,由n⊂α及n∥β,α∩β=m,得n∥m,同理n∥l,故m∥l,故命题④正确.故选:B.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.12.【答案】B【解析】解:∵f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3﹣2x2,∴f(﹣2)﹣g(﹣2)=(﹣2)3﹣2×(﹣2)2=﹣16.即f(2)+g(2)=f(﹣2)﹣g(﹣2)=﹣16.故选:B.【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力.二、填空题13.【答案】75【解析】计数原理的应用.【专题】应用题;排列组合.【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:75.【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.14.【答案】30x y -+=【解析】试题分析:由圆C 的方程为22230x y y +--=,表示圆心在(0,1)C ,半径为的圆,点()1,2P -到圆心的距()1,2P -在圆内,所以当AB CP ⊥时,AB 最小,此时 11,1CP k k =-=,由点斜式方程可得,直线的方程为21y x -=+,即30x y -+=.考点:直线与圆的位置关系的应用. 15.【答案】 ②③④【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误; 对于②:(x ﹣1)sin α﹣(y ﹣2)cos α=1,(α∈[0,2π)),可以认为是圆(x ﹣1)2+(y ﹣2)2=1的切线系,故②正确;对于③:存在定圆C ,使得任意l ∈L ,都有直线l 与圆C 相交,如圆C :(x ﹣1)2+(y ﹣2)2=100,故③正确;对于④:任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2,作图知④正确; 对于⑤:任意意l 1∈L ,必存在两条l 2∈L ,使得l 1⊥l 2,画图知⑤错误. 故答案为:②③④.【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.16.【答案】 [,1] .【解析】解:∵全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},N ⊆M ,∴2a ﹣1≤1 且4a ≥2,解得 2≥a ≥,故实数a 的取值范围是[,1],故答案为[,1].17.【答案】.【解析】设A(1,1),B(﹣1,﹣1),则直线AB过原点,且阴影面积等于直线AB与圆弧所围成的弓形面积S1,由图知,,又,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题.18.【答案】0.6.【解析】解:随机变量ξ服从正态分布N(2,σ2),∴曲线关于x=2对称,∴P(ξ>0)=P(ξ<4)=1﹣P(ξ>4)=0.6,故答案为:0.6.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.三、解答题19.【答案】【解析】【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.20.【答案】【解析】解:(1)由|2x﹣1|+|2x+2|<x+3,得:①得x∈∅;②得0<x≤;③得…综上:不等式f(x)<g(x)的解集为…(2)∵a>,x∈[,a],∴f(x)=4x+a﹣1…由f(x)≤g(x)得:3x≤4﹣a,即x≤.依题意:[,a]⊆(﹣∞,]∴a≤即a≤1…∴a的取值范围是(,1]…21.【答案】【解析】解:由已知得:A={x|﹣1≤x ≤3}, B={x|m ﹣2≤x ≤m+2}. (1)∵A ∩B=[0,3]∴∴,∴m=2;(2)∵p 是¬q 的充分条件,∴A ⊆∁R B , 而C R B={x|x <m ﹣2,或x >m+2} ∴m ﹣2>3,或m+2<﹣1, ∴m >5,或m <﹣3.22.【答案】(1)x y 82=;(2)964. 【解析】试题分析:(1)求得椭圆的焦点坐标,连接2MF ,由垂直平分线的性质可得2MF MP =,运用抛物线的定义,即可得到所求轨迹方程;(2)分类讨论:当AC 或BD 中的一条与轴垂直而另一条与轴重合时,此时四边形ABCD 面积22b S =.当直线AC 和BD 的斜率都存在时,不妨设直线AC 的方程为()2-=x k y ,则直线BD 的方程为()21--=x ky .分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得AC ,BD .利用四边形ABCD 面积BD AC S 21=即可得到关于斜率的式子,再利用配方和二次函数的最值求法,即可得出.(2)当直线AC 的斜率存在且不为零时,直线AC 的斜率为,),(11y x A ,),(22y x C ,则直线BD 的斜率为k1-,直线AC 的方程为)2(-=x k y ,联立⎪⎩⎪⎨⎧=+-=148)2(22y x x k y ,得0888)12(2222=-+-+k x k x k .111]∴2221218k k x x +=+,22212188k k x x +-=.12)1(324)(1||22212212++=-+⋅+=k k x x x x k AC .由于直线BD 的斜率为k 1-,用k 1-代换上式中的。

