信号与系统课后习题答案汇总

合集下载

《信号与系统》课后习题参考答案

《信号与系统》课后习题参考答案

《信号与系统》课后习题参考答案第二章 连续信号与系统的时域分析2-9、(1)解:∵系统的微分方程为:)(2)(3)(t e t r t r '=+',∴r(t)的阶数与e(t) 的阶数相等,则h(t)应包含一个)(t δ项。

又∵系统的特征方程为:03=+α,∴特征根3-=α∴)()(2)(3t u Ae t t h t -+=δ∴)]()(3[)(2)(33t e t u e A t t h t t δδ--+-+'=')()(3)(23t A t u Ae t t δδ+-'=-将)(t h 和)(t h '代入微分方程(此时e(t)= )(t δ),得:)()(3)(23t A t u Ae t t δδ+-'-+3)(2)]()(2[3t t u Ae t t δδ'=+-∴A=-6则系统的冲激响应)(6)(2)(3t u et t h t --=δ。

∴⎰⎰∞--∞--==t td ue d h t g τττδτττ)](6)(2[)()(3⎰∞-=t d ττδ)(2⎰∞---t d u e τττ)(63 )()(6)(203t u d e u t t ⎰-∞--=τττ )()3(6)(203t u e t u t --=-τ)()1(2)(23t u e t u t -+=- )(23t u e t -=则系统的阶跃响应)(2)(3t u et g t -=。

2-11、解:①求)(t r zi : ∵系统的特征方程为:0)3)(2(652=++=++αααα,∴特征根:21-=α,32-=α ∴t t zi e C eC t r 3221)(--+= (t ≥0) ②求)(t r zs :t t e A eA t h 3221)(--+= (t ≥0),可求得:11=A ,12-=A (求解过程略) ∴)()()(32t u e e t h t t ---=∴)(*)()(*)()]()[(*)()(*)()(3232t u e t u e t u e t u e t u e e t u e t h t e t r t t t t t t t zs --------=-==)()2121()()(21)()(3232t u e e e t u e e t u e e t t t t t t t -------+-=---= ③求)(t r :)(t r =)(t r zi +)(t r zs ++=--)(3221t te C e C )2121(32t t t e e e ---+- t tt e C e C e 3221)21()1(21---++-+= (t ≥0) ∵)()(t u Ce t r t -=,21=C 21=C ∴ 011=-C , ∴ 11=C0212=+C 212-=C ∴=-)0(r 21211)0(21=-=+=+C C r zi , ='-)0(r 2123232)0(21-=+-=--='+C C r zi 2-12、解:(1)依题意,得:)(2)(*)()(t u e t h t u t r tzi -=+)()()(t t h t r zi δ=+∴)(2)]()([*)()(t u e t r t t u t r t zi zi -=-+δ)(2)()()()1(t u e t r t u t r t zi zi --=-+∴)()12()()()1(t u e t r t r t zi zi -=---,两边求导得:)()12()(2)()(t e t u e t r t r t t zi ziδ-+-=-'-- )(2)()()(t u e t t r t r t zi zi--=-'δ ∴)(11)(112)()()1(t p p t p t t r p zi δδδ+-=+-=- ∴)()(11)(t u e t p t r t zi -=+=δ (2)∵系统的起始状态保持不变,∴)()(t u e t r t zi -=∵)()()(t t h t r zi δ=+,∴)()()(t u e t t h t--=δ∴)]()([*)()()(*)()()(33t u e t t u e t u e t h t e t r t r t t t zi ----+=+=δ )()()(t u te t u e t u e tt t ----+=)()2(t u e t t --= 2-16、证:∑∑∞-∞=--∞-∞=--=-=k k t k t k t u e k t t u e t r )3()3(*)()()3(δ∑∞-∞=--=k k t k t u e e )3(3 ∵当t-3k>0即3t k <时:u(t-3k)为非零值 又∵0≤t ≤3,∴k 取负整数,则:3003311)(---∞=∞=----===∑∑e e e e e et r t k k k t k t 则t Ae t r -=)(,且311--=e A 。

信号与系统课后习题答案

信号与系统课后习题答案

《低频电子线路》一、单选题(每题2分,共28分:双号做双号题,单号做单号题)1.若给PN结两端加正向电压时,空间电荷区将()A变窄B基本不变C变宽D无法确定2.设二极管的端电压为 U,则二极管的电流与电压之间是()A正比例关系B对数关系C指数关系D无关系3.稳压管的稳压区是其工作()A正向导通B反向截止C反向击穿D反向导通4.当晶体管工作在饱和区时,发射结电压和集电结电压应为 ( ) A前者反偏,后者也反偏B前者反偏,后者正偏C前者正偏,后者反偏D前者正偏,后者也正偏5.在本征半导体中加入何种元素可形成N型半导体。

