青岛版九年级数学上册期末测试题及参考答案5分

合集下载

青岛版九年级上学期期末数学测试题及参考答案

青岛版九年级上学期期末数学测试题及参考答案

青岛版九年级上学期期末数学测试题注意事项:本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,36分,第Ⅱ卷为非选择题,84分,共120分,考试时间120分钟。

第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选择出来并填在第4页的答题栏中,每小题选对得3分,选错,不选或选出的答案超过一个,均记零分)1. 如图,它们是一个物体的三视图,该物体的形状是( )俯视图正视图左视图A. 圆柱B. 正方体C. 圆锥D. 长方体2..顺次连结等腰梯形各边中点得到的四边形是()A、矩形B、菱形C、正方形D、平行四边形3.小明拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能...是A.B.C.D.4. 根据下列表格的对应值:02=++c bx ax 的范围是A . 3<x <3.23B . 3.23<x <3.24C . 3.24<x <3.25D .3.25 <x <3.26 5. 下列函数中,属于反比例函数的是 A 、3x y = B 、13y x=C 、52y x =-D 、21y x =+ 6. 将方程122=-x x 进行配方,可得 A .2)1(2=+x B .5)2(2=-x C .2)1(2=-x D .1)1(2=-x7. 对于反比例函数2y x=,下列说法不正确...的是 A .点(-2,-1)在它的图象上 B .它的图象在第一、三象限 C .当0x >时,y 随x 的增大而增大 D .当0x <时,y 随x 的增大而减小 8. 到三角形三条边的距离相等的点是三角形 A 、三条角平分线的交点 B 、三条高的交点 C 、三边的垂直平分线的交点 D 、三条中线的交点9. 一元二次方程2560--=的根是x xA、x1=1,x2=6B、x1=2,x2=3C、x1=1,x2=-6D、x1= -1,x2=610. 如果矩形的面积为6cm2,那么它的长y cm与宽x cm 之间的函数关系用图象表示大致A B C D11. 顺次连结等腰梯形各边中点得到的四边形是A、矩形B、菱形C、正方形D、平行四边形12. 如图,△ABC中,∠A=30°,∠C=90° AB的垂直平分线交AC于D点,交AB于E点,则下列结论错误的是Array A、AD=DBB、DE=DCC、BC=AED、AD=BC一、选择题(每小题3分,共36分)填写最后结果,每小题填对得3分)13.在“W el i k e m a t h s.”这个句子的所有字母中,字母“e”出现的频率约为(结果保留2个有效数字).14.任意写出一个经过一、三象限的反比例函数图象的表达式.15.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次鱼共200条,有10条做了记号,则估计湖里有_____________条鱼.16.小明想知道某塔的高度,可是又不能爬上去,便灵机一动,发现身高1.80米的他在阳光下影长为2.4米,而塔的影子正好为36米,则塔的高度为______米17.某商品成本为500元,由于连续两年降低成本,现为190元.若每年成本降低率相同,设成本降低率为x,则所列方程为:.18.菱形的一条对角线长是6cm,周长是20cm,则菱形的面积是 cm2.19. 等腰△ABC一腰上的高为3,这条高与底边的夹角为60°,则△ABC的面积;三、解答题(本大题共7小题,满分63分,解答应写出必要的文字说明、证明过程或推演步骤)20. (本小题满分8分, 每小题答对得4分)解方程:(1)2 x2 + 5 x - 1= 0(2)2(2)-=-x x x21.(本小题满分6分)如图,树、红旗、人在同一直线上。

青岛市初三数学九年级上册期末试卷及答案

青岛市初三数学九年级上册期末试卷及答案

青岛市初三数学九年级上册期末试卷及答案一、选择题1.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠2.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人 B .6人C .4人D .8人3.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( ) A .m ≥1B .m ≤1C .m ≥-1D .m ≤-14.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80°5.在Rt △ABC 中,∠C=90°,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cosα的值为( ) A .45B .34C .43 D .356.sin30°的值是( ) A .12 B .22C 3D .17.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( ) A 43B .3C 33D 328.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172cm ,方差为k 2cm ,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172cm ,此时全班同学身高的方差为'k 2cm ,那么'k 与k 的大小关系是( )A .'k k >B .'k k <C .'k k =D .无法判断9.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1- 0 1 2y5 0 3-4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点; ④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .410.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.411.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( )A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的12.如图,A 、B 、C 、D 是⊙O 上的四点,BD 为⊙O 的直径,若四边形ABCO 是平行四边形,则∠ADB 的大小为( )A .30°B .45°C .60°D .75°13.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④14.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣3,0),对称轴为直线x =﹣1,下列结论:①b 2>4ac ;②2a+b =0;③a+b+c >0;④若B(﹣5,y 1)、C(﹣1,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )A .②④B .①③④C .①④D .②③15.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+ 二、填空题16.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则sin DEC ∠=______.17.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .18.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.19.如图,在Rt △ABC 中,BC AC ⊥,CD 是AB 边上的高,已知AB =25,BC =15,则BD =__________.20.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.21.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 22.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .23.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 24.一组数据3,2,1,4,x 的极差为5,则x 为______.25.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).26.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.27.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.28.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____. 29.已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t (s )满足函数表达式21220h t t =-++,则火箭升空的最大高度是___m30.如图,AE 、BE 是△ABC 的两个内角的平分线,过点A 作AD ⊥AE .交BE 的延长线于点D .若AD =AB ,BE :ED =1:2,则cos ∠ABC =_____.三、解答题31.(1)计算:()212cos6020202π-⎛⎫++-︒ ⎪⎝︒⎭(2)若关于x 的方程22210x x m ++-=有两个相等的实数根,求m 的值.32.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG ∶BG =3∶2.设BG 的长为2x 米.(1)用含x的代数式表示DF=;(2)x为何值时,区域③的面积为180平方米;(3)x为何值时,区域③的面积最大?最大面积是多少?33.二次函数y=ax2+bx+c中的x,y满足下表x…-1013…y…0310…不求关系式,仅观察上表,直接写出该函数三条不同类型的性质:(1);(2);(3).34.为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1 cm.参考数据: sin75°="0.966," cos75°=0.259,tan75°=3.732)35.如图,抛物线y=-x2+bx+3与x轴交于A,B两点,与y轴交于点C,其中点A(-1,0).过点A作直线y=x+c与抛物线交于点D,动点P在直线y=x+c上,从点A出发,以每秒2个单位长度的速度向点D运动,过点P作直线PQ∥y轴,与抛物线交于点Q,设运动时间为t(s).(1)直接写出b,c的值及点D的坐标;(2)点 E是抛物线上一动点,且位于第四象限,当△CBE的面积为6时,求出点E 的坐标;(3)在线段PQ最长的条件下,点M在直线PQ上运动,点N在x轴上运动,当以点D、M、N为顶点的三角形为等腰直角三角形时,请求出此时点N的坐标.四、压轴题36.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ; ②若AD+BD =14,求2AD BD CD ⎛⎫⋅+⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.37.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 38.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.39.如图,抛物线2y x bx c =-++与x 轴的两个交点分别为(1,0)A ,(30)B ,.抛物线的对称轴和x 轴交于点M .(1)求这条抛物线对应函数的表达式;(2)若P 点在该抛物线上,求当PAB △的面积为8时,求点P 的坐标.(3)点G 是抛物线上一个动点,点E 从点B 出发,沿x 轴的负半轴运动,速度为每秒1个单位,同时点F 由点M 出发,沿对称轴向下运动,速度为每秒2个单位,设运动的时间为t .①若点G 到AE 和MF 距离相等,直接写出点G 的坐标.②点C 是抛物线的对称轴上的一个动点,以FG 和FC 为边做矩形FGDC ,直接写出点E 恰好为矩形FGDC 的对角线交点时t 的值.40.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,BD =CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由函数是二次函数得到a-1≠0即可解题. 【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0, 解得:a≠1, 故选你D. 【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.2.B解析:B 【解析】 【分析】找出这组数据出现次数最多的那个数据即为众数. 【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次, ∴这组数据的众数是6. 故选:B. 【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.3.C解析:C【解析】【分析】根据函数解析式可知,开口方向向上,在对称轴的右侧y随x的增大而增大,在对称轴的左侧,y随x的增大而减小.【详解】解:∵函数的对称轴为x=222b mma-=-=-,又∵二次函数开口向上,∴在对称轴的右侧y随x的增大而增大,∵x>1时,y随x的增大而增大,∴-m≤1,即m≥-1故选:C.【点睛】本题考查了二次函数的图形与系数的关系,熟练掌握二次函数的性质是解题的关键.4.D解析:D【解析】【分析】根据三角形的内接圆得到∠ABC=2∠IBC,∠ACB=2∠ICB,根据三角形的内角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度数即可;【详解】解:∵点I是△ABC的内心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故选D.【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.5.A解析:A【解析】【分析】根据勾股定理求出AB的长,在求出∠ACD的等角∠B,即可得到答案.【详解】如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,∴AB5==,∵CD⊥AB,∴∠ADC=∠C=90°,∴∠A+∠ACD=∠A+∠B,∴∠B=∠ACD=α,∴4cos5BCcos BABα===.故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值. 6.A解析:A【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:sin30°=12.故选:A.【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.7.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC 为正三角形,AO=1,AD BC ⊥,BD=CD ,AO=BO , ∴1DO 2=,32AD =,∴BD ==,∴BC =∴1322ABC S =⨯=. 故选:C .【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.8.B解析:B【解析】【分析】设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm ,然后根据方差公式比较大小即可.【详解】解:设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm 根据方差公式:()()()22212111721721721n k x x x n -⎡⎤=-+-++-⎣⎦- ()()()()2222'1211172172172172172n x x k x n -⎡⎤=-+-++-+-⎣⎦ ()()()2221211172172172n x x x n -⎡⎤=-+-++-⎣⎦∵111n n <- ∴()()()()()()222222121121111721721721721721721n n x x x x x x n n --⎡⎤⎡⎤-+-++-<-+-++-⎣⎦⎣⎦-即'k k <故选B .【点睛】此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.9.B解析:B【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案.【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误;④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x时,y<0;故此选项正确;综上:①④两项正确,故选:B .【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点. 10.D解析:D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c ∴AB DE BC EF= 即1.5 1.82EF = 解得:EF=2.4 故答案为D .【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.11.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.解:∵二次函数y=﹣x2+x=﹣(x12-)2+14,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=12,故选项B错误;当x=12时取得最大值14,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.12.A解析:A【解析】【详解】解:∵四边形ABCO是平行四边形,且OA=OC,∴四边形ABCO是菱形,∴AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∵BD是⊙O的直径,∴点B、D、O在同一直线上,∴∠ADB=12∠AOB=30°故选A.13.B解析:B【解析】【分析】①由于AC与BD不一定相等,根据圆周角定理可判断①;②连接OD,利用切线的性质,可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,可判断②;③先由垂径定理得到A为CE的中点,再由C为AD的中点,得到CD AE=,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,由等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,可判断③;④正确.证明△APF∽△ABD,可得AP×AD=AF×AB,证明△ACF∽△ABC,可得AC2=AF×AB,证明△CAQ∽△CBA,可得AC2=CQ×CB,由此即可判断④;解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD =,∴CD AE =,CAD ACE ∴∠=∠,PC PA ∴=, AB 是直径,90ACQ ∴∠=︒,90ACP QCP ∴∠+∠=︒,90CAP CQP ∠+∠=︒,PCQ PQC ∴∠=∠,PC PQ PA ∴==,90ACQ ∠=︒,∴点P 是ACQ ∆的外心.故③正确.④正确.连接BD .90AFP ADB ∠=∠=︒,PAF BAD ∠=∠,APF ABD ∴∆∆∽, ∴AP AF AB AD=, AP AD AF AB ∴⋅=⋅,CAF BAC ∠=∠,90AFC ACB ∠=∠=︒,ACF ABC ∴∆∆∽,可得2AC AF AB =,ACQ ACB ∠=∠,CAQ ABC ∠=∠,CAQ CBA ∴∆∆∽,可得2AC CQ CB =⋅,AP AD CQ CB ∴⋅=⋅.故④正确,故选:B .【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.14.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1,∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△=b2-4ac决定:△>0时,抛物线与x轴有2个交点;△= 0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.15.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.二、填空题16.【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE 长,sin DEC的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,∵D为AB的中点,∴CD=15 2AB= ,由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,∴CE=15 2MN,∵DM⊥BC,DC=DB,∴CM=BM=13 2BC=,∴EM=CE-CM=5-3=2,∵DM=14 2AC,∴由勾股定理得,DE=25,∵CD=CE=5,CN⊥DE,∴DN=EN=5 ,∴由勾股定理得,CN=25,∴sin∠DEC=25 CNCE.25.【点睛】本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.17.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BEN K的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如解析:13 3【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴NE GH∴△AEN~△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=20 9同理可求BK=8 9梯形BENK的面积:1208143 2993⎛⎫⨯+⨯=⎪⎝⎭∴阴影部分的面积:1413 3333⨯-=故答案为:13 3.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.18.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴=,∵1x<0,∴1x=−1<0,∵-4≤-3,∴322 -≤≤-,∴-≤ 2.5 -,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.19.9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9 【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC,∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.20.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△AB解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=22,故答案为:22.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 22.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147. 考点:概率公式.23.4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:2405Slrπ===8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得822lrπππ===4cm.故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.24.-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,解析:-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.x可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,则4-x=5,所以x=-1;故答案为-1或6.本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.25.>【解析】【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线解析:>【解析】【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,∴1y >2y .故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧.26.【解析】【分析】利用勾股定理求出AC ,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵A D 是△ABC 的高,∴∠ADC=90°,∴,∵AE 是直径,∴∠ABE=90°,解析:5【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=, ∴3AB =∴AB =故答案为:5 【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.27.【解析】【分析】根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P∽△BA2 B3,△BB1Q∽△BB2A2,再得到PB1 和A2B3的关系以及QB1和A2B2的关系,根据 解析:23【解析】【分析】根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.【详解】解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2, ∴112331==3PB BB A B BB ,112221==2QB BB A B BB , ∴1231=3PB A B ,1221=2QB A B , ∵2322=A B A B , ∴PB 1∶QB 1=13A 2B 3∶12A 2 B 2=2:3. 故答案为:23. 【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键. 28.y =﹣(x+1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】解析:y =﹣(x +1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为()212y a x +-=,∵所得的抛物线经过点(0,﹣3),∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--,故答案为()212y x +=--.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。