湖北省华中师范大学第一附中学2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

湖北省华中师范大学第一附中学2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

华中师大一附中2018—2019学年度上学期期末考试高二年级数学(理科)试题一,选择题:(本大题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.)1.用秦九韶算法求多项式当地值时,,则地值是A. 2B. 1C. 15D. 17【结果】C【思路】【思路】运用秦九韶算法将多项式进行化简,然后求出地值【详解】,当时,,故选【点睛】本题主要考查了秦九韶算法,结合已知款件即可计算出结果,较为基础2.某宠物商店对30只宠物狗地体重(单位:千克)作了测量,并依据所得数据画出了频率分布直方图如下图所示,则这30只宠物狗体重(单位:千克)地平均值大约为A. 15.5B. 15.6C. 15.7D. 16【结果】B【思路】【思路】由频率分布直方图分别计算出各组得频率,频数,然后再计算出体重地平均值【详解】由频率分布直方图可以计算出各组频率分别为:,频数为:则平均值为:故选【点睛】本题主要考查了由频率分布直方图计算平均数,需要注意计算不要出错3.若方程,其中,则方程地正整数解地个数为A. 10B. 15C. 20D. 30【结果】A【思路】【思路】将方程正整数解问题转化为排列组合问题,采用挡板法求出结果【详解】方程,其中,则将其转化为有6个完全相同地小球,排成一列,利用挡板法将其分成3组,第一组小球数目为第二组小球数目为第三组小球数目为共有种方式故方程地正整数解地个数为10故选【点睛】本题主要考查了多圆方程地正整数解地问题,在求解过程中将其转化为排列组合问题,运用挡板法求出结果,体现地转化地思想4.过作圆地切线,切点分别为,且直线过双曲线地右焦点,则双曲线地渐近线方程为A. B. C. D.【结果】B【思路】【思路】由题意先求出直线地方程,然后求出双曲线地右焦点,继而解出渐近线方程【详解】过作圆地切线,切点分别为,则两点在以点,连接线段为直径地圆上则圆心为,圆地方程为直线为两圆公共弦所在直线则直线地方程为:即,交轴由题意可得双曲线地右焦点为则解得,,故渐近线方程,即故选【点睛】本题主要考查了直线,圆,双曲线地综合问题,在解题过程中运用了直线与圆相切,两圆公共弦所在直线方程地求解,最后再结合款件计算出双曲线方程,得到渐近线方程,知识点较多,需要熟练掌握各知识点5.给出下面结论:(1)某学校从编号依次为001,002,…,900地900个学生中用系统抽样地方式抽取一个样本,已知样本中有两个相邻地编号分别为053,098,则样本中最大地编号为862.(2)甲组数据地方差为5,乙组数据为5,6,9,10,5,那么这两组数据中较稳定地是甲.(3)若两个变量地线性相关性越强,则相关系数地值越接近于1.(4)对A,B,C三种个体按3:1:2地比例进行分层抽样调查,若抽取地A种个体有15个,则样本容量为30.则正确地个数是A. 3B. 2C. 1D. 0【结果】C【思路】【思路】运用抽样,方差,线性相关等知识来判定结论是否正确【详解】(1)中相邻地两个编号为053,098,则样本组距为样本容量为则对应号码数为当时,最大编号为,不是,故(1)错误(2)甲组数据地方差为5,乙组数据为5,6,9,10,5,则乙组数据地方差为那么这两组数据中较稳定地是乙,故(2)错误(3)若两个变量地线性相关性越强,则相关系数地绝对值越接近于1,故错误(4)按3:1:2地比例进行分层抽样调查,若抽取地A种个体有15个,则样本容量为,故正确综上,故正确地个数为1故选【点睛】本题主要考查了系统抽样,分层抽样,线性相关,方差相关知识,熟练运用各知识来进行判定,较为基础6.已知是之间地两个均匀随机数,则“能构成钝角三角形三边”地概率为A. B. C. D.【结果】A【思路】【思路】由已知款件得到有关地范围,结合图形运用几何概型求出概率【详解】已知是之间地两个均匀随机数,则均小于1,又能构成钝角三角形三边,结合余弦定理则,又由三角形三边关系得,如图:则满足款件地区域面积为,则满足题意地概率为,故选【点睛】本题考查了几何概率,首先要得到满足题意中地款件地不等式,画出图形,由几何概率求出结果,在解题中注意限制款件7.已知实数满足,则地取值范围是A. (-∞,0]∪(1,+∞)B. (-∞,0]∪[1,+∞)C. (-∞,0]∪[2,+∞)D. (-∞,0]∪(2,+∞)【结果】A【思路】【思路】先画出可行域,化简款件中地,将范围问题转化为斜率问题求解【详解】由,可得令,则为单调增函数即有可行域为:又因为,则问题可以转化为可行域内地点到连线斜率地取值范围将代入将代入结合图形,故地取值范围是故选【点睛】本题主要考查了线性规划求范围问题,在解答过程中要先画出可行域,然后将问题转化为斜率,求出结果,解题关键是对款件地转化8.在二项式地展开式中,当且仅当第5项地二项式系数最大,则系数最小地项是A. 第6项B. 第5项C. 第4项D. 第3项【结果】C【思路】【思路】由已知款件先计算出地值,然后计算出系数最小地项【详解】由题意二项式地展开式中,当且仅当第5项地二项式系数最大,故二项式展开式地通项为要系数最小,则为奇数当时,当时,当时,当时,故当当时系数最小则系数最小地项是第4项故选【点睛】本题主要考查了二项式展开式地应用,结合其通项即可计算出系数最小地项,较为基础9.