()A五价B四价C三价D六价6.加入何种元素可形成P 型半导体。

()A五价B四价C三价D六价7.当温度升高时,二极管的反向饱和电流将()。

A 增大B 不变C 减小D 不受温度影响8. 稳压二极管两端的电压必须( )它的稳压值Uz 才有导通电流,否则处于截止状态。

A 等于B 大于C 小于D 与Uz 无关9. 用直流电压表测得放大电路中某三极管各极电位分别是2V 、6V 、2.7V ,则三个电极分别是() A (B 、C 、E )B (C 、B 、E )C (E 、C 、B )D (B 、C 、E )10. 三极管的反向电流I CBO 是由( )形成的。

A 多数载流子的扩散运动B 少数载流子的漂移运动C 多数载流子的漂移运动D 少数载流子的扩散运动11. 晶体三极管工作在饱和状态时,集电极电流C i 将( )。

A 随B i 增加而增加B 随B i 增加而减少C 与B i 无关,只决定于e R 和CE uD 不变12. 理想二极管的正向电阻为( )A A.零 B.无穷大 C.约几千欧 D.约几十欧13. 放大器的输入电阻高,表明其放大微弱信号能力( )。

A 强B 弱C 一般D 不一定14. 某两级放大电路,第一级电压放大倍数为5,第二级电压放大倍数为20,该放大电路的放大倍数为( )。

A 100B25C 5D2015.如题47图所示电路中,静态时, T1、T2 晶体管发射极电位UEQ为( ) 。

信号与系统课后习题答案(金波 华中科技大学出版社)

信号与系统课后习题答案(金波 华中科技大学出版社)
E 16 3 4 2 56 J
1-3 解 周期 T=7 ,一个周期的能量为 信号的功率为
P
E 56 8W T 7
1-5 解 (a) (3t 2 2) ( ) 4 (t ) ; (b) e
3t
t 2
(5 2t ) 0.5e 3t (t 2.5) 0.5e 7.5 (t 2.5)
2
1-10 已知一线性非时变系统,系统的初始状态为零,当输入信号为 f1 (t ) ,其输出信号为
y1 (t ) ,对应的波形如题图 1.10(a)(b)所示。试求: (a) 当输入信号为 f 2 (t ) 时,其波形如题图 1.15(c)所示,画出对应的输出 y 2 (t ) 的波形。 (b) 当输入信号为 f 3 (t ) 时,其波形如题图 1.10(d)所示,画出对应的输出 y 3 (t ) 的波形。
(b) 波形如图1.2(b)所示。显然是能量信号。
E 1 1 6 2 1 37 J
(c) 能量信号
E lim (e 5t ) 2 dt e 10t dt
T 0 0
T

1 10t e 0.1 J 10 0
(d) 功率信号,显然有
P 1W

基本练习题
题 一
1-1 判断下列信号是否是周期的,如果是周期的,求出它的基频和公共周期。 (a) f (t ) 4 3 sin(12 t ) sin(30 t ) ; (b) f (t ) cos(10 t ) cos(20 t ) ; (c) f (t ) cos(10 t ) cos(20t ) ; (d) f (t ) cos(2t ) 2 cos(2t
2

信号与系统陈后金版答案

信号与系统陈后金版答案

第二步:求差分方程的齐次 解: 2 求差分方程的齐次 第二步 h [ 0 ] = C 1 + C 2 r −5r /6 +1/ 6 = 0 1 k1 1 k 1 特征方程为: [ ( + 特征方程为=hCk1 ] = )[3 (C 2) ( −) 2 ( 求 ] u [ C ] = 3, C 2 = − 2 h [1] ⇒ ) 出 k1 ∴r =1/ 2, r2 =1/3 2 3 3 1 2
(3) 计算固有响应与强迫响应 计算固有响应与强迫响应:
1 7 1 k 4 1 k y[k ] = [ − ( ) + ( ) ]u[k ] 完全响应: 完全响应 2 2 2 3 3 7 1 k 4 1 k 固有响应: yh [k ] = [− ( ) + ( ) ]u[ k ] 固有响应 2 2 3 3 1 强迫响应: 强迫响应 y p [k ] = u[k ] 2 (4) 计算瞬态响应与稳态响应 计算瞬态响应与稳态响应:
特征根为 s1 = -2, s2 = -5, 又因为 n > m , 所以: 则 h ( t ) = K 1e − 2 t u ( t ) + K 2 e − 5 t u ( t )
h '(t ) = − 2 K 1e −2 t u (t ) + K 1δ (t ) − 5 K 2 e −5 t u (t ) + K 2δ (t ) = − 2 K 1e −2 t u (t ) − 5 K 2 e −5 t u (t ) + ( K 1 + K 2 )δ (t ) h ''(t ) = 4 K 1e −2 t u (t ) − 2 K 1δ (t ) + 25 K 2 e −5 t u (t ) − 5 K 2δ (t ) + ( K 1 + K 2 )δ '(t ) 代入方程有: = K 1 + K 2 = '( t ) = 2 K 2δ ( t ) + 5 K∴K2 + (7/3; K1 )δ −1/3; 2δ '( t ) + 3δ ( t ) 1δ ( t )

