【VIP专享】2010天津高考数学试题及答案(理科)
2010年天津高考理科数学试题含答案Word版
2010年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟,第Ⅰ卷1至3页,第Ⅱ卷4至11页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名和准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上的无效。
3.本卷共10小题,每小题5分,共50分。
参考公式:·如果事件A、B互斥,那么·如果事件A、B相互独立,那么P(A∪B)=P(A)+P(B) P(AB)=P( A)P(B)·棱柱的体积公式V=Sh, 棱锥的体积公式V=,其中S标示棱柱的底面积。
其中S标示棱锥的底面积。
h表示棱柱的高。
h示棱锥的高。
一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)i 是虚数单位,复数(A)1+i (B)5+5i (C)-5-5i (D)-1-i(2)函数f(x)=的零点所在的一个区间是(A)(-2,-1)(B)(-1,0)(C)(0,1)(D)(1,2)(3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是(A)若f(x) 是偶函数,则f(-x)是偶函数(B)若f(x)不是奇函数,则f(-x)不是奇函数(C)若f(-x)是奇函数,则f(x)是奇函数(D)若f(-x)不是奇函数,则f(x)不是奇函数(4)阅读右边的程序框图,若输出s的值为-7,则判断框内可填写(A)i<3? (B)i<4?(C)i<5? (D)i<6?(5)已知双曲线的一条渐近线方程是y=,它的一个焦点在抛物线的准线上,则双曲线的方程为(A)(B)(C)(D)(6)已知是首项为1的等比数列,是的前n项和,且,则数列的前5项和为(A)或5 (B)或5 (C)(D)(7)在△ABC中,内角A,B,C的对边分别是a,b,c,若,,则A=(A)(B)(C)(D)(8)若函数f(x)=,若f(a)>f(-a),则实数a的取值范围是(A)(-1,0)∪(0,1)(B)(-∞,-1)∪(1,+∞)(C)(-1,0)∪(1,+∞)(D)(-∞,-1)∪(0,1)(9)设集合A=若AB,则实数a,b必满足(A)(B)(C)(D)(10) 如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用(A)288种(B)264种(C)240种(D)168种2010年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.答卷前将密封线内的项目填写清楚。
2010年天津高考真题(含答案)数学理
2010年高考天津卷理科一、选择题(1)i 是虚数单位,复数1312i i-+=+(A )1+i(B )5+5i (C )-5-5i (D )-1-i(2)函数f (x )=23xx +的零点所在的一个区间是(A )(-2,-1) (B )(-1,0) (C )(0,1) (D )(1,2) (3)命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是 (A )若f (x ) 是偶函数,则f (-x )是偶函数 (B )若f (x )不是奇函数,则f (-x )不是奇函数 (C )若f (-x )是奇函数,则f (x )是奇函数 (D )若f (-x )不是奇函数,则f (x )不是奇函数 (4)阅读右边的程序框图,若输出s 的值为-7,则判断框内可填写 (A )i <3? (B )i <4? (C )i <5? (D )i <6? (5)已知双曲线22221(0,0)x y a b ab-=>>的一条渐近线方程是,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为(A )22136108xy-= (B )221927xy-= (C )22110836xy-=(D )221279xy-=(6)已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为(A )158或5 (B )3116或5 (C )3116(D )158(7)在△ABC 中,内角A,B,C 的对边分别是a,b,c,若22a b c -=,s in in C B =,则A=(A )030 (B )060 (C )0120 (D )0150(8)若函数f (x )=212lo g ,0,lo g (),0x x x x >⎧⎪⎨-<⎪⎩,若f (a )>f (-a ),则实数a 的取值范围是(A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞)(C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1)(9)设集合A={}{}|||1,,|||2,.x x a x R B x x b x R -<∈=->∈若A ⊆B,则实数a,b 必满足(A )||3a b +≤ (B )||3a b +≥(C )||3a b -≤ (D )||3a b -≥(10)如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有 (A )288种 (B )264种 (C )240种 (D )168种二、填空题(11)甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为_________ 和______。
2010年天津市高考数学试卷(理科)及解析
2010年天津市高考数学试卷理科一、选择题共10小题每小题5分满分50分1、2010??天津i是虚数单位复数A、1i B、55i C、55i D、1i 考点复数代数形式的混合运算。
专题计算题。
分析进行复数的除法的运算需要分子、分母同时乘以分母的共轭复数同时将i2改为1 解答解进行复数的除法的运算需要分子、分母同时乘以分母的共轭复数同时将i2改为1 ∴故选 A 点评本题主要考查复数代数形式的基本运算2个复数相除分母、分子同时乘以分母的共轭复数2、2010??天津函数fx2x3x的零点所在的一个区间是A、21 B、10 C、01 D、12 考点函数的零点与方程根的关系函数零点的判定定理。
专题计算题。
分析函数零点附近函数值的符号相反这类选择题通可采用代入排除的方法求解解答解由及零点定理知fx的零点在区间10上故选B 点评本题主要考查函数零点的概念与零点定理的应用属于容易题3、2010??天津命题“若fx是奇函数则fx是奇函数”的否命题是A、若fx是偶函数则fx是偶函数B、若fx 不是奇函数则fx不是奇函数C、若fx是奇函数则fx是奇函数D、若fx不是奇函数则fx不是奇函数考点四种命题。
分析用否命题的定义来判断解答解否命题是同时否定命题的条件结论故由否命题的定义可知B项是正确的故选B 点评本题主要考查否命题的概念注意否命题与命题否定的区别4、2010??天津阅读右边的程序框图若输出s的值为7则判断框内可填写A、i3 B、i4 C、i5 D、i6 考点设计程序框图解决实际问题。
分析分析程序中各变量、各语句的作用再根据流程图所示的顺序可知该程序的作用是累加变量i的值到S并输出S根据流程图所示将程序运行过程中各变量的值列表如下解答解程序在运行过程中各变量的值如下表示是否继续循环S i循环前/2 1 第一圈是 1 3 第二圈是2 5 第三圈是7 7 第四圈否所以判断框内可填写“i6” 故选D 点评算法是新课程中的新增加的内容也必然是新高考中的一个热点应高度重视程序填空也是重要的考试题型这种题考试的重点有①分支的条件②循环的条件③变量的赋值④变量的输出其中前两点考试的概率更大此种题型的易忽略点是不能准确理解流程图的含义而导致错误5、2010??天津已知双曲线的一条渐近线方程是它的一个焦点在抛物线y224x的准线上则双曲线的方程为A、B、C、D、考点双曲线的标准方程。
2010年天津市高考数学试卷(理科)答案与解析
【解答】解:因为抛物线y =24x的准线方程为x=-6, 则由题意知,点F(-6,0)是双曲线的左焦点,
2 2 2
所以a
+b =c=36,
又双曲线的一条渐近线方程是y= x,
所以,
x
2 2
解得a
=9,b=27,
所以双曲线的方程为 故选B.