已知椭圆地左,右焦点分别为,过地直线与椭圆交于两点,若且,则椭圆地离心率为A. B. C. D.【结果】C【思路】【思路】由已知款件进行转化,得到三角形三边地表示数量关系,再结合款件运用余弦定理求出结果【详解】如图得到椭圆图形,由题意中,两个三角形高相同故可以得到,又则,,由可以推得,即有,,,又因为,所以即有化简得,即,解得,故椭圆地离心率为故选【点睛】本题考查了求椭圆地离心率以及直线和椭圆地位置关系,结合椭圆地定义和已知角相等分别求出各边长,然后运用余弦定理求出结果,需要一定地计算量10.将一颗质地均匀地骰子先后抛掷三次,则数字之和能被3整除地概率为A. B. C. D.【结果】A【思路】【思路】先计算出一共有多少种情况,然后再计算出满足数字之和能被3整除地情况,求出概率【详解】先后抛掷三次一共有种情况数字之和能被3整除,则以第一次出现1为例,有:,共种,则运用枚举法可得数字之和能被3整除一共有种可能,数字之和能被3整除地概率为故选【点睛】本题主要考查了古典概率,结合古典概率公式分别求出符合款件地基本事件数,然后计算出结果,较为基础11.在下方程序框图中,若输入地分别为18,100,输出地地值为,则二项式地展开式中地常数项是A. 224B. 336C. 112D. 560【结果】D【思路】【思路】由程序图先求出地值,然后代入二项式中,求出展开式中地常数项【详解】由程序图可知求输入地最大公约数,即输出则二项式为地展开通项为要求展开式中地常数项,则当取时,令解得,则结果为,则当取时,令,解得,则结果为,故展开式中地常数项为,故选【点睛】本题考查了运用流程图求两个数地最大公约数,并求出二项式展开式中地常数项,在求解过程中注意题目地化简求解,属于中档题12.如下图,已知分别为双曲线地左,右焦点,过地直线与双曲线C地右支交于两点,且点A,B分别为地内心,则地取值范围是A. B. C. D.【结果】D【思路】【思路】由双曲线定义结合内切圆计算出点地横坐标,同理计算出点地横坐标,可得点地横坐标相等,然后设,用含有地正切值表示出内切圆半径,求出地取值范围.【详解】如图,圆与切于点三点,由双曲线定义,即,所以则,又,,故,同理可得,即,设,,,直线与双曲线右支交于两点,又知渐近线方程为,可得,设圆和圆地半径分别为,则,,所以因为,由基本不等式可得,故选【点睛】本题考查了直线与双曲线地位置关系,又得三角形地内切圆问题,在求解过程中将其转化利用双曲线定义求出,且得到两点横坐标,然后结合了三角函数求出半径之和,考查了转化地能力,较为综合二,填空题(本大题共4小题,每小题5分,共20分.)13.向正方形随机撒一些豆子,经查数,落在正方形内地豆子地总数为1000,其中有780粒豆子落在该正方形地内切圆内,以此估计圆周率地值(用分数表示)为____________.【结果】【思路】【思路】运用古典概率和几何概率来估计圆周率地值【详解】令正方形内切圆地半径为,则正方形边长为,则由题意中“落在正方形内地豆子地总数为1000,其中有780粒豆子落在该正方形地内切圆内”可得,化简得【点睛】本题考查了结合概率问题来估计圆周率地值,较为基础14.下图是华师一附中数学讲故事大赛7位评委给某位学生地表演打出地分数地茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中地x)无法看清,若记分员计算无误,则数字x应该是____________.【结果】1【思路】【思路】因为题目中要去掉一个最高分,所以对进行分类讨论,然后结合平均数地计算公式求出结果【详解】若,去掉一个最高分和一个最低分86分后,平均分为,不符合题意,故,最高分为94分,去掉一个最高分94分,去掉一个最低分86分后,平均分,解得,故数字为1【点睛】本题考查了由茎叶图求平均值,理解题目意思运用平均数计算公式即可求出结果,注意分类讨论15.将排成一排,则字母不在两端,且三个数字中有且只有两个数字相邻地概率是___ _________.【结果】【思路】【思路】分类讨论不同字母和数字地特殊情况可能出现地结果,然后运用古典概率求出结果【详解】将排成一排一共有种不同排法,则字母不在两端,且三个数字中有且只有两个数字相邻有种不同地排法,所以其概率为,故结果为【点睛】本题考查了排列组合问题,注意在排列过程中一些特殊地位置要求,不重复也不遗漏,属于中档题16.已知圆上存在点,使(为原点)成立,,则实数地取值范围是____________.【结果】【思路】【思路】依据款件中计算出点地轨迹,然后转化为圆和圆地位置关系求出实数地取值范围【详解】由题意中,设,则,化简得,又点在圆上,故两圆有交点,可得,又因为,解得【点睛】本题考查了圆和圆地位置关系,在解题时遇到形如款件时可以求出点地轨迹为圆,然后转化为圆和圆地位置关系来求解,属于中档题三,解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.为了解华师一附中学生喜欢吃辣是否与相关,调研部(共10人)分三组对高中三个年级地学生进行调查,每个年级至少派3个人进行调查.(1)求调研部地甲,乙两人都被派到高一年级进行调查地概率.(2)调研部对三个年级共100人进行了调查,得到如下地列联表,请将列联表补充完整,并判断是否有以上地把握认为喜欢吃辣与相关?喜欢吃辣不喜欢吃辣合计男生10女生2030合计100参考数据:参考公式:,其中.【结果】(1)。