青岛版九年级上册数学期末测试卷(必刷题)

青岛版九年级上册数学期末测试卷(必刷题)

青岛版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似。

如图,如果扇形AOB 与扇形 是相似扇形,且半径 ( 为不等于0的常数)那么下面四个结论:①∠AOB=∠ A 1O 1B 1 ;②△AOB∽△ A 1O 1B 1 ;③ A 1B 1 =k ;④扇形AOB 与扇形 A 1O 1B 1 的面积之比为 。

成立的个数为:( )A.1个B.2个C.3个D.4个2、如图,在□ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F , S △DEF :S △BAF =4:25,则DE :AB =( ).A.2∶5B.2∶3C.3∶5D.3∶23、如图,在8×8正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条圆弧所在圆的圆心是( )A.点EB.点FC.点GD.点H4、如图所示,图中共有相似三角形( )A.2对B.3对C.4对D.5对5、若关于x的方程x2﹣2x+m=0的一个根为﹣1,则另一个根为()A.﹣3B.﹣1C.1D.36、下列命题中,假命题的是( )A.两条弧的长度相等,它们是等弧B.等弧所对的圆周角相等C.所有的等边三角形都相似D.位似图形一定有位似中心7、已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是()A.相切B.相离C.相离或相切D.相切或相交8、如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是()A. B. C. D.9、设a,b是方程x2+x﹣2012=0的两个根,则a2+2a+b的值为()A.2009B.2010C.2011D.201210、关于x的一元二次方程x2-2x+m=0的一个根是x1=-1,则m的值和方程的另一个根x2是()A.m=2 x2=-1 B.m=-3 x2=3 C.m=-3 x2=1 D.m=2 x2=-311、已知关于x的方程2x2﹣(4k+1)x+2k2﹣1=0有两个不相等的实数根,则k的取值范围是()A.k=﹣B.k≥﹣C.k>﹣D.k<﹣12、一元二次方程2x2﹣7x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.不能确定13、如图,A、B、C分别是小正方形的三个顶点,且每个小正方形的边长均为1,则sin∠BAC的值为()A. B. C.1 D.14、用直角三角板检查半圆形的工件,合格的是()A. B. C. D.15、已知坐标平面上的机器人接受指令“[a ,A]”(a≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A后,再向面对方向沿直线行走a.若机器人的位置在原点,面对方向为y轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( )A.(-1,)B.(-1,)C.( ,-1)D.( ,-1)二、填空题(共10题,共计30分)16、如图所示,正方形ABCD的边长为1,点E为AB的中点,以E为圆心,1为半径作圆,分别交AD,BC于M,N两点,与DC切于点P,则图中阴影部分面积是________.17、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=15cm,点O在中线CD 上,设OC=xcm,当半径为3cm的⊙O与△ABC的边相切时,x=________.18、如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么sin∠BAC的值是________.19、如图,已知OA,OB是⊙O的两条半径,且OA⊥OB,点C在圆周上(与点A、B不重合),则∠ACB的度数为________20、圆锥的底面半径为5cm,母线长为12cm,其侧面积为________cm2.21、如图,直线与双曲线交于点,将直线向上平移4个单位长度后,与双曲线交于点,与轴交于点,若,则的值为________.22、如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=________°.23、如图,在等边△ABC中,点D、E分别在BC、AC边上,且∠ADE=60°,AB=3,BD=1,则EC=________.24、如图,已知∠ACB=∠CBD=90°,AC=b,CB=a,若△ACB∽△CBD,写出BD与a,b之间满足的关系式________.25、如图,在矩形中,,点为线段上的动点,将沿折叠,使点落在矩形内点处.下列结论正确的是________. (写出所有正确结论的序号)①当为线段中点时,;②当为线段中点时,;③当三点共线时,;④当三点共线时,.三、解答题(共5题,共计25分)26、计算:|1﹣|﹣+2cos30°﹣20170.27、如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)28、如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ与MN平行,河岸MN上有A、B两个相距50米的凉亭,小亮在河对岸D处测得∠ADP=60°,然后沿河岸走了110米到达C处,测得∠BCP=30°,求这条河的宽.(结果保留根号)29、如图,BM是⊙O的直径,四边形ABMN是矩形,D是⊙O上的点,DC⊥AN,与AN交于点C,己知AC=15,⊙O的半径为30,求的长.30、如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.参考答案一、单选题(共15题,共计45分)1、D2、A3、D4、C5、D6、A7、D8、C9、C10、B11、C13、B14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、。

青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x名学生,根据题意,列出方程为( )A.x(x-1)=2070B.x(x+1)=2070C.2x(x+1)=2070D.2、如图,AB是⊙O直径,弦CD⊥AB于点E.若CD=6,OE=4,则⊙O的直径为()A.5B.6C.8D.103、如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°4、如图,在Rt△ABC中,∠ABC=90°,AB= ,BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A. B. C. D.5、如图,AB为⊙O的直径,点C、D在⊙O上,∠BAC=50°,则∠ADC为()A.40°B.50°C.80°D.100°6、一元二次方程x2﹣4x=12的根是()A.x1=2,x2=﹣6 B.x1=﹣2,x2=6 C.x1=﹣2,x2=﹣6 D.x1=2,x2=67、下列方程是一元二次方程的是()A. x2=xB.2 x+1=0C.(x﹣1)x=x2D. x+ =28、如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数是()A.25°B.40°C.50°D.65°9、如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF.把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM.若矩形纸片的宽AB=4,则折痕BM的长为( )A. B. C.8 D.10、下列说法中,正确的是()A.三点确定一个圆B.一组对边平行,另一组对边相等的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形11、有一边长为2的正三角形,则它的外接圆的面积为()A.2 πB.4 πC.4πD.12π12、一元二次方程的一般形式是()A. B. C. D.13、方程的两个根是()A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=0,x2=0 D.x1=1,x2=-114、某公司今年1月的营业额为250万元,按计划第1季度的营业额要达到900万元,设该公司2、3月的营业额的月平均增长率为.根据题意列方程正确的是()A. B. C.D.15、如图,四边形为的内接四边形,已知为,则的度数为()A. B. C. D.二、填空题(共10题,共计30分)16、如果、是一元二次方程的两个根,则________.17、若一个扇形的圆心角是120°,且它的半径是18cm,则此扇形的弧长是________cm18、如图,六边形ABCDEF为⊙O的内接正六边形,若⊙O的半径为,则阴影部分的面积为________ .19、关于x的方程(m-4)x︱m︱-2+(m+4)x+2m+3=0,当m________时,是一元二次方程;20、如图,点P是内一点,过点P分别作直线平行于的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1,9和49.则△ABC的面积是________.21、如图,点分别是以为直径的半圆上的三等分点,若阴影部分的面积是,则弧的长为________.22、已知是关于x的方程的两个根,且,则m的值是________.23、如图,边长为a的正方形ABCD和边长为b的正方形BEFG排放在一起,O1和O2分别是两个正方形的中心,则阴影部分的面积为________,线段O1O2的长为________.24、⊙O的半径为1,弦AB= ,点C是圆上异于A、B的一动点,则∠ACB=________.25、方程x(x﹣2)=﹣(x﹣2)的根是________ .三、解答题(共5题,共计25分)26、解方程x2+6x+1=0.27、(0,).(Ⅰ)求抛物线的解析式.(Ⅱ)抛物线与轴交于另一个交点为C,点D在线段AC上,已知AD=AB,若动点P从A出发沿线段AC以每秒1个单位长度的速度匀速运动,同时另一个动点Q以某一速度从B出发沿线段BC匀速运动,问是否存在某一时刻,使线段PQ被直线BD垂直平分,若存在,求出点Q的运动速度;若不存在,请说明理由.(Ⅲ)在(Ⅱ)的前提下,过点B的直线与轴的负半轴交于点M,是否存在点M,使以A、B、M为顶点的三角形与相似,如果存在,请直接写出M的坐标;若不存在,请说明理由.28、如图,D、E分别是△ABC的边AB、AC上的点,AB=9,BD=7,AC=6,CE =3,求证:△ADE∽△ACB.29、如图,在△ABC中,DE ∥BC,DF∥AB,求证:△ADE∽△DCF.30、已知等腰三角形的三边长分别为a、b、4,且a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,求m的值.参考答案一、单选题(共15题,共计45分)2、D3、B4、A5、A6、B7、A8、B9、A10、D11、C12、D13、B14、D15、C二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、。