【点评】本题主要考查双曲线和抛物线的标准方程与几何性质.
a
【解答】解:显然qT,所以
故选D.
【点评】 算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程
序填空也是重要的考试题型,这种题考试的重点有:① 分支的条件 ② 循环的条件 ③ 变量的
赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解
流程图的含义而导致错误.
2
【考点】 双曲线的标准方程.
10.(5分)(2010?天津)如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,
要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用
【解答】 解:否命题是同时否定命题的条件结论,故由否命题的定义可知 故选B
【点评】 本题主要考查否命题的概念,注意否命题与命题否定的区别.
4.(5分) (2010 ?天津)阅读如图的程序框图,若输出s的值为-7,贝V判断框内可填写(
f=l
/=1
X
结束
B.iv4C.iv5 D.iv6设计程序框图解决实际问题.
9.(5分)(2010 ?天津)设集合A={x||xa|v1,xR},B={x||xq>2,xR}.若A?B,
则数a,b必满足()
A.|a+b|<3B.|a+b|以3C.|ab-|<3 D.|abi以3
2010年天津高考理科数学试题含答案Word版
2010年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟,第Ⅰ卷1至3页,第Ⅱ卷4至11页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名和准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上的无效。
3. 本卷共10小题,每小题5分,共50分。
参考公式:·如果事件A 、B 互斥,那么 ·如果事件A 、B 相互独立,那么P(A ∪B)=P(A)+P(B) P(AB)=P(A)P(B) ·棱柱的体积公式V=Sh, 棱锥的体积公式V=13sh , 其中S 标示棱柱的底面积。
其中S 标示棱锥的底面积。
h 表示棱柱的高。
h 示棱锥的高。
一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)i 是虚数单位,复数1312ii-+=+(A)1+i (B)5+5i (C)-5-5i (D)-1-i (2)函数f(x)=23xx +的零点所在的一个区间是 (A)(-2,-1)(B)(-1,0)(C)(0,1)(D)(1,2) (3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是 (A)若f(x) 是偶函数,则f(-x)是偶函数 (B )若f(x)不是奇函数,则f(-x)不是奇函数 (C )若f(-x)是奇函数,则f(x)是奇函数(D )若f(-x)不是奇函数,则f(x)不是奇函数(4)阅读右边的程序框图,若输出s 的值为-7,则判断框内可填写 (A)i <3? (B )i <4?(C )i <5? (D )i <6?(5)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程是,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为(A )22136108x y -= (B ) 221927x y -=(C )22110836x y -= (D )221279x y -=(6)已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为 (A )158或5 (B )3116或5 (C )3116 (D )158(7)在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若22a b -,sin C B =,则A=(A )030 (B )060 (C )0120 (D )0150(8)若函数f(x)=212log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若f(a)>f(-a),则实数a 的取值范围是(A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞) (C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1)(9)设集合A={}{}|||1,,|||2,.x x a x R B x x b x R -<∈=->∈若A ⊆B,则实数a,b 必满足 (A )||3a b +≤ (B )||3a b +≥ (C )||3a b -≤ (D )||3a b -≥(10) 如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用 (A )288种 (B )264种 (C )240种 (D )168种2010年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1. 答卷前将密封线内的项目填写清楚。
2010年高考天津卷理科word及答案全解析
2010年普通高等学校招生全国统一考试(天津卷)数学 (理工类解析)本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟,第I 卷1至3页,第Ⅱ卷4至11页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷 注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3. 本卷共10小题,每小题5分,共50分。
参考公式:·如果时间A ,B 互斥,那么 ·如果时间A ,B 相互独立,那么 P (A B )=P (A )+P (B ). P(AB)=P(A)P(B).·棱柱的体积公式V=Sh. ·凌锥的体积公式V=13Sh. 其中S 表示棱柱的底面积, 其中S 表示棱锥的底面积. H 表示棱柱的高 h 表示棱锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)i 是虚数单位,复数1312ii-++=(A )1+i (B )5+5i (C )-5-5i (D )-1-i 【答案】A 【解析】1312i i -+=+(13)(12)5i i -+-=5515ii +=+,故选A 。
【命题意图】本小题考查复数的基本运算,属保分题。
(2)函数()23xf x x =+的零点所在的一个区间是(A )(-2,-1) (B )(-1,0) (C )(0,1) (D )(1,2)【答案】B【解析】因为1(1)230f --=-<,0(0)2010f =-=>,所以选B 。
【命题意图】本小题考查函数根的存在性定理,属基础题。
(3)命题“若()f x 是奇函数,则()f x -是奇函数”的否命题是 (A )若()f x 是偶函数,则()f x -是偶函数 (B )若()f x 是奇数,则()f x -不是奇函数 (C )若()f x -是奇函数,则()f x 是奇函数 (D )若()f x -是奇函数,则()f x 不是奇函数【答案】B【解析】因为一个命题的否命题是只对其结论进行否定,所以选B 。
2010年天津市高考数学试卷(理科)
2010年天津市高考数学试卷(理科)
一、选择题(共10小题,每小题5分,满分50分)
1.(5分)(2010•天津)i 是虚数单位,复数=()
A.1+i B.5+5i C.﹣5﹣5i D.﹣1﹣i
2.(5分)(2010•天津)函数f(x)=2x+x的零点所在的区间为()
A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)3.(5分)(2010•天津)命题“若f(x)是奇函数,则f(﹣x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(﹣x)是偶函数
B.若f(x)不是奇函数,则f(﹣x)不是奇函数
C.若f(﹣x)是奇函数,则f(x)是奇函数
D.若f(﹣x)不是奇函数,则f(x)不是奇函数
4.(5分)(2010•天津)阅读如图的程序框图,若输出s的值为﹣7,则判断框内可填写)
(
A.i<3B.i<4C.i<5D.i<6
5.(5分)(2010•天津)已知双曲线的一条渐近线方程是,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为()
A .