信号与系统课后习题答案

信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。

因此,公共周期3110==f T s 。

(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。

因此,公共周期5110==f T s 。

(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。

所以是非周期的。

(d) 两个分量是同频率的,基频 =0f 1/π Hz 。

因此,公共周期π==01f T s 。

1-2 解 (a) 波形如图1-2(a)所示。

显然是功率信号。

t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。

显然是能量信号。

3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。

1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。

信号与系统课后习题参考答案.pdf

信号与系统课后习题参考答案.pdf

-5
-4 -3 -2
-1
2 1
2
3
-1
x(-t+4)
t
45
6
2 1
4
6
-1
x(-t/2+4)
t 8 10 12
(e)[x(t)+x(-t)]u(t)
-2
-1
2
x(-t)
1
t
01
2
-1
(f)
x(t)[δ(t +
3) − δ(t - 3)]
2
2
3
[x(t)+x(-t)]u(t)
1 t
01
2
-1
-3/2 (-1/2)
x(t)[δ(t + 3) − δ(t - 3)]
2
2
3/2
t
0 (-1/2)
6
1.22
(a)x[n-4]
x[n-4]
11 1 1
1/2 1/2
1/2 n
0 1 23 4 5 6 7 8
-1/2
-1
(b)x[3-n]
x[n+3]
11 1 1
1/2 1/2
1/2 n
-7 -6 -5 -4 -3 -2 -1 0 1
=
2π 4
=π 2
则:整个信号的周期为:T = LCM{T1,T2} = π
1.11
j 4πn
解: e 7

ω1
=
4πn 7
,则:
2π ω1
=
2π 4π
=7= 2
N1 k
,⇒
N1
=
7
7
j 2πn
e5
→ ω2

信号与系统第二版课后答案

信号与系统第二版课后答案

信号与系统第二版课后答案《信号与系统》(第二版)课后习题解析燕庆明主编高等教育出版社目录第1章习题解析 2 第2章习题解析 5 第3章习题解析15 第4章习题解析22 第5章习题解析30 第6章习题解析40 第7章习题解析48 第8章习题解析54第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?c d题1-1图解 a 、 c 、 d 为连续信号; b 为离散信号; d 为周期信号;其余为非周期信号; a 、 b 、 c 为有始(因果)信号。

1-2 给定题1-2图示信号f t ,试画出下列信号的波形。

[提示:f 2t 表示将f t 波形压缩,f 表示将f t 波形展宽。

]a 2 f t 2b f 2tc fd f t +1题1-2图解以上各函数的波形如图p1-2所示。

图p1-21-3 如图1-3图示,R、L、C元件可以看成以电流为输入,电压为响应的简单线性系统SR、SL、SC,试写出各系统响应电压与激励电流函数关系的表达式。

题1-3图解各系统响应与输入的关系可分别表示为;;1-4 如题1-4图示系统由加法器、积分器和放大量为a的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。

题1-4图解系统为反馈联接形式。

设加法器的输出为x t ,由于且故有即1-5 已知某系统的输入 f t 与输出y t 的关系为y t | f t |,试判定该系统是否为线性时不变系统?解设T为系统的运算子,则可以表示为:不失一般性,设f t f1 t + f2 t ,则;故有显然即不满足可加性,故为非线性时不变系统。

1-6 判断下列方程所表示的系统的性质。

1 23 4解 1 线性; 2 线性时不变; 3 线性时变; 4 非线性时不变。

1-7 试证明方程所描述的系统为线性系统。

式中a为常量。

证明不失一般性,设输入有两个分量,且则有相加得即可见即满足可加性,齐次性是显然的。

(完整版)信号与系统课后题答案

(完整版)信号与系统课后题答案

《信号与系统》课程习题与解答第二章习题(教材上册第二章p81-p87)2-1,2-4~2-10,2-12~2-15,2-17~2-21,2-23,2-24第二章习题解答2-1 对下图所示电路图分别列写求电压的微分方程表示。

图(a):微分方程:11222012()2()1()()()2()()()()2()()()c cc di t i t u t e t dtdi t i t u t dtdi t u t dt du t i t i t dt ⎧+*+=⎪⎪⎪+=⎪⇒⎨⎪=⎪⎪⎪=-⎩图(b ):微分方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧-==+++=+++⎰⎰2021'2'21'2'11)(01)(1Ri t v Ri Mi Li dt i Ct e Ri Mi Li dt i C)()(1)(2)()2()(2)()(33020022203304422t e dtd MR t v C t v dt d C R t v dt d C L R t v dt d RL t v dt d M L =+++++-⇒ 图(c)微分方程:dt i C i L t v ⎰==211'101)(⎪⎪⎪⎩⎪⎪⎪⎨⎧===⇒⎰dt t v L i t v L i dtdt v L i dt d)(1)(1)(10110'1122011∵ )(122111213t i dt d L C i i i i +=+=)(0(1]1[][101011022110331t e dt dR t v RL v dt d RR L C v dt d R C R C v dt d CC μ=+++++⇒图(d)微分方程:⎪⎩⎪⎨⎧+-=++=⎰)()()()()(1)()(11111t e t Ri t v t v dt t i C t Ri t e μRC v dt d 1)1(1+-⇒μ)(11t e V CR = ∵)()(10t v t v μ=)()(1)1(0'0t e R v t v R Cv v =+-⇒2-4 已知系统相应的其次方程及其对应的0+状态条件,求系统的零输入响应。