青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在□ABCD中,是上一点,且,与交于点,若的面积是1 ,则□ABCD的面积是:( )A.16.5B.17.25C.17.5D.18.752、如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1B.C.2D.23、如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=4,CD=1,则EC的长为( )A. B. C. D.44、若cosα=,则锐角α的大致范围是()A.0°<α<30°B.30°<α<45°C.45°<α<60° D.0°<α<90°5、一元二次方程x2+3x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有两个实数根D.没有实数根6、如图,⊙O是△A BC的外接圆,∠OCB=40°则∠A的度数等于( )A.60°B.50°C.40°D.30°7、如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2B.C.π﹣4D.8、如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()A. B. C. D.9、已知x1, x2是关于x的方程x2-(2m-2)x+(m2-2m)=0的两根,且满足x1•x2+2(x1+x2)=-1,那么m的值为()A. 或3B. 或1C.D.110、如图,P为反比例函数y= (k>0)在第一象限内图象上的一点,过点P 分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A,B.若∠AOB=135°,则k的值是()A.2B.4C.6D.811、如图,AC与BD相交于点E,AD∥BC.若AE=2,CE=3,AD=3,则BC的长度是()A.2B.3C. 4.5D.612、下列一元二次方程中,有两个相等实数根的是()A. ﹣8=0B. 2 ﹣4x+3=0C. 9 +6x+1=0D.5x+2=13、若x1, x2是一元二次方程x2+4x﹣2016=0的两个根,则x1+x2﹣x1x2的值是()A.﹣2012B.﹣2020C.2012D.202014、已知一元二次方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()A.0B.1C.-1D.215、如图,正方形的边长为,在正方形外,,过作于,直线,交于点,直线交直线于点,则下列结论正确的是()①;②;③;④若,则A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、若关于x的一元二次方程kx2+2x﹣1=0有两个实数根,则k的取值范围是________.17、用含30°、45°、60°这三个特殊角的四个三角比及其组合可以表示某些实数,如:可表示为=sin30°=cos60°=tan45°•sin30°=…;仿照上述材料,完成下列问题:(1)用含30°、45°、60°这三个特殊角的三角比或其组合表示,即填空:________=________=________ =…;(2)用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,填空:1=________ .18、已知是一元二次方程()的一个根,则另一根是________.19、若关于x的方程x2+5x+m=0的两个根分别为为x1, x2,且=1,则m=________.20、如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO 于点P,则∠P的度数为________.21、如图,的顶点都是正方形网格中的格点,则等于________.22、在直角三角形ABC中,是AB的中点,BE平分交AC于点E连接CD交BE于点O,若,则OE的长是________.23、⊙O的半径为10cm,A、B、C三点到圆心O的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在________;点B在________;点C在________.24、已知一个扇形的圆心角为45°,扇形所在圆的半径为4cm,则这个扇形的面积为________.25、如果x1, x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么x1+x2=﹣,x1x2= ,这就是一元二次方程根与系数的关系(韦达定理).利用韦达定理解决下面问题:已知m与n是方程x2﹣5x﹣25=0的两根,则+=________.三、解答题(共5题,共计25分)26、解方程:x2+3x﹣2=0.27、如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=60°,∠BEQ=45°;在点F处测得∠AFP=45°,∠BFQ=90°,EF=2km.(1)判断AB、AE的数量关系,并说明理由;(2)求两个岛屿A和B之间的距离(结果保留根号).28、某数学兴趣小组要测量实验大楼部分楼体的高度(如图①所示,部分),在起点处测得大楼部分楼体的顶端点的仰角为,底端点的仰角为,在同一剖面沿水平地面向前走20米到达处,测得顶端的仰角为(如图②所示),求大楼部分楼体的高度约为多少米?(精确到1米)(参考数据:,,,,)29、周末,小马和小聪想用所学的数学知识测量图书馆前小河的宽.测量时,他们选择河对岸边的一棵大树,将其底部作为点,在他们所在的岸边选择了点,使得与河岸垂直,并在点竖起标杆,再在的延长线上选择点竖起标杆,使得点与点,共线.已知:,,测得,,.测量示意图如图所示.请根据相关测量信息,求河宽.30、如图是某路灯在铅垂面内的示意图,灯柱的高为米,灯柱与灯杆的夹角为,路灯采用锥形灯罩,在地面上的照射区域的长为米,从两处测得路灯A的仰角分别为和,且,求灯杆的长度.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、C5、D6、B7、A8、A9、B10、D11、C12、C13、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、29、。

青岛版九年级数学上册期末检测试卷含答案

青岛版九年级数学上册期末检测试卷含答案

青岛版九年级数学上册期末检测试卷含答案一、单选题1.如图,正五边形ABCDE的边长为2,连结AC,AD,BE,BE分别与AC和AD相交于点F,G,连结DF,给出下列结论:①∠FDG=18°;②FG=3-;③(S四边形CDEF)2=9+2;④DF2-DG2=7-2.其中结论正确的个数是()A.1B.2C.3D.42.如图是一个十字路口,O是两条公路的交点,点A,B,C,D表示的是公路上的四辆车.若OC=8m,AC=17m,AB=5m,BD=10m,则C,D两辆车之间的距离为()A.5m B.4m C.3m D.2m3.如图所示,在△ABC中,cos B=,sin C=,BC=7,则△ABC的面积是( )A.B.12C.14D.214.如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A.B.C.D.5.在半径为12cm的圆中,垂直平分半径的弦长为( )A.cm B.27 cm C.cm D.cm6.方程左边配成一个完全平方式后,所得到的方程是()A.B.C.D.7.已知⊙O的直径为6cm,且点P在⊙O内,则线段PO的长度(范围)()A.小于6cm B.6cm C.3cm D.小于3cm8.“行千里,致广大”是重庆人民向大家发出的旅游邀请.如图,某建筑物上有一个旅游宣传语广告牌,小亮在处测得该广告牌顶部处的仰角为,然后沿坡比为的斜坡行走米至处,在处测得广告牌底部处的仰角为,已知与水平面平行,与垂直,且米,则广告牌顶部到的距离为()(参考数据:,,)A.B.C.D.9.在坡度为的斜坡上,一个人从点出发向上运动到点,若,则此人升高了( )m.A.B.C.D.10.如图,扇形纸扇完全打开后,外侧两竹条AB、AC夹角为120°,AB的长为30㎝,贴纸部分BD的长为20㎝,则贴纸部分的面积为()A.㎝B.㎝C.800㎝D.㎝11.如图,圆O的半径为6,点A、B、C在圆O上,且∠ACB=45°,则弦AB的长是A.B.6 C.D.512.cos30°=( )。

青岛版九年级数学上册期末测试题及参考答案

青岛版九年级数学上册期末测试题及参考答案

九年级数学上学期期末试题一、选择题A .4个B .3个C .2个D .1个 2.方程(3)(1)3x x x -+=-的解是( )A .0x = B .3x = C .3x =或1x =- D .3x =或0x =3.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( ) A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠54.2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机。

受金融危机的影响,某商品原价为200元,连续两次降价%a 后售价为148元,下面所列方程正确的是( )A .2200(1%)148a +=B .2200(1%)148a -=C .200(12%)148a -=D .2200(1%)148a -=5.如图,⊙O 的弦AB 垂直平分半径OC ,若AB=,6则⊙O 的半径为( ) A.2 B.22 C.22 D.266.弧长等于半径的圆弧所对的圆心角是( ) A.360πB.180πC.90πD.6007.已知反比例函数xky =的图象经过点P(一l ,2),则这个函数的图象位于( )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限8.如图,⊙O 内切于△ABC ,切点为D ,E ,F .已知∠B=50°,∠C=60°,•连结OE ,OF ,DE ,DF ,那么∠EDF 等于( ) A .40° B .55° C .65° D .70°9.某校数学课外兴趣小组的同学每人制作一个面积为200cm 2的矩形学具进行展示. 设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形长y (cm )与宽x (cm )之间的函数关系的图象大致是( )10. 若n (0n ≠)是关于x 的方程220x mx n ++=的根,则n m +的值为( ) A 、1 B 、2 C 、-1 D 、-211.已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数xy 4-=的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( )A. y 3<y 1<y 2B. y 2<y 1<y 3C. y 1<y 2<y 3D. y 3<y 2<y 112.如图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如右图所示,则△ABC 的面积是( )94xyOPDCA 、10B 、16C 、18D 、2013. 如图,直线y kx b =+经过(2,1)A --和(3,0)B -两点,双曲线为xyOA (-2,-1)B (-3,0)y=x1的图像,利用函数图象判断不等式1kx b x<+的解集为( )(A)313x --313x -+>3535x ---+<<313313x ---+<<(D)35350x x ---+<<<或二、填空题(本大题共5个小题,满分15分,只要求填写最后结果,每小题填对得3分)14.方程25)1(2=-x 的解是____ 15. 函数31-=x y 的自变量的取值范_____________.16.如图:矩形纸片ABCD ,AB =2,点E 在BC 上,且AE=EC .若将纸片沿AE 折叠,点B 恰好落在AC 上,则AC 的长是 .17.如图,正方形ABCD 的边长为1,E 、F 分别是BC 、CD 上的点,且△AEF 是等边三角形,则BE 的长为_________________.18.如图,同心圆O 中,大圆半径OA 、OB 分别交小圆于D 、C ,OA ⊥OB,若四边形ABCD 的面积为50,则图中阴影部分的面积为____________________. 三、解答题(本大题共4小题,满分45分,解答应写出必要的文字说明、证明过程或推演步骤)19. (本题满分11分)ABCDE第23题图如图,利用一面墙(墙的长度不超过45m )当做一边,用80m 长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m 2? ⑵能否使所围矩形场地的面积为810m 2,为什么?20.(本题满分12分)如图,AB 为⊙O 的直径,PQ 切⊙O 于T ,AC PQ ⊥于C ,交⊙O 于D . 求证:(1)AT 平分∠BAC(2)AT 2=A B ·AC29. (本题满分12分)已知:如图,在平面直角坐标系x O y 中,Rt △OCD 的一边OC 在x 轴上,∠C=90°,点D 在第一象限,OC=3,DC=4,反比例函数的图象经过OD 的中点A .(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边DC 交于点B ,在x 轴上求一点P ,使PA PB +最小.ABCD OP TQ(第28题图)。