B .
第1页(共25页)。
2010年天津高考理科数学试题及答案
2010年天津高考理科数学试题及答案本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟,第Ⅰ卷1至3页,第Ⅱ卷4至11页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名和准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上的无效。
3. 本卷共10小题,每小题5分,共50分。
参考公式:·如果事件A 、B 互斥,那么 ·如果事件A 、B 相互独立,那么 P(A ∪B)=P(A)+P(B) P(AB)=P(A)P(B)·棱柱的体积公式V=Sh, 棱锥的体积公式V=13sh , 其中S 标示棱柱的底面积。
其中S 标示棱锥的底面积。
h 表示棱柱的高。
h 示棱锥的高。
一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)i 是虚数单位,复数1312i i-+=+ (A)1+i (B)5+5i (C)-5-5i (D)-1-i【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。
进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1. 1312i i -+=+-+551(12)(12)5i i i i +==++-(13i )(1-2i) 【温馨提示】近几年天津卷每年都有一道关于复数基本运算的小题,运算时要细心,不要失分哦。
(2)函数f(x)=23x x +的零点所在的一个区间是(A)(-2,-1)(B)(-1,0)(C)(0,1)(D)(1,2)【答案】B【解析】本题主要考查函数零点的概念与零点定理的应用,属于容易题。
由1(1)30,(0)102f f -=-<=>及零点定理知f(x)的零点在区间(-1,0)上。
2010年高考数学(理)试题及答案(天津卷)
2010年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟,第Ⅰ卷1至3页,第Ⅱ卷4至11页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名和准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上的无效。
3. 本卷共10小题,每小题5分,共50分。
参考公式:·如果事件A 、B 互斥,那么 ·如果事件A 、B 相互独立,那么P(A ∪B)=P(A)+P(B) P(AB)=P(A)P(B) ·棱柱的体积公式V=Sh, 棱锥的体积公式V=13sh , 其中S 标示棱柱的底面积。
其中S 标示棱锥的底面积。
h 表示棱柱的高。
h 示棱锥的高。
一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)i 是虚数单位,复数1312ii-+=+(A)1+i (B)5+5i (C)-5-5i (D)-1-i (2)函数f(x)=23xx +的零点所在的一个区间是 (A)(-2,-1)(B)(-1,0)(C)(0,1)(D)(1,2) (3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是 (A)若f(x) 是偶函数,则f(-x)是偶函数 (B )若f(x)不是奇函数,则f(-x)不是奇函数(C )若f(-x)是奇函数,则f(x)是奇函数 (D )若f(-x)不是奇函数,则f(x)不是奇函数 (4)阅读右边的程序框图,若输出s 的值为-7,则判断框内可填写(A)i <3? (B )i <4? (C )i <5? (D )i <6?(5)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程是y=,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为(A )22136108x y -= (B ) 221927x y -= (C )22110836x y -= (D )221279x y -=(6)已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为 (A )158或5 (B )3116或5 (C )3116 (D )158(7)在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若22a b -,sin C B =,则A=(A )030 (B )060 (C )0120 (D )0150(8)若函数f(x)=212log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若f(a)>f(-a),则实数a 的取值范围是(A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞) (C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1)(9)设集合A={}{}|||1,,|||2,.x x a x R B x x b x R -<∈=->∈若A ⊆B,则实数a,b 必满足 (A )||3a b +≤ (B )||3a b +≥(C )||3a b -≤ (D )||3a b -≥(10) 如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用(A )288种 (B )264种 (C )240种 (D )168种2010年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1. 答卷前将密封线内的项目填写清楚。
2010年天津市高考数学试卷(理科)及解析
2010年天津市高考数学试卷(理科)及解析数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟,第Ⅰ卷1至3页,第Ⅱ卷4至11页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名和准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上的无效。
3.本卷共10小题,每小题5分,共50分。
参考公式:·如果事件A、B互斥,那么·如果事件A、B相互独立,那么P(A∪B)=P(A)+P(B) P(AB)=P(A)P(B)·棱柱的体积公式V=Sh, 棱锥的体积公式V=13sh,其中S标示棱柱的底面积。
其中S标示棱锥的底面积。
h表示棱柱的高。
h示棱锥的高。
一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)i 是虚数单位,复数13 12ii-+= +(A)1+i (B)5+5i (C)-5-5i (D)-1-i 【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。