信号与系统课后答案

信号与系统课后答案

与奇分量的波形,相应如图题 1.12 中所示。
1-13 已知信号 f(t)的偶分量 fe(t)的波形如图题 1-13(a)所示, 信号 f(t+1)×U(-t-1)的波形如图题 1-13(b) 所示。求 f(t)的奇分量 fo(t),并画出 fo(t)的波形。
解 因
f (t ) = f e (t ) + f 0 (t )

t
−∞
δ (τ )dτ ,故根据现行系统的积分性有
y (t ) = ∫ h(τ (dτ = ∫ [δ (τ ) − δ (τ − 1) − δ (τ − 2) + δ (τ − 3)]dτ = u (t ) − u (t − 1) − u (t − 2) + u (t − 3)
1-2 已知各信号的波形如图题 1-2 所示,试写出它们各自的函数式。
解: f 1 (t ) = t[u (t ) − u (t − 1)] + u (t − 1)
f 2 (t ) = −(t − 1)[u (t ) − u(t − 1)]
f 3 (t ) = (t − 2)[u(t − 2) − u(t − 3)]
y 2 (t ) 的波形如图题 1.17(c)所示.
1-18 图题 1-18(a)所示为线性时不变系统,已知 h1(t)=δ(t)-δ(t-1), h2(t)=δ(t-2)-δ(t-3)。(1)求响 应 h(t); (2) 求当 f(t)=U(t)时的响应 y(t)(见图题 1-18(b))。
解(1) h(t ) = h1 (t ) − h2 (t ) = δ (t ) − δ (t − 1) − δ (t − 2) + δ (t − 3) (2) 因 f (t ) = u (t ) =

信号与系统课后习题与解答第一章

信号与系统课后习题与解答第一章

1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号;(e )离散信号,数字信号; (f )离散信号,数字信号。

1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-; (2)nT e -; (3))cos(πn ;(4)为任意值)(00)sin(ωωn ;(5)221⎪⎭⎫⎝⎛。

解由1-1题的分析可知: (1)连续信号; (2)离散信号;(3)离散信号,数字信号; (4)离散信号; (5)离散信号。

1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ;(3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----。

解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。

(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。

由于5π为21T T 、的最小公倍数,所以此信号的周期5T π=。

(2)由欧拉公式)t (jsin )t (cos e t j ωωω+= 即)10t (jsin )10t (cos e j10t +=得周期5102T ππ==。

信号与系统(郑君里)课后答案 第一章习题解答

信号与系统(郑君里)课后答案  第一章习题解答

1-4 分析过程:(1)例1-1的方法:()()()()23232f t f t f t f t →−→−→−− (2)方法二:()()()233323f t f t f t f t ⎡⎤⎛⎞→→−→−−⎜⎟⎢⎥⎝⎠⎣⎦(3)方法三:()()()()232f t f t f t f t →−→−+→−−⎡⎤⎣⎦ 解题过程:(1)方法一:方法二:(1)()−f at 左移0t :()()()000−+=−−≠−⎡⎤⎣⎦f a t t f at at f t at (2)()f at 右移0t :()()()000−=−≠−⎡⎤⎣⎦f a t t f at at f t at (3)()f at 左移0t a :()()000⎡⎤⎛⎞+=+≠−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a (4)()f at 右移0t a :()()000⎡⎤⎛⎞−−=−+=−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a 故(4)运算可以得到正确结果。

注:1-4、1-5题考察信号时域运算:1-4题说明采用不同的运算次序可以得到一致的结果;1-5题提醒所有的运算是针对自变量t 进行的。

如果先进行尺度变换或者反转变换,再进行移位变换,一定要注意移位量和移位的方向。

1-9 解题过程: (1)()()()2tf t eu t −=− (2)()()()232tt f t ee u t −−=+(3)()()()255ttf t e eu t −−=− (4)()()()()cos 1012tf t et u t u t π−=−−−⎡⎤⎣⎦1-12 解题过程:((((注:1-9、1-12题中的时域信号均为实因果信号,即()()()=f t f t u t 1-18 分析过程:任何信号均可分解为奇分量与偶分量之和的形式,即()()()()1e o f t f t f t =+其中,()e f t 为偶分量,()o f t 为奇分量,二者性质如下:()()()()()()23e e o o f t f t f t f t =−=−−()()13∼式联立得()()()12e f t f t f t =+−⎡⎤⎣⎦ ()()()12o f t f t f t =−−⎡⎤⎣⎦ 解题过程:(a-1) (a-2)(a-3)(a-4)f t为偶函数,故只有偶分量,为其本身(b) ()(c-1)(c-2)(c-3)(c-4)(d-1)(d-2)(d-3)(d-4)1-20 分析过程:本题为判断系统性质:线性、时不变性、因果性(1)线性(Linearity):基本含义为叠加性和均匀性即输入()1x t ,()2x t 得到的输出分别为()1y t ,()2y t ,()()11T x t y t =⎡⎤⎣⎦,()()22T x t y t =⎡⎤⎣⎦,则()()()()11221122T c x t c x t c y t c y t +=+⎡⎤⎣⎦(1c ,2c 为常数)。