【新】青岛版九年级上册数学期末测试卷及含答案

【新】青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0的常数项为0,则m的值等于()A.﹣2B.2C.﹣2或2D.02、要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为( )A.x(x﹣1)=30B.x(x+1)=30C. =30D. =303、已知Rt△ABC中,∠C=90°,AC=4,BC=6,那么下列各式中,正确的是()A. B. C. D.4、已知矩形中,,,下列四个矩形相似的是()A. B. C. D.5、如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50°C.20°D.40°6、在正方形网格中,∠BAC如图放置,点A,B,C都在格点上,则sin∠BAC 的值为 ( )A. B. C. D.7、一个多边形的边长分别为2,3,4,5,6,另一个多边形和这个多边形相似,且最短边长为6,则最长边长为()A.18B.12C.24D.308、如图,在△ABC中,D、E分别为AB、AC边上的点,且∠AED=∠B,AD=3,AC=6,DB=5,则AE的长度为()A. B. C. D.49、若关于x的一元二次方程2x2﹣2x+3m﹣1=0有两个实数根x1、x2,且x1x2>x1+x2﹣4,则实数m的取值范围是()A.m>﹣B.m≤C.m<﹣D.﹣<m≤10、如图,AB为⊙O的切线,切点为B,连接AO,OA与⊙O交于点C,BD为⊙O 的直径,连接CD,若∠A=30°,⊙O的半径为4,则图中阴影部分的面积为()A. B. C. D.11、关于x的一元二次方程kx2+2x-1=0有两个不相等实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k≠012、如图,⊙O的直径CD过弦EF的中点G,∠DCF=18°,则弧DE的度数等于()A.72°B.54°C.36°D.18°13、一个公共房门前的台阶高出地面2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡AB的坡度是18°B.斜坡AB的坡度是tan18° C.AC=2tan18°米 D.AB= 米14、已知一个直角三角形的两条直角边恰好是方程2x2﹣9x+8=0的两根,则此三角形的面积为()A.1B.2C.3D.415、若m、n是方程的两个实数根,则的值为()A.0B.2C.-1D.3二、填空题(共10题,共计30分)16、如图,若内一点满足,则称点P为的布罗卡尔点,三角形的布罗卡尔点是法国数学教育家g雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知中,,,为的布罗卡尔点,若,则________.17、已知关于x的方程(k-1)x2-2kx+k-3=0有两个不相等的实数根,则k的取值范围是________。

2022年青岛版初中数学青岛九上期末数学试卷(附答案)

2022年青岛版初中数学青岛九上期末数学试卷(附答案)

期末数学试卷一.选择题1.以下哪个方程是一元二次方程〔〕A.2x+y=1B.x2+1=2xy C.x2+=3D.x2=2x﹣32.制作一块3m×2m长方形广告牌的本钱是120元,在每平方米制作本钱相同的情况下,假设将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的本钱是〔〕A.360元B.720元C.1080元D.2160元3.把一元二次方程〔x+3〕〔x﹣5〕=2化成一般形式,得〔〕A.x2+2x﹣17=0B.x2﹣8x﹣17=0C.x2﹣2x=17D.x2﹣2x﹣17=0 4.sin60°+tan45°的值等于〔〕A.B.C.D.15.⊙P的半径为5,点P的坐标为〔2,1〕,点Q的坐标为〔0,6〕,那么点Q与⊙P的位置关系是〔〕A.点Q在⊙P外B.点Q在⊙P上C.点Q在⊙P内D.不能确定6.,在Rt△ABC中,∠C=90°,AB=5,BC=3,那么sin A的值是〔〕A.B.C.D.7.两个相似三角形一组对应高分别是15和5,面积之差为80,那么较大三角形的面积为〔〕A.90B.180C.270D.36008.一元二次方程x2+6x+9=0的根的情况是〔〕A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根9.如图,AB是⊙O的直径,∠BOD=120°,点C为的中点,AC交OD于点E,OB=2,那么AE的长为〔〕A.B.C.D.10.一元二次方程ax2+bx+c=0〔a≠0〕①假设方程两根为﹣1和2,那么2a+c=0;②b>a+c,那么一元二次方程ax2+bx+c=0有两个不相等的实数根;③假设b=2a+3c,那么一元二次方程ax2+bx+c=0有两个不相等的实数根;④假设m是方程ax2+bx+c=0的一个根,那么一定有b2﹣4ac=〔2am+b〕2成立其中正确的选项是〔〕A.只有①②③B.只有①③④C.只有①②③④D.只有①④11.如图,在等腰△ABC中,AB=AC,tan C=2,BD⊥AC于点D,点G是底边BC上一点,过点G向两腰作垂线段,垂足分别为E、F,假设BD=4,GE=1.5,那么BF的长度为〔〕12.如图,分别以△ABC的三个顶点为圆心作⊙A、⊙B、⊙Ccm,那么图中三个阴影局部面积之和等于〔〕A.cm2B.cm2C.cm2D.cm2二.填空题13.在△ABC中,∠A、∠B为锐角,且|tan A﹣1|+〔﹣cos B〕2=0,那么∠C=°.14.⊙O的半径为3cm,点A、B、C是直线l上的三个点,点A、B、C到圆心O的距离分别为2cm,3cm,5cm,那么直线l与⊙O的位置是.15.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为.16.两个相似三角形的相似比为2:3,他们的周长差为30,那么较大三角形的周长为.17.如图,等边三角形ABC的外接圆⊙O的半径OA的长为2,那么其内切圆半径的长为.三.解答题18.计算〔1〕2sin30°﹣tan60°+tan45°;〔2〕tan245°+sin230°﹣3cos230°19.用适当的方法解以下方程:〔1〕〔x﹣2〕2﹣16=0〔2〕5x2+2x﹣1=0.20.如图,在△ABC中,D,E分别是边AB,AC上的点,连接DE,且∠ADE=∠ACB.〔1〕求证:△ADE∽△ACB;〔2〕如果E是AC的中点,AD=8,AB=10,求AE的长.21.如图,AD是△ABC的中线,tan B=,cos C=,AC=.求:〔1〕BC的长;〔2〕∠ADC的正弦值.22.如图,⊙O是△ABC的外接圆,圆心O在AB上,M是OA上一点,过M作AB的垂线交BC的延长线于点E,点F是ME上的一点,且EF=CF.〔1〕求证:直线CF是⊙O的切线;〔2〕假设∠B=2∠A,AB=8,且AC=CE,求BM的长.23.关于x的方程x2﹣2〔m+1〕x+m2+2=0.〔1〕假设方程总有两个实数根,求m的取值范围;〔2〕假设两实数根x1、x2满足〔x1+1〕〔x2+1〕=8,求m的值.24.如图是小明设计利用光线来测量某古城墙CD高度的示意图,如果镜子P与古城墙的距离PD=12米,镜子P与小明的距离BP=1.5米,小明刚好从镜子中看到古城墙顶端点C,小明眼睛距地面的高度AB=1.2米,那么该古城墙的高度是?25.如图1,2分别是某款篮球架的实物图与示意图,AB⊥BC于点B,底座BC的长为1米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC,EF⊥EH于点E,AH长米,HF长米,HE长1米.〔1〕求篮板底部支架HE与支架AF所成的角∠FHE的度数.〔2〕求篮板底部点E到地面的距离.〔结果保存根号〕26.如图,AB是⊙O的直径,点C在⊙O上,延长BC至点D,使得DC=BC,直线DA 与⊙O的另一个交点为E,连结AC,CE.〔1〕求证:CD=CE;〔2〕假设AC=2,∠E=30°,求阴影局部〔弓形〕面积.27.庆阳市是传统的中药材生产区,拥有丰富的中药材资源,素有“天然药库〞“中药之乡〞的美称.优越的地理气候条件形成了较独特的资源禀赋,孕育了丰富的中药植物资源和优良品种.某种植户2021年投资20万元种植中药材,到2021年三年共累计投资95万元,假设在这两年内每年投资的增长率相同.〔1〕求该种植户每年投资的增长率;〔2〕按这样的投资增长率,请你预测2021年该种植户投资多少元种植中药材.参考答案一.选择题1.解:A、不是一元二次方程,故此选项错误;B、不是一元二次方程,故此选项错误;C、不是一元二次方程,故此选项错误;D、是一元二次方程,故此选项正确;应选:D.2.解:3m×2m=6m2,∴长方形广告牌的本钱是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,那么面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的本钱是54×20=1080m2,应选:C.3.解:〔x+3〕〔x﹣5〕=2,去括号得:x2﹣5x+3x﹣15=2,移项得:x2﹣5x+3x﹣15﹣2=0,合并同类项得:x2﹣2x﹣17=0,应选:D.4.解:sin60°+tan45°=+1=.应选:B.5.解:∵点P的坐标为〔2,1〕,点Q的坐标为〔0,6〕,∴QP==>5,∴点Q与⊙P的位置关系是:点Q在圆⊙P外.应选:A.6.解:sin A==,应选:A.7.解:∵两个相似三角形的一组对应高的长分别为15,5,∴两三角形的相似比为3:1,∴其面积比为32:12=9:1,∴设两相似三角形的面积分别为9x和x,根据题意列方程得,9x﹣x=80,x=10.那么较大正六边形的面积为90,应选:A.8.解:∵△=62﹣4×1×9=0,∴一元二次方程x2+6x+9=有两个相等的实数根.应选:A.9.解:连接OC.∵=,∴∠DOC=∠BOC=60°,∴∠AOD=60°,∴∠AOD=∠DOC,∴=,∴OD⊥AC,∴∠AEO=90°,∴AE=AO•sin60°=,应选:A.10.解:假设方程两根为﹣1和2,那么=﹣1×2=﹣2,即c=﹣2a,2a+c=2a﹣2a=0,故①正确;假设b>a+c,设a=4,b=10,c=5,那么△<0,一元二次方程ax2+bx+c=0没有实数根,故②错误;假设b=2a+3c,那么△=b2﹣4ac=4〔a+c〕2+5c2>0,一元二次方程ax2+bx+c=0有两个不相等的实数根,故③正确.假设m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=﹣〔bm+c〕,而〔2am+b〕2=4a2m2+4abm+b2=4a[﹣〔bm+c〕]+4abm+b2=4abm﹣4abm﹣4ac+b2=b2﹣4ac.故④正确;应选:B.11.解:连接AG,∵S△CGA+S△BGA=S△ABC,∴+=×AC×BD,∵AC=AB,∴GE+GF=BD,∵BD=4,GE=1.5,∴GF=2.5,∵tan C=2=,BD=4,∴CD=2,由勾股定理得:BC===2,∵EG⊥AC,BD⊥AC,∴EG∥BD,∴△CEG∽△CDB,∴=,∴=,解得:BG=,在Rt△BFG中,由勾股定理得:BG2=BF2+GF2,〔〕2=BF22,解得:BF=1.25〔负数舍去〕,应选:C.12.解:∵⊙A、⊙B、⊙C的半径都是0.5,扇形的三个圆心角正好构成三角形的三个内角,∴阴影局部扇形的圆心角度数为180°,∴S阴影==.应选:B.二.填空题13.解:由题意得,tan A=1,cos B=,那么∠A=45°,∠B=60°,那么∠C=180°﹣45°﹣60°=75°.故答案为:75.14.解:因为⊙O的半径为3cm,点A、B、C到圆心O的距离分别为2cm,3cm,5cm,2cm<3cm,所以直线l与⊙O的位置是相交;故答案为:相交.15.解:x2﹣3x﹣10=0,〔x﹣5〕〔x+2〕=0,即x﹣5=0或x+2=0,∴x1=5,x2=﹣2.因为方程x2﹣3x﹣10=0的根是等边三角形的边长,所以等边三角形的边长为5.所以该三角形的周长为:5×3=15.故答案为:15.16.解:设较大三角形的周长是3x,较小三角形的周长是2x,那么3x﹣2x=30,解得x=30,那么较大三角形的周长是3x=90,故答案为:90.17.解:过点O作OH⊥AB与点H,∵△ABC是等边三角形,∴∠CAB=60°,∵O为三角形外心,∴∠OAH=30°,∴OH=OA=1,故答案为:1三.解答题18.解:〔1〕2sin30°﹣tan60°+tan45°=2×﹣+1=2﹣;〔2〕tan245°+sin230°﹣3cos230°=×12+〔〕2﹣3×〔〕2=+﹣=﹣.19.解:〔1〕∵〔x﹣2〕2﹣16=0,∴〔x﹣2〕2=16,∴x﹣2=4或x﹣2=﹣4,解得:x1=﹣2,x2=6;〔2〕∵a=5,b=2,c=﹣1,∴△=22﹣4×5×〔﹣1〕=24>0,那么x==,即x1=,x2=.20.解:〔1〕∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB;〔2〕由〔1〕可知::△ADE∽△ACB,∴=,∵点E是AC的中点,设AE=x,∴AC=2AE=2x,∵AD=8,AB=10,∴=,解得:x=2,∴AE=2.21.解:〔1〕如图,作AH⊥BC于H.在Rt△ACH中,∵cos C==,AC=,∴CH=1,AH==1,在Rt△ABH中,∵tan B==,∴BH=5,∴BC=BH+CH=6.〔2〕∵BD=CD,∴CD=3,DH=2,AD==在Rt△ADH中,sin∠ADH==.∴∠ADC的正弦值为.22.〔1〕证明:如图,连接OC,设EM交AC于H.∵AB是直径,∴∠ACB=∠ACE=90°,∵FE=FC,∴∠E=∠FCE,∴∠E+∠CHE=90°,∠FCE+∠FCH=90°,∴∠FCH=∠FHC,∵∠A+∠AHM=90°,∠AHM=∠FHC=∠FCH,∴∠FCH+∠A=90°,∵OC=OA,∴∠A=∠OCA,∴∠FCH+∠OCA=90°,∴∠FCO=90°,∴FC⊥OC,∴CF是⊙O的切线.〔2〕解:在Rt△ABC中,∵∠ACB=90°,AB=8,∠B=2∠A ∴∠A=30°,∴BC=AB=4,AC=BC=4,∵AC=CE,∴CE=4,∴BE=BC+CE=4+4,在Rt△BEM中,∠BME=90°,∠E=30°∴BM=BE=2+2.23.解:〔1〕∵关于x的方程x2﹣2〔m+1〕x+m2+2=0总有两个实数根,∴△=[﹣2〔m+1〕]2﹣4〔m2+2〕=8m﹣4≥0,解得:m≥.〔2〕∵x1、x2为方程x2﹣2〔m+1〕x+m2+2=0的两个根,∴x1+x2=2〔m+1〕,x1x2=m2+2.∵〔x1+1〕〔x2+1〕=8,∴x1x2+〔x1+x2〕+1=8,∴m2+2+2〔m+1〕+1=8,整理,得:m2+2m﹣3=0,即〔m+3〕〔m﹣1〕=0,解得:m1=﹣3〔不合题意,舍去〕,m2=1,∴m的值为1.24.解:∵∠APB=∠CPD,∠ABP=∠CDP,∴△ABP∽△CDP∴=,即:=,解得:PD=9.6〔米〕.m.25.解:〔1〕在Rt△EFH中,cos∠FHE==,∴∠FHE=45°,答:篮板底部支架HE与支架AF所成的角∠FHE的度数为45°;〔2〕延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,那么四边形ABMG和四边形HNGE是矩形,∴GM=AB,HN=EG,在Rt△ABC中,∵tan∠ACB=,∴AB=BC tan60°=1×=,∴GM=AB=,在Rt△ANH中,∠F AN=∠FHE=45°,∴HN=AH sin45°=×=,∴EM=EG+GM=+,答:篮板底部点E到地面的距离是〔+〕米.26.〔1〕证明:∵AB是直径,∴∠ACB=90°,∵DC=BC,∴AD=AB,∴∠D=∠ABC,∵∠E=∠ABC,∴∠E=∠D,∴CD=CE.〔2〕解:由〔1〕可知:∠ABC=∠E=30°,∠ACB=90°,∴∠CAB=60°,AB=2AC=4,在Rt△ABC中,由勾股定理得到BC=2,连接OC,那么∠COB=120°,∴S 阴=S 扇形OBC ﹣S △OBC =﹣×××2=﹣.27.解:〔1〕设这两年该该种植户每年投资的年平均增长率为x ,那么2021年种植投资为 20〔1+x 〕万元,2021年种植投资为20〔1+x 〕2万元,根题意得:20+20〔1+x 〕+20〔1+x 〕2=95,解得:x =﹣3.5〔舍去〕或x =0.5=50%.∴该种植户每年投资的增长率为50%;〔2〕2021年该种植户投资额为:20〔1+50%〕3=67.5〔万元〕.第3章 分式一、选择题:〔每题3分,共30分〕1、假设a ,b 为有理数,要使分式ba 的值是非负数,那么a ,b 的取值是〔 〕(A)a ≥0,b ≠0; (B)a ≥0,b>O ;(C)a ≤0,b<0; (D)a ≥0,b>0或a ≤0,b<0.2、以下各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有〔 〕个。