2019-2020年高二下学期期末数学试卷(理科) 含解析

2019-2020年高二下学期期末数学试卷(理科) 含解析

2019-2020年高二下学期期末数学试卷(理科)含解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.23.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=45.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.46.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.38.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是.16.在平面直角坐标系xOy中,直线1与曲线y=x2(x>0)和y=x3(x>0)均相切,切点分别为A(x1,y1)和B(x2,y2),则的值为.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤)17.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),直线l过点(0,2)且倾斜角为.(Ⅰ)求圆C的普通方程及直线l的参数方程;(Ⅱ)设直线l与圆C交于A,B两点,求弦|AB|的长.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数女性驾驶员人数合计(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.82822.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.2015-2016学年吉林省东北师大附中净月校区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]【考点】交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,再根据复数相等的充要条件列出方程组,求解即可得答案.【解答】解:===i,则,解得:a=1.故选:C.3.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)【考点】简单曲线的极坐标方程.【分析】利用x=ρcosθ,y=ρsinθ即可得出直角坐标.【解答】解:点M的极坐标(4,)化成直角坐标为,即.故选:B.4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=4【考点】伸缩变换.【分析】把伸缩变换的式子变为用x′,y′表示x,y,再代入原方程即可求出.【解答】解:由得,代入直线x﹣2y=2得,即2x′﹣y′=4.故选B.5.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.4【考点】定积分在求面积中的应用.【分析】利用积分的几何意义即可得到结论.【解答】解:由题意,S===4﹣=,故选:C.6.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.【考点】条件概率与独立事件.【分析】根据题意,易得在第一次抽到次品后,有2件次品,7件正品,由概率计算公式,计算可得答案.【解答】解:根据题意,在第一次抽到次品后,有2件次品,7件正品;则第二次抽到次品的概率为故选:C.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①根据逆否命题的定义进行判断②根据充分条件和必要条件的定义进行判断,③根据集合关系进行判断.【解答】解:①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”正确,故①正确,②由|x|>1得x>1或x<﹣1,则“x>1”是“|x|>1”的充分不必要条件;故②正确,③集合A={1},B={x|ax﹣1=0},若B⊆A,当a=0时,B=∅,也满足B⊆A,当a≠0时,B={},由=1,得a=1,则实数a的所有可能取值构成的集合为{0,1}.故③错误,故正确的是①②,故选:C8.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【考点】n次独立重复试验中恰好发生k次的概率.【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选C.9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出取出的3件产品中一等品件数多于二等品件数包含的基本事件个数,由此能求出取出的3件产品中一等品件数多于二等品件数的概率.【解答】解:∵在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,基本事件总数n==120,取出的3件产品中一等品件数多于二等品件数包含的基本事件个数m==22,∴取出的3件产品中一等品件数多于二等品件数的概率p===.故选:C.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】利用在切点处的导数值是切线的斜率,令f′(x)=2有解;利用有解问题即求函数的值域问题,求出值域即a的范围.【解答】解:f′(x)=﹣e﹣x+a据题意知﹣e﹣x+a=2有解即a=e﹣x+2有解∵e﹣x+2>2∴a>2故选C11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.【考点】抽象函数及其应用.【分析】先研究函数的奇偶性知它是非奇非偶函数,从而排除A、D两个选项,再看此函数的最值情况,即可作出正确的判断.【解答】解:由于f(x)=e sinx,∴f(﹣x)=e sin(﹣x)=e﹣sinx∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A,D;又当x=时,y=e sinx取得最大值,排除B;故选:C.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1【考点】利用导数求闭区间上函数的最值.【分析】当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,一方面0<1+ln(x2﹣m)≤,.利用lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.可得1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,可得m≥x﹣e x﹣e,利用导数求其最大值即可得出.【解答】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为0.3.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P (X<0).【解答】解:∵随机变量X服从正态分布N(2,o2),∴正态曲线的对称轴是x=2∵P(X>4)=0.3,∴P(X<0)=P(X>4)=0.3.故答案为:0.3.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=2.【考点】利用导数研究函数的极值.【分析】求出函数的导数,得到f′(1)=0,得到关于a的方程,解出即可.【解答】解:∵f(x)=x2﹣alnx,x>0,∴f′(x)=2x﹣=,若函数f(x)在x=1处取极值,则f′(1)=2﹣a=0,解得:a=2,经检验,a=2符合题意,故答案为:2.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是46.【考点】归纳推理.【分析】由三角形阵可知,上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,利用累加法可求.【解答】解:设第一行的第二个数为a 1=1,由此可得上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,即a 2﹣a 1=1,a 3﹣a 2=2,a 4﹣a 3=3,…a n ﹣1﹣a n ﹣2=n ﹣2,a n ﹣a n ﹣1=n ﹣1, ∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =(n ﹣1)+(n ﹣2)+…+3+2+1+1 =+1=,∴a 10==46.故答案为:46.16.在平面直角坐标系xOy 中,直线1与曲线y=x 2(x >0)和y=x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则的值为.【考点】抛物线的简单性质.【分析】求出导数得出切线方程,即可得出结论.【解答】解:由y=x 2,得y ′=2x ,切线方程为y ﹣x 12=2x 1(x ﹣x 1),即y=2x 1x ﹣x 12, 由y=x 3,得y ′=3x 2,切线方程为y ﹣x 23=3x 22(x ﹣x 2),即y=3x 22x ﹣2x 23, ∴2x 1=3x 22,x 12=2x 23, 两式相除,可得=.故答案为:.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤) 17.在平面直角坐标系xOy 中,圆C 的参数方程为(φ为参数),直线l 过点(0,2)且倾斜角为.(Ⅰ)求圆C 的普通方程及直线l 的参数方程;(Ⅱ)设直线l 与圆C 交于A ,B 两点,求弦|AB |的长. 【考点】参数方程化成普通方程. 【分析】(Ⅰ)圆C 的参数方程为(φ为参数),利用cos 2φ+sin 2φ=1消去参数可得圆C 的普通方程.由题意可得:直线l 的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离d,利用|AB|=2即可得出.【解答】解:(Ⅰ)圆C的参数方程为(φ为参数),消去参数可得:圆C的普通方程为x2+y2=4.由题意可得:直线l的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离,∴|AB|=2=2.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)直线l:(t为参数),消去参数t可得普通方程.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.(Ⅱ)把代入椭圆方程中,整理得,设A,B对应的参数分别为t1,t2,由t得几何意义可知|MA||MB|=|t1t2|.【解答】解:(Ⅰ)直线l:(t为参数),消去参数t可得普通方程:l:x﹣y+1=0.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,可得直角坐标方程:x2+y2+y2=2,即.(Ⅱ)把代入中,整理得,设A,B对应的参数分别为t1,t2,∴,由t得几何意义可知,.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(Ⅰ)利用等可能事件概率计算公式能求出元件甲,乙为正品的概率.(Ⅱ)随机变量X的所有取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解答】解:(Ⅰ)元件甲为正品的概率约为:,元件乙为正品的概率约为:.(Ⅱ)随机变量X的所有取值为0,1,2,,,,所以随机变量X的分布列为:X 0 1 2P所以:.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为在区间[1,4]上恒成立,令,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)函数的定义域为R,当a=1时,f(x)=x3﹣x2+6x,f′(x)=3(x﹣1)(x﹣2),当x<1时,f′(x)>0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0,∴f(x)的单调增区间为(﹣∞,1),(2,+∞),单调减区间为(1,2).(Ⅱ)即在区间[1,4]上恒成立,令,故当时,g(x)单调递减,当时,g(x)单调递增,时,∴,即.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828【考点】离散型随机变量的期望与方差;独立性检验;离散型随机变量及其分布列.【分析】(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.求出Χ2,即可判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率,X可取值是0,1,2,3,,求出概率得到分布列,然后求解期望即可.【解答】解:(Ⅰ)平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数40 15 55女性驾驶员人数20 25 45合计60 40 100因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关.…(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为.X可取值是0,1,2,3,,有:,,,,分布列为X 0 1 2 3P.…22.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,问题转化为a≤x2,求出a的范围即可;(2)问题可化为,设,求出函数的导数,问题等价于m≥x3﹣ax在[1,2]上恒成立,求出m的最小值即可.【解答】解:(1)∵在[1,2]上是增函数,∴恒成立,…所以a≤x2…只需a≤(x2)min=1…(2)因为﹣2≤a<0,由(1)知,函数f(x)在[1,2]上单调递增,…不妨设1≤x1≤x2≤2,则,可化为,设,则h(x1)≥h(x2).所以h(x)为[1,2]上的减函数,即在[1,2]上恒成立,等价于m≥x3﹣ax在[1,2]上恒成立,…设g(x)=x3﹣ax,所以m≥g(x)max,因﹣2≤a<0,所以g'(x)=3x2﹣a>0,所以函数g(x)在[1,2]上是增函数,所以g(x)max=g(2)=8﹣2a≤12(当且仅当a=﹣2时等号成立).所以m≥12.即m的最小值为12.…2016年10月17日。