进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.1312i i -+=+-+551(12)(12)5ii i i +==++-(13i )(1-2i)【温馨提示】近几年天津卷每年都有一道关于复数基本运算的小题,运算时要细心,不要失分哦。
(2)函数f(x)=23x x +的零点所在的一个区间是 (A)(-2,-1)(B)(-1,0)(C)(0,1)(D)(1,2) 【答案】B【解析】本题主要考查函数零点的概念与零点定理的应用,属于容易题。
由1(1)30,(0)102f f -=-<=>及零点定理知f(x)的零点在区间(-1,0)上。
2010年天津高考理科数学试题及答案
2010年天津高考理科数学试题及答案本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项: 1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号. 2.本卷共8小题,每小题5分,共40分. 参考公式:如果事件A ,B 互斥,那么 如果事件A ,B 相互独立,那么()()()P A B P A P B =+()()().P AB P A P B =棱柱的体积公式.V Sh =圆锥的体积公式1.3V Sh =其中S 表示棱柱的底面面积 其中S 表示圆锥的底面面积 h 表示棱柱的高 h 表示圆锥的高一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的. 1.i 是虚数单位,复数131ii--= A .2i + B .2i -C .12i -+D .12i --2.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件3.阅读右边的程序框图,运行相应的程序,则输出i 的值为 A .3 B .4 C .5 D .6 4.已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,*n N ∈,则10S 的值为A .-110B .-90C .90D .1105.在6⎫⎝的二项展开式中,2x 的系数为A .154-B .154C .38-D .386.如图,在△ABC 中,D 是边AC上的点,且,2,2AB CD AB BC BD ==,则sin C的值为A.3B.6C.3D.67.已知324log 0.3log 3.4log 3.615,5,,5a b c ⎛⎫=== ⎪⎝⎭则A .a b c >>B .b a c >>C .a c b >>D .c a b >>8.对实数a 和b ,定义运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭B .(]3,21,4⎛⎫-∞-⋃--⎪⎝⎭ C .111,,44⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭第II 卷二、填空题:本大题共6小题,每小题5分,共30分.9.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法 从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人 数为___________10.一个几何体的三视图如右图所示(单位:m ),则该几何体的体积 为__________3m11.已知抛物线C 的参数方程为28,8.x t y t ⎧=⎨=⎩(t 为参数)若斜率为1的直线经过抛物线C 的焦点,且与圆()2224(0)x y r r -+=>相切,则r =________.12.如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且::4:2:1.DF CF AF FB BE ===若CE 与圆相切,则 线段CE 的长为__________.13.已知集合{}1|349,|46,(0,)A x R x x B x R x t t t ⎧⎫=∈++-≤=∈=+-∈+∞⎨⎬⎩⎭,则集合A B ⋂=________.14.已知直角梯形ABCD 中,AD //BC ,090ADC ∠=,2,1AD BC ==,P 是腰DC 上的动点,则3PA PB +的最小值为____________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数()tan(2),4f x x π=+(Ⅰ)求()f x 的定义域与最小正周期;(II )设0,4πα⎛⎫∈ ⎪⎝⎭,若()2cos 2,2f αα=求α的大小.16.(本小题满分13分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (Ⅰ)求在1次游戏中,(i )摸出3个白球的概率; (ii )获奖的概率; (Ⅱ)求在2次游戏中获奖次数X 的分布列及数学期望()E X .17.(本小题满分13分)如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B的中心,1AA =1C H ⊥平面11AAB B,且1C H = (Ⅰ)求异面直线AC 与A 1B 1所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面11A B C ,求线段BM 的 长.18.(本小题满分13分)在平面直角坐标系xOy 中,点(,)P a b (0)a b >>为动点,12,F F 分别为椭圆22221x y a b+=的左右焦点.已知△12F PF 为等腰三角形.(Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于,A B 两点,M 是直线2PF 上的点,满足2AM BM ⋅=-,求点M 的轨迹方程.19.(本小题满分14分)已知0a >,函数2()ln ,0.f x x ax x =->(()f x 的图像连续不断)(Ⅰ)求()f x 的单调区间;(Ⅱ)当18a =时,证明:存在0(2,)x ∈+∞,使03()()2f x f =; (Ⅲ)若存在均属于区间[]1,3的,αβ,且1βα-≥,使()()f f αβ=,证明ln 3ln 2ln 253a -≤≤.20.(本小题满分14分)已知数列{}n a 与{}n b 满足:1123(1)0,2n n n n n n n b a a b a b ++++-++==, *n ∈N ,且122,4a a ==.(Ⅰ)求345,,a a a 的值;(Ⅱ)设*2121,n n n c a a n N -+=+∈,证明:{}n c 是等比数列; (III )设*242,,k k S a a a k N =++⋅⋅⋅+∈证明:4*17()6nk k kS n N a =<∈∑.参考答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分40分. BABDCDCB二、填空题:本题考查基本知识和基本运算,每小题5分,满分30分. 9.12 10.6π+ 111213.{|25}x x -≤≤ 14.5 三、解答题15.本小题主要考查两角和的正弦、余弦、正切公式,同角三角函数的基本关系,二倍角的正弦、余弦公式,正切函数的性质等基础知识,考查基本运算能力.