青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A.3B.4C.D.2、已知关于x的一元二次方程x2+2x+a﹣1=0有两根为x1和x2,且x12﹣x 1x2=0,则a的值是()A.a=1B.a=1或a=﹣2C.a=2D.a=1或a=23、已知方程2x2﹣x﹣1=0的两根分别是x1和x2,则x1+x2的值等于()A.2B.﹣C.D.﹣14、将一个菱形放在2倍的放大镜下,则下列说法不正确的是()A.菱形的各角扩大为原来的2倍B.菱形的边长扩大为原来的2倍C.菱形的对角线扩大为原来的2倍D.菱形的面积扩大为原来的4倍5、已知,如图一张三角形纸片ABC,边AB长为10cm,AB边上的高为15cm,在三角形内从左到右叠放边长为2的正方形小纸片,第一次小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放的正方形的个数是( ).A.12B.13C.14D.156、在△ABC中,已知AB=AC=4cm,BC=6cm,D是BC的中点,以D为圆心作一个半径为3cm的圆,则下列说法正确的是()A.点A在⊙D外B.点A在⊙D 上C.点A在⊙D内D.无法确定7、若,,则以,为根的一元二次方程是()A. B. C. D.8、已知关于x的一元二次方程有两个不相等的实数根,那么m的值为()A. B. C. D.9、已知,在中,,,,作.小亮的作法如下:①作,②在上截取,③以为圆心,以5为半径画弧交于点,连结.如图,给出了小亮的前两步所画的图形.则所作的符合条件的()A.是不存在的B.有一个C.有两个D.有三个及以上10、如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.1B.C.D.11、把方程(x- )(x+ )+(2x-1)2=0化为一元二次方程的一般形式是()A. B. C. D.512、按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠3.A.1 个B.2 个C.3 个D.4 个13、若关于x的方程x2+(m+1)x+ =0的一个实数根的倒数恰是它本身,则m 的值是()A.﹣B.C.﹣或D.114、如图,四边形ABCD是⊙O的内接四边形,若∠B=80°,则∠ADC的度数是()A.60°B.80°C.90°D.100°15、已知弦AB把圆周分成1:5的两部分,则弦AB所对应的圆心角的度数为()。

青岛新版九年级数学上册期末检测试卷含答案

青岛新版九年级数学上册期末检测试卷含答案

青岛新版九年级数学上册期末检测试卷含答案一、单选题
1.如图,是的弦,点在上,已知,则等于()
A.40°B.50C.60°D.80°
2.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=50°,则∠C的度数为()
A.60°B.50°C.40°D.30°
3.在Rt△ABC中,△C=90°,若AC=2,BC=1,则tanA的值是()
A.B.2 C.D.
4.甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均环数及方差如下表所示.
若要选出一个成绩较好且状态稳定的运动员去参赛,那么应选运动员()A.甲B.乙C.丙D.丁
5.下列各点中,与不在同一反比例函数图象上的是
A .B.C.D.
6.如图,点的坐标是,是等边三角形,点在第一象限,若反比例函数的图象经过点,则的值()
A .B.8C.D.
7.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB =6,BE=3,则EC的长是()
A.4B.2C.D.
8.以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()。

青岛市九年级上册期末数学试题(含答案)

青岛市九年级上册期末数学试题(含答案)