信号与系统的课后答案

信号与系统的课后答案
读者也可以用图形扫描法计算之。结果见图p2-10(a)所示。
(b)根据(t)的特点,则
f1(t) *f2(t) =f1(t) *[(t)+(t2)+(t+ 2)]
=f1(t)+f1(t2)+f1(t+ 2)
结果见图p2-10(b)所示。
图p2-10
2-11试求下列卷积。
(a)
(b)
解(a)因为 ,故
2-10对图示信号,求f1(t) *f2(t)。
题2-10图
解(a)先借用阶跃信号表示f1(t)和f2(t),即
f1(t)= 2(t)2(t1)
f2(t)=(t)(t2)

f1(t) *f2(t) = [2(t)2(t1)] * [(t)(t2)]
因为
(t) *(t)= =t(t)
故有
f1(t) *f2(t) = 2t(t)2(t1)(t1)2(t2)(t2)+ 2(t3)(t3)
题2-14图
解由KCL和KVL,可得电路方程为
代入数据得
特征根
1,2=1j1
故冲激响应uC(t)为
2-15一线性时不变系统,在某起始状态下,已知当输入f(t)=(t)时,全响应y1(t)= 3e3t(t);当输入f(t)=(t)时,全响应y2(t)= e3t(t),试求该系统的冲激响应h(t)。
解因为零状态响应
1-2给定题1-2图示信号f(t),试画出下列信号的波形。[提示:f( 2t)表示将f(t)波形压缩,f( )表示将f(t)波形展宽。]
(a)2f(t2)
(b)f(2t)
(c)f( )
(d)f(t+1)
题1-2图
解以上各函数的波形如图p1-2所示。

信号与系统课后习题参考答案

信号与系统课后习题参考答案
2-10电路如题图2-10中所示,试列出电路对应得输入输出时间方程。
题图2-10
2-11已知系统得微分方程与起始条件,试求系统得零输入响应。



2-12已知系统得差分方程与起始条件,试求系统得零输入响应。



2-13已知系统得微分方程,试求系统得单位冲激响应。



2-14已知系统得差分方程,试求系统得单位样值响应。
1-1试分别指出以下波形就是属于哪种信号?
题图1-1
1-2试写出题1-1图中信号得函数表达式。
1-3已知信号与波形如题图1-3中所示,试作出下列各信号得波形图,并加以标注。
题图1-3
⑴⑵⑶
⑷⑸⑹
⑺⑻⑼
1-4已知信号与波形如题图1-4中所示,试作出下列各信号得波形图,并加以标注。
题图1-4
⑴⑵⑶
⑷⑸⑹





2-2试计算下列各对信号得卷积与:。
⑴(对与两种情况)





2-3试计算下图中各对信号得卷积积分:,并作出结果得图形。
题图2-3
2-4试计算下图中各对信号得卷积与:,并作出结果得图形。
题图2-4
2-5已知,试求:
⑴⑵⑶
并作出她们得图形。
2-6系统如题图2-6所示,试求系统得单位冲激响应。已知其中各子系统得单位冲激响应分别为:
3-5设有一周期信号x(t),其复振幅为:
⑴x(t)就是实函数吗?⑵x(t)就是偶函数吗?⑶就是偶函数吗?
3-6设x(t)就是一基波频率为Ω得周期信号,其复振幅为,试用表示以下周期信号得复振幅。
⑴⑵

信号与系统课后答案(西南交大)

信号与系统课后答案(西南交大)

y x (t ) = 3e −2 t − 2 e−3 t t ≥ 0 y f ( t ) = te−2 t − e−2 t + e −3 t t ≥ 0
自由响应 2 e−2 t − e −3 t 强迫响应 te−2 t 稳态响应 0
暂态响应 te−2 t + 2e −2 t − e− 3t t ≥ 0
2.19 y f ( t ) =
2.22① t 3 u( t ) ④(
②∞
③( t−
1 2
1 1 −2 t + e )u( t ) 4 4
sin t + cost 1 −t − e )u( t ) ⑤ eu (t − 3) + e t − 2 u( 3 − t ) ⑥ cos(ωt + 45° ) 2 2 1 − cosπt cosπt − 1 1 1 2.23① u( t ) + u( t − 2) ② t 2 u( t ) − ( t − 1)2 u( t − 1) π π 2 2
3.6 f (t ) =
1 − j 3 ω0 t 3 − j 2 ω 0 t 3 1 e + e + e − jω 0 t + 1 + e jω 0 t + e j 2 ω0 t + e j 3 ω 0t 2 2 2 2
3.7 f (t ) = cos( 4ω0 t + 20°) + 2 cos( 2ω0 t + 30 °) + 3 cos(ω 0 t + 10° ) + 2
p2 + p +1 2.3 H ( p ) = 3 p + 2 p2 + 3p + 2 p2 + 3 p + 2 2.4 H ( p ) = 2p2 +3p +2

《信号与系统》第二版课后答案_(郑君里)_高等教育出版社

《信号与系统》第二版课后答案_(郑君里)_高等教育出版社

5t −∞
e2

)