湖北省黄冈市2018-2019学年高二上学期期末考试数学(理科)试题 Word版含解析

湖北省黄冈市2018-2019学年高二上学期期末考试数学(理科)试题 Word版含解析

湖北省黄冈市2018年秋季高二年级期末考试数学试题(理科)第Ⅰ卷(共60分)一,选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.任意抛两枚一圆硬币,记事件:恰好一枚正面朝上。

:恰好两枚正面朝上。

:恰好两枚正面朝上。

:至少一枚正面朝上。

:至多一枚正面朝上,则下面事件为对立事件地是()A. 与B. 与C. 与D. 与【结果】D【思路】【思路】依据对立事件地定义,逐项判断即可.【详解】因为与地并事件不是必然事件,因此A错。

至少一枚正面朝上包含恰好两枚正面朝上,所以与m不是对立事件,故B错。

因与是均表示两枚正面向上,所以与是相等事件,故C错。

所以选D.【点睛】本题主要考查对立事件地概念,属于基础题型.2.某同学地6次数学测试成绩(满分100分)进行统计,作出地茎叶图如图所示,给出有关该同学数学成绩地以下表达:①中位数为84。

②众数为85。

③平均数为85,。

④极差为12.其中,正确表达地序号是()A. ①④B. ①③C. ②④D. ③④【结果】B【思路】【思路】由茎叶图思路中位数,众数,平均数,极差【详解】①依据茎叶图可知,中位数为,故正确②依据茎叶图可知,数据出现最多地是83,故众数为83,故错误③平均数.故正确④依据茎叶图可知最大地数为91,最小地数为78,故极差为91-78=13,故错误综上,故正确地为①③故选B【点睛】本题主要考查了思路茎叶图中地数据特征,较为简单3.已知双曲线方程为,则其焦点到渐近线地距离为()A. 2B. 3C. 4D. 6【结果】A【思路】【思路】先由双曲线地方程求出焦点坐标,以及渐近线方程,再由点到直线地距离公式求解即可.【详解】因为双曲线方程为,所以可得其一个焦点为,一款渐近线为,所以焦点到渐近线地距离为,故选A.【点睛】本题主要考查双曲线地简单性质,属于基础题型.4.点地坐标分别是,,直线与相交于点,且直线与地斜率地商是,则点地轨迹是()A. 直线B. 圆C. 椭圆D. 抛物线【结果】A【思路】【思路】设点M坐标,由题意列等量关系,化简整理即可得出结果.【详解】设,由题意可得,,因为直线与地斜率地商是,所以,化简得,为一款直线,故选A.【点睛】本题主要考查曲线地方程,通常情况下,都是设曲线上任一点坐标,由题中款件找等量关系,化简整理,即可求解,属于基础题型.5.下面命题中地假命题是()A. 对于命题,,则B. “”是“”地充分不必要款件C. 若命题为真命题,则都是真命题D. 命题“若,则”地逆否命题为:“若,则”【结果】C【思路】【思路】利用命题地否定,判断A。

2019学年湖北省高二上学期期末理科数学试卷【含答案及解析】(1)

2019学年湖北省高二上学期期末理科数学试卷【含答案及解析】(1)