满分13分. (I )解:由2,42x k k Z πππ+≠+∈,得,82k x k Z ππ≠+∈. 所以()f x 的定义域为{|,}82k x R x k Z ππ∈≠+∈ ()f x 的最小正周期为.2π (II )解:由()2cos 2,2a f a =得tan()2cos 2,4a a π+=22sin()42(cos sin ),cos()4a a a a ππ+=-+ 整理得sin cos 2(cos sin )(cos sin ).cos sin a aa a a a a a+=+-- 因为(0,)4a π∈,所以sin cos 0.a a +≠因此211(cos sin ),sin 2.22a a a -==即由(0,)4a π∈,得2(0,)2a π∈.所以2,.612a a ππ==即 16.本小题主要考查古典概型及其概率计算公式、离散型随机变量的分布列、互斥事件和相互独立事件等基础知识,考查运用概率知识解决简单的实际问题的能力.满分13分. (I )(i )解:设“在1次游戏中摸出i 个白球”为事件(0,1,2,3),i A i ==则2132322531().5C C P A C C =⋅=(ii )解:设“在1次游戏中获奖”为事件B ,则23B A A = ,又22111322222222253531(),2C C C C C P A C C C C =⋅+⋅= 且A 2,A 3互斥,所以23117()()().2510P B P A P A =+=+= (II )解:由题意可知X 的所有可能取值为0,1,2.212279(0)(1),101007721(1)(1),101050749(2)().10100P X P X C P X ==-===-====所以X 的分布列是 X 012P9100 2150 49100X 的数学期望921497()012.100501005E X =⨯+⨯+⨯= 17.本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.满分13分. 方法一:如图所示,建立空间直角坐标系,点B 为坐标原点.依题意得(0,0,0),A B C11(2,0),,22,2,5)A B(I)解:易得11((AC AB ==- ,于是111111cos ,3||||AC A B AC A B AC A B ⋅===⋅所以异面直线AC 与A 1B 1所成角的余弦值为3(II)解:易知111(AA AC ==设平面AA 1C 1的法向量(,,)m x y z =,则11100m AC m AA ⎧⋅=⎪⎨⋅=⎪⎩即0,0.⎧+=⎪⎨=⎪⎩不妨令x =可得m =,同样地,设平面A 1B 1C 1的法向量(,,)n x y z =,则11110,0.n AC n A B ⎧⋅=⎪⎨⋅=⎪⎩即0,0.⎧+=⎪⎨-=⎪⎩不妨令y =可得n =于是2cos ,,||||7m n m n m n ⋅===⋅从而sin ,7m n =所以二面角A —A 1C 1—B的正弦值为7(III )解:由N 为棱B 1C 1的中点,得N 设M (a ,b ,0),则(,,222MN a b =--由MN ⊥平面A 1B 1C 1,得11110,0.MN A B MN A C ⎧⋅=⎪⎨⋅=⎪⎩即)(0,()(()(0.222a ab ⎧-⋅-=⎪⎪⎨⎪-⋅+-⋅+⎪⎩解得4a b ⎧=⎪⎪⎨⎪=⎪⎩故M因此(,,0)24BM = ,所以线段BM的长为||BM = 方法二:(I )解:由于AC//A 1C 1,故111C A B ∠是异面直线AC 与A 1B 1所成的角. 因为1C H ⊥平面AA 1B 1B ,又H 为正方形AA 1B 1B 的中心,11AA C H ==可得1111 3.AC B C ==因此2221111111111111cos 2AC A B B C C A B AC A B +-∠==⋅所以异面直线AC 与A 1B 1(II )解:连接AC 1,易知AC 1=B 1C 1,又由于AA 1=B 1A 1,A 1C 1=A 1=C 1,所以11AC A ∆≌11BC A ∆,过点A 作11AR AC ⊥于点R ,连接B 1R ,于是111B R AC ⊥,故1ARB ∠为二面角A —A 1C 1—B 1的平面角.在11Rt A RB ∆中,11111sin B R A B RA B =⋅∠= 连接AB 1,在1ARB ∆中,2221111114,,cos 2AR B R AB AB AR B R ARB AR B R+-==∠=⋅27=-,从而1sin ARB ∠=所以二面角A —A 1C 1—B 1(III )解:因为MN ⊥平面A 1B 1C 1,所以11.MN A B ⊥ 取HB 1中点D ,连接ND ,由于N 是棱B 1C 1中点, 所以ND//C 1H且1122ND C H ==. 又1C H ⊥平面AA 1B 1B ,所以ND ⊥平面AA 1B 1B ,故11.ND A B ⊥ 又,MN ND N =所以11A B ⊥平面MND ,连接MD 并延长交A 1B 1于点E ,则111,//.ME A B ME AA ⊥故 由1111111,4B E B D DE AA B A B A ===得12DE B E ==EM 交AB 于点F ,可得12BF B E ==连接NE. 在Rt ENM ∆中,2,.ND ME ND DE DM ⊥=⋅故所以2ND DM DE ==可得FM =连接BM ,在Rt BFM ∆中,BM ==18.本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的数学思想,考查解决问题能力与运算能力.满分13分. (I )解:设12(,0),(,0)(0)F c F c c -> 由题意,可得212||||,PF F F =2.c =整理得22()10,1cc caa a+-==-得(舍), 或1.2c a =所以1.2e = (II )解:由(I)知2,,a c b = 可得椭圆方程为2223412,x y c += 直线PF 2方程为).y x c =-A ,B两点的坐标满足方程组2223412,).x y c y x c ⎧+=⎪⎨=-⎪⎩ 消去y 并整理,得2580.x cx -= 解得1280,.5x x c ==得方程组的解21128,0,5,.x c x y y ⎧=⎪=⎧⎪⎪⎨⎨=⎪⎪⎩=⎪⎩不妨设8(),(0,)5A c B 设点M的坐标为8(,),(,),(,)55x y AM x c y c BM x y =--= 则,由),.3y x c c x y =-=-得于是38,),55AM y x y x =-().BM x = 由2,AM BM ⋅=-即38)()255y x x y x -⋅+=-,化简得218150.x --=将22105,0.316x y c x y c x +==-=>得 所以0.x >因此,点M的轨迹方程是218150(0).x x --=>19.本小题主要考查导数的运算、利用导数研究函数的单调性、解不等式、函数的零点等基础知识,考查运算能力和运用函数思想分析解决问题的能力及分类讨论的思想方法.满分14分.