= c1r1 (t ) + c2r2 (t )
∫ ∫ ∫ ( ) ( ) ( ) ( ) ( ) 时变:输入 e t − t0
,输出
5t
e
−∞
τ
− t0
τ −t0 = x
dτ =
e 5t −t0
−∞
x
dx ≠
e 5(t−t0 )
−∞
x
dx = r
t − t0
非因果: t
= 1时,
解题过程: (1)方法一:
f (t)
1
f (t − 2)
1

-2
-1
f (3t − 2)
0
1

1
2
f (−3t − 2)
1

3
2/3 1
-1 -2/3
方法二:
f (t)
f (3t )
1
1


-2
-1
f (3t − 2)
0
1
-2/3

1/3
f (−3t − 2)
2/3 1 方法三:
-1 -2/3
1
f (t)
(2) r (t ) = e(t )u (t )
线性:设 r1 (t ) = e1 (t )u (t ) 、 r2 (t ) = e2 (t )u (t ) , 则 ⎡⎣c1e1 (t ) + c2e2 (t )⎤⎦ u (t ) = c1r1 (t ) + c2r2 (t )
6
时变:输入 e (t − t0 ) ,输出 e (t − t0 )u (t ) ≠ e (t − t0 )u (t − t0 ) = r (t − t0 ) 因果: r (t ) 仅与此时刻 e (t ) 有关 (3) r (t ) = sin ⎡⎣e(t )⎤⎦ u (t ) 非线性:设 r1 (t ) = sin ⎡⎣e1 (t )⎤⎦ u (t ) 、 r2 (t ) = sin ⎡⎣e2 (t )⎤⎦ u (t ) , 则 sin ⎡⎣c1e1 (t ) + c2e2 (t )⎤⎦ u (t ) ≠ sin ⎡⎣c1e1 (t )⎤⎦ u (t ) + sin ⎡⎣c2e2 (t )⎤⎦ u (t ) 时变:输入 e (t − t0 ) ,输出 sin ⎡⎣e (t − t0 )⎤⎦ u (t ) ≠ sin ⎡⎣e(t − t0 )⎤⎦ u (t − t0 ) = r (t − t0 ) 因果: r (t ) 仅与此时刻 e (t ) 有关 (4) r (t ) = e (1− t ) 线性:设 r1 (t ) = e1 (1− t ) 、 r2 (t ) = e2 (1− t ) ,则 c1e1 (1− t ) + c2e2 (1− t ) = c1r1 (t ) + c2r2 (t ) 时变:设 e1 (t ) = u (t ) − u (t −1.5) ,则 r1 (t ) = u (t + 0.5) − u (t ) e2 (t ) = e1 (t − 0.5) = u (t − 0.5) − u (t − 2) ,则 r2 (t ) = u (t +1) − u (t − 0.5) ≠ r1 (t − 0.5) 非因果:取 t = 0 ,则 r (0) = e (1) ,即 t = 0 时刻输出与 t = 1时刻输入有关。 (5) r (t ) = e(2t ) 线性:设 r1 (t ) = e1 (2t ) 、 r2 (t ) = e2 (2t ) ,则 c1e1 (2t ) + c2e2 (2t ) = c1r1 (t ) + c2r2 (t ) 时变:设 e1 (t ) = u (t ) − u (t − 2) ,则 r1 (t ) = u (t ) − u (t −1) e2 (t ) = e1 (t − 2) = u (t − 2) − u (t − 4) ,则 r2 (t ) = u (t −1) − u (t − 2) ≠ r1 (t − 2) 非因果:取 t = 1,则 r (1) = e (2) ,即 t = 1时刻输出与 t = 2 时刻输入有关。 (6) r (t ) = e2 (t ) 非线性:设 r1 (t ) = e12 (t ) 、 r2 (t ) = e22 (t ) , 则 ⎡⎣c1e1 (t ) + c2e2 (t )⎤⎦2 = c12e12 (t ) + c22e22 (t ) + 2c1c2e1 (t ) e2 (t ) ≠ c1r1 (t ) + c2r2 (t ) 时不变:输入 e (t − t0 ) ,输出 e2 (t − t0 ) = r (t − t0 ) 因果: r (t ) 仅与此时刻 e (t ) 有关

信号与系统课后习题参考答案

信号与系统课后习题参考答案

1试分别指出以下波形是属于哪种信号?题图1-11-2试写出题1-1图中信号的函数表达式。

1-3已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并加以标注。

题图1-3⑴)2(1-t x ⑵)1(1t x -⑶)22(1+t x⑷)3(2+t x ⑸)22(2-t x ⑹)21(2t x - ⑺)(1t x )(2t x -⑻)1(1t x -)1(2-t x ⑼)22(1t x -)4(2+t x 1-4已知信号)(1n x 与)(2n x 波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。

题图1-4⑴)12(1+n x ⑵)4(1n x -⑶)2(1n x ⑷)2(2n x -⑸)2(2+n x ⑹)1()2(22--++n x n x⑺)2(1+n x )21(2n x -⑻)1(1n x -)4(2+n x ⑼)1(1-n x )3(2-n x1-5已知信号)25(t x -的波形如题图1-5所示,试作出信号)(t x 的波形图,并加以标注。