2019学年湖北省高二上学期期末理科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下面哪些变量是相关关系()A.出租车费与行驶的里程________B.房屋面积与房屋价格C.人的身高与体重D.铁块的大小与质量2. 设一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上10,得到一组新数据,则所得新数据的平均数和方差分别是()A.12.8 3.6________ B.2.8 13.6________ C.12.8 13.6________ D.13.6 12.83. “曲线C上的点的坐标都是方程 =0的解”是“方程 =0是曲线C的方程”的()条件.A.充分非必要________B.必要非充分C.充要________D.既非充分也非必要4. 已知命题p:∃ x ∈ (0,),使得cosx≥x,则该命题的否定是()A.∃ x ∈ (0,),使得cosx>x________B.∀ x ∈ (0,),使得cosx≥xC.∃ x ∈ (0,),使得cosx<x________D.∀ x ∈ (0,),使得cosx<x5. 如图给出的是计算的值的程序框图,其中判断框内应填入的是()A.i≤2014?________ B.i≤2016?________ C.i≤2018?________ D.i≤2020?6. 下列函数是正态分布密度函数的是()A.f(x)= ________B.f(x)=C.f(x)= ________D.f(x)=7. 学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n且支出在[20,60)元的样本,其频率分布直方图如图所示,根据此图估计学生在课外读物方面的支出费用的中位数为()元.A.45________ B.46________ C.________ D.8. 12名同学分别到三个企业进行社会调查,若每个企业4人,则不同的分配方案共有()种.A.________ B.C.________ D.9. 有一个公用电话亭,在观察使用这个电话的人的流量时,设在某一时刻,有n个人正在使用电话或等待使用的概率为P(n),且P(n)与时刻t无关,统计得到P(n)=,那么在某一时刻这个公用电话亭里一个人也没有的概率P(0)的值是()A.0________ B.1________ C.________ D.10. 过椭圆 + =1内的一点P(2,﹣1)的弦,恰好被P点平分,则这条弦所在的直线方程是()A.5x﹣3y﹣13=0________________ B.5x+3y﹣13=0________C.5x﹣3y+13=0_________________ D.5x+3y+13=011. 设(1+x)+(1+x) 2 +(1+x)3 +…+(1+x)n =a 0 +a 1 x+a 2 x 2 +…+a n x n ,当a 0 +a 1 +a 2 +…+a n =254时,n等于()A.5________ B.6________ C.7________ D.812. 如果椭圆上一点M到此椭圆一个焦点F 1 的距离为2,N是MF 1 的中点,O是坐标原点,则ON的长为()A.2________ B.4________ C.8________ D.二、填空题13. 下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是 =﹣0.7x+ ,则=___________ .p14. ly:宋体; font-size:10.5pt">月份x 1 2 3 4 用水量y 4.5 4 3 2.5三、选择题15. 阅读程序框图,如果输出的函数值在区间内,则输入的实数x的取值范围是___________ .四、填空题16. 若在区间[﹣5,5 ] 内任取一个实数a,则使直线x+y+a=0与圆(x﹣1) 2 +(y+2)2 =2有公共点的概率为_________ .17. 甲、乙两位同学玩游戏,对于给定的实数a 1 ,按下列方法操作一次产生一个新的实数:由甲、乙同时各抛一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把a 1 乘以2后再减去12;如果出现一个正面朝上,一个反面朝上,则把a 1 除以2后再加上12,这样就可得到一个新的实数a 2 ,对a 2 仍按上述方法进行一次操作,又得到一个新的实数a 3 ,当a 3 >a 1 时,甲获胜,否则乙获胜.若甲获胜的概率为,则a 1 的取值范围是___________ .五、解答题18. 若展开式中第二、三、四项的二项式系数成等差数列.(1)求n的值;(2)此展开式中是否有常数项,为什么?19. 某班共有36名学生,其中有班干部6名.现从36名同学中任选2名代表参加某次活动.求:(1)恰有1名班干部当选代表的概率;(2)至少有1名班干部当选代表的概率;(3)已知36名学生中男生比女生多,若选得同性代表的概率等于,则男生比女生多几人?20. 设命题p:函数f(x)=lg(x 2 +ax+1)的定义域为R;命题q:函数f(x)=x 2 ﹣2ax﹣1在(﹣∞,﹣1 ] 上单调递减.(1)若命题“p ∨ q” 为真,“p ∧ q”为假,求实数a的取值范围;(2)若关于x的不等式(x﹣m)(x﹣m+5)<0(m ∈ R)的解集为M;命题p为真命题时,a的取值集合为N.当M ∪ N=M 时,求实数m的取值范围.21. 为了解荆州中学学生健康状况,从去年高二年级体检表中抽取若干份,将他们的体重数据作为样本.将样本的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.(Ⅰ )求样本的容量;(Ⅱ )以荆州中学的样本数据来估计全省的总体数据,若从全省高二年级的所有学生中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.22. 有红、黄、蓝、白4种颜色的小球,每种小球数量不限且它们除颜色不同外,其余完全相同,将小球放入如图所示编号为1,2,3,4,5的盒子中,每个盒子只放一只小球.(1)放置小球满足:“对任意的正整数j(1≤j≤5),至少存在另一个正整数k(1≤k≤5,且j≠k)使得j号盒子与k号盒子中所放小球的颜色相同”的概率;(2)记X为5个盒子中颜色相同小球个数的最大值,求X的概率分布和数学期望E(X).23. 如图已知,椭圆的左、右焦点分别为F 1 、F 2 ,过F1 的直线l与椭圆相交于A、B两点.(Ⅰ )若∠ AF 1 F 2 =60°,且,求椭圆的离心率;(Ⅱ )若,求的最大值和最小值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】。