(I )解:2112'()2,(0,)2ax f x ax x x -=-=∈+∞,令'()0,f x =解得当x 变化时,'(),()f x f x 的变化情况如下表:x(0,)2a2a()2a +∞'()f x + 0 -()f x极大值所以,()f x的单调递增区间是(0,()2f x a的单调递减区间是().2a +∞(II )证明:当211,()ln .88a f x x x ==-时由(I )知()f x 在(0,2)内单调递增,在(2,)+∞内单调递减. 令3()()().2g x f x f =-由于()f x 在(0,2)内单调递增, 故3(2)(),2f f >即g(2)>0. 取23419'2,(')0.232e x e g x -=>=<则所以存在00(2,'),()0,x x g x ∈=使 即存在003(2,),()().2x f x f ∈+∞=使(说明:'x 的取法不唯一,只要满足'2,(')0x g x ><且即可)(III )证明:由()()f f αβ=及(I)的结论知αβ<<,从而()[,]f x αβ在上的最小值为().f a又由1βα-≥,,[1,3],αβ∈知12 3.αβ≤≤≤≤故(2)()(1),ln 24,(2)()(3).ln 24ln39.f f f a a f f f a a αβ≥≥-≥-⎧⎧⎨⎨≥≥-≥-⎩⎩即 从而ln 3ln 2ln 2.53a -≤≤20.本小题主要考查等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法.满分14分.(I )解:由*3(1),,2nn b n N +-=∈可得1,n n b ⎧=⎨⎩为奇数2,n 为偶数又1120,n n n n n b a a b a +++++=123123234434543;5;4.=-=-=当n=1时,a +a +2a =0,由a =2,a =4,可得a 当n=2时,2a +a +a =0,可得a 当n=3时,a +a +2a =0,可得a(II )证明:对任意*,n N ∈2122120,n n n a a a -+++= ①2212220,n n n a a a ++++= ②21222320,n n n a a a +++++= ③②—③,得 223.n n a a += ④将④代入①,可得21232121()n n n n a a a a ++-++=-+即*1()n n c c n N +=-∈又1131,0,n c a a =+=-≠故c 因此11,{}n n nc c c +=-所以是等比数列.(III )证明:由(II )可得2121(1)kk k a a -++=-,于是,对任意*2k N k ∈≥且,有133********,()1,1,(1)() 1.k k k a a a a a a a a --+=--+=-+=--+=-将以上各式相加,得121(1)(1),kk a a k -+-=--即121(1)(1)k k a k +-=-+,此式当k=1时也成立.由④式得12(1)(3).k k a k +=-+从而22468424()()(),k k k S a a a a a a k -=++++++=- 2124 3.k k k S S a k -=-=+所以,对任意*,2n N n ∈≥,44342414114342414()n nk m m mm k m k m m m mS S S S S a a a a a ---==---=+++∑∑ 12221232()2222123nm m m m mm m m m =+-+=--++++∑123()2(21)(22)(22)nm m m m m ==++++∑2253232(21)(22)(23)n m mm n n ==++⨯+++∑21533(21)(21)(22)(23)n m m m n n =<++-+++∑151111113[()()()]3235572121(22)(23)n n n n =+⋅-+-++-+-+++1551336221(22)(23)7.6n n n =+-⋅++++<对于n=1,不等式显然成立.所以,对任意*,n N ∈2121212212n nn nS S S S a a a a --++++32121241234212()()()n n n nS S SS S S a a a a a a --=++++++22211121(1)(1)(1)41244(41)4(41)n n n=--+--++-----22211121()()()41244(41)44(41)n n n nn =-+-+--+--111().4123n n ≤-+=-。
2010年高考试题——数学理(天津卷)
2010年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟,第Ⅰ卷1至3页,第Ⅱ卷4至11页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名和准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上的无效。
3. 本卷共10小题,每小题5分,共50分。
参考公式:·如果事件A 、B 互斥,那么 ·如果事件A 、B 相互独立,那么P(A ∪B)=P(A)+P(B) P(AB)=P(A)P(B) ·棱柱的体积公式V=Sh, 棱锥的体积公式V=13sh , 其中S 标示棱柱的底面积。
其中S 标示棱锥的底面积。
h 表示棱柱的高。
h 示棱锥的高。
一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)i 是虚数单位,复数1312ii-+=+(A)1+i (B)5+5i (C)-5-5i (D)-1-i (2)函数f(x)=23xx +的零点所在的一个区间是 (A)(-2,-1)(B)(-1,0)(C)(0,1)(D)(1,2) (3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是 (A)若f(x) 是偶函数,则f(-x)是偶函数 (B )若f(x)不是奇函数,则f(-x)不是奇函数(C )若f(-x)是奇函数,则f(x)是奇函数 (D )若f(-x)不是奇函数,则f(x)不是奇函数(4)阅读右边的程序框图,若输出s 的值为-7,则判断框内可填写 (A)i <3? (B )i <4?(C )i <5? (D )i <6?(5)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程是3x ,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为(A )22136108x y -= (B ) 221927x y -=(C )22110836x y -= (D )221279x y -=(6)已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为 (A )158或5 (B )3116或5 (C )3116 (D )158(7)在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若223a b bc -=,sin 23sin C B =,则A=(A )030 (B )060 (C )0120 (D )0150(8)若函数f(x)=212log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若f(a)>f(-a),则实数a 的取值范围是(A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞) (C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1)(9)设集合A={}{}|||1,,|||2,.x x a x R B x x b x R -<∈=->∈若A ⊆B,则实数a,b 必满足 (A )||3a b +≤ (B )||3a b +≥ (C )||3a b -≤ (D )||3a b -≥(10) 如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用(A )288种 (B )264种 (C )240种 (D )168种2010年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1. 答卷前将密封线内的项目填写清楚。