题图1-51-6试画出下列信号的波形图:⑴)8sin()sin()(t t t x ΩΩ=⑵)8sin()]sin(211[)(t t t x ΩΩ+= ⑶)8sin()]sin(1[)(t t t x ΩΩ+=⑷)2sin(1)(t tt x = 1-7试画出下列信号的波形图:⑴)(1)(t u e t x t -+=⑵)]2()1([10cos )(---=-t u t u t e t x t π⑶)()2()(t u e t x t --=⑷)()()1(t u e t x t --=⑸)9()(2-=t u t x ⑹)4()(2-=t t x δ1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。

⑴)1(1)(2Ω-Ω=Ωj e j X ⑵)(1)(Ω-Ω-Ω=Ωj j e e j X ⑶Ω-Ω---=Ωj j e e j X 11)(4⑷21)(+Ω=Ωj j X 1-9已知信号)]()([sin )(π--=t u t u t t x ,求出下列信号,并画出它们的波形图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

百度文库 - 让每个人平等地提升自我1第一章习题参考解答绘出下列函数波形草图。

(1) ||3)(t et x -=(2) ()⎪⎪⎨⎧<≥=02021)(n n n x n n(3) )(2sin )(t t t x επ=(4) )(4sin )(n n n x επ=(5) )]4()([4cos )(--=-t t t et x tεεπ(6) )]4()1([3)(---=n n n x nεε(7) t t t t x 2cos)]2()([)(πδδ--=(8) )]1()3([)(--+=n n n n x δδ-2246810-101n(4)-2-1123456-101t(5)-2-101234567820406080100n(6)-2-112340t(7)↑↑-2-112123t(1)-3-2-101230.51n(2)......-112-101t(3)-4-2024-4-202n(8)百度文库 - 让每个人平等地提升自我2(9) )2()1(2)()(-+--=t t t t x εεε(10) )5(5)]5()([)(-+--=n n n n n x εεε(11) )]1()1([)(--+=t t dtdt x εε (12) )()5()(n n n x --+-=εε(13) ⎰∞--=td t x ττδ)1()((14) )()(n n n x --=ε确定下列信号的能量和功率,并指出是能量信号还是功率信号,或两者均不是。

(1) ||3)(t et x -=解 能量有限信号。

信号能量为:()⎰⎰⎰⎰∞-∞-∞∞--∞∞-+===02022||2993)(dt edt edt e dt t xE ttt ∞<=⋅-⋅+⋅⋅=∞-∞-9)21(92190202tte e(2) ()⎪⎩⎪⎨⎧<≥=02021)(n n n x n n解 能量有限信号。

信号能量为:()∞<=+=+==∑∑∑∑∑∞=--∞=∞=--∞=∞-∞=35)41(4])21[(2)(0102122n n n nn n n n n n xE(3) t t x π2sin )(=-2-11234-101t(9)-224680246n(10)...-2-101234t(11)↑↓-3-2-10123456789101n(12)11t(13)-5-4-3-2-101212345n(14)...百度文库 - 让每个人平等地提升自我3解 功率有限信号。

周期信号在(∞-∞,)区间上的平均功率等于在一个周期内的平均功率,t π2sin 的周期为1。

214cos 2124cos 1)2(sin )2(sin 121212121212121212222=-=-===⎰⎰⎰⎰⎰-----tdt dt dt t dt t dt t TP T T ππππ(4) n n x 4sin)(π=解 功率有限信号。

n 4sinπ是周期序列,周期为8。

21218122cos1814sin 81)(143434322==-===∑∑∑∑--=-=>=<n n n N n nn n x NP ππ(5) )(2sin )(t t t x επ=解 功率有限信号。

由题(3)知,在),(∞-∞区间上t π2sin 的功率为1/2,因此)(2sin t t επ在),(∞-∞区间上的功率为1/4。

如果考察)(2sin t t επ在),0(∞区间上的功率,其功率为1/2。

(6) )(4sin)(n n n x επ=解 功率有限信号。

由题(4)知,在),(∞-∞区间上n 4sin π的功率为1/2,因此)(4sinn n επ在),(∞-∞区间上的功率为1/4。

如果考察)(4sin n n επ在),0(∞区间上的功率,其功率为1/2。

(7) tet x -=3)(解 非功率、非能量信号。

考虑其功率:())(49lim2921lim 921lim 321lim 22222T TT T Tt T T T t T T T t T e e TeT dt e T dt e T P --=-===-∞→--∞→--∞→--∞→⎰⎰上式分子分母对T 求导后取极限得∞→P 。

(8) )(3)(t e t x tε-=解 能量信号。

信号能量为:29299)3()(0202022=-====∞-∞-∞-∞∞-⎰⎰⎰t t t e dt e dt e dt t x E已知)(t x 的波形如题图所示,试画出下列函数的波形。