五莲县三中2018-2019学年高二上学期数学期末模拟试卷含解析

五莲县三中2018-2019学年高二上学期数学期末模拟试卷含解析

五莲县三中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若函数)1(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是( )] A .1=x B .1-=x C .2=x D .2-=x 2. 用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数3. “24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 4. 棱长为2的正方体的8个顶点都在球O 的表面上,则球O 的表面积为( ) A .π4 B .π6 C .π8 D .π105. 设集合( )A .B .C .D .6. 设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)7. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )A .1B .C .D .28. 直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为( )A .B .C .D .9. 为了得到函数y=sin3x 的图象,可以将函数y=sin (3x+)的图象( )A .向右平移个单位 B .向右平移个单位C .向左平移个单位D .向左平移个单位10.下列计算正确的是( )A 、2133x x x ÷= B 、4554()x x = C 、4554x x x = D 、44550x x -=11.设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( )A .﹣3<a <﹣1B .﹣3≤a ≤﹣1C .a ≤﹣3或a ≥﹣1D .a <﹣3或a >﹣112.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .二、填空题13.已知=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .14.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.15.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111]16.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 .17.命题“若1x ≥,则2421x x -+≥-”的否命题为.18.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.三、解答题19.求同时满足下列两个条件的所有复数z:①z+是实数,且1<z+≤6;②z的实部和虚部都是整数.20.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O 为AC中点.(Ⅰ)证明:A1O⊥平面ABC;(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.21.(本题满分15分)已知函数c bx ax x f ++=2)(,当1≤x 时,1)(≤x f 恒成立. (1)若1=a ,c b =,求实数b 的取值范围;(2)若a bx cx x g +-=2)(,当1≤x 时,求)(x g 的最大值.【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力.22.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.23.实数m取什么数值时,复数z=m+1+(m﹣1)i分别是:(1)实数?(2)虚数?(3)纯虚数?24.(本小题满分12分)椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,P是椭圆上一点,PF⊥x轴,A,B是C的长轴上的两个顶点,已知|PF|=1,k P A·k PB=-12.(1)求椭圆C的方程;(2)过椭圆C的中心O的直线l交椭圆于M,N两点,求三角形PMN面积的最大值,并求此时l的方程.五莲县三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】A 【解析】试题分析:∵函数)1(+=x f y 向右平移个单位得出)(x f y =的图象,又)1(+=x f y 是偶函数,对称轴方程为0=x ,∴)(x f y =的对称轴方程为1=x .故选A . 考点:函数的对称性.2. 【答案】B【解析】解:∵结论:“自然数a ,b ,c 中恰有一个偶数” 可得题设为:a ,b ,c 中恰有一个偶数 ∴反设的内容是 假设a ,b ,c 中至少有两个偶数或都是奇数.故选B .【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“.3. 【答案】A【解析】因为tan y x =在,22ππ⎛⎫-⎪⎝⎭上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24x ππ-<≤”是“tan 1x ≤”的充分不必要条件,故选A. 4. 【答案】B 【解析】考点:球与几何体 5. 【答案】B【解析】解:集合A 中的不等式,当x >0时,解得:x >;当x <0时,解得:x <,集合B 中的解集为x >,则A∩B=(,+∞).故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.6.【答案】A【解析】解:令f(x)=x3﹣,∵f′(x)=3x2﹣ln=3x2+ln2>0,∴f(x)=x3﹣在R上单调递增;又f(1)=1﹣=>0,f(0)=0﹣1=﹣1<0,∴f(x)=x3﹣的零点在(0,1),∵函数y=x3与y=()x的图象的交点为(x0,y0),∴x0所在的区间是(0,1).故答案为:A.7.【答案】A【解析】解:极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1.故选:A.【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.8.【答案】A【解析】直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.9.【答案】A【解析】解:由于函数y=sin(3x+)=sin[3(x+)]的图象向右平移个单位,即可得到y=sin[3(x+﹣)]=sin3x的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+∅)的图象平移变换,属于中档题.10.【答案】B【解析】试题分析:根据()a aβααβ⋅=可知,B正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019学年湖北省高二上学期期末理科数学试卷【含答
案及解析】
姓名___________ 班级____________ 分数__________
一、选择题
1. 命题“ ∀ n ∈ Z,n ∈ Q”的否定是()