青岛市九年级上册期末数学试题(含答案)一、选择题1.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º2.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .43B .42C .6D .43.方程(1)(2)0x x --=的解是( )A .1x =B .2x =C .1x =或2x =D .1x =-或2x =-4.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC = B .AD AEAB AC= C .△ADE ∽△ABCD .:1:2ADEABCS S=5.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( ) A .2sin 3B =; B .2cos 3B =; C .2tan 3B =; D .以上都不对;6.△ABC 的外接圆圆心是该三角形( )的交点. A .三条边垂直平分线 B .三条中线 C .三条角平分线D .三条高7.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .238.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+ 9.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2 B .3C .4D .510.二次函数y =3(x +4)2﹣5的图象的顶点坐标为( )A .(4,5)B .(﹣4,5)C .(4,﹣5)D .(﹣4,﹣5) 11.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( ) A .6 B .7C .8D .912.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2B .y =32x +2C .y =3()22x -D .y =3()22x +13.如图,A 、B 、C 、D 是⊙O 上的四点,BD 为⊙O 的直径,若四边形ABCO 是平行四边形,则∠ADB 的大小为( )A .30°B .45°C .60°D .75°14.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .3415.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252-B .25-C .251-D .52-二、填空题16.若a b b -=23,则ab的值为________. 17.抛物线y=(x ﹣2)2﹣3的顶点坐标是____.18.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.19.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.20.一组数据:2,5,3,1,6,则这组数据的中位数是________.21.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m . 22.一组数据3,2,1,4,x 的极差为5,则x 为______. 23.如图,⊙O 是正五边形ABCDE 的外接圆,则∠CAD =_____.24.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n 个数据的平均数等于______.25.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.26.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程是______________.27.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm . 28.已知234x y z x z y+===,则_______ 29.如图,Rt △ABC 中,∠ACB =90°,BC =3,tan A =34,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,点F 是DE 上一动点,以点F 为圆心,FD 为半径作⊙F ,当FD =_____时,⊙F 与Rt △ABC 的边相切.30.如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1:r 2=_____.三、解答题31.某校为了丰富学生课余生活,计划开设以下社团:A .足球、B .机器人、C .航模、D .绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目. (1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.32.(1)如图1,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P ,求证:DP EP BQ CQ=; (2) 如图,在△ABC 中,∠BAC=90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF 分别交DE 于M ,N 两点.①如图2,若AB=AC=1,直接写出MN 的长; ②如图3,求证MN 2=DM·EN .33.解方程:(1)3x 2-6x -2=0; (2)(x -2)2=(2x +1)2.34.(如图 1,若抛物线 l 1 的顶点 A 在抛物线 l 2 上,抛物线 l 2 的顶点 B 也在抛物线 l 1 上(点 A 与点 B 不重合).我们称抛物线 l 1,l 2 互为“友好”抛物线,一条抛物线的“友 好”抛物线可以有多条.(1)如图2,抛物线 l 3:21(2)12y x =-- 与y 轴交于点C ,点D 与点C 关于抛物线的对称轴对称,则点 D 的坐标为 ;(2)求以点 D 为顶点的 l 3 的“友好”抛物线 l 4 的表达式,并指出 l 3 与 l 4 中y 同时随x 增大而增大的自变量的取值范围;(3)若抛物线 y =a 1(x -m)2+n 的任意一条“友好”抛物线的表达式为 y =a 2(x -h)2+k , 写出 a 1 与a 2的关系式,并说明理由.35.某小型工厂9月份生产的A 、B 两种产品数量分别为200件和100件,A 、B 两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A 、B 两种产品的生产数量和出厂单价,10月份A 产品生产数量的增长率和A 产品出厂单价的增长率相等,B 产品生产数量的增长率是A 产品生产数量的增长率的一半,B 产品出厂单价的增长率是A 产品出厂单价的增长率的2倍,设B 产品生产数量的增长率为x (0x >),若10月份该工厂的总收入增加了4.4x ,求x 的值.四、压轴题36.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 3C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.37.如图,在▱ABCD 中,AB =4,BC =8,∠ABC =60°.点P 是边BC 上一动点,作△PAB 的外接圆⊙O 交BD 于E .(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径; (2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径.38.如图1,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3与直线y =x +3交于点A (m ,0)和点B (2,n ),与y 轴交于点C .(1)求m ,n 的值及抛物线的解析式;(2)在图1中,把△AOC 平移,始终保持点A 的对应点P 在抛物线上,点C ,O 的对应点分别为M ,N ,连接OP ,若点M 恰好在直线y =x +3上,求线段OP 的长度; (3)如图2,在抛物线上是否存在点Q (不与点C 重合),使△QAB 和△ABC 的面积相等?若存在,直接写出点Q 的坐标;若不存在,请说明理由.39.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COFCDFSS=::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.40.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形.例如,下图中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.(1)已知A(﹣2,3),B(5,0),C(t,﹣2).①当t=2时,点A,B,C的最优覆盖矩形的面积为;②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;(2)已知点D(1,1).E(m,n)是函数y=4x(x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据垂径定理可得AB AC=,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴AB AC=,∴∠ADC=12∠AOB=29°. 故选B. 【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2.B解析:B 【解析】 【分析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=, 故选B. 【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.3.C解析:C 【解析】 【分析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案. 【详解】解:∵(1)(2)0x x --=, ∴x -1=0或x -2=0, 解得:1x =或2x =. 故选:C. 【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.4.D解析:D 【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=12BC ,∴△ADE∽△ABC ,AD AEAB AC =, ∴21()4ADE ABCS DE SBC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误. 故选D.5.C解析:C 【解析】 【分析】根据勾股定理求出AB ,根据锐角三角函数的定义求出各个三角函数值,即可得出答案. 【详解】 如图:由勾股定理得:22222133AC BC ++==, 所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC === ,所以只有选项C 正确; 故选:C . 【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.6.A解析:A 【解析】 【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可. 【详解】解:△ABC 的外接圆圆心是△ABC 三边垂直平分线的交点, 故选:A . 【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.7.D解析:D 【解析】 【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张, 所以抽到偶数的概率是46=23, 故选:D . 【点睛】本题主要考查了随机事件的概率,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.8.A解析:A 【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.9.B解析:B 【解析】 【分析】根据题意由有唯一的众数4,可知x =4,然后根据中位数的定义求解即可. 【详解】∵这组数据有唯一的众数4, ∴x =4,∵将数据从小到大排列为:1,2,3,3,4,4,4, ∴中位数为:3. 故选B . 【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.10.D解析:D 【解析】 【分析】根据二次函数的顶点式即可直接得出顶点坐标. 【详解】∵二次函数()2345y x +=-∴该函数图象的顶点坐标为(﹣4,﹣5), 故选:D .【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ). 11.B解析:B【解析】【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数.【详解】∵一组数据:4,6,6,6,8,9,12,13,∴这组数据的中位数是()6821427+÷÷==,故选:B .【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.12.D解析:D【解析】【分析】先确定抛物线y=3x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x 2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.A解析:A【解析】【详解】解:∵四边形ABCO 是平行四边形,且OA=OC ,∴四边形ABCO 是菱形,∴AB=OA=OB ,∴△OAB 是等边三角形,∴∠AOB=60°,∵BD 是⊙O 的直径,∴点B 、D 、O 在同一直线上,∴∠ADB=12∠AOB=30° 故选A . 14.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38. 故选B .【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.15.A解析:A【解析】根据黄金比的定义得:AP AB = ,得42AP == .故选A. 二、填空题16.【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.17.(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题解析:(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式. 18.【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【解析:3 2【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴112122EM AD ,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=2222435AC BC+=+=∵CE为Rt△ACB斜边的中线,∴1155222 CE AB,在△CEM中,551122CM ,即3722CM,∴CM的最大值为3 2 .故答案为:3 2 .【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点. 19.【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:解析:817【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=12BE=12,∵BF∥AD,∴△BOF∽△AOD,∴11248 BO BFAO AD===,∴89AO AB=,∵221417 AB=+=,∴817 AO=.故答案为:817【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.20.3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中解析:3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.21.5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题. 【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.22.-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,解析:-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.x可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,则4-x=5,所以x=-1;故答案为-1或6.【点睛】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.23.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE=15(5﹣2)×180°=108°,BC=CD=DE,得出BC=CD=DE,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=15(n﹣2)×180°=15(5﹣2)×180°=108°,BC=CD=DE,∴BC=CD=DE,∴∠CAD=13×108°=36°;故答案为:36°.本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.24..【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的解析:mx ny m n++.【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数mx nym n+=+.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.25.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.26.=31.5【解析】【分析】根据题意,第一次降价后的售价为,第二次降价后的售价为,据此列方程得解.【详解】根据题意,得:=31.5故答案为:=31.5.【点睛】本题考查一元二次方程的解析:()2561x -=31.5【解析】【分析】根据题意,第一次降价后的售价为()561x -,第二次降价后的售价为()2561x -,据此列方程得解.【详解】根据题意,得:()2561x -=31.5故答案为:()2561x -=31.5.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的. 27.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长. 28.2【解析】【分析】设,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k来表示x、y、z. 29.或【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB =5解析:209或145【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根据相似三角形的性质得到DF=209;如图2,当⊙F与Rt△ABC的边AC相切时,延长DE交AB于H,推出点H为切点,DH为⊙F的直径,根据相似三角形的性质即可得到结论.【详解】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,∴DF=HF,∵Rt△ABC中,∠ACB=90°,BC=3,tan A=BCAC=34,∴AC=4,AB=5,将Rt△ABC绕点C顺时针旋转90°得到△DEC,∴∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,∵FH⊥AC,CD⊥AC,∴FH∥CD,∴△EFH∽△EDC,∴FHCD=EFDE,∴4DF =55DF , 解得:DF =209; 如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,∵∠A =∠D ,∠AEH =∠DEC∴∠AHE =90°,∴点H 为切点,DH 为⊙F 的直径,∴△DEC ∽△DBH ,∴DE BD =CD DH , ∴57=4DH, ∴DH =285, ∴DF =145, 综上所述,当FD =209或145时,⊙F 与Rt △ABC 的边相切, 故答案为:209或145. 【点睛】 本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.30.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M 为AF 中点,则OM⊥AF∵六边形ABCDEF 为正六边形∴解析:3:2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323aa π⋅⋅=则r1=3 3a同理:扇形DEF的弧长为:120241803aaππ⋅⋅=则r2=2 3 ar1:r23:3:点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题31.(1)14;(2)716;【解析】【分析】(1)属于求简单事件的概率,根据概率公式计算可得;(2)用列表格法列出所有的等可能结果,从中确定符合事件的结果,根据概率公式计算可得.【详解】解:(1)小亮随机报名一个项目共有4种等可能结果,分别为A.足球、B.机器人、C.航模、D.绘画,其中选择“机器人”的有1种,为B.机器人,所以选择“机器人”的概率为P=1 4 .(2)用列表法表示所有可能出现的结果如图:从表格可以看出,总共有16种结果,每种结果出现的可能性相同,其中至少有一人参加“航模”社团有7种,分别为(A,C),(B,C),(C,A), (C,B),(C,C), (C,D),(D,C),所以两人至少有一人参加“航模”社团的概率P=7 16.【点睛】本题考查的是求简单事件的概率和两步操作事件的概率,用表格或树状图表示总结果数是解答此类问题的关键.32.(1)证明见解析;(2)①29;②证明见解析.【解析】【分析】(1)易证明△ADP∽△ABQ,△ACQ∽△ADP,从而得出DP EP BQ CQ=;(2)①根据等腰直角三角形的性质和勾股定理,求出BC边上的高22,根据△ADE∽△ABC,求出正方形DEFG的边长23.从而,由△AMN∽△AGF和△AMN的MN边上高26,△AGF的GF边上高22,GF=23,根据 MN:GF等于高之比即可求出MN;②可得出△BGD∽△EFC,则DG•EF=CF•BG;又DG=GF=EF,得GF2=CF•BG,再根据(1)DM MN ENBG GF CF==,从而得出结论.【详解】解:(1)在△ABQ和△ADP中,∵DP∥BQ,∴△ADP∽△ABQ,∴DP AP BQ AQ=,同理在△ACQ和△APE中,EP AP CQ AQ=,∴DP PE BQ QC=;(2)①作AQ⊥BC于点Q.∵BC边上的高AQ=22,∵DE=DG=GF=EF=BG=CF ∴DE:BC=1:3又∵DE∥BC∴AD:AB=1:3,∴AD=13,DE=23,∵DE边上的高为26,MN:GF=26:22,∴MN:23=26:22,∴MN=29.故答案为:29.②证明:∵∠B+∠C=90°∠CEF+∠C=90°,∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD ∽△EFC , ∴DG BG CF EF=, ∴DG•EF=CF•BG ,又∵DG=GF=EF ,∴GF 2=CF•BG ,由(1)得DM MN EN BG GF FC ==, ∴MN MN DM EN GF GF BG CF =, ∴2()MN DM EN GF BG CF=, ∵GF 2=CF•BG ,∴MN 2=DM•EN .【点睛】 本题考查了相似三角形的判定和性质以及正方形的性质,是一道综合题目,难度较大.33.(1)x 1=1+3,x 2=1-3;(2)x 1=13,x 2=-3 【解析】【分析】(1)利用配方法解方程即可;(2)先移项,然后利用因式分解法解方程.【详解】(1)解:x 2-2x =23 x 2-2x +1=23+1 (x -1)2=53x -1=∴x 1=1x 2=1 (2)解:[ (x -2)+(2x +1)] [ (x -2)-(2x +1)]=0(3x -1) (-x -3)=0∴x 1=13,x 2=-3 【点睛】 本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解题的关键.34.(1)()4,1;(2)4l 的函数表达式为()21412y x =--+,24x ≤≤;(3)120a a +=,理由详见解析【解析】【分析】(1)设x=0,求出y 的值,即可得到C 的坐标,根据抛物线L 3:21(2)12y x =--得到抛物线的对称轴,由此可求出点C 关于该抛物线对称轴对称的对称点D 的坐标; (2)由(1)可知点D 的坐标为(4,1),再由条件以点D 为顶点的L 3的“友好”抛物线L 4的解析式,可求出L 4的解析式,进而可求出L 3与L 4中y 同时随x 增大而增大的自变量的取值范围;(3)根据:抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上,可以列出两个方程,相加可得(a 1+a 2)(h-m )2=0.可得120a a +=.【详解】解:(1)∵抛物线l 3:21(2)12y x =--, ∴顶点为(2,-1),对称轴为x=2,设x=0,则y=1,∴C (0,1), ∴点C 关于该抛物线对称轴对称的对称点D 的坐标为:(4,1);(2)解:设4l 的函数表达式为()241y a x =-+由“友好”抛物线的定义,过点()2,1- ()21241a ∴-=-+12a ∴=- 4l 的函数表达式为()21412y x =--+ 3l ∴与4l 中y 同时随x 增大而增大的自变量的取值范围是24x ≤≤(3)120a a +=理由如下:∵ 抛物线()21y a x m n =-+与抛物线()22y a x h k =+-互为“友好”抛物线,()()2122k a h m n n a m h k ⎧=-+⎪∴⎨=-+⎪⎩①② ①+②得:()()2210+-=a a m h m h ≠。