2010年天津高考理科数学试题及答案
Hale Waihona Puke :+,-. bc#de)#fW#gh#i#Njk Elm#no#pqr)#s t uvw#xy)#z{#|}#~) 21 0 *=$ #/*, (#, $ 2=#, ' 4 0 $ #1 7 . /% & $ #9% +$ #-
# " !" #$% ! &
!"!# # $%#& '( )*+ ! ,
' ( ) *
"
+,-. !"##$%&#'()#*+#,-.#/0 12#34#56#78#9:#;<#=>? % & ' ()*% +$ #, . /0 $ #, *1 ( # (*. % 2#$ 3 $ & 4 5 @A # B C # $ 6 ($ & $ #% , ' & 7 2% *' #(*8 $ #, (% /$ #, 2% +$ #/$ ' #& 7 1 +$ ' #1 % , *5 % 0 0 4 #. 7 7 2#. /7 , , 90 $ #*2/0 $ % , % 2' DE :;; F#GHIJK#LMNO.P QRSTUVW#XY#Z[\]^ 7 . $' & *$ #2, /% 1 $ #, 1 $ 21 $< 1 ' 7 2 _`a#1 (% 3 $0 $ , , 6 7 & +' 7=7 #7 3 $ & % 2= 7 3 $ & % 8 % 2 2' ($< *' *& $ #' ($ &
2010年高考试题(天津卷)-数学(理)
2010年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟,第Ⅰ卷1至3页,第Ⅱ卷4至11页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名和准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上的无效。
3. 本卷共10小题,每小题5分,共50分。
参考公式:·如果事件A 、B 互斥,那么 ·如果事件A 、B 相互独立,那么P(A ∪B)=P(A)+P(B) P(AB)=P(A)P(B) ·棱柱的体积公式V=Sh, 棱锥的体积公式V=13sh , 其中S 标示棱柱的底面积。
其中S 标示棱锥的底面积。
h 表示棱柱的高。
h 示棱锥的高。
一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)i 是虚数单位,复数1312ii-+=+(A)1+i (B)5+5i (C)-5-5i (D)-1-i (2)函数f(x)=23xx +的零点所在的一个区间是 (A)(-2,-1)(B)(-1,0)(C)(0,1)(D)(1,2) (3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是 (A)若f(x) 是偶函数,则f(-x)是偶函数 (B )若f(x)不是奇函数,则f(-x)不是奇函数 (C )若f(-x)是奇函数,则f(x)是奇函数(D )若f(-x)不是奇函数,则f(x)不是奇函数(4)阅读右边的程序框图,若输出s 的值为-7,则判断框内可填写(A)i <3? (B )i <4?(C )i <5? (D )i <6?(5)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程是,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为(A )22136108x y -= (B ) 221927x y -=(C )22110836x y -= (D )221279x y -=(6)已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为 (A )158或5 (B )3116或5 (C )3116 (D )158(7)在△ABC 中,内角A,B,C 的对边分别是a,b,c,若22a b -,sin C B =,则A= (A )030 (B )060 (C )0120 (D )0150(8)若函数f(x)=212log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若f(a)>f(-a),则实数a 的取值范围是(A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞) (C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1)(9)设集合A={}{}|||1,,|||2,.x x a x R B x x b x R -<∈=->∈若A ⊆B,则实数a,b 必满足 (A )||3a b +≤ (B )||3a b +≥(C )||3a b -≤ (D )||3a b -≥(10) 如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用(A )288种 (B )264种 (C )240种 (D )168种第Ⅱ卷注意事项:1. 答卷前将密封线内的项目填写清楚。
2010年天津高考理科数学试题及答案
八年级下期期中物理复习题一、单项选择1.关于电压,下列说法正确的是A.有电源就一定有电压且有电流 B.电压就是电的压力C.电压是形成电流的条件之一 D.有电压就一定能形成电流2.根据欧姆定律可导出公式R=U/I,依此可测定导体的电阻,下列说法中正确的是A.导体的电阻与导体两端电压成正比;B.导体的电阻与导体中的电流成反比;C.导体的电阻与导体两端的电压成正比,又与导体中的电流成反比;D.导体的电阻与本身的材料和属性有关,与电压、电流无关。