A.∃ n 0 ∈ Z,n 0 ∉ Q _________ B.∃ n 0 ∉ Z,n 0 ∈ Q
C.∀ n 0 ∈ Z,n 0 ∉ Q ________ D.∀ n 0 ∉ Z,n 0 ∈ Q
2. 抛物线y=﹣的焦点坐标是()
A.(0,) B.(,0) C.(0,﹣2) D.(﹣2,0)
3. 设X是一个离散型随机变量,其分布列如图,则q等于()p
4. ly:宋体; font-size:10.5pt">x ﹣1 0 1 P 0.5 1﹣2q q 2
A.1 B.1± C.1﹣ D.1+
5. 下列命题中正确的个数为()
①线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱;
②残差平方和越小的模型,模型拟合的效果越好;
③用相关指数R 2 来刻画回归效果,R 2 越小,说明模型的拟合效果越好.
A.1 B.2 C.3 D.0
6. 设随机变量ξ~N(μ,σ 2 ),函数f(x)=x 2 +4x+ξ没有零点的概率是0.5,则μ等于()
A.1 B.4 C.2 D.不能确定
7. l 1 ,l 2 表示空间中的两条直线,若p:l 1 ,l 2 是异面直线,q:l 1 ,l 2
不相交,则()
A.p是q的充分条件,但不是q的必要条件
B.p是q的必要条件,但不是q的充分条件
C.p是q的充分必要条件
D.p既不是q的充分条件,也不是q的必要条件
8. 给出一个如图所示的流程图,若要使输入的x值与输出的y值相等,则这样的x值的个数是()
A.1 B.2 C.3 D.4
9. 假设在5秒内的任何时刻,两条不相关的短信机会均等地进人同一部手机,若这两条短信进人手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为()
A. B. C. D.
10. 在△ ABC 中,A(x,y),B(﹣2,0),C(2,0),给出△ ABC 满足的条件,就能得到动点A的轨迹方程,如表给出了一些条件及方程:p
11. ly:宋体; font-size:10.5pt">条件方程①△ABC周长为10;
②△ABC面积为10;
③△ABC中,∠A=90° E 1 :y 2 =25;
E 2 :x 2 +y 2 =4(y≠0);
E 3 :
则满足条件①、②、③的轨迹方程分别用代号表示为()
A.E 3 ,E 1 ,E 2 B.E 1 ,E 2 ,E 3 C.E 3 ,E 2 ,E 1 D.E 1 ,E 3 ,E 2
12. 已知椭圆 + =1上的一点M到焦点F 1 的距离为2,N是MF 1 的中点,O
为原点,则|ON|等于()
A.2 B.4 C.8 D.
13. 某中学四名高二学生约定“五一”节到本地区三处旅游景点做公益活动,如果每个
景点至少一名同学,且甲乙两名同学不在同一景点,则这四名同学的安排情况有()
A.10种 B.20种 C.30种 D.40种
14. 设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A
1 B 1 和A
2 B 2 ,使|A 1 B 1 |=|A 2 B 2 |,其中A 1 、B 1 和A 2 、B 2 分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是()
A.________________ B.________
C.________ D.
二、填空题
15. 某项测试有6道试题,小明答对每道试题的概率都是,则小明参加测试(做完
全部题目)刚好答对2道试题的概率为_________ .
16. (2x﹣) 6 展开式中常数项为___________ (用数字作答).
17. 许多因素都会影响贫穷,教育也许是其中的一个,在研究这两个因素的关系时,收
集了某国50个地区的成年人至多受过9年教育的百分比(x%)和收入低于官方规定的贫
困线的人数占本地区人数的百分比(y%)的数据,建立的回归直线方程是y=0.8x+4.6,这里,斜率的估计0.8说明一个地区受过9年或更少的教育的百分比每增加___________ ,
则收入低于官方规定的贫困线的人数占本地区人数的百分比将增加___________ 左右.
18. 甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以A 1 ,A 2 和A 3 表示由甲罐取出的球
是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球
的事件;则下列结论中正确的是:___________ .
①P(B)= ;
②P(B|A 1 )= ;
③事件B与事件A 1 相互独立;
④P(B)的值不能确定,因为它与A 1 ,A 2 和A 3 中哪一个发生有关;
⑤事件A 1 ,A 2 和A 3 两两互斥.
三、解答题
19. (2015秋•湖北校级期末)已知命题p:方程x 2 +mx+1=0有两个不相等的实根;q:不等式4x 2 +4(m﹣2)x+1>0的解集为R;若p或q为真,p且q为假,求实数m的取
值范围.
20. 在平面直角坐标系中,已知点A(﹣1,0),B(1,0),动点P满足:•
=m(| • | 2 ﹣ 2 ),求动点P的轨迹方程,并根据m的取值讨论方程所表
示的曲线类型.
21. 袋内装有6个球,这些琮依次被编号为l、2、3、…、6,设编号为n的球重n 2
﹣6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).
(1)从袋中任意取出一个球,求其重量大于其编号的概率;
(2)如果不放回的任意取出2个球,求它们重量相等的概率.
22. 如图是某市有关部门根据对某地干部的月收入情况调查后画出的样本频率分布直方图,已知图中第一组的频数为4000.请根据该图提供的信息解答下列问题:(图中每组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)
(1)求样本中月收入在[2500,3500)的人数;
(2)为了分析干部的收入与年龄、职业等方面的关系,必须从样本的各组中按月收入再
用分层抽样方法抽出100人作进一步分析,则月收入在[1500,2000)的这段应抽多少人?(3)试估计样本数据的中位数.
23. 有编号为1,2,3,…,n的n个学生,入坐编号为1,2,3,…n的n个座位.每
个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为ξ,已知
ξ=2时,共有6种坐法.
(1)求n的值;
(2)求随机变量ξ的概率分布列和数学期望.
24. 直线l与椭圆交于A(x 1 ,y 1 ),B(x 2 ,y 2 )
两点,已知 =(ax 1 ,by 1 ), =(ax 2 ,by 2 ),若⊥ 且椭圆的离心率,又椭圆经过点,O为坐标原点.
(Ⅰ )求椭圆的方程;
(Ⅱ )若直线l过椭圆的焦点F(0,c)(c为半焦距),求直线l的斜率k的值;
(Ⅲ )试问:△ AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明
理由.
参考答案及解析
第1题【答案】
第2题【答案】
第3题【答案】
第4题【答案】
第5题【答案】
第6题【答案】
第7题【答案】
第8题【答案】
第9题【答案】
第10题【答案】
第11题【答案】
第12题【答案】
第13题【答案】
第14题【答案】
第15题【答案】
第16题【答案】
第17题【答案】
第18题【答案】
第19题【答案】
第20题【答案】
第21题【答案】
第22题【答案】。

相关文档
最新文档