青岛版九年级上册数学期末测试卷及含答案(易错题)

青岛版九年级上册数学期末测试卷及含答案(易错题)

青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°2、如图,⊙O中,弦AB的长为6cm,圆心O到AB的距离为4cm,则⊙O的半径长为()A.3cmB.4cmC.5cmD.6cm3、如图,AB、AC是⊙O的两条弦,∠A=30°,过点C的切线与OB的延长线交于点D,则∠D的度数为()A.30°B.35°C.40°D.45°4、若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A. k<1且k≠0B. k≠0C. k<1D. k>15、如图,A、D是⊙O上的两个点,若∠ADC=33°,则∠ACO的大小为A.57°B.66°C.67°D.44°6、已知圆锥的底面半径为1cm,母线长为3cm,则其全面积为()。

A.πB.3πC.4 πD.7 π7、已知关于x方程x2-kx-6=02的一个根是x=3,则实数k的值为()A.1B.-1C.2D.-28、如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADCB.∠ABDC.∠BACD.∠BAD9、下列语句中,正确的是()A.经过三点一定可以作圆B.等弧所对的圆周角相等C.相等的弦所对的圆心角相等D.三角形的外心到三角形各边距离相等10、给出一种运算:对于函数y=x n,规定y′=nx n﹣1.例如:若函数y=x4,则有y′=4x3.已知函数y=x3,则方程y′=12的解是()A.x1=4,x2=﹣4 B.x1=2,x2=﹣2 C.x1=x2=0 D.x1=2,x2=﹣211、下列方程中①;②;③;④,是一元二次方程的有()A. 个B. 个C. 个D. 个12、如图,点A,B,C在上,四边形是平行四边形.若对角线,则的长为()A. B. C. D.13、如图,在△ABC中,∠C=90°,AB=13,AC=12,下列三角函数表示正确的是()A. =B. =C. =D. =14、已知mn≠1,且5m2+2010m+9=0,9n2+2010n+5=0,则的值为()A.﹣402B.C.D.15、方程x(x﹣3)=5(x﹣3)的解的情况是()A.x=3B.x=5C.x1=3,x2=5 D.无解二、填空题(共10题,共计30分)16、李老师从“淋浴龙头”受到启发,编了一个题目:在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P的坐标为(0,2),PM与x轴交于点N(n,0),如图3.当m =时,n=________.17、如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点的对应点B′的横坐标是2,则点B的横坐标是________ .18、如图,从一块直径为的圆形铁皮上剪出一个圆心角为的扇形,则此扇形的面积为________ .19、如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB 为5,则该梯形的周长是________.20、已知a、b是方程x2﹣x﹣2=0的两个不相等实数根,则a•b的值是________ .21、如图,在△ABC中,AB=AC,BD、CE分别为两腰上的中线,且BD⊥CE,则tan∠ABC=________.22、已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是________ .23、半径为5cm的圆中有两条平行弦,长度分别为6cm和8cm,则这两条弦的距离为________ 。

最新青岛版九年级数学上册期末试卷(含答案解析)

最新青岛版九年级数学上册期末试卷(含答案解析)

青岛版九年级数学期末考试模拟试题一.选择题(共16小题)1.(2013•营口)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(2013•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.2 B. 3 C. 4 D. 5(2) (3) (4) (5) 3.(2013•曲靖)如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形B.矩形C.菱形D.正方形4.(2013•玉溪)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°5.(2013•烟台)如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A.(6,1)B.(0,1)C.(0,﹣3)D.(6,﹣3)6.(2013•泸州)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k 的取值范围是()A.k>﹣1 B.k<1且k≠0C.k≥﹣1且k≠0 D.k>﹣1且k≠07.(2013•铜仁地区)⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是()A.相切B.相交C.相离D.不能确定8.(2013•柳州)下列四个图中,∠x是圆周角的是()A.B.C.D.9.(2013•德州)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A.B.C.D.(9) (11) (13) (16)10.(2012•湛江)一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为()A. 6cm B. 12cm C. 2cm D.cm11.(2013•漳州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A. a<0 B.b2﹣4ac<0 C.当﹣1<x<3时,y>0 D.﹣12.(2013•益阳)抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)13.(2013•烟台)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()A.①②B.②③C.①②④D.②③④14.(2013•衢州)若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而增大,则m的取值范围是()A.m<﹣2 B.m<0 C.m>﹣2 D.m>015.(2013•普洱)若ab<0,则正比例函数y=ax和反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.16.(2013•平凉)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0,错误的个数有()A. 1个 B. 2个 C. 3个 D. 4个二.填空题(共6小题)17.(2013•潍坊)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件_________,使ABCD成为菱形(只需添加一个即可)(17) (18) (22)18.(2013•张家界)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=_________.19.(2013•云南)已知扇形的面积为2π,半径为3,则该扇形的弧长为_________(结果保留π).20.(2013•平凉)已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且圆心距O1O2=t+2,若这两个圆相切,则t=_________.21.(2013•枣庄)已知正比例函数y=﹣2x与反比例函数y=的图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为_________.22.(2013•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第_________象限.三.解答题(共8小题)23.(2013•莱芜)如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.24.(2013•湘潭)在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF 的长.25.(2012•山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?26.(2013•钦州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.27.(2013•东营)如图,AB为⊙O的直径,点C为⊙O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.(1)试判断CD与⊙O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,⊙O的半径为3,并且∠CAB=30°,求CE的长.28.(2013•营口)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?29.(2013•湘西州)如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数y=的图象有一个交点A(m,2).(1)求m的值;(2)求正比例函数y=kx的解析式;(3)试判断点B(2,3)是否在正比例函数图象上,并说明理由.30.(2013•铜仁地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.2013-2014学年九年级数学期末考试模拟试题参考答案与试题解析一.选择题(共16小题)1.A2.C3.C4.C5.B6.D7.B8.C9.C10.A11.D 12.A13.C14.A15.C16.B 二.填空题(共6小题)17.OA=OC18.80°.19.20.2或0.21.(1,﹣2).22.四.三.解答题(共8小题)23.解答:(1)证明:连结CE.∵点E为Rt△ACB的斜边AB的中点,∴CE=AB=AE.∵△ACD是等边三角形,∴AD=CD.在△ADE与△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE=30°.∵∠DCB=150°,∴∠EDC+∠DCB=180°.∴DE∥CB.(2)解:∵∠DCB=150°,若四边形DCBE是平行四边形,则DC∥BE,∠DCB+∠B=180°.∴∠B=30°.在Rt△ACB中,sinB=,sin30°==,AC=或AB=2AC.∴当AC=或AB=2AC时,四边形DCBE是平行四边形.24.解答:解:(1)AD=CF.理由如下:在正方形ABCO和正方形ODEF中,AO=CO,OD=OF,∠AOC=∠DOF=90°,∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF,在△AOD和△COF中,,∴△AOD≌△COF(SAS),∴AD=CF;(2)与(1)同理求出CF=AD,如图,连接DF交OE于G,则DF⊥OE,DG=OG=OE,∵正方形ODEF的边长为,∴OE=×=2,∴DG=OG=OE=×2=1,∴AG=AO+OG=3+1=4,在Rt△ADG中,AD===,∴CF=AD=.25.解答:(1)解:设每千克核桃应降价x元.根据题意,得(60﹣x﹣40)(100+×20)=2240.化简,得x2﹣10x+24=0 解得x1=4,x2=6.答:每千克核桃应降价4元或6元.(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),答:该店应按原售价的九折出售.…10分26.解答:解:(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AC为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.27.解答:解:(1)直线CD与⊙O相切.理由如下:连接OC.∵OA=OC,∴∠BAC=∠OCA,∵∠BAC=∠CAM,∴∠OCA=∠CAM,∴OC∥AM,∵CD⊥AM,∴OC⊥CD,∵OC为半径,∴直线CD与⊙O相切.(2)∵OC=OA,∴∠BAC=∠ACO,∵∠CAB=30°,∴∠COE=2∠CAB=60°,∴在Rt△COE中,OC=3,CE=OC•tan60°=.28.解答:解:(1)由题意得出:w=(x﹣20)∙y=(x﹣20)(﹣2x+80)=﹣2x2+120x ﹣1600,故w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.29.解答:解:(1)∵反比例函数y=的图象过点A(m,2),∴2=,解得m=1;(2)∵正比例函数y=kx的图象过点A(1,2),∴2=k×1,解得k=2,∴正比例函数解析式为y=2x;(3)点B(2,3)不在正比例函数图象上,理由如下:将x=2代入y=2x,得y=2×2=4≠3,所以点B(2,3)不在正比例函数y=2x的图象上.30.解答:解:(1)∵直线y=3x﹣3分别交x轴、y轴于A、B两点,∴可得A(1,0),B(0,﹣3),把A、B两点的坐标分别代入y=x2+bx+c得:,解得:.∴抛物线解析式为:y=x2+2x﹣3.(2)令y=0得:0=x2+2x﹣3,解得:x1=1,x2=﹣3,则C点坐标为:(﹣3,0),AC=4,故可得S△ABC=AC×OB=×4×3=6.(3)抛物线的对称轴为:x=﹣1,假设存在M(﹣1,m)满足题意:讨论:①当MA=AB时,,解得:,∴M1(﹣1,),M2(﹣1,﹣);②当MB=BA时,,解得:M3=0,M4=﹣6,∴M3(﹣1,0),M4(﹣1,﹣6)(不合题意舍去),③当MB=MA时,,解得:m=﹣1,∴M5(﹣1,﹣1),答:共存在4个点M1(﹣1,),M2(﹣1,﹣),M3(﹣1,0),M4(﹣1,﹣1)使△ABM为等腰三角形.。