)(t x1t -1 0 1 2题图百度文库 - 让每个人平等地提升自我4 (1) )2(-tx(2) )2(+tx(3) )2(tx(4) )21(tx(5) )(tx-(6) )2(+-tx(7) )2(--tx(8) )22(+-tx(9) )221(-tx)2(+tx1t-3 -2 -1 0 )2(-tx1t 0 1 2 3 4)2(tx1t -1/2 0 1)2/(t x1t -2 -1 0 1 2 3 4)(tx-1t -2 -1 0 1)2(+-tx1t0 1 2 3 )2(--tx1t -4 -3 -3 -1 0)22(+-tx1t 0 1 3/2)22/(-tx1t 0 1 2 3 4 5 6 7 8百度文库 - 让每个人平等地提升自我5 (10) )221(--tx(11) )221()(-+txtx(12) )21()2(txtx⋅(13)dttdx)((14) ⎰∞-t dxττ)(=⎪⎪⎪⎩⎪⎪⎪⎨⎧-<≥<≤+<≤-++=1223221121221ttttttt)22/(--tx1t-8 -4 -2 0)221()(-+txt x1t-1 0 1 2 3 4 5 6 7 8)21()2(txtx⋅1t-1/2 0 1dttdx)(1t-1 0⎰∞-tdxττ)(3/21/2-1 0 1 2t百度文库 - 让每个人平等地提升自我6已知)(1t x 及)(2t x 的波形如题图所示,试分别画出下列函数的波形,并注意它们的区别。

(1) )2(1t x(2) )21(1t x(3) )2(2t x(4) )21(2t x已知)(n x 的波形如题图所示,试画出下列序列的波形。

)(1t x 2 1t -1 0 1 )(2t x 21t0 1 2 3 4(a) (b)题图)2(1t x 21t-1/2 1/2 )2(2t x210 1 2 t)21(1t x 21t -2 0 2)21(2t x 21 t 0 4 8)(n x 2 2 2 1 1n 题图百度文库 - 让每个人平等地提升自我7(1))4(+n x(2) )(n x -(3) )3(--n x (4) )3(+-n x(5) )3(--n x +)3(+-n x(6) 0)3()3(=+-⋅--n x n x (图略)(7) )1()()(--=∇n x n x n x(8)∑-∞=nm m x )(任何信号可以分解为奇分量和偶分量的和:)()()(t x t x t x o e += 或 )()()(n x n x n x o e +=其中e x 为偶分量;o x 为奇分量。

偶分量和奇分量可以由下式确定:)]()([21)(t x t x t x e -+=, )]()([21)(t x t x t x o --= )]()([21)(n x n x n x e -+=, )]()([21)(n x n x n x o --=(1) 试证明)()(t x t x e e -=或)()(n x n x e e -=;)()(t x t x o o --=或)()(n x n x o o --=。

)(n x -2 2 21 1 n2 2 2 1 1) 2 2 21 1n )3(+-n x 2 2 21 1n )3()3(+-+--n x n x 2 2 2 2 2 21 1 1 1 n -6-5–4 -3–2 –1 0 1 23 4)(n x ∇1 1-4 -1 0 1 2 3-2∑-∞=nm m x )(8 8 8 6 42 (1)n百度文库 - 让每个人平等地提升自我8(2) 试确定题图(a)和(b)所示信号的偶分量和奇分量,并绘出其波形草图。

(1) 证明 根据偶分量和奇分量的定义:)()]()([21)(t x t x t x t x e e =+-=- )()]()([21)]()([21)(t x t x t x t x t x t x o o -=---=--=-离散序列的证明类似。

(2) 根据定义可绘出下图设nn x 2)(=,试求)(),(),(),(22n x n x n x n x ∆∇∆∇。

)(t x1t0 1 2)(n x2 11 2 3 n -2 -1 0-1 -2-3 (a) (b)题图)(t x1t 0 1 2)(t x -1t-2 -1 0)(t x e1/2t -2 -1 0 1 2)(t x o1/2 -2 -10 1 2 t)(n x2 11 2 3 n -2 -1 0 -1-2 -3)(n x - 2 1 -3 -2 -10 1 2 n -1 -2 -3)(n x e-3 30 -3/2 -3/2)(n x o -3/2 2 11 2 3-3 -2 -1 0 n -1-2 -3/2百度文库 - 让每个人平等地提升自我9解 11222122)1()()(--=⋅=-=--=∇n nn n n x n x n x 21212222122)1()()(----=⋅=-=-∇-∇=∇n n n n n x n x n xn n n n x n x n x 222)()1()(1=-=-+=∆+n n n n x n x n x 222)()1()(112=-=∆-+∆=∆-+判断下列信号是否为周期信号,若是周期的,试求其最小周期。

(1) )64cos()(π+=t t x解 周期信号,21π=T(2) )()2sin()(t t t x επ= 解 非周期信号。

(3) )2cos()(t et x tπ-=解 非周期信号。

(4) )3(4)(-=t j et x π解 周期信号,81=T 。

(5) )cos()5sin()(t b t a t x π+=解 若,0,0≠=b a 则)(t x 为周期信号,21=b T ;若,0,0=≠b a 则)(t x 为周期信号,π521=a T ;若,0,0≠≠b a 则)(t x 为非周期信号。

(6) )38cos()(+=n n x π解 周期信号,161=N 。

相关文档
最新文档