3、当开关闭合后,灯泡发光,下列说法中正确的是A.灯泡发光时,化学能转化为内能 B.闭合开关就是日常生活中讲的“关灯”C.开关的作用是给电路提供持续的电流 D.灯泡发光时消耗了电能4、有关电路的串联和并联的说法中正确的是A.串联电路中只要有一个用电器断路所有电器也不工作B.并联电路中只要有一个用电器断路所有电器也不工作C.把用电器顺次连接起来的电路叫做并联电路D.把用电器并列连接起来的电路叫做串联电路5、下列说法中,正确的是A.开关必须接在电源正极和用电器之间才能控制用电器B.所有电源都是把化学能转化为电能的装置C.不能把电压表直接接到电源两端D.不能把电流表与被测用电器并联6、小明同学使用手电筒时发现小灯泡不亮,在进行检修前,他对造成该现象的直接原因进行了以下几种判断,其中不可能的是A.小灯泡灯丝断了 B.电池没电 C.小灯泡接触不良 D.开关处出现短路7、如图所示,在下列四个图中,电压表和电流表使用正确的是8、有几位同学将两只灯泡接入电路中,同时工作,下面是它们的几种说法,其中正确的是A.较亮的灯泡中通过的电流一定大 B.较亮的灯泡两端的电压一定大C.较亮的灯泡额定功率一定大 D.较亮的灯泡消耗的电能一定多9、对于右图中的各种数据,说法不正确的是A.电能表正常工作时的电压一定为220V,电流一定为10AB.每消耗1kWh的电能,电能表的转盘转3000转C.同时使用的用电器总功率不能超过2200WD.电能表读数的单位是KW·h,也就是“度”73410、电功和电功率的单位分别是A .千瓦时和焦耳B .千瓦和瓦特C .焦耳和瓦特D .千瓦和千瓦时 11、有两个电阻R 1、R 2(已知R 1<R2),如果将它们串联起来接入电路中,在相等的时间内它们消耗的电能分别为W 1、W 2,下面的说法中正确的是 A .W 1<W 2 B .W 1>W 2 C .W 1=W 2 D .无法判断12、甲、乙两炉子通过的电流之比为2︰3,两端的电压比为1︰5,则它们的电阻之比为 A .10︰3 B .3︰10 C .2︰1 D .3︰513、如右图所示的电路中,小灯泡L 1和L 2都标有“3V 0.25A”字样,电源由2节1.5V 的干电池串联而成,则下列说法中正确的是: A .S 闭合后,小灯泡L 1、L 2并联且都能发光B .S 闭合后,电路将发生短路C .要使小灯泡L 1、L 2串联,可去掉导线aD .若将导线 c 从接线柱 B 改接到接线柱 A 上, 则电路发生短路 14、某同学家中有一个电炉,上面标有“220 V 1000 W ”的字样,下面关于这个电炉的说法中正确的是 A .使用这个电炉时应通过额定电流为10 A B .这个电炉在正常工作时的电阻为484 Ω C .这个电炉工作时消耗的电功率是1000 WD .这个电炉正常工作0.5 h 消耗的电能为1.8×106J15、某同学连接的电路下图所示,闭合开关后,发现电流表甲的示数为0.2 A ,电流表乙的示数为0.8 A ,下面的说法中正确的是 A .电阻R 1与电阻R 2的电流之比是1∶4 B .电阻R 1与电阻R 2消耗的电功率之比是1∶9 C .电阻R 1与电阻R 2的阻值之比是3∶1 D .电阻R 1与电阻R 2消耗的电功率之比是9∶1 三、填空题(每空1分,共30分)16、导体两端有电压,导体中才会产生_______________,而______________是提供电压的装置,电压的国际单位制单位是______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2
(5)已知双曲线
a2
y2 b2
1(a 0, b 0) 的一条渐近线方
程是 y= 3x ,它的一个焦点在抛物线 y2 24x 的准线上,
则双曲线的方程为
(A) x2 y2 1 36 108
(C) x2 y2 1 108 36
(B) x2 y2 1 9 27
(D) x2 y2 1 27 9
(2)函数 f(x)= 2x 3x 的零点所在的一个区间是
(A)(-2,-1)(B)(-1,0)(C)(0,1)(D)(1,2) (3)命题“若 f(x)是奇函数,则 f(-x)是奇函数”的否命题是 (A)若 f(x) 是偶函数,则 f(-x)是偶函数 (B)若 f(x)不是奇函数,则 f(-x)不是奇函数 (C)若 f(-x)是奇函数,则 f(x)是奇函数 (D)若 f(-x)不是奇函数,则 f(x)不是奇函数 (4)阅读右边的程序框图,若输出 s 的值为-7,则判断框 内可填写 (A)i<3? (B)i<4? (C)i<5? (D)i<6?
心如直水 /850756813ຫໍສະໝຸດ 1 则数列 的前 5 项和为
an
15
(A) 或 5
8
31
(B) 或 5
16
31
(C)
16
(7)在△ABC 中,内角 A,B,C 的对边分别是 a,b,c,若 a2 b2 3bc ,
sin C 2 3 sin B ,则 A=
心如直水 /850756813
2010 年普通高等学校招生全国统一考试(天津卷) 数学(理工类) 第Ⅰ卷
一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)i 是虚数单位,复数 1 3i 1 2i
(A)1+i (B)5+5i (C)-5-5i (D)-1-i
数 a,b 必满足
(A)| a b | 3
(C)| a b | 3
(B)| a b | 3
(A) 300 (B) 600
(8)若函数
f(x)=
(A)(-1,0)∪(0,1) (C)(-1,0)∪(1,+∞)
log2 x, x 0,
log
1 2
( x),
x
(C) 1200
0
,若
(9)设集合 A=x || x a | 1, x R, B x || x b | 2, x R.若 A B,则实
(6)已知an是首项为 1 的等比数列, sn 是an的前 n 项和,且 9s3 s6 ,
心如直水 /850756813
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作用蛔 题线的固类 结雌动态业手虫 自形练与 本雄学、三:摸对 学动状习人 节蛔生结4、收 、一人 后物和同类 课虫活构请一集 蚯摸体 回并颜步关 重的动、学、鸟 蚓蚯的 答归色学系 点形教生生让类 在蚓危 问纳。习从 并状学理列学的 平害 题线蚯线人 归、意特四出四生面体以形蚓形类 纳大图点、常、五观存 玻表及动的鸟动文 本小引以请见引、察现 璃,预物身3类物明 节有言及学的、导巩蚯状 上是防的体之和历 课什根蚯生环怎学固蚓, 和干感主是所环史 学么据蚓列节二 样生练引鸟 牛燥染要否以节揭 到不上适举动、 区回习导类 皮还的特分分动晓 的同节于蚯物让 分答。学减 纸是方征节布物起 一,课穴蚓并学 蚯课生少 上湿法。?广教, 些体所居的归在生 蚓前回的 运润;4泛学鸟色生益纳.靠物完 的问答原 动的4蛔,目类 习和活处环.近在成 前题蚯因 的?了虫以标就 生体的。节身其实 端并蚓及 快触解寄上知同 物表内特动体结验 和总利的我 慢摸蚯生适识人 学有容点物前构并 后结用生国 一蚯蚓在于与类 的什,的端中思 端线问活的 样蚓人飞技有 基么引进主的的考 ?形题环十 吗体生行能着 本特出要几变以动,境大 ?节活的1密 方征本“特节化下物.让并珍 为近习会形理切 法。课生征有以问的小学引稀 什腹性态解的 。2课物。什游题主.结生出鸟 么面和起结蛔关观题体么戏:要利明蚯类 ?处适哪构虫系察:的特的特用确蚓等,于些特适。蛔章形殊形征板,这资是穴疾点于可虫我态结式。书生种料光居病是寄的们结构,五小物典,滑生?重生鸟内学构,学、结的型以还活5要生类部习与.其习巩鸟结的爱是如原活生结了功颜消固类构线鸟粗形何因的存构腔能色化练适特形护糙态预之结的,肠相是系习于点动鸟?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。