青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,⊙O是△ABC的外接圆,∠B=60o, 0P⊥AC于点P,OP=2,则⊙O的半径为()A.4B.6C.8D.122、如图,在平面直角坐标系中,A(0,2 ),动点B,C从原点O同时出发,分别以每秒1个单位和每秒2个单位长度的速度沿x轴正方向运动,以点A为圆心,OB的长为半径画圆;以BC为一边,在x轴上方作等边△BCD.设运动的时间为t秒,当⊙A与△BCD的边BD所在直线相切时,t的值为()A. B. C.4 +6 D.4 -63、下列命题中,正确的有()①平面内三个点确定一个圆;②平分弦的直径平分弦所对的弧;③半圆所对的圆周角是直角;④相等的圆周角所对的弦相等;⑤在同圆中,相等的弦所对的弧相等.A.1个B.2个C.3个D.4个4、如图,已知圆锥的母线长为6,圆锥的高与母线所夹的角为,且sin = ,则该圆锥的侧面积是()A. B.24π C.16π D.12π5、下列各图中,∠1=∠2的图形的个数有()A.3B.4C.5D.66、如图,电灯在横杆的正上方,在灯光下的影子为,,,点到的距离是3m,则点到的距离是()A. m B. C. D.7、若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2B.2C.4D.﹣38、如图,已知⊙O的半径为,弦垂足为E,且,则的长为()A. B. C. D.9、已知方程x2﹣2x﹣1=0,则此方程A.无实数根B.两根之和为﹣2C.两根之积为﹣1D.有一根为-1+10、下列命题:①三点确定一个圆;②平分弦的直径平分弦所对的弧;③相等的弦所对的圆心角相等;④在半径为的圆中,的圆周角所对的弧长为.错误的有()个.A. B. C. D.11、一个圆锥的侧面积是底面积的2倍。

则圆锥侧面展开图的扇形的圆心角是()A.120°B.180°C.240°D.300°12、如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确()A.AB>CE>CDB.AB=CE>CDC.AB>CD>CED.AB=CD=CE13、如图,为安全起见,萌萌拟加长滑梯,将其倾斜角由45°降至30°.已知滑梯AB的长为3m,点D、B、C在同一水平地面上,那么加长后的滑梯AD的长是()A.2 mB.2 mC.3 mD.3 m14、下列说法中正确的是()A.同一平面内,过一点有且只有一条直线与已知直线平行B.三张分别画有菱形、等边三角形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是C.一组对边平行,一组对边相等的四边形是平行四边形 D.当时,关于的方程有实数根15、已知的三边长为a,b,c,且满足方程a2x2-(c2-a2-b2)x+b2=0,则方程根的情况是()。

青岛版九年级上册数学期末测试卷及含答案(基础题)

青岛版九年级上册数学期末测试卷及含答案(基础题)

青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、用配方法解方程时,原方程可变形为()A. B. C. D.2、如图,AB、CD是⊙O的两条平行弦,BE∥AC交CD于E,过A点的切线交DC 延长线于P,若AC=3 ,则PC•CE的值是()A.18B.6C.6D.93、关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.-1C.1或﹣1D.4、用配方法解方程x2﹣4x=0,下列配方正确的是()A.(x+2)2=0B.(x﹣2)2=0C.(x+2)2=4D.(x﹣2)2=45、下列说法正确的是()A.平分弦的直径垂直于弦B.相等的圆周角所对的弧相等C.三个点确定一个圆D.半圆或直径所对的圆周角是直角6、如图,用一块直径为 a 的圆桌布平铺在对角线长为 a 的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度 x 为()A. B. C. D.7、若关于x的方程x2﹣x+sina=0有两个相等的实数根,则锐角a为()A.75°B.60°C.45°D.30°8、tan45°的值为()A. B.1 C. D.9、在Rt△ABC中,∠C=90°,BC=5,AC=12,则tanB的值是()A. B. C. D.10、如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将Rt△ABC绕点A逆时针旋转30°后得到△ADE,则图中阴影部分的面积为()A. B. C. D.11、如图,电线杆AB的中点C处有一标志物,在地面D点处测得标志物的仰角为45°,若测得DC的长度为a,则电线杆AB的长可表示为()A.aB.2aC. aD. a12、已知、是一元二次方程的两个实数根,下列结论错误的是( )A. B. C. D.13、如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数y=(x>0)的图像上,则点E的坐标为()A.( , )B.(1, )C.(2, )D.(,)14、如图,若弧AB半径PA为18,圆心角为120°,半径为2的⊙,从弧AB的一个端点A(切点)开始先在外侧滚动到另一个端点B(切点),再旋转到内侧继续滚动,最后转回到初始位置,⊙自转的周数是()A.5周B.6周C.7周D.8周15、在中,∠C=90°,,则的值为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,若菱形ABCD的边长为2cm,∠A=120°,将菱形ABCD折叠,使点A恰好落在菱形对角线的交点O处,折痕为EF,则EF=________cm,17、已知关于的一元二次方程没有实数根,则的取值范围是________.18、如左下图,已知Rt△ABC中,斜边BC上的高AD=4,cosB= ,则AC=________.19、在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为1:2,把△EFO缩小,则点E的对应点E′的坐标是________.20、如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则∠ACB=________.21、如图,把矩形对折,折痕为,矩形与矩形相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上学期期末试题
(时间:120分钟,满分:120分)
一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个....是正确的,请把正确的选项选出来填在后面答题栏内,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)
1.下列图形中,既是轴对称图形又是中心对称图形的有( )
A .4个
B .3个
C .2个
D .1个
2.在下列命题中,是真命题的是( )
A .两条对角线相等的四边形是矩形
B .两条对角线互相垂直的四边形是菱形
C .两条对角线互相平分的四边形是平行四边形
D .两条对角线互相垂直且相等的四边形是正方形
3.如图,矩形ABCD 的两条对角线相交于点O ,602AOB AB ∠==°,,则矩形的对角线AC 的长是( )
A .2
B .4
C .23
D .43
4.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )
A .矩形
B .直角梯形
C .菱形
D .正方形
5.方程(3)(1)3x x x -+=-的解是( )
A .0x =
B .3x =
C .3x =或1x =-
D .3x =或0x =
6.正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针旋转90°后,B 点的坐标为( )
A.(-2,2)
B.(4,1)
C.(3,1)
D.(4,0)
7.关于x 的方程(a -5)x 2
-4x -1=0有实
数根,
O
D
C
A
B
A
B
C
D
M N P
P1
M1
N
1
(第13题图)
则a满足()
A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5
8.2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机。

受金融危机的影响,某商品原价为200元,连续两次降价%
a后售价为148元,下面所列方程正确的是()
A.2
200(1%)148
a
+= B.2
200(1%)148
a
-=
C.200(12%)148
a
-= D.2
200(1%)148
a
-=
9. 两圆的圆心距为3,两圆的半径分别是方程0
3
4
2=
+
-x
x的两个根,则两圆的位置关系是()
A.相交B.外离C.内含D.外切
10.如图,⊙O的弦AB垂直平分半径OC,若AB=,6则⊙O的半径为()
A.2
B.2
2 C.
2
2
D.
2
6
11.弧长等于半径的圆弧所对的圆心角是( )
A.
360
π
B.
180
π
C.
90
π
D.600
12.已知反比例函数
x
k
y=的图象经过点P(一l,2),则这个函数的图象位于()A.第二、三象限 B.第一、三象限 C.第三、四象限 D.第二、四象限13.在下图4×4的正方形网格中,△MNP绕某点旋转一定的角
度,得到△M1N1P1,则其旋转中心可能是()
A.点A
B.点B
C.点C
D.点D
14.如图,⊙O内切于△ABC,切点为
D,E,F.已知∠B=50°,∠C=60°,
•连结OE,OF,DE,DF,那么∠EDF
等于()
A .40°
B .55°
C .65°
D .70°
15.如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC =12,BD =9,则该梯形的面积是( )
A. 30
B. 15
C. 7.5
D. 54
16.某校数学课外兴趣小组的同学每人制作一个面积为200cm 2
的矩形学具进行展示. 设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形长y (cm )与宽x (cm )之间的函数关系的图象大致是( )
17. 若n (0n ≠)是关于x 的方程2
20x mx n ++=的根,则n m +的值为( ) A 、1 B 、2
C 、-1
D 、-2
18.已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数x
y 4
-=的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( )
A. y 3<y 1<y 2
B. y 2<y 1<y 3
C. y 1<y 2<y 3
D. y 3<y 2<y 1 19.如图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如右图所示,则△ABC 的面积是( )
9
4x
y
O
P
D
C B
A
A 、10
B 、16
C 、18
D 、
20
A
B C D E
第23题图
20. 如图,直线y kx b =+经过(2,1)A --和(3,0)B -两点,双曲线为y=x
1
的图像,利用函数图象判断不等式
1
kx b x
<+的解集为( ) (A)3132x --<或313
2
x -+>
(B)
3535
22
x ---+<<
(C)313313
22
x ---+<<
(D)3535
022
x x ---+<
<<或 二、填空题(本大题共5个小题,满分15分,只要求填写最后结果,每小题填对得3分)
21.方程25)1(2
=-x 的解是__________________. 22. 函数3
1-=
x y 的自变量的取值范围是_________________.
23.如图:矩形纸片ABCD ,AB =2,点E 在BC 上,且AE=EC .若将纸片沿AE 折叠,点
B 恰好落在A
C 上,则AC 的长是 .
24.如图,正方形ABCD 的边长为1,E 、F 分别是BC 、CD 上的点,且△
AEF 是等边三角形,则BE 的长为_________________.
25.如图,同心圆O 中,大圆半径OA 、OB 分别交小圆于D 、C ,OA ⊥OB,若四边形ABCD 的面积为50,则图中阴影部分的面积为____________________.
三、解答题(本大题共4小题,满分45分,解答应写出必要的文字说明、证明过程或推演步骤)
26.(本题满分10分)
x
y
O
A (-2,-1)
B (-3,0)
如图,在△ABC 中,∠A 、∠B 的平分线交于点D ,DE ∥AC 交BC 于点E ,DF ∥BC 交AC 于点F .
(1)点D 是△ABC 的________心; (2)求证:四边形DECF 为菱形.
27. (本题满分11分) 如图,利用一面墙(墙的长度不超过45m )当做一边,用80m 长的篱笆围一个矩形场地.
⑴怎样围才能使矩形场地的面积为750m 2?
⑵能否使所围矩形场地的面积为810m 2,为什么?
28.(本题满分12分)
如图,AB 为⊙O 的直径,PQ 切⊙O 于T ,AC PQ ⊥于C ,交⊙O 于D . 求证:(1)AT 平分∠BAC
(2)AT 2=A B ·AC
29. (本题满分12分)
已知:如图,在平面直角坐标系x O y 中,Rt △OCD 的一边OC 在x 轴上,∠C=90°,点D 在第一象限,OC=3,DC=4,反比例函数的图象经过OD 的中点A . (1)求该反比例函数的解析式;
(2)若该反比例函数的图象与Rt △OCD 的另一边DC 交于点B ,在x 轴上求一点P ,使PA PB +最小.
A
B C D O
P T Q (第28题图)。

相关文档
最新文档